LCOV - code coverage report
Current view: top level - src/backend/executor - execTuples.c (source / functions) Hit Total Coverage
Test: PostgreSQL 16beta1 Lines: 658 704 93.5 %
Date: 2023-06-06 09:15:10 Functions: 79 82 96.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * execTuples.c
       4             :  *    Routines dealing with TupleTableSlots.  These are used for resource
       5             :  *    management associated with tuples (eg, releasing buffer pins for
       6             :  *    tuples in disk buffers, or freeing the memory occupied by transient
       7             :  *    tuples).  Slots also provide access abstraction that lets us implement
       8             :  *    "virtual" tuples to reduce data-copying overhead.
       9             :  *
      10             :  *    Routines dealing with the type information for tuples. Currently,
      11             :  *    the type information for a tuple is an array of FormData_pg_attribute.
      12             :  *    This information is needed by routines manipulating tuples
      13             :  *    (getattribute, formtuple, etc.).
      14             :  *
      15             :  *
      16             :  *   EXAMPLE OF HOW TABLE ROUTINES WORK
      17             :  *      Suppose we have a query such as SELECT emp.name FROM emp and we have
      18             :  *      a single SeqScan node in the query plan.
      19             :  *
      20             :  *      At ExecutorStart()
      21             :  *      ----------------
      22             :  *
      23             :  *      - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
      24             :  *        TupleTableSlots for the tuples returned by the access method, and
      25             :  *        ExecInitResultTypeTL() to define the node's return
      26             :  *        type. ExecAssignScanProjectionInfo() will, if necessary, create
      27             :  *        another TupleTableSlot for the tuples resulting from performing
      28             :  *        target list projections.
      29             :  *
      30             :  *      During ExecutorRun()
      31             :  *      ----------------
      32             :  *      - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
      33             :  *        returned by the access method into the scan tuple slot.
      34             :  *
      35             :  *      - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
      36             :  *        putting the result of the projection in the result tuple slot. If
      37             :  *        not necessary, it directly returns the slot returned by SeqNext().
      38             :  *
      39             :  *      - ExecutePlan() calls the output function.
      40             :  *
      41             :  *      The important thing to watch in the executor code is how pointers
      42             :  *      to the slots containing tuples are passed instead of the tuples
      43             :  *      themselves.  This facilitates the communication of related information
      44             :  *      (such as whether or not a tuple should be pfreed, what buffer contains
      45             :  *      this tuple, the tuple's tuple descriptor, etc).  It also allows us
      46             :  *      to avoid physically constructing projection tuples in many cases.
      47             :  *
      48             :  *
      49             :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
      50             :  * Portions Copyright (c) 1994, Regents of the University of California
      51             :  *
      52             :  *
      53             :  * IDENTIFICATION
      54             :  *    src/backend/executor/execTuples.c
      55             :  *
      56             :  *-------------------------------------------------------------------------
      57             :  */
      58             : #include "postgres.h"
      59             : 
      60             : #include "access/heaptoast.h"
      61             : #include "access/htup_details.h"
      62             : #include "access/tupdesc_details.h"
      63             : #include "catalog/pg_type.h"
      64             : #include "funcapi.h"
      65             : #include "nodes/nodeFuncs.h"
      66             : #include "storage/bufmgr.h"
      67             : #include "utils/builtins.h"
      68             : #include "utils/expandeddatum.h"
      69             : #include "utils/lsyscache.h"
      70             : #include "utils/typcache.h"
      71             : 
      72             : static TupleDesc ExecTypeFromTLInternal(List *targetList,
      73             :                                         bool skipjunk);
      74             : static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
      75             :                                                               int natts);
      76             : static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot,
      77             :                                                HeapTuple tuple,
      78             :                                                Buffer buffer,
      79             :                                                bool transfer_pin);
      80             : static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree);
      81             : 
      82             : 
      83             : const TupleTableSlotOps TTSOpsVirtual;
      84             : const TupleTableSlotOps TTSOpsHeapTuple;
      85             : const TupleTableSlotOps TTSOpsMinimalTuple;
      86             : const TupleTableSlotOps TTSOpsBufferHeapTuple;
      87             : 
      88             : 
      89             : /*
      90             :  * TupleTableSlotOps implementations.
      91             :  */
      92             : 
      93             : /*
      94             :  * TupleTableSlotOps implementation for VirtualTupleTableSlot.
      95             :  */
      96             : static void
      97     1178826 : tts_virtual_init(TupleTableSlot *slot)
      98             : {
      99     1178826 : }
     100             : 
     101             : static void
     102     1155992 : tts_virtual_release(TupleTableSlot *slot)
     103             : {
     104     1155992 : }
     105             : 
     106             : static void
     107    77944732 : tts_virtual_clear(TupleTableSlot *slot)
     108             : {
     109    77944732 :     if (unlikely(TTS_SHOULDFREE(slot)))
     110             :     {
     111     1745370 :         VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     112             : 
     113     1745370 :         pfree(vslot->data);
     114     1745370 :         vslot->data = NULL;
     115             : 
     116     1745370 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     117             :     }
     118             : 
     119    77944732 :     slot->tts_nvalid = 0;
     120    77944732 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     121    77944732 :     ItemPointerSetInvalid(&slot->tts_tid);
     122    77944732 : }
     123             : 
     124             : /*
     125             :  * VirtualTupleTableSlots always have fully populated tts_values and
     126             :  * tts_isnull arrays.  So this function should never be called.
     127             :  */
     128             : static void
     129           0 : tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts)
     130             : {
     131           0 :     elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot");
     132             : }
     133             : 
     134             : /*
     135             :  * VirtualTupleTableSlots never provide system attributes (except those
     136             :  * handled generically, such as tableoid).  We generally shouldn't get
     137             :  * here, but provide a user-friendly message if we do.
     138             :  */
     139             : static Datum
     140          12 : tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     141             : {
     142             :     Assert(!TTS_EMPTY(slot));
     143             : 
     144          12 :     ereport(ERROR,
     145             :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     146             :              errmsg("cannot retrieve a system column in this context")));
     147             : 
     148             :     return 0;                   /* silence compiler warnings */
     149             : }
     150             : 
     151             : /*
     152             :  * To materialize a virtual slot all the datums that aren't passed by value
     153             :  * have to be copied into the slot's memory context.  To do so, compute the
     154             :  * required size, and allocate enough memory to store all attributes.  That's
     155             :  * good for cache hit ratio, but more importantly requires only memory
     156             :  * allocation/deallocation.
     157             :  */
     158             : static void
     159     4277742 : tts_virtual_materialize(TupleTableSlot *slot)
     160             : {
     161     4277742 :     VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     162     4277742 :     TupleDesc   desc = slot->tts_tupleDescriptor;
     163     4277742 :     Size        sz = 0;
     164             :     char       *data;
     165             : 
     166             :     /* already materialized */
     167     4277742 :     if (TTS_SHOULDFREE(slot))
     168      383806 :         return;
     169             : 
     170             :     /* compute size of memory required */
     171    12091062 :     for (int natt = 0; natt < desc->natts; natt++)
     172             :     {
     173     8197126 :         Form_pg_attribute att = TupleDescAttr(desc, natt);
     174             :         Datum       val;
     175             : 
     176     8197126 :         if (att->attbyval || slot->tts_isnull[natt])
     177     6370712 :             continue;
     178             : 
     179     1826414 :         val = slot->tts_values[natt];
     180             : 
     181     1826414 :         if (att->attlen == -1 &&
     182     1235970 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     183             :         {
     184             :             /*
     185             :              * We want to flatten the expanded value so that the materialized
     186             :              * slot doesn't depend on it.
     187             :              */
     188           0 :             sz = att_align_nominal(sz, att->attalign);
     189           0 :             sz += EOH_get_flat_size(DatumGetEOHP(val));
     190             :         }
     191             :         else
     192             :         {
     193     1826414 :             sz = att_align_nominal(sz, att->attalign);
     194     1826414 :             sz = att_addlength_datum(sz, att->attlen, val);
     195             :         }
     196             :     }
     197             : 
     198             :     /* all data is byval */
     199     3893936 :     if (sz == 0)
     200     2148488 :         return;
     201             : 
     202             :     /* allocate memory */
     203     1745448 :     vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz);
     204     1745448 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     205             : 
     206             :     /* and copy all attributes into the pre-allocated space */
     207     6695598 :     for (int natt = 0; natt < desc->natts; natt++)
     208             :     {
     209     4950150 :         Form_pg_attribute att = TupleDescAttr(desc, natt);
     210             :         Datum       val;
     211             : 
     212     4950150 :         if (att->attbyval || slot->tts_isnull[natt])
     213     3123736 :             continue;
     214             : 
     215     1826414 :         val = slot->tts_values[natt];
     216             : 
     217     1826414 :         if (att->attlen == -1 &&
     218     1235970 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     219           0 :         {
     220             :             Size        data_length;
     221             : 
     222             :             /*
     223             :              * We want to flatten the expanded value so that the materialized
     224             :              * slot doesn't depend on it.
     225             :              */
     226           0 :             ExpandedObjectHeader *eoh = DatumGetEOHP(val);
     227             : 
     228           0 :             data = (char *) att_align_nominal(data,
     229             :                                               att->attalign);
     230           0 :             data_length = EOH_get_flat_size(eoh);
     231           0 :             EOH_flatten_into(eoh, data, data_length);
     232             : 
     233           0 :             slot->tts_values[natt] = PointerGetDatum(data);
     234           0 :             data += data_length;
     235             :         }
     236             :         else
     237             :         {
     238     1826414 :             Size        data_length = 0;
     239             : 
     240     1826414 :             data = (char *) att_align_nominal(data, att->attalign);
     241     1826414 :             data_length = att_addlength_datum(data_length, att->attlen, val);
     242             : 
     243     1826414 :             memcpy(data, DatumGetPointer(val), data_length);
     244             : 
     245     1826414 :             slot->tts_values[natt] = PointerGetDatum(data);
     246     1826414 :             data += data_length;
     247             :         }
     248             :     }
     249             : }
     250             : 
     251             : static void
     252      141092 : tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     253             : {
     254      141092 :     TupleDesc   srcdesc = srcslot->tts_tupleDescriptor;
     255             : 
     256             :     Assert(srcdesc->natts <= dstslot->tts_tupleDescriptor->natts);
     257             : 
     258      141092 :     tts_virtual_clear(dstslot);
     259             : 
     260      141092 :     slot_getallattrs(srcslot);
     261             : 
     262      290788 :     for (int natt = 0; natt < srcdesc->natts; natt++)
     263             :     {
     264      149696 :         dstslot->tts_values[natt] = srcslot->tts_values[natt];
     265      149696 :         dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt];
     266             :     }
     267             : 
     268      141092 :     dstslot->tts_nvalid = srcdesc->natts;
     269      141092 :     dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     270             : 
     271             :     /* make sure storage doesn't depend on external memory */
     272      141092 :     tts_virtual_materialize(dstslot);
     273      141092 : }
     274             : 
     275             : static HeapTuple
     276    14110700 : tts_virtual_copy_heap_tuple(TupleTableSlot *slot)
     277             : {
     278             :     Assert(!TTS_EMPTY(slot));
     279             : 
     280    14110700 :     return heap_form_tuple(slot->tts_tupleDescriptor,
     281             :                            slot->tts_values,
     282             :                            slot->tts_isnull);
     283             : }
     284             : 
     285             : static MinimalTuple
     286    25054784 : tts_virtual_copy_minimal_tuple(TupleTableSlot *slot)
     287             : {
     288             :     Assert(!TTS_EMPTY(slot));
     289             : 
     290    25054784 :     return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     291             :                                    slot->tts_values,
     292             :                                    slot->tts_isnull);
     293             : }
     294             : 
     295             : 
     296             : /*
     297             :  * TupleTableSlotOps implementation for HeapTupleTableSlot.
     298             :  */
     299             : 
     300             : static void
     301     9701340 : tts_heap_init(TupleTableSlot *slot)
     302             : {
     303     9701340 : }
     304             : 
     305             : static void
     306     9700534 : tts_heap_release(TupleTableSlot *slot)
     307             : {
     308     9700534 : }
     309             : 
     310             : static void
     311    21729192 : tts_heap_clear(TupleTableSlot *slot)
     312             : {
     313    21729192 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     314             : 
     315             :     /* Free the memory for the heap tuple if it's allowed. */
     316    21729192 :     if (TTS_SHOULDFREE(slot))
     317             :     {
     318     4591610 :         heap_freetuple(hslot->tuple);
     319     4591610 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     320             :     }
     321             : 
     322    21729192 :     slot->tts_nvalid = 0;
     323    21729192 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     324    21729192 :     ItemPointerSetInvalid(&slot->tts_tid);
     325    21729192 :     hslot->off = 0;
     326    21729192 :     hslot->tuple = NULL;
     327    21729192 : }
     328             : 
     329             : static void
     330    21946494 : tts_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     331             : {
     332    21946494 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     333             : 
     334             :     Assert(!TTS_EMPTY(slot));
     335             : 
     336    21946494 :     slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts);
     337    21946494 : }
     338             : 
     339             : static Datum
     340           0 : tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     341             : {
     342           0 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     343             : 
     344             :     Assert(!TTS_EMPTY(slot));
     345             : 
     346             :     /*
     347             :      * In some code paths it's possible to get here with a non-materialized
     348             :      * slot, in which case we can't retrieve system columns.
     349             :      */
     350           0 :     if (!hslot->tuple)
     351           0 :         ereport(ERROR,
     352             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     353             :                  errmsg("cannot retrieve a system column in this context")));
     354             : 
     355           0 :     return heap_getsysattr(hslot->tuple, attnum,
     356             :                            slot->tts_tupleDescriptor, isnull);
     357             : }
     358             : 
     359             : static void
     360     8520552 : tts_heap_materialize(TupleTableSlot *slot)
     361             : {
     362     8520552 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     363             :     MemoryContext oldContext;
     364             : 
     365             :     Assert(!TTS_EMPTY(slot));
     366             : 
     367             :     /* If slot has its tuple already materialized, nothing to do. */
     368     8520552 :     if (TTS_SHOULDFREE(slot))
     369     4331024 :         return;
     370             : 
     371     4189528 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     372             : 
     373             :     /*
     374             :      * Have to deform from scratch, otherwise tts_values[] entries could point
     375             :      * into the non-materialized tuple (which might be gone when accessed).
     376             :      */
     377     4189528 :     slot->tts_nvalid = 0;
     378     4189528 :     hslot->off = 0;
     379             : 
     380     4189528 :     if (!hslot->tuple)
     381     4189514 :         hslot->tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     382             :                                        slot->tts_values,
     383             :                                        slot->tts_isnull);
     384             :     else
     385             :     {
     386             :         /*
     387             :          * The tuple contained in this slot is not allocated in the memory
     388             :          * context of the given slot (else it would have TTS_FLAG_SHOULDFREE
     389             :          * set).  Copy the tuple into the given slot's memory context.
     390             :          */
     391          14 :         hslot->tuple = heap_copytuple(hslot->tuple);
     392             :     }
     393             : 
     394     4189528 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     395             : 
     396     4189528 :     MemoryContextSwitchTo(oldContext);
     397             : }
     398             : 
     399             : static void
     400      281796 : tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     401             : {
     402             :     HeapTuple   tuple;
     403             :     MemoryContext oldcontext;
     404             : 
     405      281796 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     406      281796 :     tuple = ExecCopySlotHeapTuple(srcslot);
     407      281796 :     MemoryContextSwitchTo(oldcontext);
     408             : 
     409      281796 :     ExecStoreHeapTuple(tuple, dstslot, true);
     410      281796 : }
     411             : 
     412             : static HeapTuple
     413     8378594 : tts_heap_get_heap_tuple(TupleTableSlot *slot)
     414             : {
     415     8378594 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     416             : 
     417             :     Assert(!TTS_EMPTY(slot));
     418     8378594 :     if (!hslot->tuple)
     419           0 :         tts_heap_materialize(slot);
     420             : 
     421     8378594 :     return hslot->tuple;
     422             : }
     423             : 
     424             : static HeapTuple
     425      140686 : tts_heap_copy_heap_tuple(TupleTableSlot *slot)
     426             : {
     427      140686 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     428             : 
     429             :     Assert(!TTS_EMPTY(slot));
     430      140686 :     if (!hslot->tuple)
     431           0 :         tts_heap_materialize(slot);
     432             : 
     433      140686 :     return heap_copytuple(hslot->tuple);
     434             : }
     435             : 
     436             : static MinimalTuple
     437        5422 : tts_heap_copy_minimal_tuple(TupleTableSlot *slot)
     438             : {
     439        5422 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     440             : 
     441        5422 :     if (!hslot->tuple)
     442          38 :         tts_heap_materialize(slot);
     443             : 
     444        5422 :     return minimal_tuple_from_heap_tuple(hslot->tuple);
     445             : }
     446             : 
     447             : static void
     448     7694066 : tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
     449             : {
     450     7694066 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     451             : 
     452     7694066 :     tts_heap_clear(slot);
     453             : 
     454     7694066 :     slot->tts_nvalid = 0;
     455     7694066 :     hslot->tuple = tuple;
     456     7694066 :     hslot->off = 0;
     457     7694066 :     slot->tts_flags &= ~(TTS_FLAG_EMPTY | TTS_FLAG_SHOULDFREE);
     458     7694066 :     slot->tts_tid = tuple->t_self;
     459             : 
     460     7694066 :     if (shouldFree)
     461      402100 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     462     7694066 : }
     463             : 
     464             : 
     465             : /*
     466             :  * TupleTableSlotOps implementation for MinimalTupleTableSlot.
     467             :  */
     468             : 
     469             : static void
     470      430026 : tts_minimal_init(TupleTableSlot *slot)
     471             : {
     472      430026 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     473             : 
     474             :     /*
     475             :      * Initialize the heap tuple pointer to access attributes of the minimal
     476             :      * tuple contained in the slot as if its a heap tuple.
     477             :      */
     478      430026 :     mslot->tuple = &mslot->minhdr;
     479      430026 : }
     480             : 
     481             : static void
     482      395524 : tts_minimal_release(TupleTableSlot *slot)
     483             : {
     484      395524 : }
     485             : 
     486             : static void
     487    65153324 : tts_minimal_clear(TupleTableSlot *slot)
     488             : {
     489    65153324 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     490             : 
     491    65153324 :     if (TTS_SHOULDFREE(slot))
     492             :     {
     493    13503072 :         heap_free_minimal_tuple(mslot->mintuple);
     494    13503072 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     495             :     }
     496             : 
     497    65153324 :     slot->tts_nvalid = 0;
     498    65153324 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     499    65153324 :     ItemPointerSetInvalid(&slot->tts_tid);
     500    65153324 :     mslot->off = 0;
     501    65153324 :     mslot->mintuple = NULL;
     502    65153324 : }
     503             : 
     504             : static void
     505    44414044 : tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts)
     506             : {
     507    44414044 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     508             : 
     509             :     Assert(!TTS_EMPTY(slot));
     510             : 
     511    44414044 :     slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts);
     512    44414044 : }
     513             : 
     514             : static Datum
     515           0 : tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     516             : {
     517             :     Assert(!TTS_EMPTY(slot));
     518             : 
     519           0 :     ereport(ERROR,
     520             :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     521             :              errmsg("cannot retrieve a system column in this context")));
     522             : 
     523             :     return 0;                   /* silence compiler warnings */
     524             : }
     525             : 
     526             : static void
     527     1567948 : tts_minimal_materialize(TupleTableSlot *slot)
     528             : {
     529     1567948 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     530             :     MemoryContext oldContext;
     531             : 
     532             :     Assert(!TTS_EMPTY(slot));
     533             : 
     534             :     /* If slot has its tuple already materialized, nothing to do. */
     535     1567948 :     if (TTS_SHOULDFREE(slot))
     536      144012 :         return;
     537             : 
     538     1423936 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     539             : 
     540             :     /*
     541             :      * Have to deform from scratch, otherwise tts_values[] entries could point
     542             :      * into the non-materialized tuple (which might be gone when accessed).
     543             :      */
     544     1423936 :     slot->tts_nvalid = 0;
     545     1423936 :     mslot->off = 0;
     546             : 
     547     1423936 :     if (!mslot->mintuple)
     548             :     {
     549     1312880 :         mslot->mintuple = heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     550             :                                                   slot->tts_values,
     551             :                                                   slot->tts_isnull);
     552             :     }
     553             :     else
     554             :     {
     555             :         /*
     556             :          * The minimal tuple contained in this slot is not allocated in the
     557             :          * memory context of the given slot (else it would have
     558             :          * TTS_FLAG_SHOULDFREE set).  Copy the minimal tuple into the given
     559             :          * slot's memory context.
     560             :          */
     561      111056 :         mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple);
     562             :     }
     563             : 
     564     1423936 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     565             : 
     566             :     Assert(mslot->tuple == &mslot->minhdr);
     567             : 
     568     1423936 :     mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET;
     569     1423936 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET);
     570             : 
     571     1423936 :     MemoryContextSwitchTo(oldContext);
     572             : }
     573             : 
     574             : static void
     575     1063354 : tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     576             : {
     577             :     MemoryContext oldcontext;
     578             :     MinimalTuple mintuple;
     579             : 
     580     1063354 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     581     1063354 :     mintuple = ExecCopySlotMinimalTuple(srcslot);
     582     1063354 :     MemoryContextSwitchTo(oldcontext);
     583             : 
     584     1063354 :     ExecStoreMinimalTuple(mintuple, dstslot, true);
     585     1063354 : }
     586             : 
     587             : static MinimalTuple
     588     3856224 : tts_minimal_get_minimal_tuple(TupleTableSlot *slot)
     589             : {
     590     3856224 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     591             : 
     592     3856224 :     if (!mslot->mintuple)
     593           0 :         tts_minimal_materialize(slot);
     594             : 
     595     3856224 :     return mslot->mintuple;
     596             : }
     597             : 
     598             : static HeapTuple
     599      990528 : tts_minimal_copy_heap_tuple(TupleTableSlot *slot)
     600             : {
     601      990528 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     602             : 
     603      990528 :     if (!mslot->mintuple)
     604        1192 :         tts_minimal_materialize(slot);
     605             : 
     606      990528 :     return heap_tuple_from_minimal_tuple(mslot->mintuple);
     607             : }
     608             : 
     609             : static MinimalTuple
     610     2642456 : tts_minimal_copy_minimal_tuple(TupleTableSlot *slot)
     611             : {
     612     2642456 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     613             : 
     614     2642456 :     if (!mslot->mintuple)
     615     1195270 :         tts_minimal_materialize(slot);
     616             : 
     617     2642456 :     return heap_copy_minimal_tuple(mslot->mintuple);
     618             : }
     619             : 
     620             : static void
     621    53547232 : tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree)
     622             : {
     623    53547232 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     624             : 
     625    53547232 :     tts_minimal_clear(slot);
     626             : 
     627             :     Assert(!TTS_SHOULDFREE(slot));
     628             :     Assert(TTS_EMPTY(slot));
     629             : 
     630    53547232 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     631    53547232 :     slot->tts_nvalid = 0;
     632    53547232 :     mslot->off = 0;
     633             : 
     634    53547232 :     mslot->mintuple = mtup;
     635             :     Assert(mslot->tuple == &mslot->minhdr);
     636    53547232 :     mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
     637    53547232 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
     638             :     /* no need to set t_self or t_tableOid since we won't allow access */
     639             : 
     640    53547232 :     if (shouldFree)
     641    12080050 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     642    53547232 : }
     643             : 
     644             : 
     645             : /*
     646             :  * TupleTableSlotOps implementation for BufferHeapTupleTableSlot.
     647             :  */
     648             : 
     649             : static void
     650    30777404 : tts_buffer_heap_init(TupleTableSlot *slot)
     651             : {
     652    30777404 : }
     653             : 
     654             : static void
     655    30767624 : tts_buffer_heap_release(TupleTableSlot *slot)
     656             : {
     657    30767624 : }
     658             : 
     659             : static void
     660    53440844 : tts_buffer_heap_clear(TupleTableSlot *slot)
     661             : {
     662    53440844 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     663             : 
     664             :     /*
     665             :      * Free the memory for heap tuple if allowed. A tuple coming from buffer
     666             :      * can never be freed. But we may have materialized a tuple from buffer.
     667             :      * Such a tuple can be freed.
     668             :      */
     669    53440844 :     if (TTS_SHOULDFREE(slot))
     670             :     {
     671             :         /* We should have unpinned the buffer while materializing the tuple. */
     672             :         Assert(!BufferIsValid(bslot->buffer));
     673             : 
     674    13988372 :         heap_freetuple(bslot->base.tuple);
     675    13988372 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     676             :     }
     677             : 
     678    53440844 :     if (BufferIsValid(bslot->buffer))
     679    14064276 :         ReleaseBuffer(bslot->buffer);
     680             : 
     681    53440844 :     slot->tts_nvalid = 0;
     682    53440844 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     683    53440844 :     ItemPointerSetInvalid(&slot->tts_tid);
     684    53440844 :     bslot->base.tuple = NULL;
     685    53440844 :     bslot->base.off = 0;
     686    53440844 :     bslot->buffer = InvalidBuffer;
     687    53440844 : }
     688             : 
     689             : static void
     690   140549632 : tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     691             : {
     692   140549632 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     693             : 
     694             :     Assert(!TTS_EMPTY(slot));
     695             : 
     696   140549632 :     slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts);
     697   140549632 : }
     698             : 
     699             : static Datum
     700        1262 : tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     701             : {
     702        1262 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     703             : 
     704             :     Assert(!TTS_EMPTY(slot));
     705             : 
     706             :     /*
     707             :      * In some code paths it's possible to get here with a non-materialized
     708             :      * slot, in which case we can't retrieve system columns.
     709             :      */
     710        1262 :     if (!bslot->base.tuple)
     711           0 :         ereport(ERROR,
     712             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     713             :                  errmsg("cannot retrieve a system column in this context")));
     714             : 
     715        1262 :     return heap_getsysattr(bslot->base.tuple, attnum,
     716             :                            slot->tts_tupleDescriptor, isnull);
     717             : }
     718             : 
     719             : static void
     720    27896172 : tts_buffer_heap_materialize(TupleTableSlot *slot)
     721             : {
     722    27896172 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     723             :     MemoryContext oldContext;
     724             : 
     725             :     Assert(!TTS_EMPTY(slot));
     726             : 
     727             :     /* If slot has its tuple already materialized, nothing to do. */
     728    27896172 :     if (TTS_SHOULDFREE(slot))
     729    24918042 :         return;
     730             : 
     731     2978130 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     732             : 
     733             :     /*
     734             :      * Have to deform from scratch, otherwise tts_values[] entries could point
     735             :      * into the non-materialized tuple (which might be gone when accessed).
     736             :      */
     737     2978130 :     bslot->base.off = 0;
     738     2978130 :     slot->tts_nvalid = 0;
     739             : 
     740     2978130 :     if (!bslot->base.tuple)
     741             :     {
     742             :         /*
     743             :          * Normally BufferHeapTupleTableSlot should have a tuple + buffer
     744             :          * associated with it, unless it's materialized (which would've
     745             :          * returned above). But when it's useful to allow storing virtual
     746             :          * tuples in a buffer slot, which then also needs to be
     747             :          * materializable.
     748             :          */
     749     2586356 :         bslot->base.tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     750             :                                             slot->tts_values,
     751             :                                             slot->tts_isnull);
     752             :     }
     753             :     else
     754             :     {
     755      391774 :         bslot->base.tuple = heap_copytuple(bslot->base.tuple);
     756             : 
     757             :         /*
     758             :          * A heap tuple stored in a BufferHeapTupleTableSlot should have a
     759             :          * buffer associated with it, unless it's materialized or virtual.
     760             :          */
     761      391774 :         if (likely(BufferIsValid(bslot->buffer)))
     762      391774 :             ReleaseBuffer(bslot->buffer);
     763      391774 :         bslot->buffer = InvalidBuffer;
     764             :     }
     765             : 
     766             :     /*
     767             :      * We don't set TTS_FLAG_SHOULDFREE until after releasing the buffer, if
     768             :      * any.  This avoids having a transient state that would fall foul of our
     769             :      * assertions that a slot with TTS_FLAG_SHOULDFREE doesn't own a buffer.
     770             :      * In the unlikely event that ReleaseBuffer() above errors out, we'd
     771             :      * effectively leak the copied tuple, but that seems fairly harmless.
     772             :      */
     773     2978130 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     774             : 
     775     2978130 :     MemoryContextSwitchTo(oldContext);
     776             : }
     777             : 
     778             : static void
     779    11343554 : tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     780             : {
     781    11343554 :     BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot;
     782    11343554 :     BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot;
     783             : 
     784             :     /*
     785             :      * If the source slot is of a different kind, or is a buffer slot that has
     786             :      * been materialized / is virtual, make a new copy of the tuple. Otherwise
     787             :      * make a new reference to the in-buffer tuple.
     788             :      */
     789    11343554 :     if (dstslot->tts_ops != srcslot->tts_ops ||
     790        8802 :         TTS_SHOULDFREE(srcslot) ||
     791        8798 :         !bsrcslot->base.tuple)
     792    11334756 :     {
     793             :         MemoryContext oldContext;
     794             : 
     795    11334756 :         ExecClearTuple(dstslot);
     796    11334756 :         dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     797    11334756 :         oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     798    11334756 :         bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot);
     799    11334756 :         dstslot->tts_flags |= TTS_FLAG_SHOULDFREE;
     800    11334756 :         MemoryContextSwitchTo(oldContext);
     801             :     }
     802             :     else
     803             :     {
     804             :         Assert(BufferIsValid(bsrcslot->buffer));
     805             : 
     806        8798 :         tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple,
     807             :                                     bsrcslot->buffer, false);
     808             : 
     809             :         /*
     810             :          * The HeapTupleData portion of the source tuple might be shorter
     811             :          * lived than the destination slot. Therefore copy the HeapTuple into
     812             :          * our slot's tupdata, which is guaranteed to live long enough (but
     813             :          * will still point into the buffer).
     814             :          */
     815        8798 :         memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData));
     816        8798 :         bdstslot->base.tuple = &bdstslot->base.tupdata;
     817             :     }
     818    11343554 : }
     819             : 
     820             : static HeapTuple
     821    43950114 : tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot)
     822             : {
     823    43950114 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     824             : 
     825             :     Assert(!TTS_EMPTY(slot));
     826             : 
     827    43950114 :     if (!bslot->base.tuple)
     828           0 :         tts_buffer_heap_materialize(slot);
     829             : 
     830    43950114 :     return bslot->base.tuple;
     831             : }
     832             : 
     833             : static HeapTuple
     834    19981334 : tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot)
     835             : {
     836    19981334 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     837             : 
     838             :     Assert(!TTS_EMPTY(slot));
     839             : 
     840    19981334 :     if (!bslot->base.tuple)
     841           0 :         tts_buffer_heap_materialize(slot);
     842             : 
     843    19981334 :     return heap_copytuple(bslot->base.tuple);
     844             : }
     845             : 
     846             : static MinimalTuple
     847     2529870 : tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot)
     848             : {
     849     2529870 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     850             : 
     851             :     Assert(!TTS_EMPTY(slot));
     852             : 
     853     2529870 :     if (!bslot->base.tuple)
     854           0 :         tts_buffer_heap_materialize(slot);
     855             : 
     856     2529870 :     return minimal_tuple_from_heap_tuple(bslot->base.tuple);
     857             : }
     858             : 
     859             : static inline void
     860   166203108 : tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple,
     861             :                             Buffer buffer, bool transfer_pin)
     862             : {
     863   166203108 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     864             : 
     865   166203108 :     if (TTS_SHOULDFREE(slot))
     866             :     {
     867             :         /* materialized slot shouldn't have a buffer to release */
     868             :         Assert(!BufferIsValid(bslot->buffer));
     869             : 
     870      393452 :         heap_freetuple(bslot->base.tuple);
     871      393452 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     872             :     }
     873             : 
     874   166203108 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     875   166203108 :     slot->tts_nvalid = 0;
     876   166203108 :     bslot->base.tuple = tuple;
     877   166203108 :     bslot->base.off = 0;
     878   166203108 :     slot->tts_tid = tuple->t_self;
     879             : 
     880             :     /*
     881             :      * If tuple is on a disk page, keep the page pinned as long as we hold a
     882             :      * pointer into it.  We assume the caller already has such a pin.  If
     883             :      * transfer_pin is true, we'll transfer that pin to this slot, if not
     884             :      * we'll pin it again ourselves.
     885             :      *
     886             :      * This is coded to optimize the case where the slot previously held a
     887             :      * tuple on the same disk page: in that case releasing and re-acquiring
     888             :      * the pin is a waste of cycles.  This is a common situation during
     889             :      * seqscans, so it's worth troubling over.
     890             :      */
     891   166203108 :     if (bslot->buffer != buffer)
     892             :     {
     893    20571292 :         if (BufferIsValid(bslot->buffer))
     894     6110790 :             ReleaseBuffer(bslot->buffer);
     895             : 
     896    20571292 :         bslot->buffer = buffer;
     897             : 
     898    20571292 :         if (!transfer_pin && BufferIsValid(buffer))
     899    20366310 :             IncrBufferRefCount(buffer);
     900             :     }
     901   145631816 :     else if (transfer_pin && BufferIsValid(buffer))
     902             :     {
     903             :         /*
     904             :          * In transfer_pin mode the caller won't know about the same-page
     905             :          * optimization, so we gotta release its pin.
     906             :          */
     907      351852 :         ReleaseBuffer(buffer);
     908             :     }
     909   166203108 : }
     910             : 
     911             : /*
     912             :  * slot_deform_heap_tuple
     913             :  *      Given a TupleTableSlot, extract data from the slot's physical tuple
     914             :  *      into its Datum/isnull arrays.  Data is extracted up through the
     915             :  *      natts'th column (caller must ensure this is a legal column number).
     916             :  *
     917             :  *      This is essentially an incremental version of heap_deform_tuple:
     918             :  *      on each call we extract attributes up to the one needed, without
     919             :  *      re-computing information about previously extracted attributes.
     920             :  *      slot->tts_nvalid is the number of attributes already extracted.
     921             :  *
     922             :  * This is marked as always inline, so the different offp for different types
     923             :  * of slots gets optimized away.
     924             :  */
     925             : static pg_attribute_always_inline void
     926   206910170 : slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
     927             :                        int natts)
     928             : {
     929   206910170 :     TupleDesc   tupleDesc = slot->tts_tupleDescriptor;
     930   206910170 :     Datum      *values = slot->tts_values;
     931   206910170 :     bool       *isnull = slot->tts_isnull;
     932   206910170 :     HeapTupleHeader tup = tuple->t_data;
     933   206910170 :     bool        hasnulls = HeapTupleHasNulls(tuple);
     934             :     int         attnum;
     935             :     char       *tp;             /* ptr to tuple data */
     936             :     uint32      off;            /* offset in tuple data */
     937   206910170 :     bits8      *bp = tup->t_bits;    /* ptr to null bitmap in tuple */
     938             :     bool        slow;           /* can we use/set attcacheoff? */
     939             : 
     940             :     /* We can only fetch as many attributes as the tuple has. */
     941   206910170 :     natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts);
     942             : 
     943             :     /*
     944             :      * Check whether the first call for this tuple, and initialize or restore
     945             :      * loop state.
     946             :      */
     947   206910170 :     attnum = slot->tts_nvalid;
     948   206910170 :     if (attnum == 0)
     949             :     {
     950             :         /* Start from the first attribute */
     951   159551786 :         off = 0;
     952   159551786 :         slow = false;
     953             :     }
     954             :     else
     955             :     {
     956             :         /* Restore state from previous execution */
     957    47358384 :         off = *offp;
     958    47358384 :         slow = TTS_SLOW(slot);
     959             :     }
     960             : 
     961   206910170 :     tp = (char *) tup + tup->t_hoff;
     962             : 
     963   908964720 :     for (; attnum < natts; attnum++)
     964             :     {
     965   702054550 :         Form_pg_attribute thisatt = TupleDescAttr(tupleDesc, attnum);
     966             : 
     967   702054550 :         if (hasnulls && att_isnull(attnum, bp))
     968             :         {
     969    45610634 :             values[attnum] = (Datum) 0;
     970    45610634 :             isnull[attnum] = true;
     971    45610634 :             slow = true;        /* can't use attcacheoff anymore */
     972    45610634 :             continue;
     973             :         }
     974             : 
     975   656443916 :         isnull[attnum] = false;
     976             : 
     977   656443916 :         if (!slow && thisatt->attcacheoff >= 0)
     978   621140528 :             off = thisatt->attcacheoff;
     979    35303388 :         else if (thisatt->attlen == -1)
     980             :         {
     981             :             /*
     982             :              * We can only cache the offset for a varlena attribute if the
     983             :              * offset is already suitably aligned, so that there would be no
     984             :              * pad bytes in any case: then the offset will be valid for either
     985             :              * an aligned or unaligned value.
     986             :              */
     987    14523698 :             if (!slow &&
     988      846354 :                 off == att_align_nominal(off, thisatt->attalign))
     989       68288 :                 thisatt->attcacheoff = off;
     990             :             else
     991             :             {
     992    13609056 :                 off = att_align_pointer(off, thisatt->attalign, -1,
     993             :                                         tp + off);
     994    13609056 :                 slow = true;
     995             :             }
     996             :         }
     997             :         else
     998             :         {
     999             :             /* not varlena, so safe to use att_align_nominal */
    1000    21626044 :             off = att_align_nominal(off, thisatt->attalign);
    1001             : 
    1002    21626044 :             if (!slow)
    1003      528072 :                 thisatt->attcacheoff = off;
    1004             :         }
    1005             : 
    1006   656443916 :         values[attnum] = fetchatt(thisatt, tp + off);
    1007             : 
    1008   656443916 :         off = att_addlength_pointer(off, thisatt->attlen, tp + off);
    1009             : 
    1010   656443916 :         if (thisatt->attlen <= 0)
    1011    48741904 :             slow = true;        /* can't use attcacheoff anymore */
    1012             :     }
    1013             : 
    1014             :     /*
    1015             :      * Save state for next execution
    1016             :      */
    1017   206910170 :     slot->tts_nvalid = attnum;
    1018   206910170 :     *offp = off;
    1019   206910170 :     if (slow)
    1020    42227418 :         slot->tts_flags |= TTS_FLAG_SLOW;
    1021             :     else
    1022   164682752 :         slot->tts_flags &= ~TTS_FLAG_SLOW;
    1023   206910170 : }
    1024             : 
    1025             : 
    1026             : const TupleTableSlotOps TTSOpsVirtual = {
    1027             :     .base_slot_size = sizeof(VirtualTupleTableSlot),
    1028             :     .init = tts_virtual_init,
    1029             :     .release = tts_virtual_release,
    1030             :     .clear = tts_virtual_clear,
    1031             :     .getsomeattrs = tts_virtual_getsomeattrs,
    1032             :     .getsysattr = tts_virtual_getsysattr,
    1033             :     .materialize = tts_virtual_materialize,
    1034             :     .copyslot = tts_virtual_copyslot,
    1035             : 
    1036             :     /*
    1037             :      * A virtual tuple table slot can not "own" a heap tuple or a minimal
    1038             :      * tuple.
    1039             :      */
    1040             :     .get_heap_tuple = NULL,
    1041             :     .get_minimal_tuple = NULL,
    1042             :     .copy_heap_tuple = tts_virtual_copy_heap_tuple,
    1043             :     .copy_minimal_tuple = tts_virtual_copy_minimal_tuple
    1044             : };
    1045             : 
    1046             : const TupleTableSlotOps TTSOpsHeapTuple = {
    1047             :     .base_slot_size = sizeof(HeapTupleTableSlot),
    1048             :     .init = tts_heap_init,
    1049             :     .release = tts_heap_release,
    1050             :     .clear = tts_heap_clear,
    1051             :     .getsomeattrs = tts_heap_getsomeattrs,
    1052             :     .getsysattr = tts_heap_getsysattr,
    1053             :     .materialize = tts_heap_materialize,
    1054             :     .copyslot = tts_heap_copyslot,
    1055             :     .get_heap_tuple = tts_heap_get_heap_tuple,
    1056             : 
    1057             :     /* A heap tuple table slot can not "own" a minimal tuple. */
    1058             :     .get_minimal_tuple = NULL,
    1059             :     .copy_heap_tuple = tts_heap_copy_heap_tuple,
    1060             :     .copy_minimal_tuple = tts_heap_copy_minimal_tuple
    1061             : };
    1062             : 
    1063             : const TupleTableSlotOps TTSOpsMinimalTuple = {
    1064             :     .base_slot_size = sizeof(MinimalTupleTableSlot),
    1065             :     .init = tts_minimal_init,
    1066             :     .release = tts_minimal_release,
    1067             :     .clear = tts_minimal_clear,
    1068             :     .getsomeattrs = tts_minimal_getsomeattrs,
    1069             :     .getsysattr = tts_minimal_getsysattr,
    1070             :     .materialize = tts_minimal_materialize,
    1071             :     .copyslot = tts_minimal_copyslot,
    1072             : 
    1073             :     /* A minimal tuple table slot can not "own" a heap tuple. */
    1074             :     .get_heap_tuple = NULL,
    1075             :     .get_minimal_tuple = tts_minimal_get_minimal_tuple,
    1076             :     .copy_heap_tuple = tts_minimal_copy_heap_tuple,
    1077             :     .copy_minimal_tuple = tts_minimal_copy_minimal_tuple
    1078             : };
    1079             : 
    1080             : const TupleTableSlotOps TTSOpsBufferHeapTuple = {
    1081             :     .base_slot_size = sizeof(BufferHeapTupleTableSlot),
    1082             :     .init = tts_buffer_heap_init,
    1083             :     .release = tts_buffer_heap_release,
    1084             :     .clear = tts_buffer_heap_clear,
    1085             :     .getsomeattrs = tts_buffer_heap_getsomeattrs,
    1086             :     .getsysattr = tts_buffer_heap_getsysattr,
    1087             :     .materialize = tts_buffer_heap_materialize,
    1088             :     .copyslot = tts_buffer_heap_copyslot,
    1089             :     .get_heap_tuple = tts_buffer_heap_get_heap_tuple,
    1090             : 
    1091             :     /* A buffer heap tuple table slot can not "own" a minimal tuple. */
    1092             :     .get_minimal_tuple = NULL,
    1093             :     .copy_heap_tuple = tts_buffer_heap_copy_heap_tuple,
    1094             :     .copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple
    1095             : };
    1096             : 
    1097             : 
    1098             : /* ----------------------------------------------------------------
    1099             :  *                tuple table create/delete functions
    1100             :  * ----------------------------------------------------------------
    1101             :  */
    1102             : 
    1103             : /* --------------------------------
    1104             :  *      MakeTupleTableSlot
    1105             :  *
    1106             :  *      Basic routine to make an empty TupleTableSlot of given
    1107             :  *      TupleTableSlotType. If tupleDesc is specified the slot's descriptor is
    1108             :  *      fixed for its lifetime, gaining some efficiency. If that's
    1109             :  *      undesirable, pass NULL.
    1110             :  * --------------------------------
    1111             :  */
    1112             : TupleTableSlot *
    1113    42087596 : MakeTupleTableSlot(TupleDesc tupleDesc,
    1114             :                    const TupleTableSlotOps *tts_ops)
    1115             : {
    1116             :     Size        basesz,
    1117             :                 allocsz;
    1118             :     TupleTableSlot *slot;
    1119             : 
    1120    42087596 :     basesz = tts_ops->base_slot_size;
    1121             : 
    1122             :     /*
    1123             :      * When a fixed descriptor is specified, we can reduce overhead by
    1124             :      * allocating the entire slot in one go.
    1125             :      */
    1126    42087596 :     if (tupleDesc)
    1127    42049912 :         allocsz = MAXALIGN(basesz) +
    1128    42049912 :             MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
    1129    42049912 :             MAXALIGN(tupleDesc->natts * sizeof(bool));
    1130             :     else
    1131       37684 :         allocsz = basesz;
    1132             : 
    1133    42087596 :     slot = palloc0(allocsz);
    1134             :     /* const for optimization purposes, OK to modify at allocation time */
    1135    42087596 :     *((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
    1136    42087596 :     slot->type = T_TupleTableSlot;
    1137    42087596 :     slot->tts_flags |= TTS_FLAG_EMPTY;
    1138    42087596 :     if (tupleDesc != NULL)
    1139    42049912 :         slot->tts_flags |= TTS_FLAG_FIXED;
    1140    42087596 :     slot->tts_tupleDescriptor = tupleDesc;
    1141    42087596 :     slot->tts_mcxt = CurrentMemoryContext;
    1142    42087596 :     slot->tts_nvalid = 0;
    1143             : 
    1144    42087596 :     if (tupleDesc != NULL)
    1145             :     {
    1146    42049912 :         slot->tts_values = (Datum *)
    1147             :             (((char *) slot)
    1148    42049912 :              + MAXALIGN(basesz));
    1149    42049912 :         slot->tts_isnull = (bool *)
    1150             :             (((char *) slot)
    1151    42049912 :              + MAXALIGN(basesz)
    1152    42049912 :              + MAXALIGN(tupleDesc->natts * sizeof(Datum)));
    1153             : 
    1154    42049912 :         PinTupleDesc(tupleDesc);
    1155             :     }
    1156             : 
    1157             :     /*
    1158             :      * And allow slot type specific initialization.
    1159             :      */
    1160    42087596 :     slot->tts_ops->init(slot);
    1161             : 
    1162    42087596 :     return slot;
    1163             : }
    1164             : 
    1165             : /* --------------------------------
    1166             :  *      ExecAllocTableSlot
    1167             :  *
    1168             :  *      Create a tuple table slot within a tuple table (which is just a List).
    1169             :  * --------------------------------
    1170             :  */
    1171             : TupleTableSlot *
    1172     1727734 : ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
    1173             :                    const TupleTableSlotOps *tts_ops)
    1174             : {
    1175     1727734 :     TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);
    1176             : 
    1177     1727734 :     *tupleTable = lappend(*tupleTable, slot);
    1178             : 
    1179     1727734 :     return slot;
    1180             : }
    1181             : 
    1182             : /* --------------------------------
    1183             :  *      ExecResetTupleTable
    1184             :  *
    1185             :  *      This releases any resources (buffer pins, tupdesc refcounts)
    1186             :  *      held by the tuple table, and optionally releases the memory
    1187             :  *      occupied by the tuple table data structure.
    1188             :  *      It is expected that this routine be called by ExecEndPlan().
    1189             :  * --------------------------------
    1190             :  */
    1191             : void
    1192      816168 : ExecResetTupleTable(List *tupleTable,   /* tuple table */
    1193             :                     bool shouldFree)    /* true if we should free memory */
    1194             : {
    1195             :     ListCell   *lc;
    1196             : 
    1197     2795786 :     foreach(lc, tupleTable)
    1198             :     {
    1199     1979618 :         TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc);
    1200             : 
    1201             :         /* Always release resources and reset the slot to empty */
    1202     1979618 :         ExecClearTuple(slot);
    1203     1979618 :         slot->tts_ops->release(slot);
    1204     1979618 :         if (slot->tts_tupleDescriptor)
    1205             :         {
    1206     1979564 :             ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1207     1979564 :             slot->tts_tupleDescriptor = NULL;
    1208             :         }
    1209             : 
    1210             :         /* If shouldFree, release memory occupied by the slot itself */
    1211     1979618 :         if (shouldFree)
    1212             :         {
    1213        5184 :             if (!TTS_FIXED(slot))
    1214             :             {
    1215           0 :                 if (slot->tts_values)
    1216           0 :                     pfree(slot->tts_values);
    1217           0 :                 if (slot->tts_isnull)
    1218           0 :                     pfree(slot->tts_isnull);
    1219             :             }
    1220        5184 :             pfree(slot);
    1221             :         }
    1222             :     }
    1223             : 
    1224             :     /* If shouldFree, release the list structure */
    1225      816168 :     if (shouldFree)
    1226        5108 :         list_free(tupleTable);
    1227      816168 : }
    1228             : 
    1229             : /* --------------------------------
    1230             :  *      MakeSingleTupleTableSlot
    1231             :  *
    1232             :  *      This is a convenience routine for operations that need a standalone
    1233             :  *      TupleTableSlot not gotten from the main executor tuple table.  It makes
    1234             :  *      a single slot of given TupleTableSlotType and initializes it to use the
    1235             :  *      given tuple descriptor.
    1236             :  * --------------------------------
    1237             :  */
    1238             : TupleTableSlot *
    1239    40359718 : MakeSingleTupleTableSlot(TupleDesc tupdesc,
    1240             :                          const TupleTableSlotOps *tts_ops)
    1241             : {
    1242    40359718 :     TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);
    1243             : 
    1244    40359718 :     return slot;
    1245             : }
    1246             : 
    1247             : /* --------------------------------
    1248             :  *      ExecDropSingleTupleTableSlot
    1249             :  *
    1250             :  *      Release a TupleTableSlot made with MakeSingleTupleTableSlot.
    1251             :  *      DON'T use this on a slot that's part of a tuple table list!
    1252             :  * --------------------------------
    1253             :  */
    1254             : void
    1255    40040056 : ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
    1256             : {
    1257             :     /* This should match ExecResetTupleTable's processing of one slot */
    1258             :     Assert(IsA(slot, TupleTableSlot));
    1259    40040056 :     ExecClearTuple(slot);
    1260    40040056 :     slot->tts_ops->release(slot);
    1261    40040056 :     if (slot->tts_tupleDescriptor)
    1262    40040056 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1263    40040056 :     if (!TTS_FIXED(slot))
    1264             :     {
    1265           0 :         if (slot->tts_values)
    1266           0 :             pfree(slot->tts_values);
    1267           0 :         if (slot->tts_isnull)
    1268           0 :             pfree(slot->tts_isnull);
    1269             :     }
    1270    40040056 :     pfree(slot);
    1271    40040056 : }
    1272             : 
    1273             : 
    1274             : /* ----------------------------------------------------------------
    1275             :  *                tuple table slot accessor functions
    1276             :  * ----------------------------------------------------------------
    1277             :  */
    1278             : 
    1279             : /* --------------------------------
    1280             :  *      ExecSetSlotDescriptor
    1281             :  *
    1282             :  *      This function is used to set the tuple descriptor associated
    1283             :  *      with the slot's tuple.  The passed descriptor must have lifespan
    1284             :  *      at least equal to the slot's.  If it is a reference-counted descriptor
    1285             :  *      then the reference count is incremented for as long as the slot holds
    1286             :  *      a reference.
    1287             :  * --------------------------------
    1288             :  */
    1289             : void
    1290       37630 : ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
    1291             :                       TupleDesc tupdesc)    /* new tuple descriptor */
    1292             : {
    1293             :     Assert(!TTS_FIXED(slot));
    1294             : 
    1295             :     /* For safety, make sure slot is empty before changing it */
    1296       37630 :     ExecClearTuple(slot);
    1297             : 
    1298             :     /*
    1299             :      * Release any old descriptor.  Also release old Datum/isnull arrays if
    1300             :      * present (we don't bother to check if they could be re-used).
    1301             :      */
    1302       37630 :     if (slot->tts_tupleDescriptor)
    1303           0 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1304             : 
    1305       37630 :     if (slot->tts_values)
    1306           0 :         pfree(slot->tts_values);
    1307       37630 :     if (slot->tts_isnull)
    1308           0 :         pfree(slot->tts_isnull);
    1309             : 
    1310             :     /*
    1311             :      * Install the new descriptor; if it's refcounted, bump its refcount.
    1312             :      */
    1313       37630 :     slot->tts_tupleDescriptor = tupdesc;
    1314       37630 :     PinTupleDesc(tupdesc);
    1315             : 
    1316             :     /*
    1317             :      * Allocate Datum/isnull arrays of the appropriate size.  These must have
    1318             :      * the same lifetime as the slot, so allocate in the slot's own context.
    1319             :      */
    1320       37630 :     slot->tts_values = (Datum *)
    1321       37630 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
    1322       37630 :     slot->tts_isnull = (bool *)
    1323       37630 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
    1324       37630 : }
    1325             : 
    1326             : /* --------------------------------
    1327             :  *      ExecStoreHeapTuple
    1328             :  *
    1329             :  *      This function is used to store an on-the-fly physical tuple into a specified
    1330             :  *      slot in the tuple table.
    1331             :  *
    1332             :  *      tuple:  tuple to store
    1333             :  *      slot:   TTSOpsHeapTuple type slot to store it in
    1334             :  *      shouldFree: true if ExecClearTuple should pfree() the tuple
    1335             :  *                  when done with it
    1336             :  *
    1337             :  * shouldFree is normally set 'true' for tuples constructed on-the-fly.  But it
    1338             :  * can be 'false' when the referenced tuple is held in a tuple table slot
    1339             :  * belonging to a lower-level executor Proc node.  In this case the lower-level
    1340             :  * slot retains ownership and responsibility for eventually releasing the
    1341             :  * tuple.  When this method is used, we must be certain that the upper-level
    1342             :  * Proc node will lose interest in the tuple sooner than the lower-level one
    1343             :  * does!  If you're not certain, copy the lower-level tuple with heap_copytuple
    1344             :  * and let the upper-level table slot assume ownership of the copy!
    1345             :  *
    1346             :  * Return value is just the passed-in slot pointer.
    1347             :  *
    1348             :  * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use
    1349             :  * the, more expensive, ExecForceStoreHeapTuple().
    1350             :  * --------------------------------
    1351             :  */
    1352             : TupleTableSlot *
    1353     7694066 : ExecStoreHeapTuple(HeapTuple tuple,
    1354             :                    TupleTableSlot *slot,
    1355             :                    bool shouldFree)
    1356             : {
    1357             :     /*
    1358             :      * sanity checks
    1359             :      */
    1360             :     Assert(tuple != NULL);
    1361             :     Assert(slot != NULL);
    1362             :     Assert(slot->tts_tupleDescriptor != NULL);
    1363             : 
    1364     7694066 :     if (unlikely(!TTS_IS_HEAPTUPLE(slot)))
    1365           0 :         elog(ERROR, "trying to store a heap tuple into wrong type of slot");
    1366     7694066 :     tts_heap_store_tuple(slot, tuple, shouldFree);
    1367             : 
    1368     7694066 :     slot->tts_tableOid = tuple->t_tableOid;
    1369             : 
    1370     7694066 :     return slot;
    1371             : }
    1372             : 
    1373             : /* --------------------------------
    1374             :  *      ExecStoreBufferHeapTuple
    1375             :  *
    1376             :  *      This function is used to store an on-disk physical tuple from a buffer
    1377             :  *      into a specified slot in the tuple table.
    1378             :  *
    1379             :  *      tuple:  tuple to store
    1380             :  *      slot:   TTSOpsBufferHeapTuple type slot to store it in
    1381             :  *      buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
    1382             :  *
    1383             :  * The tuple table code acquires a pin on the buffer which is held until the
    1384             :  * slot is cleared, so that the tuple won't go away on us.
    1385             :  *
    1386             :  * Return value is just the passed-in slot pointer.
    1387             :  *
    1388             :  * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot,
    1389             :  * use the, more expensive, ExecForceStoreHeapTuple().
    1390             :  * --------------------------------
    1391             :  */
    1392             : TupleTableSlot *
    1393   165637476 : ExecStoreBufferHeapTuple(HeapTuple tuple,
    1394             :                          TupleTableSlot *slot,
    1395             :                          Buffer buffer)
    1396             : {
    1397             :     /*
    1398             :      * sanity checks
    1399             :      */
    1400             :     Assert(tuple != NULL);
    1401             :     Assert(slot != NULL);
    1402             :     Assert(slot->tts_tupleDescriptor != NULL);
    1403             :     Assert(BufferIsValid(buffer));
    1404             : 
    1405   165637476 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1406           0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1407   165637476 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, false);
    1408             : 
    1409   165637476 :     slot->tts_tableOid = tuple->t_tableOid;
    1410             : 
    1411   165637476 :     return slot;
    1412             : }
    1413             : 
    1414             : /*
    1415             :  * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller
    1416             :  * to the slot, i.e. the caller doesn't need to, and may not, release the pin.
    1417             :  */
    1418             : TupleTableSlot *
    1419      556834 : ExecStorePinnedBufferHeapTuple(HeapTuple tuple,
    1420             :                                TupleTableSlot *slot,
    1421             :                                Buffer buffer)
    1422             : {
    1423             :     /*
    1424             :      * sanity checks
    1425             :      */
    1426             :     Assert(tuple != NULL);
    1427             :     Assert(slot != NULL);
    1428             :     Assert(slot->tts_tupleDescriptor != NULL);
    1429             :     Assert(BufferIsValid(buffer));
    1430             : 
    1431      556834 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1432           0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1433      556834 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, true);
    1434             : 
    1435      556834 :     slot->tts_tableOid = tuple->t_tableOid;
    1436             : 
    1437      556834 :     return slot;
    1438             : }
    1439             : 
    1440             : /*
    1441             :  * Store a minimal tuple into TTSOpsMinimalTuple type slot.
    1442             :  *
    1443             :  * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot,
    1444             :  * use the, more expensive, ExecForceStoreMinimalTuple().
    1445             :  */
    1446             : TupleTableSlot *
    1447    50155052 : ExecStoreMinimalTuple(MinimalTuple mtup,
    1448             :                       TupleTableSlot *slot,
    1449             :                       bool shouldFree)
    1450             : {
    1451             :     /*
    1452             :      * sanity checks
    1453             :      */
    1454             :     Assert(mtup != NULL);
    1455             :     Assert(slot != NULL);
    1456             :     Assert(slot->tts_tupleDescriptor != NULL);
    1457             : 
    1458    50155052 :     if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))
    1459           0 :         elog(ERROR, "trying to store a minimal tuple into wrong type of slot");
    1460    50155052 :     tts_minimal_store_tuple(slot, mtup, shouldFree);
    1461             : 
    1462    50155052 :     return slot;
    1463             : }
    1464             : 
    1465             : /*
    1466             :  * Store a HeapTuple into any kind of slot, performing conversion if
    1467             :  * necessary.
    1468             :  */
    1469             : void
    1470     1777232 : ExecForceStoreHeapTuple(HeapTuple tuple,
    1471             :                         TupleTableSlot *slot,
    1472             :                         bool shouldFree)
    1473             : {
    1474     1777232 :     if (TTS_IS_HEAPTUPLE(slot))
    1475             :     {
    1476         426 :         ExecStoreHeapTuple(tuple, slot, shouldFree);
    1477             :     }
    1478     1776806 :     else if (TTS_IS_BUFFERTUPLE(slot))
    1479             :     {
    1480             :         MemoryContext oldContext;
    1481       71968 :         BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
    1482             : 
    1483       71968 :         ExecClearTuple(slot);
    1484       71968 :         slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1485       71968 :         oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
    1486       71968 :         bslot->base.tuple = heap_copytuple(tuple);
    1487       71968 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
    1488       71968 :         MemoryContextSwitchTo(oldContext);
    1489             : 
    1490       71968 :         if (shouldFree)
    1491       70040 :             pfree(tuple);
    1492             :     }
    1493             :     else
    1494             :     {
    1495     1704838 :         ExecClearTuple(slot);
    1496     1704838 :         heap_deform_tuple(tuple, slot->tts_tupleDescriptor,
    1497             :                           slot->tts_values, slot->tts_isnull);
    1498     1704838 :         ExecStoreVirtualTuple(slot);
    1499             : 
    1500     1704838 :         if (shouldFree)
    1501             :         {
    1502      266692 :             ExecMaterializeSlot(slot);
    1503      266692 :             pfree(tuple);
    1504             :         }
    1505             :     }
    1506     1777232 : }
    1507             : 
    1508             : /*
    1509             :  * Store a MinimalTuple into any kind of slot, performing conversion if
    1510             :  * necessary.
    1511             :  */
    1512             : void
    1513     6062396 : ExecForceStoreMinimalTuple(MinimalTuple mtup,
    1514             :                            TupleTableSlot *slot,
    1515             :                            bool shouldFree)
    1516             : {
    1517     6062396 :     if (TTS_IS_MINIMALTUPLE(slot))
    1518             :     {
    1519     3392180 :         tts_minimal_store_tuple(slot, mtup, shouldFree);
    1520             :     }
    1521             :     else
    1522             :     {
    1523             :         HeapTupleData htup;
    1524             : 
    1525     2670216 :         ExecClearTuple(slot);
    1526             : 
    1527     2670216 :         htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
    1528     2670216 :         htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
    1529     2670216 :         heap_deform_tuple(&htup, slot->tts_tupleDescriptor,
    1530             :                           slot->tts_values, slot->tts_isnull);
    1531     2670216 :         ExecStoreVirtualTuple(slot);
    1532             : 
    1533     2670216 :         if (shouldFree)
    1534             :         {
    1535     1470192 :             ExecMaterializeSlot(slot);
    1536     1470192 :             pfree(mtup);
    1537             :         }
    1538             :     }
    1539     6062396 : }
    1540             : 
    1541             : /* --------------------------------
    1542             :  *      ExecStoreVirtualTuple
    1543             :  *          Mark a slot as containing a virtual tuple.
    1544             :  *
    1545             :  * The protocol for loading a slot with virtual tuple data is:
    1546             :  *      * Call ExecClearTuple to mark the slot empty.
    1547             :  *      * Store data into the Datum/isnull arrays.
    1548             :  *      * Call ExecStoreVirtualTuple to mark the slot valid.
    1549             :  * This is a bit unclean but it avoids one round of data copying.
    1550             :  * --------------------------------
    1551             :  */
    1552             : TupleTableSlot *
    1553    26205550 : ExecStoreVirtualTuple(TupleTableSlot *slot)
    1554             : {
    1555             :     /*
    1556             :      * sanity checks
    1557             :      */
    1558             :     Assert(slot != NULL);
    1559             :     Assert(slot->tts_tupleDescriptor != NULL);
    1560             :     Assert(TTS_EMPTY(slot));
    1561             : 
    1562    26205550 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1563    26205550 :     slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
    1564             : 
    1565    26205550 :     return slot;
    1566             : }
    1567             : 
    1568             : /* --------------------------------
    1569             :  *      ExecStoreAllNullTuple
    1570             :  *          Set up the slot to contain a null in every column.
    1571             :  *
    1572             :  * At first glance this might sound just like ExecClearTuple, but it's
    1573             :  * entirely different: the slot ends up full, not empty.
    1574             :  * --------------------------------
    1575             :  */
    1576             : TupleTableSlot *
    1577      621870 : ExecStoreAllNullTuple(TupleTableSlot *slot)
    1578             : {
    1579             :     /*
    1580             :      * sanity checks
    1581             :      */
    1582             :     Assert(slot != NULL);
    1583             :     Assert(slot->tts_tupleDescriptor != NULL);
    1584             : 
    1585             :     /* Clear any old contents */
    1586      621870 :     ExecClearTuple(slot);
    1587             : 
    1588             :     /*
    1589             :      * Fill all the columns of the virtual tuple with nulls
    1590             :      */
    1591    10377650 :     MemSet(slot->tts_values, 0,
    1592             :            slot->tts_tupleDescriptor->natts * sizeof(Datum));
    1593      621870 :     memset(slot->tts_isnull, true,
    1594      621870 :            slot->tts_tupleDescriptor->natts * sizeof(bool));
    1595             : 
    1596      621870 :     return ExecStoreVirtualTuple(slot);
    1597             : }
    1598             : 
    1599             : /*
    1600             :  * Store a HeapTuple in datum form, into a slot. That always requires
    1601             :  * deforming it and storing it in virtual form.
    1602             :  *
    1603             :  * Until the slot is materialized, the contents of the slot depend on the
    1604             :  * datum.
    1605             :  */
    1606             : void
    1607           6 : ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
    1608             : {
    1609           6 :     HeapTupleData tuple = {0};
    1610             :     HeapTupleHeader td;
    1611             : 
    1612           6 :     td = DatumGetHeapTupleHeader(data);
    1613             : 
    1614           6 :     tuple.t_len = HeapTupleHeaderGetDatumLength(td);
    1615           6 :     tuple.t_self = td->t_ctid;
    1616           6 :     tuple.t_data = td;
    1617             : 
    1618           6 :     ExecClearTuple(slot);
    1619             : 
    1620           6 :     heap_deform_tuple(&tuple, slot->tts_tupleDescriptor,
    1621             :                       slot->tts_values, slot->tts_isnull);
    1622           6 :     ExecStoreVirtualTuple(slot);
    1623           6 : }
    1624             : 
    1625             : /*
    1626             :  * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
    1627             :  *
    1628             :  * The returned HeapTuple represents the slot's content as closely as
    1629             :  * possible.
    1630             :  *
    1631             :  * If materialize is true, the contents of the slots will be made independent
    1632             :  * from the underlying storage (i.e. all buffer pins are released, memory is
    1633             :  * allocated in the slot's context).
    1634             :  *
    1635             :  * If shouldFree is not-NULL it'll be set to true if the returned tuple has
    1636             :  * been allocated in the calling memory context, and must be freed by the
    1637             :  * caller (via explicit pfree() or a memory context reset).
    1638             :  *
    1639             :  * NB: If materialize is true, modifications of the returned tuple are
    1640             :  * allowed. But it depends on the type of the slot whether such modifications
    1641             :  * will also affect the slot's contents. While that is not the nicest
    1642             :  * behaviour, all such modifications are in the process of being removed.
    1643             :  */
    1644             : HeapTuple
    1645    55168684 : ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
    1646             : {
    1647             :     /*
    1648             :      * sanity checks
    1649             :      */
    1650             :     Assert(slot != NULL);
    1651             :     Assert(!TTS_EMPTY(slot));
    1652             : 
    1653             :     /* Materialize the tuple so that the slot "owns" it, if requested. */
    1654    55168684 :     if (materialize)
    1655    24665276 :         slot->tts_ops->materialize(slot);
    1656             : 
    1657    55168684 :     if (slot->tts_ops->get_heap_tuple == NULL)
    1658             :     {
    1659     2839976 :         if (shouldFree)
    1660     2839976 :             *shouldFree = true;
    1661     2839976 :         return slot->tts_ops->copy_heap_tuple(slot);
    1662             :     }
    1663             :     else
    1664             :     {
    1665    52328708 :         if (shouldFree)
    1666    45402652 :             *shouldFree = false;
    1667    52328708 :         return slot->tts_ops->get_heap_tuple(slot);
    1668             :     }
    1669             : }
    1670             : 
    1671             : /* --------------------------------
    1672             :  *      ExecFetchSlotMinimalTuple
    1673             :  *          Fetch the slot's minimal physical tuple.
    1674             :  *
    1675             :  *      If the given tuple table slot can hold a minimal tuple, indicated by a
    1676             :  *      non-NULL get_minimal_tuple callback, the function returns the minimal
    1677             :  *      tuple returned by that callback. It assumes that the minimal tuple
    1678             :  *      returned by the callback is "owned" by the slot i.e. the slot is
    1679             :  *      responsible for freeing the memory consumed by the tuple. Hence it sets
    1680             :  *      *shouldFree to false, indicating that the caller should not free the
    1681             :  *      memory consumed by the minimal tuple. In this case the returned minimal
    1682             :  *      tuple should be considered as read-only.
    1683             :  *
    1684             :  *      If that callback is not supported, it calls copy_minimal_tuple callback
    1685             :  *      which is expected to return a copy of minimal tuple representing the
    1686             :  *      contents of the slot. In this case *shouldFree is set to true,
    1687             :  *      indicating the caller that it should free the memory consumed by the
    1688             :  *      minimal tuple. In this case the returned minimal tuple may be written
    1689             :  *      up.
    1690             :  * --------------------------------
    1691             :  */
    1692             : MinimalTuple
    1693    19553046 : ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
    1694             :                           bool *shouldFree)
    1695             : {
    1696             :     /*
    1697             :      * sanity checks
    1698             :      */
    1699             :     Assert(slot != NULL);
    1700             :     Assert(!TTS_EMPTY(slot));
    1701             : 
    1702    19553046 :     if (slot->tts_ops->get_minimal_tuple)
    1703             :     {
    1704     3856224 :         if (shouldFree)
    1705     3856224 :             *shouldFree = false;
    1706     3856224 :         return slot->tts_ops->get_minimal_tuple(slot);
    1707             :     }
    1708             :     else
    1709             :     {
    1710    15696822 :         if (shouldFree)
    1711    15696822 :             *shouldFree = true;
    1712    15696822 :         return slot->tts_ops->copy_minimal_tuple(slot);
    1713             :     }
    1714             : }
    1715             : 
    1716             : /* --------------------------------
    1717             :  *      ExecFetchSlotHeapTupleDatum
    1718             :  *          Fetch the slot's tuple as a composite-type Datum.
    1719             :  *
    1720             :  *      The result is always freshly palloc'd in the caller's memory context.
    1721             :  * --------------------------------
    1722             :  */
    1723             : Datum
    1724       60338 : ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
    1725             : {
    1726             :     HeapTuple   tup;
    1727             :     TupleDesc   tupdesc;
    1728             :     bool        shouldFree;
    1729             :     Datum       ret;
    1730             : 
    1731             :     /* Fetch slot's contents in regular-physical-tuple form */
    1732       60338 :     tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
    1733       60338 :     tupdesc = slot->tts_tupleDescriptor;
    1734             : 
    1735             :     /* Convert to Datum form */
    1736       60338 :     ret = heap_copy_tuple_as_datum(tup, tupdesc);
    1737             : 
    1738       60338 :     if (shouldFree)
    1739       60338 :         pfree(tup);
    1740             : 
    1741       60338 :     return ret;
    1742             : }
    1743             : 
    1744             : /* ----------------------------------------------------------------
    1745             :  *              convenience initialization routines
    1746             :  * ----------------------------------------------------------------
    1747             :  */
    1748             : 
    1749             : /* ----------------
    1750             :  *      ExecInitResultTypeTL
    1751             :  *
    1752             :  *      Initialize result type, using the plan node's targetlist.
    1753             :  * ----------------
    1754             :  */
    1755             : void
    1756     1120860 : ExecInitResultTypeTL(PlanState *planstate)
    1757             : {
    1758     1120860 :     TupleDesc   tupDesc = ExecTypeFromTL(planstate->plan->targetlist);
    1759             : 
    1760     1120860 :     planstate->ps_ResultTupleDesc = tupDesc;
    1761     1120860 : }
    1762             : 
    1763             : /* --------------------------------
    1764             :  *      ExecInit{Result,Scan,Extra}TupleSlot[TL]
    1765             :  *
    1766             :  *      These are convenience routines to initialize the specified slot
    1767             :  *      in nodes inheriting the appropriate state.  ExecInitExtraTupleSlot
    1768             :  *      is used for initializing special-purpose slots.
    1769             :  * --------------------------------
    1770             :  */
    1771             : 
    1772             : /* ----------------
    1773             :  *      ExecInitResultTupleSlotTL
    1774             :  *
    1775             :  *      Initialize result tuple slot, using the tuple descriptor previously
    1776             :  *      computed with ExecInitResultTypeTL().
    1777             :  * ----------------
    1778             :  */
    1779             : void
    1780      759084 : ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
    1781             : {
    1782             :     TupleTableSlot *slot;
    1783             : 
    1784      759084 :     slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
    1785             :                               planstate->ps_ResultTupleDesc, tts_ops);
    1786      759084 :     planstate->ps_ResultTupleSlot = slot;
    1787             : 
    1788      759084 :     planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
    1789      759084 :     planstate->resultops = tts_ops;
    1790      759084 :     planstate->resultopsset = true;
    1791      759084 : }
    1792             : 
    1793             : /* ----------------
    1794             :  *      ExecInitResultTupleSlotTL
    1795             :  *
    1796             :  *      Initialize result tuple slot, using the plan node's targetlist.
    1797             :  * ----------------
    1798             :  */
    1799             : void
    1800      555992 : ExecInitResultTupleSlotTL(PlanState *planstate,
    1801             :                           const TupleTableSlotOps *tts_ops)
    1802             : {
    1803      555992 :     ExecInitResultTypeTL(planstate);
    1804      555992 :     ExecInitResultSlot(planstate, tts_ops);
    1805      555992 : }
    1806             : 
    1807             : /* ----------------
    1808             :  *      ExecInitScanTupleSlot
    1809             :  * ----------------
    1810             :  */
    1811             : void
    1812      520900 : ExecInitScanTupleSlot(EState *estate, ScanState *scanstate,
    1813             :                       TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
    1814             : {
    1815      520900 :     scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
    1816             :                                                      tupledesc, tts_ops);
    1817      520900 :     scanstate->ps.scandesc = tupledesc;
    1818      520900 :     scanstate->ps.scanopsfixed = tupledesc != NULL;
    1819      520900 :     scanstate->ps.scanops = tts_ops;
    1820      520900 :     scanstate->ps.scanopsset = true;
    1821      520900 : }
    1822             : 
    1823             : /* ----------------
    1824             :  *      ExecInitExtraTupleSlot
    1825             :  *
    1826             :  * Return a newly created slot. If tupledesc is non-NULL the slot will have
    1827             :  * that as its fixed tupledesc. Otherwise the caller needs to use
    1828             :  * ExecSetSlotDescriptor() to set the descriptor before use.
    1829             :  * ----------------
    1830             :  */
    1831             : TupleTableSlot *
    1832      425270 : ExecInitExtraTupleSlot(EState *estate,
    1833             :                        TupleDesc tupledesc,
    1834             :                        const TupleTableSlotOps *tts_ops)
    1835             : {
    1836      425270 :     return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
    1837             : }
    1838             : 
    1839             : /* ----------------
    1840             :  *      ExecInitNullTupleSlot
    1841             :  *
    1842             :  * Build a slot containing an all-nulls tuple of the given type.
    1843             :  * This is used as a substitute for an input tuple when performing an
    1844             :  * outer join.
    1845             :  * ----------------
    1846             :  */
    1847             : TupleTableSlot *
    1848       32956 : ExecInitNullTupleSlot(EState *estate, TupleDesc tupType,
    1849             :                       const TupleTableSlotOps *tts_ops)
    1850             : {
    1851       32956 :     TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);
    1852             : 
    1853       32956 :     return ExecStoreAllNullTuple(slot);
    1854             : }
    1855             : 
    1856             : /* ---------------------------------------------------------------
    1857             :  *      Routines for setting/accessing attributes in a slot.
    1858             :  * ---------------------------------------------------------------
    1859             :  */
    1860             : 
    1861             : /*
    1862             :  * Fill in missing values for a TupleTableSlot.
    1863             :  *
    1864             :  * This is only exposed because it's needed for JIT compiled tuple
    1865             :  * deforming. That exception aside, there should be no callers outside of this
    1866             :  * file.
    1867             :  */
    1868             : void
    1869        7658 : slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
    1870             : {
    1871        7658 :     AttrMissing *attrmiss = NULL;
    1872             : 
    1873        7658 :     if (slot->tts_tupleDescriptor->constr)
    1874        4506 :         attrmiss = slot->tts_tupleDescriptor->constr->missing;
    1875             : 
    1876        7658 :     if (!attrmiss)
    1877             :     {
    1878             :         /* no missing values array at all, so just fill everything in as NULL */
    1879        3230 :         memset(slot->tts_values + startAttNum, 0,
    1880        3230 :                (lastAttNum - startAttNum) * sizeof(Datum));
    1881        3230 :         memset(slot->tts_isnull + startAttNum, 1,
    1882        3230 :                (lastAttNum - startAttNum) * sizeof(bool));
    1883             :     }
    1884             :     else
    1885             :     {
    1886             :         int         missattnum;
    1887             : 
    1888             :         /* if there is a missing values array we must process them one by one */
    1889       10248 :         for (missattnum = startAttNum;
    1890             :              missattnum < lastAttNum;
    1891        5820 :              missattnum++)
    1892             :         {
    1893        5820 :             slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
    1894        5820 :             slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
    1895             :         }
    1896             :     }
    1897        7658 : }
    1898             : 
    1899             : /*
    1900             :  * slot_getsomeattrs_int - workhorse for slot_getsomeattrs()
    1901             :  */
    1902             : void
    1903   205395816 : slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
    1904             : {
    1905             :     /* Check for caller errors */
    1906             :     Assert(slot->tts_nvalid < attnum);    /* checked in slot_getsomeattrs */
    1907             :     Assert(attnum > 0);
    1908             : 
    1909   205395816 :     if (unlikely(attnum > slot->tts_tupleDescriptor->natts))
    1910           0 :         elog(ERROR, "invalid attribute number %d", attnum);
    1911             : 
    1912             :     /* Fetch as many attributes as possible from the underlying tuple. */
    1913   205395816 :     slot->tts_ops->getsomeattrs(slot, attnum);
    1914             : 
    1915             :     /*
    1916             :      * If the underlying tuple doesn't have enough attributes, tuple
    1917             :      * descriptor must have the missing attributes.
    1918             :      */
    1919   205395816 :     if (unlikely(slot->tts_nvalid < attnum))
    1920             :     {
    1921        7658 :         slot_getmissingattrs(slot, slot->tts_nvalid, attnum);
    1922        7658 :         slot->tts_nvalid = attnum;
    1923             :     }
    1924   205395816 : }
    1925             : 
    1926             : /* ----------------------------------------------------------------
    1927             :  *      ExecTypeFromTL
    1928             :  *
    1929             :  *      Generate a tuple descriptor for the result tuple of a targetlist.
    1930             :  *      (A parse/plan tlist must be passed, not an ExprState tlist.)
    1931             :  *      Note that resjunk columns, if any, are included in the result.
    1932             :  *
    1933             :  *      Currently there are about 4 different places where we create
    1934             :  *      TupleDescriptors.  They should all be merged, or perhaps
    1935             :  *      be rewritten to call BuildDesc().
    1936             :  * ----------------------------------------------------------------
    1937             :  */
    1938             : TupleDesc
    1939     1147064 : ExecTypeFromTL(List *targetList)
    1940             : {
    1941     1147064 :     return ExecTypeFromTLInternal(targetList, false);
    1942             : }
    1943             : 
    1944             : /* ----------------------------------------------------------------
    1945             :  *      ExecCleanTypeFromTL
    1946             :  *
    1947             :  *      Same as above, but resjunk columns are omitted from the result.
    1948             :  * ----------------------------------------------------------------
    1949             :  */
    1950             : TupleDesc
    1951       85264 : ExecCleanTypeFromTL(List *targetList)
    1952             : {
    1953       85264 :     return ExecTypeFromTLInternal(targetList, true);
    1954             : }
    1955             : 
    1956             : static TupleDesc
    1957     1232328 : ExecTypeFromTLInternal(List *targetList, bool skipjunk)
    1958             : {
    1959             :     TupleDesc   typeInfo;
    1960             :     ListCell   *l;
    1961             :     int         len;
    1962     1232328 :     int         cur_resno = 1;
    1963             : 
    1964     1232328 :     if (skipjunk)
    1965       85264 :         len = ExecCleanTargetListLength(targetList);
    1966             :     else
    1967     1147064 :         len = ExecTargetListLength(targetList);
    1968     1232328 :     typeInfo = CreateTemplateTupleDesc(len);
    1969             : 
    1970     5797052 :     foreach(l, targetList)
    1971             :     {
    1972     4564724 :         TargetEntry *tle = lfirst(l);
    1973             : 
    1974     4564724 :         if (skipjunk && tle->resjunk)
    1975       24766 :             continue;
    1976    13619874 :         TupleDescInitEntry(typeInfo,
    1977             :                            cur_resno,
    1978     4539958 :                            tle->resname,
    1979     4539958 :                            exprType((Node *) tle->expr),
    1980     4539958 :                            exprTypmod((Node *) tle->expr),
    1981             :                            0);
    1982     4539958 :         TupleDescInitEntryCollation(typeInfo,
    1983             :                                     cur_resno,
    1984     4539958 :                                     exprCollation((Node *) tle->expr));
    1985     4539958 :         cur_resno++;
    1986             :     }
    1987             : 
    1988     1232328 :     return typeInfo;
    1989             : }
    1990             : 
    1991             : /*
    1992             :  * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
    1993             :  *
    1994             :  * This is roughly like ExecTypeFromTL, but we work from bare expressions
    1995             :  * not TargetEntrys.  No names are attached to the tupledesc's columns.
    1996             :  */
    1997             : TupleDesc
    1998       11652 : ExecTypeFromExprList(List *exprList)
    1999             : {
    2000             :     TupleDesc   typeInfo;
    2001             :     ListCell   *lc;
    2002       11652 :     int         cur_resno = 1;
    2003             : 
    2004       11652 :     typeInfo = CreateTemplateTupleDesc(list_length(exprList));
    2005             : 
    2006       32298 :     foreach(lc, exprList)
    2007             :     {
    2008       20646 :         Node       *e = lfirst(lc);
    2009             : 
    2010       20646 :         TupleDescInitEntry(typeInfo,
    2011             :                            cur_resno,
    2012             :                            NULL,
    2013             :                            exprType(e),
    2014             :                            exprTypmod(e),
    2015             :                            0);
    2016       20646 :         TupleDescInitEntryCollation(typeInfo,
    2017             :                                     cur_resno,
    2018             :                                     exprCollation(e));
    2019       20646 :         cur_resno++;
    2020             :     }
    2021             : 
    2022       11652 :     return typeInfo;
    2023             : }
    2024             : 
    2025             : /*
    2026             :  * ExecTypeSetColNames - set column names in a RECORD TupleDesc
    2027             :  *
    2028             :  * Column names must be provided as an alias list (list of String nodes).
    2029             :  */
    2030             : void
    2031        3494 : ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
    2032             : {
    2033        3494 :     int         colno = 0;
    2034             :     ListCell   *lc;
    2035             : 
    2036             :     /* It's only OK to change col names in a not-yet-blessed RECORD type */
    2037             :     Assert(typeInfo->tdtypeid == RECORDOID);
    2038             :     Assert(typeInfo->tdtypmod < 0);
    2039             : 
    2040       12240 :     foreach(lc, namesList)
    2041             :     {
    2042        8746 :         char       *cname = strVal(lfirst(lc));
    2043             :         Form_pg_attribute attr;
    2044             : 
    2045             :         /* Guard against too-long names list (probably can't happen) */
    2046        8746 :         if (colno >= typeInfo->natts)
    2047           0 :             break;
    2048        8746 :         attr = TupleDescAttr(typeInfo, colno);
    2049        8746 :         colno++;
    2050             : 
    2051             :         /*
    2052             :          * Do nothing for empty aliases or dropped columns (these cases
    2053             :          * probably can't arise in RECORD types, either)
    2054             :          */
    2055        8746 :         if (cname[0] == '\0' || attr->attisdropped)
    2056          26 :             continue;
    2057             : 
    2058             :         /* OK, assign the column name */
    2059        8720 :         namestrcpy(&(attr->attname), cname);
    2060             :     }
    2061        3494 : }
    2062             : 
    2063             : /*
    2064             :  * BlessTupleDesc - make a completed tuple descriptor useful for SRFs
    2065             :  *
    2066             :  * Rowtype Datums returned by a function must contain valid type information.
    2067             :  * This happens "for free" if the tupdesc came from a relcache entry, but
    2068             :  * not if we have manufactured a tupdesc for a transient RECORD datatype.
    2069             :  * In that case we have to notify typcache.c of the existence of the type.
    2070             :  */
    2071             : TupleDesc
    2072       62074 : BlessTupleDesc(TupleDesc tupdesc)
    2073             : {
    2074       62074 :     if (tupdesc->tdtypeid == RECORDOID &&
    2075       59134 :         tupdesc->tdtypmod < 0)
    2076       25614 :         assign_record_type_typmod(tupdesc);
    2077             : 
    2078       62074 :     return tupdesc;             /* just for notational convenience */
    2079             : }
    2080             : 
    2081             : /*
    2082             :  * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
    2083             :  * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
    2084             :  * to produce a properly formed tuple.
    2085             :  */
    2086             : AttInMetadata *
    2087        5754 : TupleDescGetAttInMetadata(TupleDesc tupdesc)
    2088             : {
    2089        5754 :     int         natts = tupdesc->natts;
    2090             :     int         i;
    2091             :     Oid         atttypeid;
    2092             :     Oid         attinfuncid;
    2093             :     FmgrInfo   *attinfuncinfo;
    2094             :     Oid        *attioparams;
    2095             :     int32      *atttypmods;
    2096             :     AttInMetadata *attinmeta;
    2097             : 
    2098        5754 :     attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
    2099             : 
    2100             :     /* "Bless" the tupledesc so that we can make rowtype datums with it */
    2101        5754 :     attinmeta->tupdesc = BlessTupleDesc(tupdesc);
    2102             : 
    2103             :     /*
    2104             :      * Gather info needed later to call the "in" function for each attribute
    2105             :      */
    2106        5754 :     attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
    2107        5754 :     attioparams = (Oid *) palloc0(natts * sizeof(Oid));
    2108        5754 :     atttypmods = (int32 *) palloc0(natts * sizeof(int32));
    2109             : 
    2110       53928 :     for (i = 0; i < natts; i++)
    2111             :     {
    2112       48174 :         Form_pg_attribute att = TupleDescAttr(tupdesc, i);
    2113             : 
    2114             :         /* Ignore dropped attributes */
    2115       48174 :         if (!att->attisdropped)
    2116             :         {
    2117       47948 :             atttypeid = att->atttypid;
    2118       47948 :             getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
    2119       47948 :             fmgr_info(attinfuncid, &attinfuncinfo[i]);
    2120       47948 :             atttypmods[i] = att->atttypmod;
    2121             :         }
    2122             :     }
    2123        5754 :     attinmeta->attinfuncs = attinfuncinfo;
    2124        5754 :     attinmeta->attioparams = attioparams;
    2125        5754 :     attinmeta->atttypmods = atttypmods;
    2126             : 
    2127        5754 :     return attinmeta;
    2128             : }
    2129             : 
    2130             : /*
    2131             :  * BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
    2132             :  * values is an array of C strings, one for each attribute of the return tuple.
    2133             :  * A NULL string pointer indicates we want to create a NULL field.
    2134             :  */
    2135             : HeapTuple
    2136      829424 : BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
    2137             : {
    2138      829424 :     TupleDesc   tupdesc = attinmeta->tupdesc;
    2139      829424 :     int         natts = tupdesc->natts;
    2140             :     Datum      *dvalues;
    2141             :     bool       *nulls;
    2142             :     int         i;
    2143             :     HeapTuple   tuple;
    2144             : 
    2145      829424 :     dvalues = (Datum *) palloc(natts * sizeof(Datum));
    2146      829424 :     nulls = (bool *) palloc(natts * sizeof(bool));
    2147             : 
    2148             :     /*
    2149             :      * Call the "in" function for each non-dropped attribute, even for nulls,
    2150             :      * to support domains.
    2151             :      */
    2152    14669382 :     for (i = 0; i < natts; i++)
    2153             :     {
    2154    13839960 :         if (!TupleDescAttr(tupdesc, i)->attisdropped)
    2155             :         {
    2156             :             /* Non-dropped attributes */
    2157    27679918 :             dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
    2158    13839960 :                                            values[i],
    2159    13839960 :                                            attinmeta->attioparams[i],
    2160    13839960 :                                            attinmeta->atttypmods[i]);
    2161    13839958 :             if (values[i] != NULL)
    2162     9359270 :                 nulls[i] = false;
    2163             :             else
    2164     4480688 :                 nulls[i] = true;
    2165             :         }
    2166             :         else
    2167             :         {
    2168             :             /* Handle dropped attributes by setting to NULL */
    2169           0 :             dvalues[i] = (Datum) 0;
    2170           0 :             nulls[i] = true;
    2171             :         }
    2172             :     }
    2173             : 
    2174             :     /*
    2175             :      * Form a tuple
    2176             :      */
    2177      829422 :     tuple = heap_form_tuple(tupdesc, dvalues, nulls);
    2178             : 
    2179             :     /*
    2180             :      * Release locally palloc'd space.  XXX would probably be good to pfree
    2181             :      * values of pass-by-reference datums, as well.
    2182             :      */
    2183      829422 :     pfree(dvalues);
    2184      829422 :     pfree(nulls);
    2185             : 
    2186      829422 :     return tuple;
    2187             : }
    2188             : 
    2189             : /*
    2190             :  * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
    2191             :  *
    2192             :  * This must *not* get applied to an on-disk tuple; the tuple should be
    2193             :  * freshly made by heap_form_tuple or some wrapper routine for it (such as
    2194             :  * BuildTupleFromCStrings).  Be sure also that the tupledesc used to build
    2195             :  * the tuple has a properly "blessed" rowtype.
    2196             :  *
    2197             :  * Formerly this was a macro equivalent to PointerGetDatum, relying on the
    2198             :  * fact that heap_form_tuple fills in the appropriate tuple header fields
    2199             :  * for a composite Datum.  However, we now require that composite Datums not
    2200             :  * contain any external TOAST pointers.  We do not want heap_form_tuple itself
    2201             :  * to enforce that; more specifically, the rule applies only to actual Datums
    2202             :  * and not to HeapTuple structures.  Therefore, HeapTupleHeaderGetDatum is
    2203             :  * now a function that detects whether there are externally-toasted fields
    2204             :  * and constructs a new tuple with inlined fields if so.  We still need
    2205             :  * heap_form_tuple to insert the Datum header fields, because otherwise this
    2206             :  * code would have no way to obtain a tupledesc for the tuple.
    2207             :  *
    2208             :  * Note that if we do build a new tuple, it's palloc'd in the current
    2209             :  * memory context.  Beware of code that changes context between the initial
    2210             :  * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
    2211             :  *
    2212             :  * For performance-critical callers, it could be worthwhile to take extra
    2213             :  * steps to ensure that there aren't TOAST pointers in the output of
    2214             :  * heap_form_tuple to begin with.  It's likely however that the costs of the
    2215             :  * typcache lookup and tuple disassembly/reassembly are swamped by TOAST
    2216             :  * dereference costs, so that the benefits of such extra effort would be
    2217             :  * minimal.
    2218             :  *
    2219             :  * XXX it would likely be better to create wrapper functions that produce
    2220             :  * a composite Datum from the field values in one step.  However, there's
    2221             :  * enough code using the existing APIs that we couldn't get rid of this
    2222             :  * hack anytime soon.
    2223             :  */
    2224             : Datum
    2225      994906 : HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
    2226             : {
    2227             :     Datum       result;
    2228             :     TupleDesc   tupDesc;
    2229             : 
    2230             :     /* No work if there are no external TOAST pointers in the tuple */
    2231      994906 :     if (!HeapTupleHeaderHasExternal(tuple))
    2232      994894 :         return PointerGetDatum(tuple);
    2233             : 
    2234             :     /* Use the type data saved by heap_form_tuple to look up the rowtype */
    2235          12 :     tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
    2236             :                                      HeapTupleHeaderGetTypMod(tuple));
    2237             : 
    2238             :     /* And do the flattening */
    2239          12 :     result = toast_flatten_tuple_to_datum(tuple,
    2240          12 :                                           HeapTupleHeaderGetDatumLength(tuple),
    2241             :                                           tupDesc);
    2242             : 
    2243          12 :     ReleaseTupleDesc(tupDesc);
    2244             : 
    2245          12 :     return result;
    2246             : }
    2247             : 
    2248             : 
    2249             : /*
    2250             :  * Functions for sending tuples to the frontend (or other specified destination)
    2251             :  * as though it is a SELECT result. These are used by utility commands that
    2252             :  * need to project directly to the destination and don't need or want full
    2253             :  * table function capability. Currently used by EXPLAIN and SHOW ALL.
    2254             :  */
    2255             : TupOutputState *
    2256       24096 : begin_tup_output_tupdesc(DestReceiver *dest,
    2257             :                          TupleDesc tupdesc,
    2258             :                          const TupleTableSlotOps *tts_ops)
    2259             : {
    2260             :     TupOutputState *tstate;
    2261             : 
    2262       24096 :     tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
    2263             : 
    2264       24096 :     tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
    2265       24096 :     tstate->dest = dest;
    2266             : 
    2267       24096 :     tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);
    2268             : 
    2269       24096 :     return tstate;
    2270             : }
    2271             : 
    2272             : /*
    2273             :  * write a single tuple
    2274             :  */
    2275             : void
    2276      129070 : do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
    2277             : {
    2278      129070 :     TupleTableSlot *slot = tstate->slot;
    2279      129070 :     int         natts = slot->tts_tupleDescriptor->natts;
    2280             : 
    2281             :     /* make sure the slot is clear */
    2282      129070 :     ExecClearTuple(slot);
    2283             : 
    2284             :     /* insert data */
    2285      129070 :     memcpy(slot->tts_values, values, natts * sizeof(Datum));
    2286      129070 :     memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
    2287             : 
    2288             :     /* mark slot as containing a virtual tuple */
    2289      129070 :     ExecStoreVirtualTuple(slot);
    2290             : 
    2291             :     /* send the tuple to the receiver */
    2292      129070 :     (void) tstate->dest->receiveSlot(slot, tstate->dest);
    2293             : 
    2294             :     /* clean up */
    2295      129070 :     ExecClearTuple(slot);
    2296      129070 : }
    2297             : 
    2298             : /*
    2299             :  * write a chunk of text, breaking at newline characters
    2300             :  *
    2301             :  * Should only be used with a single-TEXT-attribute tupdesc.
    2302             :  */
    2303             : void
    2304       19598 : do_text_output_multiline(TupOutputState *tstate, const char *txt)
    2305             : {
    2306             :     Datum       values[1];
    2307       19598 :     bool        isnull[1] = {false};
    2308             : 
    2309      142824 :     while (*txt)
    2310             :     {
    2311             :         const char *eol;
    2312             :         int         len;
    2313             : 
    2314      123226 :         eol = strchr(txt, '\n');
    2315      123226 :         if (eol)
    2316             :         {
    2317      123226 :             len = eol - txt;
    2318      123226 :             eol++;
    2319             :         }
    2320             :         else
    2321             :         {
    2322           0 :             len = strlen(txt);
    2323           0 :             eol = txt + len;
    2324             :         }
    2325             : 
    2326      123226 :         values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
    2327      123226 :         do_tup_output(tstate, values, isnull);
    2328      123226 :         pfree(DatumGetPointer(values[0]));
    2329      123226 :         txt = eol;
    2330             :     }
    2331       19598 : }
    2332             : 
    2333             : void
    2334       24096 : end_tup_output(TupOutputState *tstate)
    2335             : {
    2336       24096 :     tstate->dest->rShutdown(tstate->dest);
    2337             :     /* note that destroying the dest is not ours to do */
    2338       24096 :     ExecDropSingleTupleTableSlot(tstate->slot);
    2339       24096 :     pfree(tstate);
    2340       24096 : }

Generated by: LCOV version 1.14