LCOV - code coverage report
Current view: top level - src/backend/executor - execPartition.c (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 95.4 % 715 682
Test Date: 2026-02-17 17:20:33 Functions: 100.0 % 19 19
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * execPartition.c
       4              :  *    Support routines for partitioning.
       5              :  *
       6              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       7              :  * Portions Copyright (c) 1994, Regents of the University of California
       8              :  *
       9              :  * IDENTIFICATION
      10              :  *    src/backend/executor/execPartition.c
      11              :  *
      12              :  *-------------------------------------------------------------------------
      13              :  */
      14              : #include "postgres.h"
      15              : 
      16              : #include "access/table.h"
      17              : #include "access/tableam.h"
      18              : #include "catalog/index.h"
      19              : #include "catalog/partition.h"
      20              : #include "executor/execPartition.h"
      21              : #include "executor/executor.h"
      22              : #include "executor/nodeModifyTable.h"
      23              : #include "foreign/fdwapi.h"
      24              : #include "mb/pg_wchar.h"
      25              : #include "miscadmin.h"
      26              : #include "partitioning/partbounds.h"
      27              : #include "partitioning/partdesc.h"
      28              : #include "partitioning/partprune.h"
      29              : #include "rewrite/rewriteManip.h"
      30              : #include "utils/acl.h"
      31              : #include "utils/injection_point.h"
      32              : #include "utils/lsyscache.h"
      33              : #include "utils/partcache.h"
      34              : #include "utils/rls.h"
      35              : #include "utils/ruleutils.h"
      36              : 
      37              : 
      38              : /*-----------------------
      39              :  * PartitionTupleRouting - Encapsulates all information required to
      40              :  * route a tuple inserted into a partitioned table to one of its leaf
      41              :  * partitions.
      42              :  *
      43              :  * partition_root
      44              :  *      The partitioned table that's the target of the command.
      45              :  *
      46              :  * partition_dispatch_info
      47              :  *      Array of 'max_dispatch' elements containing a pointer to a
      48              :  *      PartitionDispatch object for every partitioned table touched by tuple
      49              :  *      routing.  The entry for the target partitioned table is *always*
      50              :  *      present in the 0th element of this array.  See comment for
      51              :  *      PartitionDispatchData->indexes for details on how this array is
      52              :  *      indexed.
      53              :  *
      54              :  * nonleaf_partitions
      55              :  *      Array of 'max_dispatch' elements containing pointers to fake
      56              :  *      ResultRelInfo objects for nonleaf partitions, useful for checking
      57              :  *      the partition constraint.
      58              :  *
      59              :  * num_dispatch
      60              :  *      The current number of items stored in the 'partition_dispatch_info'
      61              :  *      array.  Also serves as the index of the next free array element for
      62              :  *      new PartitionDispatch objects that need to be stored.
      63              :  *
      64              :  * max_dispatch
      65              :  *      The current allocated size of the 'partition_dispatch_info' array.
      66              :  *
      67              :  * partitions
      68              :  *      Array of 'max_partitions' elements containing a pointer to a
      69              :  *      ResultRelInfo for every leaf partition touched by tuple routing.
      70              :  *      Some of these are pointers to ResultRelInfos which are borrowed out of
      71              :  *      the owning ModifyTableState node.  The remainder have been built
      72              :  *      especially for tuple routing.  See comment for
      73              :  *      PartitionDispatchData->indexes for details on how this array is
      74              :  *      indexed.
      75              :  *
      76              :  * is_borrowed_rel
      77              :  *      Array of 'max_partitions' booleans recording whether a given entry
      78              :  *      in 'partitions' is a ResultRelInfo pointer borrowed from the owning
      79              :  *      ModifyTableState node, rather than being built here.
      80              :  *
      81              :  * num_partitions
      82              :  *      The current number of items stored in the 'partitions' array.  Also
      83              :  *      serves as the index of the next free array element for new
      84              :  *      ResultRelInfo objects that need to be stored.
      85              :  *
      86              :  * max_partitions
      87              :  *      The current allocated size of the 'partitions' array.
      88              :  *
      89              :  * memcxt
      90              :  *      Memory context used to allocate subsidiary structs.
      91              :  *-----------------------
      92              :  */
      93              : struct PartitionTupleRouting
      94              : {
      95              :     Relation    partition_root;
      96              :     PartitionDispatch *partition_dispatch_info;
      97              :     ResultRelInfo **nonleaf_partitions;
      98              :     int         num_dispatch;
      99              :     int         max_dispatch;
     100              :     ResultRelInfo **partitions;
     101              :     bool       *is_borrowed_rel;
     102              :     int         num_partitions;
     103              :     int         max_partitions;
     104              :     MemoryContext memcxt;
     105              : };
     106              : 
     107              : /*-----------------------
     108              :  * PartitionDispatch - information about one partitioned table in a partition
     109              :  * hierarchy required to route a tuple to any of its partitions.  A
     110              :  * PartitionDispatch is always encapsulated inside a PartitionTupleRouting
     111              :  * struct and stored inside its 'partition_dispatch_info' array.
     112              :  *
     113              :  * reldesc
     114              :  *      Relation descriptor of the table
     115              :  *
     116              :  * key
     117              :  *      Partition key information of the table
     118              :  *
     119              :  * keystate
     120              :  *      Execution state required for expressions in the partition key
     121              :  *
     122              :  * partdesc
     123              :  *      Partition descriptor of the table
     124              :  *
     125              :  * tupslot
     126              :  *      A standalone TupleTableSlot initialized with this table's tuple
     127              :  *      descriptor, or NULL if no tuple conversion between the parent is
     128              :  *      required.
     129              :  *
     130              :  * tupmap
     131              :  *      TupleConversionMap to convert from the parent's rowtype to this table's
     132              :  *      rowtype  (when extracting the partition key of a tuple just before
     133              :  *      routing it through this table). A NULL value is stored if no tuple
     134              :  *      conversion is required.
     135              :  *
     136              :  * indexes
     137              :  *      Array of partdesc->nparts elements.  For leaf partitions the index
     138              :  *      corresponds to the partition's ResultRelInfo in the encapsulating
     139              :  *      PartitionTupleRouting's partitions array.  For partitioned partitions,
     140              :  *      the index corresponds to the PartitionDispatch for it in its
     141              :  *      partition_dispatch_info array.  -1 indicates we've not yet allocated
     142              :  *      anything in PartitionTupleRouting for the partition.
     143              :  *-----------------------
     144              :  */
     145              : typedef struct PartitionDispatchData
     146              : {
     147              :     Relation    reldesc;
     148              :     PartitionKey key;
     149              :     List       *keystate;       /* list of ExprState */
     150              :     PartitionDesc partdesc;
     151              :     TupleTableSlot *tupslot;
     152              :     AttrMap    *tupmap;
     153              :     int         indexes[FLEXIBLE_ARRAY_MEMBER];
     154              : }           PartitionDispatchData;
     155              : 
     156              : 
     157              : static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
     158              :                                             EState *estate, PartitionTupleRouting *proute,
     159              :                                             PartitionDispatch dispatch,
     160              :                                             ResultRelInfo *rootResultRelInfo,
     161              :                                             int partidx);
     162              : static void ExecInitRoutingInfo(ModifyTableState *mtstate,
     163              :                                 EState *estate,
     164              :                                 PartitionTupleRouting *proute,
     165              :                                 PartitionDispatch dispatch,
     166              :                                 ResultRelInfo *partRelInfo,
     167              :                                 int partidx,
     168              :                                 bool is_borrowed_rel);
     169              : static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
     170              :                                                        PartitionTupleRouting *proute,
     171              :                                                        Oid partoid, PartitionDispatch parent_pd,
     172              :                                                        int partidx, ResultRelInfo *rootResultRelInfo);
     173              : static void FormPartitionKeyDatum(PartitionDispatch pd,
     174              :                                   TupleTableSlot *slot,
     175              :                                   EState *estate,
     176              :                                   Datum *values,
     177              :                                   bool *isnull);
     178              : static int  get_partition_for_tuple(PartitionDispatch pd, const Datum *values,
     179              :                                     const bool *isnull);
     180              : static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
     181              :                                                   const Datum *values,
     182              :                                                   const bool *isnull,
     183              :                                                   int maxfieldlen);
     184              : static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
     185              : static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
     186              : static PartitionPruneState *CreatePartitionPruneState(EState *estate,
     187              :                                                       PartitionPruneInfo *pruneinfo,
     188              :                                                       Bitmapset **all_leafpart_rtis);
     189              : static void InitPartitionPruneContext(PartitionPruneContext *context,
     190              :                                       List *pruning_steps,
     191              :                                       PartitionDesc partdesc,
     192              :                                       PartitionKey partkey,
     193              :                                       PlanState *planstate,
     194              :                                       ExprContext *econtext);
     195              : static void InitExecPartitionPruneContexts(PartitionPruneState *prunestate,
     196              :                                            PlanState *parent_plan,
     197              :                                            Bitmapset *initially_valid_subplans,
     198              :                                            int n_total_subplans);
     199              : static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
     200              :                                            PartitionedRelPruningData *pprune,
     201              :                                            bool initial_prune,
     202              :                                            Bitmapset **validsubplans,
     203              :                                            Bitmapset **validsubplan_rtis);
     204              : 
     205              : 
     206              : /*
     207              :  * ExecSetupPartitionTupleRouting - sets up information needed during
     208              :  * tuple routing for partitioned tables, encapsulates it in
     209              :  * PartitionTupleRouting, and returns it.
     210              :  *
     211              :  * Callers must use the returned PartitionTupleRouting during calls to
     212              :  * ExecFindPartition().  The actual ResultRelInfo for a partition is only
     213              :  * allocated when the partition is found for the first time.
     214              :  *
     215              :  * The current memory context is used to allocate this struct and all
     216              :  * subsidiary structs that will be allocated from it later on.  Typically
     217              :  * it should be estate->es_query_cxt.
     218              :  */
     219              : PartitionTupleRouting *
     220         2885 : ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
     221              : {
     222              :     PartitionTupleRouting *proute;
     223              : 
     224              :     /*
     225              :      * Here we attempt to expend as little effort as possible in setting up
     226              :      * the PartitionTupleRouting.  Each partition's ResultRelInfo is built on
     227              :      * demand, only when we actually need to route a tuple to that partition.
     228              :      * The reason for this is that a common case is for INSERT to insert a
     229              :      * single tuple into a partitioned table and this must be fast.
     230              :      */
     231         2885 :     proute = palloc0_object(PartitionTupleRouting);
     232         2885 :     proute->partition_root = rel;
     233         2885 :     proute->memcxt = CurrentMemoryContext;
     234              :     /* Rest of members initialized by zeroing */
     235              : 
     236              :     /*
     237              :      * Initialize this table's PartitionDispatch object.  Here we pass in the
     238              :      * parent as NULL as we don't need to care about any parent of the target
     239              :      * partitioned table.
     240              :      */
     241         2885 :     ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
     242              :                                   NULL, 0, NULL);
     243              : 
     244         2885 :     return proute;
     245              : }
     246              : 
     247              : /*
     248              :  * ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
     249              :  * the tuple contained in *slot should belong to.
     250              :  *
     251              :  * If the partition's ResultRelInfo does not yet exist in 'proute' then we set
     252              :  * one up or reuse one from mtstate's resultRelInfo array.  When reusing a
     253              :  * ResultRelInfo from the mtstate we verify that the relation is a valid
     254              :  * target for INSERTs and initialize tuple routing information.
     255              :  *
     256              :  * rootResultRelInfo is the relation named in the query.
     257              :  *
     258              :  * estate must be non-NULL; we'll need it to compute any expressions in the
     259              :  * partition keys.  Also, its per-tuple contexts are used as evaluation
     260              :  * scratch space.
     261              :  *
     262              :  * If no leaf partition is found, this routine errors out with the appropriate
     263              :  * error message.  An error may also be raised if the found target partition
     264              :  * is not a valid target for an INSERT.
     265              :  */
     266              : ResultRelInfo *
     267       516745 : ExecFindPartition(ModifyTableState *mtstate,
     268              :                   ResultRelInfo *rootResultRelInfo,
     269              :                   PartitionTupleRouting *proute,
     270              :                   TupleTableSlot *slot, EState *estate)
     271              : {
     272       516745 :     PartitionDispatch *pd = proute->partition_dispatch_info;
     273              :     Datum       values[PARTITION_MAX_KEYS];
     274              :     bool        isnull[PARTITION_MAX_KEYS];
     275              :     Relation    rel;
     276              :     PartitionDispatch dispatch;
     277              :     PartitionDesc partdesc;
     278       516745 :     ExprContext *ecxt = GetPerTupleExprContext(estate);
     279       516745 :     TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
     280       516745 :     TupleTableSlot *rootslot = slot;
     281       516745 :     TupleTableSlot *myslot = NULL;
     282              :     MemoryContext oldcxt;
     283       516745 :     ResultRelInfo *rri = NULL;
     284              : 
     285              :     /* use per-tuple context here to avoid leaking memory */
     286       516745 :     oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
     287              : 
     288              :     /*
     289              :      * First check the root table's partition constraint, if any.  No point in
     290              :      * routing the tuple if it doesn't belong in the root table itself.
     291              :      */
     292       516745 :     if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
     293         2251 :         ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
     294              : 
     295              :     /* start with the root partitioned table */
     296       516729 :     dispatch = pd[0];
     297      1091637 :     while (dispatch != NULL)
     298              :     {
     299       575004 :         int         partidx = -1;
     300              :         bool        is_leaf;
     301              : 
     302       575004 :         CHECK_FOR_INTERRUPTS();
     303              : 
     304       575004 :         rel = dispatch->reldesc;
     305       575004 :         partdesc = dispatch->partdesc;
     306              : 
     307              :         /*
     308              :          * Extract partition key from tuple. Expression evaluation machinery
     309              :          * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
     310              :          * point to the correct tuple slot.  The slot might have changed from
     311              :          * what was used for the parent table if the table of the current
     312              :          * partitioning level has different tuple descriptor from the parent.
     313              :          * So update ecxt_scantuple accordingly.
     314              :          */
     315       575004 :         ecxt->ecxt_scantuple = slot;
     316       575004 :         FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
     317              : 
     318              :         /*
     319              :          * If this partitioned table has no partitions or no partition for
     320              :          * these values, error out.
     321              :          */
     322      1149981 :         if (partdesc->nparts == 0 ||
     323       574983 :             (partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
     324              :         {
     325              :             char       *val_desc;
     326              : 
     327           77 :             val_desc = ExecBuildSlotPartitionKeyDescription(rel,
     328              :                                                             values, isnull, 64);
     329              :             Assert(OidIsValid(RelationGetRelid(rel)));
     330           77 :             ereport(ERROR,
     331              :                     (errcode(ERRCODE_CHECK_VIOLATION),
     332              :                      errmsg("no partition of relation \"%s\" found for row",
     333              :                             RelationGetRelationName(rel)),
     334              :                      val_desc ?
     335              :                      errdetail("Partition key of the failing row contains %s.",
     336              :                                val_desc) : 0,
     337              :                      errtable(rel)));
     338              :         }
     339              : 
     340       574921 :         is_leaf = partdesc->is_leaf[partidx];
     341       574921 :         if (is_leaf)
     342              :         {
     343              :             /*
     344              :              * We've reached the leaf -- hurray, we're done.  Look to see if
     345              :              * we've already got a ResultRelInfo for this partition.
     346              :              */
     347       516645 :             if (likely(dispatch->indexes[partidx] >= 0))
     348              :             {
     349              :                 /* ResultRelInfo already built */
     350              :                 Assert(dispatch->indexes[partidx] < proute->num_partitions);
     351       512685 :                 rri = proute->partitions[dispatch->indexes[partidx]];
     352              :             }
     353              :             else
     354              :             {
     355              :                 /*
     356              :                  * If the partition is known in the owning ModifyTableState
     357              :                  * node, we can re-use that ResultRelInfo instead of creating
     358              :                  * a new one with ExecInitPartitionInfo().
     359              :                  */
     360         3960 :                 rri = ExecLookupResultRelByOid(mtstate,
     361         3960 :                                                partdesc->oids[partidx],
     362              :                                                true, false);
     363         3960 :                 if (rri)
     364              :                 {
     365          254 :                     ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
     366              : 
     367              :                     /* Verify this ResultRelInfo allows INSERTs */
     368          254 :                     CheckValidResultRel(rri, CMD_INSERT,
     369              :                                         node ? node->onConflictAction : ONCONFLICT_NONE,
     370              :                                         NIL);
     371              : 
     372              :                     /*
     373              :                      * Initialize information needed to insert this and
     374              :                      * subsequent tuples routed to this partition.
     375              :                      */
     376          254 :                     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     377              :                                         rri, partidx, true);
     378              :                 }
     379              :                 else
     380              :                 {
     381              :                     /* We need to create a new one. */
     382         3706 :                     rri = ExecInitPartitionInfo(mtstate, estate, proute,
     383              :                                                 dispatch,
     384              :                                                 rootResultRelInfo, partidx);
     385              :                 }
     386              :             }
     387              :             Assert(rri != NULL);
     388              : 
     389              :             /* Signal to terminate the loop */
     390       516633 :             dispatch = NULL;
     391              :         }
     392              :         else
     393              :         {
     394              :             /*
     395              :              * Partition is a sub-partitioned table; get the PartitionDispatch
     396              :              */
     397        58276 :             if (likely(dispatch->indexes[partidx] >= 0))
     398              :             {
     399              :                 /* Already built. */
     400              :                 Assert(dispatch->indexes[partidx] < proute->num_dispatch);
     401              : 
     402        57673 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     403              : 
     404              :                 /*
     405              :                  * Move down to the next partition level and search again
     406              :                  * until we find a leaf partition that matches this tuple
     407              :                  */
     408        57673 :                 dispatch = pd[dispatch->indexes[partidx]];
     409              :             }
     410              :             else
     411              :             {
     412              :                 /* Not yet built. Do that now. */
     413              :                 PartitionDispatch subdispatch;
     414              : 
     415              :                 /*
     416              :                  * Create the new PartitionDispatch.  We pass the current one
     417              :                  * in as the parent PartitionDispatch
     418              :                  */
     419          603 :                 subdispatch = ExecInitPartitionDispatchInfo(estate,
     420              :                                                             proute,
     421          603 :                                                             partdesc->oids[partidx],
     422              :                                                             dispatch, partidx,
     423              :                                                             mtstate->rootResultRelInfo);
     424              :                 Assert(dispatch->indexes[partidx] >= 0 &&
     425              :                        dispatch->indexes[partidx] < proute->num_dispatch);
     426              : 
     427          603 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     428          603 :                 dispatch = subdispatch;
     429              :             }
     430              : 
     431              :             /*
     432              :              * Convert the tuple to the new parent's layout, if different from
     433              :              * the previous parent.
     434              :              */
     435        58276 :             if (dispatch->tupslot)
     436              :             {
     437        30861 :                 AttrMap    *map = dispatch->tupmap;
     438        30861 :                 TupleTableSlot *tempslot = myslot;
     439              : 
     440        30861 :                 myslot = dispatch->tupslot;
     441        30861 :                 slot = execute_attr_map_slot(map, slot, myslot);
     442              : 
     443        30861 :                 if (tempslot != NULL)
     444          147 :                     ExecClearTuple(tempslot);
     445              :             }
     446              :         }
     447              : 
     448              :         /*
     449              :          * If this partition is the default one, we must check its partition
     450              :          * constraint now, which may have changed concurrently due to
     451              :          * partitions being added to the parent.
     452              :          *
     453              :          * (We do this here, and do not rely on ExecInsert doing it, because
     454              :          * we don't want to miss doing it for non-leaf partitions.)
     455              :          */
     456       574909 :         if (partidx == partdesc->boundinfo->default_index)
     457              :         {
     458              :             /*
     459              :              * The tuple must match the partition's layout for the constraint
     460              :              * expression to be evaluated successfully.  If the partition is
     461              :              * sub-partitioned, that would already be the case due to the code
     462              :              * above, but for a leaf partition the tuple still matches the
     463              :              * parent's layout.
     464              :              *
     465              :              * Note that we have a map to convert from root to current
     466              :              * partition, but not from immediate parent to current partition.
     467              :              * So if we have to convert, do it from the root slot; if not, use
     468              :              * the root slot as-is.
     469              :              */
     470          416 :             if (is_leaf)
     471              :             {
     472          394 :                 TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
     473              : 
     474          394 :                 if (map)
     475           81 :                     slot = execute_attr_map_slot(map->attrMap, rootslot,
     476              :                                                  rri->ri_PartitionTupleSlot);
     477              :                 else
     478          313 :                     slot = rootslot;
     479              :             }
     480              : 
     481          416 :             ExecPartitionCheck(rri, slot, estate, true);
     482              :         }
     483              :     }
     484              : 
     485              :     /* Release the tuple in the lowest parent's dedicated slot. */
     486       516633 :     if (myslot != NULL)
     487        30695 :         ExecClearTuple(myslot);
     488              :     /* and restore ecxt's scantuple */
     489       516633 :     ecxt->ecxt_scantuple = ecxt_scantuple_saved;
     490       516633 :     MemoryContextSwitchTo(oldcxt);
     491              : 
     492       516633 :     return rri;
     493              : }
     494              : 
     495              : /*
     496              :  * IsIndexCompatibleAsArbiter
     497              :  *      Return true if two indexes are identical for INSERT ON CONFLICT
     498              :  *      purposes.
     499              :  *
     500              :  * Only indexes of the same relation are supported.
     501              :  */
     502              : static bool
     503           19 : IsIndexCompatibleAsArbiter(Relation arbiterIndexRelation,
     504              :                            IndexInfo *arbiterIndexInfo,
     505              :                            Relation indexRelation,
     506              :                            IndexInfo *indexInfo)
     507              : {
     508              :     Assert(arbiterIndexRelation->rd_index->indrelid == indexRelation->rd_index->indrelid);
     509              : 
     510              :     /* must match whether they're unique */
     511           19 :     if (arbiterIndexInfo->ii_Unique != indexInfo->ii_Unique)
     512            0 :         return false;
     513              : 
     514              :     /* No support currently for comparing exclusion indexes. */
     515           19 :     if (arbiterIndexInfo->ii_ExclusionOps != NULL ||
     516           19 :         indexInfo->ii_ExclusionOps != NULL)
     517            0 :         return false;
     518              : 
     519              :     /* the "nulls not distinct" criterion must match */
     520           19 :     if (arbiterIndexInfo->ii_NullsNotDistinct !=
     521           19 :         indexInfo->ii_NullsNotDistinct)
     522            0 :         return false;
     523              : 
     524              :     /* number of key attributes must match */
     525           19 :     if (arbiterIndexInfo->ii_NumIndexKeyAttrs !=
     526           19 :         indexInfo->ii_NumIndexKeyAttrs)
     527            0 :         return false;
     528              : 
     529           26 :     for (int i = 0; i < arbiterIndexInfo->ii_NumIndexKeyAttrs; i++)
     530              :     {
     531           19 :         if (arbiterIndexRelation->rd_indcollation[i] !=
     532           19 :             indexRelation->rd_indcollation[i])
     533           12 :             return false;
     534              : 
     535            7 :         if (arbiterIndexRelation->rd_opfamily[i] !=
     536            7 :             indexRelation->rd_opfamily[i])
     537            0 :             return false;
     538              : 
     539            7 :         if (arbiterIndexRelation->rd_index->indkey.values[i] !=
     540            7 :             indexRelation->rd_index->indkey.values[i])
     541            0 :             return false;
     542              :     }
     543              : 
     544            7 :     if (list_difference(RelationGetIndexExpressions(arbiterIndexRelation),
     545            7 :                         RelationGetIndexExpressions(indexRelation)) != NIL)
     546            0 :         return false;
     547              : 
     548            7 :     if (list_difference(RelationGetIndexPredicate(arbiterIndexRelation),
     549            7 :                         RelationGetIndexPredicate(indexRelation)) != NIL)
     550            0 :         return false;
     551            7 :     return true;
     552              : }
     553              : 
     554              : /*
     555              :  * ExecInitPartitionInfo
     556              :  *      Lock the partition and initialize ResultRelInfo.  Also setup other
     557              :  *      information for the partition and store it in the next empty slot in
     558              :  *      the proute->partitions array.
     559              :  *
     560              :  * Returns the ResultRelInfo
     561              :  */
     562              : static ResultRelInfo *
     563         3706 : ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
     564              :                       PartitionTupleRouting *proute,
     565              :                       PartitionDispatch dispatch,
     566              :                       ResultRelInfo *rootResultRelInfo,
     567              :                       int partidx)
     568              : {
     569         3706 :     ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
     570         3706 :     Oid         partOid = dispatch->partdesc->oids[partidx];
     571              :     Relation    partrel;
     572         3706 :     int         firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
     573         3706 :     Relation    firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
     574              :     ResultRelInfo *leaf_part_rri;
     575              :     MemoryContext oldcxt;
     576         3706 :     AttrMap    *part_attmap = NULL;
     577              :     bool        found_whole_row;
     578              : 
     579         3706 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
     580              : 
     581         3706 :     partrel = table_open(partOid, RowExclusiveLock);
     582              : 
     583         3706 :     leaf_part_rri = makeNode(ResultRelInfo);
     584         3706 :     InitResultRelInfo(leaf_part_rri,
     585              :                       partrel,
     586              :                       0,
     587              :                       rootResultRelInfo,
     588              :                       estate->es_instrument);
     589              : 
     590              :     /*
     591              :      * Verify result relation is a valid target for an INSERT.  An UPDATE of a
     592              :      * partition-key becomes a DELETE+INSERT operation, so this check is still
     593              :      * required when the operation is CMD_UPDATE.
     594              :      */
     595         3706 :     CheckValidResultRel(leaf_part_rri, CMD_INSERT,
     596              :                         node ? node->onConflictAction : ONCONFLICT_NONE, NIL);
     597              : 
     598              :     /*
     599              :      * Open partition indices.  The user may have asked to check for conflicts
     600              :      * within this leaf partition and do "nothing" instead of throwing an
     601              :      * error.  Be prepared in that case by initializing the index information
     602              :      * needed by ExecInsert() to perform speculative insertions.
     603              :      */
     604         3700 :     if (partrel->rd_rel->relhasindex &&
     605         1109 :         leaf_part_rri->ri_IndexRelationDescs == NULL)
     606         1109 :         ExecOpenIndices(leaf_part_rri,
     607         2109 :                         (node != NULL &&
     608         2109 :                          node->onConflictAction != ONCONFLICT_NONE));
     609              : 
     610              :     /*
     611              :      * Build WITH CHECK OPTION constraints for the partition.  Note that we
     612              :      * didn't build the withCheckOptionList for partitions within the planner,
     613              :      * but simple translation of varattnos will suffice.  This only occurs for
     614              :      * the INSERT case or in the case of UPDATE/MERGE tuple routing where we
     615              :      * didn't find a result rel to reuse.
     616              :      */
     617         3700 :     if (node && node->withCheckOptionLists != NIL)
     618              :     {
     619              :         List       *wcoList;
     620           48 :         List       *wcoExprs = NIL;
     621              :         ListCell   *ll;
     622              : 
     623              :         /*
     624              :          * In the case of INSERT on a partitioned table, there is only one
     625              :          * plan.  Likewise, there is only one WCO list, not one per partition.
     626              :          * For UPDATE/MERGE, there are as many WCO lists as there are plans.
     627              :          */
     628              :         Assert((node->operation == CMD_INSERT &&
     629              :                 list_length(node->withCheckOptionLists) == 1 &&
     630              :                 list_length(node->resultRelations) == 1) ||
     631              :                (node->operation == CMD_UPDATE &&
     632              :                 list_length(node->withCheckOptionLists) ==
     633              :                 list_length(node->resultRelations)) ||
     634              :                (node->operation == CMD_MERGE &&
     635              :                 list_length(node->withCheckOptionLists) ==
     636              :                 list_length(node->resultRelations)));
     637              : 
     638              :         /*
     639              :          * Use the WCO list of the first plan as a reference to calculate
     640              :          * attno's for the WCO list of this partition.  In the INSERT case,
     641              :          * that refers to the root partitioned table, whereas in the UPDATE
     642              :          * tuple routing case, that refers to the first partition in the
     643              :          * mtstate->resultRelInfo array.  In any case, both that relation and
     644              :          * this partition should have the same columns, so we should be able
     645              :          * to map attributes successfully.
     646              :          */
     647           48 :         wcoList = linitial(node->withCheckOptionLists);
     648              : 
     649              :         /*
     650              :          * Convert Vars in it to contain this partition's attribute numbers.
     651              :          */
     652              :         part_attmap =
     653           48 :             build_attrmap_by_name(RelationGetDescr(partrel),
     654              :                                   RelationGetDescr(firstResultRel),
     655              :                                   false);
     656              :         wcoList = (List *)
     657           48 :             map_variable_attnos((Node *) wcoList,
     658              :                                 firstVarno, 0,
     659              :                                 part_attmap,
     660           48 :                                 RelationGetForm(partrel)->reltype,
     661              :                                 &found_whole_row);
     662              :         /* We ignore the value of found_whole_row. */
     663              : 
     664          135 :         foreach(ll, wcoList)
     665              :         {
     666           87 :             WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
     667           87 :             ExprState  *wcoExpr = ExecInitQual(castNode(List, wco->qual),
     668              :                                                &mtstate->ps);
     669              : 
     670           87 :             wcoExprs = lappend(wcoExprs, wcoExpr);
     671              :         }
     672              : 
     673           48 :         leaf_part_rri->ri_WithCheckOptions = wcoList;
     674           48 :         leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
     675              :     }
     676              : 
     677              :     /*
     678              :      * Build the RETURNING projection for the partition.  Note that we didn't
     679              :      * build the returningList for partitions within the planner, but simple
     680              :      * translation of varattnos will suffice.  This only occurs for the INSERT
     681              :      * case or in the case of UPDATE/MERGE tuple routing where we didn't find
     682              :      * a result rel to reuse.
     683              :      */
     684         3700 :     if (node && node->returningLists != NIL)
     685              :     {
     686              :         TupleTableSlot *slot;
     687              :         ExprContext *econtext;
     688              :         List       *returningList;
     689              : 
     690              :         /* See the comment above for WCO lists. */
     691              :         Assert((node->operation == CMD_INSERT &&
     692              :                 list_length(node->returningLists) == 1 &&
     693              :                 list_length(node->resultRelations) == 1) ||
     694              :                (node->operation == CMD_UPDATE &&
     695              :                 list_length(node->returningLists) ==
     696              :                 list_length(node->resultRelations)) ||
     697              :                (node->operation == CMD_MERGE &&
     698              :                 list_length(node->returningLists) ==
     699              :                 list_length(node->resultRelations)));
     700              : 
     701              :         /*
     702              :          * Use the RETURNING list of the first plan as a reference to
     703              :          * calculate attno's for the RETURNING list of this partition.  See
     704              :          * the comment above for WCO lists for more details on why this is
     705              :          * okay.
     706              :          */
     707          148 :         returningList = linitial(node->returningLists);
     708              : 
     709              :         /*
     710              :          * Convert Vars in it to contain this partition's attribute numbers.
     711              :          */
     712          148 :         if (part_attmap == NULL)
     713              :             part_attmap =
     714          148 :                 build_attrmap_by_name(RelationGetDescr(partrel),
     715              :                                       RelationGetDescr(firstResultRel),
     716              :                                       false);
     717              :         returningList = (List *)
     718          148 :             map_variable_attnos((Node *) returningList,
     719              :                                 firstVarno, 0,
     720              :                                 part_attmap,
     721          148 :                                 RelationGetForm(partrel)->reltype,
     722              :                                 &found_whole_row);
     723              :         /* We ignore the value of found_whole_row. */
     724              : 
     725          148 :         leaf_part_rri->ri_returningList = returningList;
     726              : 
     727              :         /*
     728              :          * Initialize the projection itself.
     729              :          *
     730              :          * Use the slot and the expression context that would have been set up
     731              :          * in ExecInitModifyTable() for projection's output.
     732              :          */
     733              :         Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
     734          148 :         slot = mtstate->ps.ps_ResultTupleSlot;
     735              :         Assert(mtstate->ps.ps_ExprContext != NULL);
     736          148 :         econtext = mtstate->ps.ps_ExprContext;
     737          148 :         leaf_part_rri->ri_projectReturning =
     738          148 :             ExecBuildProjectionInfo(returningList, econtext, slot,
     739              :                                     &mtstate->ps, RelationGetDescr(partrel));
     740              :     }
     741              : 
     742              :     /* Set up information needed for routing tuples to the partition. */
     743         3700 :     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     744              :                         leaf_part_rri, partidx, false);
     745              : 
     746              :     /*
     747              :      * If there is an ON CONFLICT clause, initialize state for it.
     748              :      */
     749         3700 :     if (node && node->onConflictAction != ONCONFLICT_NONE)
     750              :     {
     751          169 :         TupleDesc   partrelDesc = RelationGetDescr(partrel);
     752          169 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
     753          169 :         List       *arbiterIndexes = NIL;
     754          169 :         int         additional_arbiters = 0;
     755              : 
     756              :         /*
     757              :          * If there is a list of arbiter indexes, map it to a list of indexes
     758              :          * in the partition.  We also add any "identical indexes" to any of
     759              :          * those, to cover the case where one of them is concurrently being
     760              :          * reindexed.
     761              :          */
     762          169 :         if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
     763              :         {
     764          141 :             List       *unparented_idxs = NIL,
     765          141 :                        *arbiters_listidxs = NIL,
     766          141 :                        *ancestors_seen = NIL;
     767              : 
     768          301 :             for (int listidx = 0; listidx < leaf_part_rri->ri_NumIndices; listidx++)
     769              :             {
     770              :                 Oid         indexoid;
     771              :                 List       *ancestors;
     772              : 
     773              :                 /*
     774              :                  * If one of this index's ancestors is in the root's arbiter
     775              :                  * list, then use this index as arbiter for this partition.
     776              :                  * Otherwise, if this index has no parent, track it for later,
     777              :                  * in case REINDEX CONCURRENTLY is working on one of the
     778              :                  * arbiters.
     779              :                  *
     780              :                  * However, if two indexes appear to have the same parent,
     781              :                  * treat the second of these as if it had no parent.  This
     782              :                  * sounds counterintuitive, but it can happen if a transaction
     783              :                  * running REINDEX CONCURRENTLY commits right between those
     784              :                  * two indexes are checked by another process in this loop.
     785              :                  * This will have the effect of also treating that second
     786              :                  * index as arbiter.
     787              :                  *
     788              :                  * XXX get_partition_ancestors scans pg_inherits, which is not
     789              :                  * only slow, but also means the catalog snapshot can get
     790              :                  * invalidated each time through the loop (cf.
     791              :                  * GetNonHistoricCatalogSnapshot).  Consider a syscache or
     792              :                  * some other way to cache?
     793              :                  */
     794          160 :                 indexoid = RelationGetRelid(leaf_part_rri->ri_IndexRelationDescs[listidx]);
     795          160 :                 ancestors = get_partition_ancestors(indexoid);
     796          160 :                 INJECTION_POINT("exec-init-partition-after-get-partition-ancestors", NULL);
     797              : 
     798          160 :                 if (ancestors != NIL &&
     799          142 :                     !list_member_oid(ancestors_seen, linitial_oid(ancestors)))
     800              :                 {
     801          282 :                     foreach_oid(parent_idx, rootResultRelInfo->ri_onConflictArbiterIndexes)
     802              :                     {
     803          141 :                         if (list_member_oid(ancestors, parent_idx))
     804              :                         {
     805          141 :                             ancestors_seen = lappend_oid(ancestors_seen, linitial_oid(ancestors));
     806          141 :                             arbiterIndexes = lappend_oid(arbiterIndexes, indexoid);
     807          141 :                             arbiters_listidxs = lappend_int(arbiters_listidxs, listidx);
     808          141 :                             break;
     809              :                         }
     810              :                     }
     811              :                 }
     812              :                 else
     813           19 :                     unparented_idxs = lappend_int(unparented_idxs, listidx);
     814              : 
     815          160 :                 list_free(ancestors);
     816              :             }
     817              : 
     818              :             /*
     819              :              * If we found any indexes with no ancestors, it's possible that
     820              :              * some arbiter index is undergoing concurrent reindex.  Match all
     821              :              * unparented indexes against arbiters; add unparented matching
     822              :              * ones as "additional arbiters".
     823              :              *
     824              :              * This is critical so that all concurrent transactions use the
     825              :              * same set as arbiters during REINDEX CONCURRENTLY, to avoid
     826              :              * spurious "duplicate key" errors.
     827              :              */
     828          141 :             if (unparented_idxs && arbiterIndexes)
     829              :             {
     830           57 :                 foreach_int(unparented_i, unparented_idxs)
     831              :                 {
     832              :                     Relation    unparented_rel;
     833              :                     IndexInfo  *unparented_ii;
     834              : 
     835           19 :                     unparented_rel = leaf_part_rri->ri_IndexRelationDescs[unparented_i];
     836           19 :                     unparented_ii = leaf_part_rri->ri_IndexRelationInfo[unparented_i];
     837              : 
     838              :                     Assert(!list_member_oid(arbiterIndexes,
     839              :                                             unparented_rel->rd_index->indexrelid));
     840              : 
     841              :                     /* Ignore indexes not ready */
     842           19 :                     if (!unparented_ii->ii_ReadyForInserts)
     843            0 :                         continue;
     844              : 
     845           50 :                     foreach_int(arbiter_i, arbiters_listidxs)
     846              :                     {
     847              :                         Relation    arbiter_rel;
     848              :                         IndexInfo  *arbiter_ii;
     849              : 
     850           19 :                         arbiter_rel = leaf_part_rri->ri_IndexRelationDescs[arbiter_i];
     851           19 :                         arbiter_ii = leaf_part_rri->ri_IndexRelationInfo[arbiter_i];
     852              : 
     853              :                         /*
     854              :                          * If the non-ancestor index is compatible with the
     855              :                          * arbiter, use the non-ancestor as arbiter too.
     856              :                          */
     857           19 :                         if (IsIndexCompatibleAsArbiter(arbiter_rel,
     858              :                                                        arbiter_ii,
     859              :                                                        unparented_rel,
     860              :                                                        unparented_ii))
     861              :                         {
     862            7 :                             arbiterIndexes = lappend_oid(arbiterIndexes,
     863            7 :                                                          unparented_rel->rd_index->indexrelid);
     864            7 :                             additional_arbiters++;
     865            7 :                             break;
     866              :                         }
     867              :                     }
     868              :                 }
     869              :             }
     870          141 :             list_free(unparented_idxs);
     871          141 :             list_free(arbiters_listidxs);
     872          141 :             list_free(ancestors_seen);
     873              :         }
     874              : 
     875              :         /*
     876              :          * We expect to find as many arbiter indexes on this partition as the
     877              :          * root has, plus however many "additional arbiters" (to wit: those
     878              :          * being concurrently rebuilt) we found.
     879              :          */
     880          169 :         if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
     881          169 :             list_length(arbiterIndexes) - additional_arbiters)
     882            0 :             elog(ERROR, "invalid arbiter index list");
     883          169 :         leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
     884              : 
     885              :         /*
     886              :          * In the DO UPDATE and DO SELECT cases, we have some more state to
     887              :          * initialize.
     888              :          */
     889          169 :         if (node->onConflictAction == ONCONFLICT_UPDATE ||
     890           76 :             node->onConflictAction == ONCONFLICT_SELECT)
     891              :         {
     892          135 :             OnConflictActionState *onconfl = makeNode(OnConflictActionState);
     893              :             TupleConversionMap *map;
     894              : 
     895          135 :             map = ExecGetRootToChildMap(leaf_part_rri, estate);
     896              : 
     897              :             Assert(node->onConflictSet != NIL ||
     898              :                    node->onConflictAction == ONCONFLICT_SELECT);
     899              :             Assert(rootResultRelInfo->ri_onConflict != NULL);
     900              : 
     901          135 :             leaf_part_rri->ri_onConflict = onconfl;
     902              : 
     903              :             /* Lock strength for DO SELECT [FOR UPDATE/SHARE] */
     904          135 :             onconfl->oc_LockStrength =
     905          135 :                 rootResultRelInfo->ri_onConflict->oc_LockStrength;
     906              : 
     907              :             /*
     908              :              * Need a separate existing slot for each partition, as the
     909              :              * partition could be of a different AM, even if the tuple
     910              :              * descriptors match.
     911              :              */
     912          135 :             onconfl->oc_Existing =
     913          135 :                 table_slot_create(leaf_part_rri->ri_RelationDesc,
     914          135 :                                   &mtstate->ps.state->es_tupleTable);
     915              : 
     916              :             /*
     917              :              * If the partition's tuple descriptor matches exactly the root
     918              :              * parent (the common case), we can re-use most of the parent's ON
     919              :              * CONFLICT action state, skipping a bunch of work.  Otherwise, we
     920              :              * need to create state specific to this partition.
     921              :              */
     922          135 :             if (map == NULL)
     923              :             {
     924              :                 /*
     925              :                  * It's safe to reuse these from the partition root, as we
     926              :                  * only process one tuple at a time (therefore we won't
     927              :                  * overwrite needed data in slots), and the results of any
     928              :                  * projections are independent of the underlying storage.
     929              :                  * Projections and where clauses themselves don't store state
     930              :                  * / are independent of the underlying storage.
     931              :                  */
     932           73 :                 onconfl->oc_ProjSlot =
     933           73 :                     rootResultRelInfo->ri_onConflict->oc_ProjSlot;
     934           73 :                 onconfl->oc_ProjInfo =
     935           73 :                     rootResultRelInfo->ri_onConflict->oc_ProjInfo;
     936           73 :                 onconfl->oc_WhereClause =
     937           73 :                     rootResultRelInfo->ri_onConflict->oc_WhereClause;
     938              :             }
     939              :             else
     940              :             {
     941              :                 /*
     942              :                  * For ON CONFLICT DO UPDATE, translate expressions in
     943              :                  * onConflictSet to account for different attribute numbers.
     944              :                  * For that, map partition varattnos twice: first to catch the
     945              :                  * EXCLUDED pseudo-relation (INNER_VAR), and second to handle
     946              :                  * the main target relation (firstVarno).
     947              :                  */
     948           62 :                 if (node->onConflictAction == ONCONFLICT_UPDATE)
     949              :                 {
     950              :                     List       *onconflset;
     951              :                     List       *onconflcols;
     952              : 
     953           38 :                     onconflset = copyObject(node->onConflictSet);
     954           38 :                     if (part_attmap == NULL)
     955              :                         part_attmap =
     956           35 :                             build_attrmap_by_name(RelationGetDescr(partrel),
     957              :                                                   RelationGetDescr(firstResultRel),
     958              :                                                   false);
     959              :                     onconflset = (List *)
     960           38 :                         map_variable_attnos((Node *) onconflset,
     961              :                                             INNER_VAR, 0,
     962              :                                             part_attmap,
     963           38 :                                             RelationGetForm(partrel)->reltype,
     964              :                                             &found_whole_row);
     965              :                     /* We ignore the value of found_whole_row. */
     966              :                     onconflset = (List *)
     967           38 :                         map_variable_attnos((Node *) onconflset,
     968              :                                             firstVarno, 0,
     969              :                                             part_attmap,
     970           38 :                                             RelationGetForm(partrel)->reltype,
     971              :                                             &found_whole_row);
     972              :                     /* We ignore the value of found_whole_row. */
     973              : 
     974              :                     /*
     975              :                      * Finally, adjust the target colnos to match the
     976              :                      * partition.
     977              :                      */
     978           38 :                     onconflcols = adjust_partition_colnos(node->onConflictCols,
     979              :                                                           leaf_part_rri);
     980              : 
     981              :                     /* create the tuple slot for the UPDATE SET projection */
     982           38 :                     onconfl->oc_ProjSlot =
     983           38 :                         table_slot_create(partrel,
     984           38 :                                           &mtstate->ps.state->es_tupleTable);
     985              : 
     986              :                     /* build UPDATE SET projection state */
     987           38 :                     onconfl->oc_ProjInfo =
     988           38 :                         ExecBuildUpdateProjection(onconflset,
     989              :                                                   true,
     990              :                                                   onconflcols,
     991              :                                                   partrelDesc,
     992              :                                                   econtext,
     993              :                                                   onconfl->oc_ProjSlot,
     994              :                                                   &mtstate->ps);
     995              :                 }
     996              : 
     997              :                 /*
     998              :                  * For both ON CONFLICT DO UPDATE and ON CONFLICT DO SELECT,
     999              :                  * there may be a WHERE clause.  If so, initialize state where
    1000              :                  * it will be evaluated, mapping the attribute numbers
    1001              :                  * appropriately.  As with onConflictSet, we need to map
    1002              :                  * partition varattnos twice, to catch both the EXCLUDED
    1003              :                  * pseudo-relation (INNER_VAR), and the main target relation
    1004              :                  * (firstVarno).
    1005              :                  */
    1006           62 :                 if (node->onConflictWhere)
    1007              :                 {
    1008              :                     List       *clause;
    1009              : 
    1010           27 :                     if (part_attmap == NULL)
    1011              :                         part_attmap =
    1012            0 :                             build_attrmap_by_name(RelationGetDescr(partrel),
    1013              :                                                   RelationGetDescr(firstResultRel),
    1014              :                                                   false);
    1015              : 
    1016           27 :                     clause = copyObject((List *) node->onConflictWhere);
    1017              :                     clause = (List *)
    1018           27 :                         map_variable_attnos((Node *) clause,
    1019              :                                             INNER_VAR, 0,
    1020              :                                             part_attmap,
    1021           27 :                                             RelationGetForm(partrel)->reltype,
    1022              :                                             &found_whole_row);
    1023              :                     /* We ignore the value of found_whole_row. */
    1024              :                     clause = (List *)
    1025           27 :                         map_variable_attnos((Node *) clause,
    1026              :                                             firstVarno, 0,
    1027              :                                             part_attmap,
    1028           27 :                                             RelationGetForm(partrel)->reltype,
    1029              :                                             &found_whole_row);
    1030              :                     /* We ignore the value of found_whole_row. */
    1031           27 :                     onconfl->oc_WhereClause =
    1032           27 :                         ExecInitQual(clause, &mtstate->ps);
    1033              :                 }
    1034              :             }
    1035              :         }
    1036              :     }
    1037              : 
    1038              :     /*
    1039              :      * Since we've just initialized this ResultRelInfo, it's not in any list
    1040              :      * attached to the estate as yet.  Add it, so that it can be found later.
    1041              :      *
    1042              :      * Note that the entries in this list appear in no predetermined order,
    1043              :      * because partition result rels are initialized as and when they're
    1044              :      * needed.
    1045              :      */
    1046         3700 :     MemoryContextSwitchTo(estate->es_query_cxt);
    1047         3700 :     estate->es_tuple_routing_result_relations =
    1048         3700 :         lappend(estate->es_tuple_routing_result_relations,
    1049              :                 leaf_part_rri);
    1050              : 
    1051              :     /*
    1052              :      * Initialize information about this partition that's needed to handle
    1053              :      * MERGE.  We take the "first" result relation's mergeActionList as
    1054              :      * reference and make copy for this relation, converting stuff that
    1055              :      * references attribute numbers to match this relation's.
    1056              :      *
    1057              :      * This duplicates much of the logic in ExecInitMerge(), so if something
    1058              :      * changes there, look here too.
    1059              :      */
    1060         3700 :     if (node && node->operation == CMD_MERGE)
    1061              :     {
    1062           12 :         List       *firstMergeActionList = linitial(node->mergeActionLists);
    1063              :         ListCell   *lc;
    1064           12 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
    1065              :         Node       *joinCondition;
    1066              : 
    1067           12 :         if (part_attmap == NULL)
    1068              :             part_attmap =
    1069            6 :                 build_attrmap_by_name(RelationGetDescr(partrel),
    1070              :                                       RelationGetDescr(firstResultRel),
    1071              :                                       false);
    1072              : 
    1073           12 :         if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
    1074           12 :             ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
    1075              : 
    1076              :         /* Initialize state for join condition checking. */
    1077              :         joinCondition =
    1078           12 :             map_variable_attnos(linitial(node->mergeJoinConditions),
    1079              :                                 firstVarno, 0,
    1080              :                                 part_attmap,
    1081           12 :                                 RelationGetForm(partrel)->reltype,
    1082              :                                 &found_whole_row);
    1083              :         /* We ignore the value of found_whole_row. */
    1084           12 :         leaf_part_rri->ri_MergeJoinCondition =
    1085           12 :             ExecInitQual((List *) joinCondition, &mtstate->ps);
    1086              : 
    1087           30 :         foreach(lc, firstMergeActionList)
    1088              :         {
    1089              :             /* Make a copy for this relation to be safe.  */
    1090           18 :             MergeAction *action = copyObject(lfirst(lc));
    1091              :             MergeActionState *action_state;
    1092              : 
    1093              :             /* Generate the action's state for this relation */
    1094           18 :             action_state = makeNode(MergeActionState);
    1095           18 :             action_state->mas_action = action;
    1096              : 
    1097              :             /* And put the action in the appropriate list */
    1098           36 :             leaf_part_rri->ri_MergeActions[action->matchKind] =
    1099           18 :                 lappend(leaf_part_rri->ri_MergeActions[action->matchKind],
    1100              :                         action_state);
    1101              : 
    1102           18 :             switch (action->commandType)
    1103              :             {
    1104            6 :                 case CMD_INSERT:
    1105              : 
    1106              :                     /*
    1107              :                      * ExecCheckPlanOutput() already done on the targetlist
    1108              :                      * when "first" result relation initialized and it is same
    1109              :                      * for all result relations.
    1110              :                      */
    1111            6 :                     action_state->mas_proj =
    1112            6 :                         ExecBuildProjectionInfo(action->targetList, econtext,
    1113              :                                                 leaf_part_rri->ri_newTupleSlot,
    1114              :                                                 &mtstate->ps,
    1115              :                                                 RelationGetDescr(partrel));
    1116            6 :                     break;
    1117            9 :                 case CMD_UPDATE:
    1118              : 
    1119              :                     /*
    1120              :                      * Convert updateColnos from "first" result relation
    1121              :                      * attribute numbers to this result rel's.
    1122              :                      */
    1123            9 :                     if (part_attmap)
    1124            9 :                         action->updateColnos =
    1125            9 :                             adjust_partition_colnos_using_map(action->updateColnos,
    1126              :                                                               part_attmap);
    1127            9 :                     action_state->mas_proj =
    1128            9 :                         ExecBuildUpdateProjection(action->targetList,
    1129              :                                                   true,
    1130              :                                                   action->updateColnos,
    1131            9 :                                                   RelationGetDescr(leaf_part_rri->ri_RelationDesc),
    1132              :                                                   econtext,
    1133              :                                                   leaf_part_rri->ri_newTupleSlot,
    1134              :                                                   NULL);
    1135            9 :                     break;
    1136            3 :                 case CMD_DELETE:
    1137              :                 case CMD_NOTHING:
    1138              :                     /* Nothing to do */
    1139            3 :                     break;
    1140              : 
    1141            0 :                 default:
    1142            0 :                     elog(ERROR, "unknown action in MERGE WHEN clause");
    1143              :             }
    1144              : 
    1145              :             /* found_whole_row intentionally ignored. */
    1146           18 :             action->qual =
    1147           18 :                 map_variable_attnos(action->qual,
    1148              :                                     firstVarno, 0,
    1149              :                                     part_attmap,
    1150           18 :                                     RelationGetForm(partrel)->reltype,
    1151              :                                     &found_whole_row);
    1152           18 :             action_state->mas_whenqual =
    1153           18 :                 ExecInitQual((List *) action->qual, &mtstate->ps);
    1154              :         }
    1155              :     }
    1156         3700 :     MemoryContextSwitchTo(oldcxt);
    1157              : 
    1158         3700 :     return leaf_part_rri;
    1159              : }
    1160              : 
    1161              : /*
    1162              :  * ExecInitRoutingInfo
    1163              :  *      Set up information needed for translating tuples between root
    1164              :  *      partitioned table format and partition format, and keep track of it
    1165              :  *      in PartitionTupleRouting.
    1166              :  */
    1167              : static void
    1168         3954 : ExecInitRoutingInfo(ModifyTableState *mtstate,
    1169              :                     EState *estate,
    1170              :                     PartitionTupleRouting *proute,
    1171              :                     PartitionDispatch dispatch,
    1172              :                     ResultRelInfo *partRelInfo,
    1173              :                     int partidx,
    1174              :                     bool is_borrowed_rel)
    1175              : {
    1176              :     MemoryContext oldcxt;
    1177              :     int         rri_index;
    1178              : 
    1179         3954 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
    1180              : 
    1181              :     /*
    1182              :      * Set up tuple conversion between root parent and the partition if the
    1183              :      * two have different rowtypes.  If conversion is indeed required, also
    1184              :      * initialize a slot dedicated to storing this partition's converted
    1185              :      * tuples.  Various operations that are applied to tuples after routing,
    1186              :      * such as checking constraints, will refer to this slot.
    1187              :      */
    1188         3954 :     if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
    1189              :     {
    1190          701 :         Relation    partrel = partRelInfo->ri_RelationDesc;
    1191              : 
    1192              :         /*
    1193              :          * This pins the partition's TupleDesc, which will be released at the
    1194              :          * end of the command.
    1195              :          */
    1196          701 :         partRelInfo->ri_PartitionTupleSlot =
    1197          701 :             table_slot_create(partrel, &estate->es_tupleTable);
    1198              :     }
    1199              :     else
    1200         3253 :         partRelInfo->ri_PartitionTupleSlot = NULL;
    1201              : 
    1202              :     /*
    1203              :      * If the partition is a foreign table, let the FDW init itself for
    1204              :      * routing tuples to the partition.
    1205              :      */
    1206         3954 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1207           46 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
    1208           46 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
    1209              : 
    1210              :     /*
    1211              :      * Determine if the FDW supports batch insert and determine the batch size
    1212              :      * (a FDW may support batching, but it may be disabled for the
    1213              :      * server/table or for this particular query).
    1214              :      *
    1215              :      * If the FDW does not support batching, we set the batch size to 1.
    1216              :      */
    1217         3948 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1218           40 :         partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
    1219           40 :         partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
    1220           40 :         partRelInfo->ri_BatchSize =
    1221           40 :             partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
    1222              :     else
    1223         3908 :         partRelInfo->ri_BatchSize = 1;
    1224              : 
    1225              :     Assert(partRelInfo->ri_BatchSize >= 1);
    1226              : 
    1227         3948 :     partRelInfo->ri_CopyMultiInsertBuffer = NULL;
    1228              : 
    1229              :     /*
    1230              :      * Keep track of it in the PartitionTupleRouting->partitions array.
    1231              :      */
    1232              :     Assert(dispatch->indexes[partidx] == -1);
    1233              : 
    1234         3948 :     rri_index = proute->num_partitions++;
    1235              : 
    1236              :     /* Allocate or enlarge the array, as needed */
    1237         3948 :     if (proute->num_partitions >= proute->max_partitions)
    1238              :     {
    1239         2728 :         if (proute->max_partitions == 0)
    1240              :         {
    1241         2722 :             proute->max_partitions = 8;
    1242         2722 :             proute->partitions = palloc_array(ResultRelInfo *, proute->max_partitions);
    1243         2722 :             proute->is_borrowed_rel = palloc_array(bool, proute->max_partitions);
    1244              :         }
    1245              :         else
    1246              :         {
    1247            6 :             proute->max_partitions *= 2;
    1248            6 :             proute->partitions = (ResultRelInfo **)
    1249            6 :                 repalloc(proute->partitions, sizeof(ResultRelInfo *) *
    1250            6 :                          proute->max_partitions);
    1251            6 :             proute->is_borrowed_rel = (bool *)
    1252            6 :                 repalloc(proute->is_borrowed_rel, sizeof(bool) *
    1253            6 :                          proute->max_partitions);
    1254              :         }
    1255              :     }
    1256              : 
    1257         3948 :     proute->partitions[rri_index] = partRelInfo;
    1258         3948 :     proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
    1259         3948 :     dispatch->indexes[partidx] = rri_index;
    1260              : 
    1261         3948 :     MemoryContextSwitchTo(oldcxt);
    1262         3948 : }
    1263              : 
    1264              : /*
    1265              :  * ExecInitPartitionDispatchInfo
    1266              :  *      Lock the partitioned table (if not locked already) and initialize
    1267              :  *      PartitionDispatch for a partitioned table and store it in the next
    1268              :  *      available slot in the proute->partition_dispatch_info array.  Also,
    1269              :  *      record the index into this array in the parent_pd->indexes[] array in
    1270              :  *      the partidx element so that we can properly retrieve the newly created
    1271              :  *      PartitionDispatch later.
    1272              :  */
    1273              : static PartitionDispatch
    1274         3488 : ExecInitPartitionDispatchInfo(EState *estate,
    1275              :                               PartitionTupleRouting *proute, Oid partoid,
    1276              :                               PartitionDispatch parent_pd, int partidx,
    1277              :                               ResultRelInfo *rootResultRelInfo)
    1278              : {
    1279              :     Relation    rel;
    1280              :     PartitionDesc partdesc;
    1281              :     PartitionDispatch pd;
    1282              :     int         dispatchidx;
    1283              :     MemoryContext oldcxt;
    1284              : 
    1285              :     /*
    1286              :      * For data modification, it is better that executor does not include
    1287              :      * partitions being detached, except when running in snapshot-isolation
    1288              :      * mode.  This means that a read-committed transaction immediately gets a
    1289              :      * "no partition for tuple" error when a tuple is inserted into a
    1290              :      * partition that's being detached concurrently, but a transaction in
    1291              :      * repeatable-read mode can still use such a partition.
    1292              :      */
    1293         3488 :     if (estate->es_partition_directory == NULL)
    1294         2867 :         estate->es_partition_directory =
    1295         2867 :             CreatePartitionDirectory(estate->es_query_cxt,
    1296              :                                      !IsolationUsesXactSnapshot());
    1297              : 
    1298         3488 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
    1299              : 
    1300              :     /*
    1301              :      * Only sub-partitioned tables need to be locked here.  The root
    1302              :      * partitioned table will already have been locked as it's referenced in
    1303              :      * the query's rtable.
    1304              :      */
    1305         3488 :     if (partoid != RelationGetRelid(proute->partition_root))
    1306          603 :         rel = table_open(partoid, RowExclusiveLock);
    1307              :     else
    1308         2885 :         rel = proute->partition_root;
    1309         3488 :     partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
    1310              : 
    1311         3488 :     pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
    1312         3488 :                                     partdesc->nparts * sizeof(int));
    1313         3488 :     pd->reldesc = rel;
    1314         3488 :     pd->key = RelationGetPartitionKey(rel);
    1315         3488 :     pd->keystate = NIL;
    1316         3488 :     pd->partdesc = partdesc;
    1317         3488 :     if (parent_pd != NULL)
    1318              :     {
    1319          603 :         TupleDesc   tupdesc = RelationGetDescr(rel);
    1320              : 
    1321              :         /*
    1322              :          * For sub-partitioned tables where the column order differs from its
    1323              :          * direct parent partitioned table, we must store a tuple table slot
    1324              :          * initialized with its tuple descriptor and a tuple conversion map to
    1325              :          * convert a tuple from its parent's rowtype to its own.  This is to
    1326              :          * make sure that we are looking at the correct row using the correct
    1327              :          * tuple descriptor when computing its partition key for tuple
    1328              :          * routing.
    1329              :          */
    1330          603 :         pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
    1331              :                                                   tupdesc,
    1332              :                                                   false);
    1333          603 :         pd->tupslot = pd->tupmap ?
    1334          603 :             MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
    1335              :     }
    1336              :     else
    1337              :     {
    1338              :         /* Not required for the root partitioned table */
    1339         2885 :         pd->tupmap = NULL;
    1340         2885 :         pd->tupslot = NULL;
    1341              :     }
    1342              : 
    1343              :     /*
    1344              :      * Initialize with -1 to signify that the corresponding partition's
    1345              :      * ResultRelInfo or PartitionDispatch has not been created yet.
    1346              :      */
    1347         3488 :     memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
    1348              : 
    1349              :     /* Track in PartitionTupleRouting for later use */
    1350         3488 :     dispatchidx = proute->num_dispatch++;
    1351              : 
    1352              :     /* Allocate or enlarge the array, as needed */
    1353         3488 :     if (proute->num_dispatch >= proute->max_dispatch)
    1354              :     {
    1355         2885 :         if (proute->max_dispatch == 0)
    1356              :         {
    1357         2885 :             proute->max_dispatch = 4;
    1358         2885 :             proute->partition_dispatch_info = palloc_array(PartitionDispatch, proute->max_dispatch);
    1359         2885 :             proute->nonleaf_partitions = palloc_array(ResultRelInfo *, proute->max_dispatch);
    1360              :         }
    1361              :         else
    1362              :         {
    1363            0 :             proute->max_dispatch *= 2;
    1364            0 :             proute->partition_dispatch_info = (PartitionDispatch *)
    1365            0 :                 repalloc(proute->partition_dispatch_info,
    1366            0 :                          sizeof(PartitionDispatch) * proute->max_dispatch);
    1367            0 :             proute->nonleaf_partitions = (ResultRelInfo **)
    1368            0 :                 repalloc(proute->nonleaf_partitions,
    1369            0 :                          sizeof(ResultRelInfo *) * proute->max_dispatch);
    1370              :         }
    1371              :     }
    1372         3488 :     proute->partition_dispatch_info[dispatchidx] = pd;
    1373              : 
    1374              :     /*
    1375              :      * If setting up a PartitionDispatch for a sub-partitioned table, we may
    1376              :      * also need a minimally valid ResultRelInfo for checking the partition
    1377              :      * constraint later; set that up now.
    1378              :      */
    1379         3488 :     if (parent_pd)
    1380              :     {
    1381          603 :         ResultRelInfo *rri = makeNode(ResultRelInfo);
    1382              : 
    1383          603 :         InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
    1384          603 :         proute->nonleaf_partitions[dispatchidx] = rri;
    1385              :     }
    1386              :     else
    1387         2885 :         proute->nonleaf_partitions[dispatchidx] = NULL;
    1388              : 
    1389              :     /*
    1390              :      * Finally, if setting up a PartitionDispatch for a sub-partitioned table,
    1391              :      * install a downlink in the parent to allow quick descent.
    1392              :      */
    1393         3488 :     if (parent_pd)
    1394              :     {
    1395              :         Assert(parent_pd->indexes[partidx] == -1);
    1396          603 :         parent_pd->indexes[partidx] = dispatchidx;
    1397              :     }
    1398              : 
    1399         3488 :     MemoryContextSwitchTo(oldcxt);
    1400              : 
    1401         3488 :     return pd;
    1402              : }
    1403              : 
    1404              : /*
    1405              :  * ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
    1406              :  * routing.
    1407              :  *
    1408              :  * Close all the partitioned tables, leaf partitions, and their indices.
    1409              :  */
    1410              : void
    1411         2462 : ExecCleanupTupleRouting(ModifyTableState *mtstate,
    1412              :                         PartitionTupleRouting *proute)
    1413              : {
    1414              :     int         i;
    1415              : 
    1416              :     /*
    1417              :      * Remember, proute->partition_dispatch_info[0] corresponds to the root
    1418              :      * partitioned table, which we must not try to close, because it is the
    1419              :      * main target table of the query that will be closed by callers such as
    1420              :      * ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
    1421              :      * partitioned table.
    1422              :      */
    1423         2953 :     for (i = 1; i < proute->num_dispatch; i++)
    1424              :     {
    1425          491 :         PartitionDispatch pd = proute->partition_dispatch_info[i];
    1426              : 
    1427          491 :         table_close(pd->reldesc, NoLock);
    1428              : 
    1429          491 :         if (pd->tupslot)
    1430          230 :             ExecDropSingleTupleTableSlot(pd->tupslot);
    1431              :     }
    1432              : 
    1433         6107 :     for (i = 0; i < proute->num_partitions; i++)
    1434              :     {
    1435         3645 :         ResultRelInfo *resultRelInfo = proute->partitions[i];
    1436              : 
    1437              :         /* Allow any FDWs to shut down */
    1438         3645 :         if (resultRelInfo->ri_FdwRoutine != NULL &&
    1439           34 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
    1440           34 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
    1441              :                                                            resultRelInfo);
    1442              : 
    1443              :         /*
    1444              :          * Close it if it's not one of the result relations borrowed from the
    1445              :          * owning ModifyTableState; those will be closed by ExecEndPlan().
    1446              :          */
    1447         3645 :         if (proute->is_borrowed_rel[i])
    1448          230 :             continue;
    1449              : 
    1450         3415 :         ExecCloseIndices(resultRelInfo);
    1451         3415 :         table_close(resultRelInfo->ri_RelationDesc, NoLock);
    1452              :     }
    1453         2462 : }
    1454              : 
    1455              : /* ----------------
    1456              :  *      FormPartitionKeyDatum
    1457              :  *          Construct values[] and isnull[] arrays for the partition key
    1458              :  *          of a tuple.
    1459              :  *
    1460              :  *  pd              Partition dispatch object of the partitioned table
    1461              :  *  slot            Heap tuple from which to extract partition key
    1462              :  *  estate          executor state for evaluating any partition key
    1463              :  *                  expressions (must be non-NULL)
    1464              :  *  values          Array of partition key Datums (output area)
    1465              :  *  isnull          Array of is-null indicators (output area)
    1466              :  *
    1467              :  * the ecxt_scantuple slot of estate's per-tuple expr context must point to
    1468              :  * the heap tuple passed in.
    1469              :  * ----------------
    1470              :  */
    1471              : static void
    1472       575004 : FormPartitionKeyDatum(PartitionDispatch pd,
    1473              :                       TupleTableSlot *slot,
    1474              :                       EState *estate,
    1475              :                       Datum *values,
    1476              :                       bool *isnull)
    1477              : {
    1478              :     ListCell   *partexpr_item;
    1479              :     int         i;
    1480              : 
    1481       575004 :     if (pd->key->partexprs != NIL && pd->keystate == NIL)
    1482              :     {
    1483              :         /* Check caller has set up context correctly */
    1484              :         Assert(estate != NULL &&
    1485              :                GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
    1486              : 
    1487              :         /* First time through, set up expression evaluation state */
    1488          273 :         pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
    1489              :     }
    1490              : 
    1491       575004 :     partexpr_item = list_head(pd->keystate);
    1492      1161546 :     for (i = 0; i < pd->key->partnatts; i++)
    1493              :     {
    1494       586542 :         AttrNumber  keycol = pd->key->partattrs[i];
    1495              :         Datum       datum;
    1496              :         bool        isNull;
    1497              : 
    1498       586542 :         if (keycol != 0)
    1499              :         {
    1500              :             /* Plain column; get the value directly from the heap tuple */
    1501       542724 :             datum = slot_getattr(slot, keycol, &isNull);
    1502              :         }
    1503              :         else
    1504              :         {
    1505              :             /* Expression; need to evaluate it */
    1506        43818 :             if (partexpr_item == NULL)
    1507            0 :                 elog(ERROR, "wrong number of partition key expressions");
    1508        43818 :             datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
    1509        43818 :                                               GetPerTupleExprContext(estate),
    1510              :                                               &isNull);
    1511        43818 :             partexpr_item = lnext(pd->keystate, partexpr_item);
    1512              :         }
    1513       586542 :         values[i] = datum;
    1514       586542 :         isnull[i] = isNull;
    1515              :     }
    1516              : 
    1517       575004 :     if (partexpr_item != NULL)
    1518            0 :         elog(ERROR, "wrong number of partition key expressions");
    1519       575004 : }
    1520              : 
    1521              : /*
    1522              :  * The number of times the same partition must be found in a row before we
    1523              :  * switch from a binary search for the given values to just checking if the
    1524              :  * values belong to the last found partition.  This must be above 0.
    1525              :  */
    1526              : #define PARTITION_CACHED_FIND_THRESHOLD         16
    1527              : 
    1528              : /*
    1529              :  * get_partition_for_tuple
    1530              :  *      Finds partition of relation which accepts the partition key specified
    1531              :  *      in values and isnull.
    1532              :  *
    1533              :  * Calling this function can be quite expensive when LIST and RANGE
    1534              :  * partitioned tables have many partitions.  This is due to the binary search
    1535              :  * that's done to find the correct partition.  Many of the use cases for LIST
    1536              :  * and RANGE partitioned tables make it likely that the same partition is
    1537              :  * found in subsequent ExecFindPartition() calls.  This is especially true for
    1538              :  * cases such as RANGE partitioned tables on a TIMESTAMP column where the
    1539              :  * partition key is the current time.  When asked to find a partition for a
    1540              :  * RANGE or LIST partitioned table, we record the partition index and datum
    1541              :  * offset we've found for the given 'values' in the PartitionDesc (which is
    1542              :  * stored in relcache), and if we keep finding the same partition
    1543              :  * PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
    1544              :  * logic and instead of performing a binary search to find the correct
    1545              :  * partition, we'll just double-check that 'values' still belong to the last
    1546              :  * found partition, and if so, we'll return that partition index, thus
    1547              :  * skipping the need for the binary search.  If we fail to match the last
    1548              :  * partition when double checking, then we fall back on doing a binary search.
    1549              :  * In this case, unless we find 'values' belong to the DEFAULT partition,
    1550              :  * we'll reset the number of times we've hit the same partition so that we
    1551              :  * don't attempt to use the cache again until we've found that partition at
    1552              :  * least PARTITION_CACHED_FIND_THRESHOLD times in a row.
    1553              :  *
    1554              :  * For cases where the partition changes on each lookup, the amount of
    1555              :  * additional work required just amounts to recording the last found partition
    1556              :  * and bound offset then resetting the found counter.  This is cheap and does
    1557              :  * not appear to cause any meaningful slowdowns for such cases.
    1558              :  *
    1559              :  * No caching of partitions is done when the last found partition is the
    1560              :  * DEFAULT or NULL partition.  For the case of the DEFAULT partition, there
    1561              :  * is no bound offset storing the matching datum, so we cannot confirm the
    1562              :  * indexes match.  For the NULL partition, this is just so cheap, there's no
    1563              :  * sense in caching.
    1564              :  *
    1565              :  * Return value is index of the partition (>= 0 and < partdesc->nparts) if one
    1566              :  * found or -1 if none found.
    1567              :  */
    1568              : static int
    1569       574983 : get_partition_for_tuple(PartitionDispatch pd, const Datum *values, const bool *isnull)
    1570              : {
    1571       574983 :     int         bound_offset = -1;
    1572       574983 :     int         part_index = -1;
    1573       574983 :     PartitionKey key = pd->key;
    1574       574983 :     PartitionDesc partdesc = pd->partdesc;
    1575       574983 :     PartitionBoundInfo boundinfo = partdesc->boundinfo;
    1576              : 
    1577              :     /*
    1578              :      * In the switch statement below, when we perform a cached lookup for
    1579              :      * RANGE and LIST partitioned tables, if we find that the last found
    1580              :      * partition matches the 'values', we return the partition index right
    1581              :      * away.  We do this instead of breaking out of the switch as we don't
    1582              :      * want to execute the code about the DEFAULT partition or do any updates
    1583              :      * for any of the cache-related fields.  That would be a waste of effort
    1584              :      * as we already know it's not the DEFAULT partition and have no need to
    1585              :      * increment the number of times we found the same partition any higher
    1586              :      * than PARTITION_CACHED_FIND_THRESHOLD.
    1587              :      */
    1588              : 
    1589              :     /* Route as appropriate based on partitioning strategy. */
    1590       574983 :     switch (key->strategy)
    1591              :     {
    1592       105369 :         case PARTITION_STRATEGY_HASH:
    1593              :             {
    1594              :                 uint64      rowHash;
    1595              : 
    1596              :                 /* hash partitioning is too cheap to bother caching */
    1597       105369 :                 rowHash = compute_partition_hash_value(key->partnatts,
    1598              :                                                        key->partsupfunc,
    1599       105369 :                                                        key->partcollation,
    1600              :                                                        values, isnull);
    1601              : 
    1602              :                 /*
    1603              :                  * HASH partitions can't have a DEFAULT partition and we don't
    1604              :                  * do any caching work for them, so just return the part index
    1605              :                  */
    1606       105363 :                 return boundinfo->indexes[rowHash % boundinfo->nindexes];
    1607              :             }
    1608              : 
    1609        85659 :         case PARTITION_STRATEGY_LIST:
    1610        85659 :             if (isnull[0])
    1611              :             {
    1612              :                 /* this is far too cheap to bother doing any caching */
    1613           66 :                 if (partition_bound_accepts_nulls(boundinfo))
    1614              :                 {
    1615              :                     /*
    1616              :                      * When there is a NULL partition we just return that
    1617              :                      * directly.  We don't have a bound_offset so it's not
    1618              :                      * valid to drop into the code after the switch which
    1619              :                      * checks and updates the cache fields.  We perhaps should
    1620              :                      * be invalidating the details of the last cached
    1621              :                      * partition but there's no real need to.  Keeping those
    1622              :                      * fields set gives a chance at matching to the cached
    1623              :                      * partition on the next lookup.
    1624              :                      */
    1625           51 :                     return boundinfo->null_index;
    1626              :                 }
    1627              :             }
    1628              :             else
    1629              :             {
    1630              :                 bool        equal;
    1631              : 
    1632        85593 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1633              :                 {
    1634        11946 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1635        11946 :                     Datum       lastDatum = boundinfo->datums[last_datum_offset][0];
    1636              :                     int32       cmpval;
    1637              : 
    1638              :                     /* does the last found datum index match this datum? */
    1639        11946 :                     cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
    1640        11946 :                                                              key->partcollation[0],
    1641              :                                                              lastDatum,
    1642              :                                                              values[0]));
    1643              : 
    1644        11946 :                     if (cmpval == 0)
    1645        11769 :                         return boundinfo->indexes[last_datum_offset];
    1646              : 
    1647              :                     /* fall-through and do a manual lookup */
    1648              :                 }
    1649              : 
    1650        73824 :                 bound_offset = partition_list_bsearch(key->partsupfunc,
    1651              :                                                       key->partcollation,
    1652              :                                                       boundinfo,
    1653              :                                                       values[0], &equal);
    1654        73824 :                 if (bound_offset >= 0 && equal)
    1655        73624 :                     part_index = boundinfo->indexes[bound_offset];
    1656              :             }
    1657        73839 :             break;
    1658              : 
    1659       383955 :         case PARTITION_STRATEGY_RANGE:
    1660              :             {
    1661       383955 :                 bool        equal = false,
    1662       383955 :                             range_partkey_has_null = false;
    1663              :                 int         i;
    1664              : 
    1665              :                 /*
    1666              :                  * No range includes NULL, so this will be accepted by the
    1667              :                  * default partition if there is one, and otherwise rejected.
    1668              :                  */
    1669       779238 :                 for (i = 0; i < key->partnatts; i++)
    1670              :                 {
    1671       395310 :                     if (isnull[i])
    1672              :                     {
    1673           27 :                         range_partkey_has_null = true;
    1674           27 :                         break;
    1675              :                     }
    1676              :                 }
    1677              : 
    1678              :                 /* NULLs belong in the DEFAULT partition */
    1679       383955 :                 if (range_partkey_has_null)
    1680           27 :                     break;
    1681              : 
    1682       383928 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1683              :                 {
    1684       124827 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1685       124827 :                     Datum      *lastDatums = boundinfo->datums[last_datum_offset];
    1686       124827 :                     PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
    1687              :                     int32       cmpval;
    1688              : 
    1689              :                     /* check if the value is >= to the lower bound */
    1690       124827 :                     cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1691              :                                                         key->partcollation,
    1692              :                                                         lastDatums,
    1693              :                                                         kind,
    1694              :                                                         values,
    1695       124827 :                                                         key->partnatts);
    1696              : 
    1697              :                     /*
    1698              :                      * If it's equal to the lower bound then no need to check
    1699              :                      * the upper bound.
    1700              :                      */
    1701       124827 :                     if (cmpval == 0)
    1702       124672 :                         return boundinfo->indexes[last_datum_offset + 1];
    1703              : 
    1704       121878 :                     if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
    1705              :                     {
    1706              :                         /* check if the value is below the upper bound */
    1707       121848 :                         lastDatums = boundinfo->datums[last_datum_offset + 1];
    1708       121848 :                         kind = boundinfo->kind[last_datum_offset + 1];
    1709       121848 :                         cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1710              :                                                             key->partcollation,
    1711              :                                                             lastDatums,
    1712              :                                                             kind,
    1713              :                                                             values,
    1714       121848 :                                                             key->partnatts);
    1715              : 
    1716       121848 :                         if (cmpval > 0)
    1717       121723 :                             return boundinfo->indexes[last_datum_offset + 1];
    1718              :                     }
    1719              :                     /* fall-through and do a manual lookup */
    1720              :                 }
    1721              : 
    1722       259256 :                 bound_offset = partition_range_datum_bsearch(key->partsupfunc,
    1723              :                                                              key->partcollation,
    1724              :                                                              boundinfo,
    1725       259256 :                                                              key->partnatts,
    1726              :                                                              values,
    1727              :                                                              &equal);
    1728              : 
    1729              :                 /*
    1730              :                  * The bound at bound_offset is less than or equal to the
    1731              :                  * tuple value, so the bound at offset+1 is the upper bound of
    1732              :                  * the partition we're looking for, if there actually exists
    1733              :                  * one.
    1734              :                  */
    1735       259256 :                 part_index = boundinfo->indexes[bound_offset + 1];
    1736              :             }
    1737       259256 :             break;
    1738              : 
    1739            0 :         default:
    1740            0 :             elog(ERROR, "unexpected partition strategy: %d",
    1741              :                  (int) key->strategy);
    1742              :     }
    1743              : 
    1744              :     /*
    1745              :      * part_index < 0 means we failed to find a partition of this parent. Use
    1746              :      * the default partition, if there is one.
    1747              :      */
    1748       333122 :     if (part_index < 0)
    1749              :     {
    1750              :         /*
    1751              :          * No need to reset the cache fields here.  The next set of values
    1752              :          * might end up belonging to the cached partition, so leaving the
    1753              :          * cache alone improves the chances of a cache hit on the next lookup.
    1754              :          */
    1755          472 :         return boundinfo->default_index;
    1756              :     }
    1757              : 
    1758              :     /* we should only make it here when the code above set bound_offset */
    1759              :     Assert(bound_offset >= 0);
    1760              : 
    1761              :     /*
    1762              :      * Attend to the cache fields.  If the bound_offset matches the last
    1763              :      * cached bound offset then we've found the same partition as last time,
    1764              :      * so bump the count by one.  If all goes well, we'll eventually reach
    1765              :      * PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
    1766              :      * around.  Otherwise, we'll reset the cache count back to 1 to mark that
    1767              :      * we've found this partition for the first time.
    1768              :      */
    1769       332650 :     if (bound_offset == partdesc->last_found_datum_index)
    1770       230865 :         partdesc->last_found_count++;
    1771              :     else
    1772              :     {
    1773       101785 :         partdesc->last_found_count = 1;
    1774       101785 :         partdesc->last_found_part_index = part_index;
    1775       101785 :         partdesc->last_found_datum_index = bound_offset;
    1776              :     }
    1777              : 
    1778       332650 :     return part_index;
    1779              : }
    1780              : 
    1781              : /*
    1782              :  * ExecBuildSlotPartitionKeyDescription
    1783              :  *
    1784              :  * This works very much like BuildIndexValueDescription() and is currently
    1785              :  * used for building error messages when ExecFindPartition() fails to find
    1786              :  * partition for a row.
    1787              :  */
    1788              : static char *
    1789           77 : ExecBuildSlotPartitionKeyDescription(Relation rel,
    1790              :                                      const Datum *values,
    1791              :                                      const bool *isnull,
    1792              :                                      int maxfieldlen)
    1793              : {
    1794              :     StringInfoData buf;
    1795           77 :     PartitionKey key = RelationGetPartitionKey(rel);
    1796           77 :     int         partnatts = get_partition_natts(key);
    1797              :     int         i;
    1798           77 :     Oid         relid = RelationGetRelid(rel);
    1799              :     AclResult   aclresult;
    1800              : 
    1801           77 :     if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
    1802            0 :         return NULL;
    1803              : 
    1804              :     /* If the user has table-level access, just go build the description. */
    1805           77 :     aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
    1806           77 :     if (aclresult != ACLCHECK_OK)
    1807              :     {
    1808              :         /*
    1809              :          * Step through the columns of the partition key and make sure the
    1810              :          * user has SELECT rights on all of them.
    1811              :          */
    1812           12 :         for (i = 0; i < partnatts; i++)
    1813              :         {
    1814            9 :             AttrNumber  attnum = get_partition_col_attnum(key, i);
    1815              : 
    1816              :             /*
    1817              :              * If this partition key column is an expression, we return no
    1818              :              * detail rather than try to figure out what column(s) the
    1819              :              * expression includes and if the user has SELECT rights on them.
    1820              :              */
    1821           15 :             if (attnum == InvalidAttrNumber ||
    1822            6 :                 pg_attribute_aclcheck(relid, attnum, GetUserId(),
    1823              :                                       ACL_SELECT) != ACLCHECK_OK)
    1824            6 :                 return NULL;
    1825              :         }
    1826              :     }
    1827              : 
    1828           71 :     initStringInfo(&buf);
    1829           71 :     appendStringInfo(&buf, "(%s) = (",
    1830              :                      pg_get_partkeydef_columns(relid, true));
    1831              : 
    1832          169 :     for (i = 0; i < partnatts; i++)
    1833              :     {
    1834              :         char       *val;
    1835              :         int         vallen;
    1836              : 
    1837           98 :         if (isnull[i])
    1838           15 :             val = "null";
    1839              :         else
    1840              :         {
    1841              :             Oid         foutoid;
    1842              :             bool        typisvarlena;
    1843              : 
    1844           83 :             getTypeOutputInfo(get_partition_col_typid(key, i),
    1845              :                               &foutoid, &typisvarlena);
    1846           83 :             val = OidOutputFunctionCall(foutoid, values[i]);
    1847              :         }
    1848              : 
    1849           98 :         if (i > 0)
    1850           27 :             appendStringInfoString(&buf, ", ");
    1851              : 
    1852              :         /* truncate if needed */
    1853           98 :         vallen = strlen(val);
    1854           98 :         if (vallen <= maxfieldlen)
    1855           98 :             appendBinaryStringInfo(&buf, val, vallen);
    1856              :         else
    1857              :         {
    1858            0 :             vallen = pg_mbcliplen(val, vallen, maxfieldlen);
    1859            0 :             appendBinaryStringInfo(&buf, val, vallen);
    1860            0 :             appendStringInfoString(&buf, "...");
    1861              :         }
    1862              :     }
    1863              : 
    1864           71 :     appendStringInfoChar(&buf, ')');
    1865              : 
    1866           71 :     return buf.data;
    1867              : }
    1868              : 
    1869              : /*
    1870              :  * adjust_partition_colnos
    1871              :  *      Adjust the list of UPDATE target column numbers to account for
    1872              :  *      attribute differences between the parent and the partition.
    1873              :  *
    1874              :  * Note: mustn't be called if no adjustment is required.
    1875              :  */
    1876              : static List *
    1877           38 : adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
    1878              : {
    1879           38 :     TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
    1880              : 
    1881              :     Assert(map != NULL);
    1882              : 
    1883           38 :     return adjust_partition_colnos_using_map(colnos, map->attrMap);
    1884              : }
    1885              : 
    1886              : /*
    1887              :  * adjust_partition_colnos_using_map
    1888              :  *      Like adjust_partition_colnos, but uses a caller-supplied map instead
    1889              :  *      of assuming to map from the "root" result relation.
    1890              :  *
    1891              :  * Note: mustn't be called if no adjustment is required.
    1892              :  */
    1893              : static List *
    1894           47 : adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
    1895              : {
    1896           47 :     List       *new_colnos = NIL;
    1897              :     ListCell   *lc;
    1898              : 
    1899              :     Assert(attrMap != NULL);    /* else we shouldn't be here */
    1900              : 
    1901          116 :     foreach(lc, colnos)
    1902              :     {
    1903           69 :         AttrNumber  parentattrno = lfirst_int(lc);
    1904              : 
    1905           69 :         if (parentattrno <= 0 ||
    1906           69 :             parentattrno > attrMap->maplen ||
    1907           69 :             attrMap->attnums[parentattrno - 1] == 0)
    1908            0 :             elog(ERROR, "unexpected attno %d in target column list",
    1909              :                  parentattrno);
    1910           69 :         new_colnos = lappend_int(new_colnos,
    1911           69 :                                  attrMap->attnums[parentattrno - 1]);
    1912              :     }
    1913              : 
    1914           47 :     return new_colnos;
    1915              : }
    1916              : 
    1917              : /*-------------------------------------------------------------------------
    1918              :  * Run-Time Partition Pruning Support.
    1919              :  *
    1920              :  * The following series of functions exist to support the removal of unneeded
    1921              :  * subplans for queries against partitioned tables.  The supporting functions
    1922              :  * here are designed to work with any plan type which supports an arbitrary
    1923              :  * number of subplans, e.g. Append, MergeAppend.
    1924              :  *
    1925              :  * When pruning involves comparison of a partition key to a constant, it's
    1926              :  * done by the planner.  However, if we have a comparison to a non-constant
    1927              :  * but not volatile expression, that presents an opportunity for run-time
    1928              :  * pruning by the executor, allowing irrelevant partitions to be skipped
    1929              :  * dynamically.
    1930              :  *
    1931              :  * We must distinguish expressions containing PARAM_EXEC Params from
    1932              :  * expressions that don't contain those.  Even though a PARAM_EXEC Param is
    1933              :  * considered to be a stable expression, it can change value from one plan
    1934              :  * node scan to the next during query execution.  Stable comparison
    1935              :  * expressions that don't involve such Params allow partition pruning to be
    1936              :  * done once during executor startup.  Expressions that do involve such Params
    1937              :  * require us to prune separately for each scan of the parent plan node.
    1938              :  *
    1939              :  * Note that pruning away unneeded subplans during executor startup has the
    1940              :  * added benefit of not having to initialize the unneeded subplans at all.
    1941              :  *
    1942              :  *
    1943              :  * Functions:
    1944              :  *
    1945              :  * ExecDoInitialPruning:
    1946              :  *      Perform runtime "initial" pruning, if necessary, to determine the set
    1947              :  *      of child subnodes that need to be initialized during ExecInitNode() for
    1948              :  *      all plan nodes that contain a PartitionPruneInfo.
    1949              :  *
    1950              :  * ExecInitPartitionExecPruning:
    1951              :  *      Updates the PartitionPruneState found at given part_prune_index in
    1952              :  *      EState.es_part_prune_states for use during "exec" pruning if required.
    1953              :  *      Also returns the set of subplans to initialize that would be stored at
    1954              :  *      part_prune_index in EState.es_part_prune_results by
    1955              :  *      ExecDoInitialPruning().  Maps in PartitionPruneState are updated to
    1956              :  *      account for initial pruning possibly having eliminated some of the
    1957              :  *      subplans.
    1958              :  *
    1959              :  * ExecFindMatchingSubPlans:
    1960              :  *      Returns indexes of matching subplans after evaluating the expressions
    1961              :  *      that are safe to evaluate at a given point.  This function is first
    1962              :  *      called during ExecDoInitialPruning() to find the initially matching
    1963              :  *      subplans based on performing the initial pruning steps and then must be
    1964              :  *      called again each time the value of a Param listed in
    1965              :  *      PartitionPruneState's 'execparamids' changes.
    1966              :  *-------------------------------------------------------------------------
    1967              :  */
    1968              : 
    1969              : 
    1970              : /*
    1971              :  * ExecDoInitialPruning
    1972              :  *      Perform runtime "initial" pruning, if necessary, to determine the set
    1973              :  *      of child subnodes that need to be initialized during ExecInitNode() for
    1974              :  *      plan nodes that support partition pruning.
    1975              :  *
    1976              :  * This function iterates over each PartitionPruneInfo entry in
    1977              :  * estate->es_part_prune_infos. For each entry, it creates a PartitionPruneState
    1978              :  * and adds it to es_part_prune_states.  ExecInitPartitionExecPruning() accesses
    1979              :  * these states through their corresponding indexes in es_part_prune_states and
    1980              :  * assign each state to the parent node's PlanState, from where it will be used
    1981              :  * for "exec" pruning.
    1982              :  *
    1983              :  * If initial pruning steps exist for a PartitionPruneInfo entry, this function
    1984              :  * executes those pruning steps and stores the result as a bitmapset of valid
    1985              :  * child subplans, identifying which subplans should be initialized for
    1986              :  * execution.  The results are saved in estate->es_part_prune_results.
    1987              :  *
    1988              :  * If no initial pruning is performed for a given PartitionPruneInfo, a NULL
    1989              :  * entry  is still added to es_part_prune_results to maintain alignment with
    1990              :  * es_part_prune_infos. This ensures that ExecInitPartitionExecPruning() can
    1991              :  * use the same index to retrieve the pruning results.
    1992              :  */
    1993              : void
    1994       297722 : ExecDoInitialPruning(EState *estate)
    1995              : {
    1996              :     ListCell   *lc;
    1997              : 
    1998       298123 :     foreach(lc, estate->es_part_prune_infos)
    1999              :     {
    2000          401 :         PartitionPruneInfo *pruneinfo = lfirst_node(PartitionPruneInfo, lc);
    2001              :         PartitionPruneState *prunestate;
    2002          401 :         Bitmapset  *validsubplans = NULL;
    2003          401 :         Bitmapset  *all_leafpart_rtis = NULL;
    2004          401 :         Bitmapset  *validsubplan_rtis = NULL;
    2005              : 
    2006              :         /* Create and save the PartitionPruneState. */
    2007          401 :         prunestate = CreatePartitionPruneState(estate, pruneinfo,
    2008              :                                                &all_leafpart_rtis);
    2009          401 :         estate->es_part_prune_states = lappend(estate->es_part_prune_states,
    2010              :                                                prunestate);
    2011              : 
    2012              :         /*
    2013              :          * Perform initial pruning steps, if any, and save the result
    2014              :          * bitmapset or NULL as described in the header comment.
    2015              :          */
    2016          401 :         if (prunestate->do_initial_prune)
    2017          224 :             validsubplans = ExecFindMatchingSubPlans(prunestate, true,
    2018              :                                                      &validsubplan_rtis);
    2019              :         else
    2020          177 :             validsubplan_rtis = all_leafpart_rtis;
    2021              : 
    2022          401 :         estate->es_unpruned_relids = bms_add_members(estate->es_unpruned_relids,
    2023              :                                                      validsubplan_rtis);
    2024          401 :         estate->es_part_prune_results = lappend(estate->es_part_prune_results,
    2025              :                                                 validsubplans);
    2026              :     }
    2027       297722 : }
    2028              : 
    2029              : /*
    2030              :  * ExecInitPartitionExecPruning
    2031              :  *      Initialize the data structures needed for runtime "exec" partition
    2032              :  *      pruning and return the result of initial pruning, if available.
    2033              :  *
    2034              :  * 'relids' identifies the relation to which both the parent plan and the
    2035              :  * PartitionPruneInfo given by 'part_prune_index' belong.
    2036              :  *
    2037              :  * On return, *initially_valid_subplans is assigned the set of indexes of
    2038              :  * child subplans that must be initialized along with the parent plan node.
    2039              :  * Initial pruning would have been performed by ExecDoInitialPruning(), if
    2040              :  * necessary, and the bitmapset of surviving subplans' indexes would have
    2041              :  * been stored as the part_prune_index'th element of
    2042              :  * EState.es_part_prune_results.
    2043              :  *
    2044              :  * If subplans were indeed pruned during initial pruning, the subplan_map
    2045              :  * arrays in the returned PartitionPruneState are re-sequenced to exclude those
    2046              :  * subplans, but only if the maps will be needed for subsequent execution
    2047              :  * pruning passes.
    2048              :  */
    2049              : PartitionPruneState *
    2050          403 : ExecInitPartitionExecPruning(PlanState *planstate,
    2051              :                              int n_total_subplans,
    2052              :                              int part_prune_index,
    2053              :                              Bitmapset *relids,
    2054              :                              Bitmapset **initially_valid_subplans)
    2055              : {
    2056              :     PartitionPruneState *prunestate;
    2057          403 :     EState     *estate = planstate->state;
    2058              :     PartitionPruneInfo *pruneinfo;
    2059              : 
    2060              :     /* Obtain the pruneinfo we need. */
    2061          403 :     pruneinfo = list_nth_node(PartitionPruneInfo, estate->es_part_prune_infos,
    2062              :                               part_prune_index);
    2063              : 
    2064              :     /* Its relids better match the plan node's or the planner messed up. */
    2065          403 :     if (!bms_equal(relids, pruneinfo->relids))
    2066            0 :         elog(ERROR, "wrong pruneinfo with relids=%s found at part_prune_index=%d contained in plan node with relids=%s",
    2067              :              bmsToString(pruneinfo->relids), part_prune_index,
    2068              :              bmsToString(relids));
    2069              : 
    2070              :     /*
    2071              :      * The PartitionPruneState would have been created by
    2072              :      * ExecDoInitialPruning() and stored as the part_prune_index'th element of
    2073              :      * EState.es_part_prune_states.
    2074              :      */
    2075          403 :     prunestate = list_nth(estate->es_part_prune_states, part_prune_index);
    2076              :     Assert(prunestate != NULL);
    2077              : 
    2078              :     /* Use the result of initial pruning done by ExecDoInitialPruning(). */
    2079          403 :     if (prunestate->do_initial_prune)
    2080          225 :         *initially_valid_subplans = list_nth_node(Bitmapset,
    2081              :                                                   estate->es_part_prune_results,
    2082              :                                                   part_prune_index);
    2083              :     else
    2084              :     {
    2085              :         /* No pruning, so we'll need to initialize all subplans */
    2086              :         Assert(n_total_subplans > 0);
    2087          178 :         *initially_valid_subplans = bms_add_range(NULL, 0,
    2088              :                                                   n_total_subplans - 1);
    2089              :     }
    2090              : 
    2091              :     /*
    2092              :      * The exec pruning state must also be initialized, if needed, before it
    2093              :      * can be used for pruning during execution.
    2094              :      *
    2095              :      * This also re-sequences subplan indexes contained in prunestate to
    2096              :      * account for any that were removed due to initial pruning; refer to the
    2097              :      * condition in InitExecPartitionPruneContexts() that is used to determine
    2098              :      * whether to do this.  If no exec pruning needs to be done, we would thus
    2099              :      * leave the maps to be in an invalid state, but that's ok since that data
    2100              :      * won't be consulted again (cf initial Assert in
    2101              :      * ExecFindMatchingSubPlans).
    2102              :      */
    2103          403 :     if (prunestate->do_exec_prune)
    2104          199 :         InitExecPartitionPruneContexts(prunestate, planstate,
    2105              :                                        *initially_valid_subplans,
    2106              :                                        n_total_subplans);
    2107              : 
    2108          403 :     return prunestate;
    2109              : }
    2110              : 
    2111              : /*
    2112              :  * CreatePartitionPruneState
    2113              :  *      Build the data structure required for calling ExecFindMatchingSubPlans
    2114              :  *
    2115              :  * This includes PartitionPruneContexts (stored in each
    2116              :  * PartitionedRelPruningData corresponding to a PartitionedRelPruneInfo),
    2117              :  * which hold the ExprStates needed to evaluate pruning expressions, and
    2118              :  * mapping arrays to convert partition indexes from the pruning logic
    2119              :  * into subplan indexes in the parent plan node's list of child subplans.
    2120              :  *
    2121              :  * 'pruneinfo' is a PartitionPruneInfo as generated by
    2122              :  * make_partition_pruneinfo.  Here we build a PartitionPruneState containing a
    2123              :  * PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
    2124              :  * pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
    2125              :  * for each PartitionedRelPruneInfo appearing in that sublist.  This two-level
    2126              :  * system is needed to keep from confusing the different hierarchies when a
    2127              :  * UNION ALL contains multiple partitioned tables as children.  The data
    2128              :  * stored in each PartitionedRelPruningData can be re-used each time we
    2129              :  * re-evaluate which partitions match the pruning steps provided in each
    2130              :  * PartitionedRelPruneInfo.
    2131              :  *
    2132              :  * Note that only the PartitionPruneContexts for initial pruning are
    2133              :  * initialized here. Those required for exec pruning are initialized later in
    2134              :  * ExecInitPartitionExecPruning(), as they depend on the availability of the
    2135              :  * parent plan node's PlanState.
    2136              :  *
    2137              :  * If initial pruning steps are to be skipped (e.g., during EXPLAIN
    2138              :  * (GENERIC_PLAN)), *all_leafpart_rtis will be populated with the RT indexes of
    2139              :  * all leaf partitions whose scanning subnode is included in the parent plan
    2140              :  * node's list of child plans. The caller must add these RT indexes to
    2141              :  * estate->es_unpruned_relids.
    2142              :  */
    2143              : static PartitionPruneState *
    2144          401 : CreatePartitionPruneState(EState *estate, PartitionPruneInfo *pruneinfo,
    2145              :                           Bitmapset **all_leafpart_rtis)
    2146              : {
    2147              :     PartitionPruneState *prunestate;
    2148              :     int         n_part_hierarchies;
    2149              :     ListCell   *lc;
    2150              :     int         i;
    2151              : 
    2152              :     /*
    2153              :      * Expression context that will be used by partkey_datum_from_expr() to
    2154              :      * evaluate expressions for comparison against partition bounds.
    2155              :      */
    2156          401 :     ExprContext *econtext = CreateExprContext(estate);
    2157              : 
    2158              :     /* For data reading, executor always includes detached partitions */
    2159          401 :     if (estate->es_partition_directory == NULL)
    2160          377 :         estate->es_partition_directory =
    2161          377 :             CreatePartitionDirectory(estate->es_query_cxt, false);
    2162              : 
    2163          401 :     n_part_hierarchies = list_length(pruneinfo->prune_infos);
    2164              :     Assert(n_part_hierarchies > 0);
    2165              : 
    2166              :     /*
    2167              :      * Allocate the data structure
    2168              :      */
    2169              :     prunestate = (PartitionPruneState *)
    2170          401 :         palloc(offsetof(PartitionPruneState, partprunedata) +
    2171              :                sizeof(PartitionPruningData *) * n_part_hierarchies);
    2172              : 
    2173              :     /* Save ExprContext for use during InitExecPartitionPruneContexts(). */
    2174          401 :     prunestate->econtext = econtext;
    2175          401 :     prunestate->execparamids = NULL;
    2176              :     /* other_subplans can change at runtime, so we need our own copy */
    2177          401 :     prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
    2178          401 :     prunestate->do_initial_prune = false;    /* may be set below */
    2179          401 :     prunestate->do_exec_prune = false;   /* may be set below */
    2180          401 :     prunestate->num_partprunedata = n_part_hierarchies;
    2181              : 
    2182              :     /*
    2183              :      * Create a short-term memory context which we'll use when making calls to
    2184              :      * the partition pruning functions.  This avoids possible memory leaks,
    2185              :      * since the pruning functions call comparison functions that aren't under
    2186              :      * our control.
    2187              :      */
    2188          401 :     prunestate->prune_context =
    2189          401 :         AllocSetContextCreate(CurrentMemoryContext,
    2190              :                               "Partition Prune",
    2191              :                               ALLOCSET_DEFAULT_SIZES);
    2192              : 
    2193          401 :     i = 0;
    2194          814 :     foreach(lc, pruneinfo->prune_infos)
    2195              :     {
    2196          413 :         List       *partrelpruneinfos = lfirst_node(List, lc);
    2197          413 :         int         npartrelpruneinfos = list_length(partrelpruneinfos);
    2198              :         PartitionPruningData *prunedata;
    2199              :         ListCell   *lc2;
    2200              :         int         j;
    2201              : 
    2202              :         prunedata = (PartitionPruningData *)
    2203          413 :             palloc(offsetof(PartitionPruningData, partrelprunedata) +
    2204          413 :                    npartrelpruneinfos * sizeof(PartitionedRelPruningData));
    2205          413 :         prunestate->partprunedata[i] = prunedata;
    2206          413 :         prunedata->num_partrelprunedata = npartrelpruneinfos;
    2207              : 
    2208          413 :         j = 0;
    2209         1231 :         foreach(lc2, partrelpruneinfos)
    2210              :         {
    2211          818 :             PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
    2212          818 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    2213              :             Relation    partrel;
    2214              :             PartitionDesc partdesc;
    2215              :             PartitionKey partkey;
    2216              : 
    2217              :             /*
    2218              :              * We can rely on the copies of the partitioned table's partition
    2219              :              * key and partition descriptor appearing in its relcache entry,
    2220              :              * because that entry will be held open and locked for the
    2221              :              * duration of this executor run.
    2222              :              */
    2223          818 :             partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex, false);
    2224              : 
    2225              :             /* Remember for InitExecPartitionPruneContexts(). */
    2226          818 :             pprune->partrel = partrel;
    2227              : 
    2228          818 :             partkey = RelationGetPartitionKey(partrel);
    2229          818 :             partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
    2230              :                                                 partrel);
    2231              : 
    2232              :             /*
    2233              :              * Initialize the subplan_map and subpart_map.
    2234              :              *
    2235              :              * The set of partitions that exist now might not be the same that
    2236              :              * existed when the plan was made.  The normal case is that it is;
    2237              :              * optimize for that case with a quick comparison, and just copy
    2238              :              * the subplan_map and make subpart_map, leafpart_rti_map point to
    2239              :              * the ones in PruneInfo.
    2240              :              *
    2241              :              * For the case where they aren't identical, we could have more
    2242              :              * partitions on either side; or even exactly the same number of
    2243              :              * them on both but the set of OIDs doesn't match fully.  Handle
    2244              :              * this by creating new subplan_map and subpart_map arrays that
    2245              :              * corresponds to the ones in the PruneInfo where the new
    2246              :              * partition descriptor's OIDs match.  Any that don't match can be
    2247              :              * set to -1, as if they were pruned.  By construction, both
    2248              :              * arrays are in partition bounds order.
    2249              :              */
    2250          818 :             pprune->nparts = partdesc->nparts;
    2251          818 :             pprune->subplan_map = palloc_array(int, partdesc->nparts);
    2252              : 
    2253          818 :             if (partdesc->nparts == pinfo->nparts &&
    2254          817 :                 memcmp(partdesc->oids, pinfo->relid_map,
    2255          817 :                        sizeof(int) * partdesc->nparts) == 0)
    2256              :             {
    2257          756 :                 pprune->subpart_map = pinfo->subpart_map;
    2258          756 :                 pprune->leafpart_rti_map = pinfo->leafpart_rti_map;
    2259          756 :                 memcpy(pprune->subplan_map, pinfo->subplan_map,
    2260          756 :                        sizeof(int) * pinfo->nparts);
    2261              :             }
    2262              :             else
    2263              :             {
    2264           62 :                 int         pd_idx = 0;
    2265              :                 int         pp_idx;
    2266              : 
    2267              :                 /*
    2268              :                  * When the partition arrays are not identical, there could be
    2269              :                  * some new ones but it's also possible that one was removed;
    2270              :                  * we cope with both situations by walking the arrays and
    2271              :                  * discarding those that don't match.
    2272              :                  *
    2273              :                  * If the number of partitions on both sides match, it's still
    2274              :                  * possible that one partition has been detached and another
    2275              :                  * attached.  Cope with that by creating a map that skips any
    2276              :                  * mismatches.
    2277              :                  */
    2278           62 :                 pprune->subpart_map = palloc_array(int, partdesc->nparts);
    2279           62 :                 pprune->leafpart_rti_map = palloc_array(int, partdesc->nparts);
    2280              : 
    2281          264 :                 for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
    2282              :                 {
    2283              :                     /* Skip any InvalidOid relid_map entries */
    2284          312 :                     while (pd_idx < pinfo->nparts &&
    2285          252 :                            !OidIsValid(pinfo->relid_map[pd_idx]))
    2286          110 :                         pd_idx++;
    2287              : 
    2288          202 :             recheck:
    2289          202 :                     if (pd_idx < pinfo->nparts &&
    2290          142 :                         pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
    2291              :                     {
    2292              :                         /* match... */
    2293           91 :                         pprune->subplan_map[pp_idx] =
    2294           91 :                             pinfo->subplan_map[pd_idx];
    2295           91 :                         pprune->subpart_map[pp_idx] =
    2296           91 :                             pinfo->subpart_map[pd_idx];
    2297           91 :                         pprune->leafpart_rti_map[pp_idx] =
    2298           91 :                             pinfo->leafpart_rti_map[pd_idx];
    2299           91 :                         pd_idx++;
    2300           91 :                         continue;
    2301              :                     }
    2302              : 
    2303              :                     /*
    2304              :                      * There isn't an exact match in the corresponding
    2305              :                      * positions of both arrays.  Peek ahead in
    2306              :                      * pinfo->relid_map to see if we have a match for the
    2307              :                      * current partition in partdesc.  Normally if a match
    2308              :                      * exists it's just one element ahead, and it means the
    2309              :                      * planner saw one extra partition that we no longer see
    2310              :                      * now (its concurrent detach finished just in between);
    2311              :                      * so we skip that one by updating pd_idx to the new
    2312              :                      * location and jumping above.  We can then continue to
    2313              :                      * match the rest of the elements after skipping the OID
    2314              :                      * with no match; no future matches are tried for the
    2315              :                      * element that was skipped, because we know the arrays to
    2316              :                      * be in the same order.
    2317              :                      *
    2318              :                      * If we don't see a match anywhere in the rest of the
    2319              :                      * pinfo->relid_map array, that means we see an element
    2320              :                      * now that the planner didn't see, so mark that one as
    2321              :                      * pruned and move on.
    2322              :                      */
    2323          144 :                     for (int pd_idx2 = pd_idx + 1; pd_idx2 < pinfo->nparts; pd_idx2++)
    2324              :                     {
    2325           33 :                         if (pd_idx2 >= pinfo->nparts)
    2326            0 :                             break;
    2327           33 :                         if (pinfo->relid_map[pd_idx2] == partdesc->oids[pp_idx])
    2328              :                         {
    2329            0 :                             pd_idx = pd_idx2;
    2330            0 :                             goto recheck;
    2331              :                         }
    2332              :                     }
    2333              : 
    2334          111 :                     pprune->subpart_map[pp_idx] = -1;
    2335          111 :                     pprune->subplan_map[pp_idx] = -1;
    2336          111 :                     pprune->leafpart_rti_map[pp_idx] = 0;
    2337              :                 }
    2338              :             }
    2339              : 
    2340              :             /* present_parts is also subject to later modification */
    2341          818 :             pprune->present_parts = bms_copy(pinfo->present_parts);
    2342              : 
    2343              :             /*
    2344              :              * Only initial_context is initialized here.  exec_context is
    2345              :              * initialized during ExecInitPartitionExecPruning() when the
    2346              :              * parent plan's PlanState is available.
    2347              :              *
    2348              :              * Note that we must skip execution-time (both "init" and "exec")
    2349              :              * partition pruning in EXPLAIN (GENERIC_PLAN), since parameter
    2350              :              * values may be missing.
    2351              :              */
    2352          818 :             pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
    2353          818 :             if (pinfo->initial_pruning_steps &&
    2354          278 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2355              :             {
    2356          275 :                 InitPartitionPruneContext(&pprune->initial_context,
    2357              :                                           pprune->initial_pruning_steps,
    2358              :                                           partdesc, partkey, NULL,
    2359              :                                           econtext);
    2360              :                 /* Record whether initial pruning is needed at any level */
    2361          275 :                 prunestate->do_initial_prune = true;
    2362              :             }
    2363          818 :             pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
    2364          818 :             if (pinfo->exec_pruning_steps &&
    2365          255 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2366              :             {
    2367              :                 /* Record whether exec pruning is needed at any level */
    2368          255 :                 prunestate->do_exec_prune = true;
    2369              :             }
    2370              : 
    2371              :             /*
    2372              :              * Accumulate the IDs of all PARAM_EXEC Params affecting the
    2373              :              * partitioning decisions at this plan node.
    2374              :              */
    2375         1636 :             prunestate->execparamids = bms_add_members(prunestate->execparamids,
    2376          818 :                                                        pinfo->execparamids);
    2377              : 
    2378              :             /*
    2379              :              * Return all leaf partition indexes if we're skipping pruning in
    2380              :              * the EXPLAIN (GENERIC_PLAN) case.
    2381              :              */
    2382          818 :             if (pinfo->initial_pruning_steps && !prunestate->do_initial_prune)
    2383              :             {
    2384            3 :                 int         part_index = -1;
    2385              : 
    2386            9 :                 while ((part_index = bms_next_member(pprune->present_parts,
    2387            9 :                                                      part_index)) >= 0)
    2388              :                 {
    2389            6 :                     Index       rtindex = pprune->leafpart_rti_map[part_index];
    2390              : 
    2391            6 :                     if (rtindex)
    2392            6 :                         *all_leafpart_rtis = bms_add_member(*all_leafpart_rtis,
    2393              :                                                             rtindex);
    2394              :                 }
    2395              :             }
    2396              : 
    2397          818 :             j++;
    2398              :         }
    2399          413 :         i++;
    2400              :     }
    2401              : 
    2402          401 :     return prunestate;
    2403              : }
    2404              : 
    2405              : /*
    2406              :  * Initialize a PartitionPruneContext for the given list of pruning steps.
    2407              :  */
    2408              : static void
    2409          531 : InitPartitionPruneContext(PartitionPruneContext *context,
    2410              :                           List *pruning_steps,
    2411              :                           PartitionDesc partdesc,
    2412              :                           PartitionKey partkey,
    2413              :                           PlanState *planstate,
    2414              :                           ExprContext *econtext)
    2415              : {
    2416              :     int         n_steps;
    2417              :     int         partnatts;
    2418              :     ListCell   *lc;
    2419              : 
    2420          531 :     n_steps = list_length(pruning_steps);
    2421              : 
    2422          531 :     context->strategy = partkey->strategy;
    2423          531 :     context->partnatts = partnatts = partkey->partnatts;
    2424          531 :     context->nparts = partdesc->nparts;
    2425          531 :     context->boundinfo = partdesc->boundinfo;
    2426          531 :     context->partcollation = partkey->partcollation;
    2427          531 :     context->partsupfunc = partkey->partsupfunc;
    2428              : 
    2429              :     /* We'll look up type-specific support functions as needed */
    2430          531 :     context->stepcmpfuncs = palloc0_array(FmgrInfo, n_steps * partnatts);
    2431              : 
    2432          531 :     context->ppccontext = CurrentMemoryContext;
    2433          531 :     context->planstate = planstate;
    2434          531 :     context->exprcontext = econtext;
    2435              : 
    2436              :     /* Initialize expression state for each expression we need */
    2437          531 :     context->exprstates = palloc0_array(ExprState *, n_steps * partnatts);
    2438         1393 :     foreach(lc, pruning_steps)
    2439              :     {
    2440          862 :         PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
    2441          862 :         ListCell   *lc2 = list_head(step->exprs);
    2442              :         int         keyno;
    2443              : 
    2444              :         /* not needed for other step kinds */
    2445          862 :         if (!IsA(step, PartitionPruneStepOp))
    2446          143 :             continue;
    2447              : 
    2448              :         Assert(list_length(step->exprs) <= partnatts);
    2449              : 
    2450         1513 :         for (keyno = 0; keyno < partnatts; keyno++)
    2451              :         {
    2452          794 :             if (bms_is_member(keyno, step->nullkeys))
    2453            3 :                 continue;
    2454              : 
    2455          791 :             if (lc2 != NULL)
    2456              :             {
    2457          743 :                 Expr       *expr = lfirst(lc2);
    2458              : 
    2459              :                 /* not needed for Consts */
    2460          743 :                 if (!IsA(expr, Const))
    2461              :                 {
    2462          696 :                     int         stateidx = PruneCxtStateIdx(partnatts,
    2463              :                                                             step->step.step_id,
    2464              :                                                             keyno);
    2465              : 
    2466              :                     /*
    2467              :                      * When planstate is NULL, pruning_steps is known not to
    2468              :                      * contain any expressions that depend on the parent plan.
    2469              :                      * Information of any available EXTERN parameters must be
    2470              :                      * passed explicitly in that case, which the caller must
    2471              :                      * have made available via econtext.
    2472              :                      */
    2473          696 :                     if (planstate == NULL)
    2474          407 :                         context->exprstates[stateidx] =
    2475          407 :                             ExecInitExprWithParams(expr,
    2476              :                                                    econtext->ecxt_param_list_info);
    2477              :                     else
    2478          289 :                         context->exprstates[stateidx] =
    2479          289 :                             ExecInitExpr(expr, context->planstate);
    2480              :                 }
    2481          743 :                 lc2 = lnext(step->exprs, lc2);
    2482              :             }
    2483              :         }
    2484              :     }
    2485          531 : }
    2486              : 
    2487              : /*
    2488              :  * InitExecPartitionPruneContexts
    2489              :  *      Initialize exec pruning contexts deferred by CreatePartitionPruneState()
    2490              :  *
    2491              :  * This function finalizes exec pruning setup for a PartitionPruneState by
    2492              :  * initializing contexts for pruning steps that require the parent plan's
    2493              :  * PlanState. It iterates over PartitionPruningData entries and sets up the
    2494              :  * necessary execution contexts for pruning during query execution.
    2495              :  *
    2496              :  * Also fix the mapping of partition indexes to subplan indexes contained in
    2497              :  * prunestate by considering the new list of subplans that survived initial
    2498              :  * pruning.
    2499              :  *
    2500              :  * Current values of the indexes present in PartitionPruneState count all the
    2501              :  * subplans that would be present before initial pruning was done.  If initial
    2502              :  * pruning got rid of some of the subplans, any subsequent pruning passes will
    2503              :  * be looking at a different set of target subplans to choose from than those
    2504              :  * in the pre-initial-pruning set, so the maps in PartitionPruneState
    2505              :  * containing those indexes must be updated to reflect the new indexes of
    2506              :  * subplans in the post-initial-pruning set.
    2507              :  */
    2508              : static void
    2509          199 : InitExecPartitionPruneContexts(PartitionPruneState *prunestate,
    2510              :                                PlanState *parent_plan,
    2511              :                                Bitmapset *initially_valid_subplans,
    2512              :                                int n_total_subplans)
    2513              : {
    2514              :     EState     *estate;
    2515          199 :     int        *new_subplan_indexes = NULL;
    2516              :     Bitmapset  *new_other_subplans;
    2517              :     int         i;
    2518              :     int         newidx;
    2519          199 :     bool        fix_subplan_map = false;
    2520              : 
    2521              :     Assert(prunestate->do_exec_prune);
    2522              :     Assert(parent_plan != NULL);
    2523          199 :     estate = parent_plan->state;
    2524              : 
    2525              :     /*
    2526              :      * No need to fix subplans maps if initial pruning didn't eliminate any
    2527              :      * subplans.
    2528              :      */
    2529          199 :     if (bms_num_members(initially_valid_subplans) < n_total_subplans)
    2530              :     {
    2531           24 :         fix_subplan_map = true;
    2532              : 
    2533              :         /*
    2534              :          * First we must build a temporary array which maps old subplan
    2535              :          * indexes to new ones.  For convenience of initialization, we use
    2536              :          * 1-based indexes in this array and leave pruned items as 0.
    2537              :          */
    2538           24 :         new_subplan_indexes = palloc0_array(int, n_total_subplans);
    2539           24 :         newidx = 1;
    2540           24 :         i = -1;
    2541           93 :         while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
    2542              :         {
    2543              :             Assert(i < n_total_subplans);
    2544           69 :             new_subplan_indexes[i] = newidx++;
    2545              :         }
    2546              :     }
    2547              : 
    2548              :     /*
    2549              :      * Now we can update each PartitionedRelPruneInfo's subplan_map with new
    2550              :      * subplan indexes.  We must also recompute its present_parts bitmap.
    2551              :      */
    2552          410 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2553              :     {
    2554          211 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2555              :         int         j;
    2556              : 
    2557              :         /*
    2558              :          * Within each hierarchy, we perform this loop in back-to-front order
    2559              :          * so that we determine present_parts for the lowest-level partitioned
    2560              :          * tables first.  This way we can tell whether a sub-partitioned
    2561              :          * table's partitions were entirely pruned so we can exclude it from
    2562              :          * the current level's present_parts.
    2563              :          */
    2564          650 :         for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
    2565              :         {
    2566          439 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    2567          439 :             int         nparts = pprune->nparts;
    2568              :             int         k;
    2569              : 
    2570              :             /* Initialize PartitionPruneContext for exec pruning, if needed. */
    2571          439 :             if (pprune->exec_pruning_steps != NIL)
    2572              :             {
    2573              :                 PartitionKey partkey;
    2574              :                 PartitionDesc partdesc;
    2575              : 
    2576              :                 /*
    2577              :                  * See the comment in CreatePartitionPruneState() regarding
    2578              :                  * the usage of partdesc and partkey.
    2579              :                  */
    2580          256 :                 partkey = RelationGetPartitionKey(pprune->partrel);
    2581          256 :                 partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
    2582              :                                                     pprune->partrel);
    2583              : 
    2584          256 :                 InitPartitionPruneContext(&pprune->exec_context,
    2585              :                                           pprune->exec_pruning_steps,
    2586              :                                           partdesc, partkey, parent_plan,
    2587              :                                           prunestate->econtext);
    2588              :             }
    2589              : 
    2590          439 :             if (!fix_subplan_map)
    2591          343 :                 continue;
    2592              : 
    2593              :             /* We just rebuild present_parts from scratch */
    2594           96 :             bms_free(pprune->present_parts);
    2595           96 :             pprune->present_parts = NULL;
    2596              : 
    2597          354 :             for (k = 0; k < nparts; k++)
    2598              :             {
    2599          258 :                 int         oldidx = pprune->subplan_map[k];
    2600              :                 int         subidx;
    2601              : 
    2602              :                 /*
    2603              :                  * If this partition existed as a subplan then change the old
    2604              :                  * subplan index to the new subplan index.  The new index may
    2605              :                  * become -1 if the partition was pruned above, or it may just
    2606              :                  * come earlier in the subplan list due to some subplans being
    2607              :                  * removed earlier in the list.  If it's a subpartition, add
    2608              :                  * it to present_parts unless it's entirely pruned.
    2609              :                  */
    2610          258 :                 if (oldidx >= 0)
    2611              :                 {
    2612              :                     Assert(oldidx < n_total_subplans);
    2613          198 :                     pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
    2614              : 
    2615          198 :                     if (new_subplan_indexes[oldidx] > 0)
    2616           57 :                         pprune->present_parts =
    2617           57 :                             bms_add_member(pprune->present_parts, k);
    2618              :                 }
    2619           60 :                 else if ((subidx = pprune->subpart_map[k]) >= 0)
    2620              :                 {
    2621              :                     PartitionedRelPruningData *subprune;
    2622              : 
    2623           60 :                     subprune = &prunedata->partrelprunedata[subidx];
    2624              : 
    2625           60 :                     if (!bms_is_empty(subprune->present_parts))
    2626           24 :                         pprune->present_parts =
    2627           24 :                             bms_add_member(pprune->present_parts, k);
    2628              :                 }
    2629              :             }
    2630              :         }
    2631              :     }
    2632              : 
    2633              :     /*
    2634              :      * If we fixed subplan maps, we must also recompute the other_subplans
    2635              :      * set, since indexes in it may change.
    2636              :      */
    2637          199 :     if (fix_subplan_map)
    2638              :     {
    2639           24 :         new_other_subplans = NULL;
    2640           24 :         i = -1;
    2641           36 :         while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
    2642           12 :             new_other_subplans = bms_add_member(new_other_subplans,
    2643           12 :                                                 new_subplan_indexes[i] - 1);
    2644              : 
    2645           24 :         bms_free(prunestate->other_subplans);
    2646           24 :         prunestate->other_subplans = new_other_subplans;
    2647              : 
    2648           24 :         pfree(new_subplan_indexes);
    2649              :     }
    2650          199 : }
    2651              : 
    2652              : /*
    2653              :  * ExecFindMatchingSubPlans
    2654              :  *      Determine which subplans match the pruning steps detailed in
    2655              :  *      'prunestate' for the current comparison expression values.
    2656              :  *
    2657              :  * Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated.  This
    2658              :  * differentiates the initial executor-time pruning step from later
    2659              :  * runtime pruning.
    2660              :  *
    2661              :  * The caller must pass a non-NULL validsubplan_rtis during initial pruning
    2662              :  * to collect the RT indexes of leaf partitions whose subnodes will be
    2663              :  * executed.  These RT indexes are later added to EState.es_unpruned_relids.
    2664              :  */
    2665              : Bitmapset *
    2666         1949 : ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
    2667              :                          bool initial_prune,
    2668              :                          Bitmapset **validsubplan_rtis)
    2669              : {
    2670         1949 :     Bitmapset  *result = NULL;
    2671              :     MemoryContext oldcontext;
    2672              :     int         i;
    2673              : 
    2674              :     /*
    2675              :      * Either we're here on the initial prune done during pruning
    2676              :      * initialization, or we're at a point where PARAM_EXEC Params can be
    2677              :      * evaluated *and* there are steps in which to do so.
    2678              :      */
    2679              :     Assert(initial_prune || prunestate->do_exec_prune);
    2680              :     Assert(validsubplan_rtis != NULL || !initial_prune);
    2681              : 
    2682              :     /*
    2683              :      * Switch to a temp context to avoid leaking memory in the executor's
    2684              :      * query-lifespan memory context.
    2685              :      */
    2686         1949 :     oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
    2687              : 
    2688              :     /*
    2689              :      * For each hierarchy, do the pruning tests, and add nondeletable
    2690              :      * subplans' indexes to "result".
    2691              :      */
    2692         3919 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2693              :     {
    2694         1970 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2695              :         PartitionedRelPruningData *pprune;
    2696              : 
    2697              :         /*
    2698              :          * We pass the zeroth item, belonging to the root table of the
    2699              :          * hierarchy, and find_matching_subplans_recurse() takes care of
    2700              :          * recursing to other (lower-level) parents as needed.
    2701              :          */
    2702         1970 :         pprune = &prunedata->partrelprunedata[0];
    2703         1970 :         find_matching_subplans_recurse(prunedata, pprune, initial_prune,
    2704              :                                        &result, validsubplan_rtis);
    2705              : 
    2706              :         /*
    2707              :          * Expression eval may have used space in ExprContext too. Avoid
    2708              :          * accessing exec_context during initial pruning, as it is not valid
    2709              :          * at that stage.
    2710              :          */
    2711         1970 :         if (!initial_prune && pprune->exec_pruning_steps)
    2712         1698 :             ResetExprContext(pprune->exec_context.exprcontext);
    2713              :     }
    2714              : 
    2715              :     /* Add in any subplans that partition pruning didn't account for */
    2716         1949 :     result = bms_add_members(result, prunestate->other_subplans);
    2717              : 
    2718         1949 :     MemoryContextSwitchTo(oldcontext);
    2719              : 
    2720              :     /* Copy result out of the temp context before we reset it */
    2721         1949 :     result = bms_copy(result);
    2722         1949 :     if (validsubplan_rtis)
    2723          224 :         *validsubplan_rtis = bms_copy(*validsubplan_rtis);
    2724              : 
    2725         1949 :     MemoryContextReset(prunestate->prune_context);
    2726              : 
    2727         1949 :     return result;
    2728              : }
    2729              : 
    2730              : /*
    2731              :  * find_matching_subplans_recurse
    2732              :  *      Recursive worker function for ExecFindMatchingSubPlans
    2733              :  *
    2734              :  * Adds valid (non-prunable) subplan IDs to *validsubplans. If
    2735              :  * *validsubplan_rtis is non-NULL, it also adds the RT indexes of their
    2736              :  * corresponding partitions, but only if they are leaf partitions.
    2737              :  */
    2738              : static void
    2739         2177 : find_matching_subplans_recurse(PartitionPruningData *prunedata,
    2740              :                                PartitionedRelPruningData *pprune,
    2741              :                                bool initial_prune,
    2742              :                                Bitmapset **validsubplans,
    2743              :                                Bitmapset **validsubplan_rtis)
    2744              : {
    2745              :     Bitmapset  *partset;
    2746              :     int         i;
    2747              : 
    2748              :     /* Guard against stack overflow due to overly deep partition hierarchy. */
    2749         2177 :     check_stack_depth();
    2750              : 
    2751              :     /*
    2752              :      * Prune as appropriate, if we have pruning steps matching the current
    2753              :      * execution context.  Otherwise just include all partitions at this
    2754              :      * level.
    2755              :      */
    2756         2177 :     if (initial_prune && pprune->initial_pruning_steps)
    2757          266 :         partset = get_matching_partitions(&pprune->initial_context,
    2758              :                                           pprune->initial_pruning_steps);
    2759         1911 :     else if (!initial_prune && pprune->exec_pruning_steps)
    2760         1740 :         partset = get_matching_partitions(&pprune->exec_context,
    2761              :                                           pprune->exec_pruning_steps);
    2762              :     else
    2763          171 :         partset = pprune->present_parts;
    2764              : 
    2765              :     /* Translate partset into subplan indexes */
    2766         2177 :     i = -1;
    2767         3082 :     while ((i = bms_next_member(partset, i)) >= 0)
    2768              :     {
    2769          905 :         if (pprune->subplan_map[i] >= 0)
    2770              :         {
    2771         1394 :             *validsubplans = bms_add_member(*validsubplans,
    2772          697 :                                             pprune->subplan_map[i]);
    2773              : 
    2774              :             /*
    2775              :              * Only report leaf partitions. Non-leaf partitions may appear
    2776              :              * here when they use an unflattened Append or MergeAppend.
    2777              :              */
    2778          697 :             if (validsubplan_rtis && pprune->leafpart_rti_map[i])
    2779          337 :                 *validsubplan_rtis = bms_add_member(*validsubplan_rtis,
    2780          337 :                                                     pprune->leafpart_rti_map[i]);
    2781              :         }
    2782              :         else
    2783              :         {
    2784          208 :             int         partidx = pprune->subpart_map[i];
    2785              : 
    2786          208 :             if (partidx >= 0)
    2787          207 :                 find_matching_subplans_recurse(prunedata,
    2788              :                                                &prunedata->partrelprunedata[partidx],
    2789              :                                                initial_prune, validsubplans,
    2790              :                                                validsubplan_rtis);
    2791              :             else
    2792              :             {
    2793              :                 /*
    2794              :                  * We get here if the planner already pruned all the sub-
    2795              :                  * partitions for this partition.  Silently ignore this
    2796              :                  * partition in this case.  The end result is the same: we
    2797              :                  * would have pruned all partitions just the same, but we
    2798              :                  * don't have any pruning steps to execute to verify this.
    2799              :                  */
    2800              :             }
    2801              :         }
    2802              :     }
    2803         2177 : }
        

Generated by: LCOV version 2.0-1