Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * nodeAgg.c
4 : * Routines to handle aggregate nodes.
5 : *
6 : * ExecAgg normally evaluates each aggregate in the following steps:
7 : *
8 : * transvalue = initcond
9 : * foreach input_tuple do
10 : * transvalue = transfunc(transvalue, input_value(s))
11 : * result = finalfunc(transvalue, direct_argument(s))
12 : *
13 : * If a finalfunc is not supplied then the result is just the ending
14 : * value of transvalue.
15 : *
16 : * Other behaviors can be selected by the "aggsplit" mode, which exists
17 : * to support partial aggregation. It is possible to:
18 : * * Skip running the finalfunc, so that the output is always the
19 : * final transvalue state.
20 : * * Substitute the combinefunc for the transfunc, so that transvalue
21 : * states (propagated up from a child partial-aggregation step) are merged
22 : * rather than processing raw input rows. (The statements below about
23 : * the transfunc apply equally to the combinefunc, when it's selected.)
24 : * * Apply the serializefunc to the output values (this only makes sense
25 : * when skipping the finalfunc, since the serializefunc works on the
26 : * transvalue data type).
27 : * * Apply the deserializefunc to the input values (this only makes sense
28 : * when using the combinefunc, for similar reasons).
29 : * It is the planner's responsibility to connect up Agg nodes using these
30 : * alternate behaviors in a way that makes sense, with partial aggregation
31 : * results being fed to nodes that expect them.
32 : *
33 : * If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the
34 : * input tuples and eliminate duplicates (if required) before performing
35 : * the above-depicted process. (However, we don't do that for ordered-set
36 : * aggregates; their "ORDER BY" inputs are ordinary aggregate arguments
37 : * so far as this module is concerned.) Note that partial aggregation
38 : * is not supported in these cases, since we couldn't ensure global
39 : * ordering or distinctness of the inputs.
40 : *
41 : * If transfunc is marked "strict" in pg_proc and initcond is NULL,
42 : * then the first non-NULL input_value is assigned directly to transvalue,
43 : * and transfunc isn't applied until the second non-NULL input_value.
44 : * The agg's first input type and transtype must be the same in this case!
45 : *
46 : * If transfunc is marked "strict" then NULL input_values are skipped,
47 : * keeping the previous transvalue. If transfunc is not strict then it
48 : * is called for every input tuple and must deal with NULL initcond
49 : * or NULL input_values for itself.
50 : *
51 : * If finalfunc is marked "strict" then it is not called when the
52 : * ending transvalue is NULL, instead a NULL result is created
53 : * automatically (this is just the usual handling of strict functions,
54 : * of course). A non-strict finalfunc can make its own choice of
55 : * what to return for a NULL ending transvalue.
56 : *
57 : * Ordered-set aggregates are treated specially in one other way: we
58 : * evaluate any "direct" arguments and pass them to the finalfunc along
59 : * with the transition value.
60 : *
61 : * A finalfunc can have additional arguments beyond the transvalue and
62 : * any "direct" arguments, corresponding to the input arguments of the
63 : * aggregate. These are always just passed as NULL. Such arguments may be
64 : * needed to allow resolution of a polymorphic aggregate's result type.
65 : *
66 : * We compute aggregate input expressions and run the transition functions
67 : * in a temporary econtext (aggstate->tmpcontext). This is reset at least
68 : * once per input tuple, so when the transvalue datatype is
69 : * pass-by-reference, we have to be careful to copy it into a longer-lived
70 : * memory context, and free the prior value to avoid memory leakage. We
71 : * store transvalues in another set of econtexts, aggstate->aggcontexts
72 : * (one per grouping set, see below), which are also used for the hashtable
73 : * structures in AGG_HASHED mode. These econtexts are rescanned, not just
74 : * reset, at group boundaries so that aggregate transition functions can
75 : * register shutdown callbacks via AggRegisterCallback.
76 : *
77 : * The node's regular econtext (aggstate->ss.ps.ps_ExprContext) is used to
78 : * run finalize functions and compute the output tuple; this context can be
79 : * reset once per output tuple.
80 : *
81 : * The executor's AggState node is passed as the fmgr "context" value in
82 : * all transfunc and finalfunc calls. It is not recommended that the
83 : * transition functions look at the AggState node directly, but they can
84 : * use AggCheckCallContext() to verify that they are being called by
85 : * nodeAgg.c (and not as ordinary SQL functions). The main reason a
86 : * transition function might want to know this is so that it can avoid
87 : * palloc'ing a fixed-size pass-by-ref transition value on every call:
88 : * it can instead just scribble on and return its left input. Ordinarily
89 : * it is completely forbidden for functions to modify pass-by-ref inputs,
90 : * but in the aggregate case we know the left input is either the initial
91 : * transition value or a previous function result, and in either case its
92 : * value need not be preserved. See int8inc() for an example. Notice that
93 : * the EEOP_AGG_PLAIN_TRANS step is coded to avoid a data copy step when
94 : * the previous transition value pointer is returned. It is also possible
95 : * to avoid repeated data copying when the transition value is an expanded
96 : * object: to do that, the transition function must take care to return
97 : * an expanded object that is in a child context of the memory context
98 : * returned by AggCheckCallContext(). Also, some transition functions want
99 : * to store working state in addition to the nominal transition value; they
100 : * can use the memory context returned by AggCheckCallContext() to do that.
101 : *
102 : * Note: AggCheckCallContext() is available as of PostgreSQL 9.0. The
103 : * AggState is available as context in earlier releases (back to 8.1),
104 : * but direct examination of the node is needed to use it before 9.0.
105 : *
106 : * As of 9.4, aggregate transition functions can also use AggGetAggref()
107 : * to get hold of the Aggref expression node for their aggregate call.
108 : * This is mainly intended for ordered-set aggregates, which are not
109 : * supported as window functions. (A regular aggregate function would
110 : * need some fallback logic to use this, since there's no Aggref node
111 : * for a window function.)
112 : *
113 : * Grouping sets:
114 : *
115 : * A list of grouping sets which is structurally equivalent to a ROLLUP
116 : * clause (e.g. (a,b,c), (a,b), (a)) can be processed in a single pass over
117 : * ordered data. We do this by keeping a separate set of transition values
118 : * for each grouping set being concurrently processed; for each input tuple
119 : * we update them all, and on group boundaries we reset those states
120 : * (starting at the front of the list) whose grouping values have changed
121 : * (the list of grouping sets is ordered from most specific to least
122 : * specific).
123 : *
124 : * Where more complex grouping sets are used, we break them down into
125 : * "phases", where each phase has a different sort order (except phase 0
126 : * which is reserved for hashing). During each phase but the last, the
127 : * input tuples are additionally stored in a tuplesort which is keyed to the
128 : * next phase's sort order; during each phase but the first, the input
129 : * tuples are drawn from the previously sorted data. (The sorting of the
130 : * data for the first phase is handled by the planner, as it might be
131 : * satisfied by underlying nodes.)
132 : *
133 : * Hashing can be mixed with sorted grouping. To do this, we have an
134 : * AGG_MIXED strategy that populates the hashtables during the first sorted
135 : * phase, and switches to reading them out after completing all sort phases.
136 : * We can also support AGG_HASHED with multiple hash tables and no sorting
137 : * at all.
138 : *
139 : * From the perspective of aggregate transition and final functions, the
140 : * only issue regarding grouping sets is this: a single call site (flinfo)
141 : * of an aggregate function may be used for updating several different
142 : * transition values in turn. So the function must not cache in the flinfo
143 : * anything which logically belongs as part of the transition value (most
144 : * importantly, the memory context in which the transition value exists).
145 : * The support API functions (AggCheckCallContext, AggRegisterCallback) are
146 : * sensitive to the grouping set for which the aggregate function is
147 : * currently being called.
148 : *
149 : * Plan structure:
150 : *
151 : * What we get from the planner is actually one "real" Agg node which is
152 : * part of the plan tree proper, but which optionally has an additional list
153 : * of Agg nodes hung off the side via the "chain" field. This is because an
154 : * Agg node happens to be a convenient representation of all the data we
155 : * need for grouping sets.
156 : *
157 : * For many purposes, we treat the "real" node as if it were just the first
158 : * node in the chain. The chain must be ordered such that hashed entries
159 : * come before sorted/plain entries; the real node is marked AGG_MIXED if
160 : * there are both types present (in which case the real node describes one
161 : * of the hashed groupings, other AGG_HASHED nodes may optionally follow in
162 : * the chain, followed in turn by AGG_SORTED or (one) AGG_PLAIN node). If
163 : * the real node is marked AGG_HASHED or AGG_SORTED, then all the chained
164 : * nodes must be of the same type; if it is AGG_PLAIN, there can be no
165 : * chained nodes.
166 : *
167 : * We collect all hashed nodes into a single "phase", numbered 0, and create
168 : * a sorted phase (numbered 1..n) for each AGG_SORTED or AGG_PLAIN node.
169 : * Phase 0 is allocated even if there are no hashes, but remains unused in
170 : * that case.
171 : *
172 : * AGG_HASHED nodes actually refer to only a single grouping set each,
173 : * because for each hashed grouping we need a separate grpColIdx and
174 : * numGroups estimate. AGG_SORTED nodes represent a "rollup", a list of
175 : * grouping sets that share a sort order. Each AGG_SORTED node other than
176 : * the first one has an associated Sort node which describes the sort order
177 : * to be used; the first sorted node takes its input from the outer subtree,
178 : * which the planner has already arranged to provide ordered data.
179 : *
180 : * Memory and ExprContext usage:
181 : *
182 : * Because we're accumulating aggregate values across input rows, we need to
183 : * use more memory contexts than just simple input/output tuple contexts.
184 : * In fact, for a rollup, we need a separate context for each grouping set
185 : * so that we can reset the inner (finer-grained) aggregates on their group
186 : * boundaries while continuing to accumulate values for outer
187 : * (coarser-grained) groupings. On top of this, we might be simultaneously
188 : * populating hashtables; however, we only need one context for all the
189 : * hashtables.
190 : *
191 : * So we create an array, aggcontexts, with an ExprContext for each grouping
192 : * set in the largest rollup that we're going to process, and use the
193 : * per-tuple memory context of those ExprContexts to store the aggregate
194 : * transition values. hashcontext is the single context created to support
195 : * all hash tables.
196 : *
197 : * Spilling To Disk
198 : *
199 : * When performing hash aggregation, if the hash table memory exceeds the
200 : * limit (see hash_agg_check_limits()), we enter "spill mode". In spill
201 : * mode, we advance the transition states only for groups already in the
202 : * hash table. For tuples that would need to create a new hash table
203 : * entries (and initialize new transition states), we instead spill them to
204 : * disk to be processed later. The tuples are spilled in a partitioned
205 : * manner, so that subsequent batches are smaller and less likely to exceed
206 : * hash_mem (if a batch does exceed hash_mem, it must be spilled
207 : * recursively).
208 : *
209 : * Spilled data is written to logical tapes. These provide better control
210 : * over memory usage, disk space, and the number of files than if we were
211 : * to use a BufFile for each spill. We don't know the number of tapes needed
212 : * at the start of the algorithm (because it can recurse), so a tape set is
213 : * allocated at the beginning, and individual tapes are created as needed.
214 : * As a particular tape is read, logtape.c recycles its disk space. When a
215 : * tape is read to completion, it is destroyed entirely.
216 : *
217 : * Tapes' buffers can take up substantial memory when many tapes are open at
218 : * once. We only need one tape open at a time in read mode (using a buffer
219 : * that's a multiple of BLCKSZ); but we need one tape open in write mode (each
220 : * requiring a buffer of size BLCKSZ) for each partition.
221 : *
222 : * Note that it's possible for transition states to start small but then
223 : * grow very large; for instance in the case of ARRAY_AGG. In such cases,
224 : * it's still possible to significantly exceed hash_mem. We try to avoid
225 : * this situation by estimating what will fit in the available memory, and
226 : * imposing a limit on the number of groups separately from the amount of
227 : * memory consumed.
228 : *
229 : * Transition / Combine function invocation:
230 : *
231 : * For performance reasons transition functions, including combine
232 : * functions, aren't invoked one-by-one from nodeAgg.c after computing
233 : * arguments using the expression evaluation engine. Instead
234 : * ExecBuildAggTrans() builds one large expression that does both argument
235 : * evaluation and transition function invocation. That avoids performance
236 : * issues due to repeated uses of expression evaluation, complications due
237 : * to filter expressions having to be evaluated early, and allows to JIT
238 : * the entire expression into one native function.
239 : *
240 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
241 : * Portions Copyright (c) 1994, Regents of the University of California
242 : *
243 : * IDENTIFICATION
244 : * src/backend/executor/nodeAgg.c
245 : *
246 : *-------------------------------------------------------------------------
247 : */
248 :
249 : #include "postgres.h"
250 :
251 : #include "access/htup_details.h"
252 : #include "access/parallel.h"
253 : #include "catalog/objectaccess.h"
254 : #include "catalog/pg_aggregate.h"
255 : #include "catalog/pg_proc.h"
256 : #include "catalog/pg_type.h"
257 : #include "common/hashfn.h"
258 : #include "executor/execExpr.h"
259 : #include "executor/executor.h"
260 : #include "executor/nodeAgg.h"
261 : #include "lib/hyperloglog.h"
262 : #include "miscadmin.h"
263 : #include "nodes/nodeFuncs.h"
264 : #include "optimizer/optimizer.h"
265 : #include "parser/parse_agg.h"
266 : #include "parser/parse_coerce.h"
267 : #include "utils/acl.h"
268 : #include "utils/builtins.h"
269 : #include "utils/datum.h"
270 : #include "utils/dynahash.h"
271 : #include "utils/expandeddatum.h"
272 : #include "utils/injection_point.h"
273 : #include "utils/logtape.h"
274 : #include "utils/lsyscache.h"
275 : #include "utils/memutils.h"
276 : #include "utils/memutils_memorychunk.h"
277 : #include "utils/syscache.h"
278 : #include "utils/tuplesort.h"
279 :
280 : /*
281 : * Control how many partitions are created when spilling HashAgg to
282 : * disk.
283 : *
284 : * HASHAGG_PARTITION_FACTOR is multiplied by the estimated number of
285 : * partitions needed such that each partition will fit in memory. The factor
286 : * is set higher than one because there's not a high cost to having a few too
287 : * many partitions, and it makes it less likely that a partition will need to
288 : * be spilled recursively. Another benefit of having more, smaller partitions
289 : * is that small hash tables may perform better than large ones due to memory
290 : * caching effects.
291 : *
292 : * We also specify a min and max number of partitions per spill. Too few might
293 : * mean a lot of wasted I/O from repeated spilling of the same tuples. Too
294 : * many will result in lots of memory wasted buffering the spill files (which
295 : * could instead be spent on a larger hash table).
296 : */
297 : #define HASHAGG_PARTITION_FACTOR 1.50
298 : #define HASHAGG_MIN_PARTITIONS 4
299 : #define HASHAGG_MAX_PARTITIONS 1024
300 :
301 : /*
302 : * For reading from tapes, the buffer size must be a multiple of
303 : * BLCKSZ. Larger values help when reading from multiple tapes concurrently,
304 : * but that doesn't happen in HashAgg, so we simply use BLCKSZ. Writing to a
305 : * tape always uses a buffer of size BLCKSZ.
306 : */
307 : #define HASHAGG_READ_BUFFER_SIZE BLCKSZ
308 : #define HASHAGG_WRITE_BUFFER_SIZE BLCKSZ
309 :
310 : /*
311 : * HyperLogLog is used for estimating the cardinality of the spilled tuples in
312 : * a given partition. 5 bits corresponds to a size of about 32 bytes and a
313 : * worst-case error of around 18%. That's effective enough to choose a
314 : * reasonable number of partitions when recursing.
315 : */
316 : #define HASHAGG_HLL_BIT_WIDTH 5
317 :
318 : /*
319 : * Assume the palloc overhead always uses sizeof(MemoryChunk) bytes.
320 : */
321 : #define CHUNKHDRSZ sizeof(MemoryChunk)
322 :
323 : /*
324 : * Represents partitioned spill data for a single hashtable. Contains the
325 : * necessary information to route tuples to the correct partition, and to
326 : * transform the spilled data into new batches.
327 : *
328 : * The high bits are used for partition selection (when recursing, we ignore
329 : * the bits that have already been used for partition selection at an earlier
330 : * level).
331 : */
332 : typedef struct HashAggSpill
333 : {
334 : int npartitions; /* number of partitions */
335 : LogicalTape **partitions; /* spill partition tapes */
336 : int64 *ntuples; /* number of tuples in each partition */
337 : uint32 mask; /* mask to find partition from hash value */
338 : int shift; /* after masking, shift by this amount */
339 : hyperLogLogState *hll_card; /* cardinality estimate for contents */
340 : } HashAggSpill;
341 :
342 : /*
343 : * Represents work to be done for one pass of hash aggregation (with only one
344 : * grouping set).
345 : *
346 : * Also tracks the bits of the hash already used for partition selection by
347 : * earlier iterations, so that this batch can use new bits. If all bits have
348 : * already been used, no partitioning will be done (any spilled data will go
349 : * to a single output tape).
350 : */
351 : typedef struct HashAggBatch
352 : {
353 : int setno; /* grouping set */
354 : int used_bits; /* number of bits of hash already used */
355 : LogicalTape *input_tape; /* input partition tape */
356 : int64 input_tuples; /* number of tuples in this batch */
357 : double input_card; /* estimated group cardinality */
358 : } HashAggBatch;
359 :
360 : /* used to find referenced colnos */
361 : typedef struct FindColsContext
362 : {
363 : bool is_aggref; /* is under an aggref */
364 : Bitmapset *aggregated; /* column references under an aggref */
365 : Bitmapset *unaggregated; /* other column references */
366 : } FindColsContext;
367 :
368 : static void select_current_set(AggState *aggstate, int setno, bool is_hash);
369 : static void initialize_phase(AggState *aggstate, int newphase);
370 : static TupleTableSlot *fetch_input_tuple(AggState *aggstate);
371 : static void initialize_aggregates(AggState *aggstate,
372 : AggStatePerGroup *pergroups,
373 : int numReset);
374 : static void advance_transition_function(AggState *aggstate,
375 : AggStatePerTrans pertrans,
376 : AggStatePerGroup pergroupstate);
377 : static void advance_aggregates(AggState *aggstate);
378 : static void process_ordered_aggregate_single(AggState *aggstate,
379 : AggStatePerTrans pertrans,
380 : AggStatePerGroup pergroupstate);
381 : static void process_ordered_aggregate_multi(AggState *aggstate,
382 : AggStatePerTrans pertrans,
383 : AggStatePerGroup pergroupstate);
384 : static void finalize_aggregate(AggState *aggstate,
385 : AggStatePerAgg peragg,
386 : AggStatePerGroup pergroupstate,
387 : Datum *resultVal, bool *resultIsNull);
388 : static void finalize_partialaggregate(AggState *aggstate,
389 : AggStatePerAgg peragg,
390 : AggStatePerGroup pergroupstate,
391 : Datum *resultVal, bool *resultIsNull);
392 : static inline void prepare_hash_slot(AggStatePerHash perhash,
393 : TupleTableSlot *inputslot,
394 : TupleTableSlot *hashslot);
395 : static void prepare_projection_slot(AggState *aggstate,
396 : TupleTableSlot *slot,
397 : int currentSet);
398 : static void finalize_aggregates(AggState *aggstate,
399 : AggStatePerAgg peraggs,
400 : AggStatePerGroup pergroup);
401 : static TupleTableSlot *project_aggregates(AggState *aggstate);
402 : static void find_cols(AggState *aggstate, Bitmapset **aggregated,
403 : Bitmapset **unaggregated);
404 : static bool find_cols_walker(Node *node, FindColsContext *context);
405 : static void build_hash_tables(AggState *aggstate);
406 : static void build_hash_table(AggState *aggstate, int setno, long nbuckets);
407 : static void hashagg_recompile_expressions(AggState *aggstate, bool minslot,
408 : bool nullcheck);
409 : static void hash_create_memory(AggState *aggstate);
410 : static long hash_choose_num_buckets(double hashentrysize,
411 : long ngroups, Size memory);
412 : static int hash_choose_num_partitions(double input_groups,
413 : double hashentrysize,
414 : int used_bits,
415 : int *log2_npartitions);
416 : static void initialize_hash_entry(AggState *aggstate,
417 : TupleHashTable hashtable,
418 : TupleHashEntry entry);
419 : static void lookup_hash_entries(AggState *aggstate);
420 : static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
421 : static void agg_fill_hash_table(AggState *aggstate);
422 : static bool agg_refill_hash_table(AggState *aggstate);
423 : static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
424 : static TupleTableSlot *agg_retrieve_hash_table_in_memory(AggState *aggstate);
425 : static void hash_agg_check_limits(AggState *aggstate);
426 : static void hash_agg_enter_spill_mode(AggState *aggstate);
427 : static void hash_agg_update_metrics(AggState *aggstate, bool from_tape,
428 : int npartitions);
429 : static void hashagg_finish_initial_spills(AggState *aggstate);
430 : static void hashagg_reset_spill_state(AggState *aggstate);
431 : static HashAggBatch *hashagg_batch_new(LogicalTape *input_tape, int setno,
432 : int64 input_tuples, double input_card,
433 : int used_bits);
434 : static MinimalTuple hashagg_batch_read(HashAggBatch *batch, uint32 *hashp);
435 : static void hashagg_spill_init(HashAggSpill *spill, LogicalTapeSet *tapeset,
436 : int used_bits, double input_groups,
437 : double hashentrysize);
438 : static Size hashagg_spill_tuple(AggState *aggstate, HashAggSpill *spill,
439 : TupleTableSlot *inputslot, uint32 hash);
440 : static void hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill,
441 : int setno);
442 : static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
443 : static void build_pertrans_for_aggref(AggStatePerTrans pertrans,
444 : AggState *aggstate, EState *estate,
445 : Aggref *aggref, Oid transfn_oid,
446 : Oid aggtranstype, Oid aggserialfn,
447 : Oid aggdeserialfn, Datum initValue,
448 : bool initValueIsNull, Oid *inputTypes,
449 : int numArguments);
450 :
451 :
452 : /*
453 : * Select the current grouping set; affects current_set and
454 : * curaggcontext.
455 : */
456 : static void
457 7128130 : select_current_set(AggState *aggstate, int setno, bool is_hash)
458 : {
459 : /*
460 : * When changing this, also adapt ExecAggPlainTransByVal() and
461 : * ExecAggPlainTransByRef().
462 : */
463 7128130 : if (is_hash)
464 6455334 : aggstate->curaggcontext = aggstate->hashcontext;
465 : else
466 672796 : aggstate->curaggcontext = aggstate->aggcontexts[setno];
467 :
468 7128130 : aggstate->current_set = setno;
469 7128130 : }
470 :
471 : /*
472 : * Switch to phase "newphase", which must either be 0 or 1 (to reset) or
473 : * current_phase + 1. Juggle the tuplesorts accordingly.
474 : *
475 : * Phase 0 is for hashing, which we currently handle last in the AGG_MIXED
476 : * case, so when entering phase 0, all we need to do is drop open sorts.
477 : */
478 : static void
479 88002 : initialize_phase(AggState *aggstate, int newphase)
480 : {
481 : Assert(newphase <= 1 || newphase == aggstate->current_phase + 1);
482 :
483 : /*
484 : * Whatever the previous state, we're now done with whatever input
485 : * tuplesort was in use.
486 : */
487 88002 : if (aggstate->sort_in)
488 : {
489 42 : tuplesort_end(aggstate->sort_in);
490 42 : aggstate->sort_in = NULL;
491 : }
492 :
493 88002 : if (newphase <= 1)
494 : {
495 : /*
496 : * Discard any existing output tuplesort.
497 : */
498 87804 : if (aggstate->sort_out)
499 : {
500 6 : tuplesort_end(aggstate->sort_out);
501 6 : aggstate->sort_out = NULL;
502 : }
503 : }
504 : else
505 : {
506 : /*
507 : * The old output tuplesort becomes the new input one, and this is the
508 : * right time to actually sort it.
509 : */
510 198 : aggstate->sort_in = aggstate->sort_out;
511 198 : aggstate->sort_out = NULL;
512 : Assert(aggstate->sort_in);
513 198 : tuplesort_performsort(aggstate->sort_in);
514 : }
515 :
516 : /*
517 : * If this isn't the last phase, we need to sort appropriately for the
518 : * next phase in sequence.
519 : */
520 88002 : if (newphase > 0 && newphase < aggstate->numphases - 1)
521 : {
522 246 : Sort *sortnode = aggstate->phases[newphase + 1].sortnode;
523 246 : PlanState *outerNode = outerPlanState(aggstate);
524 246 : TupleDesc tupDesc = ExecGetResultType(outerNode);
525 :
526 246 : aggstate->sort_out = tuplesort_begin_heap(tupDesc,
527 : sortnode->numCols,
528 : sortnode->sortColIdx,
529 : sortnode->sortOperators,
530 : sortnode->collations,
531 : sortnode->nullsFirst,
532 : work_mem,
533 : NULL, TUPLESORT_NONE);
534 : }
535 :
536 88002 : aggstate->current_phase = newphase;
537 88002 : aggstate->phase = &aggstate->phases[newphase];
538 88002 : }
539 :
540 : /*
541 : * Fetch a tuple from either the outer plan (for phase 1) or from the sorter
542 : * populated by the previous phase. Copy it to the sorter for the next phase
543 : * if any.
544 : *
545 : * Callers cannot rely on memory for tuple in returned slot remaining valid
546 : * past any subsequently fetched tuple.
547 : */
548 : static TupleTableSlot *
549 26994672 : fetch_input_tuple(AggState *aggstate)
550 : {
551 : TupleTableSlot *slot;
552 :
553 26994672 : if (aggstate->sort_in)
554 : {
555 : /* make sure we check for interrupts in either path through here */
556 294894 : CHECK_FOR_INTERRUPTS();
557 294894 : if (!tuplesort_gettupleslot(aggstate->sort_in, true, false,
558 : aggstate->sort_slot, NULL))
559 198 : return NULL;
560 294696 : slot = aggstate->sort_slot;
561 : }
562 : else
563 26699778 : slot = ExecProcNode(outerPlanState(aggstate));
564 :
565 26994456 : if (!TupIsNull(slot) && aggstate->sort_out)
566 294696 : tuplesort_puttupleslot(aggstate->sort_out, slot);
567 :
568 26994456 : return slot;
569 : }
570 :
571 : /*
572 : * (Re)Initialize an individual aggregate.
573 : *
574 : * This function handles only one grouping set, already set in
575 : * aggstate->current_set.
576 : *
577 : * When called, CurrentMemoryContext should be the per-query context.
578 : */
579 : static void
580 1124416 : initialize_aggregate(AggState *aggstate, AggStatePerTrans pertrans,
581 : AggStatePerGroup pergroupstate)
582 : {
583 : /*
584 : * Start a fresh sort operation for each DISTINCT/ORDER BY aggregate.
585 : */
586 1124416 : if (pertrans->aggsortrequired)
587 : {
588 : /*
589 : * In case of rescan, maybe there could be an uncompleted sort
590 : * operation? Clean it up if so.
591 : */
592 53828 : if (pertrans->sortstates[aggstate->current_set])
593 0 : tuplesort_end(pertrans->sortstates[aggstate->current_set]);
594 :
595 :
596 : /*
597 : * We use a plain Datum sorter when there's a single input column;
598 : * otherwise sort the full tuple. (See comments for
599 : * process_ordered_aggregate_single.)
600 : */
601 53828 : if (pertrans->numInputs == 1)
602 : {
603 53756 : Form_pg_attribute attr = TupleDescAttr(pertrans->sortdesc, 0);
604 :
605 53756 : pertrans->sortstates[aggstate->current_set] =
606 53756 : tuplesort_begin_datum(attr->atttypid,
607 53756 : pertrans->sortOperators[0],
608 53756 : pertrans->sortCollations[0],
609 53756 : pertrans->sortNullsFirst[0],
610 : work_mem, NULL, TUPLESORT_NONE);
611 : }
612 : else
613 72 : pertrans->sortstates[aggstate->current_set] =
614 72 : tuplesort_begin_heap(pertrans->sortdesc,
615 : pertrans->numSortCols,
616 : pertrans->sortColIdx,
617 : pertrans->sortOperators,
618 : pertrans->sortCollations,
619 : pertrans->sortNullsFirst,
620 : work_mem, NULL, TUPLESORT_NONE);
621 : }
622 :
623 : /*
624 : * (Re)set transValue to the initial value.
625 : *
626 : * Note that when the initial value is pass-by-ref, we must copy it (into
627 : * the aggcontext) since we will pfree the transValue later.
628 : */
629 1124416 : if (pertrans->initValueIsNull)
630 592216 : pergroupstate->transValue = pertrans->initValue;
631 : else
632 : {
633 : MemoryContext oldContext;
634 :
635 532200 : oldContext = MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory);
636 1064400 : pergroupstate->transValue = datumCopy(pertrans->initValue,
637 532200 : pertrans->transtypeByVal,
638 532200 : pertrans->transtypeLen);
639 532200 : MemoryContextSwitchTo(oldContext);
640 : }
641 1124416 : pergroupstate->transValueIsNull = pertrans->initValueIsNull;
642 :
643 : /*
644 : * If the initial value for the transition state doesn't exist in the
645 : * pg_aggregate table then we will let the first non-NULL value returned
646 : * from the outer procNode become the initial value. (This is useful for
647 : * aggregates like max() and min().) The noTransValue flag signals that we
648 : * still need to do this.
649 : */
650 1124416 : pergroupstate->noTransValue = pertrans->initValueIsNull;
651 1124416 : }
652 :
653 : /*
654 : * Initialize all aggregate transition states for a new group of input values.
655 : *
656 : * If there are multiple grouping sets, we initialize only the first numReset
657 : * of them (the grouping sets are ordered so that the most specific one, which
658 : * is reset most often, is first). As a convenience, if numReset is 0, we
659 : * reinitialize all sets.
660 : *
661 : * NB: This cannot be used for hash aggregates, as for those the grouping set
662 : * number has to be specified from further up.
663 : *
664 : * When called, CurrentMemoryContext should be the per-query context.
665 : */
666 : static void
667 300964 : initialize_aggregates(AggState *aggstate,
668 : AggStatePerGroup *pergroups,
669 : int numReset)
670 : {
671 : int transno;
672 300964 : int numGroupingSets = Max(aggstate->phase->numsets, 1);
673 300964 : int setno = 0;
674 300964 : int numTrans = aggstate->numtrans;
675 300964 : AggStatePerTrans transstates = aggstate->pertrans;
676 :
677 300964 : if (numReset == 0)
678 0 : numReset = numGroupingSets;
679 :
680 616090 : for (setno = 0; setno < numReset; setno++)
681 : {
682 315126 : AggStatePerGroup pergroup = pergroups[setno];
683 :
684 315126 : select_current_set(aggstate, setno, false);
685 :
686 982244 : for (transno = 0; transno < numTrans; transno++)
687 : {
688 667118 : AggStatePerTrans pertrans = &transstates[transno];
689 667118 : AggStatePerGroup pergroupstate = &pergroup[transno];
690 :
691 667118 : initialize_aggregate(aggstate, pertrans, pergroupstate);
692 : }
693 : }
694 300964 : }
695 :
696 : /*
697 : * Given new input value(s), advance the transition function of one aggregate
698 : * state within one grouping set only (already set in aggstate->current_set)
699 : *
700 : * The new values (and null flags) have been preloaded into argument positions
701 : * 1 and up in pertrans->transfn_fcinfo, so that we needn't copy them again to
702 : * pass to the transition function. We also expect that the static fields of
703 : * the fcinfo are already initialized; that was done by ExecInitAgg().
704 : *
705 : * It doesn't matter which memory context this is called in.
706 : */
707 : static void
708 724222 : advance_transition_function(AggState *aggstate,
709 : AggStatePerTrans pertrans,
710 : AggStatePerGroup pergroupstate)
711 : {
712 724222 : FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
713 : MemoryContext oldContext;
714 : Datum newVal;
715 :
716 724222 : if (pertrans->transfn.fn_strict)
717 : {
718 : /*
719 : * For a strict transfn, nothing happens when there's a NULL input; we
720 : * just keep the prior transValue.
721 : */
722 225000 : int numTransInputs = pertrans->numTransInputs;
723 : int i;
724 :
725 450000 : for (i = 1; i <= numTransInputs; i++)
726 : {
727 225000 : if (fcinfo->args[i].isnull)
728 0 : return;
729 : }
730 225000 : if (pergroupstate->noTransValue)
731 : {
732 : /*
733 : * transValue has not been initialized. This is the first non-NULL
734 : * input value. We use it as the initial value for transValue. (We
735 : * already checked that the agg's input type is binary-compatible
736 : * with its transtype, so straight copy here is OK.)
737 : *
738 : * We must copy the datum into aggcontext if it is pass-by-ref. We
739 : * do not need to pfree the old transValue, since it's NULL.
740 : */
741 0 : oldContext = MemoryContextSwitchTo(aggstate->curaggcontext->ecxt_per_tuple_memory);
742 0 : pergroupstate->transValue = datumCopy(fcinfo->args[1].value,
743 0 : pertrans->transtypeByVal,
744 0 : pertrans->transtypeLen);
745 0 : pergroupstate->transValueIsNull = false;
746 0 : pergroupstate->noTransValue = false;
747 0 : MemoryContextSwitchTo(oldContext);
748 0 : return;
749 : }
750 225000 : if (pergroupstate->transValueIsNull)
751 : {
752 : /*
753 : * Don't call a strict function with NULL inputs. Note it is
754 : * possible to get here despite the above tests, if the transfn is
755 : * strict *and* returned a NULL on a prior cycle. If that happens
756 : * we will propagate the NULL all the way to the end.
757 : */
758 0 : return;
759 : }
760 : }
761 :
762 : /* We run the transition functions in per-input-tuple memory context */
763 724222 : oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
764 :
765 : /* set up aggstate->curpertrans for AggGetAggref() */
766 724222 : aggstate->curpertrans = pertrans;
767 :
768 : /*
769 : * OK to call the transition function
770 : */
771 724222 : fcinfo->args[0].value = pergroupstate->transValue;
772 724222 : fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
773 724222 : fcinfo->isnull = false; /* just in case transfn doesn't set it */
774 :
775 724222 : newVal = FunctionCallInvoke(fcinfo);
776 :
777 724222 : aggstate->curpertrans = NULL;
778 :
779 : /*
780 : * If pass-by-ref datatype, must copy the new value into aggcontext and
781 : * free the prior transValue. But if transfn returned a pointer to its
782 : * first input, we don't need to do anything.
783 : *
784 : * It's safe to compare newVal with pergroup->transValue without regard
785 : * for either being NULL, because ExecAggCopyTransValue takes care to set
786 : * transValue to 0 when NULL. Otherwise we could end up accidentally not
787 : * reparenting, when the transValue has the same numerical value as
788 : * newValue, despite being NULL. This is a somewhat hot path, making it
789 : * undesirable to instead solve this with another branch for the common
790 : * case of the transition function returning its (modified) input
791 : * argument.
792 : */
793 724222 : if (!pertrans->transtypeByVal &&
794 0 : DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
795 0 : newVal = ExecAggCopyTransValue(aggstate, pertrans,
796 0 : newVal, fcinfo->isnull,
797 : pergroupstate->transValue,
798 0 : pergroupstate->transValueIsNull);
799 :
800 724222 : pergroupstate->transValue = newVal;
801 724222 : pergroupstate->transValueIsNull = fcinfo->isnull;
802 :
803 724222 : MemoryContextSwitchTo(oldContext);
804 : }
805 :
806 : /*
807 : * Advance each aggregate transition state for one input tuple. The input
808 : * tuple has been stored in tmpcontext->ecxt_outertuple, so that it is
809 : * accessible to ExecEvalExpr.
810 : *
811 : * We have two sets of transition states to handle: one for sorted aggregation
812 : * and one for hashed; we do them both here, to avoid multiple evaluation of
813 : * the inputs.
814 : *
815 : * When called, CurrentMemoryContext should be the per-query context.
816 : */
817 : static void
818 27677146 : advance_aggregates(AggState *aggstate)
819 : {
820 27677146 : ExecEvalExprNoReturnSwitchContext(aggstate->phase->evaltrans,
821 : aggstate->tmpcontext);
822 27677068 : }
823 :
824 : /*
825 : * Run the transition function for a DISTINCT or ORDER BY aggregate
826 : * with only one input. This is called after we have completed
827 : * entering all the input values into the sort object. We complete the
828 : * sort, read out the values in sorted order, and run the transition
829 : * function on each value (applying DISTINCT if appropriate).
830 : *
831 : * Note that the strictness of the transition function was checked when
832 : * entering the values into the sort, so we don't check it again here;
833 : * we just apply standard SQL DISTINCT logic.
834 : *
835 : * The one-input case is handled separately from the multi-input case
836 : * for performance reasons: for single by-value inputs, such as the
837 : * common case of count(distinct id), the tuplesort_getdatum code path
838 : * is around 300% faster. (The speedup for by-reference types is less
839 : * but still noticeable.)
840 : *
841 : * This function handles only one grouping set (already set in
842 : * aggstate->current_set).
843 : *
844 : * When called, CurrentMemoryContext should be the per-query context.
845 : */
846 : static void
847 53756 : process_ordered_aggregate_single(AggState *aggstate,
848 : AggStatePerTrans pertrans,
849 : AggStatePerGroup pergroupstate)
850 : {
851 53756 : Datum oldVal = (Datum) 0;
852 53756 : bool oldIsNull = true;
853 53756 : bool haveOldVal = false;
854 53756 : MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory;
855 : MemoryContext oldContext;
856 53756 : bool isDistinct = (pertrans->numDistinctCols > 0);
857 53756 : Datum newAbbrevVal = (Datum) 0;
858 53756 : Datum oldAbbrevVal = (Datum) 0;
859 53756 : FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
860 : Datum *newVal;
861 : bool *isNull;
862 :
863 : Assert(pertrans->numDistinctCols < 2);
864 :
865 53756 : tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);
866 :
867 : /* Load the column into argument 1 (arg 0 will be transition value) */
868 53756 : newVal = &fcinfo->args[1].value;
869 53756 : isNull = &fcinfo->args[1].isnull;
870 :
871 : /*
872 : * Note: if input type is pass-by-ref, the datums returned by the sort are
873 : * freshly palloc'd in the per-query context, so we must be careful to
874 : * pfree them when they are no longer needed.
875 : */
876 :
877 898140 : while (tuplesort_getdatum(pertrans->sortstates[aggstate->current_set],
878 : true, false, newVal, isNull, &newAbbrevVal))
879 : {
880 : /*
881 : * Clear and select the working context for evaluation of the equality
882 : * function and transition function.
883 : */
884 844384 : MemoryContextReset(workcontext);
885 844384 : oldContext = MemoryContextSwitchTo(workcontext);
886 :
887 : /*
888 : * If DISTINCT mode, and not distinct from prior, skip it.
889 : */
890 844384 : if (isDistinct &&
891 310322 : haveOldVal &&
892 0 : ((oldIsNull && *isNull) ||
893 310322 : (!oldIsNull && !*isNull &&
894 605684 : oldAbbrevVal == newAbbrevVal &&
895 295362 : DatumGetBool(FunctionCall2Coll(&pertrans->equalfnOne,
896 : pertrans->aggCollation,
897 : oldVal, *newVal)))))
898 : {
899 120342 : MemoryContextSwitchTo(oldContext);
900 120342 : continue;
901 : }
902 : else
903 : {
904 724042 : advance_transition_function(aggstate, pertrans, pergroupstate);
905 :
906 724042 : MemoryContextSwitchTo(oldContext);
907 :
908 : /*
909 : * Forget the old value, if any, and remember the new one for
910 : * subsequent equality checks.
911 : */
912 724042 : if (!pertrans->inputtypeByVal)
913 : {
914 525288 : if (!oldIsNull)
915 525108 : pfree(DatumGetPointer(oldVal));
916 525288 : if (!*isNull)
917 525228 : oldVal = datumCopy(*newVal, pertrans->inputtypeByVal,
918 525228 : pertrans->inputtypeLen);
919 : }
920 : else
921 198754 : oldVal = *newVal;
922 724042 : oldAbbrevVal = newAbbrevVal;
923 724042 : oldIsNull = *isNull;
924 724042 : haveOldVal = true;
925 : }
926 : }
927 :
928 53756 : if (!oldIsNull && !pertrans->inputtypeByVal)
929 120 : pfree(DatumGetPointer(oldVal));
930 :
931 53756 : tuplesort_end(pertrans->sortstates[aggstate->current_set]);
932 53756 : pertrans->sortstates[aggstate->current_set] = NULL;
933 53756 : }
934 :
935 : /*
936 : * Run the transition function for a DISTINCT or ORDER BY aggregate
937 : * with more than one input. This is called after we have completed
938 : * entering all the input values into the sort object. We complete the
939 : * sort, read out the values in sorted order, and run the transition
940 : * function on each value (applying DISTINCT if appropriate).
941 : *
942 : * This function handles only one grouping set (already set in
943 : * aggstate->current_set).
944 : *
945 : * When called, CurrentMemoryContext should be the per-query context.
946 : */
947 : static void
948 72 : process_ordered_aggregate_multi(AggState *aggstate,
949 : AggStatePerTrans pertrans,
950 : AggStatePerGroup pergroupstate)
951 : {
952 72 : ExprContext *tmpcontext = aggstate->tmpcontext;
953 72 : FunctionCallInfo fcinfo = pertrans->transfn_fcinfo;
954 72 : TupleTableSlot *slot1 = pertrans->sortslot;
955 72 : TupleTableSlot *slot2 = pertrans->uniqslot;
956 72 : int numTransInputs = pertrans->numTransInputs;
957 72 : int numDistinctCols = pertrans->numDistinctCols;
958 72 : Datum newAbbrevVal = (Datum) 0;
959 72 : Datum oldAbbrevVal = (Datum) 0;
960 72 : bool haveOldValue = false;
961 72 : TupleTableSlot *save = aggstate->tmpcontext->ecxt_outertuple;
962 : int i;
963 :
964 72 : tuplesort_performsort(pertrans->sortstates[aggstate->current_set]);
965 :
966 72 : ExecClearTuple(slot1);
967 72 : if (slot2)
968 0 : ExecClearTuple(slot2);
969 :
970 252 : while (tuplesort_gettupleslot(pertrans->sortstates[aggstate->current_set],
971 : true, true, slot1, &newAbbrevVal))
972 : {
973 180 : CHECK_FOR_INTERRUPTS();
974 :
975 180 : tmpcontext->ecxt_outertuple = slot1;
976 180 : tmpcontext->ecxt_innertuple = slot2;
977 :
978 180 : if (numDistinctCols == 0 ||
979 0 : !haveOldValue ||
980 0 : newAbbrevVal != oldAbbrevVal ||
981 0 : !ExecQual(pertrans->equalfnMulti, tmpcontext))
982 : {
983 : /*
984 : * Extract the first numTransInputs columns as datums to pass to
985 : * the transfn.
986 : */
987 180 : slot_getsomeattrs(slot1, numTransInputs);
988 :
989 : /* Load values into fcinfo */
990 : /* Start from 1, since the 0th arg will be the transition value */
991 540 : for (i = 0; i < numTransInputs; i++)
992 : {
993 360 : fcinfo->args[i + 1].value = slot1->tts_values[i];
994 360 : fcinfo->args[i + 1].isnull = slot1->tts_isnull[i];
995 : }
996 :
997 180 : advance_transition_function(aggstate, pertrans, pergroupstate);
998 :
999 180 : if (numDistinctCols > 0)
1000 : {
1001 : /* swap the slot pointers to retain the current tuple */
1002 0 : TupleTableSlot *tmpslot = slot2;
1003 :
1004 0 : slot2 = slot1;
1005 0 : slot1 = tmpslot;
1006 : /* avoid ExecQual() calls by reusing abbreviated keys */
1007 0 : oldAbbrevVal = newAbbrevVal;
1008 0 : haveOldValue = true;
1009 : }
1010 : }
1011 :
1012 : /* Reset context each time */
1013 180 : ResetExprContext(tmpcontext);
1014 :
1015 180 : ExecClearTuple(slot1);
1016 : }
1017 :
1018 72 : if (slot2)
1019 0 : ExecClearTuple(slot2);
1020 :
1021 72 : tuplesort_end(pertrans->sortstates[aggstate->current_set]);
1022 72 : pertrans->sortstates[aggstate->current_set] = NULL;
1023 :
1024 : /* restore previous slot, potentially in use for grouping sets */
1025 72 : tmpcontext->ecxt_outertuple = save;
1026 72 : }
1027 :
1028 : /*
1029 : * Compute the final value of one aggregate.
1030 : *
1031 : * This function handles only one grouping set (already set in
1032 : * aggstate->current_set).
1033 : *
1034 : * The finalfn will be run, and the result delivered, in the
1035 : * output-tuple context; caller's CurrentMemoryContext does not matter.
1036 : * (But note that in some cases, such as when there is no finalfn, the
1037 : * result might be a pointer to or into the agg's transition value.)
1038 : *
1039 : * The finalfn uses the state as set in the transno. This also might be
1040 : * being used by another aggregate function, so it's important that we do
1041 : * nothing destructive here. Moreover, the aggregate's final value might
1042 : * get used in multiple places, so we mustn't return a R/W expanded datum.
1043 : */
1044 : static void
1045 1116360 : finalize_aggregate(AggState *aggstate,
1046 : AggStatePerAgg peragg,
1047 : AggStatePerGroup pergroupstate,
1048 : Datum *resultVal, bool *resultIsNull)
1049 : {
1050 1116360 : LOCAL_FCINFO(fcinfo, FUNC_MAX_ARGS);
1051 1116360 : bool anynull = false;
1052 : MemoryContext oldContext;
1053 : int i;
1054 : ListCell *lc;
1055 1116360 : AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];
1056 :
1057 1116360 : oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
1058 :
1059 : /*
1060 : * Evaluate any direct arguments. We do this even if there's no finalfn
1061 : * (which is unlikely anyway), so that side-effects happen as expected.
1062 : * The direct arguments go into arg positions 1 and up, leaving position 0
1063 : * for the transition state value.
1064 : */
1065 1116360 : i = 1;
1066 1117334 : foreach(lc, peragg->aggdirectargs)
1067 : {
1068 974 : ExprState *expr = (ExprState *) lfirst(lc);
1069 :
1070 974 : fcinfo->args[i].value = ExecEvalExpr(expr,
1071 : aggstate->ss.ps.ps_ExprContext,
1072 : &fcinfo->args[i].isnull);
1073 974 : anynull |= fcinfo->args[i].isnull;
1074 974 : i++;
1075 : }
1076 :
1077 : /*
1078 : * Apply the agg's finalfn if one is provided, else return transValue.
1079 : */
1080 1116360 : if (OidIsValid(peragg->finalfn_oid))
1081 : {
1082 337036 : int numFinalArgs = peragg->numFinalArgs;
1083 :
1084 : /* set up aggstate->curperagg for AggGetAggref() */
1085 337036 : aggstate->curperagg = peragg;
1086 :
1087 337036 : InitFunctionCallInfoData(*fcinfo, &peragg->finalfn,
1088 : numFinalArgs,
1089 : pertrans->aggCollation,
1090 : (Node *) aggstate, NULL);
1091 :
1092 : /* Fill in the transition state value */
1093 337036 : fcinfo->args[0].value =
1094 337036 : MakeExpandedObjectReadOnly(pergroupstate->transValue,
1095 : pergroupstate->transValueIsNull,
1096 : pertrans->transtypeLen);
1097 337036 : fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
1098 337036 : anynull |= pergroupstate->transValueIsNull;
1099 :
1100 : /* Fill any remaining argument positions with nulls */
1101 488532 : for (; i < numFinalArgs; i++)
1102 : {
1103 151496 : fcinfo->args[i].value = (Datum) 0;
1104 151496 : fcinfo->args[i].isnull = true;
1105 151496 : anynull = true;
1106 : }
1107 :
1108 337036 : if (fcinfo->flinfo->fn_strict && anynull)
1109 : {
1110 : /* don't call a strict function with NULL inputs */
1111 0 : *resultVal = (Datum) 0;
1112 0 : *resultIsNull = true;
1113 : }
1114 : else
1115 : {
1116 : Datum result;
1117 :
1118 337036 : result = FunctionCallInvoke(fcinfo);
1119 337024 : *resultIsNull = fcinfo->isnull;
1120 337024 : *resultVal = MakeExpandedObjectReadOnly(result,
1121 : fcinfo->isnull,
1122 : peragg->resulttypeLen);
1123 : }
1124 337024 : aggstate->curperagg = NULL;
1125 : }
1126 : else
1127 : {
1128 779324 : *resultVal =
1129 779324 : MakeExpandedObjectReadOnly(pergroupstate->transValue,
1130 : pergroupstate->transValueIsNull,
1131 : pertrans->transtypeLen);
1132 779324 : *resultIsNull = pergroupstate->transValueIsNull;
1133 : }
1134 :
1135 1116348 : MemoryContextSwitchTo(oldContext);
1136 1116348 : }
1137 :
1138 : /*
1139 : * Compute the output value of one partial aggregate.
1140 : *
1141 : * The serialization function will be run, and the result delivered, in the
1142 : * output-tuple context; caller's CurrentMemoryContext does not matter.
1143 : */
1144 : static void
1145 11660 : finalize_partialaggregate(AggState *aggstate,
1146 : AggStatePerAgg peragg,
1147 : AggStatePerGroup pergroupstate,
1148 : Datum *resultVal, bool *resultIsNull)
1149 : {
1150 11660 : AggStatePerTrans pertrans = &aggstate->pertrans[peragg->transno];
1151 : MemoryContext oldContext;
1152 :
1153 11660 : oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
1154 :
1155 : /*
1156 : * serialfn_oid will be set if we must serialize the transvalue before
1157 : * returning it
1158 : */
1159 11660 : if (OidIsValid(pertrans->serialfn_oid))
1160 : {
1161 : /* Don't call a strict serialization function with NULL input. */
1162 426 : if (pertrans->serialfn.fn_strict && pergroupstate->transValueIsNull)
1163 : {
1164 120 : *resultVal = (Datum) 0;
1165 120 : *resultIsNull = true;
1166 : }
1167 : else
1168 : {
1169 306 : FunctionCallInfo fcinfo = pertrans->serialfn_fcinfo;
1170 : Datum result;
1171 :
1172 306 : fcinfo->args[0].value =
1173 306 : MakeExpandedObjectReadOnly(pergroupstate->transValue,
1174 : pergroupstate->transValueIsNull,
1175 : pertrans->transtypeLen);
1176 306 : fcinfo->args[0].isnull = pergroupstate->transValueIsNull;
1177 306 : fcinfo->isnull = false;
1178 :
1179 306 : result = FunctionCallInvoke(fcinfo);
1180 306 : *resultIsNull = fcinfo->isnull;
1181 306 : *resultVal = MakeExpandedObjectReadOnly(result,
1182 : fcinfo->isnull,
1183 : peragg->resulttypeLen);
1184 : }
1185 : }
1186 : else
1187 : {
1188 11234 : *resultVal =
1189 11234 : MakeExpandedObjectReadOnly(pergroupstate->transValue,
1190 : pergroupstate->transValueIsNull,
1191 : pertrans->transtypeLen);
1192 11234 : *resultIsNull = pergroupstate->transValueIsNull;
1193 : }
1194 :
1195 11660 : MemoryContextSwitchTo(oldContext);
1196 11660 : }
1197 :
1198 : /*
1199 : * Extract the attributes that make up the grouping key into the
1200 : * hashslot. This is necessary to compute the hash or perform a lookup.
1201 : */
1202 : static inline void
1203 7496412 : prepare_hash_slot(AggStatePerHash perhash,
1204 : TupleTableSlot *inputslot,
1205 : TupleTableSlot *hashslot)
1206 : {
1207 : int i;
1208 :
1209 : /* transfer just the needed columns into hashslot */
1210 7496412 : slot_getsomeattrs(inputslot, perhash->largestGrpColIdx);
1211 7496412 : ExecClearTuple(hashslot);
1212 :
1213 17945414 : for (i = 0; i < perhash->numhashGrpCols; i++)
1214 : {
1215 10449002 : int varNumber = perhash->hashGrpColIdxInput[i] - 1;
1216 :
1217 10449002 : hashslot->tts_values[i] = inputslot->tts_values[varNumber];
1218 10449002 : hashslot->tts_isnull[i] = inputslot->tts_isnull[varNumber];
1219 : }
1220 7496412 : ExecStoreVirtualTuple(hashslot);
1221 7496412 : }
1222 :
1223 : /*
1224 : * Prepare to finalize and project based on the specified representative tuple
1225 : * slot and grouping set.
1226 : *
1227 : * In the specified tuple slot, force to null all attributes that should be
1228 : * read as null in the context of the current grouping set. Also stash the
1229 : * current group bitmap where GroupingExpr can get at it.
1230 : *
1231 : * This relies on three conditions:
1232 : *
1233 : * 1) Nothing is ever going to try and extract the whole tuple from this slot,
1234 : * only reference it in evaluations, which will only access individual
1235 : * attributes.
1236 : *
1237 : * 2) No system columns are going to need to be nulled. (If a system column is
1238 : * referenced in a group clause, it is actually projected in the outer plan
1239 : * tlist.)
1240 : *
1241 : * 3) Within a given phase, we never need to recover the value of an attribute
1242 : * once it has been set to null.
1243 : *
1244 : * Poking into the slot this way is a bit ugly, but the consensus is that the
1245 : * alternative was worse.
1246 : */
1247 : static void
1248 844162 : prepare_projection_slot(AggState *aggstate, TupleTableSlot *slot, int currentSet)
1249 : {
1250 844162 : if (aggstate->phase->grouped_cols)
1251 : {
1252 558550 : Bitmapset *grouped_cols = aggstate->phase->grouped_cols[currentSet];
1253 :
1254 558550 : aggstate->grouped_cols = grouped_cols;
1255 :
1256 558550 : if (TTS_EMPTY(slot))
1257 : {
1258 : /*
1259 : * Force all values to be NULL if working on an empty input tuple
1260 : * (i.e. an empty grouping set for which no input rows were
1261 : * supplied).
1262 : */
1263 48 : ExecStoreAllNullTuple(slot);
1264 : }
1265 558502 : else if (aggstate->all_grouped_cols)
1266 : {
1267 : ListCell *lc;
1268 :
1269 : /* all_grouped_cols is arranged in desc order */
1270 558454 : slot_getsomeattrs(slot, linitial_int(aggstate->all_grouped_cols));
1271 :
1272 1527780 : foreach(lc, aggstate->all_grouped_cols)
1273 : {
1274 969326 : int attnum = lfirst_int(lc);
1275 :
1276 969326 : if (!bms_is_member(attnum, grouped_cols))
1277 57760 : slot->tts_isnull[attnum - 1] = true;
1278 : }
1279 : }
1280 : }
1281 844162 : }
1282 :
1283 : /*
1284 : * Compute the final value of all aggregates for one group.
1285 : *
1286 : * This function handles only one grouping set at a time, which the caller must
1287 : * have selected. It's also the caller's responsibility to adjust the supplied
1288 : * pergroup parameter to point to the current set's transvalues.
1289 : *
1290 : * Results are stored in the output econtext aggvalues/aggnulls.
1291 : */
1292 : static void
1293 844162 : finalize_aggregates(AggState *aggstate,
1294 : AggStatePerAgg peraggs,
1295 : AggStatePerGroup pergroup)
1296 : {
1297 844162 : ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;
1298 844162 : Datum *aggvalues = econtext->ecxt_aggvalues;
1299 844162 : bool *aggnulls = econtext->ecxt_aggnulls;
1300 : int aggno;
1301 :
1302 : /*
1303 : * If there were any DISTINCT and/or ORDER BY aggregates, sort their
1304 : * inputs and run the transition functions.
1305 : */
1306 1971924 : for (int transno = 0; transno < aggstate->numtrans; transno++)
1307 : {
1308 1127762 : AggStatePerTrans pertrans = &aggstate->pertrans[transno];
1309 : AggStatePerGroup pergroupstate;
1310 :
1311 1127762 : pergroupstate = &pergroup[transno];
1312 :
1313 1127762 : if (pertrans->aggsortrequired)
1314 : {
1315 : Assert(aggstate->aggstrategy != AGG_HASHED &&
1316 : aggstate->aggstrategy != AGG_MIXED);
1317 :
1318 53828 : if (pertrans->numInputs == 1)
1319 53756 : process_ordered_aggregate_single(aggstate,
1320 : pertrans,
1321 : pergroupstate);
1322 : else
1323 72 : process_ordered_aggregate_multi(aggstate,
1324 : pertrans,
1325 : pergroupstate);
1326 : }
1327 1073934 : else if (pertrans->numDistinctCols > 0 && pertrans->haslast)
1328 : {
1329 18360 : pertrans->haslast = false;
1330 :
1331 18360 : if (pertrans->numDistinctCols == 1)
1332 : {
1333 18264 : if (!pertrans->inputtypeByVal && !pertrans->lastisnull)
1334 262 : pfree(DatumGetPointer(pertrans->lastdatum));
1335 :
1336 18264 : pertrans->lastisnull = false;
1337 18264 : pertrans->lastdatum = (Datum) 0;
1338 : }
1339 : else
1340 96 : ExecClearTuple(pertrans->uniqslot);
1341 : }
1342 : }
1343 :
1344 : /*
1345 : * Run the final functions.
1346 : */
1347 1972170 : for (aggno = 0; aggno < aggstate->numaggs; aggno++)
1348 : {
1349 1128020 : AggStatePerAgg peragg = &peraggs[aggno];
1350 1128020 : int transno = peragg->transno;
1351 : AggStatePerGroup pergroupstate;
1352 :
1353 1128020 : pergroupstate = &pergroup[transno];
1354 :
1355 1128020 : if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
1356 11660 : finalize_partialaggregate(aggstate, peragg, pergroupstate,
1357 11660 : &aggvalues[aggno], &aggnulls[aggno]);
1358 : else
1359 1116360 : finalize_aggregate(aggstate, peragg, pergroupstate,
1360 1116360 : &aggvalues[aggno], &aggnulls[aggno]);
1361 : }
1362 844150 : }
1363 :
1364 : /*
1365 : * Project the result of a group (whose aggs have already been calculated by
1366 : * finalize_aggregates). Returns the result slot, or NULL if no row is
1367 : * projected (suppressed by qual).
1368 : */
1369 : static TupleTableSlot *
1370 844150 : project_aggregates(AggState *aggstate)
1371 : {
1372 844150 : ExprContext *econtext = aggstate->ss.ps.ps_ExprContext;
1373 :
1374 : /*
1375 : * Check the qual (HAVING clause); if the group does not match, ignore it.
1376 : */
1377 844150 : if (ExecQual(aggstate->ss.ps.qual, econtext))
1378 : {
1379 : /*
1380 : * Form and return projection tuple using the aggregate results and
1381 : * the representative input tuple.
1382 : */
1383 737696 : return ExecProject(aggstate->ss.ps.ps_ProjInfo);
1384 : }
1385 : else
1386 106454 : InstrCountFiltered1(aggstate, 1);
1387 :
1388 106454 : return NULL;
1389 : }
1390 :
1391 : /*
1392 : * Find input-tuple columns that are needed, dividing them into
1393 : * aggregated and unaggregated sets.
1394 : */
1395 : static void
1396 5726 : find_cols(AggState *aggstate, Bitmapset **aggregated, Bitmapset **unaggregated)
1397 : {
1398 5726 : Agg *agg = (Agg *) aggstate->ss.ps.plan;
1399 : FindColsContext context;
1400 :
1401 5726 : context.is_aggref = false;
1402 5726 : context.aggregated = NULL;
1403 5726 : context.unaggregated = NULL;
1404 :
1405 : /* Examine tlist and quals */
1406 5726 : (void) find_cols_walker((Node *) agg->plan.targetlist, &context);
1407 5726 : (void) find_cols_walker((Node *) agg->plan.qual, &context);
1408 :
1409 : /* In some cases, grouping columns will not appear in the tlist */
1410 14516 : for (int i = 0; i < agg->numCols; i++)
1411 8790 : context.unaggregated = bms_add_member(context.unaggregated,
1412 8790 : agg->grpColIdx[i]);
1413 :
1414 5726 : *aggregated = context.aggregated;
1415 5726 : *unaggregated = context.unaggregated;
1416 5726 : }
1417 :
1418 : static bool
1419 67502 : find_cols_walker(Node *node, FindColsContext *context)
1420 : {
1421 67502 : if (node == NULL)
1422 12008 : return false;
1423 55494 : if (IsA(node, Var))
1424 : {
1425 14796 : Var *var = (Var *) node;
1426 :
1427 : /* setrefs.c should have set the varno to OUTER_VAR */
1428 : Assert(var->varno == OUTER_VAR);
1429 : Assert(var->varlevelsup == 0);
1430 14796 : if (context->is_aggref)
1431 4580 : context->aggregated = bms_add_member(context->aggregated,
1432 4580 : var->varattno);
1433 : else
1434 10216 : context->unaggregated = bms_add_member(context->unaggregated,
1435 10216 : var->varattno);
1436 14796 : return false;
1437 : }
1438 40698 : if (IsA(node, Aggref))
1439 : {
1440 : Assert(!context->is_aggref);
1441 6770 : context->is_aggref = true;
1442 6770 : expression_tree_walker(node, find_cols_walker, context);
1443 6770 : context->is_aggref = false;
1444 6770 : return false;
1445 : }
1446 33928 : return expression_tree_walker(node, find_cols_walker, context);
1447 : }
1448 :
1449 : /*
1450 : * (Re-)initialize the hash table(s) to empty.
1451 : *
1452 : * To implement hashed aggregation, we need a hashtable that stores a
1453 : * representative tuple and an array of AggStatePerGroup structs for each
1454 : * distinct set of GROUP BY column values. We compute the hash key from the
1455 : * GROUP BY columns. The per-group data is allocated in initialize_hash_entry(),
1456 : * for each entry.
1457 : *
1458 : * We have a separate hashtable and associated perhash data structure for each
1459 : * grouping set for which we're doing hashing.
1460 : *
1461 : * The contents of the hash tables always live in the hashcontext's per-tuple
1462 : * memory context (there is only one of these for all tables together, since
1463 : * they are all reset at the same time).
1464 : */
1465 : static void
1466 15424 : build_hash_tables(AggState *aggstate)
1467 : {
1468 : int setno;
1469 :
1470 31186 : for (setno = 0; setno < aggstate->num_hashes; ++setno)
1471 : {
1472 15762 : AggStatePerHash perhash = &aggstate->perhash[setno];
1473 : long nbuckets;
1474 : Size memory;
1475 :
1476 15762 : if (perhash->hashtable != NULL)
1477 : {
1478 11094 : ResetTupleHashTable(perhash->hashtable);
1479 11094 : continue;
1480 : }
1481 :
1482 : Assert(perhash->aggnode->numGroups > 0);
1483 :
1484 4668 : memory = aggstate->hash_mem_limit / aggstate->num_hashes;
1485 :
1486 : /* choose reasonable number of buckets per hashtable */
1487 4668 : nbuckets = hash_choose_num_buckets(aggstate->hashentrysize,
1488 4668 : perhash->aggnode->numGroups,
1489 : memory);
1490 :
1491 : #ifdef USE_INJECTION_POINTS
1492 4668 : if (IS_INJECTION_POINT_ATTACHED("hash-aggregate-oversize-table"))
1493 : {
1494 0 : nbuckets = memory / TupleHashEntrySize();
1495 0 : INJECTION_POINT_CACHED("hash-aggregate-oversize-table");
1496 : }
1497 : #endif
1498 :
1499 4668 : build_hash_table(aggstate, setno, nbuckets);
1500 : }
1501 :
1502 15424 : aggstate->hash_ngroups_current = 0;
1503 15424 : }
1504 :
1505 : /*
1506 : * Build a single hashtable for this grouping set.
1507 : */
1508 : static void
1509 4668 : build_hash_table(AggState *aggstate, int setno, long nbuckets)
1510 : {
1511 4668 : AggStatePerHash perhash = &aggstate->perhash[setno];
1512 4668 : MemoryContext metacxt = aggstate->hash_metacxt;
1513 4668 : MemoryContext tablecxt = aggstate->hash_tablecxt;
1514 4668 : MemoryContext tmpcxt = aggstate->tmpcontext->ecxt_per_tuple_memory;
1515 : Size additionalsize;
1516 :
1517 : Assert(aggstate->aggstrategy == AGG_HASHED ||
1518 : aggstate->aggstrategy == AGG_MIXED);
1519 :
1520 : /*
1521 : * Used to make sure initial hash table allocation does not exceed
1522 : * hash_mem. Note that the estimate does not include space for
1523 : * pass-by-reference transition data values, nor for the representative
1524 : * tuple of each group.
1525 : */
1526 4668 : additionalsize = aggstate->numtrans * sizeof(AggStatePerGroupData);
1527 :
1528 9336 : perhash->hashtable = BuildTupleHashTable(&aggstate->ss.ps,
1529 4668 : perhash->hashslot->tts_tupleDescriptor,
1530 4668 : perhash->hashslot->tts_ops,
1531 : perhash->numCols,
1532 : perhash->hashGrpColIdxHash,
1533 4668 : perhash->eqfuncoids,
1534 : perhash->hashfunctions,
1535 4668 : perhash->aggnode->grpCollations,
1536 : nbuckets,
1537 : additionalsize,
1538 : metacxt,
1539 : tablecxt,
1540 : tmpcxt,
1541 4668 : DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit));
1542 4668 : }
1543 :
1544 : /*
1545 : * Compute columns that actually need to be stored in hashtable entries. The
1546 : * incoming tuples from the child plan node will contain grouping columns,
1547 : * other columns referenced in our targetlist and qual, columns used to
1548 : * compute the aggregate functions, and perhaps just junk columns we don't use
1549 : * at all. Only columns of the first two types need to be stored in the
1550 : * hashtable, and getting rid of the others can make the table entries
1551 : * significantly smaller. The hashtable only contains the relevant columns,
1552 : * and is packed/unpacked in lookup_hash_entries() / agg_retrieve_hash_table()
1553 : * into the format of the normal input descriptor.
1554 : *
1555 : * Additional columns, in addition to the columns grouped by, come from two
1556 : * sources: Firstly functionally dependent columns that we don't need to group
1557 : * by themselves, and secondly ctids for row-marks.
1558 : *
1559 : * To eliminate duplicates, we build a bitmapset of the needed columns, and
1560 : * then build an array of the columns included in the hashtable. We might
1561 : * still have duplicates if the passed-in grpColIdx has them, which can happen
1562 : * in edge cases from semijoins/distinct; these can't always be removed,
1563 : * because it's not certain that the duplicate cols will be using the same
1564 : * hash function.
1565 : *
1566 : * Note that the array is preserved over ExecReScanAgg, so we allocate it in
1567 : * the per-query context (unlike the hash table itself).
1568 : */
1569 : static void
1570 5726 : find_hash_columns(AggState *aggstate)
1571 : {
1572 : Bitmapset *base_colnos;
1573 : Bitmapset *aggregated_colnos;
1574 5726 : TupleDesc scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
1575 5726 : List *outerTlist = outerPlanState(aggstate)->plan->targetlist;
1576 5726 : int numHashes = aggstate->num_hashes;
1577 5726 : EState *estate = aggstate->ss.ps.state;
1578 : int j;
1579 :
1580 : /* Find Vars that will be needed in tlist and qual */
1581 5726 : find_cols(aggstate, &aggregated_colnos, &base_colnos);
1582 5726 : aggstate->colnos_needed = bms_union(base_colnos, aggregated_colnos);
1583 5726 : aggstate->max_colno_needed = 0;
1584 5726 : aggstate->all_cols_needed = true;
1585 :
1586 23672 : for (int i = 0; i < scanDesc->natts; i++)
1587 : {
1588 17946 : int colno = i + 1;
1589 :
1590 17946 : if (bms_is_member(colno, aggstate->colnos_needed))
1591 12278 : aggstate->max_colno_needed = colno;
1592 : else
1593 5668 : aggstate->all_cols_needed = false;
1594 : }
1595 :
1596 11954 : for (j = 0; j < numHashes; ++j)
1597 : {
1598 6228 : AggStatePerHash perhash = &aggstate->perhash[j];
1599 6228 : Bitmapset *colnos = bms_copy(base_colnos);
1600 6228 : AttrNumber *grpColIdx = perhash->aggnode->grpColIdx;
1601 6228 : List *hashTlist = NIL;
1602 : TupleDesc hashDesc;
1603 : int maxCols;
1604 : int i;
1605 :
1606 6228 : perhash->largestGrpColIdx = 0;
1607 :
1608 : /*
1609 : * If we're doing grouping sets, then some Vars might be referenced in
1610 : * tlist/qual for the benefit of other grouping sets, but not needed
1611 : * when hashing; i.e. prepare_projection_slot will null them out, so
1612 : * there'd be no point storing them. Use prepare_projection_slot's
1613 : * logic to determine which.
1614 : */
1615 6228 : if (aggstate->phases[0].grouped_cols)
1616 : {
1617 6228 : Bitmapset *grouped_cols = aggstate->phases[0].grouped_cols[j];
1618 : ListCell *lc;
1619 :
1620 16870 : foreach(lc, aggstate->all_grouped_cols)
1621 : {
1622 10642 : int attnum = lfirst_int(lc);
1623 :
1624 10642 : if (!bms_is_member(attnum, grouped_cols))
1625 1248 : colnos = bms_del_member(colnos, attnum);
1626 : }
1627 : }
1628 :
1629 : /*
1630 : * Compute maximum number of input columns accounting for possible
1631 : * duplications in the grpColIdx array, which can happen in some edge
1632 : * cases where HashAggregate was generated as part of a semijoin or a
1633 : * DISTINCT.
1634 : */
1635 6228 : maxCols = bms_num_members(colnos) + perhash->numCols;
1636 :
1637 6228 : perhash->hashGrpColIdxInput =
1638 6228 : palloc(maxCols * sizeof(AttrNumber));
1639 6228 : perhash->hashGrpColIdxHash =
1640 6228 : palloc(perhash->numCols * sizeof(AttrNumber));
1641 :
1642 : /* Add all the grouping columns to colnos */
1643 15628 : for (i = 0; i < perhash->numCols; i++)
1644 9400 : colnos = bms_add_member(colnos, grpColIdx[i]);
1645 :
1646 : /*
1647 : * First build mapping for columns directly hashed. These are the
1648 : * first, because they'll be accessed when computing hash values and
1649 : * comparing tuples for exact matches. We also build simple mapping
1650 : * for execGrouping, so it knows where to find the to-be-hashed /
1651 : * compared columns in the input.
1652 : */
1653 15628 : for (i = 0; i < perhash->numCols; i++)
1654 : {
1655 9400 : perhash->hashGrpColIdxInput[i] = grpColIdx[i];
1656 9400 : perhash->hashGrpColIdxHash[i] = i + 1;
1657 9400 : perhash->numhashGrpCols++;
1658 : /* delete already mapped columns */
1659 9400 : colnos = bms_del_member(colnos, grpColIdx[i]);
1660 : }
1661 :
1662 : /* and add the remaining columns */
1663 6228 : i = -1;
1664 6940 : while ((i = bms_next_member(colnos, i)) >= 0)
1665 : {
1666 712 : perhash->hashGrpColIdxInput[perhash->numhashGrpCols] = i;
1667 712 : perhash->numhashGrpCols++;
1668 : }
1669 :
1670 : /* and build a tuple descriptor for the hashtable */
1671 16340 : for (i = 0; i < perhash->numhashGrpCols; i++)
1672 : {
1673 10112 : int varNumber = perhash->hashGrpColIdxInput[i] - 1;
1674 :
1675 10112 : hashTlist = lappend(hashTlist, list_nth(outerTlist, varNumber));
1676 10112 : perhash->largestGrpColIdx =
1677 10112 : Max(varNumber + 1, perhash->largestGrpColIdx);
1678 : }
1679 :
1680 6228 : hashDesc = ExecTypeFromTL(hashTlist);
1681 :
1682 6228 : execTuplesHashPrepare(perhash->numCols,
1683 6228 : perhash->aggnode->grpOperators,
1684 : &perhash->eqfuncoids,
1685 : &perhash->hashfunctions);
1686 6228 : perhash->hashslot =
1687 6228 : ExecAllocTableSlot(&estate->es_tupleTable, hashDesc,
1688 : &TTSOpsMinimalTuple);
1689 :
1690 6228 : list_free(hashTlist);
1691 6228 : bms_free(colnos);
1692 : }
1693 :
1694 5726 : bms_free(base_colnos);
1695 5726 : }
1696 :
1697 : /*
1698 : * Estimate per-hash-table-entry overhead.
1699 : */
1700 : Size
1701 27136 : hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
1702 : {
1703 : Size tupleChunkSize;
1704 : Size pergroupChunkSize;
1705 : Size transitionChunkSize;
1706 27136 : Size tupleSize = (MAXALIGN(SizeofMinimalTupleHeader) +
1707 : tupleWidth);
1708 27136 : Size pergroupSize = numTrans * sizeof(AggStatePerGroupData);
1709 :
1710 : /*
1711 : * Entries use the Bump allocator, so the chunk sizes are the same as the
1712 : * requested sizes.
1713 : */
1714 27136 : tupleChunkSize = MAXALIGN(tupleSize);
1715 27136 : pergroupChunkSize = pergroupSize;
1716 :
1717 : /*
1718 : * Transition values use AllocSet, which has a chunk header and also uses
1719 : * power-of-two allocations.
1720 : */
1721 27136 : if (transitionSpace > 0)
1722 4774 : transitionChunkSize = CHUNKHDRSZ + pg_nextpower2_size_t(transitionSpace);
1723 : else
1724 22362 : transitionChunkSize = 0;
1725 :
1726 : return
1727 27136 : TupleHashEntrySize() +
1728 27136 : tupleChunkSize +
1729 27136 : pergroupChunkSize +
1730 : transitionChunkSize;
1731 : }
1732 :
1733 : /*
1734 : * hashagg_recompile_expressions()
1735 : *
1736 : * Identifies the right phase, compiles the right expression given the
1737 : * arguments, and then sets phase->evalfunc to that expression.
1738 : *
1739 : * Different versions of the compiled expression are needed depending on
1740 : * whether hash aggregation has spilled or not, and whether it's reading from
1741 : * the outer plan or a tape. Before spilling to disk, the expression reads
1742 : * from the outer plan and does not need to perform a NULL check. After
1743 : * HashAgg begins to spill, new groups will not be created in the hash table,
1744 : * and the AggStatePerGroup array may be NULL; therefore we need to add a null
1745 : * pointer check to the expression. Then, when reading spilled data from a
1746 : * tape, we change the outer slot type to be a fixed minimal tuple slot.
1747 : *
1748 : * It would be wasteful to recompile every time, so cache the compiled
1749 : * expressions in the AggStatePerPhase, and reuse when appropriate.
1750 : */
1751 : static void
1752 64436 : hashagg_recompile_expressions(AggState *aggstate, bool minslot, bool nullcheck)
1753 : {
1754 : AggStatePerPhase phase;
1755 64436 : int i = minslot ? 1 : 0;
1756 64436 : int j = nullcheck ? 1 : 0;
1757 :
1758 : Assert(aggstate->aggstrategy == AGG_HASHED ||
1759 : aggstate->aggstrategy == AGG_MIXED);
1760 :
1761 64436 : if (aggstate->aggstrategy == AGG_HASHED)
1762 11864 : phase = &aggstate->phases[0];
1763 : else /* AGG_MIXED */
1764 52572 : phase = &aggstate->phases[1];
1765 :
1766 64436 : if (phase->evaltrans_cache[i][j] == NULL)
1767 : {
1768 88 : const TupleTableSlotOps *outerops = aggstate->ss.ps.outerops;
1769 88 : bool outerfixed = aggstate->ss.ps.outeropsfixed;
1770 88 : bool dohash = true;
1771 88 : bool dosort = false;
1772 :
1773 : /*
1774 : * If minslot is true, that means we are processing a spilled batch
1775 : * (inside agg_refill_hash_table()), and we must not advance the
1776 : * sorted grouping sets.
1777 : */
1778 88 : if (aggstate->aggstrategy == AGG_MIXED && !minslot)
1779 12 : dosort = true;
1780 :
1781 : /* temporarily change the outerops while compiling the expression */
1782 88 : if (minslot)
1783 : {
1784 44 : aggstate->ss.ps.outerops = &TTSOpsMinimalTuple;
1785 44 : aggstate->ss.ps.outeropsfixed = true;
1786 : }
1787 :
1788 88 : phase->evaltrans_cache[i][j] = ExecBuildAggTrans(aggstate, phase,
1789 : dosort, dohash,
1790 : nullcheck);
1791 :
1792 : /* change back */
1793 88 : aggstate->ss.ps.outerops = outerops;
1794 88 : aggstate->ss.ps.outeropsfixed = outerfixed;
1795 : }
1796 :
1797 64436 : phase->evaltrans = phase->evaltrans_cache[i][j];
1798 64436 : }
1799 :
1800 : /*
1801 : * Set limits that trigger spilling to avoid exceeding hash_mem. Consider the
1802 : * number of partitions we expect to create (if we do spill).
1803 : *
1804 : * There are two limits: a memory limit, and also an ngroups limit. The
1805 : * ngroups limit becomes important when we expect transition values to grow
1806 : * substantially larger than the initial value.
1807 : */
1808 : void
1809 51742 : hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits,
1810 : Size *mem_limit, uint64 *ngroups_limit,
1811 : int *num_partitions)
1812 : {
1813 : int npartitions;
1814 : Size partition_mem;
1815 51742 : Size hash_mem_limit = get_hash_memory_limit();
1816 :
1817 : /* if not expected to spill, use all of hash_mem */
1818 51742 : if (input_groups * hashentrysize <= hash_mem_limit)
1819 : {
1820 49312 : if (num_partitions != NULL)
1821 24702 : *num_partitions = 0;
1822 49312 : *mem_limit = hash_mem_limit;
1823 49312 : *ngroups_limit = hash_mem_limit / hashentrysize;
1824 49312 : return;
1825 : }
1826 :
1827 : /*
1828 : * Calculate expected memory requirements for spilling, which is the size
1829 : * of the buffers needed for all the tapes that need to be open at once.
1830 : * Then, subtract that from the memory available for holding hash tables.
1831 : */
1832 2430 : npartitions = hash_choose_num_partitions(input_groups,
1833 : hashentrysize,
1834 : used_bits,
1835 : NULL);
1836 2430 : if (num_partitions != NULL)
1837 96 : *num_partitions = npartitions;
1838 :
1839 2430 : partition_mem =
1840 2430 : HASHAGG_READ_BUFFER_SIZE +
1841 : HASHAGG_WRITE_BUFFER_SIZE * npartitions;
1842 :
1843 : /*
1844 : * Don't set the limit below 3/4 of hash_mem. In that case, we are at the
1845 : * minimum number of partitions, so we aren't going to dramatically exceed
1846 : * work mem anyway.
1847 : */
1848 2430 : if (hash_mem_limit > 4 * partition_mem)
1849 0 : *mem_limit = hash_mem_limit - partition_mem;
1850 : else
1851 2430 : *mem_limit = hash_mem_limit * 0.75;
1852 :
1853 2430 : if (*mem_limit > hashentrysize)
1854 2430 : *ngroups_limit = *mem_limit / hashentrysize;
1855 : else
1856 0 : *ngroups_limit = 1;
1857 : }
1858 :
1859 : /*
1860 : * hash_agg_check_limits
1861 : *
1862 : * After adding a new group to the hash table, check whether we need to enter
1863 : * spill mode. Allocations may happen without adding new groups (for instance,
1864 : * if the transition state size grows), so this check is imperfect.
1865 : */
1866 : static void
1867 527230 : hash_agg_check_limits(AggState *aggstate)
1868 : {
1869 527230 : uint64 ngroups = aggstate->hash_ngroups_current;
1870 527230 : Size meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt,
1871 : true);
1872 527230 : Size entry_mem = MemoryContextMemAllocated(aggstate->hash_tablecxt,
1873 : true);
1874 527230 : Size tval_mem = MemoryContextMemAllocated(aggstate->hashcontext->ecxt_per_tuple_memory,
1875 : true);
1876 527230 : Size total_mem = meta_mem + entry_mem + tval_mem;
1877 527230 : bool do_spill = false;
1878 :
1879 : #ifdef USE_INJECTION_POINTS
1880 527230 : if (ngroups >= 1000)
1881 : {
1882 95662 : if (IS_INJECTION_POINT_ATTACHED("hash-aggregate-spill-1000"))
1883 : {
1884 10 : do_spill = true;
1885 10 : INJECTION_POINT_CACHED("hash-aggregate-spill-1000");
1886 : }
1887 : }
1888 : #endif
1889 :
1890 : /*
1891 : * Don't spill unless there's at least one group in the hash table so we
1892 : * can be sure to make progress even in edge cases.
1893 : */
1894 527230 : if (aggstate->hash_ngroups_current > 0 &&
1895 527230 : (total_mem > aggstate->hash_mem_limit ||
1896 500818 : ngroups > aggstate->hash_ngroups_limit))
1897 : {
1898 26448 : do_spill = true;
1899 : }
1900 :
1901 527230 : if (do_spill)
1902 26458 : hash_agg_enter_spill_mode(aggstate);
1903 527230 : }
1904 :
1905 : /*
1906 : * Enter "spill mode", meaning that no new groups are added to any of the hash
1907 : * tables. Tuples that would create a new group are instead spilled, and
1908 : * processed later.
1909 : */
1910 : static void
1911 26458 : hash_agg_enter_spill_mode(AggState *aggstate)
1912 : {
1913 26458 : INJECTION_POINT("hash-aggregate-enter-spill-mode");
1914 26458 : aggstate->hash_spill_mode = true;
1915 26458 : hashagg_recompile_expressions(aggstate, aggstate->table_filled, true);
1916 :
1917 26458 : if (!aggstate->hash_ever_spilled)
1918 : {
1919 : Assert(aggstate->hash_tapeset == NULL);
1920 : Assert(aggstate->hash_spills == NULL);
1921 :
1922 62 : aggstate->hash_ever_spilled = true;
1923 :
1924 62 : aggstate->hash_tapeset = LogicalTapeSetCreate(true, NULL, -1);
1925 :
1926 62 : aggstate->hash_spills = palloc(sizeof(HashAggSpill) * aggstate->num_hashes);
1927 :
1928 184 : for (int setno = 0; setno < aggstate->num_hashes; setno++)
1929 : {
1930 122 : AggStatePerHash perhash = &aggstate->perhash[setno];
1931 122 : HashAggSpill *spill = &aggstate->hash_spills[setno];
1932 :
1933 122 : hashagg_spill_init(spill, aggstate->hash_tapeset, 0,
1934 122 : perhash->aggnode->numGroups,
1935 : aggstate->hashentrysize);
1936 : }
1937 : }
1938 26458 : }
1939 :
1940 : /*
1941 : * Update metrics after filling the hash table.
1942 : *
1943 : * If reading from the outer plan, from_tape should be false; if reading from
1944 : * another tape, from_tape should be true.
1945 : */
1946 : static void
1947 42084 : hash_agg_update_metrics(AggState *aggstate, bool from_tape, int npartitions)
1948 : {
1949 : Size meta_mem;
1950 : Size entry_mem;
1951 : Size hashkey_mem;
1952 : Size buffer_mem;
1953 : Size total_mem;
1954 :
1955 42084 : if (aggstate->aggstrategy != AGG_MIXED &&
1956 15678 : aggstate->aggstrategy != AGG_HASHED)
1957 0 : return;
1958 :
1959 : /* memory for the hash table itself */
1960 42084 : meta_mem = MemoryContextMemAllocated(aggstate->hash_metacxt, true);
1961 :
1962 : /* memory for hash entries */
1963 42084 : entry_mem = MemoryContextMemAllocated(aggstate->hash_tablecxt, true);
1964 :
1965 : /* memory for byref transition states */
1966 42084 : hashkey_mem = MemoryContextMemAllocated(aggstate->hashcontext->ecxt_per_tuple_memory, true);
1967 :
1968 : /* memory for read/write tape buffers, if spilled */
1969 42084 : buffer_mem = npartitions * HASHAGG_WRITE_BUFFER_SIZE;
1970 42084 : if (from_tape)
1971 26944 : buffer_mem += HASHAGG_READ_BUFFER_SIZE;
1972 :
1973 : /* update peak mem */
1974 42084 : total_mem = meta_mem + entry_mem + hashkey_mem + buffer_mem;
1975 42084 : if (total_mem > aggstate->hash_mem_peak)
1976 4156 : aggstate->hash_mem_peak = total_mem;
1977 :
1978 : /* update disk usage */
1979 42084 : if (aggstate->hash_tapeset != NULL)
1980 : {
1981 27006 : uint64 disk_used = LogicalTapeSetBlocks(aggstate->hash_tapeset) * (BLCKSZ / 1024);
1982 :
1983 27006 : if (aggstate->hash_disk_used < disk_used)
1984 52 : aggstate->hash_disk_used = disk_used;
1985 : }
1986 :
1987 : /* update hashentrysize estimate based on contents */
1988 42084 : if (aggstate->hash_ngroups_current > 0)
1989 : {
1990 41730 : aggstate->hashentrysize =
1991 41730 : TupleHashEntrySize() +
1992 41730 : (hashkey_mem / (double) aggstate->hash_ngroups_current);
1993 : }
1994 : }
1995 :
1996 : /*
1997 : * Create memory contexts used for hash aggregation.
1998 : */
1999 : static void
2000 5726 : hash_create_memory(AggState *aggstate)
2001 : {
2002 5726 : Size maxBlockSize = ALLOCSET_DEFAULT_MAXSIZE;
2003 :
2004 : /*
2005 : * The hashcontext's per-tuple memory will be used for byref transition
2006 : * values and returned by AggCheckCallContext().
2007 : */
2008 5726 : aggstate->hashcontext = CreateWorkExprContext(aggstate->ss.ps.state);
2009 :
2010 : /*
2011 : * The meta context will be used for the bucket array of
2012 : * TupleHashEntryData (or arrays, in the case of grouping sets). As the
2013 : * hash table grows, the bucket array will double in size and the old one
2014 : * will be freed, so an AllocSet is appropriate. For large bucket arrays,
2015 : * the large allocation path will be used, so it's not worth worrying
2016 : * about wasting space due to power-of-two allocations.
2017 : */
2018 5726 : aggstate->hash_metacxt = AllocSetContextCreate(aggstate->ss.ps.state->es_query_cxt,
2019 : "HashAgg meta context",
2020 : ALLOCSET_DEFAULT_SIZES);
2021 :
2022 : /*
2023 : * The hash entries themselves, which include the grouping key
2024 : * (firstTuple) and pergroup data, are stored in the table context. The
2025 : * bump allocator can be used because the entries are not freed until the
2026 : * entire hash table is reset. The bump allocator is faster for
2027 : * allocations and avoids wasting space on the chunk header or
2028 : * power-of-two allocations.
2029 : *
2030 : * Like CreateWorkExprContext(), use smaller sizings for smaller work_mem,
2031 : * to avoid large jumps in memory usage.
2032 : */
2033 :
2034 : /*
2035 : * Like CreateWorkExprContext(), use smaller sizings for smaller work_mem,
2036 : * to avoid large jumps in memory usage.
2037 : */
2038 5726 : maxBlockSize = pg_prevpower2_size_t(work_mem * (Size) 1024 / 16);
2039 :
2040 : /* But no bigger than ALLOCSET_DEFAULT_MAXSIZE */
2041 5726 : maxBlockSize = Min(maxBlockSize, ALLOCSET_DEFAULT_MAXSIZE);
2042 :
2043 : /* and no smaller than ALLOCSET_DEFAULT_INITSIZE */
2044 5726 : maxBlockSize = Max(maxBlockSize, ALLOCSET_DEFAULT_INITSIZE);
2045 :
2046 5726 : aggstate->hash_tablecxt = BumpContextCreate(aggstate->ss.ps.state->es_query_cxt,
2047 : "HashAgg table context",
2048 : ALLOCSET_DEFAULT_MINSIZE,
2049 : ALLOCSET_DEFAULT_INITSIZE,
2050 : maxBlockSize);
2051 :
2052 5726 : }
2053 :
2054 : /*
2055 : * Choose a reasonable number of buckets for the initial hash table size.
2056 : */
2057 : static long
2058 4668 : hash_choose_num_buckets(double hashentrysize, long ngroups, Size memory)
2059 : {
2060 : long max_nbuckets;
2061 4668 : long nbuckets = ngroups;
2062 :
2063 4668 : max_nbuckets = memory / hashentrysize;
2064 :
2065 : /*
2066 : * Underestimating is better than overestimating. Too many buckets crowd
2067 : * out space for group keys and transition state values.
2068 : */
2069 4668 : max_nbuckets >>= 1;
2070 :
2071 4668 : if (nbuckets > max_nbuckets)
2072 72 : nbuckets = max_nbuckets;
2073 :
2074 4668 : return Max(nbuckets, 1);
2075 : }
2076 :
2077 : /*
2078 : * Determine the number of partitions to create when spilling, which will
2079 : * always be a power of two. If log2_npartitions is non-NULL, set
2080 : * *log2_npartitions to the log2() of the number of partitions.
2081 : */
2082 : static int
2083 15052 : hash_choose_num_partitions(double input_groups, double hashentrysize,
2084 : int used_bits, int *log2_npartitions)
2085 : {
2086 15052 : Size hash_mem_limit = get_hash_memory_limit();
2087 : double partition_limit;
2088 : double mem_wanted;
2089 : double dpartitions;
2090 : int npartitions;
2091 : int partition_bits;
2092 :
2093 : /*
2094 : * Avoid creating so many partitions that the memory requirements of the
2095 : * open partition files are greater than 1/4 of hash_mem.
2096 : */
2097 15052 : partition_limit =
2098 15052 : (hash_mem_limit * 0.25 - HASHAGG_READ_BUFFER_SIZE) /
2099 : HASHAGG_WRITE_BUFFER_SIZE;
2100 :
2101 15052 : mem_wanted = HASHAGG_PARTITION_FACTOR * input_groups * hashentrysize;
2102 :
2103 : /* make enough partitions so that each one is likely to fit in memory */
2104 15052 : dpartitions = 1 + (mem_wanted / hash_mem_limit);
2105 :
2106 15052 : if (dpartitions > partition_limit)
2107 14988 : dpartitions = partition_limit;
2108 :
2109 15052 : if (dpartitions < HASHAGG_MIN_PARTITIONS)
2110 15052 : dpartitions = HASHAGG_MIN_PARTITIONS;
2111 15052 : if (dpartitions > HASHAGG_MAX_PARTITIONS)
2112 0 : dpartitions = HASHAGG_MAX_PARTITIONS;
2113 :
2114 : /* HASHAGG_MAX_PARTITIONS limit makes this safe */
2115 15052 : npartitions = (int) dpartitions;
2116 :
2117 : /* ceil(log2(npartitions)) */
2118 15052 : partition_bits = my_log2(npartitions);
2119 :
2120 : /* make sure that we don't exhaust the hash bits */
2121 15052 : if (partition_bits + used_bits >= 32)
2122 0 : partition_bits = 32 - used_bits;
2123 :
2124 15052 : if (log2_npartitions != NULL)
2125 12622 : *log2_npartitions = partition_bits;
2126 :
2127 : /* number of partitions will be a power of two */
2128 15052 : npartitions = 1 << partition_bits;
2129 :
2130 15052 : return npartitions;
2131 : }
2132 :
2133 : /*
2134 : * Initialize a freshly-created TupleHashEntry.
2135 : */
2136 : static void
2137 527230 : initialize_hash_entry(AggState *aggstate, TupleHashTable hashtable,
2138 : TupleHashEntry entry)
2139 : {
2140 : AggStatePerGroup pergroup;
2141 : int transno;
2142 :
2143 527230 : aggstate->hash_ngroups_current++;
2144 527230 : hash_agg_check_limits(aggstate);
2145 :
2146 : /* no need to allocate or initialize per-group state */
2147 527230 : if (aggstate->numtrans == 0)
2148 215422 : return;
2149 :
2150 311808 : pergroup = (AggStatePerGroup) TupleHashEntryGetAdditional(hashtable, entry);
2151 :
2152 : /*
2153 : * Initialize aggregates for new tuple group, lookup_hash_entries()
2154 : * already has selected the relevant grouping set.
2155 : */
2156 769106 : for (transno = 0; transno < aggstate->numtrans; transno++)
2157 : {
2158 457298 : AggStatePerTrans pertrans = &aggstate->pertrans[transno];
2159 457298 : AggStatePerGroup pergroupstate = &pergroup[transno];
2160 :
2161 457298 : initialize_aggregate(aggstate, pertrans, pergroupstate);
2162 : }
2163 : }
2164 :
2165 : /*
2166 : * Look up hash entries for the current tuple in all hashed grouping sets.
2167 : *
2168 : * Some entries may be left NULL if we are in "spill mode". The same tuple
2169 : * will belong to different groups for each grouping set, so may match a group
2170 : * already in memory for one set and match a group not in memory for another
2171 : * set. When in "spill mode", the tuple will be spilled for each grouping set
2172 : * where it doesn't match a group in memory.
2173 : *
2174 : * NB: It's possible to spill the same tuple for several different grouping
2175 : * sets. This may seem wasteful, but it's actually a trade-off: if we spill
2176 : * the tuple multiple times for multiple grouping sets, it can be partitioned
2177 : * for each grouping set, making the refilling of the hash table very
2178 : * efficient.
2179 : */
2180 : static void
2181 6145196 : lookup_hash_entries(AggState *aggstate)
2182 : {
2183 6145196 : AggStatePerGroup *pergroup = aggstate->hash_pergroup;
2184 6145196 : TupleTableSlot *outerslot = aggstate->tmpcontext->ecxt_outertuple;
2185 : int setno;
2186 :
2187 12424832 : for (setno = 0; setno < aggstate->num_hashes; setno++)
2188 : {
2189 6279636 : AggStatePerHash perhash = &aggstate->perhash[setno];
2190 6279636 : TupleHashTable hashtable = perhash->hashtable;
2191 6279636 : TupleTableSlot *hashslot = perhash->hashslot;
2192 : TupleHashEntry entry;
2193 : uint32 hash;
2194 6279636 : bool isnew = false;
2195 : bool *p_isnew;
2196 :
2197 : /* if hash table already spilled, don't create new entries */
2198 6279636 : p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;
2199 :
2200 6279636 : select_current_set(aggstate, setno, true);
2201 6279636 : prepare_hash_slot(perhash,
2202 : outerslot,
2203 : hashslot);
2204 :
2205 6279636 : entry = LookupTupleHashEntry(hashtable, hashslot,
2206 : p_isnew, &hash);
2207 :
2208 6279636 : if (entry != NULL)
2209 : {
2210 5512400 : if (isnew)
2211 371550 : initialize_hash_entry(aggstate, hashtable, entry);
2212 5512400 : pergroup[setno] = TupleHashEntryGetAdditional(hashtable, entry);
2213 : }
2214 : else
2215 : {
2216 767236 : HashAggSpill *spill = &aggstate->hash_spills[setno];
2217 767236 : TupleTableSlot *slot = aggstate->tmpcontext->ecxt_outertuple;
2218 :
2219 767236 : if (spill->partitions == NULL)
2220 0 : hashagg_spill_init(spill, aggstate->hash_tapeset, 0,
2221 0 : perhash->aggnode->numGroups,
2222 : aggstate->hashentrysize);
2223 :
2224 767236 : hashagg_spill_tuple(aggstate, spill, slot, hash);
2225 767236 : pergroup[setno] = NULL;
2226 : }
2227 : }
2228 6145196 : }
2229 :
2230 : /*
2231 : * ExecAgg -
2232 : *
2233 : * ExecAgg receives tuples from its outer subplan and aggregates over
2234 : * the appropriate attribute for each aggregate function use (Aggref
2235 : * node) appearing in the targetlist or qual of the node. The number
2236 : * of tuples to aggregate over depends on whether grouped or plain
2237 : * aggregation is selected. In grouped aggregation, we produce a result
2238 : * row for each group; in plain aggregation there's a single result row
2239 : * for the whole query. In either case, the value of each aggregate is
2240 : * stored in the expression context to be used when ExecProject evaluates
2241 : * the result tuple.
2242 : */
2243 : static TupleTableSlot *
2244 818542 : ExecAgg(PlanState *pstate)
2245 : {
2246 818542 : AggState *node = castNode(AggState, pstate);
2247 818542 : TupleTableSlot *result = NULL;
2248 :
2249 818542 : CHECK_FOR_INTERRUPTS();
2250 :
2251 818542 : if (!node->agg_done)
2252 : {
2253 : /* Dispatch based on strategy */
2254 754532 : switch (node->phase->aggstrategy)
2255 : {
2256 481904 : case AGG_HASHED:
2257 481904 : if (!node->table_filled)
2258 14996 : agg_fill_hash_table(node);
2259 : /* FALLTHROUGH */
2260 : case AGG_MIXED:
2261 509266 : result = agg_retrieve_hash_table(node);
2262 509266 : break;
2263 245266 : case AGG_PLAIN:
2264 : case AGG_SORTED:
2265 245266 : result = agg_retrieve_direct(node);
2266 245146 : break;
2267 : }
2268 :
2269 754412 : if (!TupIsNull(result))
2270 737684 : return result;
2271 : }
2272 :
2273 80738 : return NULL;
2274 : }
2275 :
2276 : /*
2277 : * ExecAgg for non-hashed case
2278 : */
2279 : static TupleTableSlot *
2280 245266 : agg_retrieve_direct(AggState *aggstate)
2281 : {
2282 245266 : Agg *node = aggstate->phase->aggnode;
2283 : ExprContext *econtext;
2284 : ExprContext *tmpcontext;
2285 : AggStatePerAgg peragg;
2286 : AggStatePerGroup *pergroups;
2287 : TupleTableSlot *outerslot;
2288 : TupleTableSlot *firstSlot;
2289 : TupleTableSlot *result;
2290 245266 : bool hasGroupingSets = aggstate->phase->numsets > 0;
2291 245266 : int numGroupingSets = Max(aggstate->phase->numsets, 1);
2292 : int currentSet;
2293 : int nextSetSize;
2294 : int numReset;
2295 : int i;
2296 :
2297 : /*
2298 : * get state info from node
2299 : *
2300 : * econtext is the per-output-tuple expression context
2301 : *
2302 : * tmpcontext is the per-input-tuple expression context
2303 : */
2304 245266 : econtext = aggstate->ss.ps.ps_ExprContext;
2305 245266 : tmpcontext = aggstate->tmpcontext;
2306 :
2307 245266 : peragg = aggstate->peragg;
2308 245266 : pergroups = aggstate->pergroups;
2309 245266 : firstSlot = aggstate->ss.ss_ScanTupleSlot;
2310 :
2311 : /*
2312 : * We loop retrieving groups until we find one matching
2313 : * aggstate->ss.ps.qual
2314 : *
2315 : * For grouping sets, we have the invariant that aggstate->projected_set
2316 : * is either -1 (initial call) or the index (starting from 0) in
2317 : * gset_lengths for the group we just completed (either by projecting a
2318 : * row or by discarding it in the qual).
2319 : */
2320 316070 : while (!aggstate->agg_done)
2321 : {
2322 : /*
2323 : * Clear the per-output-tuple context for each group, as well as
2324 : * aggcontext (which contains any pass-by-ref transvalues of the old
2325 : * group). Some aggregate functions store working state in child
2326 : * contexts; those now get reset automatically without us needing to
2327 : * do anything special.
2328 : *
2329 : * We use ReScanExprContext not just ResetExprContext because we want
2330 : * any registered shutdown callbacks to be called. That allows
2331 : * aggregate functions to ensure they've cleaned up any non-memory
2332 : * resources.
2333 : */
2334 315864 : ReScanExprContext(econtext);
2335 :
2336 : /*
2337 : * Determine how many grouping sets need to be reset at this boundary.
2338 : */
2339 315864 : if (aggstate->projected_set >= 0 &&
2340 246218 : aggstate->projected_set < numGroupingSets)
2341 246212 : numReset = aggstate->projected_set + 1;
2342 : else
2343 69652 : numReset = numGroupingSets;
2344 :
2345 : /*
2346 : * numReset can change on a phase boundary, but that's OK; we want to
2347 : * reset the contexts used in _this_ phase, and later, after possibly
2348 : * changing phase, initialize the right number of aggregates for the
2349 : * _new_ phase.
2350 : */
2351 :
2352 653982 : for (i = 0; i < numReset; i++)
2353 : {
2354 338118 : ReScanExprContext(aggstate->aggcontexts[i]);
2355 : }
2356 :
2357 : /*
2358 : * Check if input is complete and there are no more groups to project
2359 : * in this phase; move to next phase or mark as done.
2360 : */
2361 315864 : if (aggstate->input_done == true &&
2362 1578 : aggstate->projected_set >= (numGroupingSets - 1))
2363 : {
2364 768 : if (aggstate->current_phase < aggstate->numphases - 1)
2365 : {
2366 198 : initialize_phase(aggstate, aggstate->current_phase + 1);
2367 198 : aggstate->input_done = false;
2368 198 : aggstate->projected_set = -1;
2369 198 : numGroupingSets = Max(aggstate->phase->numsets, 1);
2370 198 : node = aggstate->phase->aggnode;
2371 198 : numReset = numGroupingSets;
2372 : }
2373 570 : else if (aggstate->aggstrategy == AGG_MIXED)
2374 : {
2375 : /*
2376 : * Mixed mode; we've output all the grouped stuff and have
2377 : * full hashtables, so switch to outputting those.
2378 : */
2379 156 : initialize_phase(aggstate, 0);
2380 156 : aggstate->table_filled = true;
2381 156 : ResetTupleHashIterator(aggstate->perhash[0].hashtable,
2382 : &aggstate->perhash[0].hashiter);
2383 156 : select_current_set(aggstate, 0, true);
2384 156 : return agg_retrieve_hash_table(aggstate);
2385 : }
2386 : else
2387 : {
2388 414 : aggstate->agg_done = true;
2389 414 : break;
2390 : }
2391 : }
2392 :
2393 : /*
2394 : * Get the number of columns in the next grouping set after the last
2395 : * projected one (if any). This is the number of columns to compare to
2396 : * see if we reached the boundary of that set too.
2397 : */
2398 315294 : if (aggstate->projected_set >= 0 &&
2399 245450 : aggstate->projected_set < (numGroupingSets - 1))
2400 27282 : nextSetSize = aggstate->phase->gset_lengths[aggstate->projected_set + 1];
2401 : else
2402 288012 : nextSetSize = 0;
2403 :
2404 : /*----------
2405 : * If a subgroup for the current grouping set is present, project it.
2406 : *
2407 : * We have a new group if:
2408 : * - we're out of input but haven't projected all grouping sets
2409 : * (checked above)
2410 : * OR
2411 : * - we already projected a row that wasn't from the last grouping
2412 : * set
2413 : * AND
2414 : * - the next grouping set has at least one grouping column (since
2415 : * empty grouping sets project only once input is exhausted)
2416 : * AND
2417 : * - the previous and pending rows differ on the grouping columns
2418 : * of the next grouping set
2419 : *----------
2420 : */
2421 315294 : tmpcontext->ecxt_innertuple = econtext->ecxt_outertuple;
2422 315294 : if (aggstate->input_done ||
2423 314484 : (node->aggstrategy != AGG_PLAIN &&
2424 246370 : aggstate->projected_set != -1 &&
2425 244640 : aggstate->projected_set < (numGroupingSets - 1) &&
2426 19940 : nextSetSize > 0 &&
2427 19940 : !ExecQualAndReset(aggstate->phase->eqfunctions[nextSetSize - 1],
2428 : tmpcontext)))
2429 : {
2430 14144 : aggstate->projected_set += 1;
2431 :
2432 : Assert(aggstate->projected_set < numGroupingSets);
2433 14144 : Assert(nextSetSize > 0 || aggstate->input_done);
2434 : }
2435 : else
2436 : {
2437 : /*
2438 : * We no longer care what group we just projected, the next
2439 : * projection will always be the first (or only) grouping set
2440 : * (unless the input proves to be empty).
2441 : */
2442 301150 : aggstate->projected_set = 0;
2443 :
2444 : /*
2445 : * If we don't already have the first tuple of the new group,
2446 : * fetch it from the outer plan.
2447 : */
2448 301150 : if (aggstate->grp_firstTuple == NULL)
2449 : {
2450 69844 : outerslot = fetch_input_tuple(aggstate);
2451 69826 : if (!TupIsNull(outerslot))
2452 : {
2453 : /*
2454 : * Make a copy of the first input tuple; we will use this
2455 : * for comparisons (in group mode) and for projection.
2456 : */
2457 56484 : aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
2458 : }
2459 : else
2460 : {
2461 : /* outer plan produced no tuples at all */
2462 13342 : if (hasGroupingSets)
2463 : {
2464 : /*
2465 : * If there was no input at all, we need to project
2466 : * rows only if there are grouping sets of size 0.
2467 : * Note that this implies that there can't be any
2468 : * references to ungrouped Vars, which would otherwise
2469 : * cause issues with the empty output slot.
2470 : *
2471 : * XXX: This is no longer true, we currently deal with
2472 : * this in finalize_aggregates().
2473 : */
2474 54 : aggstate->input_done = true;
2475 :
2476 78 : while (aggstate->phase->gset_lengths[aggstate->projected_set] > 0)
2477 : {
2478 30 : aggstate->projected_set += 1;
2479 30 : if (aggstate->projected_set >= numGroupingSets)
2480 : {
2481 : /*
2482 : * We can't set agg_done here because we might
2483 : * have more phases to do, even though the
2484 : * input is empty. So we need to restart the
2485 : * whole outer loop.
2486 : */
2487 6 : break;
2488 : }
2489 : }
2490 :
2491 54 : if (aggstate->projected_set >= numGroupingSets)
2492 6 : continue;
2493 : }
2494 : else
2495 : {
2496 13288 : aggstate->agg_done = true;
2497 : /* If we are grouping, we should produce no tuples too */
2498 13288 : if (node->aggstrategy != AGG_PLAIN)
2499 162 : return NULL;
2500 : }
2501 : }
2502 : }
2503 :
2504 : /*
2505 : * Initialize working state for a new input tuple group.
2506 : */
2507 300964 : initialize_aggregates(aggstate, pergroups, numReset);
2508 :
2509 300964 : if (aggstate->grp_firstTuple != NULL)
2510 : {
2511 : /*
2512 : * Store the copied first input tuple in the tuple table slot
2513 : * reserved for it. The tuple will be deleted when it is
2514 : * cleared from the slot.
2515 : */
2516 287790 : ExecForceStoreHeapTuple(aggstate->grp_firstTuple,
2517 : firstSlot, true);
2518 287790 : aggstate->grp_firstTuple = NULL; /* don't keep two pointers */
2519 :
2520 : /* set up for first advance_aggregates call */
2521 287790 : tmpcontext->ecxt_outertuple = firstSlot;
2522 :
2523 : /*
2524 : * Process each outer-plan tuple, and then fetch the next one,
2525 : * until we exhaust the outer plan or cross a group boundary.
2526 : */
2527 : for (;;)
2528 : {
2529 : /*
2530 : * During phase 1 only of a mixed agg, we need to update
2531 : * hashtables as well in advance_aggregates.
2532 : */
2533 20802776 : if (aggstate->aggstrategy == AGG_MIXED &&
2534 38062 : aggstate->current_phase == 1)
2535 : {
2536 38062 : lookup_hash_entries(aggstate);
2537 : }
2538 :
2539 : /* Advance the aggregates (or combine functions) */
2540 20802776 : advance_aggregates(aggstate);
2541 :
2542 : /* Reset per-input-tuple context after each tuple */
2543 20802698 : ResetExprContext(tmpcontext);
2544 :
2545 20802698 : outerslot = fetch_input_tuple(aggstate);
2546 20802698 : if (TupIsNull(outerslot))
2547 : {
2548 : /* no more outer-plan tuples available */
2549 :
2550 : /* if we built hash tables, finalize any spills */
2551 56400 : if (aggstate->aggstrategy == AGG_MIXED &&
2552 144 : aggstate->current_phase == 1)
2553 144 : hashagg_finish_initial_spills(aggstate);
2554 :
2555 56400 : if (hasGroupingSets)
2556 : {
2557 714 : aggstate->input_done = true;
2558 714 : break;
2559 : }
2560 : else
2561 : {
2562 55686 : aggstate->agg_done = true;
2563 55686 : break;
2564 : }
2565 : }
2566 : /* set up for next advance_aggregates call */
2567 20746298 : tmpcontext->ecxt_outertuple = outerslot;
2568 :
2569 : /*
2570 : * If we are grouping, check whether we've crossed a group
2571 : * boundary.
2572 : */
2573 20746298 : if (node->aggstrategy != AGG_PLAIN && node->numCols > 0)
2574 : {
2575 2041948 : tmpcontext->ecxt_innertuple = firstSlot;
2576 2041948 : if (!ExecQual(aggstate->phase->eqfunctions[node->numCols - 1],
2577 : tmpcontext))
2578 : {
2579 231312 : aggstate->grp_firstTuple = ExecCopySlotHeapTuple(outerslot);
2580 231312 : break;
2581 : }
2582 : }
2583 : }
2584 : }
2585 :
2586 : /*
2587 : * Use the representative input tuple for any references to
2588 : * non-aggregated input columns in aggregate direct args, the node
2589 : * qual, and the tlist. (If we are not grouping, and there are no
2590 : * input rows at all, we will come here with an empty firstSlot
2591 : * ... but if not grouping, there can't be any references to
2592 : * non-aggregated input columns, so no problem.)
2593 : */
2594 300886 : econtext->ecxt_outertuple = firstSlot;
2595 : }
2596 :
2597 : Assert(aggstate->projected_set >= 0);
2598 :
2599 315030 : currentSet = aggstate->projected_set;
2600 :
2601 315030 : prepare_projection_slot(aggstate, econtext->ecxt_outertuple, currentSet);
2602 :
2603 315030 : select_current_set(aggstate, currentSet, false);
2604 :
2605 315030 : finalize_aggregates(aggstate,
2606 : peragg,
2607 315030 : pergroups[currentSet]);
2608 :
2609 : /*
2610 : * If there's no row to project right now, we must continue rather
2611 : * than returning a null since there might be more groups.
2612 : */
2613 315018 : result = project_aggregates(aggstate);
2614 315006 : if (result)
2615 244208 : return result;
2616 : }
2617 :
2618 : /* No more groups */
2619 620 : return NULL;
2620 : }
2621 :
2622 : /*
2623 : * ExecAgg for hashed case: read input and build hash table
2624 : */
2625 : static void
2626 14996 : agg_fill_hash_table(AggState *aggstate)
2627 : {
2628 : TupleTableSlot *outerslot;
2629 14996 : ExprContext *tmpcontext = aggstate->tmpcontext;
2630 :
2631 : /*
2632 : * Process each outer-plan tuple, and then fetch the next one, until we
2633 : * exhaust the outer plan.
2634 : */
2635 : for (;;)
2636 : {
2637 6122130 : outerslot = fetch_input_tuple(aggstate);
2638 6122130 : if (TupIsNull(outerslot))
2639 : break;
2640 :
2641 : /* set up for lookup_hash_entries and advance_aggregates */
2642 6107134 : tmpcontext->ecxt_outertuple = outerslot;
2643 :
2644 : /* Find or build hashtable entries */
2645 6107134 : lookup_hash_entries(aggstate);
2646 :
2647 : /* Advance the aggregates (or combine functions) */
2648 6107134 : advance_aggregates(aggstate);
2649 :
2650 : /*
2651 : * Reset per-input-tuple context after each tuple, but note that the
2652 : * hash lookups do this too
2653 : */
2654 6107134 : ResetExprContext(aggstate->tmpcontext);
2655 : }
2656 :
2657 : /* finalize spills, if any */
2658 14996 : hashagg_finish_initial_spills(aggstate);
2659 :
2660 14996 : aggstate->table_filled = true;
2661 : /* Initialize to walk the first hash table */
2662 14996 : select_current_set(aggstate, 0, true);
2663 14996 : ResetTupleHashIterator(aggstate->perhash[0].hashtable,
2664 : &aggstate->perhash[0].hashiter);
2665 14996 : }
2666 :
2667 : /*
2668 : * If any data was spilled during hash aggregation, reset the hash table and
2669 : * reprocess one batch of spilled data. After reprocessing a batch, the hash
2670 : * table will again contain data, ready to be consumed by
2671 : * agg_retrieve_hash_table_in_memory().
2672 : *
2673 : * Should only be called after all in memory hash table entries have been
2674 : * finalized and emitted.
2675 : *
2676 : * Return false when input is exhausted and there's no more work to be done;
2677 : * otherwise return true.
2678 : */
2679 : static bool
2680 42890 : agg_refill_hash_table(AggState *aggstate)
2681 : {
2682 : HashAggBatch *batch;
2683 : AggStatePerHash perhash;
2684 : HashAggSpill spill;
2685 42890 : LogicalTapeSet *tapeset = aggstate->hash_tapeset;
2686 42890 : bool spill_initialized = false;
2687 :
2688 42890 : if (aggstate->hash_batches == NIL)
2689 15946 : return false;
2690 :
2691 : /* hash_batches is a stack, with the top item at the end of the list */
2692 26944 : batch = llast(aggstate->hash_batches);
2693 26944 : aggstate->hash_batches = list_delete_last(aggstate->hash_batches);
2694 :
2695 26944 : hash_agg_set_limits(aggstate->hashentrysize, batch->input_card,
2696 : batch->used_bits, &aggstate->hash_mem_limit,
2697 : &aggstate->hash_ngroups_limit, NULL);
2698 :
2699 : /*
2700 : * Each batch only processes one grouping set; set the rest to NULL so
2701 : * that advance_aggregates() knows to ignore them. We don't touch
2702 : * pergroups for sorted grouping sets here, because they will be needed if
2703 : * we rescan later. The expressions for sorted grouping sets will not be
2704 : * evaluated after we recompile anyway.
2705 : */
2706 207428 : MemSet(aggstate->hash_pergroup, 0,
2707 : sizeof(AggStatePerGroup) * aggstate->num_hashes);
2708 :
2709 : /* free memory and reset hash tables */
2710 26944 : ReScanExprContext(aggstate->hashcontext);
2711 26944 : MemoryContextReset(aggstate->hash_tablecxt);
2712 207428 : for (int setno = 0; setno < aggstate->num_hashes; setno++)
2713 180484 : ResetTupleHashTable(aggstate->perhash[setno].hashtable);
2714 :
2715 26944 : aggstate->hash_ngroups_current = 0;
2716 :
2717 : /*
2718 : * In AGG_MIXED mode, hash aggregation happens in phase 1 and the output
2719 : * happens in phase 0. So, we switch to phase 1 when processing a batch,
2720 : * and back to phase 0 after the batch is done.
2721 : */
2722 : Assert(aggstate->current_phase == 0);
2723 26944 : if (aggstate->phase->aggstrategy == AGG_MIXED)
2724 : {
2725 26262 : aggstate->current_phase = 1;
2726 26262 : aggstate->phase = &aggstate->phases[aggstate->current_phase];
2727 : }
2728 :
2729 26944 : select_current_set(aggstate, batch->setno, true);
2730 :
2731 26944 : perhash = &aggstate->perhash[aggstate->current_set];
2732 :
2733 : /*
2734 : * Spilled tuples are always read back as MinimalTuples, which may be
2735 : * different from the outer plan, so recompile the aggregate expressions.
2736 : *
2737 : * We still need the NULL check, because we are only processing one
2738 : * grouping set at a time and the rest will be NULL.
2739 : */
2740 26944 : hashagg_recompile_expressions(aggstate, true, true);
2741 :
2742 26944 : INJECTION_POINT("hash-aggregate-process-batch");
2743 : for (;;)
2744 1216776 : {
2745 1243720 : TupleTableSlot *spillslot = aggstate->hash_spill_rslot;
2746 1243720 : TupleTableSlot *hashslot = perhash->hashslot;
2747 1243720 : TupleHashTable hashtable = perhash->hashtable;
2748 : TupleHashEntry entry;
2749 : MinimalTuple tuple;
2750 : uint32 hash;
2751 1243720 : bool isnew = false;
2752 1243720 : bool *p_isnew = aggstate->hash_spill_mode ? NULL : &isnew;
2753 :
2754 1243720 : CHECK_FOR_INTERRUPTS();
2755 :
2756 1243720 : tuple = hashagg_batch_read(batch, &hash);
2757 1243720 : if (tuple == NULL)
2758 26944 : break;
2759 :
2760 1216776 : ExecStoreMinimalTuple(tuple, spillslot, true);
2761 1216776 : aggstate->tmpcontext->ecxt_outertuple = spillslot;
2762 :
2763 1216776 : prepare_hash_slot(perhash,
2764 1216776 : aggstate->tmpcontext->ecxt_outertuple,
2765 : hashslot);
2766 1216776 : entry = LookupTupleHashEntryHash(hashtable, hashslot,
2767 : p_isnew, hash);
2768 :
2769 1216776 : if (entry != NULL)
2770 : {
2771 767236 : if (isnew)
2772 155680 : initialize_hash_entry(aggstate, hashtable, entry);
2773 767236 : aggstate->hash_pergroup[batch->setno] = TupleHashEntryGetAdditional(hashtable, entry);
2774 767236 : advance_aggregates(aggstate);
2775 : }
2776 : else
2777 : {
2778 449540 : if (!spill_initialized)
2779 : {
2780 : /*
2781 : * Avoid initializing the spill until we actually need it so
2782 : * that we don't assign tapes that will never be used.
2783 : */
2784 12500 : spill_initialized = true;
2785 12500 : hashagg_spill_init(&spill, tapeset, batch->used_bits,
2786 : batch->input_card, aggstate->hashentrysize);
2787 : }
2788 : /* no memory for a new group, spill */
2789 449540 : hashagg_spill_tuple(aggstate, &spill, spillslot, hash);
2790 :
2791 449540 : aggstate->hash_pergroup[batch->setno] = NULL;
2792 : }
2793 :
2794 : /*
2795 : * Reset per-input-tuple context after each tuple, but note that the
2796 : * hash lookups do this too
2797 : */
2798 1216776 : ResetExprContext(aggstate->tmpcontext);
2799 : }
2800 :
2801 26944 : LogicalTapeClose(batch->input_tape);
2802 :
2803 : /* change back to phase 0 */
2804 26944 : aggstate->current_phase = 0;
2805 26944 : aggstate->phase = &aggstate->phases[aggstate->current_phase];
2806 :
2807 26944 : if (spill_initialized)
2808 : {
2809 12500 : hashagg_spill_finish(aggstate, &spill, batch->setno);
2810 12500 : hash_agg_update_metrics(aggstate, true, spill.npartitions);
2811 : }
2812 : else
2813 14444 : hash_agg_update_metrics(aggstate, true, 0);
2814 :
2815 26944 : aggstate->hash_spill_mode = false;
2816 :
2817 : /* prepare to walk the first hash table */
2818 26944 : select_current_set(aggstate, batch->setno, true);
2819 26944 : ResetTupleHashIterator(aggstate->perhash[batch->setno].hashtable,
2820 : &aggstate->perhash[batch->setno].hashiter);
2821 :
2822 26944 : pfree(batch);
2823 :
2824 26944 : return true;
2825 : }
2826 :
2827 : /*
2828 : * ExecAgg for hashed case: retrieving groups from hash table
2829 : *
2830 : * After exhausting in-memory tuples, also try refilling the hash table using
2831 : * previously-spilled tuples. Only returns NULL after all in-memory and
2832 : * spilled tuples are exhausted.
2833 : */
2834 : static TupleTableSlot *
2835 509422 : agg_retrieve_hash_table(AggState *aggstate)
2836 : {
2837 509422 : TupleTableSlot *result = NULL;
2838 :
2839 1029842 : while (result == NULL)
2840 : {
2841 536366 : result = agg_retrieve_hash_table_in_memory(aggstate);
2842 536366 : if (result == NULL)
2843 : {
2844 42890 : if (!agg_refill_hash_table(aggstate))
2845 : {
2846 15946 : aggstate->agg_done = true;
2847 15946 : break;
2848 : }
2849 : }
2850 : }
2851 :
2852 509422 : return result;
2853 : }
2854 :
2855 : /*
2856 : * Retrieve the groups from the in-memory hash tables without considering any
2857 : * spilled tuples.
2858 : */
2859 : static TupleTableSlot *
2860 536366 : agg_retrieve_hash_table_in_memory(AggState *aggstate)
2861 : {
2862 : ExprContext *econtext;
2863 : AggStatePerAgg peragg;
2864 : AggStatePerGroup pergroup;
2865 : TupleHashEntry entry;
2866 : TupleTableSlot *firstSlot;
2867 : TupleTableSlot *result;
2868 : AggStatePerHash perhash;
2869 :
2870 : /*
2871 : * get state info from node.
2872 : *
2873 : * econtext is the per-output-tuple expression context.
2874 : */
2875 536366 : econtext = aggstate->ss.ps.ps_ExprContext;
2876 536366 : peragg = aggstate->peragg;
2877 536366 : firstSlot = aggstate->ss.ss_ScanTupleSlot;
2878 :
2879 : /*
2880 : * Note that perhash (and therefore anything accessed through it) can
2881 : * change inside the loop, as we change between grouping sets.
2882 : */
2883 536366 : perhash = &aggstate->perhash[aggstate->current_set];
2884 :
2885 : /*
2886 : * We loop retrieving groups until we find one satisfying
2887 : * aggstate->ss.ps.qual
2888 : */
2889 : for (;;)
2890 135942 : {
2891 672308 : TupleTableSlot *hashslot = perhash->hashslot;
2892 672308 : TupleHashTable hashtable = perhash->hashtable;
2893 : int i;
2894 :
2895 672308 : CHECK_FOR_INTERRUPTS();
2896 :
2897 : /*
2898 : * Find the next entry in the hash table
2899 : */
2900 672308 : entry = ScanTupleHashTable(hashtable, &perhash->hashiter);
2901 672308 : if (entry == NULL)
2902 : {
2903 143176 : int nextset = aggstate->current_set + 1;
2904 :
2905 143176 : if (nextset < aggstate->num_hashes)
2906 : {
2907 : /*
2908 : * Switch to next grouping set, reinitialize, and restart the
2909 : * loop.
2910 : */
2911 100286 : select_current_set(aggstate, nextset, true);
2912 :
2913 100286 : perhash = &aggstate->perhash[aggstate->current_set];
2914 :
2915 100286 : ResetTupleHashIterator(hashtable, &perhash->hashiter);
2916 :
2917 100286 : continue;
2918 : }
2919 : else
2920 : {
2921 42890 : return NULL;
2922 : }
2923 : }
2924 :
2925 : /*
2926 : * Clear the per-output-tuple context for each group
2927 : *
2928 : * We intentionally don't use ReScanExprContext here; if any aggs have
2929 : * registered shutdown callbacks, they mustn't be called yet, since we
2930 : * might not be done with that agg.
2931 : */
2932 529132 : ResetExprContext(econtext);
2933 :
2934 : /*
2935 : * Transform representative tuple back into one with the right
2936 : * columns.
2937 : */
2938 529132 : ExecStoreMinimalTuple(TupleHashEntryGetTuple(entry), hashslot, false);
2939 529132 : slot_getallattrs(hashslot);
2940 :
2941 529132 : ExecClearTuple(firstSlot);
2942 529132 : memset(firstSlot->tts_isnull, true,
2943 529132 : firstSlot->tts_tupleDescriptor->natts * sizeof(bool));
2944 :
2945 1393924 : for (i = 0; i < perhash->numhashGrpCols; i++)
2946 : {
2947 864792 : int varNumber = perhash->hashGrpColIdxInput[i] - 1;
2948 :
2949 864792 : firstSlot->tts_values[varNumber] = hashslot->tts_values[i];
2950 864792 : firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i];
2951 : }
2952 529132 : ExecStoreVirtualTuple(firstSlot);
2953 :
2954 529132 : pergroup = (AggStatePerGroup) TupleHashEntryGetAdditional(hashtable, entry);
2955 :
2956 : /*
2957 : * Use the representative input tuple for any references to
2958 : * non-aggregated input columns in the qual and tlist.
2959 : */
2960 529132 : econtext->ecxt_outertuple = firstSlot;
2961 :
2962 529132 : prepare_projection_slot(aggstate,
2963 : econtext->ecxt_outertuple,
2964 : aggstate->current_set);
2965 :
2966 529132 : finalize_aggregates(aggstate, peragg, pergroup);
2967 :
2968 529132 : result = project_aggregates(aggstate);
2969 529132 : if (result)
2970 493476 : return result;
2971 : }
2972 :
2973 : /* No more groups */
2974 : return NULL;
2975 : }
2976 :
2977 : /*
2978 : * hashagg_spill_init
2979 : *
2980 : * Called after we determined that spilling is necessary. Chooses the number
2981 : * of partitions to create, and initializes them.
2982 : */
2983 : static void
2984 12622 : hashagg_spill_init(HashAggSpill *spill, LogicalTapeSet *tapeset, int used_bits,
2985 : double input_groups, double hashentrysize)
2986 : {
2987 : int npartitions;
2988 : int partition_bits;
2989 :
2990 12622 : npartitions = hash_choose_num_partitions(input_groups, hashentrysize,
2991 : used_bits, &partition_bits);
2992 :
2993 : #ifdef USE_INJECTION_POINTS
2994 12622 : if (IS_INJECTION_POINT_ATTACHED("hash-aggregate-single-partition"))
2995 : {
2996 10 : npartitions = 1;
2997 10 : partition_bits = 0;
2998 10 : INJECTION_POINT_CACHED("hash-aggregate-single-partition");
2999 : }
3000 : #endif
3001 :
3002 12622 : spill->partitions = palloc0(sizeof(LogicalTape *) * npartitions);
3003 12622 : spill->ntuples = palloc0(sizeof(int64) * npartitions);
3004 12622 : spill->hll_card = palloc0(sizeof(hyperLogLogState) * npartitions);
3005 :
3006 63080 : for (int i = 0; i < npartitions; i++)
3007 50458 : spill->partitions[i] = LogicalTapeCreate(tapeset);
3008 :
3009 12622 : spill->shift = 32 - used_bits - partition_bits;
3010 12622 : if (spill->shift < 32)
3011 12612 : spill->mask = (npartitions - 1) << spill->shift;
3012 : else
3013 10 : spill->mask = 0;
3014 12622 : spill->npartitions = npartitions;
3015 :
3016 63080 : for (int i = 0; i < npartitions; i++)
3017 50458 : initHyperLogLog(&spill->hll_card[i], HASHAGG_HLL_BIT_WIDTH);
3018 12622 : }
3019 :
3020 : /*
3021 : * hashagg_spill_tuple
3022 : *
3023 : * No room for new groups in the hash table. Save for later in the appropriate
3024 : * partition.
3025 : */
3026 : static Size
3027 1216776 : hashagg_spill_tuple(AggState *aggstate, HashAggSpill *spill,
3028 : TupleTableSlot *inputslot, uint32 hash)
3029 : {
3030 : TupleTableSlot *spillslot;
3031 : int partition;
3032 : MinimalTuple tuple;
3033 : LogicalTape *tape;
3034 1216776 : int total_written = 0;
3035 : bool shouldFree;
3036 :
3037 : Assert(spill->partitions != NULL);
3038 :
3039 : /* spill only attributes that we actually need */
3040 1216776 : if (!aggstate->all_cols_needed)
3041 : {
3042 1572 : spillslot = aggstate->hash_spill_wslot;
3043 1572 : slot_getsomeattrs(inputslot, aggstate->max_colno_needed);
3044 1572 : ExecClearTuple(spillslot);
3045 4716 : for (int i = 0; i < spillslot->tts_tupleDescriptor->natts; i++)
3046 : {
3047 3144 : if (bms_is_member(i + 1, aggstate->colnos_needed))
3048 : {
3049 1572 : spillslot->tts_values[i] = inputslot->tts_values[i];
3050 1572 : spillslot->tts_isnull[i] = inputslot->tts_isnull[i];
3051 : }
3052 : else
3053 1572 : spillslot->tts_isnull[i] = true;
3054 : }
3055 1572 : ExecStoreVirtualTuple(spillslot);
3056 : }
3057 : else
3058 1215204 : spillslot = inputslot;
3059 :
3060 1216776 : tuple = ExecFetchSlotMinimalTuple(spillslot, &shouldFree);
3061 :
3062 1216776 : if (spill->shift < 32)
3063 1195776 : partition = (hash & spill->mask) >> spill->shift;
3064 : else
3065 21000 : partition = 0;
3066 :
3067 1216776 : spill->ntuples[partition]++;
3068 :
3069 : /*
3070 : * All hash values destined for a given partition have some bits in
3071 : * common, which causes bad HLL cardinality estimates. Hash the hash to
3072 : * get a more uniform distribution.
3073 : */
3074 1216776 : addHyperLogLog(&spill->hll_card[partition], hash_bytes_uint32(hash));
3075 :
3076 1216776 : tape = spill->partitions[partition];
3077 :
3078 1216776 : LogicalTapeWrite(tape, &hash, sizeof(uint32));
3079 1216776 : total_written += sizeof(uint32);
3080 :
3081 1216776 : LogicalTapeWrite(tape, tuple, tuple->t_len);
3082 1216776 : total_written += tuple->t_len;
3083 :
3084 1216776 : if (shouldFree)
3085 767236 : pfree(tuple);
3086 :
3087 1216776 : return total_written;
3088 : }
3089 :
3090 : /*
3091 : * hashagg_batch_new
3092 : *
3093 : * Construct a HashAggBatch item, which represents one iteration of HashAgg to
3094 : * be done.
3095 : */
3096 : static HashAggBatch *
3097 26944 : hashagg_batch_new(LogicalTape *input_tape, int setno,
3098 : int64 input_tuples, double input_card, int used_bits)
3099 : {
3100 26944 : HashAggBatch *batch = palloc0(sizeof(HashAggBatch));
3101 :
3102 26944 : batch->setno = setno;
3103 26944 : batch->used_bits = used_bits;
3104 26944 : batch->input_tape = input_tape;
3105 26944 : batch->input_tuples = input_tuples;
3106 26944 : batch->input_card = input_card;
3107 :
3108 26944 : return batch;
3109 : }
3110 :
3111 : /*
3112 : * hashagg_batch_read
3113 : * read the next tuple from a batch's tape. Return NULL if no more.
3114 : */
3115 : static MinimalTuple
3116 1243720 : hashagg_batch_read(HashAggBatch *batch, uint32 *hashp)
3117 : {
3118 1243720 : LogicalTape *tape = batch->input_tape;
3119 : MinimalTuple tuple;
3120 : uint32 t_len;
3121 : size_t nread;
3122 : uint32 hash;
3123 :
3124 1243720 : nread = LogicalTapeRead(tape, &hash, sizeof(uint32));
3125 1243720 : if (nread == 0)
3126 26944 : return NULL;
3127 1216776 : if (nread != sizeof(uint32))
3128 0 : ereport(ERROR,
3129 : (errcode_for_file_access(),
3130 : errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
3131 : tape, sizeof(uint32), nread)));
3132 1216776 : if (hashp != NULL)
3133 1216776 : *hashp = hash;
3134 :
3135 1216776 : nread = LogicalTapeRead(tape, &t_len, sizeof(t_len));
3136 1216776 : if (nread != sizeof(uint32))
3137 0 : ereport(ERROR,
3138 : (errcode_for_file_access(),
3139 : errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
3140 : tape, sizeof(uint32), nread)));
3141 :
3142 1216776 : tuple = (MinimalTuple) palloc(t_len);
3143 1216776 : tuple->t_len = t_len;
3144 :
3145 1216776 : nread = LogicalTapeRead(tape,
3146 : (char *) tuple + sizeof(uint32),
3147 : t_len - sizeof(uint32));
3148 1216776 : if (nread != t_len - sizeof(uint32))
3149 0 : ereport(ERROR,
3150 : (errcode_for_file_access(),
3151 : errmsg_internal("unexpected EOF for tape %p: requested %zu bytes, read %zu bytes",
3152 : tape, t_len - sizeof(uint32), nread)));
3153 :
3154 1216776 : return tuple;
3155 : }
3156 :
3157 : /*
3158 : * hashagg_finish_initial_spills
3159 : *
3160 : * After a HashAggBatch has been processed, it may have spilled tuples to
3161 : * disk. If so, turn the spilled partitions into new batches that must later
3162 : * be executed.
3163 : */
3164 : static void
3165 15140 : hashagg_finish_initial_spills(AggState *aggstate)
3166 : {
3167 : int setno;
3168 15140 : int total_npartitions = 0;
3169 :
3170 15140 : if (aggstate->hash_spills != NULL)
3171 : {
3172 184 : for (setno = 0; setno < aggstate->num_hashes; setno++)
3173 : {
3174 122 : HashAggSpill *spill = &aggstate->hash_spills[setno];
3175 :
3176 122 : total_npartitions += spill->npartitions;
3177 122 : hashagg_spill_finish(aggstate, spill, setno);
3178 : }
3179 :
3180 : /*
3181 : * We're not processing tuples from outer plan any more; only
3182 : * processing batches of spilled tuples. The initial spill structures
3183 : * are no longer needed.
3184 : */
3185 62 : pfree(aggstate->hash_spills);
3186 62 : aggstate->hash_spills = NULL;
3187 : }
3188 :
3189 15140 : hash_agg_update_metrics(aggstate, false, total_npartitions);
3190 15140 : aggstate->hash_spill_mode = false;
3191 15140 : }
3192 :
3193 : /*
3194 : * hashagg_spill_finish
3195 : *
3196 : * Transform spill partitions into new batches.
3197 : */
3198 : static void
3199 12622 : hashagg_spill_finish(AggState *aggstate, HashAggSpill *spill, int setno)
3200 : {
3201 : int i;
3202 12622 : int used_bits = 32 - spill->shift;
3203 :
3204 12622 : if (spill->npartitions == 0)
3205 0 : return; /* didn't spill */
3206 :
3207 63080 : for (i = 0; i < spill->npartitions; i++)
3208 : {
3209 50458 : LogicalTape *tape = spill->partitions[i];
3210 : HashAggBatch *new_batch;
3211 : double cardinality;
3212 :
3213 : /* if the partition is empty, don't create a new batch of work */
3214 50458 : if (spill->ntuples[i] == 0)
3215 23514 : continue;
3216 :
3217 26944 : cardinality = estimateHyperLogLog(&spill->hll_card[i]);
3218 26944 : freeHyperLogLog(&spill->hll_card[i]);
3219 :
3220 : /* rewinding frees the buffer while not in use */
3221 26944 : LogicalTapeRewindForRead(tape, HASHAGG_READ_BUFFER_SIZE);
3222 :
3223 26944 : new_batch = hashagg_batch_new(tape, setno,
3224 26944 : spill->ntuples[i], cardinality,
3225 : used_bits);
3226 26944 : aggstate->hash_batches = lappend(aggstate->hash_batches, new_batch);
3227 26944 : aggstate->hash_batches_used++;
3228 : }
3229 :
3230 12622 : pfree(spill->ntuples);
3231 12622 : pfree(spill->hll_card);
3232 12622 : pfree(spill->partitions);
3233 : }
3234 :
3235 : /*
3236 : * Free resources related to a spilled HashAgg.
3237 : */
3238 : static void
3239 59030 : hashagg_reset_spill_state(AggState *aggstate)
3240 : {
3241 : /* free spills from initial pass */
3242 59030 : if (aggstate->hash_spills != NULL)
3243 : {
3244 : int setno;
3245 :
3246 0 : for (setno = 0; setno < aggstate->num_hashes; setno++)
3247 : {
3248 0 : HashAggSpill *spill = &aggstate->hash_spills[setno];
3249 :
3250 0 : pfree(spill->ntuples);
3251 0 : pfree(spill->partitions);
3252 : }
3253 0 : pfree(aggstate->hash_spills);
3254 0 : aggstate->hash_spills = NULL;
3255 : }
3256 :
3257 : /* free batches */
3258 59030 : list_free_deep(aggstate->hash_batches);
3259 59030 : aggstate->hash_batches = NIL;
3260 :
3261 : /* close tape set */
3262 59030 : if (aggstate->hash_tapeset != NULL)
3263 : {
3264 62 : LogicalTapeSetClose(aggstate->hash_tapeset);
3265 62 : aggstate->hash_tapeset = NULL;
3266 : }
3267 59030 : }
3268 :
3269 :
3270 : /* -----------------
3271 : * ExecInitAgg
3272 : *
3273 : * Creates the run-time information for the agg node produced by the
3274 : * planner and initializes its outer subtree.
3275 : *
3276 : * -----------------
3277 : */
3278 : AggState *
3279 48134 : ExecInitAgg(Agg *node, EState *estate, int eflags)
3280 : {
3281 : AggState *aggstate;
3282 : AggStatePerAgg peraggs;
3283 : AggStatePerTrans pertransstates;
3284 : AggStatePerGroup *pergroups;
3285 : Plan *outerPlan;
3286 : ExprContext *econtext;
3287 : TupleDesc scanDesc;
3288 : int max_aggno;
3289 : int max_transno;
3290 : int numaggrefs;
3291 : int numaggs;
3292 : int numtrans;
3293 : int phase;
3294 : int phaseidx;
3295 : ListCell *l;
3296 48134 : Bitmapset *all_grouped_cols = NULL;
3297 48134 : int numGroupingSets = 1;
3298 : int numPhases;
3299 : int numHashes;
3300 48134 : int i = 0;
3301 48134 : int j = 0;
3302 90774 : bool use_hashing = (node->aggstrategy == AGG_HASHED ||
3303 42640 : node->aggstrategy == AGG_MIXED);
3304 :
3305 : /* check for unsupported flags */
3306 : Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
3307 :
3308 : /*
3309 : * create state structure
3310 : */
3311 48134 : aggstate = makeNode(AggState);
3312 48134 : aggstate->ss.ps.plan = (Plan *) node;
3313 48134 : aggstate->ss.ps.state = estate;
3314 48134 : aggstate->ss.ps.ExecProcNode = ExecAgg;
3315 :
3316 48134 : aggstate->aggs = NIL;
3317 48134 : aggstate->numaggs = 0;
3318 48134 : aggstate->numtrans = 0;
3319 48134 : aggstate->aggstrategy = node->aggstrategy;
3320 48134 : aggstate->aggsplit = node->aggsplit;
3321 48134 : aggstate->maxsets = 0;
3322 48134 : aggstate->projected_set = -1;
3323 48134 : aggstate->current_set = 0;
3324 48134 : aggstate->peragg = NULL;
3325 48134 : aggstate->pertrans = NULL;
3326 48134 : aggstate->curperagg = NULL;
3327 48134 : aggstate->curpertrans = NULL;
3328 48134 : aggstate->input_done = false;
3329 48134 : aggstate->agg_done = false;
3330 48134 : aggstate->pergroups = NULL;
3331 48134 : aggstate->grp_firstTuple = NULL;
3332 48134 : aggstate->sort_in = NULL;
3333 48134 : aggstate->sort_out = NULL;
3334 :
3335 : /*
3336 : * phases[0] always exists, but is dummy in sorted/plain mode
3337 : */
3338 48134 : numPhases = (use_hashing ? 1 : 2);
3339 48134 : numHashes = (use_hashing ? 1 : 0);
3340 :
3341 : /*
3342 : * Calculate the maximum number of grouping sets in any phase; this
3343 : * determines the size of some allocations. Also calculate the number of
3344 : * phases, since all hashed/mixed nodes contribute to only a single phase.
3345 : */
3346 48134 : if (node->groupingSets)
3347 : {
3348 860 : numGroupingSets = list_length(node->groupingSets);
3349 :
3350 1834 : foreach(l, node->chain)
3351 : {
3352 974 : Agg *agg = lfirst(l);
3353 :
3354 974 : numGroupingSets = Max(numGroupingSets,
3355 : list_length(agg->groupingSets));
3356 :
3357 : /*
3358 : * additional AGG_HASHED aggs become part of phase 0, but all
3359 : * others add an extra phase.
3360 : */
3361 974 : if (agg->aggstrategy != AGG_HASHED)
3362 472 : ++numPhases;
3363 : else
3364 502 : ++numHashes;
3365 : }
3366 : }
3367 :
3368 48134 : aggstate->maxsets = numGroupingSets;
3369 48134 : aggstate->numphases = numPhases;
3370 :
3371 48134 : aggstate->aggcontexts = (ExprContext **)
3372 48134 : palloc0(sizeof(ExprContext *) * numGroupingSets);
3373 :
3374 : /*
3375 : * Create expression contexts. We need three or more, one for
3376 : * per-input-tuple processing, one for per-output-tuple processing, one
3377 : * for all the hashtables, and one for each grouping set. The per-tuple
3378 : * memory context of the per-grouping-set ExprContexts (aggcontexts)
3379 : * replaces the standalone memory context formerly used to hold transition
3380 : * values. We cheat a little by using ExecAssignExprContext() to build
3381 : * all of them.
3382 : *
3383 : * NOTE: the details of what is stored in aggcontexts and what is stored
3384 : * in the regular per-query memory context are driven by a simple
3385 : * decision: we want to reset the aggcontext at group boundaries (if not
3386 : * hashing) and in ExecReScanAgg to recover no-longer-wanted space.
3387 : */
3388 48134 : ExecAssignExprContext(estate, &aggstate->ss.ps);
3389 48134 : aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext;
3390 :
3391 97108 : for (i = 0; i < numGroupingSets; ++i)
3392 : {
3393 48974 : ExecAssignExprContext(estate, &aggstate->ss.ps);
3394 48974 : aggstate->aggcontexts[i] = aggstate->ss.ps.ps_ExprContext;
3395 : }
3396 :
3397 48134 : if (use_hashing)
3398 5726 : hash_create_memory(aggstate);
3399 :
3400 48134 : ExecAssignExprContext(estate, &aggstate->ss.ps);
3401 :
3402 : /*
3403 : * Initialize child nodes.
3404 : *
3405 : * If we are doing a hashed aggregation then the child plan does not need
3406 : * to handle REWIND efficiently; see ExecReScanAgg.
3407 : */
3408 48134 : if (node->aggstrategy == AGG_HASHED)
3409 5494 : eflags &= ~EXEC_FLAG_REWIND;
3410 48134 : outerPlan = outerPlan(node);
3411 48134 : outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags);
3412 :
3413 : /*
3414 : * initialize source tuple type.
3415 : */
3416 48134 : aggstate->ss.ps.outerops =
3417 48134 : ExecGetResultSlotOps(outerPlanState(&aggstate->ss),
3418 : &aggstate->ss.ps.outeropsfixed);
3419 48134 : aggstate->ss.ps.outeropsset = true;
3420 :
3421 48134 : ExecCreateScanSlotFromOuterPlan(estate, &aggstate->ss,
3422 : aggstate->ss.ps.outerops);
3423 48134 : scanDesc = aggstate->ss.ss_ScanTupleSlot->tts_tupleDescriptor;
3424 :
3425 : /*
3426 : * If there are more than two phases (including a potential dummy phase
3427 : * 0), input will be resorted using tuplesort. Need a slot for that.
3428 : */
3429 48134 : if (numPhases > 2)
3430 : {
3431 198 : aggstate->sort_slot = ExecInitExtraTupleSlot(estate, scanDesc,
3432 : &TTSOpsMinimalTuple);
3433 :
3434 : /*
3435 : * The output of the tuplesort, and the output from the outer child
3436 : * might not use the same type of slot. In most cases the child will
3437 : * be a Sort, and thus return a TTSOpsMinimalTuple type slot - but the
3438 : * input can also be presorted due an index, in which case it could be
3439 : * a different type of slot.
3440 : *
3441 : * XXX: For efficiency it would be good to instead/additionally
3442 : * generate expressions with corresponding settings of outerops* for
3443 : * the individual phases - deforming is often a bottleneck for
3444 : * aggregations with lots of rows per group. If there's multiple
3445 : * sorts, we know that all but the first use TTSOpsMinimalTuple (via
3446 : * the nodeAgg.c internal tuplesort).
3447 : */
3448 198 : if (aggstate->ss.ps.outeropsfixed &&
3449 198 : aggstate->ss.ps.outerops != &TTSOpsMinimalTuple)
3450 12 : aggstate->ss.ps.outeropsfixed = false;
3451 : }
3452 :
3453 : /*
3454 : * Initialize result type, slot and projection.
3455 : */
3456 48134 : ExecInitResultTupleSlotTL(&aggstate->ss.ps, &TTSOpsVirtual);
3457 48134 : ExecAssignProjectionInfo(&aggstate->ss.ps, NULL);
3458 :
3459 : /*
3460 : * initialize child expressions
3461 : *
3462 : * We expect the parser to have checked that no aggs contain other agg
3463 : * calls in their arguments (and just to be sure, we verify it again while
3464 : * initializing the plan node). This would make no sense under SQL
3465 : * semantics, and it's forbidden by the spec. Because it is true, we
3466 : * don't need to worry about evaluating the aggs in any particular order.
3467 : *
3468 : * Note: execExpr.c finds Aggrefs for us, and adds them to aggstate->aggs.
3469 : * Aggrefs in the qual are found here; Aggrefs in the targetlist are found
3470 : * during ExecAssignProjectionInfo, above.
3471 : */
3472 48134 : aggstate->ss.ps.qual =
3473 48134 : ExecInitQual(node->plan.qual, (PlanState *) aggstate);
3474 :
3475 : /*
3476 : * We should now have found all Aggrefs in the targetlist and quals.
3477 : */
3478 48134 : numaggrefs = list_length(aggstate->aggs);
3479 48134 : max_aggno = -1;
3480 48134 : max_transno = -1;
3481 101768 : foreach(l, aggstate->aggs)
3482 : {
3483 53634 : Aggref *aggref = (Aggref *) lfirst(l);
3484 :
3485 53634 : max_aggno = Max(max_aggno, aggref->aggno);
3486 53634 : max_transno = Max(max_transno, aggref->aggtransno);
3487 : }
3488 48134 : aggstate->numaggs = numaggs = max_aggno + 1;
3489 48134 : aggstate->numtrans = numtrans = max_transno + 1;
3490 :
3491 : /*
3492 : * For each phase, prepare grouping set data and fmgr lookup data for
3493 : * compare functions. Accumulate all_grouped_cols in passing.
3494 : */
3495 48134 : aggstate->phases = palloc0(numPhases * sizeof(AggStatePerPhaseData));
3496 :
3497 48134 : aggstate->num_hashes = numHashes;
3498 48134 : if (numHashes)
3499 : {
3500 5726 : aggstate->perhash = palloc0(sizeof(AggStatePerHashData) * numHashes);
3501 5726 : aggstate->phases[0].numsets = 0;
3502 5726 : aggstate->phases[0].gset_lengths = palloc(numHashes * sizeof(int));
3503 5726 : aggstate->phases[0].grouped_cols = palloc(numHashes * sizeof(Bitmapset *));
3504 : }
3505 :
3506 48134 : phase = 0;
3507 97242 : for (phaseidx = 0; phaseidx <= list_length(node->chain); ++phaseidx)
3508 : {
3509 : Agg *aggnode;
3510 : Sort *sortnode;
3511 :
3512 49108 : if (phaseidx > 0)
3513 : {
3514 974 : aggnode = list_nth_node(Agg, node->chain, phaseidx - 1);
3515 974 : sortnode = castNode(Sort, outerPlan(aggnode));
3516 : }
3517 : else
3518 : {
3519 48134 : aggnode = node;
3520 48134 : sortnode = NULL;
3521 : }
3522 :
3523 : Assert(phase <= 1 || sortnode);
3524 :
3525 49108 : if (aggnode->aggstrategy == AGG_HASHED
3526 43112 : || aggnode->aggstrategy == AGG_MIXED)
3527 : {
3528 6228 : AggStatePerPhase phasedata = &aggstate->phases[0];
3529 : AggStatePerHash perhash;
3530 6228 : Bitmapset *cols = NULL;
3531 :
3532 : Assert(phase == 0);
3533 6228 : i = phasedata->numsets++;
3534 6228 : perhash = &aggstate->perhash[i];
3535 :
3536 : /* phase 0 always points to the "real" Agg in the hash case */
3537 6228 : phasedata->aggnode = node;
3538 6228 : phasedata->aggstrategy = node->aggstrategy;
3539 :
3540 : /* but the actual Agg node representing this hash is saved here */
3541 6228 : perhash->aggnode = aggnode;
3542 :
3543 6228 : phasedata->gset_lengths[i] = perhash->numCols = aggnode->numCols;
3544 :
3545 15628 : for (j = 0; j < aggnode->numCols; ++j)
3546 9400 : cols = bms_add_member(cols, aggnode->grpColIdx[j]);
3547 :
3548 6228 : phasedata->grouped_cols[i] = cols;
3549 :
3550 6228 : all_grouped_cols = bms_add_members(all_grouped_cols, cols);
3551 6228 : continue;
3552 : }
3553 : else
3554 : {
3555 42880 : AggStatePerPhase phasedata = &aggstate->phases[++phase];
3556 : int num_sets;
3557 :
3558 42880 : phasedata->numsets = num_sets = list_length(aggnode->groupingSets);
3559 :
3560 42880 : if (num_sets)
3561 : {
3562 934 : phasedata->gset_lengths = palloc(num_sets * sizeof(int));
3563 934 : phasedata->grouped_cols = palloc(num_sets * sizeof(Bitmapset *));
3564 :
3565 934 : i = 0;
3566 2780 : foreach(l, aggnode->groupingSets)
3567 : {
3568 1846 : int current_length = list_length(lfirst(l));
3569 1846 : Bitmapset *cols = NULL;
3570 :
3571 : /* planner forces this to be correct */
3572 3642 : for (j = 0; j < current_length; ++j)
3573 1796 : cols = bms_add_member(cols, aggnode->grpColIdx[j]);
3574 :
3575 1846 : phasedata->grouped_cols[i] = cols;
3576 1846 : phasedata->gset_lengths[i] = current_length;
3577 :
3578 1846 : ++i;
3579 : }
3580 :
3581 934 : all_grouped_cols = bms_add_members(all_grouped_cols,
3582 934 : phasedata->grouped_cols[0]);
3583 : }
3584 : else
3585 : {
3586 : Assert(phaseidx == 0);
3587 :
3588 41946 : phasedata->gset_lengths = NULL;
3589 41946 : phasedata->grouped_cols = NULL;
3590 : }
3591 :
3592 : /*
3593 : * If we are grouping, precompute fmgr lookup data for inner loop.
3594 : */
3595 42880 : if (aggnode->aggstrategy == AGG_SORTED)
3596 : {
3597 : /*
3598 : * Build a separate function for each subset of columns that
3599 : * need to be compared.
3600 : */
3601 2294 : phasedata->eqfunctions =
3602 2294 : (ExprState **) palloc0(aggnode->numCols * sizeof(ExprState *));
3603 :
3604 : /* for each grouping set */
3605 3862 : for (int k = 0; k < phasedata->numsets; k++)
3606 : {
3607 1568 : int length = phasedata->gset_lengths[k];
3608 :
3609 : /* nothing to do for empty grouping set */
3610 1568 : if (length == 0)
3611 326 : continue;
3612 :
3613 : /* if we already had one of this length, it'll do */
3614 1242 : if (phasedata->eqfunctions[length - 1] != NULL)
3615 138 : continue;
3616 :
3617 1104 : phasedata->eqfunctions[length - 1] =
3618 1104 : execTuplesMatchPrepare(scanDesc,
3619 : length,
3620 1104 : aggnode->grpColIdx,
3621 1104 : aggnode->grpOperators,
3622 1104 : aggnode->grpCollations,
3623 : (PlanState *) aggstate);
3624 : }
3625 :
3626 : /* and for all grouped columns, unless already computed */
3627 2294 : if (aggnode->numCols > 0 &&
3628 2200 : phasedata->eqfunctions[aggnode->numCols - 1] == NULL)
3629 : {
3630 1472 : phasedata->eqfunctions[aggnode->numCols - 1] =
3631 1472 : execTuplesMatchPrepare(scanDesc,
3632 : aggnode->numCols,
3633 1472 : aggnode->grpColIdx,
3634 1472 : aggnode->grpOperators,
3635 1472 : aggnode->grpCollations,
3636 : (PlanState *) aggstate);
3637 : }
3638 : }
3639 :
3640 42880 : phasedata->aggnode = aggnode;
3641 42880 : phasedata->aggstrategy = aggnode->aggstrategy;
3642 42880 : phasedata->sortnode = sortnode;
3643 : }
3644 : }
3645 :
3646 : /*
3647 : * Convert all_grouped_cols to a descending-order list.
3648 : */
3649 48134 : i = -1;
3650 58088 : while ((i = bms_next_member(all_grouped_cols, i)) >= 0)
3651 9954 : aggstate->all_grouped_cols = lcons_int(i, aggstate->all_grouped_cols);
3652 :
3653 : /*
3654 : * Set up aggregate-result storage in the output expr context, and also
3655 : * allocate my private per-agg working storage
3656 : */
3657 48134 : econtext = aggstate->ss.ps.ps_ExprContext;
3658 48134 : econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs);
3659 48134 : econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs);
3660 :
3661 48134 : peraggs = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs);
3662 48134 : pertransstates = (AggStatePerTrans) palloc0(sizeof(AggStatePerTransData) * numtrans);
3663 :
3664 48134 : aggstate->peragg = peraggs;
3665 48134 : aggstate->pertrans = pertransstates;
3666 :
3667 :
3668 48134 : aggstate->all_pergroups =
3669 48134 : (AggStatePerGroup *) palloc0(sizeof(AggStatePerGroup)
3670 48134 : * (numGroupingSets + numHashes));
3671 48134 : pergroups = aggstate->all_pergroups;
3672 :
3673 48134 : if (node->aggstrategy != AGG_HASHED)
3674 : {
3675 86120 : for (i = 0; i < numGroupingSets; i++)
3676 : {
3677 43480 : pergroups[i] = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData)
3678 : * numaggs);
3679 : }
3680 :
3681 42640 : aggstate->pergroups = pergroups;
3682 42640 : pergroups += numGroupingSets;
3683 : }
3684 :
3685 : /*
3686 : * Hashing can only appear in the initial phase.
3687 : */
3688 48134 : if (use_hashing)
3689 : {
3690 5726 : Plan *outerplan = outerPlan(node);
3691 5726 : uint64 totalGroups = 0;
3692 :
3693 5726 : aggstate->hash_spill_rslot = ExecInitExtraTupleSlot(estate, scanDesc,
3694 : &TTSOpsMinimalTuple);
3695 5726 : aggstate->hash_spill_wslot = ExecInitExtraTupleSlot(estate, scanDesc,
3696 : &TTSOpsVirtual);
3697 :
3698 : /* this is an array of pointers, not structures */
3699 5726 : aggstate->hash_pergroup = pergroups;
3700 :
3701 11452 : aggstate->hashentrysize = hash_agg_entry_size(aggstate->numtrans,
3702 5726 : outerplan->plan_width,
3703 : node->transitionSpace);
3704 :
3705 : /*
3706 : * Consider all of the grouping sets together when setting the limits
3707 : * and estimating the number of partitions. This can be inaccurate
3708 : * when there is more than one grouping set, but should still be
3709 : * reasonable.
3710 : */
3711 11954 : for (int k = 0; k < aggstate->num_hashes; k++)
3712 6228 : totalGroups += aggstate->perhash[k].aggnode->numGroups;
3713 :
3714 5726 : hash_agg_set_limits(aggstate->hashentrysize, totalGroups, 0,
3715 : &aggstate->hash_mem_limit,
3716 : &aggstate->hash_ngroups_limit,
3717 : &aggstate->hash_planned_partitions);
3718 5726 : find_hash_columns(aggstate);
3719 :
3720 : /* Skip massive memory allocation if we are just doing EXPLAIN */
3721 5726 : if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
3722 4390 : build_hash_tables(aggstate);
3723 :
3724 5726 : aggstate->table_filled = false;
3725 :
3726 : /* Initialize this to 1, meaning nothing spilled, yet */
3727 5726 : aggstate->hash_batches_used = 1;
3728 : }
3729 :
3730 : /*
3731 : * Initialize current phase-dependent values to initial phase. The initial
3732 : * phase is 1 (first sort pass) for all strategies that use sorting (if
3733 : * hashing is being done too, then phase 0 is processed last); but if only
3734 : * hashing is being done, then phase 0 is all there is.
3735 : */
3736 48134 : if (node->aggstrategy == AGG_HASHED)
3737 : {
3738 5494 : aggstate->current_phase = 0;
3739 5494 : initialize_phase(aggstate, 0);
3740 5494 : select_current_set(aggstate, 0, true);
3741 : }
3742 : else
3743 : {
3744 42640 : aggstate->current_phase = 1;
3745 42640 : initialize_phase(aggstate, 1);
3746 42640 : select_current_set(aggstate, 0, false);
3747 : }
3748 :
3749 : /*
3750 : * Perform lookups of aggregate function info, and initialize the
3751 : * unchanging fields of the per-agg and per-trans data.
3752 : */
3753 101762 : foreach(l, aggstate->aggs)
3754 : {
3755 53634 : Aggref *aggref = lfirst(l);
3756 : AggStatePerAgg peragg;
3757 : AggStatePerTrans pertrans;
3758 : Oid aggTransFnInputTypes[FUNC_MAX_ARGS];
3759 : int numAggTransFnArgs;
3760 : int numDirectArgs;
3761 : HeapTuple aggTuple;
3762 : Form_pg_aggregate aggform;
3763 : AclResult aclresult;
3764 : Oid finalfn_oid;
3765 : Oid serialfn_oid,
3766 : deserialfn_oid;
3767 : Oid aggOwner;
3768 : Expr *finalfnexpr;
3769 : Oid aggtranstype;
3770 :
3771 : /* Planner should have assigned aggregate to correct level */
3772 : Assert(aggref->agglevelsup == 0);
3773 : /* ... and the split mode should match */
3774 : Assert(aggref->aggsplit == aggstate->aggsplit);
3775 :
3776 53634 : peragg = &peraggs[aggref->aggno];
3777 :
3778 : /* Check if we initialized the state for this aggregate already. */
3779 53634 : if (peragg->aggref != NULL)
3780 472 : continue;
3781 :
3782 53162 : peragg->aggref = aggref;
3783 53162 : peragg->transno = aggref->aggtransno;
3784 :
3785 : /* Fetch the pg_aggregate row */
3786 53162 : aggTuple = SearchSysCache1(AGGFNOID,
3787 : ObjectIdGetDatum(aggref->aggfnoid));
3788 53162 : if (!HeapTupleIsValid(aggTuple))
3789 0 : elog(ERROR, "cache lookup failed for aggregate %u",
3790 : aggref->aggfnoid);
3791 53162 : aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
3792 :
3793 : /* Check permission to call aggregate function */
3794 53162 : aclresult = object_aclcheck(ProcedureRelationId, aggref->aggfnoid, GetUserId(),
3795 : ACL_EXECUTE);
3796 53162 : if (aclresult != ACLCHECK_OK)
3797 6 : aclcheck_error(aclresult, OBJECT_AGGREGATE,
3798 6 : get_func_name(aggref->aggfnoid));
3799 53156 : InvokeFunctionExecuteHook(aggref->aggfnoid);
3800 :
3801 : /* planner recorded transition state type in the Aggref itself */
3802 53156 : aggtranstype = aggref->aggtranstype;
3803 : Assert(OidIsValid(aggtranstype));
3804 :
3805 : /* Final function only required if we're finalizing the aggregates */
3806 53156 : if (DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit))
3807 4248 : peragg->finalfn_oid = finalfn_oid = InvalidOid;
3808 : else
3809 48908 : peragg->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
3810 :
3811 53156 : serialfn_oid = InvalidOid;
3812 53156 : deserialfn_oid = InvalidOid;
3813 :
3814 : /*
3815 : * Check if serialization/deserialization is required. We only do it
3816 : * for aggregates that have transtype INTERNAL.
3817 : */
3818 53156 : if (aggtranstype == INTERNALOID)
3819 : {
3820 : /*
3821 : * The planner should only have generated a serialize agg node if
3822 : * every aggregate with an INTERNAL state has a serialization
3823 : * function. Verify that.
3824 : */
3825 22260 : if (DO_AGGSPLIT_SERIALIZE(aggstate->aggsplit))
3826 : {
3827 : /* serialization only valid when not running finalfn */
3828 : Assert(DO_AGGSPLIT_SKIPFINAL(aggstate->aggsplit));
3829 :
3830 336 : if (!OidIsValid(aggform->aggserialfn))
3831 0 : elog(ERROR, "serialfunc not provided for serialization aggregation");
3832 336 : serialfn_oid = aggform->aggserialfn;
3833 : }
3834 :
3835 : /* Likewise for deserialization functions */
3836 22260 : if (DO_AGGSPLIT_DESERIALIZE(aggstate->aggsplit))
3837 : {
3838 : /* deserialization only valid when combining states */
3839 : Assert(DO_AGGSPLIT_COMBINE(aggstate->aggsplit));
3840 :
3841 120 : if (!OidIsValid(aggform->aggdeserialfn))
3842 0 : elog(ERROR, "deserialfunc not provided for deserialization aggregation");
3843 120 : deserialfn_oid = aggform->aggdeserialfn;
3844 : }
3845 : }
3846 :
3847 : /* Check that aggregate owner has permission to call component fns */
3848 : {
3849 : HeapTuple procTuple;
3850 :
3851 53156 : procTuple = SearchSysCache1(PROCOID,
3852 : ObjectIdGetDatum(aggref->aggfnoid));
3853 53156 : if (!HeapTupleIsValid(procTuple))
3854 0 : elog(ERROR, "cache lookup failed for function %u",
3855 : aggref->aggfnoid);
3856 53156 : aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
3857 53156 : ReleaseSysCache(procTuple);
3858 :
3859 53156 : if (OidIsValid(finalfn_oid))
3860 : {
3861 23702 : aclresult = object_aclcheck(ProcedureRelationId, finalfn_oid, aggOwner,
3862 : ACL_EXECUTE);
3863 23702 : if (aclresult != ACLCHECK_OK)
3864 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
3865 0 : get_func_name(finalfn_oid));
3866 23702 : InvokeFunctionExecuteHook(finalfn_oid);
3867 : }
3868 53156 : if (OidIsValid(serialfn_oid))
3869 : {
3870 336 : aclresult = object_aclcheck(ProcedureRelationId, serialfn_oid, aggOwner,
3871 : ACL_EXECUTE);
3872 336 : if (aclresult != ACLCHECK_OK)
3873 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
3874 0 : get_func_name(serialfn_oid));
3875 336 : InvokeFunctionExecuteHook(serialfn_oid);
3876 : }
3877 53156 : if (OidIsValid(deserialfn_oid))
3878 : {
3879 120 : aclresult = object_aclcheck(ProcedureRelationId, deserialfn_oid, aggOwner,
3880 : ACL_EXECUTE);
3881 120 : if (aclresult != ACLCHECK_OK)
3882 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
3883 0 : get_func_name(deserialfn_oid));
3884 120 : InvokeFunctionExecuteHook(deserialfn_oid);
3885 : }
3886 : }
3887 :
3888 : /*
3889 : * Get actual datatypes of the (nominal) aggregate inputs. These
3890 : * could be different from the agg's declared input types, when the
3891 : * agg accepts ANY or a polymorphic type.
3892 : */
3893 53156 : numAggTransFnArgs = get_aggregate_argtypes(aggref,
3894 : aggTransFnInputTypes);
3895 :
3896 : /* Count the "direct" arguments, if any */
3897 53156 : numDirectArgs = list_length(aggref->aggdirectargs);
3898 :
3899 : /* Detect how many arguments to pass to the finalfn */
3900 53156 : if (aggform->aggfinalextra)
3901 16058 : peragg->numFinalArgs = numAggTransFnArgs + 1;
3902 : else
3903 37098 : peragg->numFinalArgs = numDirectArgs + 1;
3904 :
3905 : /* Initialize any direct-argument expressions */
3906 53156 : peragg->aggdirectargs = ExecInitExprList(aggref->aggdirectargs,
3907 : (PlanState *) aggstate);
3908 :
3909 : /*
3910 : * build expression trees using actual argument & result types for the
3911 : * finalfn, if it exists and is required.
3912 : */
3913 53156 : if (OidIsValid(finalfn_oid))
3914 : {
3915 23702 : build_aggregate_finalfn_expr(aggTransFnInputTypes,
3916 : peragg->numFinalArgs,
3917 : aggtranstype,
3918 : aggref->aggtype,
3919 : aggref->inputcollid,
3920 : finalfn_oid,
3921 : &finalfnexpr);
3922 23702 : fmgr_info(finalfn_oid, &peragg->finalfn);
3923 23702 : fmgr_info_set_expr((Node *) finalfnexpr, &peragg->finalfn);
3924 : }
3925 :
3926 : /* get info about the output value's datatype */
3927 53156 : get_typlenbyval(aggref->aggtype,
3928 : &peragg->resulttypeLen,
3929 : &peragg->resulttypeByVal);
3930 :
3931 : /*
3932 : * Build working state for invoking the transition function, if we
3933 : * haven't done it already.
3934 : */
3935 53156 : pertrans = &pertransstates[aggref->aggtransno];
3936 53156 : if (pertrans->aggref == NULL)
3937 : {
3938 : Datum textInitVal;
3939 : Datum initValue;
3940 : bool initValueIsNull;
3941 : Oid transfn_oid;
3942 :
3943 : /*
3944 : * If this aggregation is performing state combines, then instead
3945 : * of using the transition function, we'll use the combine
3946 : * function.
3947 : */
3948 52898 : if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
3949 : {
3950 1354 : transfn_oid = aggform->aggcombinefn;
3951 :
3952 : /* If not set then the planner messed up */
3953 1354 : if (!OidIsValid(transfn_oid))
3954 0 : elog(ERROR, "combinefn not set for aggregate function");
3955 : }
3956 : else
3957 51544 : transfn_oid = aggform->aggtransfn;
3958 :
3959 52898 : aclresult = object_aclcheck(ProcedureRelationId, transfn_oid, aggOwner, ACL_EXECUTE);
3960 52898 : if (aclresult != ACLCHECK_OK)
3961 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
3962 0 : get_func_name(transfn_oid));
3963 52898 : InvokeFunctionExecuteHook(transfn_oid);
3964 :
3965 : /*
3966 : * initval is potentially null, so don't try to access it as a
3967 : * struct field. Must do it the hard way with SysCacheGetAttr.
3968 : */
3969 52898 : textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
3970 : Anum_pg_aggregate_agginitval,
3971 : &initValueIsNull);
3972 52898 : if (initValueIsNull)
3973 30528 : initValue = (Datum) 0;
3974 : else
3975 22370 : initValue = GetAggInitVal(textInitVal, aggtranstype);
3976 :
3977 52898 : if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
3978 : {
3979 1354 : Oid combineFnInputTypes[] = {aggtranstype,
3980 : aggtranstype};
3981 :
3982 : /*
3983 : * When combining there's only one input, the to-be-combined
3984 : * transition value. The transition value is not counted
3985 : * here.
3986 : */
3987 1354 : pertrans->numTransInputs = 1;
3988 :
3989 : /* aggcombinefn always has two arguments of aggtranstype */
3990 1354 : build_pertrans_for_aggref(pertrans, aggstate, estate,
3991 : aggref, transfn_oid, aggtranstype,
3992 : serialfn_oid, deserialfn_oid,
3993 : initValue, initValueIsNull,
3994 : combineFnInputTypes, 2);
3995 :
3996 : /*
3997 : * Ensure that a combine function to combine INTERNAL states
3998 : * is not strict. This should have been checked during CREATE
3999 : * AGGREGATE, but the strict property could have been changed
4000 : * since then.
4001 : */
4002 1354 : if (pertrans->transfn.fn_strict && aggtranstype == INTERNALOID)
4003 0 : ereport(ERROR,
4004 : (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
4005 : errmsg("combine function with transition type %s must not be declared STRICT",
4006 : format_type_be(aggtranstype))));
4007 : }
4008 : else
4009 : {
4010 : /* Detect how many arguments to pass to the transfn */
4011 51544 : if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
4012 252 : pertrans->numTransInputs = list_length(aggref->args);
4013 : else
4014 51292 : pertrans->numTransInputs = numAggTransFnArgs;
4015 :
4016 51544 : build_pertrans_for_aggref(pertrans, aggstate, estate,
4017 : aggref, transfn_oid, aggtranstype,
4018 : serialfn_oid, deserialfn_oid,
4019 : initValue, initValueIsNull,
4020 : aggTransFnInputTypes,
4021 : numAggTransFnArgs);
4022 :
4023 : /*
4024 : * If the transfn is strict and the initval is NULL, make sure
4025 : * input type and transtype are the same (or at least
4026 : * binary-compatible), so that it's OK to use the first
4027 : * aggregated input value as the initial transValue. This
4028 : * should have been checked at agg definition time, but we
4029 : * must check again in case the transfn's strictness property
4030 : * has been changed.
4031 : */
4032 51544 : if (pertrans->transfn.fn_strict && pertrans->initValueIsNull)
4033 : {
4034 5052 : if (numAggTransFnArgs <= numDirectArgs ||
4035 5052 : !IsBinaryCoercible(aggTransFnInputTypes[numDirectArgs],
4036 : aggtranstype))
4037 0 : ereport(ERROR,
4038 : (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
4039 : errmsg("aggregate %u needs to have compatible input type and transition type",
4040 : aggref->aggfnoid)));
4041 : }
4042 : }
4043 : }
4044 : else
4045 258 : pertrans->aggshared = true;
4046 53156 : ReleaseSysCache(aggTuple);
4047 : }
4048 :
4049 : /*
4050 : * Last, check whether any more aggregates got added onto the node while
4051 : * we processed the expressions for the aggregate arguments (including not
4052 : * only the regular arguments and FILTER expressions handled immediately
4053 : * above, but any direct arguments we might've handled earlier). If so,
4054 : * we have nested aggregate functions, which is semantically nonsensical,
4055 : * so complain. (This should have been caught by the parser, so we don't
4056 : * need to work hard on a helpful error message; but we defend against it
4057 : * here anyway, just to be sure.)
4058 : */
4059 48128 : if (numaggrefs != list_length(aggstate->aggs))
4060 0 : ereport(ERROR,
4061 : (errcode(ERRCODE_GROUPING_ERROR),
4062 : errmsg("aggregate function calls cannot be nested")));
4063 :
4064 : /*
4065 : * Build expressions doing all the transition work at once. We build a
4066 : * different one for each phase, as the number of transition function
4067 : * invocation can differ between phases. Note this'll work both for
4068 : * transition and combination functions (although there'll only be one
4069 : * phase in the latter case).
4070 : */
4071 139130 : for (phaseidx = 0; phaseidx < aggstate->numphases; phaseidx++)
4072 : {
4073 91002 : AggStatePerPhase phase = &aggstate->phases[phaseidx];
4074 91002 : bool dohash = false;
4075 91002 : bool dosort = false;
4076 :
4077 : /* phase 0 doesn't necessarily exist */
4078 91002 : if (!phase->aggnode)
4079 42402 : continue;
4080 :
4081 48600 : if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 1)
4082 : {
4083 : /*
4084 : * Phase one, and only phase one, in a mixed agg performs both
4085 : * sorting and aggregation.
4086 : */
4087 232 : dohash = true;
4088 232 : dosort = true;
4089 : }
4090 48368 : else if (aggstate->aggstrategy == AGG_MIXED && phaseidx == 0)
4091 : {
4092 : /*
4093 : * No need to compute a transition function for an AGG_MIXED phase
4094 : * 0 - the contents of the hashtables will have been computed
4095 : * during phase 1.
4096 : */
4097 232 : continue;
4098 : }
4099 48136 : else if (phase->aggstrategy == AGG_PLAIN ||
4100 7726 : phase->aggstrategy == AGG_SORTED)
4101 : {
4102 42642 : dohash = false;
4103 42642 : dosort = true;
4104 : }
4105 5494 : else if (phase->aggstrategy == AGG_HASHED)
4106 : {
4107 5494 : dohash = true;
4108 5494 : dosort = false;
4109 : }
4110 : else
4111 : Assert(false);
4112 :
4113 48368 : phase->evaltrans = ExecBuildAggTrans(aggstate, phase, dosort, dohash,
4114 : false);
4115 :
4116 : /* cache compiled expression for outer slot without NULL check */
4117 48368 : phase->evaltrans_cache[0][0] = phase->evaltrans;
4118 : }
4119 :
4120 48128 : return aggstate;
4121 : }
4122 :
4123 : /*
4124 : * Build the state needed to calculate a state value for an aggregate.
4125 : *
4126 : * This initializes all the fields in 'pertrans'. 'aggref' is the aggregate
4127 : * to initialize the state for. 'transfn_oid', 'aggtranstype', and the rest
4128 : * of the arguments could be calculated from 'aggref', but the caller has
4129 : * calculated them already, so might as well pass them.
4130 : *
4131 : * 'transfn_oid' may be either the Oid of the aggtransfn or the aggcombinefn.
4132 : */
4133 : static void
4134 52898 : build_pertrans_for_aggref(AggStatePerTrans pertrans,
4135 : AggState *aggstate, EState *estate,
4136 : Aggref *aggref,
4137 : Oid transfn_oid, Oid aggtranstype,
4138 : Oid aggserialfn, Oid aggdeserialfn,
4139 : Datum initValue, bool initValueIsNull,
4140 : Oid *inputTypes, int numArguments)
4141 : {
4142 52898 : int numGroupingSets = Max(aggstate->maxsets, 1);
4143 : Expr *transfnexpr;
4144 : int numTransArgs;
4145 52898 : Expr *serialfnexpr = NULL;
4146 52898 : Expr *deserialfnexpr = NULL;
4147 : ListCell *lc;
4148 : int numInputs;
4149 : int numDirectArgs;
4150 : List *sortlist;
4151 : int numSortCols;
4152 : int numDistinctCols;
4153 : int i;
4154 :
4155 : /* Begin filling in the pertrans data */
4156 52898 : pertrans->aggref = aggref;
4157 52898 : pertrans->aggshared = false;
4158 52898 : pertrans->aggCollation = aggref->inputcollid;
4159 52898 : pertrans->transfn_oid = transfn_oid;
4160 52898 : pertrans->serialfn_oid = aggserialfn;
4161 52898 : pertrans->deserialfn_oid = aggdeserialfn;
4162 52898 : pertrans->initValue = initValue;
4163 52898 : pertrans->initValueIsNull = initValueIsNull;
4164 :
4165 : /* Count the "direct" arguments, if any */
4166 52898 : numDirectArgs = list_length(aggref->aggdirectargs);
4167 :
4168 : /* Count the number of aggregated input columns */
4169 52898 : pertrans->numInputs = numInputs = list_length(aggref->args);
4170 :
4171 52898 : pertrans->aggtranstype = aggtranstype;
4172 :
4173 : /* account for the current transition state */
4174 52898 : numTransArgs = pertrans->numTransInputs + 1;
4175 :
4176 : /*
4177 : * Set up infrastructure for calling the transfn. Note that invtransfn is
4178 : * not needed here.
4179 : */
4180 52898 : build_aggregate_transfn_expr(inputTypes,
4181 : numArguments,
4182 : numDirectArgs,
4183 52898 : aggref->aggvariadic,
4184 : aggtranstype,
4185 : aggref->inputcollid,
4186 : transfn_oid,
4187 : InvalidOid,
4188 : &transfnexpr,
4189 : NULL);
4190 :
4191 52898 : fmgr_info(transfn_oid, &pertrans->transfn);
4192 52898 : fmgr_info_set_expr((Node *) transfnexpr, &pertrans->transfn);
4193 :
4194 52898 : pertrans->transfn_fcinfo =
4195 52898 : (FunctionCallInfo) palloc(SizeForFunctionCallInfo(numTransArgs));
4196 52898 : InitFunctionCallInfoData(*pertrans->transfn_fcinfo,
4197 : &pertrans->transfn,
4198 : numTransArgs,
4199 : pertrans->aggCollation,
4200 : (Node *) aggstate, NULL);
4201 :
4202 : /* get info about the state value's datatype */
4203 52898 : get_typlenbyval(aggtranstype,
4204 : &pertrans->transtypeLen,
4205 : &pertrans->transtypeByVal);
4206 :
4207 52898 : if (OidIsValid(aggserialfn))
4208 : {
4209 336 : build_aggregate_serialfn_expr(aggserialfn,
4210 : &serialfnexpr);
4211 336 : fmgr_info(aggserialfn, &pertrans->serialfn);
4212 336 : fmgr_info_set_expr((Node *) serialfnexpr, &pertrans->serialfn);
4213 :
4214 336 : pertrans->serialfn_fcinfo =
4215 336 : (FunctionCallInfo) palloc(SizeForFunctionCallInfo(1));
4216 336 : InitFunctionCallInfoData(*pertrans->serialfn_fcinfo,
4217 : &pertrans->serialfn,
4218 : 1,
4219 : InvalidOid,
4220 : (Node *) aggstate, NULL);
4221 : }
4222 :
4223 52898 : if (OidIsValid(aggdeserialfn))
4224 : {
4225 120 : build_aggregate_deserialfn_expr(aggdeserialfn,
4226 : &deserialfnexpr);
4227 120 : fmgr_info(aggdeserialfn, &pertrans->deserialfn);
4228 120 : fmgr_info_set_expr((Node *) deserialfnexpr, &pertrans->deserialfn);
4229 :
4230 120 : pertrans->deserialfn_fcinfo =
4231 120 : (FunctionCallInfo) palloc(SizeForFunctionCallInfo(2));
4232 120 : InitFunctionCallInfoData(*pertrans->deserialfn_fcinfo,
4233 : &pertrans->deserialfn,
4234 : 2,
4235 : InvalidOid,
4236 : (Node *) aggstate, NULL);
4237 : }
4238 :
4239 : /*
4240 : * If we're doing either DISTINCT or ORDER BY for a plain agg, then we
4241 : * have a list of SortGroupClause nodes; fish out the data in them and
4242 : * stick them into arrays. We ignore ORDER BY for an ordered-set agg,
4243 : * however; the agg's transfn and finalfn are responsible for that.
4244 : *
4245 : * When the planner has set the aggpresorted flag, the input to the
4246 : * aggregate is already correctly sorted. For ORDER BY aggregates we can
4247 : * simply treat these as normal aggregates. For presorted DISTINCT
4248 : * aggregates an extra step must be added to remove duplicate consecutive
4249 : * inputs.
4250 : *
4251 : * Note that by construction, if there is a DISTINCT clause then the ORDER
4252 : * BY clause is a prefix of it (see transformDistinctClause).
4253 : */
4254 52898 : if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
4255 : {
4256 252 : sortlist = NIL;
4257 252 : numSortCols = numDistinctCols = 0;
4258 252 : pertrans->aggsortrequired = false;
4259 : }
4260 52646 : else if (aggref->aggpresorted && aggref->aggdistinct == NIL)
4261 : {
4262 2014 : sortlist = NIL;
4263 2014 : numSortCols = numDistinctCols = 0;
4264 2014 : pertrans->aggsortrequired = false;
4265 : }
4266 50632 : else if (aggref->aggdistinct)
4267 : {
4268 570 : sortlist = aggref->aggdistinct;
4269 570 : numSortCols = numDistinctCols = list_length(sortlist);
4270 : Assert(numSortCols >= list_length(aggref->aggorder));
4271 570 : pertrans->aggsortrequired = !aggref->aggpresorted;
4272 : }
4273 : else
4274 : {
4275 50062 : sortlist = aggref->aggorder;
4276 50062 : numSortCols = list_length(sortlist);
4277 50062 : numDistinctCols = 0;
4278 50062 : pertrans->aggsortrequired = (numSortCols > 0);
4279 : }
4280 :
4281 52898 : pertrans->numSortCols = numSortCols;
4282 52898 : pertrans->numDistinctCols = numDistinctCols;
4283 :
4284 : /*
4285 : * If we have either sorting or filtering to do, create a tupledesc and
4286 : * slot corresponding to the aggregated inputs (including sort
4287 : * expressions) of the agg.
4288 : */
4289 52898 : if (numSortCols > 0 || aggref->aggfilter)
4290 : {
4291 1404 : pertrans->sortdesc = ExecTypeFromTL(aggref->args);
4292 1404 : pertrans->sortslot =
4293 1404 : ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
4294 : &TTSOpsMinimalTuple);
4295 : }
4296 :
4297 52898 : if (numSortCols > 0)
4298 : {
4299 : /*
4300 : * We don't implement DISTINCT or ORDER BY aggs in the HASHED case
4301 : * (yet)
4302 : */
4303 : Assert(aggstate->aggstrategy != AGG_HASHED && aggstate->aggstrategy != AGG_MIXED);
4304 :
4305 : /* ORDER BY aggregates are not supported with partial aggregation */
4306 : Assert(!DO_AGGSPLIT_COMBINE(aggstate->aggsplit));
4307 :
4308 : /* If we have only one input, we need its len/byval info. */
4309 696 : if (numInputs == 1)
4310 : {
4311 570 : get_typlenbyval(inputTypes[numDirectArgs],
4312 : &pertrans->inputtypeLen,
4313 : &pertrans->inputtypeByVal);
4314 : }
4315 126 : else if (numDistinctCols > 0)
4316 : {
4317 : /* we will need an extra slot to store prior values */
4318 96 : pertrans->uniqslot =
4319 96 : ExecInitExtraTupleSlot(estate, pertrans->sortdesc,
4320 : &TTSOpsMinimalTuple);
4321 : }
4322 :
4323 : /* Extract the sort information for use later */
4324 696 : pertrans->sortColIdx =
4325 696 : (AttrNumber *) palloc(numSortCols * sizeof(AttrNumber));
4326 696 : pertrans->sortOperators =
4327 696 : (Oid *) palloc(numSortCols * sizeof(Oid));
4328 696 : pertrans->sortCollations =
4329 696 : (Oid *) palloc(numSortCols * sizeof(Oid));
4330 696 : pertrans->sortNullsFirst =
4331 696 : (bool *) palloc(numSortCols * sizeof(bool));
4332 :
4333 696 : i = 0;
4334 1578 : foreach(lc, sortlist)
4335 : {
4336 882 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
4337 882 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, aggref->args);
4338 :
4339 : /* the parser should have made sure of this */
4340 : Assert(OidIsValid(sortcl->sortop));
4341 :
4342 882 : pertrans->sortColIdx[i] = tle->resno;
4343 882 : pertrans->sortOperators[i] = sortcl->sortop;
4344 882 : pertrans->sortCollations[i] = exprCollation((Node *) tle->expr);
4345 882 : pertrans->sortNullsFirst[i] = sortcl->nulls_first;
4346 882 : i++;
4347 : }
4348 : Assert(i == numSortCols);
4349 : }
4350 :
4351 52898 : if (aggref->aggdistinct)
4352 : {
4353 : Oid *ops;
4354 :
4355 : Assert(numArguments > 0);
4356 : Assert(list_length(aggref->aggdistinct) == numDistinctCols);
4357 :
4358 570 : ops = palloc(numDistinctCols * sizeof(Oid));
4359 :
4360 570 : i = 0;
4361 1308 : foreach(lc, aggref->aggdistinct)
4362 738 : ops[i++] = ((SortGroupClause *) lfirst(lc))->eqop;
4363 :
4364 : /* lookup / build the necessary comparators */
4365 570 : if (numDistinctCols == 1)
4366 474 : fmgr_info(get_opcode(ops[0]), &pertrans->equalfnOne);
4367 : else
4368 96 : pertrans->equalfnMulti =
4369 96 : execTuplesMatchPrepare(pertrans->sortdesc,
4370 : numDistinctCols,
4371 96 : pertrans->sortColIdx,
4372 : ops,
4373 96 : pertrans->sortCollations,
4374 : &aggstate->ss.ps);
4375 570 : pfree(ops);
4376 : }
4377 :
4378 52898 : pertrans->sortstates = (Tuplesortstate **)
4379 52898 : palloc0(sizeof(Tuplesortstate *) * numGroupingSets);
4380 52898 : }
4381 :
4382 :
4383 : static Datum
4384 22370 : GetAggInitVal(Datum textInitVal, Oid transtype)
4385 : {
4386 : Oid typinput,
4387 : typioparam;
4388 : char *strInitVal;
4389 : Datum initVal;
4390 :
4391 22370 : getTypeInputInfo(transtype, &typinput, &typioparam);
4392 22370 : strInitVal = TextDatumGetCString(textInitVal);
4393 22370 : initVal = OidInputFunctionCall(typinput, strInitVal,
4394 : typioparam, -1);
4395 22370 : pfree(strInitVal);
4396 22370 : return initVal;
4397 : }
4398 :
4399 : void
4400 47996 : ExecEndAgg(AggState *node)
4401 : {
4402 : PlanState *outerPlan;
4403 : int transno;
4404 47996 : int numGroupingSets = Max(node->maxsets, 1);
4405 : int setno;
4406 :
4407 : /*
4408 : * When ending a parallel worker, copy the statistics gathered by the
4409 : * worker back into shared memory so that it can be picked up by the main
4410 : * process to report in EXPLAIN ANALYZE.
4411 : */
4412 47996 : if (node->shared_info && IsParallelWorker())
4413 : {
4414 : AggregateInstrumentation *si;
4415 :
4416 : Assert(ParallelWorkerNumber <= node->shared_info->num_workers);
4417 166 : si = &node->shared_info->sinstrument[ParallelWorkerNumber];
4418 166 : si->hash_batches_used = node->hash_batches_used;
4419 166 : si->hash_disk_used = node->hash_disk_used;
4420 166 : si->hash_mem_peak = node->hash_mem_peak;
4421 : }
4422 :
4423 : /* Make sure we have closed any open tuplesorts */
4424 :
4425 47996 : if (node->sort_in)
4426 156 : tuplesort_end(node->sort_in);
4427 47996 : if (node->sort_out)
4428 42 : tuplesort_end(node->sort_out);
4429 :
4430 47996 : hashagg_reset_spill_state(node);
4431 :
4432 47996 : if (node->hash_metacxt != NULL)
4433 : {
4434 5718 : MemoryContextDelete(node->hash_metacxt);
4435 5718 : node->hash_metacxt = NULL;
4436 : }
4437 47996 : if (node->hash_tablecxt != NULL)
4438 : {
4439 5718 : MemoryContextDelete(node->hash_tablecxt);
4440 5718 : node->hash_tablecxt = NULL;
4441 : }
4442 :
4443 :
4444 100758 : for (transno = 0; transno < node->numtrans; transno++)
4445 : {
4446 52762 : AggStatePerTrans pertrans = &node->pertrans[transno];
4447 :
4448 106538 : for (setno = 0; setno < numGroupingSets; setno++)
4449 : {
4450 53776 : if (pertrans->sortstates[setno])
4451 0 : tuplesort_end(pertrans->sortstates[setno]);
4452 : }
4453 : }
4454 :
4455 : /* And ensure any agg shutdown callbacks have been called */
4456 96832 : for (setno = 0; setno < numGroupingSets; setno++)
4457 48836 : ReScanExprContext(node->aggcontexts[setno]);
4458 47996 : if (node->hashcontext)
4459 5718 : ReScanExprContext(node->hashcontext);
4460 :
4461 47996 : outerPlan = outerPlanState(node);
4462 47996 : ExecEndNode(outerPlan);
4463 47996 : }
4464 :
4465 : void
4466 51528 : ExecReScanAgg(AggState *node)
4467 : {
4468 51528 : ExprContext *econtext = node->ss.ps.ps_ExprContext;
4469 51528 : PlanState *outerPlan = outerPlanState(node);
4470 51528 : Agg *aggnode = (Agg *) node->ss.ps.plan;
4471 : int transno;
4472 51528 : int numGroupingSets = Max(node->maxsets, 1);
4473 : int setno;
4474 :
4475 51528 : node->agg_done = false;
4476 :
4477 51528 : if (node->aggstrategy == AGG_HASHED)
4478 : {
4479 : /*
4480 : * In the hashed case, if we haven't yet built the hash table then we
4481 : * can just return; nothing done yet, so nothing to undo. If subnode's
4482 : * chgParam is not NULL then it will be re-scanned by ExecProcNode,
4483 : * else no reason to re-scan it at all.
4484 : */
4485 12014 : if (!node->table_filled)
4486 132 : return;
4487 :
4488 : /*
4489 : * If we do have the hash table, and it never spilled, and the subplan
4490 : * does not have any parameter changes, and none of our own parameter
4491 : * changes affect input expressions of the aggregated functions, then
4492 : * we can just rescan the existing hash table; no need to build it
4493 : * again.
4494 : */
4495 11882 : if (outerPlan->chgParam == NULL && !node->hash_ever_spilled &&
4496 902 : !bms_overlap(node->ss.ps.chgParam, aggnode->aggParams))
4497 : {
4498 878 : ResetTupleHashIterator(node->perhash[0].hashtable,
4499 : &node->perhash[0].hashiter);
4500 878 : select_current_set(node, 0, true);
4501 878 : return;
4502 : }
4503 : }
4504 :
4505 : /* Make sure we have closed any open tuplesorts */
4506 117140 : for (transno = 0; transno < node->numtrans; transno++)
4507 : {
4508 133280 : for (setno = 0; setno < numGroupingSets; setno++)
4509 : {
4510 66658 : AggStatePerTrans pertrans = &node->pertrans[transno];
4511 :
4512 66658 : if (pertrans->sortstates[setno])
4513 : {
4514 0 : tuplesort_end(pertrans->sortstates[setno]);
4515 0 : pertrans->sortstates[setno] = NULL;
4516 : }
4517 : }
4518 : }
4519 :
4520 : /*
4521 : * We don't need to ReScanExprContext the output tuple context here;
4522 : * ExecReScan already did it. But we do need to reset our per-grouping-set
4523 : * contexts, which may have transvalues stored in them. (We use rescan
4524 : * rather than just reset because transfns may have registered callbacks
4525 : * that need to be run now.) For the AGG_HASHED case, see below.
4526 : */
4527 :
4528 101072 : for (setno = 0; setno < numGroupingSets; setno++)
4529 : {
4530 50554 : ReScanExprContext(node->aggcontexts[setno]);
4531 : }
4532 :
4533 : /* Release first tuple of group, if we have made a copy */
4534 50518 : if (node->grp_firstTuple != NULL)
4535 : {
4536 0 : heap_freetuple(node->grp_firstTuple);
4537 0 : node->grp_firstTuple = NULL;
4538 : }
4539 50518 : ExecClearTuple(node->ss.ss_ScanTupleSlot);
4540 :
4541 : /* Forget current agg values */
4542 117140 : MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs);
4543 50518 : MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs);
4544 :
4545 : /*
4546 : * With AGG_HASHED/MIXED, the hash table is allocated in a sub-context of
4547 : * the hashcontext. This used to be an issue, but now, resetting a context
4548 : * automatically deletes sub-contexts too.
4549 : */
4550 50518 : if (node->aggstrategy == AGG_HASHED || node->aggstrategy == AGG_MIXED)
4551 : {
4552 11034 : hashagg_reset_spill_state(node);
4553 :
4554 11034 : node->hash_ever_spilled = false;
4555 11034 : node->hash_spill_mode = false;
4556 11034 : node->hash_ngroups_current = 0;
4557 :
4558 11034 : ReScanExprContext(node->hashcontext);
4559 11034 : MemoryContextReset(node->hash_tablecxt);
4560 : /* Rebuild an empty hash table */
4561 11034 : build_hash_tables(node);
4562 11034 : node->table_filled = false;
4563 : /* iterator will be reset when the table is filled */
4564 :
4565 11034 : hashagg_recompile_expressions(node, false, false);
4566 : }
4567 :
4568 50518 : if (node->aggstrategy != AGG_HASHED)
4569 : {
4570 : /*
4571 : * Reset the per-group state (in particular, mark transvalues null)
4572 : */
4573 79064 : for (setno = 0; setno < numGroupingSets; setno++)
4574 : {
4575 172770 : MemSet(node->pergroups[setno], 0,
4576 : sizeof(AggStatePerGroupData) * node->numaggs);
4577 : }
4578 :
4579 : /* reset to phase 1 */
4580 39514 : initialize_phase(node, 1);
4581 :
4582 39514 : node->input_done = false;
4583 39514 : node->projected_set = -1;
4584 : }
4585 :
4586 50518 : if (outerPlan->chgParam == NULL)
4587 188 : ExecReScan(outerPlan);
4588 : }
4589 :
4590 :
4591 : /***********************************************************************
4592 : * API exposed to aggregate functions
4593 : ***********************************************************************/
4594 :
4595 :
4596 : /*
4597 : * AggCheckCallContext - test if a SQL function is being called as an aggregate
4598 : *
4599 : * The transition and/or final functions of an aggregate may want to verify
4600 : * that they are being called as aggregates, rather than as plain SQL
4601 : * functions. They should use this function to do so. The return value
4602 : * is nonzero if being called as an aggregate, or zero if not. (Specific
4603 : * nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more
4604 : * values could conceivably appear in future.)
4605 : *
4606 : * If aggcontext isn't NULL, the function also stores at *aggcontext the
4607 : * identity of the memory context that aggregate transition values are being
4608 : * stored in. Note that the same aggregate call site (flinfo) may be called
4609 : * interleaved on different transition values in different contexts, so it's
4610 : * not kosher to cache aggcontext under fn_extra. It is, however, kosher to
4611 : * cache it in the transvalue itself (for internal-type transvalues).
4612 : */
4613 : int
4614 5377192 : AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
4615 : {
4616 5377192 : if (fcinfo->context && IsA(fcinfo->context, AggState))
4617 : {
4618 5365806 : if (aggcontext)
4619 : {
4620 2748192 : AggState *aggstate = ((AggState *) fcinfo->context);
4621 2748192 : ExprContext *cxt = aggstate->curaggcontext;
4622 :
4623 2748192 : *aggcontext = cxt->ecxt_per_tuple_memory;
4624 : }
4625 5365806 : return AGG_CONTEXT_AGGREGATE;
4626 : }
4627 11386 : if (fcinfo->context && IsA(fcinfo->context, WindowAggState))
4628 : {
4629 9512 : if (aggcontext)
4630 710 : *aggcontext = ((WindowAggState *) fcinfo->context)->curaggcontext;
4631 9512 : return AGG_CONTEXT_WINDOW;
4632 : }
4633 :
4634 : /* this is just to prevent "uninitialized variable" warnings */
4635 1874 : if (aggcontext)
4636 1826 : *aggcontext = NULL;
4637 1874 : return 0;
4638 : }
4639 :
4640 : /*
4641 : * AggGetAggref - allow an aggregate support function to get its Aggref
4642 : *
4643 : * If the function is being called as an aggregate support function,
4644 : * return the Aggref node for the aggregate call. Otherwise, return NULL.
4645 : *
4646 : * Aggregates sharing the same inputs and transition functions can get
4647 : * merged into a single transition calculation. If the transition function
4648 : * calls AggGetAggref, it will get some one of the Aggrefs for which it is
4649 : * executing. It must therefore not pay attention to the Aggref fields that
4650 : * relate to the final function, as those are indeterminate. But if a final
4651 : * function calls AggGetAggref, it will get a precise result.
4652 : *
4653 : * Note that if an aggregate is being used as a window function, this will
4654 : * return NULL. We could provide a similar function to return the relevant
4655 : * WindowFunc node in such cases, but it's not needed yet.
4656 : */
4657 : Aggref *
4658 246 : AggGetAggref(FunctionCallInfo fcinfo)
4659 : {
4660 246 : if (fcinfo->context && IsA(fcinfo->context, AggState))
4661 : {
4662 246 : AggState *aggstate = (AggState *) fcinfo->context;
4663 : AggStatePerAgg curperagg;
4664 : AggStatePerTrans curpertrans;
4665 :
4666 : /* check curperagg (valid when in a final function) */
4667 246 : curperagg = aggstate->curperagg;
4668 :
4669 246 : if (curperagg)
4670 0 : return curperagg->aggref;
4671 :
4672 : /* check curpertrans (valid when in a transition function) */
4673 246 : curpertrans = aggstate->curpertrans;
4674 :
4675 246 : if (curpertrans)
4676 246 : return curpertrans->aggref;
4677 : }
4678 0 : return NULL;
4679 : }
4680 :
4681 : /*
4682 : * AggGetTempMemoryContext - fetch short-term memory context for aggregates
4683 : *
4684 : * This is useful in agg final functions; the context returned is one that
4685 : * the final function can safely reset as desired. This isn't useful for
4686 : * transition functions, since the context returned MAY (we don't promise)
4687 : * be the same as the context those are called in.
4688 : *
4689 : * As above, this is currently not useful for aggs called as window functions.
4690 : */
4691 : MemoryContext
4692 0 : AggGetTempMemoryContext(FunctionCallInfo fcinfo)
4693 : {
4694 0 : if (fcinfo->context && IsA(fcinfo->context, AggState))
4695 : {
4696 0 : AggState *aggstate = (AggState *) fcinfo->context;
4697 :
4698 0 : return aggstate->tmpcontext->ecxt_per_tuple_memory;
4699 : }
4700 0 : return NULL;
4701 : }
4702 :
4703 : /*
4704 : * AggStateIsShared - find out whether transition state is shared
4705 : *
4706 : * If the function is being called as an aggregate support function,
4707 : * return true if the aggregate's transition state is shared across
4708 : * multiple aggregates, false if it is not.
4709 : *
4710 : * Returns true if not called as an aggregate support function.
4711 : * This is intended as a conservative answer, ie "no you'd better not
4712 : * scribble on your input". In particular, will return true if the
4713 : * aggregate is being used as a window function, which is a scenario
4714 : * in which changing the transition state is a bad idea. We might
4715 : * want to refine the behavior for the window case in future.
4716 : */
4717 : bool
4718 246 : AggStateIsShared(FunctionCallInfo fcinfo)
4719 : {
4720 246 : if (fcinfo->context && IsA(fcinfo->context, AggState))
4721 : {
4722 246 : AggState *aggstate = (AggState *) fcinfo->context;
4723 : AggStatePerAgg curperagg;
4724 : AggStatePerTrans curpertrans;
4725 :
4726 : /* check curperagg (valid when in a final function) */
4727 246 : curperagg = aggstate->curperagg;
4728 :
4729 246 : if (curperagg)
4730 0 : return aggstate->pertrans[curperagg->transno].aggshared;
4731 :
4732 : /* check curpertrans (valid when in a transition function) */
4733 246 : curpertrans = aggstate->curpertrans;
4734 :
4735 246 : if (curpertrans)
4736 246 : return curpertrans->aggshared;
4737 : }
4738 0 : return true;
4739 : }
4740 :
4741 : /*
4742 : * AggRegisterCallback - register a cleanup callback for an aggregate
4743 : *
4744 : * This is useful for aggs to register shutdown callbacks, which will ensure
4745 : * that non-memory resources are freed. The callback will occur just before
4746 : * the associated aggcontext (as returned by AggCheckCallContext) is reset,
4747 : * either between groups or as a result of rescanning the query. The callback
4748 : * will NOT be called on error paths. The typical use-case is for freeing of
4749 : * tuplestores or tuplesorts maintained in aggcontext, or pins held by slots
4750 : * created by the agg functions. (The callback will not be called until after
4751 : * the result of the finalfn is no longer needed, so it's safe for the finalfn
4752 : * to return data that will be freed by the callback.)
4753 : *
4754 : * As above, this is currently not useful for aggs called as window functions.
4755 : */
4756 : void
4757 660 : AggRegisterCallback(FunctionCallInfo fcinfo,
4758 : ExprContextCallbackFunction func,
4759 : Datum arg)
4760 : {
4761 660 : if (fcinfo->context && IsA(fcinfo->context, AggState))
4762 : {
4763 660 : AggState *aggstate = (AggState *) fcinfo->context;
4764 660 : ExprContext *cxt = aggstate->curaggcontext;
4765 :
4766 660 : RegisterExprContextCallback(cxt, func, arg);
4767 :
4768 660 : return;
4769 : }
4770 0 : elog(ERROR, "aggregate function cannot register a callback in this context");
4771 : }
4772 :
4773 :
4774 : /* ----------------------------------------------------------------
4775 : * Parallel Query Support
4776 : * ----------------------------------------------------------------
4777 : */
4778 :
4779 : /* ----------------------------------------------------------------
4780 : * ExecAggEstimate
4781 : *
4782 : * Estimate space required to propagate aggregate statistics.
4783 : * ----------------------------------------------------------------
4784 : */
4785 : void
4786 554 : ExecAggEstimate(AggState *node, ParallelContext *pcxt)
4787 : {
4788 : Size size;
4789 :
4790 : /* don't need this if not instrumenting or no workers */
4791 554 : if (!node->ss.ps.instrument || pcxt->nworkers == 0)
4792 452 : return;
4793 :
4794 102 : size = mul_size(pcxt->nworkers, sizeof(AggregateInstrumentation));
4795 102 : size = add_size(size, offsetof(SharedAggInfo, sinstrument));
4796 102 : shm_toc_estimate_chunk(&pcxt->estimator, size);
4797 102 : shm_toc_estimate_keys(&pcxt->estimator, 1);
4798 : }
4799 :
4800 : /* ----------------------------------------------------------------
4801 : * ExecAggInitializeDSM
4802 : *
4803 : * Initialize DSM space for aggregate statistics.
4804 : * ----------------------------------------------------------------
4805 : */
4806 : void
4807 554 : ExecAggInitializeDSM(AggState *node, ParallelContext *pcxt)
4808 : {
4809 : Size size;
4810 :
4811 : /* don't need this if not instrumenting or no workers */
4812 554 : if (!node->ss.ps.instrument || pcxt->nworkers == 0)
4813 452 : return;
4814 :
4815 102 : size = offsetof(SharedAggInfo, sinstrument)
4816 102 : + pcxt->nworkers * sizeof(AggregateInstrumentation);
4817 102 : node->shared_info = shm_toc_allocate(pcxt->toc, size);
4818 : /* ensure any unfilled slots will contain zeroes */
4819 102 : memset(node->shared_info, 0, size);
4820 102 : node->shared_info->num_workers = pcxt->nworkers;
4821 102 : shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id,
4822 102 : node->shared_info);
4823 : }
4824 :
4825 : /* ----------------------------------------------------------------
4826 : * ExecAggInitializeWorker
4827 : *
4828 : * Attach worker to DSM space for aggregate statistics.
4829 : * ----------------------------------------------------------------
4830 : */
4831 : void
4832 1546 : ExecAggInitializeWorker(AggState *node, ParallelWorkerContext *pwcxt)
4833 : {
4834 1546 : node->shared_info =
4835 1546 : shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, true);
4836 1546 : }
4837 :
4838 : /* ----------------------------------------------------------------
4839 : * ExecAggRetrieveInstrumentation
4840 : *
4841 : * Transfer aggregate statistics from DSM to private memory.
4842 : * ----------------------------------------------------------------
4843 : */
4844 : void
4845 102 : ExecAggRetrieveInstrumentation(AggState *node)
4846 : {
4847 : Size size;
4848 : SharedAggInfo *si;
4849 :
4850 102 : if (node->shared_info == NULL)
4851 0 : return;
4852 :
4853 102 : size = offsetof(SharedAggInfo, sinstrument)
4854 102 : + node->shared_info->num_workers * sizeof(AggregateInstrumentation);
4855 102 : si = palloc(size);
4856 102 : memcpy(si, node->shared_info, size);
4857 102 : node->shared_info = si;
4858 : }
|