LCOV - code coverage report
Current view: top level - src/backend/executor - execUtils.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 395 436 90.6 %
Date: 2025-01-18 04:15:08 Functions: 42 45 93.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * execUtils.c
       4             :  *    miscellaneous executor utility routines
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/executor/execUtils.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : /*
      16             :  * INTERFACE ROUTINES
      17             :  *      CreateExecutorState     Create/delete executor working state
      18             :  *      FreeExecutorState
      19             :  *      CreateExprContext
      20             :  *      CreateStandaloneExprContext
      21             :  *      FreeExprContext
      22             :  *      ReScanExprContext
      23             :  *
      24             :  *      ExecAssignExprContext   Common code for plan node init routines.
      25             :  *      etc
      26             :  *
      27             :  *      ExecOpenScanRelation    Common code for scan node init routines.
      28             :  *
      29             :  *      ExecInitRangeTable      Set up executor's range-table-related data.
      30             :  *
      31             :  *      ExecGetRangeTableRelation       Fetch Relation for a rangetable entry.
      32             :  *
      33             :  *      executor_errposition    Report syntactic position of an error.
      34             :  *
      35             :  *      RegisterExprContextCallback    Register function shutdown callback
      36             :  *      UnregisterExprContextCallback  Deregister function shutdown callback
      37             :  *
      38             :  *      GetAttributeByName      Runtime extraction of columns from tuples.
      39             :  *      GetAttributeByNum
      40             :  *
      41             :  *   NOTES
      42             :  *      This file has traditionally been the place to stick misc.
      43             :  *      executor support stuff that doesn't really go anyplace else.
      44             :  */
      45             : 
      46             : #include "postgres.h"
      47             : 
      48             : #include "access/parallel.h"
      49             : #include "access/table.h"
      50             : #include "access/tableam.h"
      51             : #include "executor/executor.h"
      52             : #include "executor/nodeModifyTable.h"
      53             : #include "jit/jit.h"
      54             : #include "mb/pg_wchar.h"
      55             : #include "miscadmin.h"
      56             : #include "parser/parse_relation.h"
      57             : #include "partitioning/partdesc.h"
      58             : #include "storage/lmgr.h"
      59             : #include "utils/builtins.h"
      60             : #include "utils/memutils.h"
      61             : #include "utils/rel.h"
      62             : #include "utils/typcache.h"
      63             : 
      64             : 
      65             : static bool tlist_matches_tupdesc(PlanState *ps, List *tlist, int varno, TupleDesc tupdesc);
      66             : static void ShutdownExprContext(ExprContext *econtext, bool isCommit);
      67             : static RTEPermissionInfo *GetResultRTEPermissionInfo(ResultRelInfo *relinfo, EState *estate);
      68             : 
      69             : 
      70             : /* ----------------------------------------------------------------
      71             :  *               Executor state and memory management functions
      72             :  * ----------------------------------------------------------------
      73             :  */
      74             : 
      75             : /* ----------------
      76             :  *      CreateExecutorState
      77             :  *
      78             :  *      Create and initialize an EState node, which is the root of
      79             :  *      working storage for an entire Executor invocation.
      80             :  *
      81             :  * Principally, this creates the per-query memory context that will be
      82             :  * used to hold all working data that lives till the end of the query.
      83             :  * Note that the per-query context will become a child of the caller's
      84             :  * CurrentMemoryContext.
      85             :  * ----------------
      86             :  */
      87             : EState *
      88     1251616 : CreateExecutorState(void)
      89             : {
      90             :     EState     *estate;
      91             :     MemoryContext qcontext;
      92             :     MemoryContext oldcontext;
      93             : 
      94             :     /*
      95             :      * Create the per-query context for this Executor run.
      96             :      */
      97     1251616 :     qcontext = AllocSetContextCreate(CurrentMemoryContext,
      98             :                                      "ExecutorState",
      99             :                                      ALLOCSET_DEFAULT_SIZES);
     100             : 
     101             :     /*
     102             :      * Make the EState node within the per-query context.  This way, we don't
     103             :      * need a separate pfree() operation for it at shutdown.
     104             :      */
     105     1251616 :     oldcontext = MemoryContextSwitchTo(qcontext);
     106             : 
     107     1251616 :     estate = makeNode(EState);
     108             : 
     109             :     /*
     110             :      * Initialize all fields of the Executor State structure
     111             :      */
     112     1251616 :     estate->es_direction = ForwardScanDirection;
     113     1251616 :     estate->es_snapshot = InvalidSnapshot;   /* caller must initialize this */
     114     1251616 :     estate->es_crosscheck_snapshot = InvalidSnapshot;    /* no crosscheck */
     115     1251616 :     estate->es_range_table = NIL;
     116     1251616 :     estate->es_range_table_size = 0;
     117     1251616 :     estate->es_relations = NULL;
     118     1251616 :     estate->es_rowmarks = NULL;
     119     1251616 :     estate->es_rteperminfos = NIL;
     120     1251616 :     estate->es_plannedstmt = NULL;
     121             : 
     122     1251616 :     estate->es_junkFilter = NULL;
     123             : 
     124     1251616 :     estate->es_output_cid = (CommandId) 0;
     125             : 
     126     1251616 :     estate->es_result_relations = NULL;
     127     1251616 :     estate->es_opened_result_relations = NIL;
     128     1251616 :     estate->es_tuple_routing_result_relations = NIL;
     129     1251616 :     estate->es_trig_target_relations = NIL;
     130             : 
     131     1251616 :     estate->es_insert_pending_result_relations = NIL;
     132     1251616 :     estate->es_insert_pending_modifytables = NIL;
     133             : 
     134     1251616 :     estate->es_param_list_info = NULL;
     135     1251616 :     estate->es_param_exec_vals = NULL;
     136             : 
     137     1251616 :     estate->es_queryEnv = NULL;
     138             : 
     139     1251616 :     estate->es_query_cxt = qcontext;
     140             : 
     141     1251616 :     estate->es_tupleTable = NIL;
     142             : 
     143     1251616 :     estate->es_processed = 0;
     144     1251616 :     estate->es_total_processed = 0;
     145             : 
     146     1251616 :     estate->es_top_eflags = 0;
     147     1251616 :     estate->es_instrument = 0;
     148     1251616 :     estate->es_finished = false;
     149             : 
     150     1251616 :     estate->es_exprcontexts = NIL;
     151             : 
     152     1251616 :     estate->es_subplanstates = NIL;
     153             : 
     154     1251616 :     estate->es_auxmodifytables = NIL;
     155             : 
     156     1251616 :     estate->es_per_tuple_exprcontext = NULL;
     157             : 
     158     1251616 :     estate->es_sourceText = NULL;
     159             : 
     160     1251616 :     estate->es_use_parallel_mode = false;
     161     1251616 :     estate->es_parallel_workers_to_launch = 0;
     162     1251616 :     estate->es_parallel_workers_launched = 0;
     163             : 
     164     1251616 :     estate->es_jit_flags = 0;
     165     1251616 :     estate->es_jit = NULL;
     166             : 
     167             :     /*
     168             :      * Return the executor state structure
     169             :      */
     170     1251616 :     MemoryContextSwitchTo(oldcontext);
     171             : 
     172     1251616 :     return estate;
     173             : }
     174             : 
     175             : /* ----------------
     176             :  *      FreeExecutorState
     177             :  *
     178             :  *      Release an EState along with all remaining working storage.
     179             :  *
     180             :  * Note: this is not responsible for releasing non-memory resources, such as
     181             :  * open relations or buffer pins.  But it will shut down any still-active
     182             :  * ExprContexts within the EState and deallocate associated JITed expressions.
     183             :  * That is sufficient cleanup for situations where the EState has only been
     184             :  * used for expression evaluation, and not to run a complete Plan.
     185             :  *
     186             :  * This can be called in any memory context ... so long as it's not one
     187             :  * of the ones to be freed.
     188             :  * ----------------
     189             :  */
     190             : void
     191     1218504 : FreeExecutorState(EState *estate)
     192             : {
     193             :     /*
     194             :      * Shut down and free any remaining ExprContexts.  We do this explicitly
     195             :      * to ensure that any remaining shutdown callbacks get called (since they
     196             :      * might need to release resources that aren't simply memory within the
     197             :      * per-query memory context).
     198             :      */
     199     3111008 :     while (estate->es_exprcontexts)
     200             :     {
     201             :         /*
     202             :          * XXX: seems there ought to be a faster way to implement this than
     203             :          * repeated list_delete(), no?
     204             :          */
     205     1892504 :         FreeExprContext((ExprContext *) linitial(estate->es_exprcontexts),
     206             :                         true);
     207             :         /* FreeExprContext removed the list link for us */
     208             :     }
     209             : 
     210             :     /* release JIT context, if allocated */
     211     1218504 :     if (estate->es_jit)
     212             :     {
     213        1206 :         jit_release_context(estate->es_jit);
     214        1206 :         estate->es_jit = NULL;
     215             :     }
     216             : 
     217             :     /* release partition directory, if allocated */
     218     1218504 :     if (estate->es_partition_directory)
     219             :     {
     220        6798 :         DestroyPartitionDirectory(estate->es_partition_directory);
     221        6798 :         estate->es_partition_directory = NULL;
     222             :     }
     223             : 
     224             :     /*
     225             :      * Free the per-query memory context, thereby releasing all working
     226             :      * memory, including the EState node itself.
     227             :      */
     228     1218504 :     MemoryContextDelete(estate->es_query_cxt);
     229     1218504 : }
     230             : 
     231             : /*
     232             :  * Internal implementation for CreateExprContext() and CreateWorkExprContext()
     233             :  * that allows control over the AllocSet parameters.
     234             :  */
     235             : static ExprContext *
     236     2029626 : CreateExprContextInternal(EState *estate, Size minContextSize,
     237             :                           Size initBlockSize, Size maxBlockSize)
     238             : {
     239             :     ExprContext *econtext;
     240             :     MemoryContext oldcontext;
     241             : 
     242             :     /* Create the ExprContext node within the per-query memory context */
     243     2029626 :     oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
     244             : 
     245     2029626 :     econtext = makeNode(ExprContext);
     246             : 
     247             :     /* Initialize fields of ExprContext */
     248     2029626 :     econtext->ecxt_scantuple = NULL;
     249     2029626 :     econtext->ecxt_innertuple = NULL;
     250     2029626 :     econtext->ecxt_outertuple = NULL;
     251             : 
     252     2029626 :     econtext->ecxt_per_query_memory = estate->es_query_cxt;
     253             : 
     254             :     /*
     255             :      * Create working memory for expression evaluation in this context.
     256             :      */
     257     2029626 :     econtext->ecxt_per_tuple_memory =
     258     2029626 :         AllocSetContextCreate(estate->es_query_cxt,
     259             :                               "ExprContext",
     260             :                               minContextSize,
     261             :                               initBlockSize,
     262             :                               maxBlockSize);
     263             : 
     264     2029626 :     econtext->ecxt_param_exec_vals = estate->es_param_exec_vals;
     265     2029626 :     econtext->ecxt_param_list_info = estate->es_param_list_info;
     266             : 
     267     2029626 :     econtext->ecxt_aggvalues = NULL;
     268     2029626 :     econtext->ecxt_aggnulls = NULL;
     269             : 
     270     2029626 :     econtext->caseValue_datum = (Datum) 0;
     271     2029626 :     econtext->caseValue_isNull = true;
     272             : 
     273     2029626 :     econtext->domainValue_datum = (Datum) 0;
     274     2029626 :     econtext->domainValue_isNull = true;
     275             : 
     276     2029626 :     econtext->ecxt_estate = estate;
     277             : 
     278     2029626 :     econtext->ecxt_callbacks = NULL;
     279             : 
     280             :     /*
     281             :      * Link the ExprContext into the EState to ensure it is shut down when the
     282             :      * EState is freed.  Because we use lcons(), shutdowns will occur in
     283             :      * reverse order of creation, which may not be essential but can't hurt.
     284             :      */
     285     2029626 :     estate->es_exprcontexts = lcons(econtext, estate->es_exprcontexts);
     286             : 
     287     2029626 :     MemoryContextSwitchTo(oldcontext);
     288             : 
     289     2029626 :     return econtext;
     290             : }
     291             : 
     292             : /* ----------------
     293             :  *      CreateExprContext
     294             :  *
     295             :  *      Create a context for expression evaluation within an EState.
     296             :  *
     297             :  * An executor run may require multiple ExprContexts (we usually make one
     298             :  * for each Plan node, and a separate one for per-output-tuple processing
     299             :  * such as constraint checking).  Each ExprContext has its own "per-tuple"
     300             :  * memory context.
     301             :  *
     302             :  * Note we make no assumption about the caller's memory context.
     303             :  * ----------------
     304             :  */
     305             : ExprContext *
     306     2024072 : CreateExprContext(EState *estate)
     307             : {
     308     2024072 :     return CreateExprContextInternal(estate, ALLOCSET_DEFAULT_SIZES);
     309             : }
     310             : 
     311             : 
     312             : /* ----------------
     313             :  *      CreateWorkExprContext
     314             :  *
     315             :  * Like CreateExprContext, but specifies the AllocSet sizes to be reasonable
     316             :  * in proportion to work_mem. If the maximum block allocation size is too
     317             :  * large, it's easy to skip right past work_mem with a single allocation.
     318             :  * ----------------
     319             :  */
     320             : ExprContext *
     321        5554 : CreateWorkExprContext(EState *estate)
     322             : {
     323        5554 :     Size        minContextSize = ALLOCSET_DEFAULT_MINSIZE;
     324        5554 :     Size        initBlockSize = ALLOCSET_DEFAULT_INITSIZE;
     325        5554 :     Size        maxBlockSize = ALLOCSET_DEFAULT_MAXSIZE;
     326             : 
     327             :     /* choose the maxBlockSize to be no larger than 1/16 of work_mem */
     328       33870 :     while (16 * maxBlockSize > work_mem * 1024L)
     329       28316 :         maxBlockSize >>= 1;
     330             : 
     331        5554 :     if (maxBlockSize < ALLOCSET_DEFAULT_INITSIZE)
     332          78 :         maxBlockSize = ALLOCSET_DEFAULT_INITSIZE;
     333             : 
     334        5554 :     return CreateExprContextInternal(estate, minContextSize,
     335             :                                      initBlockSize, maxBlockSize);
     336             : }
     337             : 
     338             : /* ----------------
     339             :  *      CreateStandaloneExprContext
     340             :  *
     341             :  *      Create a context for standalone expression evaluation.
     342             :  *
     343             :  * An ExprContext made this way can be used for evaluation of expressions
     344             :  * that contain no Params, subplans, or Var references (it might work to
     345             :  * put tuple references into the scantuple field, but it seems unwise).
     346             :  *
     347             :  * The ExprContext struct is allocated in the caller's current memory
     348             :  * context, which also becomes its "per query" context.
     349             :  *
     350             :  * It is caller's responsibility to free the ExprContext when done,
     351             :  * or at least ensure that any shutdown callbacks have been called
     352             :  * (ReScanExprContext() is suitable).  Otherwise, non-memory resources
     353             :  * might be leaked.
     354             :  * ----------------
     355             :  */
     356             : ExprContext *
     357        8536 : CreateStandaloneExprContext(void)
     358             : {
     359             :     ExprContext *econtext;
     360             : 
     361             :     /* Create the ExprContext node within the caller's memory context */
     362        8536 :     econtext = makeNode(ExprContext);
     363             : 
     364             :     /* Initialize fields of ExprContext */
     365        8536 :     econtext->ecxt_scantuple = NULL;
     366        8536 :     econtext->ecxt_innertuple = NULL;
     367        8536 :     econtext->ecxt_outertuple = NULL;
     368             : 
     369        8536 :     econtext->ecxt_per_query_memory = CurrentMemoryContext;
     370             : 
     371             :     /*
     372             :      * Create working memory for expression evaluation in this context.
     373             :      */
     374        8536 :     econtext->ecxt_per_tuple_memory =
     375        8536 :         AllocSetContextCreate(CurrentMemoryContext,
     376             :                               "ExprContext",
     377             :                               ALLOCSET_DEFAULT_SIZES);
     378             : 
     379        8536 :     econtext->ecxt_param_exec_vals = NULL;
     380        8536 :     econtext->ecxt_param_list_info = NULL;
     381             : 
     382        8536 :     econtext->ecxt_aggvalues = NULL;
     383        8536 :     econtext->ecxt_aggnulls = NULL;
     384             : 
     385        8536 :     econtext->caseValue_datum = (Datum) 0;
     386        8536 :     econtext->caseValue_isNull = true;
     387             : 
     388        8536 :     econtext->domainValue_datum = (Datum) 0;
     389        8536 :     econtext->domainValue_isNull = true;
     390             : 
     391        8536 :     econtext->ecxt_estate = NULL;
     392             : 
     393        8536 :     econtext->ecxt_callbacks = NULL;
     394             : 
     395        8536 :     return econtext;
     396             : }
     397             : 
     398             : /* ----------------
     399             :  *      FreeExprContext
     400             :  *
     401             :  *      Free an expression context, including calling any remaining
     402             :  *      shutdown callbacks.
     403             :  *
     404             :  * Since we free the temporary context used for expression evaluation,
     405             :  * any previously computed pass-by-reference expression result will go away!
     406             :  *
     407             :  * If isCommit is false, we are being called in error cleanup, and should
     408             :  * not call callbacks but only release memory.  (It might be better to call
     409             :  * the callbacks and pass the isCommit flag to them, but that would require
     410             :  * more invasive code changes than currently seems justified.)
     411             :  *
     412             :  * Note we make no assumption about the caller's memory context.
     413             :  * ----------------
     414             :  */
     415             : void
     416     1990516 : FreeExprContext(ExprContext *econtext, bool isCommit)
     417             : {
     418             :     EState     *estate;
     419             : 
     420             :     /* Call any registered callbacks */
     421     1990516 :     ShutdownExprContext(econtext, isCommit);
     422             :     /* And clean up the memory used */
     423     1990516 :     MemoryContextDelete(econtext->ecxt_per_tuple_memory);
     424             :     /* Unlink self from owning EState, if any */
     425     1990516 :     estate = econtext->ecxt_estate;
     426     1990516 :     if (estate)
     427     1990516 :         estate->es_exprcontexts = list_delete_ptr(estate->es_exprcontexts,
     428             :                                                   econtext);
     429             :     /* And delete the ExprContext node */
     430     1990516 :     pfree(econtext);
     431     1990516 : }
     432             : 
     433             : /*
     434             :  * ReScanExprContext
     435             :  *
     436             :  *      Reset an expression context in preparation for a rescan of its
     437             :  *      plan node.  This requires calling any registered shutdown callbacks,
     438             :  *      since any partially complete set-returning-functions must be canceled.
     439             :  *
     440             :  * Note we make no assumption about the caller's memory context.
     441             :  */
     442             : void
     443     3381272 : ReScanExprContext(ExprContext *econtext)
     444             : {
     445             :     /* Call any registered callbacks */
     446     3381272 :     ShutdownExprContext(econtext, true);
     447             :     /* And clean up the memory used */
     448     3381272 :     MemoryContextReset(econtext->ecxt_per_tuple_memory);
     449     3381272 : }
     450             : 
     451             : /*
     452             :  * Build a per-output-tuple ExprContext for an EState.
     453             :  *
     454             :  * This is normally invoked via GetPerTupleExprContext() macro,
     455             :  * not directly.
     456             :  */
     457             : ExprContext *
     458      650664 : MakePerTupleExprContext(EState *estate)
     459             : {
     460      650664 :     if (estate->es_per_tuple_exprcontext == NULL)
     461      650664 :         estate->es_per_tuple_exprcontext = CreateExprContext(estate);
     462             : 
     463      650664 :     return estate->es_per_tuple_exprcontext;
     464             : }
     465             : 
     466             : 
     467             : /* ----------------------------------------------------------------
     468             :  *               miscellaneous node-init support functions
     469             :  *
     470             :  * Note: all of these are expected to be called with CurrentMemoryContext
     471             :  * equal to the per-query memory context.
     472             :  * ----------------------------------------------------------------
     473             :  */
     474             : 
     475             : /* ----------------
     476             :  *      ExecAssignExprContext
     477             :  *
     478             :  *      This initializes the ps_ExprContext field.  It is only necessary
     479             :  *      to do this for nodes which use ExecQual or ExecProject
     480             :  *      because those routines require an econtext. Other nodes that
     481             :  *      don't have to evaluate expressions don't need to do this.
     482             :  * ----------------
     483             :  */
     484             : void
     485     1255070 : ExecAssignExprContext(EState *estate, PlanState *planstate)
     486             : {
     487     1255070 :     planstate->ps_ExprContext = CreateExprContext(estate);
     488     1255070 : }
     489             : 
     490             : /* ----------------
     491             :  *      ExecGetResultType
     492             :  * ----------------
     493             :  */
     494             : TupleDesc
     495     1502378 : ExecGetResultType(PlanState *planstate)
     496             : {
     497     1502378 :     return planstate->ps_ResultTupleDesc;
     498             : }
     499             : 
     500             : /*
     501             :  * ExecGetResultSlotOps - information about node's type of result slot
     502             :  */
     503             : const TupleTableSlotOps *
     504      570150 : ExecGetResultSlotOps(PlanState *planstate, bool *isfixed)
     505             : {
     506      570150 :     if (planstate->resultopsset && planstate->resultops)
     507             :     {
     508      568602 :         if (isfixed)
     509      521956 :             *isfixed = planstate->resultopsfixed;
     510      568602 :         return planstate->resultops;
     511             :     }
     512             : 
     513        1548 :     if (isfixed)
     514             :     {
     515        1518 :         if (planstate->resultopsset)
     516        1518 :             *isfixed = planstate->resultopsfixed;
     517           0 :         else if (planstate->ps_ResultTupleSlot)
     518           0 :             *isfixed = TTS_FIXED(planstate->ps_ResultTupleSlot);
     519             :         else
     520           0 :             *isfixed = false;
     521             :     }
     522             : 
     523        1548 :     if (!planstate->ps_ResultTupleSlot)
     524        1548 :         return &TTSOpsVirtual;
     525             : 
     526           0 :     return planstate->ps_ResultTupleSlot->tts_ops;
     527             : }
     528             : 
     529             : /*
     530             :  * ExecGetCommonSlotOps - identify common result slot type, if any
     531             :  *
     532             :  * If all the given PlanState nodes return the same fixed tuple slot type,
     533             :  * return the slot ops struct for that slot type.  Else, return NULL.
     534             :  */
     535             : const TupleTableSlotOps *
     536       14938 : ExecGetCommonSlotOps(PlanState **planstates, int nplans)
     537             : {
     538             :     const TupleTableSlotOps *result;
     539             :     bool        isfixed;
     540             : 
     541       14938 :     if (nplans <= 0)
     542          54 :         return NULL;
     543       14884 :     result = ExecGetResultSlotOps(planstates[0], &isfixed);
     544       14884 :     if (!isfixed)
     545         110 :         return NULL;
     546       41046 :     for (int i = 1; i < nplans; i++)
     547             :     {
     548             :         const TupleTableSlotOps *thisops;
     549             : 
     550       27118 :         thisops = ExecGetResultSlotOps(planstates[i], &isfixed);
     551       27118 :         if (!isfixed)
     552          42 :             return NULL;
     553       27076 :         if (result != thisops)
     554         804 :             return NULL;
     555             :     }
     556       13928 :     return result;
     557             : }
     558             : 
     559             : /*
     560             :  * ExecGetCommonChildSlotOps - as above, for the PlanState's standard children
     561             :  */
     562             : const TupleTableSlotOps *
     563         738 : ExecGetCommonChildSlotOps(PlanState *ps)
     564             : {
     565             :     PlanState  *planstates[2];
     566             : 
     567         738 :     planstates[0] = outerPlanState(ps);
     568         738 :     planstates[1] = innerPlanState(ps);
     569         738 :     return ExecGetCommonSlotOps(planstates, 2);
     570             : }
     571             : 
     572             : 
     573             : /* ----------------
     574             :  *      ExecAssignProjectionInfo
     575             :  *
     576             :  * forms the projection information from the node's targetlist
     577             :  *
     578             :  * Notes for inputDesc are same as for ExecBuildProjectionInfo: supply it
     579             :  * for a relation-scan node, can pass NULL for upper-level nodes
     580             :  * ----------------
     581             :  */
     582             : void
     583      748246 : ExecAssignProjectionInfo(PlanState *planstate,
     584             :                          TupleDesc inputDesc)
     585             : {
     586      748184 :     planstate->ps_ProjInfo =
     587      748246 :         ExecBuildProjectionInfo(planstate->plan->targetlist,
     588             :                                 planstate->ps_ExprContext,
     589             :                                 planstate->ps_ResultTupleSlot,
     590             :                                 planstate,
     591             :                                 inputDesc);
     592      748184 : }
     593             : 
     594             : 
     595             : /* ----------------
     596             :  *      ExecConditionalAssignProjectionInfo
     597             :  *
     598             :  * as ExecAssignProjectionInfo, but store NULL rather than building projection
     599             :  * info if no projection is required
     600             :  * ----------------
     601             :  */
     602             : void
     603      489358 : ExecConditionalAssignProjectionInfo(PlanState *planstate, TupleDesc inputDesc,
     604             :                                     int varno)
     605             : {
     606      489358 :     if (tlist_matches_tupdesc(planstate,
     607      489358 :                               planstate->plan->targetlist,
     608             :                               varno,
     609             :                               inputDesc))
     610             :     {
     611      263162 :         planstate->ps_ProjInfo = NULL;
     612      263162 :         planstate->resultopsset = planstate->scanopsset;
     613      263162 :         planstate->resultopsfixed = planstate->scanopsfixed;
     614      263162 :         planstate->resultops = planstate->scanops;
     615             :     }
     616             :     else
     617             :     {
     618      226196 :         if (!planstate->ps_ResultTupleSlot)
     619             :         {
     620      226196 :             ExecInitResultSlot(planstate, &TTSOpsVirtual);
     621      226196 :             planstate->resultops = &TTSOpsVirtual;
     622      226196 :             planstate->resultopsfixed = true;
     623      226196 :             planstate->resultopsset = true;
     624             :         }
     625      226196 :         ExecAssignProjectionInfo(planstate, inputDesc);
     626             :     }
     627      489358 : }
     628             : 
     629             : static bool
     630      489358 : tlist_matches_tupdesc(PlanState *ps, List *tlist, int varno, TupleDesc tupdesc)
     631             : {
     632      489358 :     int         numattrs = tupdesc->natts;
     633             :     int         attrno;
     634      489358 :     ListCell   *tlist_item = list_head(tlist);
     635             : 
     636             :     /* Check the tlist attributes */
     637     3435514 :     for (attrno = 1; attrno <= numattrs; attrno++)
     638             :     {
     639     3159800 :         Form_pg_attribute att_tup = TupleDescAttr(tupdesc, attrno - 1);
     640             :         Var        *var;
     641             : 
     642     3159800 :         if (tlist_item == NULL)
     643       26126 :             return false;       /* tlist too short */
     644     3133674 :         var = (Var *) ((TargetEntry *) lfirst(tlist_item))->expr;
     645     3133674 :         if (!var || !IsA(var, Var))
     646       60072 :             return false;       /* tlist item not a Var */
     647             :         /* if these Asserts fail, planner messed up */
     648             :         Assert(var->varno == varno);
     649             :         Assert(var->varlevelsup == 0);
     650     3073602 :         if (var->varattno != attrno)
     651      127152 :             return false;       /* out of order */
     652     2946450 :         if (att_tup->attisdropped)
     653           0 :             return false;       /* table contains dropped columns */
     654     2946450 :         if (att_tup->atthasmissing)
     655         288 :             return false;       /* table contains cols with missing values */
     656             : 
     657             :         /*
     658             :          * Note: usually the Var's type should match the tupdesc exactly, but
     659             :          * in situations involving unions of columns that have different
     660             :          * typmods, the Var may have come from above the union and hence have
     661             :          * typmod -1.  This is a legitimate situation since the Var still
     662             :          * describes the column, just not as exactly as the tupdesc does. We
     663             :          * could change the planner to prevent it, but it'd then insert
     664             :          * projection steps just to convert from specific typmod to typmod -1,
     665             :          * which is pretty silly.
     666             :          */
     667     2946162 :         if (var->vartype != att_tup->atttypid ||
     668     2946156 :             (var->vartypmod != att_tup->atttypmod &&
     669           6 :              var->vartypmod != -1))
     670           6 :             return false;       /* type mismatch */
     671             : 
     672     2946156 :         tlist_item = lnext(tlist, tlist_item);
     673             :     }
     674             : 
     675      275714 :     if (tlist_item)
     676       12552 :         return false;           /* tlist too long */
     677             : 
     678      263162 :     return true;
     679             : }
     680             : 
     681             : 
     682             : /* ----------------------------------------------------------------
     683             :  *                Scan node support
     684             :  * ----------------------------------------------------------------
     685             :  */
     686             : 
     687             : /* ----------------
     688             :  *      ExecAssignScanType
     689             :  * ----------------
     690             :  */
     691             : void
     692         762 : ExecAssignScanType(ScanState *scanstate, TupleDesc tupDesc)
     693             : {
     694         762 :     TupleTableSlot *slot = scanstate->ss_ScanTupleSlot;
     695             : 
     696         762 :     ExecSetSlotDescriptor(slot, tupDesc);
     697         762 : }
     698             : 
     699             : /* ----------------
     700             :  *      ExecCreateScanSlotFromOuterPlan
     701             :  * ----------------
     702             :  */
     703             : void
     704      122392 : ExecCreateScanSlotFromOuterPlan(EState *estate,
     705             :                                 ScanState *scanstate,
     706             :                                 const TupleTableSlotOps *tts_ops)
     707             : {
     708             :     PlanState  *outerPlan;
     709             :     TupleDesc   tupDesc;
     710             : 
     711      122392 :     outerPlan = outerPlanState(scanstate);
     712      122392 :     tupDesc = ExecGetResultType(outerPlan);
     713             : 
     714      122392 :     ExecInitScanTupleSlot(estate, scanstate, tupDesc, tts_ops);
     715      122392 : }
     716             : 
     717             : /* ----------------------------------------------------------------
     718             :  *      ExecRelationIsTargetRelation
     719             :  *
     720             :  *      Detect whether a relation (identified by rangetable index)
     721             :  *      is one of the target relations of the query.
     722             :  *
     723             :  * Note: This is currently no longer used in core.  We keep it around
     724             :  * because FDWs may wish to use it to determine if their foreign table
     725             :  * is a target relation.
     726             :  * ----------------------------------------------------------------
     727             :  */
     728             : bool
     729           0 : ExecRelationIsTargetRelation(EState *estate, Index scanrelid)
     730             : {
     731           0 :     return list_member_int(estate->es_plannedstmt->resultRelations, scanrelid);
     732             : }
     733             : 
     734             : /* ----------------------------------------------------------------
     735             :  *      ExecOpenScanRelation
     736             :  *
     737             :  *      Open the heap relation to be scanned by a base-level scan plan node.
     738             :  *      This should be called during the node's ExecInit routine.
     739             :  * ----------------------------------------------------------------
     740             :  */
     741             : Relation
     742      399244 : ExecOpenScanRelation(EState *estate, Index scanrelid, int eflags)
     743             : {
     744             :     Relation    rel;
     745             : 
     746             :     /* Open the relation. */
     747      399244 :     rel = ExecGetRangeTableRelation(estate, scanrelid);
     748             : 
     749             :     /*
     750             :      * Complain if we're attempting a scan of an unscannable relation, except
     751             :      * when the query won't actually be run.  This is a slightly klugy place
     752             :      * to do this, perhaps, but there is no better place.
     753             :      */
     754      399244 :     if ((eflags & (EXEC_FLAG_EXPLAIN_ONLY | EXEC_FLAG_WITH_NO_DATA)) == 0 &&
     755      368124 :         !RelationIsScannable(rel))
     756          12 :         ereport(ERROR,
     757             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
     758             :                  errmsg("materialized view \"%s\" has not been populated",
     759             :                         RelationGetRelationName(rel)),
     760             :                  errhint("Use the REFRESH MATERIALIZED VIEW command.")));
     761             : 
     762      399232 :     return rel;
     763             : }
     764             : 
     765             : /*
     766             :  * ExecInitRangeTable
     767             :  *      Set up executor's range-table-related data
     768             :  *
     769             :  * In addition to the range table proper, initialize arrays that are
     770             :  * indexed by rangetable index.
     771             :  */
     772             : void
     773      925636 : ExecInitRangeTable(EState *estate, List *rangeTable, List *permInfos)
     774             : {
     775             :     /* Remember the range table List as-is */
     776      925636 :     estate->es_range_table = rangeTable;
     777             : 
     778             :     /* ... and the RTEPermissionInfo List too */
     779      925636 :     estate->es_rteperminfos = permInfos;
     780             : 
     781             :     /* Set size of associated arrays */
     782      925636 :     estate->es_range_table_size = list_length(rangeTable);
     783             : 
     784             :     /*
     785             :      * Allocate an array to store an open Relation corresponding to each
     786             :      * rangetable entry, and initialize entries to NULL.  Relations are opened
     787             :      * and stored here as needed.
     788             :      */
     789      925636 :     estate->es_relations = (Relation *)
     790      925636 :         palloc0(estate->es_range_table_size * sizeof(Relation));
     791             : 
     792             :     /*
     793             :      * es_result_relations and es_rowmarks are also parallel to
     794             :      * es_range_table, but are allocated only if needed.
     795             :      */
     796      925636 :     estate->es_result_relations = NULL;
     797      925636 :     estate->es_rowmarks = NULL;
     798      925636 : }
     799             : 
     800             : /*
     801             :  * ExecGetRangeTableRelation
     802             :  *      Open the Relation for a range table entry, if not already done
     803             :  *
     804             :  * The Relations will be closed in ExecEndPlan().
     805             :  */
     806             : Relation
     807      538096 : ExecGetRangeTableRelation(EState *estate, Index rti)
     808             : {
     809             :     Relation    rel;
     810             : 
     811             :     Assert(rti > 0 && rti <= estate->es_range_table_size);
     812             : 
     813      538096 :     rel = estate->es_relations[rti - 1];
     814      538096 :     if (rel == NULL)
     815             :     {
     816             :         /* First time through, so open the relation */
     817      498110 :         RangeTblEntry *rte = exec_rt_fetch(rti, estate);
     818             : 
     819             :         Assert(rte->rtekind == RTE_RELATION);
     820             : 
     821      498110 :         if (!IsParallelWorker())
     822             :         {
     823             :             /*
     824             :              * In a normal query, we should already have the appropriate lock,
     825             :              * but verify that through an Assert.  Since there's already an
     826             :              * Assert inside table_open that insists on holding some lock, it
     827             :              * seems sufficient to check this only when rellockmode is higher
     828             :              * than the minimum.
     829             :              */
     830      493498 :             rel = table_open(rte->relid, NoLock);
     831             :             Assert(rte->rellockmode == AccessShareLock ||
     832             :                    CheckRelationLockedByMe(rel, rte->rellockmode, false));
     833             :         }
     834             :         else
     835             :         {
     836             :             /*
     837             :              * If we are a parallel worker, we need to obtain our own local
     838             :              * lock on the relation.  This ensures sane behavior in case the
     839             :              * parent process exits before we do.
     840             :              */
     841        4612 :             rel = table_open(rte->relid, rte->rellockmode);
     842             :         }
     843             : 
     844      498110 :         estate->es_relations[rti - 1] = rel;
     845             :     }
     846             : 
     847      538096 :     return rel;
     848             : }
     849             : 
     850             : /*
     851             :  * ExecInitResultRelation
     852             :  *      Open relation given by the passed-in RT index and fill its
     853             :  *      ResultRelInfo node
     854             :  *
     855             :  * Here, we also save the ResultRelInfo in estate->es_result_relations array
     856             :  * such that it can be accessed later using the RT index.
     857             :  */
     858             : void
     859      126620 : ExecInitResultRelation(EState *estate, ResultRelInfo *resultRelInfo,
     860             :                        Index rti)
     861             : {
     862             :     Relation    resultRelationDesc;
     863             : 
     864      126620 :     resultRelationDesc = ExecGetRangeTableRelation(estate, rti);
     865      126620 :     InitResultRelInfo(resultRelInfo,
     866             :                       resultRelationDesc,
     867             :                       rti,
     868             :                       NULL,
     869             :                       estate->es_instrument);
     870             : 
     871      126620 :     if (estate->es_result_relations == NULL)
     872      121402 :         estate->es_result_relations = (ResultRelInfo **)
     873      121402 :             palloc0(estate->es_range_table_size * sizeof(ResultRelInfo *));
     874      126620 :     estate->es_result_relations[rti - 1] = resultRelInfo;
     875             : 
     876             :     /*
     877             :      * Saving in the list allows to avoid needlessly traversing the whole
     878             :      * array when only a few of its entries are possibly non-NULL.
     879             :      */
     880      126620 :     estate->es_opened_result_relations =
     881      126620 :         lappend(estate->es_opened_result_relations, resultRelInfo);
     882      126620 : }
     883             : 
     884             : /*
     885             :  * UpdateChangedParamSet
     886             :  *      Add changed parameters to a plan node's chgParam set
     887             :  */
     888             : void
     889      730078 : UpdateChangedParamSet(PlanState *node, Bitmapset *newchg)
     890             : {
     891             :     Bitmapset  *parmset;
     892             : 
     893             :     /*
     894             :      * The plan node only depends on params listed in its allParam set. Don't
     895             :      * include anything else into its chgParam set.
     896             :      */
     897      730078 :     parmset = bms_intersect(node->plan->allParam, newchg);
     898      730078 :     node->chgParam = bms_join(node->chgParam, parmset);
     899      730078 : }
     900             : 
     901             : /*
     902             :  * executor_errposition
     903             :  *      Report an execution-time cursor position, if possible.
     904             :  *
     905             :  * This is expected to be used within an ereport() call.  The return value
     906             :  * is a dummy (always 0, in fact).
     907             :  *
     908             :  * The locations stored in parsetrees are byte offsets into the source string.
     909             :  * We have to convert them to 1-based character indexes for reporting to
     910             :  * clients.  (We do things this way to avoid unnecessary overhead in the
     911             :  * normal non-error case: computing character indexes would be much more
     912             :  * expensive than storing token offsets.)
     913             :  */
     914             : int
     915           0 : executor_errposition(EState *estate, int location)
     916             : {
     917             :     int         pos;
     918             : 
     919             :     /* No-op if location was not provided */
     920           0 :     if (location < 0)
     921           0 :         return 0;
     922             :     /* Can't do anything if source text is not available */
     923           0 :     if (estate == NULL || estate->es_sourceText == NULL)
     924           0 :         return 0;
     925             :     /* Convert offset to character number */
     926           0 :     pos = pg_mbstrlen_with_len(estate->es_sourceText, location) + 1;
     927             :     /* And pass it to the ereport mechanism */
     928           0 :     return errposition(pos);
     929             : }
     930             : 
     931             : /*
     932             :  * Register a shutdown callback in an ExprContext.
     933             :  *
     934             :  * Shutdown callbacks will be called (in reverse order of registration)
     935             :  * when the ExprContext is deleted or rescanned.  This provides a hook
     936             :  * for functions called in the context to do any cleanup needed --- it's
     937             :  * particularly useful for functions returning sets.  Note that the
     938             :  * callback will *not* be called in the event that execution is aborted
     939             :  * by an error.
     940             :  */
     941             : void
     942      147544 : RegisterExprContextCallback(ExprContext *econtext,
     943             :                             ExprContextCallbackFunction function,
     944             :                             Datum arg)
     945             : {
     946             :     ExprContext_CB *ecxt_callback;
     947             : 
     948             :     /* Save the info in appropriate memory context */
     949             :     ecxt_callback = (ExprContext_CB *)
     950      147544 :         MemoryContextAlloc(econtext->ecxt_per_query_memory,
     951             :                            sizeof(ExprContext_CB));
     952             : 
     953      147544 :     ecxt_callback->function = function;
     954      147544 :     ecxt_callback->arg = arg;
     955             : 
     956             :     /* link to front of list for appropriate execution order */
     957      147544 :     ecxt_callback->next = econtext->ecxt_callbacks;
     958      147544 :     econtext->ecxt_callbacks = ecxt_callback;
     959      147544 : }
     960             : 
     961             : /*
     962             :  * Deregister a shutdown callback in an ExprContext.
     963             :  *
     964             :  * Any list entries matching the function and arg will be removed.
     965             :  * This can be used if it's no longer necessary to call the callback.
     966             :  */
     967             : void
     968      123548 : UnregisterExprContextCallback(ExprContext *econtext,
     969             :                               ExprContextCallbackFunction function,
     970             :                               Datum arg)
     971             : {
     972             :     ExprContext_CB **prev_callback;
     973             :     ExprContext_CB *ecxt_callback;
     974             : 
     975      123548 :     prev_callback = &econtext->ecxt_callbacks;
     976             : 
     977      352374 :     while ((ecxt_callback = *prev_callback) != NULL)
     978             :     {
     979      228826 :         if (ecxt_callback->function == function && ecxt_callback->arg == arg)
     980             :         {
     981      123548 :             *prev_callback = ecxt_callback->next;
     982      123548 :             pfree(ecxt_callback);
     983             :         }
     984             :         else
     985      105278 :             prev_callback = &ecxt_callback->next;
     986             :     }
     987      123548 : }
     988             : 
     989             : /*
     990             :  * Call all the shutdown callbacks registered in an ExprContext.
     991             :  *
     992             :  * The callback list is emptied (important in case this is only a rescan
     993             :  * reset, and not deletion of the ExprContext).
     994             :  *
     995             :  * If isCommit is false, just clean the callback list but don't call 'em.
     996             :  * (See comment for FreeExprContext.)
     997             :  */
     998             : static void
     999     5371788 : ShutdownExprContext(ExprContext *econtext, bool isCommit)
    1000             : {
    1001             :     ExprContext_CB *ecxt_callback;
    1002             :     MemoryContext oldcontext;
    1003             : 
    1004             :     /* Fast path in normal case where there's nothing to do. */
    1005     5371788 :     if (econtext->ecxt_callbacks == NULL)
    1006     5349914 :         return;
    1007             : 
    1008             :     /*
    1009             :      * Call the callbacks in econtext's per-tuple context.  This ensures that
    1010             :      * any memory they might leak will get cleaned up.
    1011             :      */
    1012       21874 :     oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
    1013             : 
    1014             :     /*
    1015             :      * Call each callback function in reverse registration order.
    1016             :      */
    1017       44148 :     while ((ecxt_callback = econtext->ecxt_callbacks) != NULL)
    1018             :     {
    1019       22274 :         econtext->ecxt_callbacks = ecxt_callback->next;
    1020       22274 :         if (isCommit)
    1021       22274 :             ecxt_callback->function(ecxt_callback->arg);
    1022       22274 :         pfree(ecxt_callback);
    1023             :     }
    1024             : 
    1025       21874 :     MemoryContextSwitchTo(oldcontext);
    1026             : }
    1027             : 
    1028             : /*
    1029             :  *      GetAttributeByName
    1030             :  *      GetAttributeByNum
    1031             :  *
    1032             :  *      These functions return the value of the requested attribute
    1033             :  *      out of the given tuple Datum.
    1034             :  *      C functions which take a tuple as an argument are expected
    1035             :  *      to use these.  Ex: overpaid(EMP) might call GetAttributeByNum().
    1036             :  *      Note: these are actually rather slow because they do a typcache
    1037             :  *      lookup on each call.
    1038             :  */
    1039             : Datum
    1040          36 : GetAttributeByName(HeapTupleHeader tuple, const char *attname, bool *isNull)
    1041             : {
    1042             :     AttrNumber  attrno;
    1043             :     Datum       result;
    1044             :     Oid         tupType;
    1045             :     int32       tupTypmod;
    1046             :     TupleDesc   tupDesc;
    1047             :     HeapTupleData tmptup;
    1048             :     int         i;
    1049             : 
    1050          36 :     if (attname == NULL)
    1051           0 :         elog(ERROR, "invalid attribute name");
    1052             : 
    1053          36 :     if (isNull == NULL)
    1054           0 :         elog(ERROR, "a NULL isNull pointer was passed");
    1055             : 
    1056          36 :     if (tuple == NULL)
    1057             :     {
    1058             :         /* Kinda bogus but compatible with old behavior... */
    1059           0 :         *isNull = true;
    1060           0 :         return (Datum) 0;
    1061             :     }
    1062             : 
    1063          36 :     tupType = HeapTupleHeaderGetTypeId(tuple);
    1064          36 :     tupTypmod = HeapTupleHeaderGetTypMod(tuple);
    1065          36 :     tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
    1066             : 
    1067          36 :     attrno = InvalidAttrNumber;
    1068         144 :     for (i = 0; i < tupDesc->natts; i++)
    1069             :     {
    1070         144 :         Form_pg_attribute att = TupleDescAttr(tupDesc, i);
    1071             : 
    1072         144 :         if (namestrcmp(&(att->attname), attname) == 0)
    1073             :         {
    1074          36 :             attrno = att->attnum;
    1075          36 :             break;
    1076             :         }
    1077             :     }
    1078             : 
    1079          36 :     if (attrno == InvalidAttrNumber)
    1080           0 :         elog(ERROR, "attribute \"%s\" does not exist", attname);
    1081             : 
    1082             :     /*
    1083             :      * heap_getattr needs a HeapTuple not a bare HeapTupleHeader.  We set all
    1084             :      * the fields in the struct just in case user tries to inspect system
    1085             :      * columns.
    1086             :      */
    1087          36 :     tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
    1088          36 :     ItemPointerSetInvalid(&(tmptup.t_self));
    1089          36 :     tmptup.t_tableOid = InvalidOid;
    1090          36 :     tmptup.t_data = tuple;
    1091             : 
    1092          36 :     result = heap_getattr(&tmptup,
    1093             :                           attrno,
    1094             :                           tupDesc,
    1095             :                           isNull);
    1096             : 
    1097          36 :     ReleaseTupleDesc(tupDesc);
    1098             : 
    1099          36 :     return result;
    1100             : }
    1101             : 
    1102             : Datum
    1103           0 : GetAttributeByNum(HeapTupleHeader tuple,
    1104             :                   AttrNumber attrno,
    1105             :                   bool *isNull)
    1106             : {
    1107             :     Datum       result;
    1108             :     Oid         tupType;
    1109             :     int32       tupTypmod;
    1110             :     TupleDesc   tupDesc;
    1111             :     HeapTupleData tmptup;
    1112             : 
    1113           0 :     if (!AttributeNumberIsValid(attrno))
    1114           0 :         elog(ERROR, "invalid attribute number %d", attrno);
    1115             : 
    1116           0 :     if (isNull == NULL)
    1117           0 :         elog(ERROR, "a NULL isNull pointer was passed");
    1118             : 
    1119           0 :     if (tuple == NULL)
    1120             :     {
    1121             :         /* Kinda bogus but compatible with old behavior... */
    1122           0 :         *isNull = true;
    1123           0 :         return (Datum) 0;
    1124             :     }
    1125             : 
    1126           0 :     tupType = HeapTupleHeaderGetTypeId(tuple);
    1127           0 :     tupTypmod = HeapTupleHeaderGetTypMod(tuple);
    1128           0 :     tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
    1129             : 
    1130             :     /*
    1131             :      * heap_getattr needs a HeapTuple not a bare HeapTupleHeader.  We set all
    1132             :      * the fields in the struct just in case user tries to inspect system
    1133             :      * columns.
    1134             :      */
    1135           0 :     tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
    1136           0 :     ItemPointerSetInvalid(&(tmptup.t_self));
    1137           0 :     tmptup.t_tableOid = InvalidOid;
    1138           0 :     tmptup.t_data = tuple;
    1139             : 
    1140           0 :     result = heap_getattr(&tmptup,
    1141             :                           attrno,
    1142             :                           tupDesc,
    1143             :                           isNull);
    1144             : 
    1145           0 :     ReleaseTupleDesc(tupDesc);
    1146             : 
    1147           0 :     return result;
    1148             : }
    1149             : 
    1150             : /*
    1151             :  * Number of items in a tlist (including any resjunk items!)
    1152             :  */
    1153             : int
    1154     1304792 : ExecTargetListLength(List *targetlist)
    1155             : {
    1156             :     /* This used to be more complex, but fjoins are dead */
    1157     1304792 :     return list_length(targetlist);
    1158             : }
    1159             : 
    1160             : /*
    1161             :  * Number of items in a tlist, not including any resjunk items
    1162             :  */
    1163             : int
    1164      187100 : ExecCleanTargetListLength(List *targetlist)
    1165             : {
    1166      187100 :     int         len = 0;
    1167             :     ListCell   *tl;
    1168             : 
    1169      636776 :     foreach(tl, targetlist)
    1170             :     {
    1171      449676 :         TargetEntry *curTle = lfirst_node(TargetEntry, tl);
    1172             : 
    1173      449676 :         if (!curTle->resjunk)
    1174      418510 :             len++;
    1175             :     }
    1176      187100 :     return len;
    1177             : }
    1178             : 
    1179             : /*
    1180             :  * Return a relInfo's tuple slot for a trigger's OLD tuples.
    1181             :  */
    1182             : TupleTableSlot *
    1183       24024 : ExecGetTriggerOldSlot(EState *estate, ResultRelInfo *relInfo)
    1184             : {
    1185       24024 :     if (relInfo->ri_TrigOldSlot == NULL)
    1186             :     {
    1187        9944 :         Relation    rel = relInfo->ri_RelationDesc;
    1188        9944 :         MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
    1189             : 
    1190        9944 :         relInfo->ri_TrigOldSlot =
    1191        9944 :             ExecInitExtraTupleSlot(estate,
    1192             :                                    RelationGetDescr(rel),
    1193             :                                    table_slot_callbacks(rel));
    1194             : 
    1195        9944 :         MemoryContextSwitchTo(oldcontext);
    1196             :     }
    1197             : 
    1198       24024 :     return relInfo->ri_TrigOldSlot;
    1199             : }
    1200             : 
    1201             : /*
    1202             :  * Return a relInfo's tuple slot for a trigger's NEW tuples.
    1203             :  */
    1204             : TupleTableSlot *
    1205        3524 : ExecGetTriggerNewSlot(EState *estate, ResultRelInfo *relInfo)
    1206             : {
    1207        3524 :     if (relInfo->ri_TrigNewSlot == NULL)
    1208             :     {
    1209        2208 :         Relation    rel = relInfo->ri_RelationDesc;
    1210        2208 :         MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
    1211             : 
    1212        2208 :         relInfo->ri_TrigNewSlot =
    1213        2208 :             ExecInitExtraTupleSlot(estate,
    1214             :                                    RelationGetDescr(rel),
    1215             :                                    table_slot_callbacks(rel));
    1216             : 
    1217        2208 :         MemoryContextSwitchTo(oldcontext);
    1218             :     }
    1219             : 
    1220        3524 :     return relInfo->ri_TrigNewSlot;
    1221             : }
    1222             : 
    1223             : /*
    1224             :  * Return a relInfo's tuple slot for processing returning tuples.
    1225             :  */
    1226             : TupleTableSlot *
    1227        1288 : ExecGetReturningSlot(EState *estate, ResultRelInfo *relInfo)
    1228             : {
    1229        1288 :     if (relInfo->ri_ReturningSlot == NULL)
    1230             :     {
    1231         658 :         Relation    rel = relInfo->ri_RelationDesc;
    1232         658 :         MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
    1233             : 
    1234         658 :         relInfo->ri_ReturningSlot =
    1235         658 :             ExecInitExtraTupleSlot(estate,
    1236             :                                    RelationGetDescr(rel),
    1237             :                                    table_slot_callbacks(rel));
    1238             : 
    1239         658 :         MemoryContextSwitchTo(oldcontext);
    1240             :     }
    1241             : 
    1242        1288 :     return relInfo->ri_ReturningSlot;
    1243             : }
    1244             : 
    1245             : /*
    1246             :  * Return a relInfo's all-NULL tuple slot for processing returning tuples.
    1247             :  *
    1248             :  * Note: this slot is intentionally filled with NULLs in every column, and
    1249             :  * should be considered read-only --- the caller must not update it.
    1250             :  */
    1251             : TupleTableSlot *
    1252         300 : ExecGetAllNullSlot(EState *estate, ResultRelInfo *relInfo)
    1253             : {
    1254         300 :     if (relInfo->ri_AllNullSlot == NULL)
    1255             :     {
    1256         200 :         Relation    rel = relInfo->ri_RelationDesc;
    1257         200 :         MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
    1258             :         TupleTableSlot *slot;
    1259             : 
    1260         200 :         slot = ExecInitExtraTupleSlot(estate,
    1261             :                                       RelationGetDescr(rel),
    1262             :                                       table_slot_callbacks(rel));
    1263         200 :         ExecStoreAllNullTuple(slot);
    1264             : 
    1265         200 :         relInfo->ri_AllNullSlot = slot;
    1266             : 
    1267         200 :         MemoryContextSwitchTo(oldcontext);
    1268             :     }
    1269             : 
    1270         300 :     return relInfo->ri_AllNullSlot;
    1271             : }
    1272             : 
    1273             : /*
    1274             :  * Return the map needed to convert given child result relation's tuples to
    1275             :  * the rowtype of the query's main target ("root") relation.  Note that a
    1276             :  * NULL result is valid and means that no conversion is needed.
    1277             :  */
    1278             : TupleConversionMap *
    1279       67852 : ExecGetChildToRootMap(ResultRelInfo *resultRelInfo)
    1280             : {
    1281             :     /* If we didn't already do so, compute the map for this child. */
    1282       67852 :     if (!resultRelInfo->ri_ChildToRootMapValid)
    1283             :     {
    1284        1640 :         ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
    1285             : 
    1286        1640 :         if (rootRelInfo)
    1287        1268 :             resultRelInfo->ri_ChildToRootMap =
    1288        1268 :                 convert_tuples_by_name(RelationGetDescr(resultRelInfo->ri_RelationDesc),
    1289        1268 :                                        RelationGetDescr(rootRelInfo->ri_RelationDesc));
    1290             :         else                    /* this isn't a child result rel */
    1291         372 :             resultRelInfo->ri_ChildToRootMap = NULL;
    1292             : 
    1293        1640 :         resultRelInfo->ri_ChildToRootMapValid = true;
    1294             :     }
    1295             : 
    1296       67852 :     return resultRelInfo->ri_ChildToRootMap;
    1297             : }
    1298             : 
    1299             : /*
    1300             :  * Returns the map needed to convert given root result relation's tuples to
    1301             :  * the rowtype of the given child relation.  Note that a NULL result is valid
    1302             :  * and means that no conversion is needed.
    1303             :  */
    1304             : TupleConversionMap *
    1305     1007778 : ExecGetRootToChildMap(ResultRelInfo *resultRelInfo, EState *estate)
    1306             : {
    1307             :     /* Mustn't get called for a non-child result relation. */
    1308             :     Assert(resultRelInfo->ri_RootResultRelInfo);
    1309             : 
    1310             :     /* If we didn't already do so, compute the map for this child. */
    1311     1007778 :     if (!resultRelInfo->ri_RootToChildMapValid)
    1312             :     {
    1313        9514 :         ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
    1314        9514 :         TupleDesc   indesc = RelationGetDescr(rootRelInfo->ri_RelationDesc);
    1315        9514 :         TupleDesc   outdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
    1316        9514 :         Relation    childrel = resultRelInfo->ri_RelationDesc;
    1317             :         AttrMap    *attrMap;
    1318             :         MemoryContext oldcontext;
    1319             : 
    1320             :         /*
    1321             :          * When this child table is not a partition (!relispartition), it may
    1322             :          * have columns that are not present in the root table, which we ask
    1323             :          * to ignore by passing true for missing_ok.
    1324             :          */
    1325        9514 :         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
    1326        9514 :         attrMap = build_attrmap_by_name_if_req(indesc, outdesc,
    1327        9514 :                                                !childrel->rd_rel->relispartition);
    1328        9514 :         if (attrMap)
    1329        1452 :             resultRelInfo->ri_RootToChildMap =
    1330        1452 :                 convert_tuples_by_name_attrmap(indesc, outdesc, attrMap);
    1331        9514 :         MemoryContextSwitchTo(oldcontext);
    1332        9514 :         resultRelInfo->ri_RootToChildMapValid = true;
    1333             :     }
    1334             : 
    1335     1007778 :     return resultRelInfo->ri_RootToChildMap;
    1336             : }
    1337             : 
    1338             : /* Return a bitmap representing columns being inserted */
    1339             : Bitmapset *
    1340        1234 : ExecGetInsertedCols(ResultRelInfo *relinfo, EState *estate)
    1341             : {
    1342        1234 :     RTEPermissionInfo *perminfo = GetResultRTEPermissionInfo(relinfo, estate);
    1343             : 
    1344        1234 :     if (perminfo == NULL)
    1345           0 :         return NULL;
    1346             : 
    1347             :     /* Map the columns to child's attribute numbers if needed. */
    1348        1234 :     if (relinfo->ri_RootResultRelInfo)
    1349             :     {
    1350           6 :         TupleConversionMap *map = ExecGetRootToChildMap(relinfo, estate);
    1351             : 
    1352           6 :         if (map)
    1353           4 :             return execute_attr_map_cols(map->attrMap, perminfo->insertedCols);
    1354             :     }
    1355             : 
    1356        1230 :     return perminfo->insertedCols;
    1357             : }
    1358             : 
    1359             : /* Return a bitmap representing columns being updated */
    1360             : Bitmapset *
    1361       59454 : ExecGetUpdatedCols(ResultRelInfo *relinfo, EState *estate)
    1362             : {
    1363       59454 :     RTEPermissionInfo *perminfo = GetResultRTEPermissionInfo(relinfo, estate);
    1364             : 
    1365       59454 :     if (perminfo == NULL)
    1366           0 :         return NULL;
    1367             : 
    1368             :     /* Map the columns to child's attribute numbers if needed. */
    1369       59454 :     if (relinfo->ri_RootResultRelInfo)
    1370             :     {
    1371        1806 :         TupleConversionMap *map = ExecGetRootToChildMap(relinfo, estate);
    1372             : 
    1373        1806 :         if (map)
    1374         490 :             return execute_attr_map_cols(map->attrMap, perminfo->updatedCols);
    1375             :     }
    1376             : 
    1377       58964 :     return perminfo->updatedCols;
    1378             : }
    1379             : 
    1380             : /* Return a bitmap representing generated columns being updated */
    1381             : Bitmapset *
    1382       58020 : ExecGetExtraUpdatedCols(ResultRelInfo *relinfo, EState *estate)
    1383             : {
    1384             :     /* Compute the info if we didn't already */
    1385       58020 :     if (relinfo->ri_GeneratedExprsU == NULL)
    1386       57900 :         ExecInitStoredGenerated(relinfo, estate, CMD_UPDATE);
    1387       58020 :     return relinfo->ri_extraUpdatedCols;
    1388             : }
    1389             : 
    1390             : /*
    1391             :  * Return columns being updated, including generated columns
    1392             :  *
    1393             :  * The bitmap is allocated in per-tuple memory context. It's up to the caller to
    1394             :  * copy it into a different context with the appropriate lifespan, if needed.
    1395             :  */
    1396             : Bitmapset *
    1397       14692 : ExecGetAllUpdatedCols(ResultRelInfo *relinfo, EState *estate)
    1398             : {
    1399             :     Bitmapset  *ret;
    1400             :     MemoryContext oldcxt;
    1401             : 
    1402       14692 :     oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
    1403             : 
    1404       14692 :     ret = bms_union(ExecGetUpdatedCols(relinfo, estate),
    1405       14692 :                     ExecGetExtraUpdatedCols(relinfo, estate));
    1406             : 
    1407       14692 :     MemoryContextSwitchTo(oldcxt);
    1408             : 
    1409       14692 :     return ret;
    1410             : }
    1411             : 
    1412             : /*
    1413             :  * GetResultRTEPermissionInfo
    1414             :  *      Looks up RTEPermissionInfo for ExecGet*Cols() routines
    1415             :  */
    1416             : static RTEPermissionInfo *
    1417       61034 : GetResultRTEPermissionInfo(ResultRelInfo *relinfo, EState *estate)
    1418             : {
    1419             :     Index       rti;
    1420             :     RangeTblEntry *rte;
    1421       61034 :     RTEPermissionInfo *perminfo = NULL;
    1422             : 
    1423       61034 :     if (relinfo->ri_RootResultRelInfo)
    1424             :     {
    1425             :         /*
    1426             :          * For inheritance child result relations (a partition routing target
    1427             :          * of an INSERT or a child UPDATE target), this returns the root
    1428             :          * parent's RTE to fetch the RTEPermissionInfo because that's the only
    1429             :          * one that has one assigned.
    1430             :          */
    1431        1908 :         rti = relinfo->ri_RootResultRelInfo->ri_RangeTableIndex;
    1432             :     }
    1433       59126 :     else if (relinfo->ri_RangeTableIndex != 0)
    1434             :     {
    1435             :         /*
    1436             :          * Non-child result relation should have their own RTEPermissionInfo.
    1437             :          */
    1438       59126 :         rti = relinfo->ri_RangeTableIndex;
    1439             :     }
    1440             :     else
    1441             :     {
    1442             :         /*
    1443             :          * The relation isn't in the range table and it isn't a partition
    1444             :          * routing target.  This ResultRelInfo must've been created only for
    1445             :          * firing triggers and the relation is not being inserted into.  (See
    1446             :          * ExecGetTriggerResultRel.)
    1447             :          */
    1448           0 :         rti = 0;
    1449             :     }
    1450             : 
    1451       61034 :     if (rti > 0)
    1452             :     {
    1453       61034 :         rte = exec_rt_fetch(rti, estate);
    1454       61034 :         perminfo = getRTEPermissionInfo(estate->es_rteperminfos, rte);
    1455             :     }
    1456             : 
    1457       61034 :     return perminfo;
    1458             : }
    1459             : 
    1460             : /*
    1461             :  * ExecGetResultRelCheckAsUser
    1462             :  *      Returns the user to modify passed-in result relation as
    1463             :  *
    1464             :  * The user is chosen by looking up the relation's or, if a child table, its
    1465             :  * root parent's RTEPermissionInfo.
    1466             :  */
    1467             : Oid
    1468         346 : ExecGetResultRelCheckAsUser(ResultRelInfo *relInfo, EState *estate)
    1469             : {
    1470         346 :     RTEPermissionInfo *perminfo = GetResultRTEPermissionInfo(relInfo, estate);
    1471             : 
    1472             :     /* XXX - maybe ok to return GetUserId() in this case? */
    1473         346 :     if (perminfo == NULL)
    1474           0 :         elog(ERROR, "no RTEPermissionInfo found for result relation with OID %u",
    1475             :              RelationGetRelid(relInfo->ri_RelationDesc));
    1476             : 
    1477         346 :     return perminfo->checkAsUser ? perminfo->checkAsUser : GetUserId();
    1478             : }

Generated by: LCOV version 1.14