LCOV - code coverage report
Current view: top level - src/backend/executor - nodeAgg.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 1394 1472 94.7 %
Date: 2024-09-08 22:11:48 Functions: 56 57 98.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * nodeAgg.c
       4             :  *    Routines to handle aggregate nodes.
       5             :  *
       6             :  *    ExecAgg normally evaluates each aggregate in the following steps:
       7             :  *
       8             :  *       transvalue = initcond
       9             :  *       foreach input_tuple do
      10             :  *          transvalue = transfunc(transvalue, input_value(s))
      11             :  *       result = finalfunc(transvalue, direct_argument(s))
      12             :  *
      13             :  *    If a finalfunc is not supplied then the result is just the ending
      14             :  *    value of transvalue.
      15             :  *
      16             :  *    Other behaviors can be selected by the "aggsplit" mode, which exists
      17             :  *    to support partial aggregation.  It is possible to:
      18             :  *    * Skip running the finalfunc, so that the output is always the
      19             :  *    final transvalue state.
      20             :  *    * Substitute the combinefunc for the transfunc, so that transvalue
      21             :  *    states (propagated up from a child partial-aggregation step) are merged
      22             :  *    rather than processing raw input rows.  (The statements below about
      23             :  *    the transfunc apply equally to the combinefunc, when it's selected.)
      24             :  *    * Apply the serializefunc to the output values (this only makes sense
      25             :  *    when skipping the finalfunc, since the serializefunc works on the
      26             :  *    transvalue data type).
      27             :  *    * Apply the deserializefunc to the input values (this only makes sense
      28             :  *    when using the combinefunc, for similar reasons).
      29             :  *    It is the planner's responsibility to connect up Agg nodes using these
      30             :  *    alternate behaviors in a way that makes sense, with partial aggregation
      31             :  *    results being fed to nodes that expect them.
      32             :  *
      33             :  *    If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the
      34             :  *    input tuples and eliminate duplicates (if required) before performing
      35             :  *    the above-depicted process.  (However, we don't do that for ordered-set
      36             :  *    aggregates; their "ORDER BY" inputs are ordinary aggregate arguments
      37             :  *    so far as this module is concerned.)  Note that partial aggregation
      38             :  *    is not supported in these cases, since we couldn't ensure global
      39             :  *    ordering or distinctness of the inputs.
      40             :  *
      41             :  *    If transfunc is marked "strict" in pg_proc and initcond is NULL,
      42             :  *    then the first non-NULL input_value is assigned directly to transvalue,
      43             :  *    and transfunc isn't applied until the second non-NULL input_value.
      44             :  *    The agg's first input type and transtype must be the same in this case!
      45             :  *
      46             :  *    If transfunc is marked "strict" then NULL input_values are skipped,
      47             :  *    keeping the previous transvalue.  If transfunc is not strict then it
      48             :  *    is called for every input tuple and must deal with NULL initcond
      49             :  *    or NULL input_values for itself.
      50             :  *
      51             :  *    If finalfunc is marked "strict" then it is not called when the
      52             :  *    ending transvalue is NULL, instead a NULL result is created
      53             :  *    automatically (this is just the usual handling of strict functions,
      54             :  *    of course).  A non-strict finalfunc can make its own choice of
      55             :  *    what to return for a NULL ending transvalue.
      56             :  *
      57             :  *    Ordered-set aggregates are treated specially in one other way: we
      58             :  *    evaluate any "direct" arguments and pass them to the finalfunc along
      59             :  *    with the transition value.
      60             :  *
      61             :  *    A finalfunc can have additional arguments beyond the transvalue and
      62             :  *    any "direct" arguments, corresponding to the input arguments of the
      63             :  *    aggregate.  These are always just passed as NULL.  Such arguments may be
      64             :  *    needed to allow resolution of a polymorphic aggregate's result type.
      65             :  *
      66             :  *    We compute aggregate input expressions and run the transition functions
      67             :  *    in a temporary econtext (aggstate->tmpcontext).  This is reset at least
      68             :  *    once per input tuple, so when the transvalue datatype is
      69             :  *    pass-by-reference, we have to be careful to copy it into a longer-lived
      70             :  *    memory context, and free the prior value to avoid memory leakage.  We
      71             :  *    store transvalues in another set of econtexts, aggstate->aggcontexts
      72             :  *    (one per grouping set, see below), which are also used for the hashtable
      73             :  *    structures in AGG_HASHED mode.  These econtexts are rescanned, not just
      74             :  *    reset, at group boundaries so that aggregate transition functions can
      75             :  *    register shutdown callbacks via AggRegisterCallback.
      76             :  *
      77             :  *    The node's regular econtext (aggstate->ss.ps.ps_ExprContext) is used to
      78             :  *    run finalize functions and compute the output tuple; this context can be
      79             :  *    reset once per output tuple.
      80             :  *
      81             :  *    The executor's AggState node is passed as the fmgr "context" value in
      82             :  *    all transfunc and finalfunc calls.  It is not recommended that the
      83             :  *    transition functions look at the AggState node directly, but they can
      84             :  *    use AggCheckCallContext() to verify that they are being called by
      85             :  *    nodeAgg.c (and not as ordinary SQL functions).  The main reason a
      86             :  *    transition function might want to know this is so that it can avoid
      87             :  *    palloc'ing a fixed-size pass-by-ref transition value on every call:
      88             :  *    it can instead just scribble on and return its left input.  Ordinarily
      89             :  *    it is completely forbidden for functions to modify pass-by-ref inputs,
      90             :  *    but in the aggregate case we know the left input is either the initial
      91             :  *    transition value or a previous function result, and in either case its
      92             :  *    value need not be preserved.  See int8inc() for an example.  Notice that
      93             :  *    the EEOP_AGG_PLAIN_TRANS step is coded to avoid a data copy step when
      94             :  *    the previous transition value pointer is returned.  It is also possible
      95             :  *    to avoid repeated data copying when the transition value is an expanded
      96             :  *    object: to do that, the transition function must take care to return
      97             :  *    an expanded object that is in a child context of the memory context
      98             :  *    returned by AggCheckCallContext().  Also, some transition functions want
      99             :  *    to store working state in addition to the nominal transition value; they
     100             :  *    can use the memory context returned by AggCheckCallContext() to do that.
     101             :  *
     102             :  *    Note: AggCheckCallContext() is available as of PostgreSQL 9.0.  The
     103             :  *    AggState is available as context in earlier releases (back to 8.1),
     104             :  *    but direct examination of the node is needed to use it before 9.0.
     105             :  *
     106             :  *    As of 9.4, aggregate transition functions can also use AggGetAggref()
     107             :  *    to get hold of the Aggref expression node for their aggregate call.
     108             :  *    This is mainly intended for ordered-set aggregates, which are not
     109             :  *    supported as window functions.  (A regular aggregate function would
     110             :  *    need some fallback logic to use this, since there's no Aggref node
     111             :  *    for a window function.)
     112             :  *
     113             :  *    Grouping sets:
     114             :  *
     115             :  *    A list of grouping sets which is structurally equivalent to a ROLLUP
     116             :  *    clause (e.g. (a,b,c), (a,b), (a)) can be processed in a single pass over
     117             :  *    ordered data.  We do this by keeping a separate set of transition values
     118             :  *    for each grouping set being concurrently processed; for each input tuple
     119             :  *    we update them all, and on group boundaries we reset those states
     120             :  *    (starting at the front of the list) whose grouping values have changed
     121             :  *    (the list of grouping sets is ordered from most specific to least
     122             :  *    specific).
     123             :  *
     124             :  *    Where more complex grouping sets are used, we break them down into
     125             :  *    "phases", where each phase has a different sort order (except phase 0
     126             :  *    which is reserved for hashing).  During each phase but the last, the
     127             :  *    input tuples are additionally stored in a tuplesort which is keyed to the
     128             :  *    next phase's sort order; during each phase but the first, the input
     129             :  *    tuples are drawn from the previously sorted data.  (The sorting of the
     130             :  *    data for the first phase is handled by the planner, as it might be
     131             :  *    satisfied by underlying nodes.)
     132             :  *
     133             :  *    Hashing can be mixed with sorted grouping.  To do this, we have an
     134             :  *    AGG_MIXED strategy that populates the hashtables during the first sorted
     135             :  *    phase, and switches to reading them out after completing all sort phases.
     136             :  *    We can also support AGG_HASHED with multiple hash tables and no sorting
     137             :  *    at all.
     138             :  *
     139             :  *    From the perspective of aggregate transition and final functions, the
     140             :  *    only issue regarding grouping sets is this: a single call site (flinfo)
     141             :  *    of an aggregate function may be used for updating several different
     142             :  *    transition values in turn. So the function must not cache in the flinfo
     143             :  *    anything which logically belongs as part of the transition value (most
     144             :  *    importantly, the memory context in which the transition value exists).
     145             :  *    The support API functions (AggCheckCallContext, AggRegisterCallback) are
     146             :  *    sensitive to the grouping set for which the aggregate function is
     147             :  *    currently being called.
     148             :  *
     149             :  *    Plan structure:
     150             :  *
     151             :  *    What we get from the planner is actually one "real" Agg node which is
     152             :  *    part of the plan tree proper, but which optionally has an additional list
     153             :  *    of Agg nodes hung off the side via the "chain" field.  This is because an
     154             :  *    Agg node happens to be a convenient representation of all the data we
     155             :  *    need for grouping sets.
     156             :  *
     157             :  *    For many purposes, we treat the "real" node as if it were just the first
     158             :  *    node in the chain.  The chain must be ordered such that hashed entries
     159             :  *    come before sorted/plain entries; the real node is marked AGG_MIXED if
     160             :  *    there are both types present (in which case the real node describes one
     161             :  *    of the hashed groupings, other AGG_HASHED nodes may optionally follow in
     162             :  *    the chain, followed in turn by AGG_SORTED or (one) AGG_PLAIN node).  If
     163             :  *    the real node is marked AGG_HASHED or AGG_SORTED, then all the chained
     164             :  *    nodes must be of the same type; if it is AGG_PLAIN, there can be no
     165             :  *    chained nodes.
     166             :  *
     167             :  *    We collect all hashed nodes into a single "phase", numbered 0, and create
     168             :  *    a sorted phase (numbered 1..n) for each AGG_SORTED or AGG_PLAIN node.
     169             :  *    Phase 0 is allocated even if there are no hashes, but remains unused in
     170             :  *    that case.
     171             :  *
     172             :  *    AGG_HASHED nodes actually refer to only a single grouping set each,
     173             :  *    because for each hashed grouping we need a separate grpColIdx and
     174             :  *    numGroups estimate.  AGG_SORTED nodes represent a "rollup", a list of
     175             :  *    grouping sets that share a sort order.  Each AGG_SORTED node other than
     176             :  *    the first one has an associated Sort node which describes the sort order
     177             :  *    to be used; the first sorted node takes its input from the outer subtree,
     178             :  *    which the planner has already arranged to provide ordered data.
     179             :  *
     180             :  *    Memory and ExprContext usage:
     181             :  *
     182             :  *    Because we're accumulating aggregate values across input rows, we need to
     183             :  *    use more memory contexts than just simple input/output tuple contexts.
     184             :  *    In fact, for a rollup, we need a separate context for each grouping set
     185             :  *    so that we can reset the inner (finer-grained) aggregates on their group
     186             :  *    boundaries while continuing to accumulate values for outer
     187             :  *    (coarser-grained) groupings.  On top of this, we might be simultaneously
     188             :  *    populating hashtables; however, we only need one context for all the
     189             :  *    hashtables.
     190             :  *
     191             :  *    So we create an array, aggcontexts, with an ExprContext for each grouping
     192             :  *    set in the largest rollup that we're going to process, and use the
     193             :  *    per-tuple memory context of those ExprContexts to store the aggregate
     194             :  *    transition values.  hashcontext is the single context created to support
     195             :  *    all hash tables.
     196             :  *
     197             :  *    Spilling To Disk
     198             :  *
     199             :  *    When performing hash aggregation, if the hash table memory exceeds the
     200             :  *    limit (see hash_agg_check_limits()), we enter "spill mode". In spill
     201             :  *    mode, we advance the transition states only for groups already in the
     202             :  *    hash table. For tuples that would need to create a new hash table
     203             :  *    entries (and initialize new transition states), we instead spill them to
     204             :  *    disk to be processed later. The tuples are spilled in a partitioned
     205             :  *    manner, so that subsequent batches are smaller and less likely to exceed
     206             :  *    hash_mem (if a batch does exceed hash_mem, it must be spilled
     207             :  *    recursively).
     208             :  *
     209             :  *    Spilled data is written to logical tapes. These provide better control
     210             :  *    over memory usage, disk space, and the number of files than if we were
     211             :  *    to use a BufFile for each spill.  We don't know the number of tapes needed
     212             :  *    at the start of the algorithm (because it can recurse), so a tape set is
     213             :  *    allocated at the beginning, and individual tapes are created as needed.
     214             :  *    As a particular tape is read, logtape.c recycles its disk space. When a
     215             :  *    tape is read to completion, it is destroyed entirely.
     216             :  *
     217             :  *    Tapes' buffers can take up substantial memory when many tapes are open at
     218             :  *    once. We only need one tape open at a time in read mode (using a buffer
     219             :  *    that's a multiple of BLCKSZ); but we need one tape open in write mode (each
     220             :  *    requiring a buffer of size BLCKSZ) for each partition.
     221             :  *
     222             :  *    Note that it's possible for transition states to start small but then
     223             :  *    grow very large; for instance in the case of ARRAY_AGG. In such cases,
     224             :  *    it's still possible to significantly exceed hash_mem. We try to avoid
     225             :  *    this situation by estimating what will fit in the available memory, and
     226             :  *    imposing a limit on the number of groups separately from the amount of
     227             :  *    memory consumed.
     228             :  *
     229             :  *    Transition / Combine function invocation:
     230             :  *
     231             :  *    For performance reasons transition functions, including combine
     232             :  *    functions, aren't invoked one-by-one from nodeAgg.c after computing
     233             :  *    arguments using the expression evaluation engine. Instead
     234             :  *    ExecBuildAggTrans() builds one large expression that does both argument
     235             :  *    evaluation and transition function invocation. That avoids performance
     236             :  *    issues due to repeated uses of expression evaluation, complications due
     237             :  *    to filter expressions having to be evaluated early, and allows to JIT
     238             :  *    the entire expression into one native function.
     239             :  *
     240             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
     241             :  * Portions Copyright (c) 1994, Regents of the University of California
     242             :  *
     243             :  * IDENTIFICATION
     244             :  *    src/backend/executor/nodeAgg.c
     245             :  *
     246             :  *-------------------------------------------------------------------------
     247             :  */
     248             : 
     249             : #include "postgres.h"
     250             : 
     251             : #include "access/htup_details.h"
     252             : #include "access/parallel.h"
     253             : #include "catalog/objectaccess.h"
     254             : #include "catalog/pg_aggregate.h"
     255             : #include "catalog/pg_proc.h"
     256             : #include "catalog/pg_type.h"
     257             : #include "common/hashfn.h"
     258             : #include "executor/execExpr.h"
     259             : #include "executor/executor.h"
     260             : #include "executor/nodeAgg.h"
     261             : #include "lib/hyperloglog.h"
     262             : #include "miscadmin.h"
     263             : #include "nodes/nodeFuncs.h"
     264             : #include "optimizer/optimizer.h"
     265             : #include "parser/parse_agg.h"
     266             : #include "parser/parse_coerce.h"
     267             : #include "utils/acl.h"
     268             : #include "utils/builtins.h"
     269             : #include "utils/datum.h"
     270             : #include "utils/dynahash.h"
     271             : #include "utils/expandeddatum.h"
     272             : #include "utils/logtape.h"
     273             : #include "utils/lsyscache.h"
     274             : #include "utils/memutils.h"
     275             : #include "utils/syscache.h"
     276             : #include "utils/tuplesort.h"
     277             : 
     278             : /*
     279             :  * Control how many partitions are created when spilling HashAgg to
     280             :  * disk.
     281             :  *
     282             :  * HASHAGG_PARTITION_FACTOR is multiplied by the estimated number of
     283             :  * partitions needed such that each partition will fit in memory. The factor
     284             :  * is set higher than one because there's not a high cost to having a few too
     285             :  * many partitions, and it makes it less likely that a partition will need to
     286             :  * be spilled recursively. Another benefit of having more, smaller partitions
     287             :  * is that small hash tables may perform better than large ones due to memory
     288             :  * caching effects.
     289             :  *
     290             :  * We also specify a min and max number of partitions per spill. Too few might
     291             :  * mean a lot of wasted I/O from repeated spilling of the same tuples. Too
     292             :  * many will result in lots of memory wasted buffering the spill files (which
     293             :  * could instead be spent on a larger hash table).
     294             :  */
     295             : #define HASHAGG_PARTITION_FACTOR 1.50
     296             : #define HASHAGG_MIN_PARTITIONS 4
     297             : #define HASHAGG_MAX_PARTITIONS 1024
     298             : 
     299             : /*
     300             :  * For reading from tapes, the buffer size must be a multiple of
     301             :  * BLCKSZ. Larger values help when reading from multiple tapes concurrently,
     302             :  * but that doesn't happen in HashAgg, so we simply use BLCKSZ. Writing to a
     303             :  * tape always uses a buffer of size BLCKSZ.
     304             :  */
     305             : #define HASHAGG_READ_BUFFER_SIZE BLCKSZ
     306             : #define HASHAGG_WRITE_BUFFER_SIZE BLCKSZ
     307             : 
     308             : /*
     309             :  * HyperLogLog is used for estimating the cardinality of the spilled tuples in
     310             :  * a given partition. 5 bits corresponds to a size of about 32 bytes and a
     311             :  * worst-case error of around 18%. That's effective enough to choose a
     312             :  * reasonable number of partitions when recursing.
     313             :  */
     314             : #define HASHAGG_HLL_BIT_WIDTH 5
     315             : 
     316             : /*
     317             :  * Estimate chunk overhead as a constant 16 bytes. XXX: should this be
     318             :  * improved?
     319             :  */
     320             : #define CHUNKHDRSZ 16
     321             : 
     322             : /*
     323             :  * Represents partitioned spill data for a single hashtable. Contains the
     324             :  * necessary information to route tuples to the correct partition, and to
     325             :  * transform the spilled data into new batches.
     326             :  *
     327             :  * The high bits are used for partition selection (when recursing, we ignore
     328             :  * the bits that have already been used for partition selection at an earlier
     329             :  * level).
     330             :  */
     331             : typedef struct HashAggSpill
     332             : {
     333             :     int         npartitions;    /* number of partitions */
     334             :     LogicalTape **partitions;   /* spill partition tapes */
     335             :     int64      *ntuples;        /* number of tuples in each partition */
     336             :     uint32      mask;           /* mask to find partition from hash value */
     337             :     int         shift;          /* after masking, shift by this amount */
     338             :     hyperLogLogState *hll_card; /* cardinality estimate for contents */
     339             : } HashAggSpill;
     340             : 
     341             : /*
     342             :  * Represents work to be done for one pass of hash aggregation (with only one
     343             :  * grouping set).
     344             :  *
     345             :  * Also tracks the bits of the hash already used for partition selection by
     346             :  * earlier iterations, so that this batch can use new bits. If all bits have
     347             :  * already been used, no partitioning will be done (any spilled data will go
     348             :  * to a single output tape).
     349             :  */
     350             : typedef struct HashAggBatch
     351             : {
     352             :     int         setno;          /* grouping set */
     353             :     int         used_bits;      /* number of bits of hash already used */
     354             :     LogicalTape *input_tape;    /* input partition tape */
     355             :     int64       input_tuples;   /* number of tuples in this batch */
     356             :     double      input_card;     /* estimated group cardinality */
     357             : } HashAggBatch;
     358             : 
     359             : /* used to find referenced colnos */
     360             : typedef struct FindColsContext
     361             : {
     362             :     bool        is_aggref;      /* is under an aggref */
     363             :     Bitmapset  *aggregated;     /* column references under an aggref */
     364             :     Bitmapset  *unaggregated;   /* other column references */
     365             : } FindColsContext;
     366             : 
     367             : static void select_current_set(AggState *aggstate, int setno, bool is_hash);
     368             : static void initialize_phase(AggState *aggstate, int newphase);
     369             : static TupleTableSlot *fetch_input_tuple(AggState *aggstate);
     370             : static void initialize_aggregates(AggState *aggstate,
     371             :                                   AggStatePerGroup *pergroups,
     372             :                                   int numReset);
     373             : static void advance_transition_function(AggState *aggstate,
     374             :                                         AggStatePerTrans pertrans,
     375             :                                         AggStatePerGroup pergroupstate);
     376             : static void advance_aggregates(AggState *aggstate);
     377             : static void process_ordered_aggregate_single(AggState *aggstate,
     378             :                                              AggStatePerTrans pertrans,
     379             :                                              AggStatePerGroup pergroupstate);
     380             : static void process_ordered_aggregate_multi(AggState *aggstate,
     381             :                                             AggStatePerTrans pertrans,
     382             :                                             AggStatePerGroup pergroupstate);
     383             : static void finalize_aggregate(AggState *aggstate,
     384             :                                AggStatePerAgg peragg,
     385             :                                AggStatePerGroup pergroupstate,
     386             :                                Datum *resultVal, bool *resultIsNull);
     387             : static void finalize_partialaggregate(AggState *aggstate,
     388             :                                       AggStatePerAgg peragg,
     389             :                                       AggStatePerGroup pergroupstate,
     390             :                                       Datum *resultVal, bool *resultIsNull);
     391             : static inline void prepare_hash_slot(AggStatePerHash perhash,
     392             :                                      TupleTableSlot *inputslot,
     393             :                                      TupleTableSlot *hashslot);
     394             : static void prepare_projection_slot(AggState *aggstate,
     395             :                                     TupleTableSlot *slot,
     396             :                                     int currentSet);
     397             : static void finalize_aggregates(AggState *aggstate,
     398             :                                 AggStatePerAgg peraggs,
     399             :                                 AggStatePerGroup pergroup);
     400             : static TupleTableSlot *project_aggregates(AggState *aggstate);
     401             : static void find_cols(AggState *aggstate, Bitmapset **aggregated,
     402             :                       Bitmapset **unaggregated);
     403             : static bool find_cols_walker(Node *node, FindColsContext *context);
     404             : static void build_hash_tables(AggState *aggstate);
     405             : static void build_hash_table(AggState *aggstate, int setno, long nbuckets);
     406             : static void hashagg_recompile_expressions(AggState *aggstate, bool minslot,
     407             :                                           bool nullcheck);
     408             : static long hash_choose_num_buckets(double hashentrysize,
     409             :                                     long ngroups, Size memory);
     410             : static int  hash_choose_num_partitions(double input_groups,
     411             :                                        double hashentrysize,
     412             :                                        int used_bits,
     413             :                                        int *log2_npartitions);
     414             : static void initialize_hash_entry(AggState *aggstate,
     415             :                                   TupleHashTable hashtable,
     416             :                                   TupleHashEntry entry);
     417             : static void lookup_hash_entries(AggState *aggstate);
     418             : static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
     419             : static void agg_fill_hash_table(AggState *aggstate);
     420             : static bool agg_refill_hash_table(AggState *aggstate);
     421             : static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
     422             : static TupleTableSlot *agg_retrieve_hash_table_in_memory(AggState *aggstate);
     423             : static void hash_agg_check_limits(AggState *aggstate);
     424             : static void hash_agg_enter_spill_mode(AggState *aggstate);
     425             : static void hash_agg_update_metrics(AggState *aggstate, bool from_tape,
     426             :                                     int npartitions);
     427             : static void hashagg_finish_initial_spills(AggState *aggstate);
     428             : static void hashagg_reset_spill_state(AggState *aggstate);
     429             : static HashAggBatch *hashagg_batch_new(LogicalTape *input_tape, int setno,
     430             :                                        int64 input_tuples, double input_card,
     431             :                                        int used_bits);
     432             : static MinimalTuple hashagg_batch_read(HashAggBatch *batch, uint32 *hashp);
     433             : static void hashagg_spill_init(HashAggSpill *spill, LogicalTapeSet *tapeset,
     434             :                                int used_bits, double input_groups,
     435             :                                double hashentrysize);
     436             : static Size hashagg_spill_tuple(AggState *aggstate, HashAggSpill *spill,
     437             :                                 TupleTableSlot *inputslot, uint32 hash);
     438             : static void hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill,
     439             :                                  int setno);
     440             : static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
     441             : static void build_pertrans_for_aggref(AggStatePerTrans pertrans,
     442             :                                       AggState *aggstate, EState *estate,
     443             :                                       Aggref *aggref, Oid transfn_oid,
     444             :                                       Oid aggtranstype, Oid aggserialfn,
     445             :                                       Oid aggdeserialfn, Datum initValue,
     446             :                                       bool initValueIsNull, Oid *inputTypes,
     447             :                                       int numArguments);
     448             : 
     449             : 
     450             : /*
     451             :  * Select the current grouping set; affects current_set and
     452             :  * curaggcontext.
     453             :  */
     454             : static void
     455     6355418 : select_current_set(AggState *aggstate, int setno, bool is_hash)
     456             : {
     457             :     /*
     458             :      * When changing this, also adapt ExecAggPlainTransByVal() and
     459             :      * ExecAggPlainTransByRef().
     460             :      */
     461     6355418 :     if (is_hash)
     462     5699266 :         aggstate->curaggcontext = aggstate->hashcontext;
     463             :     else
     464      656152 :         aggstate->curaggcontext = aggstate->aggcontexts[setno];
     465             : 
     466     6355418 :     aggstate->current_set = setno;
     467     6355418 : }
     468             : 
     469             : /*
     470             :  * Switch to phase "newphase", which must either be 0 or 1 (to reset) or
     471             :  * current_phase + 1. Juggle the tuplesorts accordingly.
     472             :  *
     473             :  * Phase 0 is for hashing, which we currently handle last in the AGG_MIXED
     474             :  * case, so when entering phase 0, all we need to do is drop open sorts.
     475             :  */
     476             : static void
     477       79878 : initialize_phase(AggState *aggstate, int newphase)
     478             : {
     479             :     Assert(newphase <= 1 || newphase == aggstate->current_phase + 1);
     480             : 
     481             :     /*
     482             :      * Whatever the previous state, we're now done with whatever input
     483             :      * tuplesort was in use.
     484             :      */
     485       79878 :     if (aggstate->sort_in)
     486             :     {
     487          42 :         tuplesort_end(aggstate->sort_in);
     488          42 :         aggstate->sort_in = NULL;
     489             :     }
     490             : 
     491       79878 :     if (newphase <= 1)
     492             :     {
     493             :         /*
     494             :          * Discard any existing output tuplesort.
     495             :          */
     496       79692 :         if (aggstate->sort_out)
     497             :         {
     498           6 :             tuplesort_end(aggstate->sort_out);
     499           6 :             aggstate->sort_out = NULL;
     500             :         }
     501             :     }
     502             :     else
     503             :     {
     504             :         /*
     505             :          * The old output tuplesort becomes the new input one, and this is the
     506             :          * right time to actually sort it.
     507             :          */
     508         186 :         aggstate->sort_in = aggstate->sort_out;
     509         186 :         aggstate->sort_out = NULL;
     510             :         Assert(aggstate->sort_in);
     511         186 :         tuplesort_performsort(aggstate->sort_in);
     512             :     }
     513             : 
     514             :     /*
     515             :      * If this isn't the last phase, we need to sort appropriately for the
     516             :      * next phase in sequence.
     517             :      */
     518       79878 :     if (newphase > 0 && newphase < aggstate->numphases - 1)
     519             :     {
     520         234 :         Sort       *sortnode = aggstate->phases[newphase + 1].sortnode;
     521         234 :         PlanState  *outerNode = outerPlanState(aggstate);
     522         234 :         TupleDesc   tupDesc = ExecGetResultType(outerNode);
     523             : 
     524         234 :         aggstate->sort_out = tuplesort_begin_heap(tupDesc,
     525             :                                                   sortnode->numCols,
     526             :                                                   sortnode->sortColIdx,
     527             :                                                   sortnode->sortOperators,
     528             :                                                   sortnode->collations,
     529             :                                                   sortnode->nullsFirst,
     530             :                                                   work_mem,
     531             :                                                   NULL, TUPLESORT_NONE);
     532             :     }
     533             : 
     534       79878 :     aggstate->current_phase = newphase;
     535       79878 :     aggstate->phase = &aggstate->phases[newphase];
     536       79878 : }
     537             : 
     538             : /*
     539             :  * Fetch a tuple from either the outer plan (for phase 1) or from the sorter
     540             :  * populated by the previous phase.  Copy it to the sorter for the next phase
     541             :  * if any.
     542             :  *
     543             :  * Callers cannot rely on memory for tuple in returned slot remaining valid
     544             :  * past any subsequently fetched tuple.
     545             :  */
     546             : static TupleTableSlot *
     547    25126138 : fetch_input_tuple(AggState *aggstate)
     548             : {
     549             :     TupleTableSlot *slot;
     550             : 
     551    25126138 :     if (aggstate->sort_in)
     552             :     {
     553             :         /* make sure we check for interrupts in either path through here */
     554      174882 :         CHECK_FOR_INTERRUPTS();
     555      174882 :         if (!tuplesort_gettupleslot(aggstate->sort_in, true, false,
     556             :                                     aggstate->sort_slot, NULL))
     557         186 :             return NULL;
     558      174696 :         slot = aggstate->sort_slot;
     559             :     }
     560             :     else
     561    24951256 :         slot = ExecProcNode(outerPlanState(aggstate));
     562             : 
     563    25125932 :     if (!TupIsNull(slot) && aggstate->sort_out)
     564      174696 :         tuplesort_puttupleslot(aggstate->sort_out, slot);
     565             : 
     566    25125932 :     return slot;
     567             : }
     568             : 
     569             : /*
     570             :  * (Re)Initialize an individual aggregate.
     571             :  *
     572             :  * This function handles only one grouping set, already set in
     573             :  * aggstate->current_set.
     574             :  *
     575             :  * When called, CurrentMemoryContext should be the per-query context.
     576             :  */
     577             : static void
     578     1057652 : initialize_aggregate(AggState *aggstate, AggStatePerTrans pertrans,
     579             :                      AggStatePerGroup pergroupstate)
     580             : {
     581             :     /*
     582             :      * Start a fresh sort operation for each DISTINCT/ORDER BY aggregate.
     583             :      */
     584     1057652 :     if (pertrans->aggsortrequired)
     585             :     {
     586             :         /*
     587             :          * In case of rescan, maybe there could be an uncompleted sort
     588             :          * operation?  Clean it up if so.
     589             :          */
     590       53828 :         if (pertrans->sortstates[aggstate->current_set])
     591           0 :             tuplesort_end(pertrans->sortstates[aggstate->current_set]);
     592             : 
     593             : 
     594             :         /*
     595             :          * We use a plain Datum sorter when there's a single input column;
     596             :          * otherwise sort the full tuple.  (See comments for
     597             :          * process_ordered_aggregate_single.)
     598             :          */
     599       53828 :         if (pertrans->numInputs == 1)
     600             :         {
     601       53756 :             Form_pg_attribute attr = TupleDescAttr(pertrans->sortdesc, 0);
     602             : 
     603       53756 :             pertrans->sortstates[aggstate->current_set] =
     604       53756 :                 tuplesort_begin_datum(attr->atttypid,
     605       53756 :                                       pertrans->sortOperators[0],
     606       53756 :                                       pertrans->sortCollations[0],
     607       53756 :                                       pertrans->sortNullsFirst[0],
     608             :                                       work_mem, NULL, TUPLESORT_NONE);
     609             :         }
     610             :         else
     611          72 :             pertrans->sortstates[aggstate->current_set] =
     612          72 :                 tuplesort_begin_heap(pertrans->sortdesc,
     613             :                                      pertrans->numSortCols,
     614             :                                      pertrans->sortColIdx,
     615             :                                      pertrans->sortOperators,
     616             :                                      pertrans->sortCollations,
     617             :                                      pertrans->sortNullsFirst,
     618             :                                      work_mem, NULL, TUPLESORT_NONE);
     619             :     }
     620             : 
     621             :     /*
     622             :      * (Re)set transValue to the initial value.
     623             :      *
     624             :      * Note that when the initial value is pass-by-ref, we must copy it (into
     625             :      * the aggcontext) since we will pfree the transValue later.
     626             :      */
     627     1057652 :     if (pertrans->initValueIsNull)
     628      525566 :         pergroupstate->transValue = pertrans->initValue;
     629             :     else
     630             :     {
     631             :         MemoryContext oldContext;
     632             : 
     633      532086 :         oldContext = MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory);
     634     1064172 :         pergroupstate->transValue = datumCopy(pertrans->initValue,
     635      532086 :                                               pertrans->transtypeByVal,
     636      532086 :                                               pertrans->transtypeLen);
     637      532086 :         MemoryContextSwitchTo(oldContext);
     638             :     }
     639     1057652 :     pergroupstate->transValueIsNull = pertrans->initValueIsNull;
     640             : 
     641             :     /*
     642             :      * If the initial value for the transition state doesn't exist in the
     643             :      * pg_aggregate table then we will let the first non-NULL value returned
     644             :      * from the outer procNode become the initial value. (This is useful for
     645             :      * aggregates like max() and min().) The noTransValue flag signals that we
     646             :      * still need to do this.
     647             :      */
     648     1057652 :     pergroupstate->noTransValue = pertrans->initValueIsNull;
     649     1057652 : }
     650             : 
     651             : /*
     652             :  * Initialize all aggregate transition states for a new group of input values.
     653             :  *
     654             :  * If there are multiple grouping sets, we initialize only the first numReset
     655             :  * of them (the grouping sets are ordered so that the most specific one, which
     656             :  * is reset most often, is first). As a convenience, if numReset is 0, we
     657             :  * reinitialize all sets.
     658             :  *
     659             :  * NB: This cannot be used for hash aggregates, as for those the grouping set
     660             :  * number has to be specified from further up.
     661             :  *
     662             :  * When called, CurrentMemoryContext should be the per-query context.
     663             :  */
     664             : static void
     665      294758 : initialize_aggregates(AggState *aggstate,
     666             :                       AggStatePerGroup *pergroups,
     667             :                       int numReset)
     668             : {
     669             :     int         transno;
     670      294758 :     int         numGroupingSets = Max(aggstate->phase->numsets, 1);
     671      294758 :     int         setno = 0;
     672      294758 :     int         numTrans = aggstate->numtrans;
     673      294758 :     AggStatePerTrans transstates = aggstate->pertrans;
     674             : 
     675      294758 :     if (numReset == 0)
     676           0 :         numReset = numGroupingSets;
     677             : 
     678      603672 :     for (setno = 0; setno < numReset; setno++)
     679             :     {
     680      308914 :         AggStatePerGroup pergroup = pergroups[setno];
     681             : 
     682      308914 :         select_current_set(aggstate, setno, false);
     683             : 
     684      969760 :         for (transno = 0; transno < numTrans; transno++)
     685             :         {
     686      660846 :             AggStatePerTrans pertrans = &transstates[transno];
     687      660846 :             AggStatePerGroup pergroupstate = &pergroup[transno];
     688             : 
     689      660846 :             initialize_aggregate(aggstate, pertrans, pergroupstate);
     690             :         }
     691             :     }
     692      294758 : }
     693             : 
     694             : /*
     695             :  * Given new input value(s), advance the transition function of one aggregate
     696             :  * state within one grouping set only (already set in aggstate->current_set)
     697             :  *
     698             :  * The new values (and null flags) have been preloaded into argument positions
     699             :  * 1 and up in pertrans->transfn_fcinfo, so that we needn't copy them again to
     700             :  * pass to the transition function.  We also expect that the static fields of
     701             :  * the fcinfo are already initialized; that was done by ExecInitAgg().
     702             :  *
     703             :  * It doesn't matter which memory context this is called in.
     704             :  */
     705             : static void
     706      724310 : advance_transition_function(AggState *aggstate,
     707             :                             AggStatePerTrans pertrans,
     708             :                             AggStatePerGroup pergroupstate)
     709             : {
     710      724310 :     FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
     711             :     MemoryContext oldContext;
     712             :     Datum       newVal;
     713             : 
     714      724310 :     if (pertrans->transfn.fn_strict)
     715             :     {
     716             :         /*
     717             :          * For a strict transfn, nothing happens when there's a NULL input; we
     718             :          * just keep the prior transValue.
     719             :          */
     720      225000 :         int         numTransInputs = pertrans->numTransInputs;
     721             :         int         i;
     722             : 
     723      450000 :         for (i = 1; i <= numTransInputs; i++)
     724             :         {
     725      225000 :             if (fcinfo->args[i].isnull)
     726           0 :                 return;
     727             :         }
     728      225000 :         if (pergroupstate->noTransValue)
     729             :         {
     730             :             /*
     731             :              * transValue has not been initialized. This is the first non-NULL
     732             :              * input value. We use it as the initial value for transValue. (We
     733             :              * already checked that the agg's input type is binary-compatible
     734             :              * with its transtype, so straight copy here is OK.)
     735             :              *
     736             :              * We must copy the datum into aggcontext if it is pass-by-ref. We
     737             :              * do not need to pfree the old transValue, since it's NULL.
     738             :              */
     739           0 :             oldContext = MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory);
     740           0 :             pergroupstate->transValue = datumCopy(fcinfo->args[1].value,
     741           0 :                                                   pertrans->transtypeByVal,
     742           0 :                                                   pertrans->transtypeLen);
     743           0 :             pergroupstate->transValueIsNull = false;
     744           0 :             pergroupstate->noTransValue = false;
     745           0 :             MemoryContextSwitchTo(oldContext);
     746           0 :             return;
     747             :         }
     748      225000 :         if (pergroupstate->transValueIsNull)
     749             :         {
     750             :             /*
     751             :              * Don't call a strict function with NULL inputs.  Note it is
     752             :              * possible to get here despite the above tests, if the transfn is
     753             :              * strict *and* returned a NULL on a prior cycle. If that happens
     754             :              * we will propagate the NULL all the way to the end.
     755             :              */
     756           0 :             return;
     757             :         }
     758             :     }
     759             : 
     760             :     /* We run the transition functions in per-input-tuple memory context */
     761      724310 :     oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
     762             : 
     763             :     /* set up aggstate->curpertrans for AggGetAggref() */
     764      724310 :     aggstate->curpertrans = pertrans;
     765             : 
     766             :     /*
     767             :      * OK to call the transition function
     768             :      */
     769      724310 :     fcinfo->args[0].value = pergroupstate->transValue;
     770      724310 :     fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
     771      724310 :     fcinfo->isnull = false;      /* just in case transfn doesn't set it */
     772             : 
     773      724310 :     newVal = FunctionCallInvoke(fcinfo);
     774             : 
     775      724310 :     aggstate->curpertrans = NULL;
     776             : 
     777             :     /*
     778             :      * If pass-by-ref datatype, must copy the new value into aggcontext and
     779             :      * free the prior transValue.  But if transfn returned a pointer to its
     780             :      * first input, we don't need to do anything.
     781             :      *
     782             :      * It's safe to compare newVal with pergroup->transValue without regard
     783             :      * for either being NULL, because ExecAggCopyTransValue takes care to set
     784             :      * transValue to 0 when NULL. Otherwise we could end up accidentally not
     785             :      * reparenting, when the transValue has the same numerical value as
     786             :      * newValue, despite being NULL.  This is a somewhat hot path, making it
     787             :      * undesirable to instead solve this with another branch for the common
     788             :      * case of the transition function returning its (modified) input
     789             :      * argument.
     790             :      */
     791      724310 :     if (!pertrans->transtypeByVal &&
     792           0 :         DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
     793           0 :         newVal = ExecAggCopyTransValue(aggstate, pertrans,
     794           0 :                                        newVal, fcinfo->isnull,
     795             :                                        pergroupstate->transValue,
     796           0 :                                        pergroupstate->transValueIsNull);
     797             : 
     798      724310 :     pergroupstate->transValue = newVal;
     799      724310 :     pergroupstate->transValueIsNull = fcinfo->isnull;
     800             : 
     801      724310 :     MemoryContextSwitchTo(oldContext);
     802             : }
     803             : 
     804             : /*
     805             :  * Advance each aggregate transition state for one input tuple.  The input
     806             :  * tuple has been stored in tmpcontext->ecxt_outertuple, so that it is
     807             :  * accessible to ExecEvalExpr.
     808             :  *
     809             :  * We have two sets of transition states to handle: one for sorted aggregation
     810             :  * and one for hashed; we do them both here, to avoid multiple evaluation of
     811             :  * the inputs.
     812             :  *
     813             :  * When called, CurrentMemoryContext should be the per-query context.
     814             :  */
     815             : static void
     816    25270858 : advance_aggregates(AggState *aggstate)
     817             : {
     818             :     bool        dummynull;
     819             : 
     820    25270858 :     ExecEvalExprSwitchContext(aggstate->phase->evaltrans,
     821             :                               aggstate->tmpcontext,
     822             :                               &dummynull);
     823    25270792 : }
     824             : 
     825             : /*
     826             :  * Run the transition function for a DISTINCT or ORDER BY aggregate
     827             :  * with only one input.  This is called after we have completed
     828             :  * entering all the input values into the sort object.  We complete the
     829             :  * sort, read out the values in sorted order, and run the transition
     830             :  * function on each value (applying DISTINCT if appropriate).
     831             :  *
     832             :  * Note that the strictness of the transition function was checked when
     833             :  * entering the values into the sort, so we don't check it again here;
     834             :  * we just apply standard SQL DISTINCT logic.
     835             :  *
     836             :  * The one-input case is handled separately from the multi-input case
     837             :  * for performance reasons: for single by-value inputs, such as the
     838             :  * common case of count(distinct id), the tuplesort_getdatum code path
     839             :  * is around 300% faster.  (The speedup for by-reference types is less
     840             :  * but still noticeable.)
     841             :  *
     842             :  * This function handles only one grouping set (already set in
     843             :  * aggstate->current_set).
     844             :  *
     845             :  * When called, CurrentMemoryContext should be the per-query context.
     846             :  */
     847             : static void
     848       53756 : process_ordered_aggregate_single(AggState *aggstate,
     849             :                                  AggStatePerTrans pertrans,
     850             :                                  AggStatePerGroup pergroupstate)
     851             : {
     852       53756 :     Datum       oldVal = (Datum) 0;
     853       53756 :     bool        oldIsNull = true;
     854       53756 :     bool        haveOldVal = false;
     855       53756 :     MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory;
     856             :     MemoryContext oldContext;
     857       53756 :     bool        isDistinct = (pertrans->numDistinctCols > 0);
     858       53756 :     Datum       newAbbrevVal = (Datum) 0;
     859       53756 :     Datum       oldAbbrevVal = (Datum) 0;
     860       53756 :     FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
     861             :     Datum      *newVal;
     862             :     bool       *isNull;
     863             : 
     864             :     Assert(pertrans->numDistinctCols < 2);
     865             : 
     866       53756 :     tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);
     867             : 
     868             :     /* Load the column into argument 1 (arg 0 will be transition value) */
     869       53756 :     newVal = &fcinfo->args[1].value;
     870       53756 :     isNull = &fcinfo->args[1].isnull;
     871             : 
     872             :     /*
     873             :      * Note: if input type is pass-by-ref, the datums returned by the sort are
     874             :      * freshly palloc'd in the per-query context, so we must be careful to
     875             :      * pfree them when they are no longer needed.
     876             :      */
     877             : 
     878      898140 :     while (tuplesort_getdatum(pertrans->sortstates[aggstate->current_set],
     879             :                               true, false, newVal, isNull, &newAbbrevVal))
     880             :     {
     881             :         /*
     882             :          * Clear and select the working context for evaluation of the equality
     883             :          * function and transition function.
     884             :          */
     885      844384 :         MemoryContextReset(workcontext);
     886      844384 :         oldContext = MemoryContextSwitchTo(workcontext);
     887             : 
     888             :         /*
     889             :          * If DISTINCT mode, and not distinct from prior, skip it.
     890             :          */
     891      844384 :         if (isDistinct &&
     892      310322 :             haveOldVal &&
     893           0 :             ((oldIsNull && *isNull) ||
     894      310322 :              (!oldIsNull && !*isNull &&
     895      605684 :               oldAbbrevVal == newAbbrevVal &&
     896      295362 :               DatumGetBool(FunctionCall2Coll(&pertrans->equalfnOne,
     897             :                                              pertrans->aggCollation,
     898             :                                              oldVal, *newVal)))))
     899             :         {
     900      120254 :             MemoryContextSwitchTo(oldContext);
     901      120254 :             continue;
     902             :         }
     903             :         else
     904             :         {
     905      724130 :             advance_transition_function(aggstate, pertrans, pergroupstate);
     906             : 
     907      724130 :             MemoryContextSwitchTo(oldContext);
     908             : 
     909             :             /*
     910             :              * Forget the old value, if any, and remember the new one for
     911             :              * subsequent equality checks.
     912             :              */
     913      724130 :             if (!pertrans->inputtypeByVal)
     914             :             {
     915      525288 :                 if (!oldIsNull)
     916      525108 :                     pfree(DatumGetPointer(oldVal));
     917      525288 :                 if (!*isNull)
     918      525228 :                     oldVal = datumCopy(*newVal, pertrans->inputtypeByVal,
     919      525228 :                                        pertrans->inputtypeLen);
     920             :             }
     921             :             else
     922      198842 :                 oldVal = *newVal;
     923      724130 :             oldAbbrevVal = newAbbrevVal;
     924      724130 :             oldIsNull = *isNull;
     925      724130 :             haveOldVal = true;
     926             :         }
     927             :     }
     928             : 
     929       53756 :     if (!oldIsNull && !pertrans->inputtypeByVal)
     930         120 :         pfree(DatumGetPointer(oldVal));
     931             : 
     932       53756 :     tuplesort_end(pertrans->sortstates[aggstate->current_set]);
     933       53756 :     pertrans->sortstates[aggstate->current_set] = NULL;
     934       53756 : }
     935             : 
     936             : /*
     937             :  * Run the transition function for a DISTINCT or ORDER BY aggregate
     938             :  * with more than one input.  This is called after we have completed
     939             :  * entering all the input values into the sort object.  We complete the
     940             :  * sort, read out the values in sorted order, and run the transition
     941             :  * function on each value (applying DISTINCT if appropriate).
     942             :  *
     943             :  * This function handles only one grouping set (already set in
     944             :  * aggstate->current_set).
     945             :  *
     946             :  * When called, CurrentMemoryContext should be the per-query context.
     947             :  */
     948             : static void
     949          72 : process_ordered_aggregate_multi(AggState *aggstate,
     950             :                                 AggStatePerTrans pertrans,
     951             :                                 AggStatePerGroup pergroupstate)
     952             : {
     953          72 :     ExprContext *tmpcontext = aggstate->tmpcontext;
     954          72 :     FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
     955          72 :     TupleTableSlot *slot1 = pertrans->sortslot;
     956          72 :     TupleTableSlot *slot2 = pertrans->uniqslot;
     957          72 :     int         numTransInputs = pertrans->numTransInputs;
     958          72 :     int         numDistinctCols = pertrans->numDistinctCols;
     959          72 :     Datum       newAbbrevVal = (Datum) 0;
     960          72 :     Datum       oldAbbrevVal = (Datum) 0;
     961          72 :     bool        haveOldValue = false;
     962          72 :     TupleTableSlot *save = aggstate->tmpcontext->ecxt_outertuple;
     963             :     int         i;
     964             : 
     965          72 :     tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);
     966             : 
     967          72 :     ExecClearTuple(slot1);
     968          72 :     if (slot2)
     969           0 :         ExecClearTuple(slot2);
     970             : 
     971         252 :     while (tuplesort_gettupleslot(pertrans->sortstates[aggstate->current_set],
     972             :                                   true, true, slot1, &newAbbrevVal))
     973             :     {
     974         180 :         CHECK_FOR_INTERRUPTS();
     975             : 
     976         180 :         tmpcontext->ecxt_outertuple = slot1;
     977         180 :         tmpcontext->ecxt_innertuple = slot2;
     978             : 
     979         180 :         if (numDistinctCols == 0 ||
     980           0 :             !haveOldValue ||
     981           0 :             newAbbrevVal != oldAbbrevVal ||
     982           0 :             !ExecQual(pertrans->equalfnMulti, tmpcontext))
     983             :         {
     984             :             /*
     985             :              * Extract the first numTransInputs columns as datums to pass to
     986             :              * the transfn.
     987             :              */
     988         180 :             slot_getsomeattrs(slot1, numTransInputs);
     989             : 
     990             :             /* Load values into fcinfo */
     991             :             /* Start from 1, since the 0th arg will be the transition value */
     992         540 :             for (i = 0; i < numTransInputs; i++)
     993             :             {
     994         360 :                 fcinfo->args[i + 1].value = slot1->tts_values[i];
     995         360 :                 fcinfo->args[i + 1].isnull = slot1->tts_isnull[i];
     996             :             }
     997             : 
     998         180 :             advance_transition_function(aggstate, pertrans, pergroupstate);
     999             : 
    1000         180 :             if (numDistinctCols > 0)
    1001             :             {
    1002             :                 /* swap the slot pointers to retain the current tuple */
    1003           0 :                 TupleTableSlot *tmpslot = slot2;
    1004             : 
    1005           0 :                 slot2 = slot1;
    1006           0 :                 slot1 = tmpslot;
    1007             :                 /* avoid ExecQual() calls by reusing abbreviated keys */
    1008           0 :                 oldAbbrevVal = newAbbrevVal;
    1009           0 :                 haveOldValue = true;
    1010             :             }
    1011             :         }
    1012             : 
    1013             :         /* Reset context each time */
    1014         180 :         ResetExprContext(tmpcontext);
    1015             : 
    1016         180 :         ExecClearTuple(slot1);
    1017             :     }
    1018             : 
    1019          72 :     if (slot2)
    1020           0 :         ExecClearTuple(slot2);
    1021             : 
    1022          72 :     tuplesort_end(pertrans->sortstates[aggstate->current_set]);
    1023          72 :     pertrans->sortstates[aggstate->current_set] = NULL;
    1024             : 
    1025             :     /* restore previous slot, potentially in use for grouping sets */
    1026          72 :     tmpcontext->ecxt_outertuple = save;
    1027          72 : }
    1028             : 
    1029             : /*
    1030             :  * Compute the final value of one aggregate.
    1031             :  *
    1032             :  * This function handles only one grouping set (already set in
    1033             :  * aggstate->current_set).
    1034             :  *
    1035             :  * The finalfn will be run, and the result delivered, in the
    1036             :  * output-tuple context; caller's CurrentMemoryContext does not matter.
    1037             :  * (But note that in some cases, such as when there is no finalfn, the
    1038             :  * result might be a pointer to or into the agg's transition value.)
    1039             :  *
    1040             :  * The finalfn uses the state as set in the transno.  This also might be
    1041             :  * being used by another aggregate function, so it's important that we do
    1042             :  * nothing destructive here.  Moreover, the aggregate's final value might
    1043             :  * get used in multiple places, so we mustn't return a R/W expanded datum.
    1044             :  */
    1045             : static void
    1046     1049292 : finalize_aggregate(AggState *aggstate,
    1047             :                    AggStatePerAgg peragg,
    1048             :                    AggStatePerGroup pergroupstate,
    1049             :                    Datum *resultVal, bool *resultIsNull)
    1050             : {
    1051     1049292 :     LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
    1052     1049292 :     bool        anynull = false;
    1053             :     MemoryContext oldContext;
    1054             :     int         i;
    1055             :     ListCell   *lc;
    1056     1049292 :     AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];
    1057             : 
    1058     1049292 :     oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
    1059             : 
    1060             :     /*
    1061             :      * Evaluate any direct arguments.  We do this even if there's no finalfn
    1062             :      * (which is unlikely anyway), so that side-effects happen as expected.
    1063             :      * The direct arguments go into arg positions 1 and up, leaving position 0
    1064             :      * for the transition state value.
    1065             :      */
    1066     1049292 :     i = 1;
    1067     1050266 :     foreach(lc, peragg->aggdirectargs)
    1068             :     {
    1069         974 :         ExprState  *expr = (ExprState *) lfirst(lc);
    1070             : 
    1071         974 :         fcinfo->args[i].value = ExecEvalExpr(expr,
    1072             :                                              aggstate->ss.ps.ps_ExprContext,
    1073             :                                              &fcinfo->args[i].isnull);
    1074         974 :         anynull |= fcinfo->args[i].isnull;
    1075         974 :         i++;
    1076             :     }
    1077             : 
    1078             :     /*
    1079             :      * Apply the agg's finalfn if one is provided, else return transValue.
    1080             :      */
    1081     1049292 :     if (OidIsValid(peragg->finalfn_oid))
    1082             :     {
    1083      270490 :         int         numFinalArgs = peragg->numFinalArgs;
    1084             : 
    1085             :         /* set up aggstate->curperagg for AggGetAggref() */
    1086      270490 :         aggstate->curperagg = peragg;
    1087             : 
    1088      270490 :         InitFunctionCallInfoData(*fcinfo, &peragg->finalfn,
    1089             :                                  numFinalArgs,
    1090             :                                  pertrans->aggCollation,
    1091             :                                  (void *) aggstate, NULL);
    1092             : 
    1093             :         /* Fill in the transition state value */
    1094      270490 :         fcinfo->args[0].value =
    1095      270490 :             MakeExpandedObjectReadOnly(pergroupstate->transValue,
    1096             :                                        pergroupstate->transValueIsNull,
    1097             :                                        pertrans->transtypeLen);
    1098      270490 :         fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
    1099      270490 :         anynull |= pergroupstate->transValueIsNull;
    1100             : 
    1101             :         /* Fill any remaining argument positions with nulls */
    1102      355702 :         for (; i < numFinalArgs; i++)
    1103             :         {
    1104       85212 :             fcinfo->args[i].value = (Datum) 0;
    1105       85212 :             fcinfo->args[i].isnull = true;
    1106       85212 :             anynull = true;
    1107             :         }
    1108             : 
    1109      270490 :         if (fcinfo->flinfo->fn_strict && anynull)
    1110             :         {
    1111             :             /* don't call a strict function with NULL inputs */
    1112           0 :             *resultVal = (Datum) 0;
    1113           0 :             *resultIsNull = true;
    1114             :         }
    1115             :         else
    1116             :         {
    1117             :             Datum       result;
    1118             : 
    1119      270490 :             result = FunctionCallInvoke(fcinfo);
    1120      270478 :             *resultIsNull = fcinfo->isnull;
    1121      270478 :             *resultVal = MakeExpandedObjectReadOnly(result,
    1122             :                                                     fcinfo->isnull,
    1123             :                                                     peragg->resulttypeLen);
    1124             :         }
    1125      270478 :         aggstate->curperagg = NULL;
    1126             :     }
    1127             :     else
    1128             :     {
    1129      778802 :         *resultVal =
    1130      778802 :             MakeExpandedObjectReadOnly(pergroupstate->transValue,
    1131             :                                        pergroupstate->transValueIsNull,
    1132             :                                        pertrans->transtypeLen);
    1133      778802 :         *resultIsNull = pergroupstate->transValueIsNull;
    1134             :     }
    1135             : 
    1136     1049280 :     MemoryContextSwitchTo(oldContext);
    1137     1049280 : }
    1138             : 
    1139             : /*
    1140             :  * Compute the output value of one partial aggregate.
    1141             :  *
    1142             :  * The serialization function will be run, and the result delivered, in the
    1143             :  * output-tuple context; caller's CurrentMemoryContext does not matter.
    1144             :  */
    1145             : static void
    1146       11964 : finalize_partialaggregate(AggState *aggstate,
    1147             :                           AggStatePerAgg peragg,
    1148             :                           AggStatePerGroup pergroupstate,
    1149             :                           Datum *resultVal, bool *resultIsNull)
    1150             : {
    1151       11964 :     AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];
    1152             :     MemoryContext oldContext;
    1153             : 
    1154       11964 :     oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
    1155             : 
    1156             :     /*
    1157             :      * serialfn_oid will be set if we must serialize the transvalue before
    1158             :      * returning it
    1159             :      */
    1160       11964 :     if (OidIsValid(pertrans->serialfn_oid))
    1161             :     {
    1162             :         /* Don't call a strict serialization function with NULL input. */
    1163         426 :         if (pertrans->serialfn.fn_strict && pergroupstate->transValueIsNull)
    1164             :         {
    1165         124 :             *resultVal = (Datum) 0;
    1166         124 :             *resultIsNull = true;
    1167             :         }
    1168             :         else
    1169             :         {
    1170         302 :             FunctionCallInfo fcinfo = pertrans->serialfn_fcinfo;
    1171             :             Datum       result;
    1172             : 
    1173         302 :             fcinfo->args[0].value =
    1174         302 :                 MakeExpandedObjectReadOnly(pergroupstate->transValue,
    1175             :                                            pergroupstate->transValueIsNull,
    1176             :                                            pertrans->transtypeLen);
    1177         302 :             fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
    1178         302 :             fcinfo->isnull = false;
    1179             : 
    1180         302 :             result = FunctionCallInvoke(fcinfo);
    1181         302 :             *resultIsNull = fcinfo->isnull;
    1182         302 :             *resultVal = MakeExpandedObjectReadOnly(result,
    1183             :                                                     fcinfo->isnull,
    1184             :                                                     peragg->resulttypeLen);
    1185             :         }
    1186             :     }
    1187             :     else
    1188             :     {
    1189       11538 :         *resultVal =
    1190       11538 :             MakeExpandedObjectReadOnly(pergroupstate->transValue,
    1191             :                                        pergroupstate->transValueIsNull,
    1192             :                                        pertrans->transtypeLen);
    1193       11538 :         *resultIsNull = pergroupstate->transValueIsNull;
    1194             :     }
    1195             : 
    1196       11964 :     MemoryContextSwitchTo(oldContext);
    1197       11964 : }
    1198             : 
    1199             : /*
    1200             :  * Extract the attributes that make up the grouping key into the
    1201             :  * hashslot. This is necessary to compute the hash or perform a lookup.
    1202             :  */
    1203             : static inline void
    1204     6181614 : prepare_hash_slot(AggStatePerHash perhash,
    1205             :                   TupleTableSlot *inputslot,
    1206             :                   TupleTableSlot *hashslot)
    1207             : {
    1208             :     int         i;
    1209             : 
    1210             :     /* transfer just the needed columns into hashslot */
    1211     6181614 :     slot_getsomeattrs(inputslot, perhash->largestGrpColIdx);
    1212     6181614 :     ExecClearTuple(hashslot);
    1213             : 
    1214    15311374 :     for (i = 0; i < perhash->numhashGrpCols; i++)
    1215             :     {
    1216     9129760 :         int         varNumber = perhash->hashGrpColIdxInput[i] - 1;
    1217             : 
    1218     9129760 :         hashslot->tts_values[i] = inputslot->tts_values[varNumber];
    1219     9129760 :         hashslot->tts_isnull[i] = inputslot->tts_isnull[varNumber];
    1220             :     }
    1221     6181614 :     ExecStoreVirtualTuple(hashslot);
    1222     6181614 : }
    1223             : 
    1224             : /*
    1225             :  * Prepare to finalize and project based on the specified representative tuple
    1226             :  * slot and grouping set.
    1227             :  *
    1228             :  * In the specified tuple slot, force to null all attributes that should be
    1229             :  * read as null in the context of the current grouping set.  Also stash the
    1230             :  * current group bitmap where GroupingExpr can get at it.
    1231             :  *
    1232             :  * This relies on three conditions:
    1233             :  *
    1234             :  * 1) Nothing is ever going to try and extract the whole tuple from this slot,
    1235             :  * only reference it in evaluations, which will only access individual
    1236             :  * attributes.
    1237             :  *
    1238             :  * 2) No system columns are going to need to be nulled. (If a system column is
    1239             :  * referenced in a group clause, it is actually projected in the outer plan
    1240             :  * tlist.)
    1241             :  *
    1242             :  * 3) Within a given phase, we never need to recover the value of an attribute
    1243             :  * once it has been set to null.
    1244             :  *
    1245             :  * Poking into the slot this way is a bit ugly, but the consensus is that the
    1246             :  * alternative was worse.
    1247             :  */
    1248             : static void
    1249      741478 : prepare_projection_slot(AggState *aggstate, TupleTableSlot *slot, int currentSet)
    1250             : {
    1251      741478 :     if (aggstate->phase->grouped_cols)
    1252             :     {
    1253      461940 :         Bitmapset  *grouped_cols = aggstate->phase->grouped_cols[currentSet];
    1254             : 
    1255      461940 :         aggstate->grouped_cols = grouped_cols;
    1256             : 
    1257      461940 :         if (TTS_EMPTY(slot))
    1258             :         {
    1259             :             /*
    1260             :              * Force all values to be NULL if working on an empty input tuple
    1261             :              * (i.e. an empty grouping set for which no input rows were
    1262             :              * supplied).
    1263             :              */
    1264          48 :             ExecStoreAllNullTuple(slot);
    1265             :         }
    1266      461892 :         else if (aggstate->all_grouped_cols)
    1267             :         {
    1268             :             ListCell   *lc;
    1269             : 
    1270             :             /* all_grouped_cols is arranged in desc order */
    1271      461844 :             slot_getsomeattrs(slot, linitial_int(aggstate->all_grouped_cols));
    1272             : 
    1273     1330318 :             foreach(lc, aggstate->all_grouped_cols)
    1274             :             {
    1275      868474 :                 int         attnum = lfirst_int(lc);
    1276             : 
    1277      868474 :                 if (!bms_is_member(attnum, grouped_cols))
    1278       57346 :                     slot->tts_isnull[attnum - 1] = true;
    1279             :             }
    1280             :         }
    1281             :     }
    1282      741478 : }
    1283             : 
    1284             : /*
    1285             :  * Compute the final value of all aggregates for one group.
    1286             :  *
    1287             :  * This function handles only one grouping set at a time, which the caller must
    1288             :  * have selected.  It's also the caller's responsibility to adjust the supplied
    1289             :  * pergroup parameter to point to the current set's transvalues.
    1290             :  *
    1291             :  * Results are stored in the output econtext aggvalues/aggnulls.
    1292             :  */
    1293             : static void
    1294      741478 : finalize_aggregates(AggState *aggstate,
    1295             :                     AggStatePerAgg peraggs,
    1296             :                     AggStatePerGroup pergroup)
    1297             : {
    1298      741478 :     ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;
    1299      741478 :     Datum      *aggvalues = econtext->ecxt_aggvalues;
    1300      741478 :     bool       *aggnulls = econtext->ecxt_aggnulls;
    1301             :     int         aggno;
    1302             : 
    1303             :     /*
    1304             :      * If there were any DISTINCT and/or ORDER BY aggregates, sort their
    1305             :      * inputs and run the transition functions.
    1306             :      */
    1307     1802476 :     for (int transno = 0; transno < aggstate->numtrans; transno++)
    1308             :     {
    1309     1060998 :         AggStatePerTrans pertrans = &aggstate->pertrans[transno];
    1310             :         AggStatePerGroup pergroupstate;
    1311             : 
    1312     1060998 :         pergroupstate = &pergroup[transno];
    1313             : 
    1314     1060998 :         if (pertrans->aggsortrequired)
    1315             :         {
    1316             :             Assert(aggstate->aggstrategy != AGG_HASHED &&
    1317             :                    aggstate->aggstrategy != AGG_MIXED);
    1318             : 
    1319       53828 :             if (pertrans->numInputs == 1)
    1320       53756 :                 process_ordered_aggregate_single(aggstate,
    1321             :                                                  pertrans,
    1322             :                                                  pergroupstate);
    1323             :             else
    1324          72 :                 process_ordered_aggregate_multi(aggstate,
    1325             :                                                 pertrans,
    1326             :                                                 pergroupstate);
    1327             :         }
    1328     1007170 :         else if (pertrans->numDistinctCols > 0 && pertrans->haslast)
    1329             :         {
    1330       18348 :             pertrans->haslast = false;
    1331             : 
    1332       18348 :             if (pertrans->numDistinctCols == 1)
    1333             :             {
    1334       18252 :                 if (!pertrans->inputtypeByVal && !pertrans->lastisnull)
    1335         250 :                     pfree(DatumGetPointer(pertrans->lastdatum));
    1336             : 
    1337       18252 :                 pertrans->lastisnull = false;
    1338       18252 :                 pertrans->lastdatum = (Datum) 0;
    1339             :             }
    1340             :             else
    1341          96 :                 ExecClearTuple(pertrans->uniqslot);
    1342             :         }
    1343             :     }
    1344             : 
    1345             :     /*
    1346             :      * Run the final functions.
    1347             :      */
    1348     1802722 :     for (aggno = 0; aggno < aggstate->numaggs; aggno++)
    1349             :     {
    1350     1061256 :         AggStatePerAgg peragg = &peraggs[aggno];
    1351     1061256 :         int         transno = peragg->transno;
    1352             :         AggStatePerGroup pergroupstate;
    1353             : 
    1354     1061256 :         pergroupstate = &pergroup[transno];
    1355             : 
    1356     1061256 :         if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
    1357       11964 :             finalize_partialaggregate(aggstate, peragg, pergroupstate,
    1358       11964 :                                       &aggvalues[aggno], &aggnulls[aggno]);
    1359             :         else
    1360     1049292 :             finalize_aggregate(aggstate, peragg, pergroupstate,
    1361     1049292 :                                &aggvalues[aggno], &aggnulls[aggno]);
    1362             :     }
    1363      741466 : }
    1364             : 
    1365             : /*
    1366             :  * Project the result of a group (whose aggs have already been calculated by
    1367             :  * finalize_aggregates). Returns the result slot, or NULL if no row is
    1368             :  * projected (suppressed by qual).
    1369             :  */
    1370             : static TupleTableSlot *
    1371      741466 : project_aggregates(AggState *aggstate)
    1372             : {
    1373      741466 :     ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;
    1374             : 
    1375             :     /*
    1376             :      * Check the qual (HAVING clause); if the group does not match, ignore it.
    1377             :      */
    1378      741466 :     if (ExecQual(aggstate->ss.ps.qual, econtext))
    1379             :     {
    1380             :         /*
    1381             :          * Form and return projection tuple using the aggregate results and
    1382             :          * the representative input tuple.
    1383             :          */
    1384      635168 :         return ExecProject(aggstate->ss.ps.ps_ProjInfo);
    1385             :     }
    1386             :     else
    1387      106298 :         InstrCountFiltered1(aggstate, 1);
    1388             : 
    1389      106298 :     return NULL;
    1390             : }
    1391             : 
    1392             : /*
    1393             :  * Find input-tuple columns that are needed, dividing them into
    1394             :  * aggregated and unaggregated sets.
    1395             :  */
    1396             : static void
    1397        5188 : find_cols(AggState *aggstate, Bitmapset **aggregated, Bitmapset **unaggregated)
    1398             : {
    1399        5188 :     Agg        *agg = (Agg *) aggstate->ss.ps.plan;
    1400             :     FindColsContext context;
    1401             : 
    1402        5188 :     context.is_aggref = false;
    1403        5188 :     context.aggregated = NULL;
    1404        5188 :     context.unaggregated = NULL;
    1405             : 
    1406             :     /* Examine tlist and quals */
    1407        5188 :     (void) find_cols_walker((Node *) agg->plan.targetlist, &context);
    1408        5188 :     (void) find_cols_walker((Node *) agg->plan.qual, &context);
    1409             : 
    1410             :     /* In some cases, grouping columns will not appear in the tlist */
    1411       13296 :     for (int i = 0; i < agg->numCols; i++)
    1412        8108 :         context.unaggregated = bms_add_member(context.unaggregated,
    1413        8108 :                                               agg->grpColIdx[i]);
    1414             : 
    1415        5188 :     *aggregated = context.aggregated;
    1416        5188 :     *unaggregated = context.unaggregated;
    1417        5188 : }
    1418             : 
    1419             : static bool
    1420       62742 : find_cols_walker(Node *node, FindColsContext *context)
    1421             : {
    1422       62742 :     if (node == NULL)
    1423       11230 :         return false;
    1424       51512 :     if (IsA(node, Var))
    1425             :     {
    1426       13556 :         Var        *var = (Var *) node;
    1427             : 
    1428             :         /* setrefs.c should have set the varno to OUTER_VAR */
    1429             :         Assert(var->varno == OUTER_VAR);
    1430             :         Assert(var->varlevelsup == 0);
    1431       13556 :         if (context->is_aggref)
    1432        4370 :             context->aggregated = bms_add_member(context->aggregated,
    1433        4370 :                                                  var->varattno);
    1434             :         else
    1435        9186 :             context->unaggregated = bms_add_member(context->unaggregated,
    1436        9186 :                                                    var->varattno);
    1437       13556 :         return false;
    1438             :     }
    1439       37956 :     if (IsA(node, Aggref))
    1440             :     {
    1441             :         Assert(!context->is_aggref);
    1442        6560 :         context->is_aggref = true;
    1443        6560 :         expression_tree_walker(node, find_cols_walker, (void *) context);
    1444        6560 :         context->is_aggref = false;
    1445        6560 :         return false;
    1446             :     }
    1447       31396 :     return expression_tree_walker(node, find_cols_walker,
    1448             :                                   (void *) context);
    1449             : }
    1450             : 
    1451             : /*
    1452             :  * (Re-)initialize the hash table(s) to empty.
    1453             :  *
    1454             :  * To implement hashed aggregation, we need a hashtable that stores a
    1455             :  * representative tuple and an array of AggStatePerGroup structs for each
    1456             :  * distinct set of GROUP BY column values.  We compute the hash key from the
    1457             :  * GROUP BY columns.  The per-group data is allocated in lookup_hash_entry(),
    1458             :  * for each entry.
    1459             :  *
    1460             :  * We have a separate hashtable and associated perhash data structure for each
    1461             :  * grouping set for which we're doing hashing.
    1462             :  *
    1463             :  * The contents of the hash tables always live in the hashcontext's per-tuple
    1464             :  * memory context (there is only one of these for all tables together, since
    1465             :  * they are all reset at the same time).
    1466             :  */
    1467             : static void
    1468       13816 : build_hash_tables(AggState *aggstate)
    1469             : {
    1470             :     int         setno;
    1471             : 
    1472       27916 :     for (setno = 0; setno < aggstate->num_hashes; ++setno)
    1473             :     {
    1474       14100 :         AggStatePerHash perhash = &aggstate->perhash[setno];
    1475             :         long        nbuckets;
    1476             :         Size        memory;
    1477             : 
    1478       14100 :         if (perhash->hashtable != NULL)
    1479             :         {
    1480        9814 :             ResetTupleHashTable(perhash->hashtable);
    1481        9814 :             continue;
    1482             :         }
    1483             : 
    1484             :         Assert(perhash->aggnode->numGroups > 0);
    1485             : 
    1486        4286 :         memory = aggstate->hash_mem_limit / aggstate->num_hashes;
    1487             : 
    1488             :         /* choose reasonable number of buckets per hashtable */
    1489        4286 :         nbuckets = hash_choose_num_buckets(aggstate->hashentrysize,
    1490        4286 :                                            perhash->aggnode->numGroups,
    1491             :                                            memory);
    1492             : 
    1493        4286 :         build_hash_table(aggstate, setno, nbuckets);
    1494             :     }
    1495             : 
    1496       13816 :     aggstate->hash_ngroups_current = 0;
    1497       13816 : }
    1498             : 
    1499             : /*
    1500             :  * Build a single hashtable for this grouping set.
    1501             :  */
    1502             : static void
    1503        4286 : build_hash_table(AggState *aggstate, int setno, long nbuckets)
    1504             : {
    1505        4286 :     AggStatePerHash perhash = &aggstate->perhash[setno];
    1506        4286 :     MemoryContext metacxt = aggstate->hash_metacxt;
    1507        4286 :     MemoryContext hashcxt = aggstate->hashcontext->ecxt_per_tuple_memory;
    1508        4286 :     MemoryContext tmpcxt = aggstate->tmpcontext->ecxt_per_tuple_memory;
    1509             :     Size        additionalsize;
    1510             : 
    1511             :     Assert(aggstate->aggstrategy == AGG_HASHED ||
    1512             :            aggstate->aggstrategy == AGG_MIXED);
    1513             : 
    1514             :     /*
    1515             :      * Used to make sure initial hash table allocation does not exceed
    1516             :      * hash_mem. Note that the estimate does not include space for
    1517             :      * pass-by-reference transition data values, nor for the representative
    1518             :      * tuple of each group.
    1519             :      */
    1520        4286 :     additionalsize = aggstate->numtrans * sizeof(AggStatePerGroupData);
    1521             : 
    1522        8572 :     perhash->hashtable = BuildTupleHashTableExt(&aggstate->ss.ps,
    1523        4286 :                                                 perhash->hashslot->tts_tupleDescriptor,
    1524             :                                                 perhash->numCols,
    1525             :                                                 perhash->hashGrpColIdxHash,
    1526        4286 :                                                 perhash->eqfuncoids,
    1527             :                                                 perhash->hashfunctions,
    1528        4286 :                                                 perhash->aggnode->grpCollations,
    1529             :                                                 nbuckets,
    1530             :                                                 additionalsize,
    1531             :                                                 metacxt,
    1532             :                                                 hashcxt,
    1533             :                                                 tmpcxt,
    1534        4286 :                                                 DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit));
    1535        4286 : }
    1536             : 
    1537             : /*
    1538             :  * Compute columns that actually need to be stored in hashtable entries.  The
    1539             :  * incoming tuples from the child plan node will contain grouping columns,
    1540             :  * other columns referenced in our targetlist and qual, columns used to
    1541             :  * compute the aggregate functions, and perhaps just junk columns we don't use
    1542             :  * at all.  Only columns of the first two types need to be stored in the
    1543             :  * hashtable, and getting rid of the others can make the table entries
    1544             :  * significantly smaller.  The hashtable only contains the relevant columns,
    1545             :  * and is packed/unpacked in lookup_hash_entry() / agg_retrieve_hash_table()
    1546             :  * into the format of the normal input descriptor.
    1547             :  *
    1548             :  * Additional columns, in addition to the columns grouped by, come from two
    1549             :  * sources: Firstly functionally dependent columns that we don't need to group
    1550             :  * by themselves, and secondly ctids for row-marks.
    1551             :  *
    1552             :  * To eliminate duplicates, we build a bitmapset of the needed columns, and
    1553             :  * then build an array of the columns included in the hashtable. We might
    1554             :  * still have duplicates if the passed-in grpColIdx has them, which can happen
    1555             :  * in edge cases from semijoins/distinct; these can't always be removed,
    1556             :  * because it's not certain that the duplicate cols will be using the same
    1557             :  * hash function.
    1558             :  *
    1559             :  * Note that the array is preserved over ExecReScanAgg, so we allocate it in
    1560             :  * the per-query context (unlike the hash table itself).
    1561             :  */
    1562             : static void
    1563        5188 : find_hash_columns(AggState *aggstate)
    1564             : {
    1565             :     Bitmapset  *base_colnos;
    1566             :     Bitmapset  *aggregated_colnos;
    1567        5188 :     TupleDesc   scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
    1568        5188 :     List       *outerTlist = outerPlanState(aggstate)->plan->targetlist;
    1569        5188 :     int         numHashes = aggstate->num_hashes;
    1570        5188 :     EState     *estate = aggstate->ss.ps.state;
    1571             :     int         j;
    1572             : 
    1573             :     /* Find Vars that will be needed in tlist and qual */
    1574        5188 :     find_cols(aggstate, &aggregated_colnos, &base_colnos);
    1575        5188 :     aggstate->colnos_needed = bms_union(base_colnos, aggregated_colnos);
    1576        5188 :     aggstate->max_colno_needed = 0;
    1577        5188 :     aggstate->all_cols_needed = true;
    1578             : 
    1579       21638 :     for (int i = 0; i < scanDesc->natts; i++)
    1580             :     {
    1581       16450 :         int         colno = i + 1;
    1582             : 
    1583       16450 :         if (bms_is_member(colno, aggstate->colnos_needed))
    1584       11316 :             aggstate->max_colno_needed = colno;
    1585             :         else
    1586        5134 :             aggstate->all_cols_needed = false;
    1587             :     }
    1588             : 
    1589       10770 :     for (j = 0; j < numHashes; ++j)
    1590             :     {
    1591        5582 :         AggStatePerHash perhash = &aggstate->perhash[j];
    1592        5582 :         Bitmapset  *colnos = bms_copy(base_colnos);
    1593        5582 :         AttrNumber *grpColIdx = perhash->aggnode->grpColIdx;
    1594        5582 :         List       *hashTlist = NIL;
    1595             :         TupleDesc   hashDesc;
    1596             :         int         maxCols;
    1597             :         int         i;
    1598             : 
    1599        5582 :         perhash->largestGrpColIdx = 0;
    1600             : 
    1601             :         /*
    1602             :          * If we're doing grouping sets, then some Vars might be referenced in
    1603             :          * tlist/qual for the benefit of other grouping sets, but not needed
    1604             :          * when hashing; i.e. prepare_projection_slot will null them out, so
    1605             :          * there'd be no point storing them.  Use prepare_projection_slot's
    1606             :          * logic to determine which.
    1607             :          */
    1608        5582 :         if (aggstate->phases[0].grouped_cols)
    1609             :         {
    1610        5582 :             Bitmapset  *grouped_cols = aggstate->phases[0].grouped_cols[j];
    1611             :             ListCell   *lc;
    1612             : 
    1613       15194 :             foreach(lc, aggstate->all_grouped_cols)
    1614             :             {
    1615        9612 :                 int         attnum = lfirst_int(lc);
    1616             : 
    1617        9612 :                 if (!bms_is_member(attnum, grouped_cols))
    1618        1008 :                     colnos = bms_del_member(colnos, attnum);
    1619             :             }
    1620             :         }
    1621             : 
    1622             :         /*
    1623             :          * Compute maximum number of input columns accounting for possible
    1624             :          * duplications in the grpColIdx array, which can happen in some edge
    1625             :          * cases where HashAggregate was generated as part of a semijoin or a
    1626             :          * DISTINCT.
    1627             :          */
    1628        5582 :         maxCols = bms_num_members(colnos) + perhash->numCols;
    1629             : 
    1630        5582 :         perhash->hashGrpColIdxInput =
    1631        5582 :             palloc(maxCols * sizeof(AttrNumber));
    1632        5582 :         perhash->hashGrpColIdxHash =
    1633        5582 :             palloc(perhash->numCols * sizeof(AttrNumber));
    1634             : 
    1635             :         /* Add all the grouping columns to colnos */
    1636       14192 :         for (i = 0; i < perhash->numCols; i++)
    1637        8610 :             colnos = bms_add_member(colnos, grpColIdx[i]);
    1638             : 
    1639             :         /*
    1640             :          * First build mapping for columns directly hashed. These are the
    1641             :          * first, because they'll be accessed when computing hash values and
    1642             :          * comparing tuples for exact matches. We also build simple mapping
    1643             :          * for execGrouping, so it knows where to find the to-be-hashed /
    1644             :          * compared columns in the input.
    1645             :          */
    1646       14192 :         for (i = 0; i < perhash->numCols; i++)
    1647             :         {
    1648        8610 :             perhash->hashGrpColIdxInput[i] = grpColIdx[i];
    1649        8610 :             perhash->hashGrpColIdxHash[i] = i + 1;
    1650        8610 :             perhash->numhashGrpCols++;
    1651             :             /* delete already mapped columns */
    1652        8610 :             colnos = bms_del_member(colnos, grpColIdx[i]);
    1653             :         }
    1654             : 
    1655             :         /* and add the remaining columns */
    1656        5582 :         i = -1;
    1657        6212 :         while ((i = bms_next_member(colnos, i)) >= 0)
    1658             :         {
    1659         630 :             perhash->hashGrpColIdxInput[perhash->numhashGrpCols] = i;
    1660         630 :             perhash->numhashGrpCols++;
    1661             :         }
    1662             : 
    1663             :         /* and build a tuple descriptor for the hashtable */
    1664       14822 :         for (i = 0; i < perhash->numhashGrpCols; i++)
    1665             :         {
    1666        9240 :             int         varNumber = perhash->hashGrpColIdxInput[i] - 1;
    1667             : 
    1668        9240 :             hashTlist = lappend(hashTlist, list_nth(outerTlist, varNumber));
    1669        9240 :             perhash->largestGrpColIdx =
    1670        9240 :                 Max(varNumber + 1, perhash->largestGrpColIdx);
    1671             :         }
    1672             : 
    1673        5582 :         hashDesc = ExecTypeFromTL(hashTlist);
    1674             : 
    1675        5582 :         execTuplesHashPrepare(perhash->numCols,
    1676        5582 :                               perhash->aggnode->grpOperators,
    1677             :                               &perhash->eqfuncoids,
    1678             :                               &perhash->hashfunctions);
    1679        5582 :         perhash->hashslot =
    1680        5582 :             ExecAllocTableSlot(&estate->es_tupleTable, hashDesc,
    1681             :                                &TTSOpsMinimalTuple);
    1682             : 
    1683        5582 :         list_free(hashTlist);
    1684        5582 :         bms_free(colnos);
    1685             :     }
    1686             : 
    1687        5188 :     bms_free(base_colnos);
    1688        5188 : }
    1689             : 
    1690             : /*
    1691             :  * Estimate per-hash-table-entry overhead.
    1692             :  */
    1693             : Size
    1694       24672 : hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
    1695             : {
    1696             :     Size        tupleChunkSize;
    1697             :     Size        pergroupChunkSize;
    1698             :     Size        transitionChunkSize;
    1699       24672 :     Size        tupleSize = (MAXALIGN(SizeofMinimalTupleHeader) +
    1700             :                              tupleWidth);
    1701       24672 :     Size        pergroupSize = numTrans * sizeof(AggStatePerGroupData);
    1702             : 
    1703       24672 :     tupleChunkSize = CHUNKHDRSZ + tupleSize;
    1704             : 
    1705       24672 :     if (pergroupSize > 0)
    1706       10328 :         pergroupChunkSize = CHUNKHDRSZ + pergroupSize;
    1707             :     else
    1708       14344 :         pergroupChunkSize = 0;
    1709             : 
    1710       24672 :     if (transitionSpace > 0)
    1711        4738 :         transitionChunkSize = CHUNKHDRSZ + transitionSpace;
    1712             :     else
    1713       19934 :         transitionChunkSize = 0;
    1714             : 
    1715             :     return
    1716             :         sizeof(TupleHashEntryData) +
    1717       24672 :         tupleChunkSize +
    1718       24672 :         pergroupChunkSize +
    1719             :         transitionChunkSize;
    1720             : }
    1721             : 
    1722             : /*
    1723             :  * hashagg_recompile_expressions()
    1724             :  *
    1725             :  * Identifies the right phase, compiles the right expression given the
    1726             :  * arguments, and then sets phase->evalfunc to that expression.
    1727             :  *
    1728             :  * Different versions of the compiled expression are needed depending on
    1729             :  * whether hash aggregation has spilled or not, and whether it's reading from
    1730             :  * the outer plan or a tape. Before spilling to disk, the expression reads
    1731             :  * from the outer plan and does not need to perform a NULL check. After
    1732             :  * HashAgg begins to spill, new groups will not be created in the hash table,
    1733             :  * and the AggStatePerGroup array may be NULL; therefore we need to add a null
    1734             :  * pointer check to the expression. Then, when reading spilled data from a
    1735             :  * tape, we change the outer slot type to be a fixed minimal tuple slot.
    1736             :  *
    1737             :  * It would be wasteful to recompile every time, so cache the compiled
    1738             :  * expressions in the AggStatePerPhase, and reuse when appropriate.
    1739             :  */
    1740             : static void
    1741       63106 : hashagg_recompile_expressions(AggState *aggstate, bool minslot, bool nullcheck)
    1742             : {
    1743             :     AggStatePerPhase phase;
    1744       63106 :     int         i = minslot ? 1 : 0;
    1745       63106 :     int         j = nullcheck ? 1 : 0;
    1746             : 
    1747             :     Assert(aggstate->aggstrategy == AGG_HASHED ||
    1748             :            aggstate->aggstrategy == AGG_MIXED);
    1749             : 
    1750       63106 :     if (aggstate->aggstrategy == AGG_HASHED)
    1751       10534 :         phase = &aggstate->phases[0];
    1752             :     else                        /* AGG_MIXED */
    1753       52572 :         phase = &aggstate->phases[1];
    1754             : 
    1755       63106 :     if (phase->evaltrans_cache[i][j] == NULL)
    1756             :     {
    1757          72 :         const TupleTableSlotOps *outerops = aggstate->ss.ps.outerops;
    1758          72 :         bool        outerfixed = aggstate->ss.ps.outeropsfixed;
    1759          72 :         bool        dohash = true;
    1760          72 :         bool        dosort = false;
    1761             : 
    1762             :         /*
    1763             :          * If minslot is true, that means we are processing a spilled batch
    1764             :          * (inside agg_refill_hash_table()), and we must not advance the
    1765             :          * sorted grouping sets.
    1766             :          */
    1767          72 :         if (aggstate->aggstrategy == AGG_MIXED && !minslot)
    1768          12 :             dosort = true;
    1769             : 
    1770             :         /* temporarily change the outerops while compiling the expression */
    1771          72 :         if (minslot)
    1772             :         {
    1773          36 :             aggstate->ss.ps.outerops = &TTSOpsMinimalTuple;
    1774          36 :             aggstate->ss.ps.outeropsfixed = true;
    1775             :         }
    1776             : 
    1777          72 :         phase->evaltrans_cache[i][j] = ExecBuildAggTrans(aggstate, phase,
    1778             :                                                          dosort, dohash,
    1779             :                                                          nullcheck);
    1780             : 
    1781             :         /* change back */
    1782          72 :         aggstate->ss.ps.outerops = outerops;
    1783          72 :         aggstate->ss.ps.outeropsfixed = outerfixed;
    1784             :     }
    1785             : 
    1786       63106 :     phase->evaltrans = phase->evaltrans_cache[i][j];
    1787       63106 : }
    1788             : 
    1789             : /*
    1790             :  * Set limits that trigger spilling to avoid exceeding hash_mem. Consider the
    1791             :  * number of partitions we expect to create (if we do spill).
    1792             :  *
    1793             :  * There are two limits: a memory limit, and also an ngroups limit. The
    1794             :  * ngroups limit becomes important when we expect transition values to grow
    1795             :  * substantially larger than the initial value.
    1796             :  */
    1797             : void
    1798       49604 : hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits,
    1799             :                     Size *mem_limit, uint64 *ngroups_limit,
    1800             :                     int *num_partitions)
    1801             : {
    1802             :     int         npartitions;
    1803             :     Size        partition_mem;
    1804       49604 :     Size        hash_mem_limit = get_hash_memory_limit();
    1805             : 
    1806             :     /* if not expected to spill, use all of hash_mem */
    1807       49604 :     if (input_groups * hashentrysize <= hash_mem_limit)
    1808             :     {
    1809       47180 :         if (num_partitions != NULL)
    1810       22604 :             *num_partitions = 0;
    1811       47180 :         *mem_limit = hash_mem_limit;
    1812       47180 :         *ngroups_limit = hash_mem_limit / hashentrysize;
    1813       47180 :         return;
    1814             :     }
    1815             : 
    1816             :     /*
    1817             :      * Calculate expected memory requirements for spilling, which is the size
    1818             :      * of the buffers needed for all the tapes that need to be open at once.
    1819             :      * Then, subtract that from the memory available for holding hash tables.
    1820             :      */
    1821        2424 :     npartitions = hash_choose_num_partitions(input_groups,
    1822             :                                              hashentrysize,
    1823             :                                              used_bits,
    1824             :                                              NULL);
    1825        2424 :     if (num_partitions != NULL)
    1826          90 :         *num_partitions = npartitions;
    1827             : 
    1828        2424 :     partition_mem =
    1829        2424 :         HASHAGG_READ_BUFFER_SIZE +
    1830             :         HASHAGG_WRITE_BUFFER_SIZE * npartitions;
    1831             : 
    1832             :     /*
    1833             :      * Don't set the limit below 3/4 of hash_mem. In that case, we are at the
    1834             :      * minimum number of partitions, so we aren't going to dramatically exceed
    1835             :      * work mem anyway.
    1836             :      */
    1837        2424 :     if (hash_mem_limit > 4 * partition_mem)
    1838           0 :         *mem_limit = hash_mem_limit - partition_mem;
    1839             :     else
    1840        2424 :         *mem_limit = hash_mem_limit * 0.75;
    1841             : 
    1842        2424 :     if (*mem_limit > hashentrysize)
    1843        2424 :         *ngroups_limit = *mem_limit / hashentrysize;
    1844             :     else
    1845           0 :         *ngroups_limit = 1;
    1846             : }
    1847             : 
    1848             : /*
    1849             :  * hash_agg_check_limits
    1850             :  *
    1851             :  * After adding a new group to the hash table, check whether we need to enter
    1852             :  * spill mode. Allocations may happen without adding new groups (for instance,
    1853             :  * if the transition state size grows), so this check is imperfect.
    1854             :  */
    1855             : static void
    1856      430752 : hash_agg_check_limits(AggState *aggstate)
    1857             : {
    1858      430752 :     uint64      ngroups = aggstate->hash_ngroups_current;
    1859      430752 :     Size        meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt,
    1860             :                                                      true);
    1861      430752 :     Size        hashkey_mem = MemoryContextMemAllocated(aggstate->hashcontext->ecxt_per_tuple_memory,
    1862             :                                                         true);
    1863             : 
    1864             :     /*
    1865             :      * Don't spill unless there's at least one group in the hash table so we
    1866             :      * can be sure to make progress even in edge cases.
    1867             :      */
    1868      430752 :     if (aggstate->hash_ngroups_current > 0 &&
    1869      430752 :         (meta_mem + hashkey_mem > aggstate->hash_mem_limit ||
    1870      404340 :          ngroups > aggstate->hash_ngroups_limit))
    1871             :     {
    1872       26442 :         hash_agg_enter_spill_mode(aggstate);
    1873             :     }
    1874      430752 : }
    1875             : 
    1876             : /*
    1877             :  * Enter "spill mode", meaning that no new groups are added to any of the hash
    1878             :  * tables. Tuples that would create a new group are instead spilled, and
    1879             :  * processed later.
    1880             :  */
    1881             : static void
    1882       26442 : hash_agg_enter_spill_mode(AggState *aggstate)
    1883             : {
    1884       26442 :     aggstate->hash_spill_mode = true;
    1885       26442 :     hashagg_recompile_expressions(aggstate, aggstate->table_filled, true);
    1886             : 
    1887       26442 :     if (!aggstate->hash_ever_spilled)
    1888             :     {
    1889             :         Assert(aggstate->hash_tapeset == NULL);
    1890             :         Assert(aggstate->hash_spills == NULL);
    1891             : 
    1892          54 :         aggstate->hash_ever_spilled = true;
    1893             : 
    1894          54 :         aggstate->hash_tapeset = LogicalTapeSetCreate(true, NULL, -1);
    1895             : 
    1896          54 :         aggstate->hash_spills = palloc(sizeof(HashAggSpill) * aggstate->num_hashes);
    1897             : 
    1898         168 :         for (int setno = 0; setno < aggstate->num_hashes; setno++)
    1899             :         {
    1900         114 :             AggStatePerHash perhash = &aggstate->perhash[setno];
    1901         114 :             HashAggSpill *spill = &aggstate->hash_spills[setno];
    1902             : 
    1903         114 :             hashagg_spill_init(spill, aggstate->hash_tapeset, 0,
    1904         114 :                                perhash->aggnode->numGroups,
    1905             :                                aggstate->hashentrysize);
    1906             :         }
    1907             :     }
    1908       26442 : }
    1909             : 
    1910             : /*
    1911             :  * Update metrics after filling the hash table.
    1912             :  *
    1913             :  * If reading from the outer plan, from_tape should be false; if reading from
    1914             :  * another tape, from_tape should be true.
    1915             :  */
    1916             : static void
    1917       40456 : hash_agg_update_metrics(AggState *aggstate, bool from_tape, int npartitions)
    1918             : {
    1919             :     Size        meta_mem;
    1920             :     Size        hashkey_mem;
    1921             :     Size        buffer_mem;
    1922             :     Size        total_mem;
    1923             : 
    1924       40456 :     if (aggstate->aggstrategy != AGG_MIXED &&
    1925       14068 :         aggstate->aggstrategy != AGG_HASHED)
    1926           0 :         return;
    1927             : 
    1928             :     /* memory for the hash table itself */
    1929       40456 :     meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt, true);
    1930             : 
    1931             :     /* memory for the group keys and transition states */
    1932       40456 :     hashkey_mem = MemoryContextMemAllocated(aggstate->hashcontext->ecxt_per_tuple_memory, true);
    1933             : 
    1934             :     /* memory for read/write tape buffers, if spilled */
    1935       40456 :     buffer_mem = npartitions * HASHAGG_WRITE_BUFFER_SIZE;
    1936       40456 :     if (from_tape)
    1937       26910 :         buffer_mem += HASHAGG_READ_BUFFER_SIZE;
    1938             : 
    1939             :     /* update peak mem */
    1940       40456 :     total_mem = meta_mem + hashkey_mem + buffer_mem;
    1941       40456 :     if (total_mem > aggstate->hash_mem_peak)
    1942        3834 :         aggstate->hash_mem_peak = total_mem;
    1943             : 
    1944             :     /* update disk usage */
    1945       40456 :     if (aggstate->hash_tapeset != NULL)
    1946             :     {
    1947       26964 :         uint64      disk_used = LogicalTapeSetBlocks(aggstate->hash_tapeset) * (BLCKSZ / 1024);
    1948             : 
    1949       26964 :         if (aggstate->hash_disk_used < disk_used)
    1950          42 :             aggstate->hash_disk_used = disk_used;
    1951             :     }
    1952             : 
    1953             :     /* update hashentrysize estimate based on contents */
    1954       40456 :     if (aggstate->hash_ngroups_current > 0)
    1955             :     {
    1956       40118 :         aggstate->hashentrysize =
    1957       40118 :             sizeof(TupleHashEntryData) +
    1958       40118 :             (hashkey_mem / (double) aggstate->hash_ngroups_current);
    1959             :     }
    1960             : }
    1961             : 
    1962             : /*
    1963             :  * Choose a reasonable number of buckets for the initial hash table size.
    1964             :  */
    1965             : static long
    1966        4286 : hash_choose_num_buckets(double hashentrysize, long ngroups, Size memory)
    1967             : {
    1968             :     long        max_nbuckets;
    1969        4286 :     long        nbuckets = ngroups;
    1970             : 
    1971        4286 :     max_nbuckets = memory / hashentrysize;
    1972             : 
    1973             :     /*
    1974             :      * Underestimating is better than overestimating. Too many buckets crowd
    1975             :      * out space for group keys and transition state values.
    1976             :      */
    1977        4286 :     max_nbuckets >>= 1;
    1978             : 
    1979        4286 :     if (nbuckets > max_nbuckets)
    1980          72 :         nbuckets = max_nbuckets;
    1981             : 
    1982        4286 :     return Max(nbuckets, 1);
    1983             : }
    1984             : 
    1985             : /*
    1986             :  * Determine the number of partitions to create when spilling, which will
    1987             :  * always be a power of two. If log2_npartitions is non-NULL, set
    1988             :  * *log2_npartitions to the log2() of the number of partitions.
    1989             :  */
    1990             : static int
    1991       15030 : hash_choose_num_partitions(double input_groups, double hashentrysize,
    1992             :                            int used_bits, int *log2_npartitions)
    1993             : {
    1994       15030 :     Size        hash_mem_limit = get_hash_memory_limit();
    1995             :     double      partition_limit;
    1996             :     double      mem_wanted;
    1997             :     double      dpartitions;
    1998             :     int         npartitions;
    1999             :     int         partition_bits;
    2000             : 
    2001             :     /*
    2002             :      * Avoid creating so many partitions that the memory requirements of the
    2003             :      * open partition files are greater than 1/4 of hash_mem.
    2004             :      */
    2005       15030 :     partition_limit =
    2006       15030 :         (hash_mem_limit * 0.25 - HASHAGG_READ_BUFFER_SIZE) /
    2007             :         HASHAGG_WRITE_BUFFER_SIZE;
    2008             : 
    2009       15030 :     mem_wanted = HASHAGG_PARTITION_FACTOR * input_groups * hashentrysize;
    2010             : 
    2011             :     /* make enough partitions so that each one is likely to fit in memory */
    2012       15030 :     dpartitions = 1 + (mem_wanted / hash_mem_limit);
    2013             : 
    2014       15030 :     if (dpartitions > partition_limit)
    2015       15012 :         dpartitions = partition_limit;
    2016             : 
    2017       15030 :     if (dpartitions < HASHAGG_MIN_PARTITIONS)
    2018       15030 :         dpartitions = HASHAGG_MIN_PARTITIONS;
    2019       15030 :     if (dpartitions > HASHAGG_MAX_PARTITIONS)
    2020           0 :         dpartitions = HASHAGG_MAX_PARTITIONS;
    2021             : 
    2022             :     /* HASHAGG_MAX_PARTITIONS limit makes this safe */
    2023       15030 :     npartitions = (int) dpartitions;
    2024             : 
    2025             :     /* ceil(log2(npartitions)) */
    2026       15030 :     partition_bits = my_log2(npartitions);
    2027             : 
    2028             :     /* make sure that we don't exhaust the hash bits */
    2029       15030 :     if (partition_bits + used_bits >= 32)
    2030           0 :         partition_bits = 32 - used_bits;
    2031             : 
    2032       15030 :     if (log2_npartitions != NULL)
    2033       12606 :         *log2_npartitions = partition_bits;
    2034             : 
    2035             :     /* number of partitions will be a power of two */
    2036       15030 :     npartitions = 1 << partition_bits;
    2037             : 
    2038       15030 :     return npartitions;
    2039             : }
    2040             : 
    2041             : /*
    2042             :  * Initialize a freshly-created TupleHashEntry.
    2043             :  */
    2044             : static void
    2045      430752 : initialize_hash_entry(AggState *aggstate, TupleHashTable hashtable,
    2046             :                       TupleHashEntry entry)
    2047             : {
    2048             :     AggStatePerGroup pergroup;
    2049             :     int         transno;
    2050             : 
    2051      430752 :     aggstate->hash_ngroups_current++;
    2052      430752 :     hash_agg_check_limits(aggstate);
    2053             : 
    2054             :     /* no need to allocate or initialize per-group state */
    2055      430752 :     if (aggstate->numtrans == 0)
    2056      179684 :         return;
    2057             : 
    2058             :     pergroup = (AggStatePerGroup)
    2059      251068 :         MemoryContextAlloc(hashtable->tablecxt,
    2060      251068 :                            sizeof(AggStatePerGroupData) * aggstate->numtrans);
    2061             : 
    2062      251068 :     entry->additional = pergroup;
    2063             : 
    2064             :     /*
    2065             :      * Initialize aggregates for new tuple group, lookup_hash_entries()
    2066             :      * already has selected the relevant grouping set.
    2067             :      */
    2068      647874 :     for (transno = 0; transno < aggstate->numtrans; transno++)
    2069             :     {
    2070      396806 :         AggStatePerTrans pertrans = &aggstate->pertrans[transno];
    2071      396806 :         AggStatePerGroup pergroupstate = &pergroup[transno];
    2072             : 
    2073      396806 :         initialize_aggregate(aggstate, pertrans, pergroupstate);
    2074             :     }
    2075             : }
    2076             : 
    2077             : /*
    2078             :  * Look up hash entries for the current tuple in all hashed grouping sets.
    2079             :  *
    2080             :  * Be aware that lookup_hash_entry can reset the tmpcontext.
    2081             :  *
    2082             :  * Some entries may be left NULL if we are in "spill mode". The same tuple
    2083             :  * will belong to different groups for each grouping set, so may match a group
    2084             :  * already in memory for one set and match a group not in memory for another
    2085             :  * set. When in "spill mode", the tuple will be spilled for each grouping set
    2086             :  * where it doesn't match a group in memory.
    2087             :  *
    2088             :  * NB: It's possible to spill the same tuple for several different grouping
    2089             :  * sets. This may seem wasteful, but it's actually a trade-off: if we spill
    2090             :  * the tuple multiple times for multiple grouping sets, it can be partitioned
    2091             :  * for each grouping set, making the refilling of the hash table very
    2092             :  * efficient.
    2093             :  */
    2094             : static void
    2095     5391494 : lookup_hash_entries(AggState *aggstate)
    2096             : {
    2097     5391494 :     AggStatePerGroup *pergroup = aggstate->hash_pergroup;
    2098     5391494 :     TupleTableSlot *outerslot = aggstate->tmpcontext->ecxt_outertuple;
    2099             :     int         setno;
    2100             : 
    2101    10917284 :     for (setno = 0; setno < aggstate->num_hashes; setno++)
    2102             :     {
    2103     5525790 :         AggStatePerHash perhash = &aggstate->perhash[setno];
    2104     5525790 :         TupleHashTable hashtable = perhash->hashtable;
    2105     5525790 :         TupleTableSlot *hashslot = perhash->hashslot;
    2106             :         TupleHashEntry entry;
    2107             :         uint32      hash;
    2108     5525790 :         bool        isnew = false;
    2109             :         bool       *p_isnew;
    2110             : 
    2111             :         /* if hash table already spilled, don't create new entries */
    2112     5525790 :         p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;
    2113             : 
    2114     5525790 :         select_current_set(aggstate, setno, true);
    2115     5525790 :         prepare_hash_slot(perhash,
    2116             :                           outerslot,
    2117             :                           hashslot);
    2118             : 
    2119     5525790 :         entry = LookupTupleHashEntry(hashtable, hashslot,
    2120             :                                      p_isnew, &hash);
    2121             : 
    2122     5525790 :         if (entry != NULL)
    2123             :         {
    2124     5303910 :             if (isnew)
    2125      336258 :                 initialize_hash_entry(aggstate, hashtable, entry);
    2126     5303910 :             pergroup[setno] = entry->additional;
    2127             :         }
    2128             :         else
    2129             :         {
    2130      221880 :             HashAggSpill *spill = &aggstate->hash_spills[setno];
    2131      221880 :             TupleTableSlot *slot = aggstate->tmpcontext->ecxt_outertuple;
    2132             : 
    2133      221880 :             if (spill->partitions == NULL)
    2134           0 :                 hashagg_spill_init(spill, aggstate->hash_tapeset, 0,
    2135           0 :                                    perhash->aggnode->numGroups,
    2136             :                                    aggstate->hashentrysize);
    2137             : 
    2138      221880 :             hashagg_spill_tuple(aggstate, spill, slot, hash);
    2139      221880 :             pergroup[setno] = NULL;
    2140             :         }
    2141             :     }
    2142     5391494 : }
    2143             : 
    2144             : /*
    2145             :  * ExecAgg -
    2146             :  *
    2147             :  *    ExecAgg receives tuples from its outer subplan and aggregates over
    2148             :  *    the appropriate attribute for each aggregate function use (Aggref
    2149             :  *    node) appearing in the targetlist or qual of the node.  The number
    2150             :  *    of tuples to aggregate over depends on whether grouped or plain
    2151             :  *    aggregation is selected.  In grouped aggregation, we produce a result
    2152             :  *    row for each group; in plain aggregation there's a single result row
    2153             :  *    for the whole query.  In either case, the value of each aggregate is
    2154             :  *    stored in the expression context to be used when ExecProject evaluates
    2155             :  *    the result tuple.
    2156             :  */
    2157             : static TupleTableSlot *
    2158      710510 : ExecAgg(PlanState *pstate)
    2159             : {
    2160      710510 :     AggState   *node = castNode(AggState, pstate);
    2161      710510 :     TupleTableSlot *result = NULL;
    2162             : 
    2163      710510 :     CHECK_FOR_INTERRUPTS();
    2164             : 
    2165      710510 :     if (!node->agg_done)
    2166             :     {
    2167             :         /* Dispatch based on strategy */
    2168      650306 :         switch (node->phase->aggstrategy)
    2169             :         {
    2170      383898 :             case AGG_HASHED:
    2171      383898 :                 if (!node->table_filled)
    2172       13420 :                     agg_fill_hash_table(node);
    2173             :                 /* FALLTHROUGH */
    2174             :             case AGG_MIXED:
    2175      411242 :                 result = agg_retrieve_hash_table(node);
    2176      411242 :                 break;
    2177      239064 :             case AGG_PLAIN:
    2178             :             case AGG_SORTED:
    2179      239064 :                 result = agg_retrieve_direct(node);
    2180      238954 :                 break;
    2181             :         }
    2182             : 
    2183      650196 :         if (!TupIsNull(result))
    2184      635156 :             return result;
    2185             :     }
    2186             : 
    2187       75244 :     return NULL;
    2188             : }
    2189             : 
    2190             : /*
    2191             :  * ExecAgg for non-hashed case
    2192             :  */
    2193             : static TupleTableSlot *
    2194      239064 : agg_retrieve_direct(AggState *aggstate)
    2195             : {
    2196      239064 :     Agg        *node = aggstate->phase->aggnode;
    2197             :     ExprContext *econtext;
    2198             :     ExprContext *tmpcontext;
    2199             :     AggStatePerAgg peragg;
    2200             :     AggStatePerGroup *pergroups;
    2201             :     TupleTableSlot *outerslot;
    2202             :     TupleTableSlot *firstSlot;
    2203             :     TupleTableSlot *result;
    2204      239064 :     bool        hasGroupingSets = aggstate->phase->numsets > 0;
    2205      239064 :     int         numGroupingSets = Max(aggstate->phase->numsets, 1);
    2206             :     int         currentSet;
    2207             :     int         nextSetSize;
    2208             :     int         numReset;
    2209             :     int         i;
    2210             : 
    2211             :     /*
    2212             :      * get state info from node
    2213             :      *
    2214             :      * econtext is the per-output-tuple expression context
    2215             :      *
    2216             :      * tmpcontext is the per-input-tuple expression context
    2217             :      */
    2218      239064 :     econtext = aggstate->ss.ps.ps_ExprContext;
    2219      239064 :     tmpcontext = aggstate->tmpcontext;
    2220             : 
    2221      239064 :     peragg = aggstate->peragg;
    2222      239064 :     pergroups = aggstate->pergroups;
    2223      239064 :     firstSlot = aggstate->ss.ss_ScanTupleSlot;
    2224             : 
    2225             :     /*
    2226             :      * We loop retrieving groups until we find one matching
    2227             :      * aggstate->ss.ps.qual
    2228             :      *
    2229             :      * For grouping sets, we have the invariant that aggstate->projected_set
    2230             :      * is either -1 (initial call) or the index (starting from 0) in
    2231             :      * gset_lengths for the group we just completed (either by projecting a
    2232             :      * row or by discarding it in the qual).
    2233             :      */
    2234      309748 :     while (!aggstate->agg_done)
    2235             :     {
    2236             :         /*
    2237             :          * Clear the per-output-tuple context for each group, as well as
    2238             :          * aggcontext (which contains any pass-by-ref transvalues of the old
    2239             :          * group).  Some aggregate functions store working state in child
    2240             :          * contexts; those now get reset automatically without us needing to
    2241             :          * do anything special.
    2242             :          *
    2243             :          * We use ReScanExprContext not just ResetExprContext because we want
    2244             :          * any registered shutdown callbacks to be called.  That allows
    2245             :          * aggregate functions to ensure they've cleaned up any non-memory
    2246             :          * resources.
    2247             :          */
    2248      309620 :         ReScanExprContext(econtext);
    2249             : 
    2250             :         /*
    2251             :          * Determine how many grouping sets need to be reset at this boundary.
    2252             :          */
    2253      309620 :         if (aggstate->projected_set >= 0 &&
    2254      246000 :             aggstate->projected_set < numGroupingSets)
    2255      245994 :             numReset = aggstate->projected_set + 1;
    2256             :         else
    2257       63626 :             numReset = numGroupingSets;
    2258             : 
    2259             :         /*
    2260             :          * numReset can change on a phase boundary, but that's OK; we want to
    2261             :          * reset the contexts used in _this_ phase, and later, after possibly
    2262             :          * changing phase, initialize the right number of aggregates for the
    2263             :          * _new_ phase.
    2264             :          */
    2265             : 
    2266      641482 :         for (i = 0; i < numReset; i++)
    2267             :         {
    2268      331862 :             ReScanExprContext(aggstate->aggcontexts[i]);
    2269             :         }
    2270             : 
    2271             :         /*
    2272             :          * Check if input is complete and there are no more groups to project
    2273             :          * in this phase; move to next phase or mark as done.
    2274             :          */
    2275      309620 :         if (aggstate->input_done == true &&
    2276        1524 :             aggstate->projected_set >= (numGroupingSets - 1))
    2277             :         {
    2278         720 :             if (aggstate->current_phase < aggstate->numphases - 1)
    2279             :             {
    2280         186 :                 initialize_phase(aggstate, aggstate->current_phase + 1);
    2281         186 :                 aggstate->input_done = false;
    2282         186 :                 aggstate->projected_set = -1;
    2283         186 :                 numGroupingSets = Max(aggstate->phase->numsets, 1);
    2284         186 :                 node = aggstate->phase->aggnode;
    2285         186 :                 numReset = numGroupingSets;
    2286             :             }
    2287         534 :             else if (aggstate->aggstrategy == AGG_MIXED)
    2288             :             {
    2289             :                 /*
    2290             :                  * Mixed mode; we've output all the grouped stuff and have
    2291             :                  * full hashtables, so switch to outputting those.
    2292             :                  */
    2293         138 :                 initialize_phase(aggstate, 0);
    2294         138 :                 aggstate->table_filled = true;
    2295         138 :                 ResetTupleHashIterator(aggstate->perhash[0].hashtable,
    2296             :                                        &aggstate->perhash[0].hashiter);
    2297         138 :                 select_current_set(aggstate, 0, true);
    2298         138 :                 return agg_retrieve_hash_table(aggstate);
    2299             :             }
    2300             :             else
    2301             :             {
    2302         396 :                 aggstate->agg_done = true;
    2303         396 :                 break;
    2304             :             }
    2305             :         }
    2306             : 
    2307             :         /*
    2308             :          * Get the number of columns in the next grouping set after the last
    2309             :          * projected one (if any). This is the number of columns to compare to
    2310             :          * see if we reached the boundary of that set too.
    2311             :          */
    2312      309086 :         if (aggstate->projected_set >= 0 &&
    2313      245280 :             aggstate->projected_set < (numGroupingSets - 1))
    2314       27276 :             nextSetSize = aggstate->phase->gset_lengths[aggstate->projected_set + 1];
    2315             :         else
    2316      281810 :             nextSetSize = 0;
    2317             : 
    2318             :         /*----------
    2319             :          * If a subgroup for the current grouping set is present, project it.
    2320             :          *
    2321             :          * We have a new group if:
    2322             :          *  - we're out of input but haven't projected all grouping sets
    2323             :          *    (checked above)
    2324             :          * OR
    2325             :          *    - we already projected a row that wasn't from the last grouping
    2326             :          *      set
    2327             :          *    AND
    2328             :          *    - the next grouping set has at least one grouping column (since
    2329             :          *      empty grouping sets project only once input is exhausted)
    2330             :          *    AND
    2331             :          *    - the previous and pending rows differ on the grouping columns
    2332             :          *      of the next grouping set
    2333             :          *----------
    2334             :          */
    2335      309086 :         tmpcontext->ecxt_innertuple = econtext->ecxt_outertuple;
    2336      309086 :         if (aggstate->input_done ||
    2337      308282 :             (node->aggstrategy != AGG_PLAIN &&
    2338      246134 :              aggstate->projected_set != -1 &&
    2339      244476 :              aggstate->projected_set < (numGroupingSets - 1) &&
    2340       19940 :              nextSetSize > 0 &&
    2341       19940 :              !ExecQualAndReset(aggstate->phase->eqfunctions[nextSetSize - 1],
    2342             :                                tmpcontext)))
    2343             :         {
    2344       14138 :             aggstate->projected_set += 1;
    2345             : 
    2346             :             Assert(aggstate->projected_set < numGroupingSets);
    2347       14138 :             Assert(nextSetSize > 0 || aggstate->input_done);
    2348             :         }
    2349             :         else
    2350             :         {
    2351             :             /*
    2352             :              * We no longer care what group we just projected, the next
    2353             :              * projection will always be the first (or only) grouping set
    2354             :              * (unless the input proves to be empty).
    2355             :              */
    2356      294948 :             aggstate->projected_set = 0;
    2357             : 
    2358             :             /*
    2359             :              * If we don't already have the first tuple of the new group,
    2360             :              * fetch it from the outer plan.
    2361             :              */
    2362      294948 :             if (aggstate->grp_firstTuple == NULL)
    2363             :             {
    2364       63806 :                 outerslot = fetch_input_tuple(aggstate);
    2365       63786 :                 if (!TupIsNull(outerslot))
    2366             :                 {
    2367             :                     /*
    2368             :                      * Make a copy of the first input tuple; we will use this
    2369             :                      * for comparisons (in group mode) and for projection.
    2370             :                      */
    2371       52030 :                     aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
    2372             :                 }
    2373             :                 else
    2374             :                 {
    2375             :                     /* outer plan produced no tuples at all */
    2376       11756 :                     if (hasGroupingSets)
    2377             :                     {
    2378             :                         /*
    2379             :                          * If there was no input at all, we need to project
    2380             :                          * rows only if there are grouping sets of size 0.
    2381             :                          * Note that this implies that there can't be any
    2382             :                          * references to ungrouped Vars, which would otherwise
    2383             :                          * cause issues with the empty output slot.
    2384             :                          *
    2385             :                          * XXX: This is no longer true, we currently deal with
    2386             :                          * this in finalize_aggregates().
    2387             :                          */
    2388          54 :                         aggstate->input_done = true;
    2389             : 
    2390          78 :                         while (aggstate->phase->gset_lengths[aggstate->projected_set] > 0)
    2391             :                         {
    2392          30 :                             aggstate->projected_set += 1;
    2393          30 :                             if (aggstate->projected_set >= numGroupingSets)
    2394             :                             {
    2395             :                                 /*
    2396             :                                  * We can't set agg_done here because we might
    2397             :                                  * have more phases to do, even though the
    2398             :                                  * input is empty. So we need to restart the
    2399             :                                  * whole outer loop.
    2400             :                                  */
    2401           6 :                                 break;
    2402             :                             }
    2403             :                         }
    2404             : 
    2405          54 :                         if (aggstate->projected_set >= numGroupingSets)
    2406           6 :                             continue;
    2407             :                     }
    2408             :                     else
    2409             :                     {
    2410       11702 :                         aggstate->agg_done = true;
    2411             :                         /* If we are grouping, we should produce no tuples too */
    2412       11702 :                         if (node->aggstrategy != AGG_PLAIN)
    2413         164 :                             return NULL;
    2414             :                     }
    2415             :                 }
    2416             :             }
    2417             : 
    2418             :             /*
    2419             :              * Initialize working state for a new input tuple group.
    2420             :              */
    2421      294758 :             initialize_aggregates(aggstate, pergroups, numReset);
    2422             : 
    2423      294758 :             if (aggstate->grp_firstTuple != NULL)
    2424             :             {
    2425             :                 /*
    2426             :                  * Store the copied first input tuple in the tuple table slot
    2427             :                  * reserved for it.  The tuple will be deleted when it is
    2428             :                  * cleared from the slot.
    2429             :                  */
    2430      283172 :                 ExecForceStoreHeapTuple(aggstate->grp_firstTuple,
    2431             :                                         firstSlot, true);
    2432      283172 :                 aggstate->grp_firstTuple = NULL; /* don't keep two pointers */
    2433             : 
    2434             :                 /* set up for first advance_aggregates call */
    2435      283172 :                 tmpcontext->ecxt_outertuple = firstSlot;
    2436             : 
    2437             :                 /*
    2438             :                  * Process each outer-plan tuple, and then fetch the next one,
    2439             :                  * until we exhaust the outer plan or cross a group boundary.
    2440             :                  */
    2441             :                 for (;;)
    2442             :                 {
    2443             :                     /*
    2444             :                      * During phase 1 only of a mixed agg, we need to update
    2445             :                      * hashtables as well in advance_aggregates.
    2446             :                      */
    2447    19695528 :                     if (aggstate->aggstrategy == AGG_MIXED &&
    2448       38044 :                         aggstate->current_phase == 1)
    2449             :                     {
    2450       38044 :                         lookup_hash_entries(aggstate);
    2451             :                     }
    2452             : 
    2453             :                     /* Advance the aggregates (or combine functions) */
    2454    19695528 :                     advance_aggregates(aggstate);
    2455             : 
    2456             :                     /* Reset per-input-tuple context after each tuple */
    2457    19695462 :                     ResetExprContext(tmpcontext);
    2458             : 
    2459    19695462 :                     outerslot = fetch_input_tuple(aggstate);
    2460    19695462 :                     if (TupIsNull(outerslot))
    2461             :                     {
    2462             :                         /* no more outer-plan tuples available */
    2463             : 
    2464             :                         /* if we built hash tables, finalize any spills */
    2465       51958 :                         if (aggstate->aggstrategy == AGG_MIXED &&
    2466         126 :                             aggstate->current_phase == 1)
    2467         126 :                             hashagg_finish_initial_spills(aggstate);
    2468             : 
    2469       51958 :                         if (hasGroupingSets)
    2470             :                         {
    2471         666 :                             aggstate->input_done = true;
    2472         666 :                             break;
    2473             :                         }
    2474             :                         else
    2475             :                         {
    2476       51292 :                             aggstate->agg_done = true;
    2477       51292 :                             break;
    2478             :                         }
    2479             :                     }
    2480             :                     /* set up for next advance_aggregates call */
    2481    19643504 :                     tmpcontext->ecxt_outertuple = outerslot;
    2482             : 
    2483             :                     /*
    2484             :                      * If we are grouping, check whether we've crossed a group
    2485             :                      * boundary.
    2486             :                      */
    2487    19643504 :                     if (node->aggstrategy != AGG_PLAIN && node->numCols > 0)
    2488             :                     {
    2489     1800896 :                         tmpcontext->ecxt_innertuple = firstSlot;
    2490     1800896 :                         if (!ExecQual(aggstate->phase->eqfunctions[node->numCols - 1],
    2491             :                                       tmpcontext))
    2492             :                         {
    2493      231148 :                             aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
    2494      231148 :                             break;
    2495             :                         }
    2496             :                     }
    2497             :                 }
    2498             :             }
    2499             : 
    2500             :             /*
    2501             :              * Use the representative input tuple for any references to
    2502             :              * non-aggregated input columns in aggregate direct args, the node
    2503             :              * qual, and the tlist.  (If we are not grouping, and there are no
    2504             :              * input rows at all, we will come here with an empty firstSlot
    2505             :              * ... but if not grouping, there can't be any references to
    2506             :              * non-aggregated input columns, so no problem.)
    2507             :              */
    2508      294692 :             econtext->ecxt_outertuple = firstSlot;
    2509             :         }
    2510             : 
    2511             :         Assert(aggstate->projected_set >= 0);
    2512             : 
    2513      308830 :         currentSet = aggstate->projected_set;
    2514             : 
    2515      308830 :         prepare_projection_slot(aggstate, econtext->ecxt_outertuple, currentSet);
    2516             : 
    2517      308830 :         select_current_set(aggstate, currentSet, false);
    2518             : 
    2519      308830 :         finalize_aggregates(aggstate,
    2520             :                             peragg,
    2521      308830 :                             pergroups[currentSet]);
    2522             : 
    2523             :         /*
    2524             :          * If there's no row to project right now, we must continue rather
    2525             :          * than returning a null since there might be more groups.
    2526             :          */
    2527      308818 :         result = project_aggregates(aggstate);
    2528      308806 :         if (result)
    2529      238128 :             return result;
    2530             :     }
    2531             : 
    2532             :     /* No more groups */
    2533         524 :     return NULL;
    2534             : }
    2535             : 
    2536             : /*
    2537             :  * ExecAgg for hashed case: read input and build hash table
    2538             :  */
    2539             : static void
    2540       13420 : agg_fill_hash_table(AggState *aggstate)
    2541             : {
    2542             :     TupleTableSlot *outerslot;
    2543       13420 :     ExprContext *tmpcontext = aggstate->tmpcontext;
    2544             : 
    2545             :     /*
    2546             :      * Process each outer-plan tuple, and then fetch the next one, until we
    2547             :      * exhaust the outer plan.
    2548             :      */
    2549             :     for (;;)
    2550             :     {
    2551     5366870 :         outerslot = fetch_input_tuple(aggstate);
    2552     5366870 :         if (TupIsNull(outerslot))
    2553             :             break;
    2554             : 
    2555             :         /* set up for lookup_hash_entries and advance_aggregates */
    2556     5353450 :         tmpcontext->ecxt_outertuple = outerslot;
    2557             : 
    2558             :         /* Find or build hashtable entries */
    2559     5353450 :         lookup_hash_entries(aggstate);
    2560             : 
    2561             :         /* Advance the aggregates (or combine functions) */
    2562     5353450 :         advance_aggregates(aggstate);
    2563             : 
    2564             :         /*
    2565             :          * Reset per-input-tuple context after each tuple, but note that the
    2566             :          * hash lookups do this too
    2567             :          */
    2568     5353450 :         ResetExprContext(aggstate->tmpcontext);
    2569             :     }
    2570             : 
    2571             :     /* finalize spills, if any */
    2572       13420 :     hashagg_finish_initial_spills(aggstate);
    2573             : 
    2574       13420 :     aggstate->table_filled = true;
    2575             :     /* Initialize to walk the first hash table */
    2576       13420 :     select_current_set(aggstate, 0, true);
    2577       13420 :     ResetTupleHashIterator(aggstate->perhash[0].hashtable,
    2578             :                            &aggstate->perhash[0].hashiter);
    2579       13420 : }
    2580             : 
    2581             : /*
    2582             :  * If any data was spilled during hash aggregation, reset the hash table and
    2583             :  * reprocess one batch of spilled data. After reprocessing a batch, the hash
    2584             :  * table will again contain data, ready to be consumed by
    2585             :  * agg_retrieve_hash_table_in_memory().
    2586             :  *
    2587             :  * Should only be called after all in memory hash table entries have been
    2588             :  * finalized and emitted.
    2589             :  *
    2590             :  * Return false when input is exhausted and there's no more work to be done;
    2591             :  * otherwise return true.
    2592             :  */
    2593             : static bool
    2594       41262 : agg_refill_hash_table(AggState *aggstate)
    2595             : {
    2596             :     HashAggBatch *batch;
    2597             :     AggStatePerHash perhash;
    2598             :     HashAggSpill spill;
    2599       41262 :     LogicalTapeSet *tapeset = aggstate->hash_tapeset;
    2600       41262 :     bool        spill_initialized = false;
    2601             : 
    2602       41262 :     if (aggstate->hash_batches == NIL)
    2603       14352 :         return false;
    2604             : 
    2605             :     /* hash_batches is a stack, with the top item at the end of the list */
    2606       26910 :     batch = llast(aggstate->hash_batches);
    2607       26910 :     aggstate->hash_batches = list_delete_last(aggstate->hash_batches);
    2608             : 
    2609       26910 :     hash_agg_set_limits(aggstate->hashentrysize, batch->input_card,
    2610             :                         batch->used_bits, &aggstate->hash_mem_limit,
    2611             :                         &aggstate->hash_ngroups_limit, NULL);
    2612             : 
    2613             :     /*
    2614             :      * Each batch only processes one grouping set; set the rest to NULL so
    2615             :      * that advance_aggregates() knows to ignore them. We don't touch
    2616             :      * pergroups for sorted grouping sets here, because they will be needed if
    2617             :      * we rescan later. The expressions for sorted grouping sets will not be
    2618             :      * evaluated after we recompile anyway.
    2619             :      */
    2620      207360 :     MemSet(aggstate->hash_pergroup, 0,
    2621             :            sizeof(AggStatePerGroup) * aggstate->num_hashes);
    2622             : 
    2623             :     /* free memory and reset hash tables */
    2624       26910 :     ReScanExprContext(aggstate->hashcontext);
    2625      207360 :     for (int setno = 0; setno < aggstate->num_hashes; setno++)
    2626      180450 :         ResetTupleHashTable(aggstate->perhash[setno].hashtable);
    2627             : 
    2628       26910 :     aggstate->hash_ngroups_current = 0;
    2629             : 
    2630             :     /*
    2631             :      * In AGG_MIXED mode, hash aggregation happens in phase 1 and the output
    2632             :      * happens in phase 0. So, we switch to phase 1 when processing a batch,
    2633             :      * and back to phase 0 after the batch is done.
    2634             :      */
    2635             :     Assert(aggstate->current_phase == 0);
    2636       26910 :     if (aggstate->phase->aggstrategy == AGG_MIXED)
    2637             :     {
    2638       26262 :         aggstate->current_phase = 1;
    2639       26262 :         aggstate->phase = &aggstate->phases[aggstate->current_phase];
    2640             :     }
    2641             : 
    2642       26910 :     select_current_set(aggstate, batch->setno, true);
    2643             : 
    2644       26910 :     perhash = &aggstate->perhash[aggstate->current_set];
    2645             : 
    2646             :     /*
    2647             :      * Spilled tuples are always read back as MinimalTuples, which may be
    2648             :      * different from the outer plan, so recompile the aggregate expressions.
    2649             :      *
    2650             :      * We still need the NULL check, because we are only processing one
    2651             :      * grouping set at a time and the rest will be NULL.
    2652             :      */
    2653       26910 :     hashagg_recompile_expressions(aggstate, true, true);
    2654             : 
    2655             :     for (;;)
    2656      655824 :     {
    2657      682734 :         TupleTableSlot *spillslot = aggstate->hash_spill_rslot;
    2658      682734 :         TupleTableSlot *hashslot = perhash->hashslot;
    2659             :         TupleHashEntry entry;
    2660             :         MinimalTuple tuple;
    2661             :         uint32      hash;
    2662      682734 :         bool        isnew = false;
    2663      682734 :         bool       *p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;
    2664             : 
    2665      682734 :         CHECK_FOR_INTERRUPTS();
    2666             : 
    2667      682734 :         tuple = hashagg_batch_read(batch, &hash);
    2668      682734 :         if (tuple == NULL)
    2669       26910 :             break;
    2670             : 
    2671      655824 :         ExecStoreMinimalTuple(tuple, spillslot, true);
    2672      655824 :         aggstate->tmpcontext->ecxt_outertuple = spillslot;
    2673             : 
    2674      655824 :         prepare_hash_slot(perhash,
    2675      655824 :                           aggstate->tmpcontext->ecxt_outertuple,
    2676             :                           hashslot);
    2677      655824 :         entry = LookupTupleHashEntryHash(perhash->hashtable, hashslot,
    2678             :                                          p_isnew, hash);
    2679             : 
    2680      655824 :         if (entry != NULL)
    2681             :         {
    2682      221880 :             if (isnew)
    2683       94494 :                 initialize_hash_entry(aggstate, perhash->hashtable, entry);
    2684      221880 :             aggstate->hash_pergroup[batch->setno] = entry->additional;
    2685      221880 :             advance_aggregates(aggstate);
    2686             :         }
    2687             :         else
    2688             :         {
    2689      433944 :             if (!spill_initialized)
    2690             :             {
    2691             :                 /*
    2692             :                  * Avoid initializing the spill until we actually need it so
    2693             :                  * that we don't assign tapes that will never be used.
    2694             :                  */
    2695       12492 :                 spill_initialized = true;
    2696       12492 :                 hashagg_spill_init(&spill, tapeset, batch->used_bits,
    2697             :                                    batch->input_card, aggstate->hashentrysize);
    2698             :             }
    2699             :             /* no memory for a new group, spill */
    2700      433944 :             hashagg_spill_tuple(aggstate, &spill, spillslot, hash);
    2701             : 
    2702      433944 :             aggstate->hash_pergroup[batch->setno] = NULL;
    2703             :         }
    2704             : 
    2705             :         /*
    2706             :          * Reset per-input-tuple context after each tuple, but note that the
    2707             :          * hash lookups do this too
    2708             :          */
    2709      655824 :         ResetExprContext(aggstate->tmpcontext);
    2710             :     }
    2711             : 
    2712       26910 :     LogicalTapeClose(batch->input_tape);
    2713             : 
    2714             :     /* change back to phase 0 */
    2715       26910 :     aggstate->current_phase = 0;
    2716       26910 :     aggstate->phase = &aggstate->phases[aggstate->current_phase];
    2717             : 
    2718       26910 :     if (spill_initialized)
    2719             :     {
    2720       12492 :         hashagg_spill_finish(aggstate, &spill, batch->setno);
    2721       12492 :         hash_agg_update_metrics(aggstate, true, spill.npartitions);
    2722             :     }
    2723             :     else
    2724       14418 :         hash_agg_update_metrics(aggstate, true, 0);
    2725             : 
    2726       26910 :     aggstate->hash_spill_mode = false;
    2727             : 
    2728             :     /* prepare to walk the first hash table */
    2729       26910 :     select_current_set(aggstate, batch->setno, true);
    2730       26910 :     ResetTupleHashIterator(aggstate->perhash[batch->setno].hashtable,
    2731             :                            &aggstate->perhash[batch->setno].hashiter);
    2732             : 
    2733       26910 :     pfree(batch);
    2734             : 
    2735       26910 :     return true;
    2736             : }
    2737             : 
    2738             : /*
    2739             :  * ExecAgg for hashed case: retrieving groups from hash table
    2740             :  *
    2741             :  * After exhausting in-memory tuples, also try refilling the hash table using
    2742             :  * previously-spilled tuples. Only returns NULL after all in-memory and
    2743             :  * spilled tuples are exhausted.
    2744             :  */
    2745             : static TupleTableSlot *
    2746      411380 : agg_retrieve_hash_table(AggState *aggstate)
    2747             : {
    2748      411380 :     TupleTableSlot *result = NULL;
    2749             : 
    2750      835318 :     while (result == NULL)
    2751             :     {
    2752      438290 :         result = agg_retrieve_hash_table_in_memory(aggstate);
    2753      438290 :         if (result == NULL)
    2754             :         {
    2755       41262 :             if (!agg_refill_hash_table(aggstate))
    2756             :             {
    2757       14352 :                 aggstate->agg_done = true;
    2758       14352 :                 break;
    2759             :             }
    2760             :         }
    2761             :     }
    2762             : 
    2763      411380 :     return result;
    2764             : }
    2765             : 
    2766             : /*
    2767             :  * Retrieve the groups from the in-memory hash tables without considering any
    2768             :  * spilled tuples.
    2769             :  */
    2770             : static TupleTableSlot *
    2771      438290 : agg_retrieve_hash_table_in_memory(AggState *aggstate)
    2772             : {
    2773             :     ExprContext *econtext;
    2774             :     AggStatePerAgg peragg;
    2775             :     AggStatePerGroup pergroup;
    2776             :     TupleHashEntryData *entry;
    2777             :     TupleTableSlot *firstSlot;
    2778             :     TupleTableSlot *result;
    2779             :     AggStatePerHash perhash;
    2780             : 
    2781             :     /*
    2782             :      * get state info from node.
    2783             :      *
    2784             :      * econtext is the per-output-tuple expression context.
    2785             :      */
    2786      438290 :     econtext = aggstate->ss.ps.ps_ExprContext;
    2787      438290 :     peragg = aggstate->peragg;
    2788      438290 :     firstSlot = aggstate->ss.ss_ScanTupleSlot;
    2789             : 
    2790             :     /*
    2791             :      * Note that perhash (and therefore anything accessed through it) can
    2792             :      * change inside the loop, as we change between grouping sets.
    2793             :      */
    2794      438290 :     perhash = &aggstate->perhash[aggstate->current_set];
    2795             : 
    2796             :     /*
    2797             :      * We loop retrieving groups until we find one satisfying
    2798             :      * aggstate->ss.ps.qual
    2799             :      */
    2800             :     for (;;)
    2801      135852 :     {
    2802      574142 :         TupleTableSlot *hashslot = perhash->hashslot;
    2803             :         int         i;
    2804             : 
    2805      574142 :         CHECK_FOR_INTERRUPTS();
    2806             : 
    2807             :         /*
    2808             :          * Find the next entry in the hash table
    2809             :          */
    2810      574142 :         entry = ScanTupleHashTable(perhash->hashtable, &perhash->hashiter);
    2811      574142 :         if (entry == NULL)
    2812             :         {
    2813      141494 :             int         nextset = aggstate->current_set + 1;
    2814             : 
    2815      141494 :             if (nextset < aggstate->num_hashes)
    2816             :             {
    2817             :                 /*
    2818             :                  * Switch to next grouping set, reinitialize, and restart the
    2819             :                  * loop.
    2820             :                  */
    2821      100232 :                 select_current_set(aggstate, nextset, true);
    2822             : 
    2823      100232 :                 perhash = &aggstate->perhash[aggstate->current_set];
    2824             : 
    2825      100232 :                 ResetTupleHashIterator(perhash->hashtable, &perhash->hashiter);
    2826             : 
    2827      100232 :                 continue;
    2828             :             }
    2829             :             else
    2830             :             {
    2831       41262 :                 return NULL;
    2832             :             }
    2833             :         }
    2834             : 
    2835             :         /*
    2836             :          * Clear the per-output-tuple context for each group
    2837             :          *
    2838             :          * We intentionally don't use ReScanExprContext here; if any aggs have
    2839             :          * registered shutdown callbacks, they mustn't be called yet, since we
    2840             :          * might not be done with that agg.
    2841             :          */
    2842      432648 :         ResetExprContext(econtext);
    2843             : 
    2844             :         /*
    2845             :          * Transform representative tuple back into one with the right
    2846             :          * columns.
    2847             :          */
    2848      432648 :         ExecStoreMinimalTuple(entry->firstTuple, hashslot, false);
    2849      432648 :         slot_getallattrs(hashslot);
    2850             : 
    2851      432648 :         ExecClearTuple(firstSlot);
    2852      432648 :         memset(firstSlot->tts_isnull, true,
    2853      432648 :                firstSlot->tts_tupleDescriptor->natts * sizeof(bool));
    2854             : 
    2855     1196626 :         for (i = 0; i < perhash->numhashGrpCols; i++)
    2856             :         {
    2857      763978 :             int         varNumber = perhash->hashGrpColIdxInput[i] - 1;
    2858             : 
    2859      763978 :             firstSlot->tts_values[varNumber] = hashslot->tts_values[i];
    2860      763978 :             firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i];
    2861             :         }
    2862      432648 :         ExecStoreVirtualTuple(firstSlot);
    2863             : 
    2864      432648 :         pergroup = (AggStatePerGroup) entry->additional;
    2865             : 
    2866             :         /*
    2867             :          * Use the representative input tuple for any references to
    2868             :          * non-aggregated input columns in the qual and tlist.
    2869             :          */
    2870      432648 :         econtext->ecxt_outertuple = firstSlot;
    2871             : 
    2872      432648 :         prepare_projection_slot(aggstate,
    2873             :                                 econtext->ecxt_outertuple,
    2874             :                                 aggstate->current_set);
    2875             : 
    2876      432648 :         finalize_aggregates(aggstate, peragg, pergroup);
    2877             : 
    2878      432648 :         result = project_aggregates(aggstate);
    2879      432648 :         if (result)
    2880      397028 :             return result;
    2881             :     }
    2882             : 
    2883             :     /* No more groups */
    2884             :     return NULL;
    2885             : }
    2886             : 
    2887             : /*
    2888             :  * hashagg_spill_init
    2889             :  *
    2890             :  * Called after we determined that spilling is necessary. Chooses the number
    2891             :  * of partitions to create, and initializes them.
    2892             :  */
    2893             : static void
    2894       12606 : hashagg_spill_init(HashAggSpill *spill, LogicalTapeSet *tapeset, int used_bits,
    2895             :                    double input_groups, double hashentrysize)
    2896             : {
    2897             :     int         npartitions;
    2898             :     int         partition_bits;
    2899             : 
    2900       12606 :     npartitions = hash_choose_num_partitions(input_groups, hashentrysize,
    2901             :                                              used_bits, &partition_bits);
    2902             : 
    2903       12606 :     spill->partitions = palloc0(sizeof(LogicalTape *) * npartitions);
    2904       12606 :     spill->ntuples = palloc0(sizeof(int64) * npartitions);
    2905       12606 :     spill->hll_card = palloc0(sizeof(hyperLogLogState) * npartitions);
    2906             : 
    2907       63030 :     for (int i = 0; i < npartitions; i++)
    2908       50424 :         spill->partitions[i] = LogicalTapeCreate(tapeset);
    2909             : 
    2910       12606 :     spill->shift = 32 - used_bits - partition_bits;
    2911       12606 :     spill->mask = (npartitions - 1) << spill->shift;
    2912       12606 :     spill->npartitions = npartitions;
    2913             : 
    2914       63030 :     for (int i = 0; i < npartitions; i++)
    2915       50424 :         initHyperLogLog(&spill->hll_card[i], HASHAGG_HLL_BIT_WIDTH);
    2916       12606 : }
    2917             : 
    2918             : /*
    2919             :  * hashagg_spill_tuple
    2920             :  *
    2921             :  * No room for new groups in the hash table. Save for later in the appropriate
    2922             :  * partition.
    2923             :  */
    2924             : static Size
    2925      655824 : hashagg_spill_tuple(AggState *aggstate, HashAggSpill *spill,
    2926             :                     TupleTableSlot *inputslot, uint32 hash)
    2927             : {
    2928             :     TupleTableSlot *spillslot;
    2929             :     int         partition;
    2930             :     MinimalTuple tuple;
    2931             :     LogicalTape *tape;
    2932      655824 :     int         total_written = 0;
    2933             :     bool        shouldFree;
    2934             : 
    2935             :     Assert(spill->partitions != NULL);
    2936             : 
    2937             :     /* spill only attributes that we actually need */
    2938      655824 :     if (!aggstate->all_cols_needed)
    2939             :     {
    2940        3492 :         spillslot = aggstate->hash_spill_wslot;
    2941        3492 :         slot_getsomeattrs(inputslot, aggstate->max_colno_needed);
    2942        3492 :         ExecClearTuple(spillslot);
    2943       10476 :         for (int i = 0; i < spillslot->tts_tupleDescriptor->natts; i++)
    2944             :         {
    2945        6984 :             if (bms_is_member(i + 1, aggstate->colnos_needed))
    2946             :             {
    2947        3492 :                 spillslot->tts_values[i] = inputslot->tts_values[i];
    2948        3492 :                 spillslot->tts_isnull[i] = inputslot->tts_isnull[i];
    2949             :             }
    2950             :             else
    2951        3492 :                 spillslot->tts_isnull[i] = true;
    2952             :         }
    2953        3492 :         ExecStoreVirtualTuple(spillslot);
    2954             :     }
    2955             :     else
    2956      652332 :         spillslot = inputslot;
    2957             : 
    2958      655824 :     tuple = ExecFetchSlotMinimalTuple(spillslot, &shouldFree);
    2959             : 
    2960      655824 :     partition = (hash & spill->mask) >> spill->shift;
    2961      655824 :     spill->ntuples[partition]++;
    2962             : 
    2963             :     /*
    2964             :      * All hash values destined for a given partition have some bits in
    2965             :      * common, which causes bad HLL cardinality estimates. Hash the hash to
    2966             :      * get a more uniform distribution.
    2967             :      */
    2968      655824 :     addHyperLogLog(&spill->hll_card[partition], hash_bytes_uint32(hash));
    2969             : 
    2970      655824 :     tape = spill->partitions[partition];
    2971             : 
    2972      655824 :     LogicalTapeWrite(tape, &hash, sizeof(uint32));
    2973      655824 :     total_written += sizeof(uint32);
    2974             : 
    2975      655824 :     LogicalTapeWrite(tape, tuple, tuple->t_len);
    2976      655824 :     total_written += tuple->t_len;
    2977             : 
    2978      655824 :     if (shouldFree)
    2979      221880 :         pfree(tuple);
    2980             : 
    2981      655824 :     return total_written;
    2982             : }
    2983             : 
    2984             : /*
    2985             :  * hashagg_batch_new
    2986             :  *
    2987             :  * Construct a HashAggBatch item, which represents one iteration of HashAgg to
    2988             :  * be done.
    2989             :  */
    2990             : static HashAggBatch *
    2991       26910 : hashagg_batch_new(LogicalTape *input_tape, int setno,
    2992             :                   int64 input_tuples, double input_card, int used_bits)
    2993             : {
    2994       26910 :     HashAggBatch *batch = palloc0(sizeof(HashAggBatch));
    2995             : 
    2996       26910 :     batch->setno = setno;
    2997       26910 :     batch->used_bits = used_bits;
    2998       26910 :     batch->input_tape = input_tape;
    2999       26910 :     batch->input_tuples = input_tuples;
    3000       26910 :     batch->input_card = input_card;
    3001             : 
    3002       26910 :     return batch;
    3003             : }
    3004             : 
    3005             : /*
    3006             :  * hashagg_batch_read
    3007             :  *      read the next tuple from a batch's tape.  Return NULL if no more.
    3008             :  */
    3009             : static MinimalTuple
    3010      682734 : hashagg_batch_read(HashAggBatch *batch, uint32 *hashp)
    3011             : {
    3012      682734 :     LogicalTape *tape = batch->input_tape;
    3013             :     MinimalTuple tuple;
    3014             :     uint32      t_len;
    3015             :     size_t      nread;
    3016             :     uint32      hash;
    3017             : 
    3018      682734 :     nread = LogicalTapeRead(tape, &hash, sizeof(uint32));
    3019      682734 :     if (nread == 0)
    3020       26910 :         return NULL;
    3021      655824 :     if (nread != sizeof(uint32))
    3022           0 :         ereport(ERROR,
    3023             :                 (errcode_for_file_access(),
    3024             :                  errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
    3025             :                                  tape, sizeof(uint32), nread)));
    3026      655824 :     if (hashp != NULL)
    3027      655824 :         *hashp = hash;
    3028             : 
    3029      655824 :     nread = LogicalTapeRead(tape, &t_len, sizeof(t_len));
    3030      655824 :     if (nread != sizeof(uint32))
    3031           0 :         ereport(ERROR,
    3032             :                 (errcode_for_file_access(),
    3033             :                  errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
    3034             :                                  tape, sizeof(uint32), nread)));
    3035             : 
    3036      655824 :     tuple = (MinimalTuple) palloc(t_len);
    3037      655824 :     tuple->t_len = t_len;
    3038             : 
    3039      655824 :     nread = LogicalTapeRead(tape,
    3040             :                             (char *) tuple + sizeof(uint32),
    3041             :                             t_len - sizeof(uint32));
    3042      655824 :     if (nread != t_len - sizeof(uint32))
    3043           0 :         ereport(ERROR,
    3044             :                 (errcode_for_file_access(),
    3045             :                  errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
    3046             :                                  tape, t_len - sizeof(uint32), nread)));
    3047             : 
    3048      655824 :     return tuple;
    3049             : }
    3050             : 
    3051             : /*
    3052             :  * hashagg_finish_initial_spills
    3053             :  *
    3054             :  * After a HashAggBatch has been processed, it may have spilled tuples to
    3055             :  * disk. If so, turn the spilled partitions into new batches that must later
    3056             :  * be executed.
    3057             :  */
    3058             : static void
    3059       13546 : hashagg_finish_initial_spills(AggState *aggstate)
    3060             : {
    3061             :     int         setno;
    3062       13546 :     int         total_npartitions = 0;
    3063             : 
    3064       13546 :     if (aggstate->hash_spills != NULL)
    3065             :     {
    3066         168 :         for (setno = 0; setno < aggstate->num_hashes; setno++)
    3067             :         {
    3068         114 :             HashAggSpill *spill = &aggstate->hash_spills[setno];
    3069             : 
    3070         114 :             total_npartitions += spill->npartitions;
    3071         114 :             hashagg_spill_finish(aggstate, spill, setno);
    3072             :         }
    3073             : 
    3074             :         /*
    3075             :          * We're not processing tuples from outer plan any more; only
    3076             :          * processing batches of spilled tuples. The initial spill structures
    3077             :          * are no longer needed.
    3078             :          */
    3079          54 :         pfree(aggstate->hash_spills);
    3080          54 :         aggstate->hash_spills = NULL;
    3081             :     }
    3082             : 
    3083       13546 :     hash_agg_update_metrics(aggstate, false, total_npartitions);
    3084       13546 :     aggstate->hash_spill_mode = false;
    3085       13546 : }
    3086             : 
    3087             : /*
    3088             :  * hashagg_spill_finish
    3089             :  *
    3090             :  * Transform spill partitions into new batches.
    3091             :  */
    3092             : static void
    3093       12606 : hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill, int setno)
    3094             : {
    3095             :     int         i;
    3096       12606 :     int         used_bits = 32 - spill->shift;
    3097             : 
    3098       12606 :     if (spill->npartitions == 0)
    3099           0 :         return;                 /* didn't spill */
    3100             : 
    3101       63030 :     for (i = 0; i < spill->npartitions; i++)
    3102             :     {
    3103       50424 :         LogicalTape *tape = spill->partitions[i];
    3104             :         HashAggBatch *new_batch;
    3105             :         double      cardinality;
    3106             : 
    3107             :         /* if the partition is empty, don't create a new batch of work */
    3108       50424 :         if (spill->ntuples[i] == 0)
    3109       23514 :             continue;
    3110             : 
    3111       26910 :         cardinality = estimateHyperLogLog(&spill->hll_card[i]);
    3112       26910 :         freeHyperLogLog(&spill->hll_card[i]);
    3113             : 
    3114             :         /* rewinding frees the buffer while not in use */
    3115       26910 :         LogicalTapeRewindForRead(tape, HASHAGG_READ_BUFFER_SIZE);
    3116             : 
    3117       26910 :         new_batch = hashagg_batch_new(tape, setno,
    3118       26910 :                                       spill->ntuples[i], cardinality,
    3119             :                                       used_bits);
    3120       26910 :         aggstate->hash_batches = lappend(aggstate->hash_batches, new_batch);
    3121       26910 :         aggstate->hash_batches_used++;
    3122             :     }
    3123             : 
    3124       12606 :     pfree(spill->ntuples);
    3125       12606 :     pfree(spill->hll_card);
    3126       12606 :     pfree(spill->partitions);
    3127             : }
    3128             : 
    3129             : /*
    3130             :  * Free resources related to a spilled HashAgg.
    3131             :  */
    3132             : static void
    3133       53028 : hashagg_reset_spill_state(AggState *aggstate)
    3134             : {
    3135             :     /* free spills from initial pass */
    3136       53028 :     if (aggstate->hash_spills != NULL)
    3137             :     {
    3138             :         int         setno;
    3139             : 
    3140           0 :         for (setno = 0; setno < aggstate->num_hashes; setno++)
    3141             :         {
    3142           0 :             HashAggSpill *spill = &aggstate->hash_spills[setno];
    3143             : 
    3144           0 :             pfree(spill->ntuples);
    3145           0 :             pfree(spill->partitions);
    3146             :         }
    3147           0 :         pfree(aggstate->hash_spills);
    3148           0 :         aggstate->hash_spills = NULL;
    3149             :     }
    3150             : 
    3151             :     /* free batches */
    3152       53028 :     list_free_deep(aggstate->hash_batches);
    3153       53028 :     aggstate->hash_batches = NIL;
    3154             : 
    3155             :     /* close tape set */
    3156       53028 :     if (aggstate->hash_tapeset != NULL)
    3157             :     {
    3158          54 :         LogicalTapeSetClose(aggstate->hash_tapeset);
    3159          54 :         aggstate->hash_tapeset = NULL;
    3160             :     }
    3161       53028 : }
    3162             : 
    3163             : 
    3164             : /* -----------------
    3165             :  * ExecInitAgg
    3166             :  *
    3167             :  *  Creates the run-time information for the agg node produced by the
    3168             :  *  planner and initializes its outer subtree.
    3169             :  *
    3170             :  * -----------------
    3171             :  */
    3172             : AggState *
    3173       43400 : ExecInitAgg(Agg *node, EState *estate, int eflags)
    3174             : {
    3175             :     AggState   *aggstate;
    3176             :     AggStatePerAgg peraggs;
    3177             :     AggStatePerTrans pertransstates;
    3178             :     AggStatePerGroup *pergroups;
    3179             :     Plan       *outerPlan;
    3180             :     ExprContext *econtext;
    3181             :     TupleDesc   scanDesc;
    3182             :     int         max_aggno;
    3183             :     int         max_transno;
    3184             :     int         numaggrefs;
    3185             :     int         numaggs;
    3186             :     int         numtrans;
    3187             :     int         phase;
    3188             :     int         phaseidx;
    3189             :     ListCell   *l;
    3190       43400 :     Bitmapset  *all_grouped_cols = NULL;
    3191       43400 :     int         numGroupingSets = 1;
    3192             :     int         numPhases;
    3193             :     int         numHashes;
    3194       43400 :     int         i = 0;
    3195       43400 :     int         j = 0;
    3196       81808 :     bool        use_hashing = (node->aggstrategy == AGG_HASHED ||
    3197       38408 :                                node->aggstrategy == AGG_MIXED);
    3198             : 
    3199             :     /* check for unsupported flags */
    3200             :     Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
    3201             : 
    3202             :     /*
    3203             :      * create state structure
    3204             :      */
    3205       43400 :     aggstate = makeNode(AggState);
    3206       43400 :     aggstate->ss.ps.plan = (Plan *) node;
    3207       43400 :     aggstate->ss.ps.state = estate;
    3208       43400 :     aggstate->ss.ps.ExecProcNode = ExecAgg;
    3209             : 
    3210       43400 :     aggstate->aggs = NIL;
    3211       43400 :     aggstate->numaggs = 0;
    3212       43400 :     aggstate->numtrans = 0;
    3213       43400 :     aggstate->aggstrategy = node->aggstrategy;
    3214       43400 :     aggstate->aggsplit = node->aggsplit;
    3215       43400 :     aggstate->maxsets = 0;
    3216       43400 :     aggstate->projected_set = -1;
    3217       43400 :     aggstate->current_set = 0;
    3218       43400 :     aggstate->peragg = NULL;
    3219       43400 :     aggstate->pertrans = NULL;
    3220       43400 :     aggstate->curperagg = NULL;
    3221       43400 :     aggstate->curpertrans = NULL;
    3222       43400 :     aggstate->input_done = false;
    3223       43400 :     aggstate->agg_done = false;
    3224       43400 :     aggstate->pergroups = NULL;
    3225       43400 :     aggstate->grp_firstTuple = NULL;
    3226       43400 :     aggstate->sort_in = NULL;
    3227       43400 :     aggstate->sort_out = NULL;
    3228             : 
    3229             :     /*
    3230             :      * phases[0] always exists, but is dummy in sorted/plain mode
    3231             :      */
    3232       43400 :     numPhases = (use_hashing ? 1 : 2);
    3233       43400 :     numHashes = (use_hashing ? 1 : 0);
    3234             : 
    3235             :     /*
    3236             :      * Calculate the maximum number of grouping sets in any phase; this
    3237             :      * determines the size of some allocations.  Also calculate the number of
    3238             :      * phases, since all hashed/mixed nodes contribute to only a single phase.
    3239             :      */
    3240       43400 :     if (node->groupingSets)
    3241             :     {
    3242         716 :         numGroupingSets = list_length(node->groupingSets);
    3243             : 
    3244        1534 :         foreach(l, node->chain)
    3245             :         {
    3246         818 :             Agg        *agg = lfirst(l);
    3247             : 
    3248         818 :             numGroupingSets = Max(numGroupingSets,
    3249             :                                   list_length(agg->groupingSets));
    3250             : 
    3251             :             /*
    3252             :              * additional AGG_HASHED aggs become part of phase 0, but all
    3253             :              * others add an extra phase.
    3254             :              */
    3255         818 :             if (agg->aggstrategy != AGG_HASHED)
    3256         424 :                 ++numPhases;
    3257             :             else
    3258         394 :                 ++numHashes;
    3259             :         }
    3260             :     }
    3261             : 
    3262       43400 :     aggstate->maxsets = numGroupingSets;
    3263       43400 :     aggstate->numphases = numPhases;
    3264             : 
    3265       43400 :     aggstate->aggcontexts = (ExprContext **)
    3266       43400 :         palloc0(sizeof(ExprContext *) * numGroupingSets);
    3267             : 
    3268             :     /*
    3269             :      * Create expression contexts.  We need three or more, one for
    3270             :      * per-input-tuple processing, one for per-output-tuple processing, one
    3271             :      * for all the hashtables, and one for each grouping set.  The per-tuple
    3272             :      * memory context of the per-grouping-set ExprContexts (aggcontexts)
    3273             :      * replaces the standalone memory context formerly used to hold transition
    3274             :      * values.  We cheat a little by using ExecAssignExprContext() to build
    3275             :      * all of them.
    3276             :      *
    3277             :      * NOTE: the details of what is stored in aggcontexts and what is stored
    3278             :      * in the regular per-query memory context are driven by a simple
    3279             :      * decision: we want to reset the aggcontext at group boundaries (if not
    3280             :      * hashing) and in ExecReScanAgg to recover no-longer-wanted space.
    3281             :      */
    3282       43400 :     ExecAssignExprContext(estate, &aggstate->ss.ps);
    3283       43400 :     aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext;
    3284             : 
    3285       87628 :     for (i = 0; i < numGroupingSets; ++i)
    3286             :     {
    3287       44228 :         ExecAssignExprContext(estate, &aggstate->ss.ps);
    3288       44228 :         aggstate->aggcontexts[i] = aggstate->ss.ps.ps_ExprContext;
    3289             :     }
    3290             : 
    3291       43400 :     if (use_hashing)
    3292        5188 :         aggstate->hashcontext = CreateWorkExprContext(estate);
    3293             : 
    3294       43400 :     ExecAssignExprContext(estate, &aggstate->ss.ps);
    3295             : 
    3296             :     /*
    3297             :      * Initialize child nodes.
    3298             :      *
    3299             :      * If we are doing a hashed aggregation then the child plan does not need
    3300             :      * to handle REWIND efficiently; see ExecReScanAgg.
    3301             :      */
    3302       43400 :     if (node->aggstrategy == AGG_HASHED)
    3303        4992 :         eflags &= ~EXEC_FLAG_REWIND;
    3304       43400 :     outerPlan = outerPlan(node);
    3305       43400 :     outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags);
    3306             : 
    3307             :     /*
    3308             :      * initialize source tuple type.
    3309             :      */
    3310       43400 :     aggstate->ss.ps.outerops =
    3311       43400 :         ExecGetResultSlotOps(outerPlanState(&aggstate->ss),
    3312             :                              &aggstate->ss.ps.outeropsfixed);
    3313       43400 :     aggstate->ss.ps.outeropsset = true;
    3314             : 
    3315       43400 :     ExecCreateScanSlotFromOuterPlan(estate, &aggstate->ss,
    3316             :                                     aggstate->ss.ps.outerops);
    3317       43400 :     scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
    3318             : 
    3319             :     /*
    3320             :      * If there are more than two phases (including a potential dummy phase
    3321             :      * 0), input will be resorted using tuplesort. Need a slot for that.
    3322             :      */
    3323       43400 :     if (numPhases > 2)
    3324             :     {
    3325         186 :         aggstate->sort_slot = ExecInitExtraTupleSlot(estate, scanDesc,
    3326             :                                                      &TTSOpsMinimalTuple);
    3327             : 
    3328             :         /*
    3329             :          * The output of the tuplesort, and the output from the outer child
    3330             :          * might not use the same type of slot. In most cases the child will
    3331             :          * be a Sort, and thus return a TTSOpsMinimalTuple type slot - but the
    3332             :          * input can also be presorted due an index, in which case it could be
    3333             :          * a different type of slot.
    3334             :          *
    3335             :          * XXX: For efficiency it would be good to instead/additionally
    3336             :          * generate expressions with corresponding settings of outerops* for
    3337             :          * the individual phases - deforming is often a bottleneck for
    3338             :          * aggregations with lots of rows per group. If there's multiple
    3339             :          * sorts, we know that all but the first use TTSOpsMinimalTuple (via
    3340             :          * the nodeAgg.c internal tuplesort).
    3341             :          */
    3342         186 :         if (aggstate->ss.ps.outeropsfixed &&
    3343         186 :             aggstate->ss.ps.outerops != &TTSOpsMinimalTuple)
    3344          24 :             aggstate->ss.ps.outeropsfixed = false;
    3345             :     }
    3346             : 
    3347             :     /*
    3348             :      * Initialize result type, slot and projection.
    3349             :      */
    3350       43400 :     ExecInitResultTupleSlotTL(&aggstate->ss.ps, &TTSOpsVirtual);
    3351       43400 :     ExecAssignProjectionInfo(&aggstate->ss.ps, NULL);
    3352             : 
    3353             :     /*
    3354             :      * initialize child expressions
    3355             :      *
    3356             :      * We expect the parser to have checked that no aggs contain other agg
    3357             :      * calls in their arguments (and just to be sure, we verify it again while
    3358             :      * initializing the plan node).  This would make no sense under SQL
    3359             :      * semantics, and it's forbidden by the spec.  Because it is true, we
    3360             :      * don't need to worry about evaluating the aggs in any particular order.
    3361             :      *
    3362             :      * Note: execExpr.c finds Aggrefs for us, and adds them to aggstate->aggs.
    3363             :      * Aggrefs in the qual are found here; Aggrefs in the targetlist are found
    3364             :      * during ExecAssignProjectionInfo, above.
    3365             :      */
    3366       43400 :     aggstate->ss.ps.qual =
    3367       43400 :         ExecInitQual(node->plan.qual, (PlanState *) aggstate);
    3368             : 
    3369             :     /*
    3370             :      * We should now have found all Aggrefs in the targetlist and quals.
    3371             :      */
    3372       43400 :     numaggrefs = list_length(aggstate->aggs);
    3373       43400 :     max_aggno = -1;
    3374       43400 :     max_transno = -1;
    3375       92400 :     foreach(l, aggstate->aggs)
    3376             :     {
    3377       49000 :         Aggref     *aggref = (Aggref *) lfirst(l);
    3378             : 
    3379       49000 :         max_aggno = Max(max_aggno, aggref->aggno);
    3380       49000 :         max_transno = Max(max_transno, aggref->aggtransno);
    3381             :     }
    3382       43400 :     numaggs = max_aggno + 1;
    3383       43400 :     numtrans = max_transno + 1;
    3384             : 
    3385             :     /*
    3386             :      * For each phase, prepare grouping set data and fmgr lookup data for
    3387             :      * compare functions.  Accumulate all_grouped_cols in passing.
    3388             :      */
    3389       43400 :     aggstate->phases = palloc0(numPhases * sizeof(AggStatePerPhaseData));
    3390             : 
    3391       43400 :     aggstate->num_hashes = numHashes;
    3392       43400 :     if (numHashes)
    3393             :     {
    3394        5188 :         aggstate->perhash = palloc0(sizeof(AggStatePerHashData) * numHashes);
    3395        5188 :         aggstate->phases[0].numsets = 0;
    3396        5188 :         aggstate->phases[0].gset_lengths = palloc(numHashes * sizeof(int));
    3397        5188 :         aggstate->phases[0].grouped_cols = palloc(numHashes * sizeof(Bitmapset *));
    3398             :     }
    3399             : 
    3400       43400 :     phase = 0;
    3401       87618 :     for (phaseidx = 0; phaseidx <= list_length(node->chain); ++phaseidx)
    3402             :     {
    3403             :         Agg        *aggnode;
    3404             :         Sort       *sortnode;
    3405             : 
    3406       44218 :         if (phaseidx > 0)
    3407             :         {
    3408         818 :             aggnode = list_nth_node(Agg, node->chain, phaseidx - 1);
    3409         818 :             sortnode = castNode(Sort, outerPlan(aggnode));
    3410             :         }
    3411             :         else
    3412             :         {
    3413       43400 :             aggnode = node;
    3414       43400 :             sortnode = NULL;
    3415             :         }
    3416             : 
    3417             :         Assert(phase <= 1 || sortnode);
    3418             : 
    3419       44218 :         if (aggnode->aggstrategy == AGG_HASHED
    3420       38832 :             || aggnode->aggstrategy == AGG_MIXED)
    3421             :         {
    3422        5582 :             AggStatePerPhase phasedata = &aggstate->phases[0];
    3423             :             AggStatePerHash perhash;
    3424        5582 :             Bitmapset  *cols = NULL;
    3425             : 
    3426             :             Assert(phase == 0);
    3427        5582 :             i = phasedata->numsets++;
    3428        5582 :             perhash = &aggstate->perhash[i];
    3429             : 
    3430             :             /* phase 0 always points to the "real" Agg in the hash case */
    3431        5582 :             phasedata->aggnode = node;
    3432        5582 :             phasedata->aggstrategy = node->aggstrategy;
    3433             : 
    3434             :             /* but the actual Agg node representing this hash is saved here */
    3435        5582 :             perhash->aggnode = aggnode;
    3436             : 
    3437        5582 :             phasedata->gset_lengths[i] = perhash->numCols = aggnode->numCols;
    3438             : 
    3439       14192 :             for (j = 0; j < aggnode->numCols; ++j)
    3440        8610 :                 cols = bms_add_member(cols, aggnode->grpColIdx[j]);
    3441             : 
    3442        5582 :             phasedata->grouped_cols[i] = cols;
    3443             : 
    3444        5582 :             all_grouped_cols = bms_add_members(all_grouped_cols, cols);
    3445        5582 :             continue;
    3446             :         }
    3447             :         else
    3448             :         {
    3449       38636 :             AggStatePerPhase phasedata = &aggstate->phases[++phase];
    3450             :             int         num_sets;
    3451             : 
    3452       38636 :             phasedata->numsets = num_sets = list_length(aggnode->groupingSets);
    3453             : 
    3454       38636 :             if (num_sets)
    3455             :             {
    3456         862 :                 phasedata->gset_lengths = palloc(num_sets * sizeof(int));
    3457         862 :                 phasedata->grouped_cols = palloc(num_sets * sizeof(Bitmapset *));
    3458             : 
    3459         862 :                 i = 0;
    3460        2624 :                 foreach(l, aggnode->groupingSets)
    3461             :                 {
    3462        1762 :                     int         current_length = list_length(lfirst(l));
    3463        1762 :                     Bitmapset  *cols = NULL;
    3464             : 
    3465             :                     /* planner forces this to be correct */
    3466        3498 :                     for (j = 0; j < current_length; ++j)
    3467        1736 :                         cols = bms_add_member(cols, aggnode->grpColIdx[j]);
    3468             : 
    3469        1762 :                     phasedata->grouped_cols[i] = cols;
    3470        1762 :                     phasedata->gset_lengths[i] = current_length;
    3471             : 
    3472        1762 :                     ++i;
    3473             :                 }
    3474             : 
    3475         862 :                 all_grouped_cols = bms_add_members(all_grouped_cols,
    3476         862 :                                                    phasedata->grouped_cols[0]);
    3477             :             }
    3478             :             else
    3479             :             {
    3480             :                 Assert(phaseidx == 0);
    3481             : 
    3482       37774 :                 phasedata->gset_lengths = NULL;
    3483       37774 :                 phasedata->grouped_cols = NULL;
    3484             :             }
    3485             : 
    3486             :             /*
    3487             :              * If we are grouping, precompute fmgr lookup data for inner loop.
    3488             :              */
    3489       38636 :             if (aggnode->aggstrategy == AGG_SORTED)
    3490             :             {
    3491             :                 /*
    3492             :                  * Build a separate function for each subset of columns that
    3493             :                  * need to be compared.
    3494             :                  */
    3495        2210 :                 phasedata->eqfunctions =
    3496        2210 :                     (ExprState **) palloc0(aggnode->numCols * sizeof(ExprState *));
    3497             : 
    3498             :                 /* for each grouping set */
    3499        3730 :                 for (int k = 0; k < phasedata->numsets; k++)
    3500             :                 {
    3501        1520 :                     int         length = phasedata->gset_lengths[k];
    3502             : 
    3503             :                     /* nothing to do for empty grouping set */
    3504        1520 :                     if (length == 0)
    3505         326 :                         continue;
    3506             : 
    3507             :                     /* if we already had one of this length, it'll do */
    3508        1194 :                     if (phasedata->eqfunctions[length - 1] != NULL)
    3509         138 :                         continue;
    3510             : 
    3511        1056 :                     phasedata->eqfunctions[length - 1] =
    3512        1056 :                         execTuplesMatchPrepare(scanDesc,
    3513             :                                                length,
    3514        1056 :                                                aggnode->grpColIdx,
    3515        1056 :                                                aggnode->grpOperators,
    3516        1056 :                                                aggnode->grpCollations,
    3517             :                                                (PlanState *) aggstate);
    3518             :                 }
    3519             : 
    3520             :                 /* and for all grouped columns, unless already computed */
    3521        2210 :                 if (aggnode->numCols > 0 &&
    3522        2116 :                     phasedata->eqfunctions[aggnode->numCols - 1] == NULL)
    3523             :                 {
    3524        1424 :                     phasedata->eqfunctions[aggnode->numCols - 1] =
    3525        1424 :                         execTuplesMatchPrepare(scanDesc,
    3526             :                                                aggnode->numCols,
    3527        1424 :                                                aggnode->grpColIdx,
    3528        1424 :                                                aggnode->grpOperators,
    3529        1424 :                                                aggnode->grpCollations,
    3530             :                                                (PlanState *) aggstate);
    3531             :                 }
    3532             :             }
    3533             : 
    3534       38636 :             phasedata->aggnode = aggnode;
    3535       38636 :             phasedata->aggstrategy = aggnode->aggstrategy;
    3536       38636 :             phasedata->sortnode = sortnode;
    3537             :         }
    3538             :     }
    3539             : 
    3540             :     /*
    3541             :      * Convert all_grouped_cols to a descending-order list.
    3542             :      */
    3543       43400 :     i = -1;
    3544       52564 :     while ((i = bms_next_member(all_grouped_cols, i)) >= 0)
    3545        9164 :         aggstate->all_grouped_cols = lcons_int(i, aggstate->all_grouped_cols);
    3546             : 
    3547             :     /*
    3548             :      * Set up aggregate-result storage in the output expr context, and also
    3549             :      * allocate my private per-agg working storage
    3550             :      */
    3551       43400 :     econtext = aggstate->ss.ps.ps_ExprContext;
    3552       43400 :     econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs);
    3553       43400 :     econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs);
    3554             : 
    3555       43400 :     peraggs = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs);
    3556       43400 :     pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numtrans);
    3557             : 
    3558       43400 :     aggstate->peragg = peraggs;
    3559       43400 :     aggstate->pertrans = pertransstates;
    3560             : 
    3561             : 
    3562       43400 :     aggstate->all_pergroups =
    3563       43400 :         (AggStatePerGroup *) palloc0(sizeof(AggStatePerGroup)
    3564       43400 :                                      * (numGroupingSets + numHashes));
    3565       43400 :     pergroups = aggstate->all_pergroups;
    3566             : 
    3567       43400 :     if (node->aggstrategy != AGG_HASHED)
    3568             :     {
    3569       77644 :         for (i = 0; i < numGroupingSets; i++)
    3570             :         {
    3571       39236 :             pergroups[i] = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData)
    3572             :                                                       * numaggs);
    3573             :         }
    3574             : 
    3575       38408 :         aggstate->pergroups = pergroups;
    3576       38408 :         pergroups += numGroupingSets;
    3577             :     }
    3578             : 
    3579             :     /*
    3580             :      * Hashing can only appear in the initial phase.
    3581             :      */
    3582       43400 :     if (use_hashing)
    3583             :     {
    3584        5188 :         Plan       *outerplan = outerPlan(node);
    3585        5188 :         uint64      totalGroups = 0;
    3586             : 
    3587        5188 :         aggstate->hash_metacxt = AllocSetContextCreate(aggstate->ss.ps.state->es_query_cxt,
    3588             :                                                        "HashAgg meta context",
    3589             :                                                        ALLOCSET_DEFAULT_SIZES);
    3590        5188 :         aggstate->hash_spill_rslot = ExecInitExtraTupleSlot(estate, scanDesc,
    3591             :                                                             &TTSOpsMinimalTuple);
    3592        5188 :         aggstate->hash_spill_wslot = ExecInitExtraTupleSlot(estate, scanDesc,
    3593             :                                                             &TTSOpsVirtual);
    3594             : 
    3595             :         /* this is an array of pointers, not structures */
    3596        5188 :         aggstate->hash_pergroup = pergroups;
    3597             : 
    3598       10376 :         aggstate->hashentrysize = hash_agg_entry_size(aggstate->numtrans,
    3599        5188 :                                                       outerplan->plan_width,
    3600             :                                                       node->transitionSpace);
    3601             : 
    3602             :         /*
    3603             :          * Consider all of the grouping sets together when setting the limits
    3604             :          * and estimating the number of partitions. This can be inaccurate
    3605             :          * when there is more than one grouping set, but should still be
    3606             :          * reasonable.
    3607             :          */
    3608       10770 :         for (int k = 0; k < aggstate->num_hashes; k++)
    3609        5582 :             totalGroups += aggstate->perhash[k].aggnode->numGroups;
    3610             : 
    3611        5188 :         hash_agg_set_limits(aggstate->hashentrysize, totalGroups, 0,
    3612             :                             &aggstate->hash_mem_limit,
    3613             :                             &aggstate->hash_ngroups_limit,
    3614             :                             &aggstate->hash_planned_partitions);
    3615        5188 :         find_hash_columns(aggstate);
    3616             : 
    3617             :         /* Skip massive memory allocation if we are just doing EXPLAIN */
    3618        5188 :         if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
    3619        4062 :             build_hash_tables(aggstate);
    3620             : 
    3621        5188 :         aggstate->table_filled = false;
    3622             : 
    3623             :         /* Initialize this to 1, meaning nothing spilled, yet */
    3624        5188 :         aggstate->hash_batches_used = 1;
    3625             :     }
    3626             : 
    3627             :     /*
    3628             :      * Initialize current phase-dependent values to initial phase. The initial
    3629             :      * phase is 1 (first sort pass) for all strategies that use sorting (if
    3630             :      * hashing is being done too, then phase 0 is processed last); but if only
    3631             :      * hashing is being done, then phase 0 is all there is.
    3632             :      */
    3633       43400 :     if (node->aggstrategy == AGG_HASHED)
    3634             :     {
    3635        4992 :         aggstate->current_phase = 0;
    3636        4992 :         initialize_phase(aggstate, 0);
    3637        4992 :         select_current_set(aggstate, 0, true);
    3638             :     }
    3639             :     else
    3640             :     {
    3641       38408 :         aggstate->current_phase = 1;
    3642       38408 :         initialize_phase(aggstate, 1);
    3643       38408 :         select_current_set(aggstate, 0, false);
    3644             :     }
    3645             : 
    3646             :     /*
    3647             :      * Perform lookups of aggregate function info, and initialize the
    3648             :      * unchanging fields of the per-agg and per-trans data.
    3649             :      */
    3650       92394 :     foreach(l, aggstate->aggs)
    3651             :     {
    3652       49000 :         Aggref     *aggref = lfirst(l);
    3653             :         AggStatePerAgg peragg;
    3654             :         AggStatePerTrans pertrans;
    3655             :         Oid         aggTransFnInputTypes[FUNC_MAX_ARGS];
    3656             :         int         numAggTransFnArgs;
    3657             :         int         numDirectArgs;
    3658             :         HeapTuple   aggTuple;
    3659             :         Form_pg_aggregate aggform;
    3660             :         AclResult   aclresult;
    3661             :         Oid         finalfn_oid;
    3662             :         Oid         serialfn_oid,
    3663             :                     deserialfn_oid;
    3664             :         Oid         aggOwner;
    3665             :         Expr       *finalfnexpr;
    3666             :         Oid         aggtranstype;
    3667             : 
    3668             :         /* Planner should have assigned aggregate to correct level */
    3669             :         Assert(aggref->agglevelsup == 0);
    3670             :         /* ... and the split mode should match */
    3671             :         Assert(aggref->aggsplit == aggstate->aggsplit);
    3672             : 
    3673       49000 :         peragg = &peraggs[aggref->aggno];
    3674             : 
    3675             :         /* Check if we initialized the state for this aggregate already. */
    3676       49000 :         if (peragg->aggref != NULL)
    3677         448 :             continue;
    3678             : 
    3679       48552 :         peragg->aggref = aggref;
    3680       48552 :         peragg->transno = aggref->aggtransno;
    3681             : 
    3682             :         /* Fetch the pg_aggregate row */
    3683       48552 :         aggTuple = SearchSysCache1(AGGFNOID,
    3684             :                                    ObjectIdGetDatum(aggref->aggfnoid));
    3685       48552 :         if (!HeapTupleIsValid(aggTuple))
    3686           0 :             elog(ERROR, "cache lookup failed for aggregate %u",
    3687             :                  aggref->aggfnoid);
    3688       48552 :         aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
    3689             : 
    3690             :         /* Check permission to call aggregate function */
    3691       48552 :         aclresult = object_aclcheck(ProcedureRelationId, aggref->aggfnoid, GetUserId(),
    3692             :                                     ACL_EXECUTE);
    3693       48552 :         if (aclresult != ACLCHECK_OK)
    3694           6 :             aclcheck_error(aclresult, OBJECT_AGGREGATE,
    3695           6 :                            get_func_name(aggref->aggfnoid));
    3696       48546 :         InvokeFunctionExecuteHook(aggref->aggfnoid);
    3697             : 
    3698             :         /* planner recorded transition state type in the Aggref itself */
    3699       48546 :         aggtranstype = aggref->aggtranstype;
    3700             :         Assert(OidIsValid(aggtranstype));
    3701             : 
    3702             :         /* Final function only required if we're finalizing the aggregates */
    3703       48546 :         if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
    3704        4220 :             peragg->finalfn_oid = finalfn_oid = InvalidOid;
    3705             :         else
    3706       44326 :             peragg->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
    3707             : 
    3708       48546 :         serialfn_oid = InvalidOid;
    3709       48546 :         deserialfn_oid = InvalidOid;
    3710             : 
    3711             :         /*
    3712             :          * Check if serialization/deserialization is required.  We only do it
    3713             :          * for aggregates that have transtype INTERNAL.
    3714             :          */
    3715       48546 :         if (aggtranstype == INTERNALOID)
    3716             :         {
    3717             :             /*
    3718             :              * The planner should only have generated a serialize agg node if
    3719             :              * every aggregate with an INTERNAL state has a serialization
    3720             :              * function.  Verify that.
    3721             :              */
    3722       18194 :             if (DO_AGGSPLIT_SERIALIZE(aggstate->aggsplit))
    3723             :             {
    3724             :                 /* serialization only valid when not running finalfn */
    3725             :                 Assert(DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit));
    3726             : 
    3727         336 :                 if (!OidIsValid(aggform->aggserialfn))
    3728           0 :                     elog(ERROR, "serialfunc not provided for serialization aggregation");
    3729         336 :                 serialfn_oid = aggform->aggserialfn;
    3730             :             }
    3731             : 
    3732             :             /* Likewise for deserialization functions */
    3733       18194 :             if (DO_AGGSPLIT_DESERIALIZE(aggstate->aggsplit))
    3734             :             {
    3735             :                 /* deserialization only valid when combining states */
    3736             :                 Assert(DO_AGGSPLIT_COMBINE(aggstate->aggsplit));
    3737             : 
    3738         120 :                 if (!OidIsValid(aggform->aggdeserialfn))
    3739           0 :                     elog(ERROR, "deserialfunc not provided for deserialization aggregation");
    3740         120 :                 deserialfn_oid = aggform->aggdeserialfn;
    3741             :             }
    3742             :         }
    3743             : 
    3744             :         /* Check that aggregate owner has permission to call component fns */
    3745             :         {
    3746             :             HeapTuple   procTuple;
    3747             : 
    3748       48546 :             procTuple = SearchSysCache1(PROCOID,
    3749             :                                         ObjectIdGetDatum(aggref->aggfnoid));
    3750       48546 :             if (!HeapTupleIsValid(procTuple))
    3751           0 :                 elog(ERROR, "cache lookup failed for function %u",
    3752             :                      aggref->aggfnoid);
    3753       48546 :             aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
    3754       48546 :             ReleaseSysCache(procTuple);
    3755             : 
    3756       48546 :             if (OidIsValid(finalfn_oid))
    3757             :             {
    3758       19636 :                 aclresult = object_aclcheck(ProcedureRelationId, finalfn_oid, aggOwner,
    3759             :                                             ACL_EXECUTE);
    3760       19636 :                 if (aclresult != ACLCHECK_OK)
    3761           0 :                     aclcheck_error(aclresult, OBJECT_FUNCTION,
    3762           0 :                                    get_func_name(finalfn_oid));
    3763       19636 :                 InvokeFunctionExecuteHook(finalfn_oid);
    3764             :             }
    3765       48546 :             if (OidIsValid(serialfn_oid))
    3766             :             {
    3767         336 :                 aclresult = object_aclcheck(ProcedureRelationId, serialfn_oid, aggOwner,
    3768             :                                             ACL_EXECUTE);
    3769         336 :                 if (aclresult != ACLCHECK_OK)
    3770           0 :                     aclcheck_error(aclresult, OBJECT_FUNCTION,
    3771           0 :                                    get_func_name(serialfn_oid));
    3772         336 :                 InvokeFunctionExecuteHook(serialfn_oid);
    3773             :             }
    3774       48546 :             if (OidIsValid(deserialfn_oid))
    3775             :             {
    3776         120 :                 aclresult = object_aclcheck(ProcedureRelationId, deserialfn_oid, aggOwner,
    3777             :                                             ACL_EXECUTE);
    3778         120 :                 if (aclresult != ACLCHECK_OK)
    3779           0 :                     aclcheck_error(aclresult, OBJECT_FUNCTION,
    3780           0 :                                    get_func_name(deserialfn_oid));
    3781         120 :                 InvokeFunctionExecuteHook(deserialfn_oid);
    3782             :             }
    3783             :         }
    3784             : 
    3785             :         /*
    3786             :          * Get actual datatypes of the (nominal) aggregate inputs.  These
    3787             :          * could be different from the agg's declared input types, when the
    3788             :          * agg accepts ANY or a polymorphic type.
    3789             :          */
    3790       48546 :         numAggTransFnArgs = get_aggregate_argtypes(aggref,
    3791             :                                                    aggTransFnInputTypes);
    3792             : 
    3793             :         /* Count the "direct" arguments, if any */
    3794       48546 :         numDirectArgs = list_length(aggref->aggdirectargs);
    3795             : 
    3796             :         /* Detect how many arguments to pass to the finalfn */
    3797       48546 :         if (aggform->aggfinalextra)
    3798       13000 :             peragg->numFinalArgs = numAggTransFnArgs + 1;
    3799             :         else
    3800       35546 :             peragg->numFinalArgs = numDirectArgs + 1;
    3801             : 
    3802             :         /* Initialize any direct-argument expressions */
    3803       48546 :         peragg->aggdirectargs = ExecInitExprList(aggref->aggdirectargs,
    3804             :                                                  (PlanState *) aggstate);
    3805             : 
    3806             :         /*
    3807             :          * build expression trees using actual argument & result types for the
    3808             :          * finalfn, if it exists and is required.
    3809             :          */
    3810       48546 :         if (OidIsValid(finalfn_oid))
    3811             :         {
    3812       19636 :             build_aggregate_finalfn_expr(aggTransFnInputTypes,
    3813             :                                          peragg->numFinalArgs,
    3814             :                                          aggtranstype,
    3815             :                                          aggref->aggtype,
    3816             :                                          aggref->inputcollid,
    3817             :                                          finalfn_oid,
    3818             :                                          &finalfnexpr);
    3819       19636 :             fmgr_info(finalfn_oid, &peragg->finalfn);
    3820       19636 :             fmgr_info_set_expr((Node *) finalfnexpr, &peragg->finalfn);
    3821             :         }
    3822             : 
    3823             :         /* get info about the output value's datatype */
    3824       48546 :         get_typlenbyval(aggref->aggtype,
    3825             :                         &peragg->resulttypeLen,
    3826             :                         &peragg->resulttypeByVal);
    3827             : 
    3828             :         /*
    3829             :          * Build working state for invoking the transition function, if we
    3830             :          * haven't done it already.
    3831             :          */
    3832       48546 :         pertrans = &pertransstates[aggref->aggtransno];
    3833       48546 :         if (pertrans->aggref == NULL)
    3834             :         {
    3835             :             Datum       textInitVal;
    3836             :             Datum       initValue;
    3837             :             bool        initValueIsNull;
    3838             :             Oid         transfn_oid;
    3839             : 
    3840             :             /*
    3841             :              * If this aggregation is performing state combines, then instead
    3842             :              * of using the transition function, we'll use the combine
    3843             :              * function.
    3844             :              */
    3845       48288 :             if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
    3846             :             {
    3847        1340 :                 transfn_oid = aggform->aggcombinefn;
    3848             : 
    3849             :                 /* If not set then the planner messed up */
    3850        1340 :                 if (!OidIsValid(transfn_oid))
    3851           0 :                     elog(ERROR, "combinefn not set for aggregate function");
    3852             :             }
    3853             :             else
    3854       46948 :                 transfn_oid = aggform->aggtransfn;
    3855             : 
    3856       48288 :             aclresult = object_aclcheck(ProcedureRelationId, transfn_oid, aggOwner, ACL_EXECUTE);
    3857       48288 :             if (aclresult != ACLCHECK_OK)
    3858           0 :                 aclcheck_error(aclresult, OBJECT_FUNCTION,
    3859           0 :                                get_func_name(transfn_oid));
    3860       48288 :             InvokeFunctionExecuteHook(transfn_oid);
    3861             : 
    3862             :             /*
    3863             :              * initval is potentially null, so don't try to access it as a
    3864             :              * struct field. Must do it the hard way with SysCacheGetAttr.
    3865             :              */
    3866       48288 :             textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
    3867             :                                           Anum_pg_aggregate_agginitval,
    3868             :                                           &initValueIsNull);
    3869       48288 :             if (initValueIsNull)
    3870       26252 :                 initValue = (Datum) 0;
    3871             :             else
    3872       22036 :                 initValue = GetAggInitVal(textInitVal, aggtranstype);
    3873             : 
    3874       48288 :             if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
    3875             :             {
    3876        1340 :                 Oid         combineFnInputTypes[] = {aggtranstype,
    3877             :                 aggtranstype};
    3878             : 
    3879             :                 /*
    3880             :                  * When combining there's only one input, the to-be-combined
    3881             :                  * transition value.  The transition value is not counted
    3882             :                  * here.
    3883             :                  */
    3884        1340 :                 pertrans->numTransInputs = 1;
    3885             : 
    3886             :                 /* aggcombinefn always has two arguments of aggtranstype */
    3887        1340 :                 build_pertrans_for_aggref(pertrans, aggstate, estate,
    3888             :                                           aggref, transfn_oid, aggtranstype,
    3889             :                                           serialfn_oid, deserialfn_oid,
    3890             :                                           initValue, initValueIsNull,
    3891             :                                           combineFnInputTypes, 2);
    3892             : 
    3893             :                 /*
    3894             :                  * Ensure that a combine function to combine INTERNAL states
    3895             :                  * is not strict. This should have been checked during CREATE
    3896             :                  * AGGREGATE, but the strict property could have been changed
    3897             :                  * since then.
    3898             :                  */
    3899        1340 :                 if (pertrans->transfn.fn_strict && aggtranstype == INTERNALOID)
    3900           0 :                     ereport(ERROR,
    3901             :                             (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
    3902             :                              errmsg("combine function with transition type %s must not be declared STRICT",
    3903             :                                     format_type_be(aggtranstype))));
    3904             :             }
    3905             :             else
    3906             :             {
    3907             :                 /* Detect how many arguments to pass to the transfn */
    3908       46948 :                 if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
    3909         252 :                     pertrans->numTransInputs = list_length(aggref->args);
    3910             :                 else
    3911       46696 :                     pertrans->numTransInputs = numAggTransFnArgs;
    3912             : 
    3913       46948 :                 build_pertrans_for_aggref(pertrans, aggstate, estate,
    3914             :                                           aggref, transfn_oid, aggtranstype,
    3915             :                                           serialfn_oid, deserialfn_oid,
    3916             :                                           initValue, initValueIsNull,
    3917             :                                           aggTransFnInputTypes,
    3918             :                                           numAggTransFnArgs);
    3919             : 
    3920             :                 /*
    3921             :                  * If the transfn is strict and the initval is NULL, make sure
    3922             :                  * input type and transtype are the same (or at least
    3923             :                  * binary-compatible), so that it's OK to use the first
    3924             :                  * aggregated input value as the initial transValue.  This
    3925             :                  * should have been checked at agg definition time, but we
    3926             :                  * must check again in case the transfn's strictness property
    3927             :                  * has been changed.
    3928             :                  */
    3929       46948 :                 if (pertrans->transfn.fn_strict && pertrans->initValueIsNull)
    3930             :                 {
    3931        4860 :                     if (numAggTransFnArgs <= numDirectArgs ||
    3932        4860 :                         !IsBinaryCoercible(aggTransFnInputTypes[numDirectArgs],
    3933             :                                            aggtranstype))
    3934           0 :                         ereport(ERROR,
    3935             :                                 (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
    3936             :                                  errmsg("aggregate %u needs to have compatible input type and transition type",
    3937             :                                         aggref->aggfnoid)));
    3938             :                 }
    3939             :             }
    3940             :         }
    3941             :         else
    3942         258 :             pertrans->aggshared = true;
    3943       48546 :         ReleaseSysCache(aggTuple);
    3944             :     }
    3945             : 
    3946             :     /*
    3947             :      * Update aggstate->numaggs to be the number of unique aggregates found.
    3948             :      * Also set numstates to the number of unique transition states found.
    3949             :      */
    3950       43394 :     aggstate->numaggs = numaggs;
    3951       43394 :     aggstate->numtrans = numtrans;
    3952             : 
    3953             :     /*
    3954             :      * Last, check whether any more aggregates got added onto the node while
    3955             :      * we processed the expressions for the aggregate arguments (including not
    3956             :      * only the regular arguments and FILTER expressions handled immediately
    3957             :      * above, but any direct arguments we might've handled earlier).  If so,
    3958             :      * we have nested aggregate functions, which is semantically nonsensical,
    3959             :      * so complain.  (This should have been caught by the parser, so we don't
    3960             :      * need to work hard on a helpful error message; but we defend against it
    3961             :      * here anyway, just to be sure.)
    3962             :      */
    3963       43394 :     if (numaggrefs != list_length(aggstate->aggs))
    3964           0 :         ereport(ERROR,
    3965             :                 (errcode(ERRCODE_GROUPING_ERROR),
    3966             :                  errmsg("aggregate function calls cannot be nested")));
    3967             : 
    3968             :     /*
    3969             :      * Build expressions doing all the transition work at once. We build a
    3970             :      * different one for each phase, as the number of transition function
    3971             :      * invocation can differ between phases. Note this'll work both for
    3972             :      * transition and combination functions (although there'll only be one
    3973             :      * phase in the latter case).
    3974             :      */
    3975      125418 :     for (phaseidx = 0; phaseidx < aggstate->numphases; phaseidx++)
    3976             :     {
    3977       82024 :         AggStatePerPhase phase = &aggstate->phases[phaseidx];
    3978       82024 :         bool        dohash = false;
    3979       82024 :         bool        dosort = false;
    3980             : 
    3981             :         /* phase 0 doesn't necessarily exist */
    3982       82024 :         if (!phase->aggnode)
    3983       38206 :             continue;
    3984             : 
    3985       43818 :         if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 1)
    3986             :         {
    3987             :             /*
    3988             :              * Phase one, and only phase one, in a mixed agg performs both
    3989             :              * sorting and aggregation.
    3990             :              */
    3991         196 :             dohash = true;
    3992         196 :             dosort = true;
    3993             :         }
    3994       43622 :         else if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 0)
    3995             :         {
    3996             :             /*
    3997             :              * No need to compute a transition function for an AGG_MIXED phase
    3998             :              * 0 - the contents of the hashtables will have been computed
    3999             :              * during phase 1.
    4000             :              */
    4001         196 :             continue;
    4002             :         }
    4003       43426 :         else if (phase->aggstrategy == AGG_PLAIN ||
    4004        7140 :                  phase->aggstrategy == AGG_SORTED)
    4005             :         {
    4006       38434 :             dohash = false;
    4007       38434 :             dosort = true;
    4008             :         }
    4009        4992 :         else if (phase->aggstrategy == AGG_HASHED)
    4010             :         {
    4011        4992 :             dohash = true;
    4012        4992 :             dosort = false;
    4013             :         }
    4014             :         else
    4015             :             Assert(false);
    4016             : 
    4017       43622 :         phase->evaltrans = ExecBuildAggTrans(aggstate, phase, dosort, dohash,
    4018             :                                              false);
    4019             : 
    4020             :         /* cache compiled expression for outer slot without NULL check */
    4021       43622 :         phase->evaltrans_cache[0][0] = phase->evaltrans;
    4022             :     }
    4023             : 
    4024       43394 :     return aggstate;
    4025             : }
    4026             : 
    4027             : /*
    4028             :  * Build the state needed to calculate a state value for an aggregate.
    4029             :  *
    4030             :  * This initializes all the fields in 'pertrans'. 'aggref' is the aggregate
    4031             :  * to initialize the state for. 'transfn_oid', 'aggtranstype', and the rest
    4032             :  * of the arguments could be calculated from 'aggref', but the caller has
    4033             :  * calculated them already, so might as well pass them.
    4034             :  *
    4035             :  * 'transfn_oid' may be either the Oid of the aggtransfn or the aggcombinefn.
    4036             :  */
    4037             : static void
    4038       48288 : build_pertrans_for_aggref(AggStatePerTrans pertrans,
    4039             :                           AggState *aggstate, EState *estate,
    4040             :                           Aggref *aggref,
    4041             :                           Oid transfn_oid, Oid aggtranstype,
    4042             :                           Oid aggserialfn, Oid aggdeserialfn,
    4043             :                           Datum initValue, bool initValueIsNull,
    4044             :                           Oid *inputTypes, int numArguments)
    4045             : {
    4046       48288 :     int         numGroupingSets = Max(aggstate->maxsets, 1);
    4047             :     Expr       *transfnexpr;
    4048             :     int         numTransArgs;
    4049       48288 :     Expr       *serialfnexpr = NULL;
    4050       48288 :     Expr       *deserialfnexpr = NULL;
    4051             :     ListCell   *lc;
    4052             :     int         numInputs;
    4053             :     int         numDirectArgs;
    4054             :     List       *sortlist;
    4055             :     int         numSortCols;
    4056             :     int         numDistinctCols;
    4057             :     int         i;
    4058             : 
    4059             :     /* Begin filling in the pertrans data */
    4060       48288 :     pertrans->aggref = aggref;
    4061       48288 :     pertrans->aggshared = false;
    4062       48288 :     pertrans->aggCollation = aggref->inputcollid;
    4063       48288 :     pertrans->transfn_oid = transfn_oid;
    4064       48288 :     pertrans->serialfn_oid = aggserialfn;
    4065       48288 :     pertrans->deserialfn_oid = aggdeserialfn;
    4066       48288 :     pertrans->initValue = initValue;
    4067       48288 :     pertrans->initValueIsNull = initValueIsNull;
    4068             : 
    4069             :     /* Count the "direct" arguments, if any */
    4070       48288 :     numDirectArgs = list_length(aggref->aggdirectargs);
    4071             : 
    4072             :     /* Count the number of aggregated input columns */
    4073       48288 :     pertrans->numInputs = numInputs = list_length(aggref->args);
    4074             : 
    4075       48288 :     pertrans->aggtranstype = aggtranstype;
    4076             : 
    4077             :     /* account for the current transition state */
    4078       48288 :     numTransArgs = pertrans->numTransInputs + 1;
    4079             : 
    4080             :     /*
    4081             :      * Set up infrastructure for calling the transfn.  Note that invtransfn is
    4082             :      * not needed here.
    4083             :      */
    4084       48288 :     build_aggregate_transfn_expr(inputTypes,
    4085             :                                  numArguments,
    4086             :                                  numDirectArgs,
    4087       48288 :                                  aggref->aggvariadic,
    4088             :                                  aggtranstype,
    4089             :                                  aggref->inputcollid,
    4090             :                                  transfn_oid,
    4091             :                                  InvalidOid,
    4092             :                                  &transfnexpr,
    4093             :                                  NULL);
    4094             : 
    4095       48288 :     fmgr_info(transfn_oid, &pertrans->transfn);
    4096       48288 :     fmgr_info_set_expr((Node *) transfnexpr, &pertrans->transfn);
    4097             : 
    4098       48288 :     pertrans->transfn_fcinfo =
    4099       48288 :         (FunctionCallInfo) palloc(SizeForFunctionCallInfo(numTransArgs));
    4100       48288 :     InitFunctionCallInfoData(*pertrans->transfn_fcinfo,
    4101             :                              &pertrans->transfn,
    4102             :                              numTransArgs,
    4103             :                              pertrans->aggCollation,
    4104             :                              (void *) aggstate, NULL);
    4105             : 
    4106             :     /* get info about the state value's datatype */
    4107       48288 :     get_typlenbyval(aggtranstype,
    4108             :                     &pertrans->transtypeLen,
    4109             :                     &pertrans->transtypeByVal);
    4110             : 
    4111       48288 :     if (OidIsValid(aggserialfn))
    4112             :     {
    4113         336 :         build_aggregate_serialfn_expr(aggserialfn,
    4114             :                                       &serialfnexpr);
    4115         336 :         fmgr_info(aggserialfn, &pertrans->serialfn);
    4116         336 :         fmgr_info_set_expr((Node *) serialfnexpr, &pertrans->serialfn);
    4117             : 
    4118         336 :         pertrans->serialfn_fcinfo =
    4119         336 :             (FunctionCallInfo) palloc(SizeForFunctionCallInfo(1));
    4120         336 :         InitFunctionCallInfoData(*pertrans->serialfn_fcinfo,
    4121             :                                  &pertrans->serialfn,
    4122             :                                  1,
    4123             :                                  InvalidOid,
    4124             :                                  (void *) aggstate, NULL);
    4125             :     }
    4126             : 
    4127       48288 :     if (OidIsValid(aggdeserialfn))
    4128             :     {
    4129         120 :         build_aggregate_deserialfn_expr(aggdeserialfn,
    4130             :                                         &deserialfnexpr);
    4131         120 :         fmgr_info(aggdeserialfn, &pertrans->deserialfn);
    4132         120 :         fmgr_info_set_expr((Node *) deserialfnexpr, &pertrans->deserialfn);
    4133             : 
    4134         120 :         pertrans->deserialfn_fcinfo =
    4135         120 :             (FunctionCallInfo) palloc(SizeForFunctionCallInfo(2));
    4136         120 :         InitFunctionCallInfoData(*pertrans->deserialfn_fcinfo,
    4137             :                                  &pertrans->deserialfn,
    4138             :                                  2,
    4139             :                                  InvalidOid,
    4140             :                                  (void *) aggstate, NULL);
    4141             :     }
    4142             : 
    4143             :     /*
    4144             :      * If we're doing either DISTINCT or ORDER BY for a plain agg, then we
    4145             :      * have a list of SortGroupClause nodes; fish out the data in them and
    4146             :      * stick them into arrays.  We ignore ORDER BY for an ordered-set agg,
    4147             :      * however; the agg's transfn and finalfn are responsible for that.
    4148             :      *
    4149             :      * When the planner has set the aggpresorted flag, the input to the
    4150             :      * aggregate is already correctly sorted.  For ORDER BY aggregates we can
    4151             :      * simply treat these as normal aggregates.  For presorted DISTINCT
    4152             :      * aggregates an extra step must be added to remove duplicate consecutive
    4153             :      * inputs.
    4154             :      *
    4155             :      * Note that by construction, if there is a DISTINCT clause then the ORDER
    4156             :      * BY clause is a prefix of it (see transformDistinctClause).
    4157             :      */
    4158       48288 :     if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
    4159             :     {
    4160         252 :         sortlist = NIL;
    4161         252 :         numSortCols = numDistinctCols = 0;
    4162         252 :         pertrans->aggsortrequired = false;
    4163             :     }
    4164       48036 :     else if (aggref->aggpresorted && aggref->aggdistinct == NIL)
    4165             :     {
    4166        1534 :         sortlist = NIL;
    4167        1534 :         numSortCols = numDistinctCols = 0;
    4168        1534 :         pertrans->aggsortrequired = false;
    4169             :     }
    4170       46502 :     else if (aggref->aggdistinct)
    4171             :     {
    4172         558 :         sortlist = aggref->aggdistinct;
    4173         558 :         numSortCols = numDistinctCols = list_length(sortlist);
    4174             :         Assert(numSortCols >= list_length(aggref->aggorder));
    4175         558 :         pertrans->aggsortrequired = !aggref->aggpresorted;
    4176             :     }
    4177             :     else
    4178             :     {
    4179       45944 :         sortlist = aggref->aggorder;
    4180       45944 :         numSortCols = list_length(sortlist);
    4181       45944 :         numDistinctCols = 0;
    4182       45944 :         pertrans->aggsortrequired = (numSortCols > 0);
    4183             :     }
    4184             : 
    4185       48288 :     pertrans->numSortCols = numSortCols;
    4186       48288 :     pertrans->numDistinctCols = numDistinctCols;
    4187             : 
    4188             :     /*
    4189             :      * If we have either sorting or filtering to do, create a tupledesc and
    4190             :      * slot corresponding to the aggregated inputs (including sort
    4191             :      * expressions) of the agg.
    4192             :      */
    4193       48288 :     if (numSortCols > 0 || aggref->aggfilter)
    4194             :     {
    4195        1392 :         pertrans->sortdesc = ExecTypeFromTL(aggref->args);
    4196        1392 :         pertrans->sortslot =
    4197        1392 :             ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
    4198             :                                    &TTSOpsMinimalTuple);
    4199             :     }
    4200             : 
    4201       48288 :     if (numSortCols > 0)
    4202             :     {
    4203             :         /*
    4204             :          * We don't implement DISTINCT or ORDER BY aggs in the HASHED case
    4205             :          * (yet)
    4206             :          */
    4207             :         Assert(aggstate->aggstrategy != AGG_HASHED && aggstate->aggstrategy != AGG_MIXED);
    4208             : 
    4209             :         /* ORDER BY aggregates are not supported with partial aggregation */
    4210             :         Assert(!DO_AGGSPLIT_COMBINE(aggstate->aggsplit));
    4211             : 
    4212             :         /* If we have only one input, we need its len/byval info. */
    4213         684 :         if (numInputs == 1)
    4214             :         {
    4215         558 :             get_typlenbyval(inputTypes[numDirectArgs],
    4216             :                             &pertrans->inputtypeLen,
    4217             :                             &pertrans->inputtypeByVal);
    4218             :         }
    4219         126 :         else if (numDistinctCols > 0)
    4220             :         {
    4221             :             /* we will need an extra slot to store prior values */
    4222          96 :             pertrans->uniqslot =
    4223          96 :                 ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
    4224             :                                        &TTSOpsMinimalTuple);
    4225             :         }
    4226             : 
    4227             :         /* Extract the sort information for use later */
    4228         684 :         pertrans->sortColIdx =
    4229         684 :             (AttrNumber *) palloc(numSortCols * sizeof(AttrNumber));
    4230         684 :         pertrans->sortOperators =
    4231         684 :             (Oid *) palloc(numSortCols * sizeof(Oid));
    4232         684 :         pertrans->sortCollations =
    4233         684 :             (Oid *) palloc(numSortCols * sizeof(Oid));
    4234         684 :         pertrans->sortNullsFirst =
    4235         684 :             (bool *) palloc(numSortCols * sizeof(bool));
    4236             : 
    4237         684 :         i = 0;
    4238        1554 :         foreach(lc, sortlist)
    4239             :         {
    4240         870 :             SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
    4241         870 :             TargetEntry *tle = get_sortgroupclause_tle(sortcl, aggref->args);
    4242             : 
    4243             :             /* the parser should have made sure of this */
    4244             :             Assert(OidIsValid(sortcl->sortop));
    4245             : 
    4246         870 :             pertrans->sortColIdx[i] = tle->resno;
    4247         870 :             pertrans->sortOperators[i] = sortcl->sortop;
    4248         870 :             pertrans->sortCollations[i] = exprCollation((Node *) tle->expr);
    4249         870 :             pertrans->sortNullsFirst[i] = sortcl->nulls_first;
    4250         870 :             i++;
    4251             :         }
    4252             :         Assert(i == numSortCols);
    4253             :     }
    4254             : 
    4255       48288 :     if (aggref->aggdistinct)
    4256             :     {
    4257             :         Oid        *ops;
    4258             : 
    4259             :         Assert(numArguments > 0);
    4260             :         Assert(list_length(aggref->aggdistinct) == numDistinctCols);
    4261             : 
    4262         558 :         ops = palloc(numDistinctCols * sizeof(Oid));
    4263             : 
    4264         558 :         i = 0;
    4265        1284 :         foreach(lc, aggref->aggdistinct)
    4266         726 :             ops[i++] = ((SortGroupClause *) lfirst(lc))->eqop;
    4267             : 
    4268             :         /* lookup / build the necessary comparators */
    4269         558 :         if (numDistinctCols == 1)
    4270         462 :             fmgr_info(get_opcode(ops[0]), &pertrans->equalfnOne);
    4271             :         else
    4272          96 :             pertrans->equalfnMulti =
    4273          96 :                 execTuplesMatchPrepare(pertrans->sortdesc,
    4274             :                                        numDistinctCols,
    4275          96 :                                        pertrans->sortColIdx,
    4276             :                                        ops,
    4277          96 :                                        pertrans->sortCollations,
    4278             :                                        &aggstate->ss.ps);
    4279         558 :         pfree(ops);
    4280             :     }
    4281             : 
    4282       48288 :     pertrans->sortstates = (Tuplesortstate **)
    4283       48288 :         palloc0(sizeof(Tuplesortstate *) * numGroupingSets);
    4284       48288 : }
    4285             : 
    4286             : 
    4287             : static Datum
    4288       22036 : GetAggInitVal(Datum textInitVal, Oid transtype)
    4289             : {
    4290             :     Oid         typinput,
    4291             :                 typioparam;
    4292             :     char       *strInitVal;
    4293             :     Datum       initVal;
    4294             : 
    4295       22036 :     getTypeInputInfo(transtype, &typinput, &typioparam);
    4296       22036 :     strInitVal = TextDatumGetCString(textInitVal);
    4297       22036 :     initVal = OidInputFunctionCall(typinput, strInitVal,
    4298             :                                    typioparam, -1);
    4299       22036 :     pfree(strInitVal);
    4300       22036 :     return initVal;
    4301             : }
    4302             : 
    4303             : void
    4304       43274 : ExecEndAgg(AggState *node)
    4305             : {
    4306             :     PlanState  *outerPlan;
    4307             :     int         transno;
    4308       43274 :     int         numGroupingSets = Max(node->maxsets, 1);
    4309             :     int         setno;
    4310             : 
    4311             :     /*
    4312             :      * When ending a parallel worker, copy the statistics gathered by the
    4313             :      * worker back into shared memory so that it can be picked up by the main
    4314             :      * process to report in EXPLAIN ANALYZE.
    4315             :      */
    4316       43274 :     if (node->shared_info && IsParallelWorker())
    4317             :     {
    4318             :         AggregateInstrumentation *si;
    4319             : 
    4320             :         Assert(ParallelWorkerNumber <= node->shared_info->num_workers);
    4321         168 :         si = &node->shared_info->sinstrument[ParallelWorkerNumber];
    4322         168 :         si->hash_batches_used = node->hash_batches_used;
    4323         168 :         si->hash_disk_used = node->hash_disk_used;
    4324         168 :         si->hash_mem_peak = node->hash_mem_peak;
    4325             :     }
    4326             : 
    4327             :     /* Make sure we have closed any open tuplesorts */
    4328             : 
    4329       43274 :     if (node->sort_in)
    4330         144 :         tuplesort_end(node->sort_in);
    4331       43274 :     if (node->sort_out)
    4332          42 :         tuplesort_end(node->sort_out);
    4333             : 
    4334       43274 :     hashagg_reset_spill_state(node);
    4335             : 
    4336       43274 :     if (node->hash_metacxt != NULL)
    4337             :     {
    4338        5180 :         MemoryContextDelete(node->hash_metacxt);
    4339        5180 :         node->hash_metacxt = NULL;
    4340             :     }
    4341             : 
    4342       91438 :     for (transno = 0; transno < node->numtrans; transno++)
    4343             :     {
    4344       48164 :         AggStatePerTrans pertrans = &node->pertrans[transno];
    4345             : 
    4346       97330 :         for (setno = 0; setno < numGroupingSets; setno++)
    4347             :         {
    4348       49166 :             if (pertrans->sortstates[setno])
    4349           0 :                 tuplesort_end(pertrans->sortstates[setno]);
    4350             :         }
    4351             :     }
    4352             : 
    4353             :     /* And ensure any agg shutdown callbacks have been called */
    4354       87376 :     for (setno = 0; setno < numGroupingSets; setno++)
    4355       44102 :         ReScanExprContext(node->aggcontexts[setno]);
    4356       43274 :     if (node->hashcontext)
    4357        5180 :         ReScanExprContext(node->hashcontext);
    4358             : 
    4359       43274 :     outerPlan = outerPlanState(node);
    4360       43274 :     ExecEndNode(outerPlan);
    4361       43274 : }
    4362             : 
    4363             : void
    4364       46866 : ExecReScanAgg(AggState *node)
    4365             : {
    4366       46866 :     ExprContext *econtext = node->ss.ps.ps_ExprContext;
    4367       46866 :     PlanState  *outerPlan = outerPlanState(node);
    4368       46866 :     Agg        *aggnode = (Agg *) node->ss.ps.plan;
    4369             :     int         transno;
    4370       46866 :     int         numGroupingSets = Max(node->maxsets, 1);
    4371             :     int         setno;
    4372             : 
    4373       46866 :     node->agg_done = false;
    4374             : 
    4375       46866 :     if (node->aggstrategy == AGG_HASHED)
    4376             :     {
    4377             :         /*
    4378             :          * In the hashed case, if we haven't yet built the hash table then we
    4379             :          * can just return; nothing done yet, so nothing to undo. If subnode's
    4380             :          * chgParam is not NULL then it will be re-scanned by ExecProcNode,
    4381             :          * else no reason to re-scan it at all.
    4382             :          */
    4383       10712 :         if (!node->table_filled)
    4384         114 :             return;
    4385             : 
    4386             :         /*
    4387             :          * If we do have the hash table, and it never spilled, and the subplan
    4388             :          * does not have any parameter changes, and none of our own parameter
    4389             :          * changes affect input expressions of the aggregated functions, then
    4390             :          * we can just rescan the existing hash table; no need to build it
    4391             :          * again.
    4392             :          */
    4393       10598 :         if (outerPlan->chgParam == NULL && !node->hash_ever_spilled &&
    4394         898 :             !bms_overlap(node->ss.ps.chgParam, aggnode->aggParams))
    4395             :         {
    4396         874 :             ResetTupleHashIterator(node->perhash[0].hashtable,
    4397             :                                    &node->perhash[0].hashiter);
    4398         874 :             select_current_set(node, 0, true);
    4399         874 :             return;
    4400             :         }
    4401             :     }
    4402             : 
    4403             :     /* Make sure we have closed any open tuplesorts */
    4404      109140 :     for (transno = 0; transno < node->numtrans; transno++)
    4405             :     {
    4406      126560 :         for (setno = 0; setno < numGroupingSets; setno++)
    4407             :         {
    4408       63298 :             AggStatePerTrans pertrans = &node->pertrans[transno];
    4409             : 
    4410       63298 :             if (pertrans->sortstates[setno])
    4411             :             {
    4412           0 :                 tuplesort_end(pertrans->sortstates[setno]);
    4413           0 :                 pertrans->sortstates[setno] = NULL;
    4414             :             }
    4415             :         }
    4416             :     }
    4417             : 
    4418             :     /*
    4419             :      * We don't need to ReScanExprContext the output tuple context here;
    4420             :      * ExecReScan already did it. But we do need to reset our per-grouping-set
    4421             :      * contexts, which may have transvalues stored in them. (We use rescan
    4422             :      * rather than just reset because transfns may have registered callbacks
    4423             :      * that need to be run now.) For the AGG_HASHED case, see below.
    4424             :      */
    4425             : 
    4426       91792 :     for (setno = 0; setno < numGroupingSets; setno++)
    4427             :     {
    4428       45914 :         ReScanExprContext(node->aggcontexts[setno]);
    4429             :     }
    4430             : 
    4431             :     /* Release first tuple of group, if we have made a copy */
    4432       45878 :     if (node->grp_firstTuple != NULL)
    4433             :     {
    4434           0 :         heap_freetuple(node->grp_firstTuple);
    4435           0 :         node->grp_firstTuple = NULL;
    4436             :     }
    4437       45878 :     ExecClearTuple(node->ss.ss_ScanTupleSlot);
    4438             : 
    4439             :     /* Forget current agg values */
    4440      109140 :     MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs);
    4441       45878 :     MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs);
    4442             : 
    4443             :     /*
    4444             :      * With AGG_HASHED/MIXED, the hash table is allocated in a sub-context of
    4445             :      * the hashcontext. This used to be an issue, but now, resetting a context
    4446             :      * automatically deletes sub-contexts too.
    4447             :      */
    4448       45878 :     if (node->aggstrategy == AGG_HASHED || node->aggstrategy == AGG_MIXED)
    4449             :     {
    4450        9754 :         hashagg_reset_spill_state(node);
    4451             : 
    4452        9754 :         node->hash_ever_spilled = false;
    4453        9754 :         node->hash_spill_mode = false;
    4454        9754 :         node->hash_ngroups_current = 0;
    4455             : 
    4456        9754 :         ReScanExprContext(node->hashcontext);
    4457             :         /* Rebuild an empty hash table */
    4458        9754 :         build_hash_tables(node);
    4459        9754 :         node->table_filled = false;
    4460             :         /* iterator will be reset when the table is filled */
    4461             : 
    4462        9754 :         hashagg_recompile_expressions(node, false, false);
    4463             :     }
    4464             : 
    4465       45878 :     if (node->aggstrategy != AGG_HASHED)
    4466             :     {
    4467             :         /*
    4468             :          * Reset the per-group state (in particular, mark transvalues null)
    4469             :          */
    4470       72344 :         for (setno = 0; setno < numGroupingSets; setno++)
    4471             :         {
    4472      162690 :             MemSet(node->pergroups[setno], 0,
    4473             :                    sizeof(AggStatePerGroupData) * node->numaggs);
    4474             :         }
    4475             : 
    4476             :         /* reset to phase 1 */
    4477       36154 :         initialize_phase(node, 1);
    4478             : 
    4479       36154 :         node->input_done = false;
    4480       36154 :         node->projected_set = -1;
    4481             :     }
    4482             : 
    4483       45878 :     if (outerPlan->chgParam == NULL)
    4484         152 :         ExecReScan(outerPlan);
    4485             : }
    4486             : 
    4487             : 
    4488             : /***********************************************************************
    4489             :  * API exposed to aggregate functions
    4490             :  ***********************************************************************/
    4491             : 
    4492             : 
    4493             : /*
    4494             :  * AggCheckCallContext - test if a SQL function is being called as an aggregate
    4495             :  *
    4496             :  * The transition and/or final functions of an aggregate may want to verify
    4497             :  * that they are being called as aggregates, rather than as plain SQL
    4498             :  * functions.  They should use this function to do so.  The return value
    4499             :  * is nonzero if being called as an aggregate, or zero if not.  (Specific
    4500             :  * nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more
    4501             :  * values could conceivably appear in future.)
    4502             :  *
    4503             :  * If aggcontext isn't NULL, the function also stores at *aggcontext the
    4504             :  * identity of the memory context that aggregate transition values are being
    4505             :  * stored in.  Note that the same aggregate call site (flinfo) may be called
    4506             :  * interleaved on different transition values in different contexts, so it's
    4507             :  * not kosher to cache aggcontext under fn_extra.  It is, however, kosher to
    4508             :  * cache it in the transvalue itself (for internal-type transvalues).
    4509             :  */
    4510             : int
    4511     4477764 : AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
    4512             : {
    4513     4477764 :     if (fcinfo->context && IsA(fcinfo->context, AggState))
    4514             :     {
    4515     4466384 :         if (aggcontext)
    4516             :         {
    4517     1848652 :             AggState   *aggstate = ((AggState *) fcinfo->context);
    4518     1848652 :             ExprContext *cxt = aggstate->curaggcontext;
    4519             : 
    4520     1848652 :             *aggcontext = cxt->ecxt_per_tuple_memory;
    4521             :         }
    4522     4466384 :         return AGG_CONTEXT_AGGREGATE;
    4523             :     }
    4524       11380 :     if (fcinfo->context && IsA(fcinfo->context, WindowAggState))
    4525             :     {
    4526        9512 :         if (aggcontext)
    4527         710 :             *aggcontext = ((WindowAggState *) fcinfo->context)->curaggcontext;
    4528        9512 :         return AGG_CONTEXT_WINDOW;
    4529             :     }
    4530             : 
    4531             :     /* this is just to prevent "uninitialized variable" warnings */
    4532        1868 :     if (aggcontext)
    4533        1820 :         *aggcontext = NULL;
    4534        1868 :     return 0;
    4535             : }
    4536             : 
    4537             : /*
    4538             :  * AggGetAggref - allow an aggregate support function to get its Aggref
    4539             :  *
    4540             :  * If the function is being called as an aggregate support function,
    4541             :  * return the Aggref node for the aggregate call.  Otherwise, return NULL.
    4542             :  *
    4543             :  * Aggregates sharing the same inputs and transition functions can get
    4544             :  * merged into a single transition calculation.  If the transition function
    4545             :  * calls AggGetAggref, it will get some one of the Aggrefs for which it is
    4546             :  * executing.  It must therefore not pay attention to the Aggref fields that
    4547             :  * relate to the final function, as those are indeterminate.  But if a final
    4548             :  * function calls AggGetAggref, it will get a precise result.
    4549             :  *
    4550             :  * Note that if an aggregate is being used as a window function, this will
    4551             :  * return NULL.  We could provide a similar function to return the relevant
    4552             :  * WindowFunc node in such cases, but it's not needed yet.
    4553             :  */
    4554             : Aggref *
    4555         246 : AggGetAggref(FunctionCallInfo fcinfo)
    4556             : {
    4557         246 :     if (fcinfo->context && IsA(fcinfo->context, AggState))
    4558             :     {
    4559         246 :         AggState   *aggstate = (AggState *) fcinfo->context;
    4560             :         AggStatePerAgg curperagg;
    4561             :         AggStatePerTrans curpertrans;
    4562             : 
    4563             :         /* check curperagg (valid when in a final function) */
    4564         246 :         curperagg = aggstate->curperagg;
    4565             : 
    4566         246 :         if (curperagg)
    4567           0 :             return curperagg->aggref;
    4568             : 
    4569             :         /* check curpertrans (valid when in a transition function) */
    4570         246 :         curpertrans = aggstate->curpertrans;
    4571             : 
    4572         246 :         if (curpertrans)
    4573         246 :             return curpertrans->aggref;
    4574             :     }
    4575           0 :     return NULL;
    4576             : }
    4577             : 
    4578             : /*
    4579             :  * AggGetTempMemoryContext - fetch short-term memory context for aggregates
    4580             :  *
    4581             :  * This is useful in agg final functions; the context returned is one that
    4582             :  * the final function can safely reset as desired.  This isn't useful for
    4583             :  * transition functions, since the context returned MAY (we don't promise)
    4584             :  * be the same as the context those are called in.
    4585             :  *
    4586             :  * As above, this is currently not useful for aggs called as window functions.
    4587             :  */
    4588             : MemoryContext
    4589           0 : AggGetTempMemoryContext(FunctionCallInfo fcinfo)
    4590             : {
    4591           0 :     if (fcinfo->context && IsA(fcinfo->context, AggState))
    4592             :     {
    4593           0 :         AggState   *aggstate = (AggState *) fcinfo->context;
    4594             : 
    4595           0 :         return aggstate->tmpcontext->ecxt_per_tuple_memory;
    4596             :     }
    4597           0 :     return NULL;
    4598             : }
    4599             : 
    4600             : /*
    4601             :  * AggStateIsShared - find out whether transition state is shared
    4602             :  *
    4603             :  * If the function is being called as an aggregate support function,
    4604             :  * return true if the aggregate's transition state is shared across
    4605             :  * multiple aggregates, false if it is not.
    4606             :  *
    4607             :  * Returns true if not called as an aggregate support function.
    4608             :  * This is intended as a conservative answer, ie "no you'd better not
    4609             :  * scribble on your input".  In particular, will return true if the
    4610             :  * aggregate is being used as a window function, which is a scenario
    4611             :  * in which changing the transition state is a bad idea.  We might
    4612             :  * want to refine the behavior for the window case in future.
    4613             :  */
    4614             : bool
    4615         246 : AggStateIsShared(FunctionCallInfo fcinfo)
    4616             : {
    4617         246 :     if (fcinfo->context && IsA(fcinfo->context, AggState))
    4618             :     {
    4619         246 :         AggState   *aggstate = (AggState *) fcinfo->context;
    4620             :         AggStatePerAgg curperagg;
    4621             :         AggStatePerTrans curpertrans;
    4622             : 
    4623             :         /* check curperagg (valid when in a final function) */
    4624         246 :         curperagg = aggstate->curperagg;
    4625             : 
    4626         246 :         if (curperagg)
    4627           0 :             return aggstate->pertrans[curperagg->transno].aggshared;
    4628             : 
    4629             :         /* check curpertrans (valid when in a transition function) */
    4630         246 :         curpertrans = aggstate->curpertrans;
    4631             : 
    4632         246 :         if (curpertrans)
    4633         246 :             return curpertrans->aggshared;
    4634             :     }
    4635           0 :     return true;
    4636             : }
    4637             : 
    4638             : /*
    4639             :  * AggRegisterCallback - register a cleanup callback for an aggregate
    4640             :  *
    4641             :  * This is useful for aggs to register shutdown callbacks, which will ensure
    4642             :  * that non-memory resources are freed.  The callback will occur just before
    4643             :  * the associated aggcontext (as returned by AggCheckCallContext) is reset,
    4644             :  * either between groups or as a result of rescanning the query.  The callback
    4645             :  * will NOT be called on error paths.  The typical use-case is for freeing of
    4646             :  * tuplestores or tuplesorts maintained in aggcontext, or pins held by slots
    4647             :  * created by the agg functions.  (The callback will not be called until after
    4648             :  * the result of the finalfn is no longer needed, so it's safe for the finalfn
    4649             :  * to return data that will be freed by the callback.)
    4650             :  *
    4651             :  * As above, this is currently not useful for aggs called as window functions.
    4652             :  */
    4653             : void
    4654         660 : AggRegisterCallback(FunctionCallInfo fcinfo,
    4655             :                     ExprContextCallbackFunction func,
    4656             :                     Datum arg)
    4657             : {
    4658         660 :     if (fcinfo->context && IsA(fcinfo->context, AggState))
    4659             :     {
    4660         660 :         AggState   *aggstate = (AggState *) fcinfo->context;
    4661         660 :         ExprContext *cxt = aggstate->curaggcontext;
    4662             : 
    4663         660 :         RegisterExprContextCallback(cxt, func, arg);
    4664             : 
    4665         660 :         return;
    4666             :     }
    4667           0 :     elog(ERROR, "aggregate function cannot register a callback in this context");
    4668             : }
    4669             : 
    4670             : 
    4671             : /* ----------------------------------------------------------------
    4672             :  *                      Parallel Query Support
    4673             :  * ----------------------------------------------------------------
    4674             :  */
    4675             : 
    4676             :  /* ----------------------------------------------------------------
    4677             :   *     ExecAggEstimate
    4678             :   *
    4679             :   *     Estimate space required to propagate aggregate statistics.
    4680             :   * ----------------------------------------------------------------
    4681             :   */
    4682             : void
    4683         552 : ExecAggEstimate(AggState *node, ParallelContext *pcxt)
    4684             : {
    4685             :     Size        size;
    4686             : 
    4687             :     /* don't need this if not instrumenting or no workers */
    4688         552 :     if (!node->ss.ps.instrument || pcxt->nworkers == 0)
    4689         450 :         return;
    4690             : 
    4691         102 :     size = mul_size(pcxt->nworkers, sizeof(AggregateInstrumentation));
    4692         102 :     size = add_size(size, offsetof(SharedAggInfo, sinstrument));
    4693         102 :     shm_toc_estimate_chunk(&pcxt->estimator, size);
    4694         102 :     shm_toc_estimate_keys(&pcxt->estimator, 1);
    4695             : }
    4696             : 
    4697             : /* ----------------------------------------------------------------
    4698             :  *      ExecAggInitializeDSM
    4699             :  *
    4700             :  *      Initialize DSM space for aggregate statistics.
    4701             :  * ----------------------------------------------------------------
    4702             :  */
    4703             : void
    4704         552 : ExecAggInitializeDSM(AggState *node, ParallelContext *pcxt)
    4705             : {
    4706             :     Size        size;
    4707             : 
    4708             :     /* don't need this if not instrumenting or no workers */
    4709         552 :     if (!node->ss.ps.instrument || pcxt->nworkers == 0)
    4710         450 :         return;
    4711             : 
    4712         102 :     size = offsetof(SharedAggInfo, sinstrument)
    4713         102 :         + pcxt->nworkers * sizeof(AggregateInstrumentation);
    4714         102 :     node->shared_info = shm_toc_allocate(pcxt->toc, size);
    4715             :     /* ensure any unfilled slots will contain zeroes */
    4716         102 :     memset(node->shared_info, 0, size);
    4717         102 :     node->shared_info->num_workers = pcxt->nworkers;
    4718         102 :     shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id,
    4719         102 :                    node->shared_info);
    4720             : }
    4721             : 
    4722             : /* ----------------------------------------------------------------
    4723             :  *      ExecAggInitializeWorker
    4724             :  *
    4725             :  *      Attach worker to DSM space for aggregate statistics.
    4726             :  * ----------------------------------------------------------------
    4727             :  */
    4728             : void
    4729        1544 : ExecAggInitializeWorker(AggState *node, ParallelWorkerContext *pwcxt)
    4730             : {
    4731        1544 :     node->shared_info =
    4732        1544 :         shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, true);
    4733        1544 : }
    4734             : 
    4735             : /* ----------------------------------------------------------------
    4736             :  *      ExecAggRetrieveInstrumentation
    4737             :  *
    4738             :  *      Transfer aggregate statistics from DSM to private memory.
    4739             :  * ----------------------------------------------------------------
    4740             :  */
    4741             : void
    4742         102 : ExecAggRetrieveInstrumentation(AggState *node)
    4743             : {
    4744             :     Size        size;
    4745             :     SharedAggInfo *si;
    4746             : 
    4747         102 :     if (node->shared_info == NULL)
    4748           0 :         return;
    4749             : 
    4750         102 :     size = offsetof(SharedAggInfo, sinstrument)
    4751         102 :         + node->shared_info->num_workers * sizeof(AggregateInstrumentation);
    4752         102 :     si = palloc(size);
    4753         102 :     memcpy(si, node->shared_info, size);
    4754         102 :     node->shared_info = si;
    4755             : }

Generated by: LCOV version 1.14