LCOV - code coverage report
Current view: top level - src/backend/executor - execTuples.c (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 92.5 % 743 687
Test Date: 2026-02-17 17:20:33 Functions: 93.1 % 87 81
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * execTuples.c
       4              :  *    Routines dealing with TupleTableSlots.  These are used for resource
       5              :  *    management associated with tuples (eg, releasing buffer pins for
       6              :  *    tuples in disk buffers, or freeing the memory occupied by transient
       7              :  *    tuples).  Slots also provide access abstraction that lets us implement
       8              :  *    "virtual" tuples to reduce data-copying overhead.
       9              :  *
      10              :  *    Routines dealing with the type information for tuples. Currently,
      11              :  *    the type information for a tuple is an array of FormData_pg_attribute.
      12              :  *    This information is needed by routines manipulating tuples
      13              :  *    (getattribute, formtuple, etc.).
      14              :  *
      15              :  *
      16              :  *   EXAMPLE OF HOW TABLE ROUTINES WORK
      17              :  *      Suppose we have a query such as SELECT emp.name FROM emp and we have
      18              :  *      a single SeqScan node in the query plan.
      19              :  *
      20              :  *      At ExecutorStart()
      21              :  *      ----------------
      22              :  *
      23              :  *      - ExecInitSeqScan() calls ExecInitScanTupleSlot() to construct a
      24              :  *        TupleTableSlots for the tuples returned by the access method, and
      25              :  *        ExecInitResultTypeTL() to define the node's return
      26              :  *        type. ExecAssignScanProjectionInfo() will, if necessary, create
      27              :  *        another TupleTableSlot for the tuples resulting from performing
      28              :  *        target list projections.
      29              :  *
      30              :  *      During ExecutorRun()
      31              :  *      ----------------
      32              :  *      - SeqNext() calls ExecStoreBufferHeapTuple() to place the tuple
      33              :  *        returned by the access method into the scan tuple slot.
      34              :  *
      35              :  *      - ExecSeqScan() (via ExecScan), if necessary, calls ExecProject(),
      36              :  *        putting the result of the projection in the result tuple slot. If
      37              :  *        not necessary, it directly returns the slot returned by SeqNext().
      38              :  *
      39              :  *      - ExecutePlan() calls the output function.
      40              :  *
      41              :  *      The important thing to watch in the executor code is how pointers
      42              :  *      to the slots containing tuples are passed instead of the tuples
      43              :  *      themselves.  This facilitates the communication of related information
      44              :  *      (such as whether or not a tuple should be pfreed, what buffer contains
      45              :  *      this tuple, the tuple's tuple descriptor, etc).  It also allows us
      46              :  *      to avoid physically constructing projection tuples in many cases.
      47              :  *
      48              :  *
      49              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      50              :  * Portions Copyright (c) 1994, Regents of the University of California
      51              :  *
      52              :  *
      53              :  * IDENTIFICATION
      54              :  *    src/backend/executor/execTuples.c
      55              :  *
      56              :  *-------------------------------------------------------------------------
      57              :  */
      58              : #include "postgres.h"
      59              : 
      60              : #include "access/heaptoast.h"
      61              : #include "access/htup_details.h"
      62              : #include "access/tupdesc_details.h"
      63              : #include "access/xact.h"
      64              : #include "catalog/pg_type.h"
      65              : #include "funcapi.h"
      66              : #include "nodes/nodeFuncs.h"
      67              : #include "storage/bufmgr.h"
      68              : #include "utils/builtins.h"
      69              : #include "utils/expandeddatum.h"
      70              : #include "utils/lsyscache.h"
      71              : #include "utils/typcache.h"
      72              : 
      73              : static TupleDesc ExecTypeFromTLInternal(List *targetList,
      74              :                                         bool skipjunk);
      75              : static pg_attribute_always_inline void slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
      76              :                                                               int natts);
      77              : static inline void tts_buffer_heap_store_tuple(TupleTableSlot *slot,
      78              :                                                HeapTuple tuple,
      79              :                                                Buffer buffer,
      80              :                                                bool transfer_pin);
      81              : static void tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree);
      82              : 
      83              : 
      84              : const TupleTableSlotOps TTSOpsVirtual;
      85              : const TupleTableSlotOps TTSOpsHeapTuple;
      86              : const TupleTableSlotOps TTSOpsMinimalTuple;
      87              : const TupleTableSlotOps TTSOpsBufferHeapTuple;
      88              : 
      89              : 
      90              : /*
      91              :  * TupleTableSlotOps implementations.
      92              :  */
      93              : 
      94              : /*
      95              :  * TupleTableSlotOps implementation for VirtualTupleTableSlot.
      96              :  */
      97              : static void
      98       700744 : tts_virtual_init(TupleTableSlot *slot)
      99              : {
     100       700744 : }
     101              : 
     102              : static void
     103       685694 : tts_virtual_release(TupleTableSlot *slot)
     104              : {
     105       685694 : }
     106              : 
     107              : static void
     108     44149508 : tts_virtual_clear(TupleTableSlot *slot)
     109              : {
     110     44149508 :     if (unlikely(TTS_SHOULDFREE(slot)))
     111              :     {
     112       948521 :         VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     113              : 
     114       948521 :         pfree(vslot->data);
     115       948521 :         vslot->data = NULL;
     116              : 
     117       948521 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     118              :     }
     119              : 
     120     44149508 :     slot->tts_nvalid = 0;
     121     44149508 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     122     44149508 :     ItemPointerSetInvalid(&slot->tts_tid);
     123     44149508 : }
     124              : 
     125              : /*
     126              :  * VirtualTupleTableSlots always have fully populated tts_values and
     127              :  * tts_isnull arrays.  So this function should never be called.
     128              :  */
     129              : static void
     130            0 : tts_virtual_getsomeattrs(TupleTableSlot *slot, int natts)
     131              : {
     132            0 :     elog(ERROR, "getsomeattrs is not required to be called on a virtual tuple table slot");
     133              : }
     134              : 
     135              : /*
     136              :  * VirtualTupleTableSlots never provide system attributes (except those
     137              :  * handled generically, such as tableoid).  We generally shouldn't get
     138              :  * here, but provide a user-friendly message if we do.
     139              :  */
     140              : static Datum
     141            6 : tts_virtual_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     142              : {
     143              :     Assert(!TTS_EMPTY(slot));
     144              : 
     145            6 :     ereport(ERROR,
     146              :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     147              :              errmsg("cannot retrieve a system column in this context")));
     148              : 
     149              :     return 0;                   /* silence compiler warnings */
     150              : }
     151              : 
     152              : /*
     153              :  * VirtualTupleTableSlots never have storage tuples.  We generally
     154              :  * shouldn't get here, but provide a user-friendly message if we do.
     155              :  */
     156              : static bool
     157            0 : tts_virtual_is_current_xact_tuple(TupleTableSlot *slot)
     158              : {
     159              :     Assert(!TTS_EMPTY(slot));
     160              : 
     161            0 :     ereport(ERROR,
     162              :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     163              :              errmsg("don't have transaction information for this type of tuple")));
     164              : 
     165              :     return false;               /* silence compiler warnings */
     166              : }
     167              : 
     168              : /*
     169              :  * To materialize a virtual slot all the datums that aren't passed by value
     170              :  * have to be copied into the slot's memory context.  To do so, compute the
     171              :  * required size, and allocate enough memory to store all attributes.  That's
     172              :  * good for cache hit ratio, but more importantly requires only memory
     173              :  * allocation/deallocation.
     174              :  */
     175              : static void
     176      2239268 : tts_virtual_materialize(TupleTableSlot *slot)
     177              : {
     178      2239268 :     VirtualTupleTableSlot *vslot = (VirtualTupleTableSlot *) slot;
     179      2239268 :     TupleDesc   desc = slot->tts_tupleDescriptor;
     180      2239268 :     Size        sz = 0;
     181              :     char       *data;
     182              : 
     183              :     /* already materialized */
     184      2239268 :     if (TTS_SHOULDFREE(slot))
     185       193072 :         return;
     186              : 
     187              :     /* compute size of memory required */
     188      6519722 :     for (int natt = 0; natt < desc->natts; natt++)
     189              :     {
     190      4473526 :         CompactAttribute *att = TupleDescCompactAttr(desc, natt);
     191              :         Datum       val;
     192              : 
     193      4473526 :         if (att->attbyval || slot->tts_isnull[natt])
     194      3326827 :             continue;
     195              : 
     196      1146699 :         val = slot->tts_values[natt];
     197              : 
     198      2029686 :         if (att->attlen == -1 &&
     199       882987 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     200              :         {
     201              :             /*
     202              :              * We want to flatten the expanded value so that the materialized
     203              :              * slot doesn't depend on it.
     204              :              */
     205            0 :             sz = att_nominal_alignby(sz, att->attalignby);
     206            0 :             sz += EOH_get_flat_size(DatumGetEOHP(val));
     207              :         }
     208              :         else
     209              :         {
     210      1146699 :             sz = att_nominal_alignby(sz, att->attalignby);
     211      1146699 :             sz = att_addlength_datum(sz, att->attlen, val);
     212              :         }
     213              :     }
     214              : 
     215              :     /* all data is byval */
     216      2046196 :     if (sz == 0)
     217      1097612 :         return;
     218              : 
     219              :     /* allocate memory */
     220       948584 :     vslot->data = data = MemoryContextAlloc(slot->tts_mcxt, sz);
     221       948584 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     222              : 
     223              :     /* and copy all attributes into the pre-allocated space */
     224      3729844 :     for (int natt = 0; natt < desc->natts; natt++)
     225              :     {
     226      2781260 :         CompactAttribute *att = TupleDescCompactAttr(desc, natt);
     227              :         Datum       val;
     228              : 
     229      2781260 :         if (att->attbyval || slot->tts_isnull[natt])
     230      1634561 :             continue;
     231              : 
     232      1146699 :         val = slot->tts_values[natt];
     233              : 
     234      2029686 :         if (att->attlen == -1 &&
     235       882987 :             VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(val)))
     236            0 :         {
     237              :             Size        data_length;
     238              : 
     239              :             /*
     240              :              * We want to flatten the expanded value so that the materialized
     241              :              * slot doesn't depend on it.
     242              :              */
     243            0 :             ExpandedObjectHeader *eoh = DatumGetEOHP(val);
     244              : 
     245            0 :             data = (char *) att_nominal_alignby(data,
     246              :                                                 att->attalignby);
     247            0 :             data_length = EOH_get_flat_size(eoh);
     248            0 :             EOH_flatten_into(eoh, data, data_length);
     249              : 
     250            0 :             slot->tts_values[natt] = PointerGetDatum(data);
     251            0 :             data += data_length;
     252              :         }
     253              :         else
     254              :         {
     255      1146699 :             Size        data_length = 0;
     256              : 
     257      1146699 :             data = (char *) att_nominal_alignby(data, att->attalignby);
     258      1146699 :             data_length = att_addlength_datum(data_length, att->attlen, val);
     259              : 
     260      1146699 :             memcpy(data, DatumGetPointer(val), data_length);
     261              : 
     262      1146699 :             slot->tts_values[natt] = PointerGetDatum(data);
     263      1146699 :             data += data_length;
     264              :         }
     265              :     }
     266              : }
     267              : 
     268              : static void
     269        67996 : tts_virtual_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     270              : {
     271        67996 :     TupleDesc   srcdesc = srcslot->tts_tupleDescriptor;
     272              : 
     273        67996 :     tts_virtual_clear(dstslot);
     274              : 
     275        67996 :     slot_getallattrs(srcslot);
     276              : 
     277       139684 :     for (int natt = 0; natt < srcdesc->natts; natt++)
     278              :     {
     279        71688 :         dstslot->tts_values[natt] = srcslot->tts_values[natt];
     280        71688 :         dstslot->tts_isnull[natt] = srcslot->tts_isnull[natt];
     281              :     }
     282              : 
     283        67996 :     dstslot->tts_nvalid = srcdesc->natts;
     284        67996 :     dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     285              : 
     286              :     /* make sure storage doesn't depend on external memory */
     287        67996 :     tts_virtual_materialize(dstslot);
     288        67996 : }
     289              : 
     290              : static HeapTuple
     291      7338623 : tts_virtual_copy_heap_tuple(TupleTableSlot *slot)
     292              : {
     293              :     Assert(!TTS_EMPTY(slot));
     294              : 
     295     14677246 :     return heap_form_tuple(slot->tts_tupleDescriptor,
     296      7338623 :                            slot->tts_values,
     297      7338623 :                            slot->tts_isnull);
     298              : }
     299              : 
     300              : static MinimalTuple
     301     14195816 : tts_virtual_copy_minimal_tuple(TupleTableSlot *slot, Size extra)
     302              : {
     303              :     Assert(!TTS_EMPTY(slot));
     304              : 
     305     28391632 :     return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     306     14195816 :                                    slot->tts_values,
     307     14195816 :                                    slot->tts_isnull,
     308              :                                    extra);
     309              : }
     310              : 
     311              : 
     312              : /*
     313              :  * TupleTableSlotOps implementation for HeapTupleTableSlot.
     314              :  */
     315              : 
     316              : static void
     317      2108052 : tts_heap_init(TupleTableSlot *slot)
     318              : {
     319      2108052 : }
     320              : 
     321              : static void
     322      2107445 : tts_heap_release(TupleTableSlot *slot)
     323              : {
     324      2107445 : }
     325              : 
     326              : static void
     327      5294980 : tts_heap_clear(TupleTableSlot *slot)
     328              : {
     329      5294980 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     330              : 
     331              :     /* Free the memory for the heap tuple if it's allowed. */
     332      5294980 :     if (TTS_SHOULDFREE(slot))
     333              :     {
     334       906287 :         heap_freetuple(hslot->tuple);
     335       906287 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     336              :     }
     337              : 
     338      5294980 :     slot->tts_nvalid = 0;
     339      5294980 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     340      5294980 :     ItemPointerSetInvalid(&slot->tts_tid);
     341      5294980 :     hslot->off = 0;
     342      5294980 :     hslot->tuple = NULL;
     343      5294980 : }
     344              : 
     345              : static void
     346      5337901 : tts_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     347              : {
     348      5337901 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     349              : 
     350              :     Assert(!TTS_EMPTY(slot));
     351              : 
     352      5337901 :     slot_deform_heap_tuple(slot, hslot->tuple, &hslot->off, natts);
     353      5337901 : }
     354              : 
     355              : static Datum
     356            0 : tts_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     357              : {
     358            0 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     359              : 
     360              :     Assert(!TTS_EMPTY(slot));
     361              : 
     362              :     /*
     363              :      * In some code paths it's possible to get here with a non-materialized
     364              :      * slot, in which case we can't retrieve system columns.
     365              :      */
     366            0 :     if (!hslot->tuple)
     367            0 :         ereport(ERROR,
     368              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     369              :                  errmsg("cannot retrieve a system column in this context")));
     370              : 
     371            0 :     return heap_getsysattr(hslot->tuple, attnum,
     372              :                            slot->tts_tupleDescriptor, isnull);
     373              : }
     374              : 
     375              : static bool
     376            0 : tts_heap_is_current_xact_tuple(TupleTableSlot *slot)
     377              : {
     378            0 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     379              :     TransactionId xmin;
     380              : 
     381              :     Assert(!TTS_EMPTY(slot));
     382              : 
     383              :     /*
     384              :      * In some code paths it's possible to get here with a non-materialized
     385              :      * slot, in which case we can't check if tuple is created by the current
     386              :      * transaction.
     387              :      */
     388            0 :     if (!hslot->tuple)
     389            0 :         ereport(ERROR,
     390              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     391              :                  errmsg("don't have a storage tuple in this context")));
     392              : 
     393            0 :     xmin = HeapTupleHeaderGetRawXmin(hslot->tuple->t_data);
     394              : 
     395            0 :     return TransactionIdIsCurrentTransactionId(xmin);
     396              : }
     397              : 
     398              : static void
     399      1811319 : tts_heap_materialize(TupleTableSlot *slot)
     400              : {
     401      1811319 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     402              :     MemoryContext oldContext;
     403              : 
     404              :     Assert(!TTS_EMPTY(slot));
     405              : 
     406              :     /* If slot has its tuple already materialized, nothing to do. */
     407      1811319 :     if (TTS_SHOULDFREE(slot))
     408       906021 :         return;
     409              : 
     410       905298 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     411              : 
     412              :     /*
     413              :      * Have to deform from scratch, otherwise tts_values[] entries could point
     414              :      * into the non-materialized tuple (which might be gone when accessed).
     415              :      */
     416       905298 :     slot->tts_nvalid = 0;
     417       905298 :     hslot->off = 0;
     418              : 
     419       905298 :     if (!hslot->tuple)
     420       905291 :         hslot->tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     421       905291 :                                        slot->tts_values,
     422       905291 :                                        slot->tts_isnull);
     423              :     else
     424              :     {
     425              :         /*
     426              :          * The tuple contained in this slot is not allocated in the memory
     427              :          * context of the given slot (else it would have TTS_FLAG_SHOULDFREE
     428              :          * set).  Copy the tuple into the given slot's memory context.
     429              :          */
     430            7 :         hslot->tuple = heap_copytuple(hslot->tuple);
     431              :     }
     432              : 
     433       905298 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     434              : 
     435       905298 :     MemoryContextSwitchTo(oldContext);
     436              : }
     437              : 
     438              : static void
     439          900 : tts_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     440              : {
     441              :     HeapTuple   tuple;
     442              :     MemoryContext oldcontext;
     443              : 
     444          900 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     445          900 :     tuple = ExecCopySlotHeapTuple(srcslot);
     446          900 :     MemoryContextSwitchTo(oldcontext);
     447              : 
     448          900 :     ExecStoreHeapTuple(tuple, dstslot, true);
     449          900 : }
     450              : 
     451              : static HeapTuple
     452      1810313 : tts_heap_get_heap_tuple(TupleTableSlot *slot)
     453              : {
     454      1810313 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     455              : 
     456              :     Assert(!TTS_EMPTY(slot));
     457      1810313 :     if (!hslot->tuple)
     458            0 :         tts_heap_materialize(slot);
     459              : 
     460      1810313 :     return hslot->tuple;
     461              : }
     462              : 
     463              : static HeapTuple
     464          344 : tts_heap_copy_heap_tuple(TupleTableSlot *slot)
     465              : {
     466          344 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     467              : 
     468              :     Assert(!TTS_EMPTY(slot));
     469          344 :     if (!hslot->tuple)
     470            0 :         tts_heap_materialize(slot);
     471              : 
     472          344 :     return heap_copytuple(hslot->tuple);
     473              : }
     474              : 
     475              : static MinimalTuple
     476         2702 : tts_heap_copy_minimal_tuple(TupleTableSlot *slot, Size extra)
     477              : {
     478         2702 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     479              : 
     480         2702 :     if (!hslot->tuple)
     481           21 :         tts_heap_materialize(slot);
     482              : 
     483         2702 :     return minimal_tuple_from_heap_tuple(hslot->tuple, extra);
     484              : }
     485              : 
     486              : static void
     487      2280680 : tts_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple, bool shouldFree)
     488              : {
     489      2280680 :     HeapTupleTableSlot *hslot = (HeapTupleTableSlot *) slot;
     490              : 
     491      2280680 :     tts_heap_clear(slot);
     492              : 
     493      2280680 :     slot->tts_nvalid = 0;
     494      2280680 :     hslot->tuple = tuple;
     495      2280680 :     hslot->off = 0;
     496      2280680 :     slot->tts_flags &= ~(TTS_FLAG_EMPTY | TTS_FLAG_SHOULDFREE);
     497      2280680 :     slot->tts_tid = tuple->t_self;
     498              : 
     499      2280680 :     if (shouldFree)
     500         1000 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     501      2280680 : }
     502              : 
     503              : 
     504              : /*
     505              :  * TupleTableSlotOps implementation for MinimalTupleTableSlot.
     506              :  */
     507              : 
     508              : static void
     509       203226 : tts_minimal_init(TupleTableSlot *slot)
     510              : {
     511       203226 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     512              : 
     513              :     /*
     514              :      * Initialize the heap tuple pointer to access attributes of the minimal
     515              :      * tuple contained in the slot as if its a heap tuple.
     516              :      */
     517       203226 :     mslot->tuple = &mslot->minhdr;
     518       203226 : }
     519              : 
     520              : static void
     521       176237 : tts_minimal_release(TupleTableSlot *slot)
     522              : {
     523       176237 : }
     524              : 
     525              : static void
     526     39371221 : tts_minimal_clear(TupleTableSlot *slot)
     527              : {
     528     39371221 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     529              : 
     530     39371221 :     if (TTS_SHOULDFREE(slot))
     531              :     {
     532      6687147 :         heap_free_minimal_tuple(mslot->mintuple);
     533      6687147 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     534              :     }
     535              : 
     536     39371221 :     slot->tts_nvalid = 0;
     537     39371221 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     538     39371221 :     ItemPointerSetInvalid(&slot->tts_tid);
     539     39371221 :     mslot->off = 0;
     540     39371221 :     mslot->mintuple = NULL;
     541     39371221 : }
     542              : 
     543              : static void
     544     28292413 : tts_minimal_getsomeattrs(TupleTableSlot *slot, int natts)
     545              : {
     546     28292413 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     547              : 
     548              :     Assert(!TTS_EMPTY(slot));
     549              : 
     550     28292413 :     slot_deform_heap_tuple(slot, mslot->tuple, &mslot->off, natts);
     551     28292413 : }
     552              : 
     553              : /*
     554              :  * MinimalTupleTableSlots never provide system attributes. We generally
     555              :  * shouldn't get here, but provide a user-friendly message if we do.
     556              :  */
     557              : static Datum
     558            0 : tts_minimal_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     559              : {
     560              :     Assert(!TTS_EMPTY(slot));
     561              : 
     562            0 :     ereport(ERROR,
     563              :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     564              :              errmsg("cannot retrieve a system column in this context")));
     565              : 
     566              :     return 0;                   /* silence compiler warnings */
     567              : }
     568              : 
     569              : /*
     570              :  * Within MinimalTuple abstraction transaction information is unavailable.
     571              :  * We generally shouldn't get here, but provide a user-friendly message if
     572              :  * we do.
     573              :  */
     574              : static bool
     575            0 : tts_minimal_is_current_xact_tuple(TupleTableSlot *slot)
     576              : {
     577              :     Assert(!TTS_EMPTY(slot));
     578              : 
     579            0 :     ereport(ERROR,
     580              :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     581              :              errmsg("don't have transaction information for this type of tuple")));
     582              : 
     583              :     return false;               /* silence compiler warnings */
     584              : }
     585              : 
     586              : static void
     587       798673 : tts_minimal_materialize(TupleTableSlot *slot)
     588              : {
     589       798673 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     590              :     MemoryContext oldContext;
     591              : 
     592              :     Assert(!TTS_EMPTY(slot));
     593              : 
     594              :     /* If slot has its tuple already materialized, nothing to do. */
     595       798673 :     if (TTS_SHOULDFREE(slot))
     596        72017 :         return;
     597              : 
     598       726656 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     599              : 
     600              :     /*
     601              :      * Have to deform from scratch, otherwise tts_values[] entries could point
     602              :      * into the non-materialized tuple (which might be gone when accessed).
     603              :      */
     604       726656 :     slot->tts_nvalid = 0;
     605       726656 :     mslot->off = 0;
     606              : 
     607       726656 :     if (!mslot->mintuple)
     608              :     {
     609       671147 :         mslot->mintuple = heap_form_minimal_tuple(slot->tts_tupleDescriptor,
     610       671147 :                                                   slot->tts_values,
     611       671147 :                                                   slot->tts_isnull,
     612              :                                                   0);
     613              :     }
     614              :     else
     615              :     {
     616              :         /*
     617              :          * The minimal tuple contained in this slot is not allocated in the
     618              :          * memory context of the given slot (else it would have
     619              :          * TTS_FLAG_SHOULDFREE set).  Copy the minimal tuple into the given
     620              :          * slot's memory context.
     621              :          */
     622        55509 :         mslot->mintuple = heap_copy_minimal_tuple(mslot->mintuple, 0);
     623              :     }
     624              : 
     625       726656 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     626              : 
     627              :     Assert(mslot->tuple == &mslot->minhdr);
     628              : 
     629       726656 :     mslot->minhdr.t_len = mslot->mintuple->t_len + MINIMAL_TUPLE_OFFSET;
     630       726656 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mslot->mintuple - MINIMAL_TUPLE_OFFSET);
     631              : 
     632       726656 :     MemoryContextSwitchTo(oldContext);
     633              : }
     634              : 
     635              : static void
     636       568908 : tts_minimal_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     637              : {
     638              :     MemoryContext oldcontext;
     639              :     MinimalTuple mintuple;
     640              : 
     641       568908 :     oldcontext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     642       568908 :     mintuple = ExecCopySlotMinimalTuple(srcslot);
     643       568908 :     MemoryContextSwitchTo(oldcontext);
     644              : 
     645       568908 :     ExecStoreMinimalTuple(mintuple, dstslot, true);
     646       568908 : }
     647              : 
     648              : static MinimalTuple
     649      2589316 : tts_minimal_get_minimal_tuple(TupleTableSlot *slot)
     650              : {
     651      2589316 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     652              : 
     653      2589316 :     if (!mslot->mintuple)
     654          497 :         tts_minimal_materialize(slot);
     655              : 
     656      2589316 :     return mslot->mintuple;
     657              : }
     658              : 
     659              : static HeapTuple
     660       396702 : tts_minimal_copy_heap_tuple(TupleTableSlot *slot)
     661              : {
     662       396702 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     663              : 
     664       396702 :     if (!mslot->mintuple)
     665          827 :         tts_minimal_materialize(slot);
     666              : 
     667       396702 :     return heap_tuple_from_minimal_tuple(mslot->mintuple);
     668              : }
     669              : 
     670              : static MinimalTuple
     671      1418180 : tts_minimal_copy_minimal_tuple(TupleTableSlot *slot, Size extra)
     672              : {
     673      1418180 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     674              : 
     675      1418180 :     if (!mslot->mintuple)
     676       567639 :         tts_minimal_materialize(slot);
     677              : 
     678      1418180 :     return heap_copy_minimal_tuple(mslot->mintuple, extra);
     679              : }
     680              : 
     681              : static void
     682     32746774 : tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree)
     683              : {
     684     32746774 :     MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;
     685              : 
     686     32746774 :     tts_minimal_clear(slot);
     687              : 
     688              :     Assert(!TTS_SHOULDFREE(slot));
     689              :     Assert(TTS_EMPTY(slot));
     690              : 
     691     32746774 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     692     32746774 :     slot->tts_nvalid = 0;
     693     32746774 :     mslot->off = 0;
     694              : 
     695     32746774 :     mslot->mintuple = mtup;
     696              :     Assert(mslot->tuple == &mslot->minhdr);
     697     32746774 :     mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
     698     32746774 :     mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
     699              :     /* no need to set t_self or t_tableOid since we won't allow access */
     700              : 
     701     32746774 :     if (shouldFree)
     702      5961231 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     703     32746774 : }
     704              : 
     705              : 
     706              : /*
     707              :  * TupleTableSlotOps implementation for BufferHeapTupleTableSlot.
     708              :  */
     709              : 
     710              : static void
     711     14443779 : tts_buffer_heap_init(TupleTableSlot *slot)
     712              : {
     713     14443779 : }
     714              : 
     715              : static void
     716     14436463 : tts_buffer_heap_release(TupleTableSlot *slot)
     717              : {
     718     14436463 : }
     719              : 
     720              : static void
     721     25810417 : tts_buffer_heap_clear(TupleTableSlot *slot)
     722              : {
     723     25810417 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     724              : 
     725              :     /*
     726              :      * Free the memory for heap tuple if allowed. A tuple coming from buffer
     727              :      * can never be freed. But we may have materialized a tuple from buffer.
     728              :      * Such a tuple can be freed.
     729              :      */
     730     25810417 :     if (TTS_SHOULDFREE(slot))
     731              :     {
     732              :         /* We should have unpinned the buffer while materializing the tuple. */
     733              :         Assert(!BufferIsValid(bslot->buffer));
     734              : 
     735      6952010 :         heap_freetuple(bslot->base.tuple);
     736      6952010 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     737              :     }
     738              : 
     739     25810417 :     if (BufferIsValid(bslot->buffer))
     740      7959714 :         ReleaseBuffer(bslot->buffer);
     741              : 
     742     25810417 :     slot->tts_nvalid = 0;
     743     25810417 :     slot->tts_flags |= TTS_FLAG_EMPTY;
     744     25810417 :     ItemPointerSetInvalid(&slot->tts_tid);
     745     25810417 :     bslot->base.tuple = NULL;
     746     25810417 :     bslot->base.off = 0;
     747     25810417 :     bslot->buffer = InvalidBuffer;
     748     25810417 : }
     749              : 
     750              : static void
     751     66158285 : tts_buffer_heap_getsomeattrs(TupleTableSlot *slot, int natts)
     752              : {
     753     66158285 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     754              : 
     755              :     Assert(!TTS_EMPTY(slot));
     756              : 
     757     66158285 :     slot_deform_heap_tuple(slot, bslot->base.tuple, &bslot->base.off, natts);
     758     66158285 : }
     759              : 
     760              : static Datum
     761        72715 : tts_buffer_heap_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
     762              : {
     763        72715 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     764              : 
     765              :     Assert(!TTS_EMPTY(slot));
     766              : 
     767              :     /*
     768              :      * In some code paths it's possible to get here with a non-materialized
     769              :      * slot, in which case we can't retrieve system columns.
     770              :      */
     771        72715 :     if (!bslot->base.tuple)
     772            0 :         ereport(ERROR,
     773              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     774              :                  errmsg("cannot retrieve a system column in this context")));
     775              : 
     776        72715 :     return heap_getsysattr(bslot->base.tuple, attnum,
     777              :                            slot->tts_tupleDescriptor, isnull);
     778              : }
     779              : 
     780              : static bool
     781          465 : tts_buffer_is_current_xact_tuple(TupleTableSlot *slot)
     782              : {
     783          465 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     784              :     TransactionId xmin;
     785              : 
     786              :     Assert(!TTS_EMPTY(slot));
     787              : 
     788              :     /*
     789              :      * In some code paths it's possible to get here with a non-materialized
     790              :      * slot, in which case we can't check if tuple is created by the current
     791              :      * transaction.
     792              :      */
     793          465 :     if (!bslot->base.tuple)
     794            0 :         ereport(ERROR,
     795              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     796              :                  errmsg("don't have a storage tuple in this context")));
     797              : 
     798          465 :     xmin = HeapTupleHeaderGetRawXmin(bslot->base.tuple->t_data);
     799              : 
     800          465 :     return TransactionIdIsCurrentTransactionId(xmin);
     801              : }
     802              : 
     803              : static void
     804     13840275 : tts_buffer_heap_materialize(TupleTableSlot *slot)
     805              : {
     806     13840275 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     807              :     MemoryContext oldContext;
     808              : 
     809              :     Assert(!TTS_EMPTY(slot));
     810              : 
     811              :     /* If slot has its tuple already materialized, nothing to do. */
     812     13840275 :     if (TTS_SHOULDFREE(slot))
     813     12561022 :         return;
     814              : 
     815      1279253 :     oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
     816              : 
     817              :     /*
     818              :      * Have to deform from scratch, otherwise tts_values[] entries could point
     819              :      * into the non-materialized tuple (which might be gone when accessed).
     820              :      */
     821      1279253 :     bslot->base.off = 0;
     822      1279253 :     slot->tts_nvalid = 0;
     823              : 
     824      1279253 :     if (!bslot->base.tuple)
     825              :     {
     826              :         /*
     827              :          * Normally BufferHeapTupleTableSlot should have a tuple + buffer
     828              :          * associated with it, unless it's materialized (which would've
     829              :          * returned above). But when it's useful to allow storing virtual
     830              :          * tuples in a buffer slot, which then also needs to be
     831              :          * materializable.
     832              :          */
     833      1082084 :         bslot->base.tuple = heap_form_tuple(slot->tts_tupleDescriptor,
     834      1082084 :                                             slot->tts_values,
     835      1082084 :                                             slot->tts_isnull);
     836              :     }
     837              :     else
     838              :     {
     839       197169 :         bslot->base.tuple = heap_copytuple(bslot->base.tuple);
     840              : 
     841              :         /*
     842              :          * A heap tuple stored in a BufferHeapTupleTableSlot should have a
     843              :          * buffer associated with it, unless it's materialized or virtual.
     844              :          */
     845       197169 :         if (likely(BufferIsValid(bslot->buffer)))
     846       197169 :             ReleaseBuffer(bslot->buffer);
     847       197169 :         bslot->buffer = InvalidBuffer;
     848              :     }
     849              : 
     850              :     /*
     851              :      * We don't set TTS_FLAG_SHOULDFREE until after releasing the buffer, if
     852              :      * any.  This avoids having a transient state that would fall foul of our
     853              :      * assertions that a slot with TTS_FLAG_SHOULDFREE doesn't own a buffer.
     854              :      * In the unlikely event that ReleaseBuffer() above errors out, we'd
     855              :      * effectively leak the copied tuple, but that seems fairly harmless.
     856              :      */
     857      1279253 :     slot->tts_flags |= TTS_FLAG_SHOULDFREE;
     858              : 
     859      1279253 :     MemoryContextSwitchTo(oldContext);
     860              : }
     861              : 
     862              : static void
     863      5839243 : tts_buffer_heap_copyslot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
     864              : {
     865      5839243 :     BufferHeapTupleTableSlot *bsrcslot = (BufferHeapTupleTableSlot *) srcslot;
     866      5839243 :     BufferHeapTupleTableSlot *bdstslot = (BufferHeapTupleTableSlot *) dstslot;
     867              : 
     868              :     /*
     869              :      * If the source slot is of a different kind, or is a buffer slot that has
     870              :      * been materialized / is virtual, make a new copy of the tuple. Otherwise
     871              :      * make a new reference to the in-buffer tuple.
     872              :      */
     873      5839243 :     if (dstslot->tts_ops != srcslot->tts_ops ||
     874         3258 :         TTS_SHOULDFREE(srcslot) ||
     875         3256 :         !bsrcslot->base.tuple)
     876      5835987 :     {
     877              :         MemoryContext oldContext;
     878              : 
     879      5835987 :         ExecClearTuple(dstslot);
     880      5835987 :         dstslot->tts_flags &= ~TTS_FLAG_EMPTY;
     881      5835987 :         oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
     882      5835987 :         bdstslot->base.tuple = ExecCopySlotHeapTuple(srcslot);
     883      5835987 :         dstslot->tts_flags |= TTS_FLAG_SHOULDFREE;
     884      5835987 :         MemoryContextSwitchTo(oldContext);
     885              :     }
     886              :     else
     887              :     {
     888              :         Assert(BufferIsValid(bsrcslot->buffer));
     889              : 
     890         3256 :         tts_buffer_heap_store_tuple(dstslot, bsrcslot->base.tuple,
     891              :                                     bsrcslot->buffer, false);
     892              : 
     893              :         /*
     894              :          * The HeapTupleData portion of the source tuple might be shorter
     895              :          * lived than the destination slot. Therefore copy the HeapTuple into
     896              :          * our slot's tupdata, which is guaranteed to live long enough (but
     897              :          * will still point into the buffer).
     898              :          */
     899         3256 :         memcpy(&bdstslot->base.tupdata, bdstslot->base.tuple, sizeof(HeapTupleData));
     900         3256 :         bdstslot->base.tuple = &bdstslot->base.tupdata;
     901              :     }
     902      5839243 : }
     903              : 
     904              : static HeapTuple
     905     20539650 : tts_buffer_heap_get_heap_tuple(TupleTableSlot *slot)
     906              : {
     907     20539650 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     908              : 
     909              :     Assert(!TTS_EMPTY(slot));
     910              : 
     911     20539650 :     if (!bslot->base.tuple)
     912            0 :         tts_buffer_heap_materialize(slot);
     913              : 
     914     20539650 :     return bslot->base.tuple;
     915              : }
     916              : 
     917              : static HeapTuple
     918      5630421 : tts_buffer_heap_copy_heap_tuple(TupleTableSlot *slot)
     919              : {
     920      5630421 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     921              : 
     922              :     Assert(!TTS_EMPTY(slot));
     923              : 
     924      5630421 :     if (!bslot->base.tuple)
     925            0 :         tts_buffer_heap_materialize(slot);
     926              : 
     927      5630421 :     return heap_copytuple(bslot->base.tuple);
     928              : }
     929              : 
     930              : static MinimalTuple
     931      1415317 : tts_buffer_heap_copy_minimal_tuple(TupleTableSlot *slot, Size extra)
     932              : {
     933      1415317 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     934              : 
     935              :     Assert(!TTS_EMPTY(slot));
     936              : 
     937      1415317 :     if (!bslot->base.tuple)
     938            0 :         tts_buffer_heap_materialize(slot);
     939              : 
     940      1415317 :     return minimal_tuple_from_heap_tuple(bslot->base.tuple, extra);
     941              : }
     942              : 
     943              : static inline void
     944     79129995 : tts_buffer_heap_store_tuple(TupleTableSlot *slot, HeapTuple tuple,
     945              :                             Buffer buffer, bool transfer_pin)
     946              : {
     947     79129995 :     BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
     948              : 
     949     79129995 :     if (TTS_SHOULDFREE(slot))
     950              :     {
     951              :         /* materialized slot shouldn't have a buffer to release */
     952              :         Assert(!BufferIsValid(bslot->buffer));
     953              : 
     954       197994 :         heap_freetuple(bslot->base.tuple);
     955       197994 :         slot->tts_flags &= ~TTS_FLAG_SHOULDFREE;
     956              :     }
     957              : 
     958     79129995 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
     959     79129995 :     slot->tts_nvalid = 0;
     960     79129995 :     bslot->base.tuple = tuple;
     961     79129995 :     bslot->base.off = 0;
     962     79129995 :     slot->tts_tid = tuple->t_self;
     963              : 
     964              :     /*
     965              :      * If tuple is on a disk page, keep the page pinned as long as we hold a
     966              :      * pointer into it.  We assume the caller already has such a pin.  If
     967              :      * transfer_pin is true, we'll transfer that pin to this slot, if not
     968              :      * we'll pin it again ourselves.
     969              :      *
     970              :      * This is coded to optimize the case where the slot previously held a
     971              :      * tuple on the same disk page: in that case releasing and re-acquiring
     972              :      * the pin is a waste of cycles.  This is a common situation during
     973              :      * seqscans, so it's worth troubling over.
     974              :      */
     975     79129995 :     if (bslot->buffer != buffer)
     976              :     {
     977     10931565 :         if (BufferIsValid(bslot->buffer))
     978      2770658 :             ReleaseBuffer(bslot->buffer);
     979              : 
     980     10931565 :         bslot->buffer = buffer;
     981              : 
     982     10931565 :         if (!transfer_pin && BufferIsValid(buffer))
     983     10752561 :             IncrBufferRefCount(buffer);
     984              :     }
     985     68198430 :     else if (transfer_pin && BufferIsValid(buffer))
     986              :     {
     987              :         /*
     988              :          * In transfer_pin mode the caller won't know about the same-page
     989              :          * optimization, so we gotta release its pin.
     990              :          */
     991       157890 :         ReleaseBuffer(buffer);
     992              :     }
     993     79129995 : }
     994              : 
     995              : /*
     996              :  * slot_deform_heap_tuple_internal
     997              :  *      An always inline helper function for use in slot_deform_heap_tuple to
     998              :  *      allow the compiler to emit specialized versions of this function for
     999              :  *      various combinations of "slow" and "hasnulls".  For example, if a
    1000              :  *      given tuple has no nulls, then we needn't check "hasnulls" for every
    1001              :  *      attribute that we're deforming.  The caller can just call this
    1002              :  *      function with hasnulls set to constant-false and have the compiler
    1003              :  *      remove the constant-false branches and emit more optimal code.
    1004              :  *
    1005              :  * Returns the next attnum to deform, which can be equal to natts when the
    1006              :  * function manages to deform all requested attributes.  *offp is an input and
    1007              :  * output parameter which is the byte offset within the tuple to start deforming
    1008              :  * from which, on return, gets set to the offset where the next attribute
    1009              :  * should be deformed from.  *slowp is set to true when subsequent deforming
    1010              :  * of this tuple must use a version of this function with "slow" passed as
    1011              :  * true.
    1012              :  *
    1013              :  * Callers cannot assume when we return "attnum" (i.e. all requested
    1014              :  * attributes have been deformed) that slow mode isn't required for any
    1015              :  * additional deforming as the final attribute may have caused a switch to
    1016              :  * slow mode.
    1017              :  */
    1018              : static pg_attribute_always_inline int
    1019    108580269 : slot_deform_heap_tuple_internal(TupleTableSlot *slot, HeapTuple tuple,
    1020              :                                 int attnum, int natts, bool slow,
    1021              :                                 bool hasnulls, uint32 *offp, bool *slowp)
    1022              : {
    1023    108580269 :     TupleDesc   tupleDesc = slot->tts_tupleDescriptor;
    1024    108580269 :     Datum      *values = slot->tts_values;
    1025    108580269 :     bool       *isnull = slot->tts_isnull;
    1026    108580269 :     HeapTupleHeader tup = tuple->t_data;
    1027              :     char       *tp;             /* ptr to tuple data */
    1028    108580269 :     bits8      *bp = tup->t_bits;    /* ptr to null bitmap in tuple */
    1029    108580269 :     bool        slownext = false;
    1030              : 
    1031    108580269 :     tp = (char *) tup + tup->t_hoff;
    1032              : 
    1033    440449877 :     for (; attnum < natts; attnum++)
    1034              :     {
    1035    350523534 :         CompactAttribute *thisatt = TupleDescCompactAttr(tupleDesc, attnum);
    1036              : 
    1037    350523534 :         if (hasnulls && att_isnull(attnum, bp))
    1038              :         {
    1039     18724420 :             values[attnum] = (Datum) 0;
    1040     18724420 :             isnull[attnum] = true;
    1041     18724420 :             if (!slow)
    1042              :             {
    1043      2036253 :                 *slowp = true;
    1044      2036253 :                 return attnum + 1;
    1045              :             }
    1046              :             else
    1047     16688167 :                 continue;
    1048              :         }
    1049              : 
    1050    331799114 :         isnull[attnum] = false;
    1051              : 
    1052              :         /* calculate the offset of this attribute */
    1053    331799114 :         if (!slow && thisatt->attcacheoff >= 0)
    1054    312190381 :             *offp = thisatt->attcacheoff;
    1055     19608733 :         else if (thisatt->attlen == -1)
    1056              :         {
    1057              :             /*
    1058              :              * We can only cache the offset for a varlena attribute if the
    1059              :              * offset is already suitably aligned, so that there would be no
    1060              :              * pad bytes in any case: then the offset will be valid for either
    1061              :              * an aligned or unaligned value.
    1062              :              */
    1063      6459742 :             if (!slow && *offp == att_nominal_alignby(*offp, thisatt->attalignby))
    1064        42847 :                 thisatt->attcacheoff = *offp;
    1065              :             else
    1066              :             {
    1067      6416895 :                 *offp = att_pointer_alignby(*offp,
    1068              :                                             thisatt->attalignby,
    1069              :                                             -1,
    1070              :                                             tp + *offp);
    1071              : 
    1072      6416895 :                 if (!slow)
    1073       324134 :                     slownext = true;
    1074              :             }
    1075              :         }
    1076              :         else
    1077              :         {
    1078              :             /* not varlena, so safe to use att_nominal_alignby */
    1079     13148991 :             *offp = att_nominal_alignby(*offp, thisatt->attalignby);
    1080              : 
    1081     13148991 :             if (!slow)
    1082       360929 :                 thisatt->attcacheoff = *offp;
    1083              :         }
    1084              : 
    1085    331799114 :         values[attnum] = fetchatt(thisatt, tp + *offp);
    1086              : 
    1087    331799114 :         *offp = att_addlength_pointer(*offp, thisatt->attlen, tp + *offp);
    1088              : 
    1089              :         /* check if we need to switch to slow mode */
    1090    331799114 :         if (!slow)
    1091              :         {
    1092              :             /*
    1093              :              * We're unable to deform any further if the above code set
    1094              :              * 'slownext', or if this isn't a fixed-width attribute.
    1095              :              */
    1096    312918291 :             if (slownext || thisatt->attlen <= 0)
    1097              :             {
    1098     16617673 :                 *slowp = true;
    1099     16617673 :                 return attnum + 1;
    1100              :             }
    1101              :         }
    1102              :     }
    1103              : 
    1104     89926343 :     return natts;
    1105              : }
    1106              : 
    1107              : /*
    1108              :  * slot_deform_heap_tuple
    1109              :  *      Given a TupleTableSlot, extract data from the slot's physical tuple
    1110              :  *      into its Datum/isnull arrays.  Data is extracted up through the
    1111              :  *      natts'th column (caller must ensure this is a legal column number).
    1112              :  *
    1113              :  *      This is essentially an incremental version of heap_deform_tuple:
    1114              :  *      on each call we extract attributes up to the one needed, without
    1115              :  *      re-computing information about previously extracted attributes.
    1116              :  *      slot->tts_nvalid is the number of attributes already extracted.
    1117              :  *
    1118              :  * This is marked as always inline, so the different offp for different types
    1119              :  * of slots gets optimized away.
    1120              :  */
    1121              : static pg_attribute_always_inline void
    1122     99788599 : slot_deform_heap_tuple(TupleTableSlot *slot, HeapTuple tuple, uint32 *offp,
    1123              :                        int natts)
    1124              : {
    1125     99788599 :     bool        hasnulls = HeapTupleHasNulls(tuple);
    1126              :     int         attnum;
    1127              :     uint32      off;            /* offset in tuple data */
    1128              :     bool        slow;           /* can we use/set attcacheoff? */
    1129              : 
    1130              :     /* We can only fetch as many attributes as the tuple has. */
    1131     99788599 :     natts = Min(HeapTupleHeaderGetNatts(tuple->t_data), natts);
    1132              : 
    1133              :     /*
    1134              :      * Check whether the first call for this tuple, and initialize or restore
    1135              :      * loop state.
    1136              :      */
    1137     99788599 :     attnum = slot->tts_nvalid;
    1138     99788599 :     if (attnum == 0)
    1139              :     {
    1140              :         /* Start from the first attribute */
    1141     86830633 :         off = 0;
    1142     86830633 :         slow = false;
    1143              :     }
    1144              :     else
    1145              :     {
    1146              :         /* Restore state from previous execution */
    1147     12957966 :         off = *offp;
    1148     12957966 :         slow = TTS_SLOW(slot);
    1149              :     }
    1150              : 
    1151              :     /*
    1152              :      * If 'slow' isn't set, try deforming using deforming code that does not
    1153              :      * contain any of the extra checks required for non-fixed offset
    1154              :      * deforming.  During deforming, if or when we find a NULL or a variable
    1155              :      * length attribute, we'll switch to a deforming method which includes the
    1156              :      * extra code required for non-fixed offset deforming, a.k.a slow mode.
    1157              :      * Because this is performance critical, we inline
    1158              :      * slot_deform_heap_tuple_internal passing the 'slow' and 'hasnull'
    1159              :      * parameters as constants to allow the compiler to emit specialized code
    1160              :      * with the known-const false comparisons and subsequent branches removed.
    1161              :      */
    1162     99788599 :     if (!slow)
    1163              :     {
    1164              :         /* Tuple without any NULLs? We can skip doing any NULL checking */
    1165     99094958 :         if (!hasnulls)
    1166     74199182 :             attnum = slot_deform_heap_tuple_internal(slot,
    1167              :                                                      tuple,
    1168              :                                                      attnum,
    1169              :                                                      natts,
    1170              :                                                      false, /* slow */
    1171              :                                                      false, /* hasnulls */
    1172              :                                                      &off,
    1173              :                                                      &slow);
    1174              :         else
    1175     24895776 :             attnum = slot_deform_heap_tuple_internal(slot,
    1176              :                                                      tuple,
    1177              :                                                      attnum,
    1178              :                                                      natts,
    1179              :                                                      false, /* slow */
    1180              :                                                      true,  /* hasnulls */
    1181              :                                                      &off,
    1182              :                                                      &slow);
    1183              :     }
    1184              : 
    1185              :     /* If there's still work to do then we must be in slow mode */
    1186     99788599 :     if (attnum < natts)
    1187              :     {
    1188              :         /* XXX is it worth adding a separate call when hasnulls is false? */
    1189      9485311 :         attnum = slot_deform_heap_tuple_internal(slot,
    1190              :                                                  tuple,
    1191              :                                                  attnum,
    1192              :                                                  natts,
    1193              :                                                  true,  /* slow */
    1194              :                                                  hasnulls,
    1195              :                                                  &off,
    1196              :                                                  &slow);
    1197              :     }
    1198              : 
    1199              :     /*
    1200              :      * Save state for next execution
    1201              :      */
    1202     99788599 :     slot->tts_nvalid = attnum;
    1203     99788599 :     *offp = off;
    1204     99788599 :     if (slow)
    1205     19347567 :         slot->tts_flags |= TTS_FLAG_SLOW;
    1206              :     else
    1207     80441032 :         slot->tts_flags &= ~TTS_FLAG_SLOW;
    1208     99788599 : }
    1209              : 
    1210              : const TupleTableSlotOps TTSOpsVirtual = {
    1211              :     .base_slot_size = sizeof(VirtualTupleTableSlot),
    1212              :     .init = tts_virtual_init,
    1213              :     .release = tts_virtual_release,
    1214              :     .clear = tts_virtual_clear,
    1215              :     .getsomeattrs = tts_virtual_getsomeattrs,
    1216              :     .getsysattr = tts_virtual_getsysattr,
    1217              :     .materialize = tts_virtual_materialize,
    1218              :     .is_current_xact_tuple = tts_virtual_is_current_xact_tuple,
    1219              :     .copyslot = tts_virtual_copyslot,
    1220              : 
    1221              :     /*
    1222              :      * A virtual tuple table slot can not "own" a heap tuple or a minimal
    1223              :      * tuple.
    1224              :      */
    1225              :     .get_heap_tuple = NULL,
    1226              :     .get_minimal_tuple = NULL,
    1227              :     .copy_heap_tuple = tts_virtual_copy_heap_tuple,
    1228              :     .copy_minimal_tuple = tts_virtual_copy_minimal_tuple
    1229              : };
    1230              : 
    1231              : const TupleTableSlotOps TTSOpsHeapTuple = {
    1232              :     .base_slot_size = sizeof(HeapTupleTableSlot),
    1233              :     .init = tts_heap_init,
    1234              :     .release = tts_heap_release,
    1235              :     .clear = tts_heap_clear,
    1236              :     .getsomeattrs = tts_heap_getsomeattrs,
    1237              :     .getsysattr = tts_heap_getsysattr,
    1238              :     .is_current_xact_tuple = tts_heap_is_current_xact_tuple,
    1239              :     .materialize = tts_heap_materialize,
    1240              :     .copyslot = tts_heap_copyslot,
    1241              :     .get_heap_tuple = tts_heap_get_heap_tuple,
    1242              : 
    1243              :     /* A heap tuple table slot can not "own" a minimal tuple. */
    1244              :     .get_minimal_tuple = NULL,
    1245              :     .copy_heap_tuple = tts_heap_copy_heap_tuple,
    1246              :     .copy_minimal_tuple = tts_heap_copy_minimal_tuple
    1247              : };
    1248              : 
    1249              : const TupleTableSlotOps TTSOpsMinimalTuple = {
    1250              :     .base_slot_size = sizeof(MinimalTupleTableSlot),
    1251              :     .init = tts_minimal_init,
    1252              :     .release = tts_minimal_release,
    1253              :     .clear = tts_minimal_clear,
    1254              :     .getsomeattrs = tts_minimal_getsomeattrs,
    1255              :     .getsysattr = tts_minimal_getsysattr,
    1256              :     .is_current_xact_tuple = tts_minimal_is_current_xact_tuple,
    1257              :     .materialize = tts_minimal_materialize,
    1258              :     .copyslot = tts_minimal_copyslot,
    1259              : 
    1260              :     /* A minimal tuple table slot can not "own" a heap tuple. */
    1261              :     .get_heap_tuple = NULL,
    1262              :     .get_minimal_tuple = tts_minimal_get_minimal_tuple,
    1263              :     .copy_heap_tuple = tts_minimal_copy_heap_tuple,
    1264              :     .copy_minimal_tuple = tts_minimal_copy_minimal_tuple
    1265              : };
    1266              : 
    1267              : const TupleTableSlotOps TTSOpsBufferHeapTuple = {
    1268              :     .base_slot_size = sizeof(BufferHeapTupleTableSlot),
    1269              :     .init = tts_buffer_heap_init,
    1270              :     .release = tts_buffer_heap_release,
    1271              :     .clear = tts_buffer_heap_clear,
    1272              :     .getsomeattrs = tts_buffer_heap_getsomeattrs,
    1273              :     .getsysattr = tts_buffer_heap_getsysattr,
    1274              :     .is_current_xact_tuple = tts_buffer_is_current_xact_tuple,
    1275              :     .materialize = tts_buffer_heap_materialize,
    1276              :     .copyslot = tts_buffer_heap_copyslot,
    1277              :     .get_heap_tuple = tts_buffer_heap_get_heap_tuple,
    1278              : 
    1279              :     /* A buffer heap tuple table slot can not "own" a minimal tuple. */
    1280              :     .get_minimal_tuple = NULL,
    1281              :     .copy_heap_tuple = tts_buffer_heap_copy_heap_tuple,
    1282              :     .copy_minimal_tuple = tts_buffer_heap_copy_minimal_tuple
    1283              : };
    1284              : 
    1285              : 
    1286              : /* ----------------------------------------------------------------
    1287              :  *                tuple table create/delete functions
    1288              :  * ----------------------------------------------------------------
    1289              :  */
    1290              : 
    1291              : /* --------------------------------
    1292              :  *      MakeTupleTableSlot
    1293              :  *
    1294              :  *      Basic routine to make an empty TupleTableSlot of given
    1295              :  *      TupleTableSlotType. If tupleDesc is specified the slot's descriptor is
    1296              :  *      fixed for its lifetime, gaining some efficiency. If that's
    1297              :  *      undesirable, pass NULL.
    1298              :  * --------------------------------
    1299              :  */
    1300              : TupleTableSlot *
    1301     17455801 : MakeTupleTableSlot(TupleDesc tupleDesc,
    1302              :                    const TupleTableSlotOps *tts_ops)
    1303              : {
    1304              :     Size        basesz,
    1305              :                 allocsz;
    1306              :     TupleTableSlot *slot;
    1307              : 
    1308     17455801 :     basesz = tts_ops->base_slot_size;
    1309              : 
    1310              :     /*
    1311              :      * When a fixed descriptor is specified, we can reduce overhead by
    1312              :      * allocating the entire slot in one go.
    1313              :      */
    1314     17455801 :     if (tupleDesc)
    1315     17424410 :         allocsz = MAXALIGN(basesz) +
    1316     17424410 :             MAXALIGN(tupleDesc->natts * sizeof(Datum)) +
    1317     17424410 :             MAXALIGN(tupleDesc->natts * sizeof(bool));
    1318              :     else
    1319        31391 :         allocsz = basesz;
    1320              : 
    1321     17455801 :     slot = palloc0(allocsz);
    1322              :     /* const for optimization purposes, OK to modify at allocation time */
    1323     17455801 :     *((const TupleTableSlotOps **) &slot->tts_ops) = tts_ops;
    1324     17455801 :     slot->type = T_TupleTableSlot;
    1325     17455801 :     slot->tts_flags |= TTS_FLAG_EMPTY;
    1326     17455801 :     if (tupleDesc != NULL)
    1327     17424410 :         slot->tts_flags |= TTS_FLAG_FIXED;
    1328     17455801 :     slot->tts_tupleDescriptor = tupleDesc;
    1329     17455801 :     slot->tts_mcxt = CurrentMemoryContext;
    1330     17455801 :     slot->tts_nvalid = 0;
    1331              : 
    1332     17455801 :     if (tupleDesc != NULL)
    1333              :     {
    1334     17424410 :         slot->tts_values = (Datum *)
    1335              :             (((char *) slot)
    1336     17424410 :              + MAXALIGN(basesz));
    1337     17424410 :         slot->tts_isnull = (bool *)
    1338              :             (((char *) slot)
    1339     17424410 :              + MAXALIGN(basesz)
    1340     17424410 :              + MAXALIGN(tupleDesc->natts * sizeof(Datum)));
    1341              : 
    1342     17424410 :         PinTupleDesc(tupleDesc);
    1343              :     }
    1344              : 
    1345              :     /*
    1346              :      * And allow slot type specific initialization.
    1347              :      */
    1348     17455801 :     slot->tts_ops->init(slot);
    1349              : 
    1350     17455801 :     return slot;
    1351              : }
    1352              : 
    1353              : /* --------------------------------
    1354              :  *      ExecAllocTableSlot
    1355              :  *
    1356              :  *      Create a tuple table slot within a tuple table (which is just a List).
    1357              :  * --------------------------------
    1358              :  */
    1359              : TupleTableSlot *
    1360      1073109 : ExecAllocTableSlot(List **tupleTable, TupleDesc desc,
    1361              :                    const TupleTableSlotOps *tts_ops)
    1362              : {
    1363      1073109 :     TupleTableSlot *slot = MakeTupleTableSlot(desc, tts_ops);
    1364              : 
    1365      1073109 :     *tupleTable = lappend(*tupleTable, slot);
    1366              : 
    1367      1073109 :     return slot;
    1368              : }
    1369              : 
    1370              : /* --------------------------------
    1371              :  *      ExecResetTupleTable
    1372              :  *
    1373              :  *      This releases any resources (buffer pins, tupdesc refcounts)
    1374              :  *      held by the tuple table, and optionally releases the memory
    1375              :  *      occupied by the tuple table data structure.
    1376              :  *      It is expected that this routine be called by ExecEndPlan().
    1377              :  * --------------------------------
    1378              :  */
    1379              : void
    1380       438835 : ExecResetTupleTable(List *tupleTable,   /* tuple table */
    1381              :                     bool shouldFree)    /* true if we should free memory */
    1382              : {
    1383              :     ListCell   *lc;
    1384              : 
    1385      1630305 :     foreach(lc, tupleTable)
    1386              :     {
    1387      1191470 :         TupleTableSlot *slot = lfirst_node(TupleTableSlot, lc);
    1388              : 
    1389              :         /* Always release resources and reset the slot to empty */
    1390      1191470 :         ExecClearTuple(slot);
    1391      1191470 :         slot->tts_ops->release(slot);
    1392      1191470 :         if (slot->tts_tupleDescriptor)
    1393              :         {
    1394      1191443 :             ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1395      1191443 :             slot->tts_tupleDescriptor = NULL;
    1396              :         }
    1397              : 
    1398              :         /* If shouldFree, release memory occupied by the slot itself */
    1399      1191470 :         if (shouldFree)
    1400              :         {
    1401         5817 :             if (!TTS_FIXED(slot))
    1402              :             {
    1403            0 :                 if (slot->tts_values)
    1404            0 :                     pfree(slot->tts_values);
    1405            0 :                 if (slot->tts_isnull)
    1406            0 :                     pfree(slot->tts_isnull);
    1407              :             }
    1408         5817 :             pfree(slot);
    1409              :         }
    1410              :     }
    1411              : 
    1412              :     /* If shouldFree, release the list structure */
    1413       438835 :     if (shouldFree)
    1414         5747 :         list_free(tupleTable);
    1415       438835 : }
    1416              : 
    1417              : /* --------------------------------
    1418              :  *      MakeSingleTupleTableSlot
    1419              :  *
    1420              :  *      This is a convenience routine for operations that need a standalone
    1421              :  *      TupleTableSlot not gotten from the main executor tuple table.  It makes
    1422              :  *      a single slot of given TupleTableSlotType and initializes it to use the
    1423              :  *      given tuple descriptor.
    1424              :  * --------------------------------
    1425              :  */
    1426              : TupleTableSlot *
    1427     16382600 : MakeSingleTupleTableSlot(TupleDesc tupdesc,
    1428              :                          const TupleTableSlotOps *tts_ops)
    1429              : {
    1430     16382600 :     TupleTableSlot *slot = MakeTupleTableSlot(tupdesc, tts_ops);
    1431              : 
    1432     16382600 :     return slot;
    1433              : }
    1434              : 
    1435              : /* --------------------------------
    1436              :  *      ExecDropSingleTupleTableSlot
    1437              :  *
    1438              :  *      Release a TupleTableSlot made with MakeSingleTupleTableSlot.
    1439              :  *      DON'T use this on a slot that's part of a tuple table list!
    1440              :  * --------------------------------
    1441              :  */
    1442              : void
    1443     16214369 : ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
    1444              : {
    1445              :     /* This should match ExecResetTupleTable's processing of one slot */
    1446              :     Assert(IsA(slot, TupleTableSlot));
    1447     16214369 :     ExecClearTuple(slot);
    1448     16214369 :     slot->tts_ops->release(slot);
    1449     16214369 :     if (slot->tts_tupleDescriptor)
    1450     16214369 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1451     16214369 :     if (!TTS_FIXED(slot))
    1452              :     {
    1453            0 :         if (slot->tts_values)
    1454            0 :             pfree(slot->tts_values);
    1455            0 :         if (slot->tts_isnull)
    1456            0 :             pfree(slot->tts_isnull);
    1457              :     }
    1458     16214369 :     pfree(slot);
    1459     16214369 : }
    1460              : 
    1461              : 
    1462              : /* ----------------------------------------------------------------
    1463              :  *                tuple table slot accessor functions
    1464              :  * ----------------------------------------------------------------
    1465              :  */
    1466              : 
    1467              : /* --------------------------------
    1468              :  *      ExecSetSlotDescriptor
    1469              :  *
    1470              :  *      This function is used to set the tuple descriptor associated
    1471              :  *      with the slot's tuple.  The passed descriptor must have lifespan
    1472              :  *      at least equal to the slot's.  If it is a reference-counted descriptor
    1473              :  *      then the reference count is incremented for as long as the slot holds
    1474              :  *      a reference.
    1475              :  * --------------------------------
    1476              :  */
    1477              : void
    1478        31364 : ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
    1479              :                       TupleDesc tupdesc)    /* new tuple descriptor */
    1480              : {
    1481              :     Assert(!TTS_FIXED(slot));
    1482              : 
    1483              :     /* For safety, make sure slot is empty before changing it */
    1484        31364 :     ExecClearTuple(slot);
    1485              : 
    1486              :     /*
    1487              :      * Release any old descriptor.  Also release old Datum/isnull arrays if
    1488              :      * present (we don't bother to check if they could be re-used).
    1489              :      */
    1490        31364 :     if (slot->tts_tupleDescriptor)
    1491            0 :         ReleaseTupleDesc(slot->tts_tupleDescriptor);
    1492              : 
    1493        31364 :     if (slot->tts_values)
    1494            0 :         pfree(slot->tts_values);
    1495        31364 :     if (slot->tts_isnull)
    1496            0 :         pfree(slot->tts_isnull);
    1497              : 
    1498              :     /*
    1499              :      * Install the new descriptor; if it's refcounted, bump its refcount.
    1500              :      */
    1501        31364 :     slot->tts_tupleDescriptor = tupdesc;
    1502        31364 :     PinTupleDesc(tupdesc);
    1503              : 
    1504              :     /*
    1505              :      * Allocate Datum/isnull arrays of the appropriate size.  These must have
    1506              :      * the same lifetime as the slot, so allocate in the slot's own context.
    1507              :      */
    1508        31364 :     slot->tts_values = (Datum *)
    1509        31364 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
    1510        31364 :     slot->tts_isnull = (bool *)
    1511        31364 :         MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
    1512        31364 : }
    1513              : 
    1514              : /* --------------------------------
    1515              :  *      ExecStoreHeapTuple
    1516              :  *
    1517              :  *      This function is used to store an on-the-fly physical tuple into a specified
    1518              :  *      slot in the tuple table.
    1519              :  *
    1520              :  *      tuple:  tuple to store
    1521              :  *      slot:   TTSOpsHeapTuple type slot to store it in
    1522              :  *      shouldFree: true if ExecClearTuple should pfree() the tuple
    1523              :  *                  when done with it
    1524              :  *
    1525              :  * shouldFree is normally set 'true' for tuples constructed on-the-fly.  But it
    1526              :  * can be 'false' when the referenced tuple is held in a tuple table slot
    1527              :  * belonging to a lower-level executor Proc node.  In this case the lower-level
    1528              :  * slot retains ownership and responsibility for eventually releasing the
    1529              :  * tuple.  When this method is used, we must be certain that the upper-level
    1530              :  * Proc node will lose interest in the tuple sooner than the lower-level one
    1531              :  * does!  If you're not certain, copy the lower-level tuple with heap_copytuple
    1532              :  * and let the upper-level table slot assume ownership of the copy!
    1533              :  *
    1534              :  * Return value is just the passed-in slot pointer.
    1535              :  *
    1536              :  * If the target slot is not guaranteed to be TTSOpsHeapTuple type slot, use
    1537              :  * the, more expensive, ExecForceStoreHeapTuple().
    1538              :  * --------------------------------
    1539              :  */
    1540              : TupleTableSlot *
    1541      2280680 : ExecStoreHeapTuple(HeapTuple tuple,
    1542              :                    TupleTableSlot *slot,
    1543              :                    bool shouldFree)
    1544              : {
    1545              :     /*
    1546              :      * sanity checks
    1547              :      */
    1548              :     Assert(tuple != NULL);
    1549              :     Assert(slot != NULL);
    1550              :     Assert(slot->tts_tupleDescriptor != NULL);
    1551              : 
    1552      2280680 :     if (unlikely(!TTS_IS_HEAPTUPLE(slot)))
    1553            0 :         elog(ERROR, "trying to store a heap tuple into wrong type of slot");
    1554      2280680 :     tts_heap_store_tuple(slot, tuple, shouldFree);
    1555              : 
    1556      2280680 :     slot->tts_tableOid = tuple->t_tableOid;
    1557              : 
    1558      2280680 :     return slot;
    1559              : }
    1560              : 
    1561              : /* --------------------------------
    1562              :  *      ExecStoreBufferHeapTuple
    1563              :  *
    1564              :  *      This function is used to store an on-disk physical tuple from a buffer
    1565              :  *      into a specified slot in the tuple table.
    1566              :  *
    1567              :  *      tuple:  tuple to store
    1568              :  *      slot:   TTSOpsBufferHeapTuple type slot to store it in
    1569              :  *      buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
    1570              :  *
    1571              :  * The tuple table code acquires a pin on the buffer which is held until the
    1572              :  * slot is cleared, so that the tuple won't go away on us.
    1573              :  *
    1574              :  * Return value is just the passed-in slot pointer.
    1575              :  *
    1576              :  * If the target slot is not guaranteed to be TTSOpsBufferHeapTuple type slot,
    1577              :  * use the, more expensive, ExecForceStoreHeapTuple().
    1578              :  * --------------------------------
    1579              :  */
    1580              : TupleTableSlot *
    1581     78789845 : ExecStoreBufferHeapTuple(HeapTuple tuple,
    1582              :                          TupleTableSlot *slot,
    1583              :                          Buffer buffer)
    1584              : {
    1585              :     /*
    1586              :      * sanity checks
    1587              :      */
    1588              :     Assert(tuple != NULL);
    1589              :     Assert(slot != NULL);
    1590              :     Assert(slot->tts_tupleDescriptor != NULL);
    1591              :     Assert(BufferIsValid(buffer));
    1592              : 
    1593     78789845 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1594            0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1595     78789845 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, false);
    1596              : 
    1597     78789845 :     slot->tts_tableOid = tuple->t_tableOid;
    1598              : 
    1599     78789845 :     return slot;
    1600              : }
    1601              : 
    1602              : /*
    1603              :  * Like ExecStoreBufferHeapTuple, but transfer an existing pin from the caller
    1604              :  * to the slot, i.e. the caller doesn't need to, and may not, release the pin.
    1605              :  */
    1606              : TupleTableSlot *
    1607       336894 : ExecStorePinnedBufferHeapTuple(HeapTuple tuple,
    1608              :                                TupleTableSlot *slot,
    1609              :                                Buffer buffer)
    1610              : {
    1611              :     /*
    1612              :      * sanity checks
    1613              :      */
    1614              :     Assert(tuple != NULL);
    1615              :     Assert(slot != NULL);
    1616              :     Assert(slot->tts_tupleDescriptor != NULL);
    1617              :     Assert(BufferIsValid(buffer));
    1618              : 
    1619       336894 :     if (unlikely(!TTS_IS_BUFFERTUPLE(slot)))
    1620            0 :         elog(ERROR, "trying to store an on-disk heap tuple into wrong type of slot");
    1621       336894 :     tts_buffer_heap_store_tuple(slot, tuple, buffer, true);
    1622              : 
    1623       336894 :     slot->tts_tableOid = tuple->t_tableOid;
    1624              : 
    1625       336894 :     return slot;
    1626              : }
    1627              : 
    1628              : /*
    1629              :  * Store a minimal tuple into TTSOpsMinimalTuple type slot.
    1630              :  *
    1631              :  * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot,
    1632              :  * use the, more expensive, ExecForceStoreMinimalTuple().
    1633              :  */
    1634              : TupleTableSlot *
    1635     30428353 : ExecStoreMinimalTuple(MinimalTuple mtup,
    1636              :                       TupleTableSlot *slot,
    1637              :                       bool shouldFree)
    1638              : {
    1639              :     /*
    1640              :      * sanity checks
    1641              :      */
    1642              :     Assert(mtup != NULL);
    1643              :     Assert(slot != NULL);
    1644              :     Assert(slot->tts_tupleDescriptor != NULL);
    1645              : 
    1646     30428353 :     if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))
    1647            0 :         elog(ERROR, "trying to store a minimal tuple into wrong type of slot");
    1648     30428353 :     tts_minimal_store_tuple(slot, mtup, shouldFree);
    1649              : 
    1650     30428353 :     return slot;
    1651              : }
    1652              : 
    1653              : /*
    1654              :  * Store a HeapTuple into any kind of slot, performing conversion if
    1655              :  * necessary.
    1656              :  */
    1657              : void
    1658       870412 : ExecForceStoreHeapTuple(HeapTuple tuple,
    1659              :                         TupleTableSlot *slot,
    1660              :                         bool shouldFree)
    1661              : {
    1662       870412 :     if (TTS_IS_HEAPTUPLE(slot))
    1663              :     {
    1664          263 :         ExecStoreHeapTuple(tuple, slot, shouldFree);
    1665              :     }
    1666       870149 :     else if (TTS_IS_BUFFERTUPLE(slot))
    1667              :     {
    1668              :         MemoryContext oldContext;
    1669        36573 :         BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot;
    1670              : 
    1671        36573 :         ExecClearTuple(slot);
    1672        36573 :         slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1673        36573 :         oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
    1674        36573 :         bslot->base.tuple = heap_copytuple(tuple);
    1675        36573 :         slot->tts_flags |= TTS_FLAG_SHOULDFREE;
    1676        36573 :         MemoryContextSwitchTo(oldContext);
    1677              : 
    1678        36573 :         if (shouldFree)
    1679        35535 :             pfree(tuple);
    1680              :     }
    1681              :     else
    1682              :     {
    1683       833576 :         ExecClearTuple(slot);
    1684       833576 :         heap_deform_tuple(tuple, slot->tts_tupleDescriptor,
    1685              :                           slot->tts_values, slot->tts_isnull);
    1686       833576 :         ExecStoreVirtualTuple(slot);
    1687              : 
    1688       833576 :         if (shouldFree)
    1689              :         {
    1690       114350 :             ExecMaterializeSlot(slot);
    1691       114350 :             pfree(tuple);
    1692              :         }
    1693              :     }
    1694       870412 : }
    1695              : 
    1696              : /*
    1697              :  * Store a MinimalTuple into any kind of slot, performing conversion if
    1698              :  * necessary.
    1699              :  */
    1700              : void
    1701      3637575 : ExecForceStoreMinimalTuple(MinimalTuple mtup,
    1702              :                            TupleTableSlot *slot,
    1703              :                            bool shouldFree)
    1704              : {
    1705      3637575 :     if (TTS_IS_MINIMALTUPLE(slot))
    1706              :     {
    1707      2318421 :         tts_minimal_store_tuple(slot, mtup, shouldFree);
    1708              :     }
    1709              :     else
    1710              :     {
    1711              :         HeapTupleData htup;
    1712              : 
    1713      1319154 :         ExecClearTuple(slot);
    1714              : 
    1715      1319154 :         htup.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
    1716      1319154 :         htup.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
    1717      1319154 :         heap_deform_tuple(&htup, slot->tts_tupleDescriptor,
    1718              :                           slot->tts_values, slot->tts_isnull);
    1719      1319154 :         ExecStoreVirtualTuple(slot);
    1720              : 
    1721      1319154 :         if (shouldFree)
    1722              :         {
    1723       719142 :             ExecMaterializeSlot(slot);
    1724       719142 :             pfree(mtup);
    1725              :         }
    1726              :     }
    1727      3637575 : }
    1728              : 
    1729              : /* --------------------------------
    1730              :  *      ExecStoreVirtualTuple
    1731              :  *          Mark a slot as containing a virtual tuple.
    1732              :  *
    1733              :  * The protocol for loading a slot with virtual tuple data is:
    1734              :  *      * Call ExecClearTuple to mark the slot empty.
    1735              :  *      * Store data into the Datum/isnull arrays.
    1736              :  *      * Call ExecStoreVirtualTuple to mark the slot valid.
    1737              :  * This is a bit unclean but it avoids one round of data copying.
    1738              :  * --------------------------------
    1739              :  */
    1740              : TupleTableSlot *
    1741     13630465 : ExecStoreVirtualTuple(TupleTableSlot *slot)
    1742              : {
    1743              :     /*
    1744              :      * sanity checks
    1745              :      */
    1746              :     Assert(slot != NULL);
    1747              :     Assert(slot->tts_tupleDescriptor != NULL);
    1748              :     Assert(TTS_EMPTY(slot));
    1749              : 
    1750     13630465 :     slot->tts_flags &= ~TTS_FLAG_EMPTY;
    1751     13630465 :     slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
    1752              : 
    1753     13630465 :     return slot;
    1754              : }
    1755              : 
    1756              : /* --------------------------------
    1757              :  *      ExecStoreAllNullTuple
    1758              :  *          Set up the slot to contain a null in every column.
    1759              :  *
    1760              :  * At first glance this might sound just like ExecClearTuple, but it's
    1761              :  * entirely different: the slot ends up full, not empty.
    1762              :  * --------------------------------
    1763              :  */
    1764              : TupleTableSlot *
    1765        21445 : ExecStoreAllNullTuple(TupleTableSlot *slot)
    1766              : {
    1767              :     /*
    1768              :      * sanity checks
    1769              :      */
    1770              :     Assert(slot != NULL);
    1771              :     Assert(slot->tts_tupleDescriptor != NULL);
    1772              : 
    1773              :     /* Clear any old contents */
    1774        21445 :     ExecClearTuple(slot);
    1775              : 
    1776              :     /*
    1777              :      * Fill all the columns of the virtual tuple with nulls
    1778              :      */
    1779       157903 :     MemSet(slot->tts_values, 0,
    1780              :            slot->tts_tupleDescriptor->natts * sizeof(Datum));
    1781        21445 :     memset(slot->tts_isnull, true,
    1782        21445 :            slot->tts_tupleDescriptor->natts * sizeof(bool));
    1783              : 
    1784        21445 :     return ExecStoreVirtualTuple(slot);
    1785              : }
    1786              : 
    1787              : /*
    1788              :  * Store a HeapTuple in datum form, into a slot. That always requires
    1789              :  * deforming it and storing it in virtual form.
    1790              :  *
    1791              :  * Until the slot is materialized, the contents of the slot depend on the
    1792              :  * datum.
    1793              :  */
    1794              : void
    1795            9 : ExecStoreHeapTupleDatum(Datum data, TupleTableSlot *slot)
    1796              : {
    1797            9 :     HeapTupleData tuple = {0};
    1798              :     HeapTupleHeader td;
    1799              : 
    1800            9 :     td = DatumGetHeapTupleHeader(data);
    1801              : 
    1802            9 :     tuple.t_len = HeapTupleHeaderGetDatumLength(td);
    1803            9 :     tuple.t_self = td->t_ctid;
    1804            9 :     tuple.t_data = td;
    1805              : 
    1806            9 :     ExecClearTuple(slot);
    1807              : 
    1808            9 :     heap_deform_tuple(&tuple, slot->tts_tupleDescriptor,
    1809              :                       slot->tts_values, slot->tts_isnull);
    1810            9 :     ExecStoreVirtualTuple(slot);
    1811            9 : }
    1812              : 
    1813              : /*
    1814              :  * ExecFetchSlotHeapTuple - fetch HeapTuple representing the slot's content
    1815              :  *
    1816              :  * The returned HeapTuple represents the slot's content as closely as
    1817              :  * possible.
    1818              :  *
    1819              :  * If materialize is true, the contents of the slots will be made independent
    1820              :  * from the underlying storage (i.e. all buffer pins are released, memory is
    1821              :  * allocated in the slot's context).
    1822              :  *
    1823              :  * If shouldFree is not-NULL it'll be set to true if the returned tuple has
    1824              :  * been allocated in the calling memory context, and must be freed by the
    1825              :  * caller (via explicit pfree() or a memory context reset).
    1826              :  *
    1827              :  * NB: If materialize is true, modifications of the returned tuple are
    1828              :  * allowed. But it depends on the type of the slot whether such modifications
    1829              :  * will also affect the slot's contents. While that is not the nicest
    1830              :  * behaviour, all such modifications are in the process of being removed.
    1831              :  */
    1832              : HeapTuple
    1833     23897741 : ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
    1834              : {
    1835              :     /*
    1836              :      * sanity checks
    1837              :      */
    1838              :     Assert(slot != NULL);
    1839              :     Assert(!TTS_EMPTY(slot));
    1840              : 
    1841              :     /* Materialize the tuple so that the slot "owns" it, if requested. */
    1842     23897741 :     if (materialize)
    1843     10039879 :         slot->tts_ops->materialize(slot);
    1844              : 
    1845     23897741 :     if (slot->tts_ops->get_heap_tuple == NULL)
    1846              :     {
    1847      1547778 :         if (shouldFree)
    1848      1547778 :             *shouldFree = true;
    1849      1547778 :         return slot->tts_ops->copy_heap_tuple(slot);
    1850              :     }
    1851              :     else
    1852              :     {
    1853     22349963 :         if (shouldFree)
    1854     20372588 :             *shouldFree = false;
    1855     22349963 :         return slot->tts_ops->get_heap_tuple(slot);
    1856              :     }
    1857              : }
    1858              : 
    1859              : /* --------------------------------
    1860              :  *      ExecFetchSlotMinimalTuple
    1861              :  *          Fetch the slot's minimal physical tuple.
    1862              :  *
    1863              :  *      If the given tuple table slot can hold a minimal tuple, indicated by a
    1864              :  *      non-NULL get_minimal_tuple callback, the function returns the minimal
    1865              :  *      tuple returned by that callback. It assumes that the minimal tuple
    1866              :  *      returned by the callback is "owned" by the slot i.e. the slot is
    1867              :  *      responsible for freeing the memory consumed by the tuple. Hence it sets
    1868              :  *      *shouldFree to false, indicating that the caller should not free the
    1869              :  *      memory consumed by the minimal tuple. In this case the returned minimal
    1870              :  *      tuple should be considered as read-only.
    1871              :  *
    1872              :  *      If that callback is not supported, it calls copy_minimal_tuple callback
    1873              :  *      which is expected to return a copy of minimal tuple representing the
    1874              :  *      contents of the slot. In this case *shouldFree is set to true,
    1875              :  *      indicating the caller that it should free the memory consumed by the
    1876              :  *      minimal tuple. In this case the returned minimal tuple may be written
    1877              :  *      up.
    1878              :  * --------------------------------
    1879              :  */
    1880              : MinimalTuple
    1881     10597875 : ExecFetchSlotMinimalTuple(TupleTableSlot *slot,
    1882              :                           bool *shouldFree)
    1883              : {
    1884              :     /*
    1885              :      * sanity checks
    1886              :      */
    1887              :     Assert(slot != NULL);
    1888              :     Assert(!TTS_EMPTY(slot));
    1889              : 
    1890     10597875 :     if (slot->tts_ops->get_minimal_tuple)
    1891              :     {
    1892      2589316 :         if (shouldFree)
    1893      2589316 :             *shouldFree = false;
    1894      2589316 :         return slot->tts_ops->get_minimal_tuple(slot);
    1895              :     }
    1896              :     else
    1897              :     {
    1898      8008559 :         if (shouldFree)
    1899      8008559 :             *shouldFree = true;
    1900      8008559 :         return slot->tts_ops->copy_minimal_tuple(slot, 0);
    1901              :     }
    1902              : }
    1903              : 
    1904              : /* --------------------------------
    1905              :  *      ExecFetchSlotHeapTupleDatum
    1906              :  *          Fetch the slot's tuple as a composite-type Datum.
    1907              :  *
    1908              :  *      The result is always freshly palloc'd in the caller's memory context.
    1909              :  * --------------------------------
    1910              :  */
    1911              : Datum
    1912        30203 : ExecFetchSlotHeapTupleDatum(TupleTableSlot *slot)
    1913              : {
    1914              :     HeapTuple   tup;
    1915              :     TupleDesc   tupdesc;
    1916              :     bool        shouldFree;
    1917              :     Datum       ret;
    1918              : 
    1919              :     /* Fetch slot's contents in regular-physical-tuple form */
    1920        30203 :     tup = ExecFetchSlotHeapTuple(slot, false, &shouldFree);
    1921        30203 :     tupdesc = slot->tts_tupleDescriptor;
    1922              : 
    1923              :     /* Convert to Datum form */
    1924        30203 :     ret = heap_copy_tuple_as_datum(tup, tupdesc);
    1925              : 
    1926        30203 :     if (shouldFree)
    1927        30203 :         pfree(tup);
    1928              : 
    1929        30203 :     return ret;
    1930              : }
    1931              : 
    1932              : /* ----------------------------------------------------------------
    1933              :  *              convenience initialization routines
    1934              :  * ----------------------------------------------------------------
    1935              :  */
    1936              : 
    1937              : /* ----------------
    1938              :  *      ExecInitResultTypeTL
    1939              :  *
    1940              :  *      Initialize result type, using the plan node's targetlist.
    1941              :  * ----------------
    1942              :  */
    1943              : void
    1944       689170 : ExecInitResultTypeTL(PlanState *planstate)
    1945              : {
    1946       689170 :     TupleDesc   tupDesc = ExecTypeFromTL(planstate->plan->targetlist);
    1947              : 
    1948       689170 :     planstate->ps_ResultTupleDesc = tupDesc;
    1949       689170 : }
    1950              : 
    1951              : /* --------------------------------
    1952              :  *      ExecInit{Result,Scan,Extra}TupleSlot[TL]
    1953              :  *
    1954              :  *      These are convenience routines to initialize the specified slot
    1955              :  *      in nodes inheriting the appropriate state.  ExecInitExtraTupleSlot
    1956              :  *      is used for initializing special-purpose slots.
    1957              :  * --------------------------------
    1958              :  */
    1959              : 
    1960              : /* ----------------
    1961              :  *      ExecInitResultTupleSlotTL
    1962              :  *
    1963              :  *      Initialize result tuple slot, using the tuple descriptor previously
    1964              :  *      computed with ExecInitResultTypeTL().
    1965              :  * ----------------
    1966              :  */
    1967              : void
    1968       470917 : ExecInitResultSlot(PlanState *planstate, const TupleTableSlotOps *tts_ops)
    1969              : {
    1970              :     TupleTableSlot *slot;
    1971              : 
    1972       470917 :     slot = ExecAllocTableSlot(&planstate->state->es_tupleTable,
    1973              :                               planstate->ps_ResultTupleDesc, tts_ops);
    1974       470917 :     planstate->ps_ResultTupleSlot = slot;
    1975              : 
    1976       470917 :     planstate->resultopsfixed = planstate->ps_ResultTupleDesc != NULL;
    1977       470917 :     planstate->resultops = tts_ops;
    1978       470917 :     planstate->resultopsset = true;
    1979       470917 : }
    1980              : 
    1981              : /* ----------------
    1982              :  *      ExecInitResultTupleSlotTL
    1983              :  *
    1984              :  *      Initialize result tuple slot, using the plan node's targetlist.
    1985              :  * ----------------
    1986              :  */
    1987              : void
    1988       334155 : ExecInitResultTupleSlotTL(PlanState *planstate,
    1989              :                           const TupleTableSlotOps *tts_ops)
    1990              : {
    1991       334155 :     ExecInitResultTypeTL(planstate);
    1992       334155 :     ExecInitResultSlot(planstate, tts_ops);
    1993       334155 : }
    1994              : 
    1995              : /* ----------------
    1996              :  *      ExecInitScanTupleSlot
    1997              :  * ----------------
    1998              :  */
    1999              : void
    2000       359943 : ExecInitScanTupleSlot(EState *estate, ScanState *scanstate,
    2001              :                       TupleDesc tupledesc, const TupleTableSlotOps *tts_ops)
    2002              : {
    2003       359943 :     scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
    2004              :                                                      tupledesc, tts_ops);
    2005       359943 :     scanstate->ps.scandesc = tupledesc;
    2006       359943 :     scanstate->ps.scanopsfixed = tupledesc != NULL;
    2007       359943 :     scanstate->ps.scanops = tts_ops;
    2008       359943 :     scanstate->ps.scanopsset = true;
    2009       359943 : }
    2010              : 
    2011              : /* ----------------
    2012              :  *      ExecInitExtraTupleSlot
    2013              :  *
    2014              :  * Return a newly created slot. If tupledesc is non-NULL the slot will have
    2015              :  * that as its fixed tupledesc. Otherwise the caller needs to use
    2016              :  * ExecSetSlotDescriptor() to set the descriptor before use.
    2017              :  * ----------------
    2018              :  */
    2019              : TupleTableSlot *
    2020       228774 : ExecInitExtraTupleSlot(EState *estate,
    2021              :                        TupleDesc tupledesc,
    2022              :                        const TupleTableSlotOps *tts_ops)
    2023              : {
    2024       228774 :     return ExecAllocTableSlot(&estate->es_tupleTable, tupledesc, tts_ops);
    2025              : }
    2026              : 
    2027              : /* ----------------
    2028              :  *      ExecInitNullTupleSlot
    2029              :  *
    2030              :  * Build a slot containing an all-nulls tuple of the given type.
    2031              :  * This is used as a substitute for an input tuple when performing an
    2032              :  * outer join.
    2033              :  * ----------------
    2034              :  */
    2035              : TupleTableSlot *
    2036        20738 : ExecInitNullTupleSlot(EState *estate, TupleDesc tupType,
    2037              :                       const TupleTableSlotOps *tts_ops)
    2038              : {
    2039        20738 :     TupleTableSlot *slot = ExecInitExtraTupleSlot(estate, tupType, tts_ops);
    2040              : 
    2041        20738 :     return ExecStoreAllNullTuple(slot);
    2042              : }
    2043              : 
    2044              : /* ---------------------------------------------------------------
    2045              :  *      Routines for setting/accessing attributes in a slot.
    2046              :  * ---------------------------------------------------------------
    2047              :  */
    2048              : 
    2049              : /*
    2050              :  * Fill in missing values for a TupleTableSlot.
    2051              :  *
    2052              :  * This is only exposed because it's needed for JIT compiled tuple
    2053              :  * deforming. That exception aside, there should be no callers outside of this
    2054              :  * file.
    2055              :  */
    2056              : void
    2057         3907 : slot_getmissingattrs(TupleTableSlot *slot, int startAttNum, int lastAttNum)
    2058              : {
    2059         3907 :     AttrMissing *attrmiss = NULL;
    2060              : 
    2061         3907 :     if (slot->tts_tupleDescriptor->constr)
    2062         2331 :         attrmiss = slot->tts_tupleDescriptor->constr->missing;
    2063              : 
    2064         3907 :     if (!attrmiss)
    2065              :     {
    2066              :         /* no missing values array at all, so just fill everything in as NULL */
    2067         1669 :         memset(slot->tts_values + startAttNum, 0,
    2068         1669 :                (lastAttNum - startAttNum) * sizeof(Datum));
    2069         1669 :         memset(slot->tts_isnull + startAttNum, 1,
    2070         1669 :                (lastAttNum - startAttNum) * sizeof(bool));
    2071              :     }
    2072              :     else
    2073              :     {
    2074              :         int         missattnum;
    2075              : 
    2076              :         /* if there is a missing values array we must process them one by one */
    2077         2238 :         for (missattnum = startAttNum;
    2078         5205 :              missattnum < lastAttNum;
    2079         2967 :              missattnum++)
    2080              :         {
    2081         2967 :             slot->tts_values[missattnum] = attrmiss[missattnum].am_value;
    2082         2967 :             slot->tts_isnull[missattnum] = !attrmiss[missattnum].am_present;
    2083              :         }
    2084              :     }
    2085         3907 : }
    2086              : 
    2087              : /*
    2088              :  * slot_getsomeattrs_int - workhorse for slot_getsomeattrs()
    2089              :  */
    2090              : void
    2091     99781623 : slot_getsomeattrs_int(TupleTableSlot *slot, int attnum)
    2092              : {
    2093              :     /* Check for caller errors */
    2094              :     Assert(slot->tts_nvalid < attnum);    /* checked in slot_getsomeattrs */
    2095              :     Assert(attnum > 0);
    2096              : 
    2097     99781623 :     if (unlikely(attnum > slot->tts_tupleDescriptor->natts))
    2098            0 :         elog(ERROR, "invalid attribute number %d", attnum);
    2099              : 
    2100              :     /* Fetch as many attributes as possible from the underlying tuple. */
    2101     99781623 :     slot->tts_ops->getsomeattrs(slot, attnum);
    2102              : 
    2103              :     /*
    2104              :      * If the underlying tuple doesn't have enough attributes, tuple
    2105              :      * descriptor must have the missing attributes.
    2106              :      */
    2107     99781623 :     if (unlikely(slot->tts_nvalid < attnum))
    2108              :     {
    2109         3907 :         slot_getmissingattrs(slot, slot->tts_nvalid, attnum);
    2110         3907 :         slot->tts_nvalid = attnum;
    2111              :     }
    2112     99781623 : }
    2113              : 
    2114              : /* ----------------------------------------------------------------
    2115              :  *      ExecTypeFromTL
    2116              :  *
    2117              :  *      Generate a tuple descriptor for the result tuple of a targetlist.
    2118              :  *      (A parse/plan tlist must be passed, not an ExprState tlist.)
    2119              :  *      Note that resjunk columns, if any, are included in the result.
    2120              :  *
    2121              :  *      Currently there are about 4 different places where we create
    2122              :  *      TupleDescriptors.  They should all be merged, or perhaps
    2123              :  *      be rewritten to call BuildDesc().
    2124              :  * ----------------------------------------------------------------
    2125              :  */
    2126              : TupleDesc
    2127       704864 : ExecTypeFromTL(List *targetList)
    2128              : {
    2129       704864 :     return ExecTypeFromTLInternal(targetList, false);
    2130              : }
    2131              : 
    2132              : /* ----------------------------------------------------------------
    2133              :  *      ExecCleanTypeFromTL
    2134              :  *
    2135              :  *      Same as above, but resjunk columns are omitted from the result.
    2136              :  * ----------------------------------------------------------------
    2137              :  */
    2138              : TupleDesc
    2139        60473 : ExecCleanTypeFromTL(List *targetList)
    2140              : {
    2141        60473 :     return ExecTypeFromTLInternal(targetList, true);
    2142              : }
    2143              : 
    2144              : static TupleDesc
    2145       765337 : ExecTypeFromTLInternal(List *targetList, bool skipjunk)
    2146              : {
    2147              :     TupleDesc   typeInfo;
    2148              :     ListCell   *l;
    2149              :     int         len;
    2150       765337 :     int         cur_resno = 1;
    2151              : 
    2152       765337 :     if (skipjunk)
    2153        60473 :         len = ExecCleanTargetListLength(targetList);
    2154              :     else
    2155       704864 :         len = ExecTargetListLength(targetList);
    2156       765337 :     typeInfo = CreateTemplateTupleDesc(len);
    2157              : 
    2158      3931071 :     foreach(l, targetList)
    2159              :     {
    2160      3165734 :         TargetEntry *tle = lfirst(l);
    2161              : 
    2162      3165734 :         if (skipjunk && tle->resjunk)
    2163        17053 :             continue;
    2164      9446043 :         TupleDescInitEntry(typeInfo,
    2165              :                            cur_resno,
    2166      3148681 :                            tle->resname,
    2167      3148681 :                            exprType((Node *) tle->expr),
    2168      3148681 :                            exprTypmod((Node *) tle->expr),
    2169              :                            0);
    2170      3148681 :         TupleDescInitEntryCollation(typeInfo,
    2171              :                                     cur_resno,
    2172      3148681 :                                     exprCollation((Node *) tle->expr));
    2173      3148681 :         cur_resno++;
    2174              :     }
    2175              : 
    2176       765337 :     return typeInfo;
    2177              : }
    2178              : 
    2179              : /*
    2180              :  * ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
    2181              :  *
    2182              :  * This is roughly like ExecTypeFromTL, but we work from bare expressions
    2183              :  * not TargetEntrys.  No names are attached to the tupledesc's columns.
    2184              :  */
    2185              : TupleDesc
    2186         7230 : ExecTypeFromExprList(List *exprList)
    2187              : {
    2188              :     TupleDesc   typeInfo;
    2189              :     ListCell   *lc;
    2190         7230 :     int         cur_resno = 1;
    2191              : 
    2192         7230 :     typeInfo = CreateTemplateTupleDesc(list_length(exprList));
    2193              : 
    2194        20185 :     foreach(lc, exprList)
    2195              :     {
    2196        12955 :         Node       *e = lfirst(lc);
    2197              : 
    2198        12955 :         TupleDescInitEntry(typeInfo,
    2199              :                            cur_resno,
    2200              :                            NULL,
    2201              :                            exprType(e),
    2202              :                            exprTypmod(e),
    2203              :                            0);
    2204        12955 :         TupleDescInitEntryCollation(typeInfo,
    2205              :                                     cur_resno,
    2206              :                                     exprCollation(e));
    2207        12955 :         cur_resno++;
    2208              :     }
    2209              : 
    2210         7230 :     return typeInfo;
    2211              : }
    2212              : 
    2213              : /*
    2214              :  * ExecTypeSetColNames - set column names in a RECORD TupleDesc
    2215              :  *
    2216              :  * Column names must be provided as an alias list (list of String nodes).
    2217              :  */
    2218              : void
    2219         2062 : ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
    2220              : {
    2221         2062 :     int         colno = 0;
    2222              :     ListCell   *lc;
    2223              : 
    2224              :     /* It's only OK to change col names in a not-yet-blessed RECORD type */
    2225              :     Assert(typeInfo->tdtypeid == RECORDOID);
    2226              :     Assert(typeInfo->tdtypmod < 0);
    2227              : 
    2228         7349 :     foreach(lc, namesList)
    2229              :     {
    2230         5287 :         char       *cname = strVal(lfirst(lc));
    2231              :         Form_pg_attribute attr;
    2232              : 
    2233              :         /* Guard against too-long names list (probably can't happen) */
    2234         5287 :         if (colno >= typeInfo->natts)
    2235            0 :             break;
    2236         5287 :         attr = TupleDescAttr(typeInfo, colno);
    2237         5287 :         colno++;
    2238              : 
    2239              :         /*
    2240              :          * Do nothing for empty aliases or dropped columns (these cases
    2241              :          * probably can't arise in RECORD types, either)
    2242              :          */
    2243         5287 :         if (cname[0] == '\0' || attr->attisdropped)
    2244           14 :             continue;
    2245              : 
    2246              :         /* OK, assign the column name */
    2247         5273 :         namestrcpy(&(attr->attname), cname);
    2248              :     }
    2249         2062 : }
    2250              : 
    2251              : /*
    2252              :  * BlessTupleDesc - make a completed tuple descriptor useful for SRFs
    2253              :  *
    2254              :  * Rowtype Datums returned by a function must contain valid type information.
    2255              :  * This happens "for free" if the tupdesc came from a relcache entry, but
    2256              :  * not if we have manufactured a tupdesc for a transient RECORD datatype.
    2257              :  * In that case we have to notify typcache.c of the existence of the type.
    2258              :  */
    2259              : TupleDesc
    2260        49046 : BlessTupleDesc(TupleDesc tupdesc)
    2261              : {
    2262        49046 :     if (tupdesc->tdtypeid == RECORDOID &&
    2263        46908 :         tupdesc->tdtypmod < 0)
    2264        19669 :         assign_record_type_typmod(tupdesc);
    2265              : 
    2266        49046 :     return tupdesc;             /* just for notational convenience */
    2267              : }
    2268              : 
    2269              : /*
    2270              :  * TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
    2271              :  * supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
    2272              :  * to produce a properly formed tuple.
    2273              :  */
    2274              : AttInMetadata *
    2275        14044 : TupleDescGetAttInMetadata(TupleDesc tupdesc)
    2276              : {
    2277        14044 :     int         natts = tupdesc->natts;
    2278              :     int         i;
    2279              :     Oid         atttypeid;
    2280              :     Oid         attinfuncid;
    2281              :     FmgrInfo   *attinfuncinfo;
    2282              :     Oid        *attioparams;
    2283              :     int32      *atttypmods;
    2284              :     AttInMetadata *attinmeta;
    2285              : 
    2286        14044 :     attinmeta = palloc_object(AttInMetadata);
    2287              : 
    2288              :     /* "Bless" the tupledesc so that we can make rowtype datums with it */
    2289        14044 :     attinmeta->tupdesc = BlessTupleDesc(tupdesc);
    2290              : 
    2291              :     /*
    2292              :      * Gather info needed later to call the "in" function for each attribute
    2293              :      */
    2294        14044 :     attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
    2295        14044 :     attioparams = (Oid *) palloc0(natts * sizeof(Oid));
    2296        14044 :     atttypmods = (int32 *) palloc0(natts * sizeof(int32));
    2297              : 
    2298        70853 :     for (i = 0; i < natts; i++)
    2299              :     {
    2300        56809 :         Form_pg_attribute att = TupleDescAttr(tupdesc, i);
    2301              : 
    2302              :         /* Ignore dropped attributes */
    2303        56809 :         if (!att->attisdropped)
    2304              :         {
    2305        56694 :             atttypeid = att->atttypid;
    2306        56694 :             getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
    2307        56694 :             fmgr_info(attinfuncid, &attinfuncinfo[i]);
    2308        56694 :             atttypmods[i] = att->atttypmod;
    2309              :         }
    2310              :     }
    2311        14044 :     attinmeta->attinfuncs = attinfuncinfo;
    2312        14044 :     attinmeta->attioparams = attioparams;
    2313        14044 :     attinmeta->atttypmods = atttypmods;
    2314              : 
    2315        14044 :     return attinmeta;
    2316              : }
    2317              : 
    2318              : /*
    2319              :  * BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
    2320              :  * values is an array of C strings, one for each attribute of the return tuple.
    2321              :  * A NULL string pointer indicates we want to create a NULL field.
    2322              :  */
    2323              : HeapTuple
    2324       910240 : BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
    2325              : {
    2326       910240 :     TupleDesc   tupdesc = attinmeta->tupdesc;
    2327       910240 :     int         natts = tupdesc->natts;
    2328              :     Datum      *dvalues;
    2329              :     bool       *nulls;
    2330              :     int         i;
    2331              :     HeapTuple   tuple;
    2332              : 
    2333       910240 :     dvalues = (Datum *) palloc(natts * sizeof(Datum));
    2334       910240 :     nulls = (bool *) palloc(natts * sizeof(bool));
    2335              : 
    2336              :     /*
    2337              :      * Call the "in" function for each non-dropped attribute, even for nulls,
    2338              :      * to support domains.
    2339              :      */
    2340     13395549 :     for (i = 0; i < natts; i++)
    2341              :     {
    2342     12485310 :         if (!TupleDescCompactAttr(tupdesc, i)->attisdropped)
    2343              :         {
    2344              :             /* Non-dropped attributes */
    2345     24970619 :             dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
    2346     12485310 :                                            values[i],
    2347     12485310 :                                            attinmeta->attioparams[i],
    2348     12485310 :                                            attinmeta->atttypmods[i]);
    2349     12485309 :             if (values[i] != NULL)
    2350      8632254 :                 nulls[i] = false;
    2351              :             else
    2352      3853055 :                 nulls[i] = true;
    2353              :         }
    2354              :         else
    2355              :         {
    2356              :             /* Handle dropped attributes by setting to NULL */
    2357            0 :             dvalues[i] = (Datum) 0;
    2358            0 :             nulls[i] = true;
    2359              :         }
    2360              :     }
    2361              : 
    2362              :     /*
    2363              :      * Form a tuple
    2364              :      */
    2365       910239 :     tuple = heap_form_tuple(tupdesc, dvalues, nulls);
    2366              : 
    2367              :     /*
    2368              :      * Release locally palloc'd space.  XXX would probably be good to pfree
    2369              :      * values of pass-by-reference datums, as well.
    2370              :      */
    2371       910239 :     pfree(dvalues);
    2372       910239 :     pfree(nulls);
    2373              : 
    2374       910239 :     return tuple;
    2375              : }
    2376              : 
    2377              : /*
    2378              :  * HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
    2379              :  *
    2380              :  * This must *not* get applied to an on-disk tuple; the tuple should be
    2381              :  * freshly made by heap_form_tuple or some wrapper routine for it (such as
    2382              :  * BuildTupleFromCStrings).  Be sure also that the tupledesc used to build
    2383              :  * the tuple has a properly "blessed" rowtype.
    2384              :  *
    2385              :  * Formerly this was a macro equivalent to PointerGetDatum, relying on the
    2386              :  * fact that heap_form_tuple fills in the appropriate tuple header fields
    2387              :  * for a composite Datum.  However, we now require that composite Datums not
    2388              :  * contain any external TOAST pointers.  We do not want heap_form_tuple itself
    2389              :  * to enforce that; more specifically, the rule applies only to actual Datums
    2390              :  * and not to HeapTuple structures.  Therefore, HeapTupleHeaderGetDatum is
    2391              :  * now a function that detects whether there are externally-toasted fields
    2392              :  * and constructs a new tuple with inlined fields if so.  We still need
    2393              :  * heap_form_tuple to insert the Datum header fields, because otherwise this
    2394              :  * code would have no way to obtain a tupledesc for the tuple.
    2395              :  *
    2396              :  * Note that if we do build a new tuple, it's palloc'd in the current
    2397              :  * memory context.  Beware of code that changes context between the initial
    2398              :  * heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
    2399              :  *
    2400              :  * For performance-critical callers, it could be worthwhile to take extra
    2401              :  * steps to ensure that there aren't TOAST pointers in the output of
    2402              :  * heap_form_tuple to begin with.  It's likely however that the costs of the
    2403              :  * typcache lookup and tuple disassembly/reassembly are swamped by TOAST
    2404              :  * dereference costs, so that the benefits of such extra effort would be
    2405              :  * minimal.
    2406              :  *
    2407              :  * XXX it would likely be better to create wrapper functions that produce
    2408              :  * a composite Datum from the field values in one step.  However, there's
    2409              :  * enough code using the existing APIs that we couldn't get rid of this
    2410              :  * hack anytime soon.
    2411              :  */
    2412              : Datum
    2413      1121424 : HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
    2414              : {
    2415              :     Datum       result;
    2416              :     TupleDesc   tupDesc;
    2417              : 
    2418              :     /* No work if there are no external TOAST pointers in the tuple */
    2419      1121424 :     if (!HeapTupleHeaderHasExternal(tuple))
    2420      1121418 :         return PointerGetDatum(tuple);
    2421              : 
    2422              :     /* Use the type data saved by heap_form_tuple to look up the rowtype */
    2423            6 :     tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
    2424              :                                      HeapTupleHeaderGetTypMod(tuple));
    2425              : 
    2426              :     /* And do the flattening */
    2427            6 :     result = toast_flatten_tuple_to_datum(tuple,
    2428              :                                           HeapTupleHeaderGetDatumLength(tuple),
    2429              :                                           tupDesc);
    2430              : 
    2431            6 :     ReleaseTupleDesc(tupDesc);
    2432              : 
    2433            6 :     return result;
    2434              : }
    2435              : 
    2436              : 
    2437              : /*
    2438              :  * Functions for sending tuples to the frontend (or other specified destination)
    2439              :  * as though it is a SELECT result. These are used by utility commands that
    2440              :  * need to project directly to the destination and don't need or want full
    2441              :  * table function capability. Currently used by EXPLAIN and SHOW ALL.
    2442              :  */
    2443              : TupOutputState *
    2444        15312 : begin_tup_output_tupdesc(DestReceiver *dest,
    2445              :                          TupleDesc tupdesc,
    2446              :                          const TupleTableSlotOps *tts_ops)
    2447              : {
    2448              :     TupOutputState *tstate;
    2449              : 
    2450        15312 :     tstate = palloc_object(TupOutputState);
    2451              : 
    2452        15312 :     tstate->slot = MakeSingleTupleTableSlot(tupdesc, tts_ops);
    2453        15312 :     tstate->dest = dest;
    2454              : 
    2455        15312 :     tstate->dest->rStartup(tstate->dest, (int) CMD_SELECT, tupdesc);
    2456              : 
    2457        15312 :     return tstate;
    2458              : }
    2459              : 
    2460              : /*
    2461              :  * write a single tuple
    2462              :  */
    2463              : void
    2464        87095 : do_tup_output(TupOutputState *tstate, const Datum *values, const bool *isnull)
    2465              : {
    2466        87095 :     TupleTableSlot *slot = tstate->slot;
    2467        87095 :     int         natts = slot->tts_tupleDescriptor->natts;
    2468              : 
    2469              :     /* make sure the slot is clear */
    2470        87095 :     ExecClearTuple(slot);
    2471              : 
    2472              :     /* insert data */
    2473        87095 :     memcpy(slot->tts_values, values, natts * sizeof(Datum));
    2474        87095 :     memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
    2475              : 
    2476              :     /* mark slot as containing a virtual tuple */
    2477        87095 :     ExecStoreVirtualTuple(slot);
    2478              : 
    2479              :     /* send the tuple to the receiver */
    2480        87095 :     (void) tstate->dest->receiveSlot(slot, tstate->dest);
    2481              : 
    2482              :     /* clean up */
    2483        87095 :     ExecClearTuple(slot);
    2484        87095 : }
    2485              : 
    2486              : /*
    2487              :  * write a chunk of text, breaking at newline characters
    2488              :  *
    2489              :  * Should only be used with a single-TEXT-attribute tupdesc.
    2490              :  */
    2491              : void
    2492        12269 : do_text_output_multiline(TupOutputState *tstate, const char *txt)
    2493              : {
    2494              :     Datum       values[1];
    2495        12269 :     bool        isnull[1] = {false};
    2496              : 
    2497        95569 :     while (*txt)
    2498              :     {
    2499              :         const char *eol;
    2500              :         int         len;
    2501              : 
    2502        83300 :         eol = strchr(txt, '\n');
    2503        83300 :         if (eol)
    2504              :         {
    2505        83300 :             len = eol - txt;
    2506        83300 :             eol++;
    2507              :         }
    2508              :         else
    2509              :         {
    2510            0 :             len = strlen(txt);
    2511            0 :             eol = txt + len;
    2512              :         }
    2513              : 
    2514        83300 :         values[0] = PointerGetDatum(cstring_to_text_with_len(txt, len));
    2515        83300 :         do_tup_output(tstate, values, isnull);
    2516        83300 :         pfree(DatumGetPointer(values[0]));
    2517        83300 :         txt = eol;
    2518              :     }
    2519        12269 : }
    2520              : 
    2521              : void
    2522        15312 : end_tup_output(TupOutputState *tstate)
    2523              : {
    2524        15312 :     tstate->dest->rShutdown(tstate->dest);
    2525              :     /* note that destroying the dest is not ours to do */
    2526        15312 :     ExecDropSingleTupleTableSlot(tstate->slot);
    2527        15312 :     pfree(tstate);
    2528        15312 : }
        

Generated by: LCOV version 2.0-1