LCOV - code coverage report
Current view: top level - src/backend/executor - execPartition.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 588 614 95.8 %
Date: 2025-01-18 04:15:08 Functions: 17 17 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * execPartition.c
       4             :  *    Support routines for partitioning.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  * IDENTIFICATION
      10             :  *    src/backend/executor/execPartition.c
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #include "postgres.h"
      15             : 
      16             : #include "access/table.h"
      17             : #include "access/tableam.h"
      18             : #include "catalog/partition.h"
      19             : #include "executor/execPartition.h"
      20             : #include "executor/executor.h"
      21             : #include "executor/nodeModifyTable.h"
      22             : #include "foreign/fdwapi.h"
      23             : #include "mb/pg_wchar.h"
      24             : #include "miscadmin.h"
      25             : #include "partitioning/partbounds.h"
      26             : #include "partitioning/partdesc.h"
      27             : #include "partitioning/partprune.h"
      28             : #include "rewrite/rewriteManip.h"
      29             : #include "utils/acl.h"
      30             : #include "utils/lsyscache.h"
      31             : #include "utils/partcache.h"
      32             : #include "utils/rls.h"
      33             : #include "utils/ruleutils.h"
      34             : 
      35             : 
      36             : /*-----------------------
      37             :  * PartitionTupleRouting - Encapsulates all information required to
      38             :  * route a tuple inserted into a partitioned table to one of its leaf
      39             :  * partitions.
      40             :  *
      41             :  * partition_root
      42             :  *      The partitioned table that's the target of the command.
      43             :  *
      44             :  * partition_dispatch_info
      45             :  *      Array of 'max_dispatch' elements containing a pointer to a
      46             :  *      PartitionDispatch object for every partitioned table touched by tuple
      47             :  *      routing.  The entry for the target partitioned table is *always*
      48             :  *      present in the 0th element of this array.  See comment for
      49             :  *      PartitionDispatchData->indexes for details on how this array is
      50             :  *      indexed.
      51             :  *
      52             :  * nonleaf_partitions
      53             :  *      Array of 'max_dispatch' elements containing pointers to fake
      54             :  *      ResultRelInfo objects for nonleaf partitions, useful for checking
      55             :  *      the partition constraint.
      56             :  *
      57             :  * num_dispatch
      58             :  *      The current number of items stored in the 'partition_dispatch_info'
      59             :  *      array.  Also serves as the index of the next free array element for
      60             :  *      new PartitionDispatch objects that need to be stored.
      61             :  *
      62             :  * max_dispatch
      63             :  *      The current allocated size of the 'partition_dispatch_info' array.
      64             :  *
      65             :  * partitions
      66             :  *      Array of 'max_partitions' elements containing a pointer to a
      67             :  *      ResultRelInfo for every leaf partition touched by tuple routing.
      68             :  *      Some of these are pointers to ResultRelInfos which are borrowed out of
      69             :  *      the owning ModifyTableState node.  The remainder have been built
      70             :  *      especially for tuple routing.  See comment for
      71             :  *      PartitionDispatchData->indexes for details on how this array is
      72             :  *      indexed.
      73             :  *
      74             :  * is_borrowed_rel
      75             :  *      Array of 'max_partitions' booleans recording whether a given entry
      76             :  *      in 'partitions' is a ResultRelInfo pointer borrowed from the owning
      77             :  *      ModifyTableState node, rather than being built here.
      78             :  *
      79             :  * num_partitions
      80             :  *      The current number of items stored in the 'partitions' array.  Also
      81             :  *      serves as the index of the next free array element for new
      82             :  *      ResultRelInfo objects that need to be stored.
      83             :  *
      84             :  * max_partitions
      85             :  *      The current allocated size of the 'partitions' array.
      86             :  *
      87             :  * memcxt
      88             :  *      Memory context used to allocate subsidiary structs.
      89             :  *-----------------------
      90             :  */
      91             : struct PartitionTupleRouting
      92             : {
      93             :     Relation    partition_root;
      94             :     PartitionDispatch *partition_dispatch_info;
      95             :     ResultRelInfo **nonleaf_partitions;
      96             :     int         num_dispatch;
      97             :     int         max_dispatch;
      98             :     ResultRelInfo **partitions;
      99             :     bool       *is_borrowed_rel;
     100             :     int         num_partitions;
     101             :     int         max_partitions;
     102             :     MemoryContext memcxt;
     103             : };
     104             : 
     105             : /*-----------------------
     106             :  * PartitionDispatch - information about one partitioned table in a partition
     107             :  * hierarchy required to route a tuple to any of its partitions.  A
     108             :  * PartitionDispatch is always encapsulated inside a PartitionTupleRouting
     109             :  * struct and stored inside its 'partition_dispatch_info' array.
     110             :  *
     111             :  * reldesc
     112             :  *      Relation descriptor of the table
     113             :  *
     114             :  * key
     115             :  *      Partition key information of the table
     116             :  *
     117             :  * keystate
     118             :  *      Execution state required for expressions in the partition key
     119             :  *
     120             :  * partdesc
     121             :  *      Partition descriptor of the table
     122             :  *
     123             :  * tupslot
     124             :  *      A standalone TupleTableSlot initialized with this table's tuple
     125             :  *      descriptor, or NULL if no tuple conversion between the parent is
     126             :  *      required.
     127             :  *
     128             :  * tupmap
     129             :  *      TupleConversionMap to convert from the parent's rowtype to this table's
     130             :  *      rowtype  (when extracting the partition key of a tuple just before
     131             :  *      routing it through this table). A NULL value is stored if no tuple
     132             :  *      conversion is required.
     133             :  *
     134             :  * indexes
     135             :  *      Array of partdesc->nparts elements.  For leaf partitions the index
     136             :  *      corresponds to the partition's ResultRelInfo in the encapsulating
     137             :  *      PartitionTupleRouting's partitions array.  For partitioned partitions,
     138             :  *      the index corresponds to the PartitionDispatch for it in its
     139             :  *      partition_dispatch_info array.  -1 indicates we've not yet allocated
     140             :  *      anything in PartitionTupleRouting for the partition.
     141             :  *-----------------------
     142             :  */
     143             : typedef struct PartitionDispatchData
     144             : {
     145             :     Relation    reldesc;
     146             :     PartitionKey key;
     147             :     List       *keystate;       /* list of ExprState */
     148             :     PartitionDesc partdesc;
     149             :     TupleTableSlot *tupslot;
     150             :     AttrMap    *tupmap;
     151             :     int         indexes[FLEXIBLE_ARRAY_MEMBER];
     152             : }           PartitionDispatchData;
     153             : 
     154             : 
     155             : static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
     156             :                                             EState *estate, PartitionTupleRouting *proute,
     157             :                                             PartitionDispatch dispatch,
     158             :                                             ResultRelInfo *rootResultRelInfo,
     159             :                                             int partidx);
     160             : static void ExecInitRoutingInfo(ModifyTableState *mtstate,
     161             :                                 EState *estate,
     162             :                                 PartitionTupleRouting *proute,
     163             :                                 PartitionDispatch dispatch,
     164             :                                 ResultRelInfo *partRelInfo,
     165             :                                 int partidx,
     166             :                                 bool is_borrowed_rel);
     167             : static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
     168             :                                                        PartitionTupleRouting *proute,
     169             :                                                        Oid partoid, PartitionDispatch parent_pd,
     170             :                                                        int partidx, ResultRelInfo *rootResultRelInfo);
     171             : static void FormPartitionKeyDatum(PartitionDispatch pd,
     172             :                                   TupleTableSlot *slot,
     173             :                                   EState *estate,
     174             :                                   Datum *values,
     175             :                                   bool *isnull);
     176             : static int  get_partition_for_tuple(PartitionDispatch pd, Datum *values,
     177             :                                     bool *isnull);
     178             : static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
     179             :                                                   Datum *values,
     180             :                                                   bool *isnull,
     181             :                                                   int maxfieldlen);
     182             : static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
     183             : static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
     184             : static PartitionPruneState *CreatePartitionPruneState(PlanState *planstate,
     185             :                                                       PartitionPruneInfo *pruneinfo);
     186             : static void InitPartitionPruneContext(PartitionPruneContext *context,
     187             :                                       List *pruning_steps,
     188             :                                       PartitionDesc partdesc,
     189             :                                       PartitionKey partkey,
     190             :                                       PlanState *planstate,
     191             :                                       ExprContext *econtext);
     192             : static void PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
     193             :                                         Bitmapset *initially_valid_subplans,
     194             :                                         int n_total_subplans);
     195             : static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
     196             :                                            PartitionedRelPruningData *pprune,
     197             :                                            bool initial_prune,
     198             :                                            Bitmapset **validsubplans);
     199             : 
     200             : 
     201             : /*
     202             :  * ExecSetupPartitionTupleRouting - sets up information needed during
     203             :  * tuple routing for partitioned tables, encapsulates it in
     204             :  * PartitionTupleRouting, and returns it.
     205             :  *
     206             :  * Callers must use the returned PartitionTupleRouting during calls to
     207             :  * ExecFindPartition().  The actual ResultRelInfo for a partition is only
     208             :  * allocated when the partition is found for the first time.
     209             :  *
     210             :  * The current memory context is used to allocate this struct and all
     211             :  * subsidiary structs that will be allocated from it later on.  Typically
     212             :  * it should be estate->es_query_cxt.
     213             :  */
     214             : PartitionTupleRouting *
     215        6878 : ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
     216             : {
     217             :     PartitionTupleRouting *proute;
     218             : 
     219             :     /*
     220             :      * Here we attempt to expend as little effort as possible in setting up
     221             :      * the PartitionTupleRouting.  Each partition's ResultRelInfo is built on
     222             :      * demand, only when we actually need to route a tuple to that partition.
     223             :      * The reason for this is that a common case is for INSERT to insert a
     224             :      * single tuple into a partitioned table and this must be fast.
     225             :      */
     226        6878 :     proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
     227        6878 :     proute->partition_root = rel;
     228        6878 :     proute->memcxt = CurrentMemoryContext;
     229             :     /* Rest of members initialized by zeroing */
     230             : 
     231             :     /*
     232             :      * Initialize this table's PartitionDispatch object.  Here we pass in the
     233             :      * parent as NULL as we don't need to care about any parent of the target
     234             :      * partitioned table.
     235             :      */
     236        6878 :     ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
     237             :                                   NULL, 0, NULL);
     238             : 
     239        6878 :     return proute;
     240             : }
     241             : 
     242             : /*
     243             :  * ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
     244             :  * the tuple contained in *slot should belong to.
     245             :  *
     246             :  * If the partition's ResultRelInfo does not yet exist in 'proute' then we set
     247             :  * one up or reuse one from mtstate's resultRelInfo array.  When reusing a
     248             :  * ResultRelInfo from the mtstate we verify that the relation is a valid
     249             :  * target for INSERTs and initialize tuple routing information.
     250             :  *
     251             :  * rootResultRelInfo is the relation named in the query.
     252             :  *
     253             :  * estate must be non-NULL; we'll need it to compute any expressions in the
     254             :  * partition keys.  Also, its per-tuple contexts are used as evaluation
     255             :  * scratch space.
     256             :  *
     257             :  * If no leaf partition is found, this routine errors out with the appropriate
     258             :  * error message.  An error may also be raised if the found target partition
     259             :  * is not a valid target for an INSERT.
     260             :  */
     261             : ResultRelInfo *
     262      996750 : ExecFindPartition(ModifyTableState *mtstate,
     263             :                   ResultRelInfo *rootResultRelInfo,
     264             :                   PartitionTupleRouting *proute,
     265             :                   TupleTableSlot *slot, EState *estate)
     266             : {
     267      996750 :     PartitionDispatch *pd = proute->partition_dispatch_info;
     268             :     Datum       values[PARTITION_MAX_KEYS];
     269             :     bool        isnull[PARTITION_MAX_KEYS];
     270             :     Relation    rel;
     271             :     PartitionDispatch dispatch;
     272             :     PartitionDesc partdesc;
     273      996750 :     ExprContext *ecxt = GetPerTupleExprContext(estate);
     274      996750 :     TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
     275      996750 :     TupleTableSlot *rootslot = slot;
     276      996750 :     TupleTableSlot *myslot = NULL;
     277             :     MemoryContext oldcxt;
     278      996750 :     ResultRelInfo *rri = NULL;
     279             : 
     280             :     /* use per-tuple context here to avoid leaking memory */
     281      996750 :     oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
     282             : 
     283             :     /*
     284             :      * First check the root table's partition constraint, if any.  No point in
     285             :      * routing the tuple if it doesn't belong in the root table itself.
     286             :      */
     287      996750 :     if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
     288        4496 :         ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
     289             : 
     290             :     /* start with the root partitioned table */
     291      996718 :     dispatch = pd[0];
     292     2105756 :     while (dispatch != NULL)
     293             :     {
     294     1109212 :         int         partidx = -1;
     295             :         bool        is_leaf;
     296             : 
     297     1109212 :         CHECK_FOR_INTERRUPTS();
     298             : 
     299     1109212 :         rel = dispatch->reldesc;
     300     1109212 :         partdesc = dispatch->partdesc;
     301             : 
     302             :         /*
     303             :          * Extract partition key from tuple. Expression evaluation machinery
     304             :          * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
     305             :          * point to the correct tuple slot.  The slot might have changed from
     306             :          * what was used for the parent table if the table of the current
     307             :          * partitioning level has different tuple descriptor from the parent.
     308             :          * So update ecxt_scantuple accordingly.
     309             :          */
     310     1109212 :         ecxt->ecxt_scantuple = slot;
     311     1109212 :         FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
     312             : 
     313             :         /*
     314             :          * If this partitioned table has no partitions or no partition for
     315             :          * these values, error out.
     316             :          */
     317     2218382 :         if (partdesc->nparts == 0 ||
     318     1109170 :             (partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
     319             :         {
     320             :             char       *val_desc;
     321             : 
     322         154 :             val_desc = ExecBuildSlotPartitionKeyDescription(rel,
     323             :                                                             values, isnull, 64);
     324             :             Assert(OidIsValid(RelationGetRelid(rel)));
     325         154 :             ereport(ERROR,
     326             :                     (errcode(ERRCODE_CHECK_VIOLATION),
     327             :                      errmsg("no partition of relation \"%s\" found for row",
     328             :                             RelationGetRelationName(rel)),
     329             :                      val_desc ?
     330             :                      errdetail("Partition key of the failing row contains %s.",
     331             :                                val_desc) : 0,
     332             :                      errtable(rel)));
     333             :         }
     334             : 
     335     1109058 :         is_leaf = partdesc->is_leaf[partidx];
     336     1109058 :         if (is_leaf)
     337             :         {
     338             :             /*
     339             :              * We've reached the leaf -- hurray, we're done.  Look to see if
     340             :              * we've already got a ResultRelInfo for this partition.
     341             :              */
     342      996562 :             if (likely(dispatch->indexes[partidx] >= 0))
     343             :             {
     344             :                 /* ResultRelInfo already built */
     345             :                 Assert(dispatch->indexes[partidx] < proute->num_partitions);
     346      987882 :                 rri = proute->partitions[dispatch->indexes[partidx]];
     347             :             }
     348             :             else
     349             :             {
     350             :                 /*
     351             :                  * If the partition is known in the owning ModifyTableState
     352             :                  * node, we can re-use that ResultRelInfo instead of creating
     353             :                  * a new one with ExecInitPartitionInfo().
     354             :                  */
     355        8680 :                 rri = ExecLookupResultRelByOid(mtstate,
     356        8680 :                                                partdesc->oids[partidx],
     357             :                                                true, false);
     358        8680 :                 if (rri)
     359             :                 {
     360             :                     /* Verify this ResultRelInfo allows INSERTs */
     361         482 :                     CheckValidResultRel(rri, CMD_INSERT, NIL);
     362             : 
     363             :                     /*
     364             :                      * Initialize information needed to insert this and
     365             :                      * subsequent tuples routed to this partition.
     366             :                      */
     367         482 :                     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     368             :                                         rri, partidx, true);
     369             :                 }
     370             :                 else
     371             :                 {
     372             :                     /* We need to create a new one. */
     373        8198 :                     rri = ExecInitPartitionInfo(mtstate, estate, proute,
     374             :                                                 dispatch,
     375             :                                                 rootResultRelInfo, partidx);
     376             :                 }
     377             :             }
     378             :             Assert(rri != NULL);
     379             : 
     380             :             /* Signal to terminate the loop */
     381      996544 :             dispatch = NULL;
     382             :         }
     383             :         else
     384             :         {
     385             :             /*
     386             :              * Partition is a sub-partitioned table; get the PartitionDispatch
     387             :              */
     388      112496 :             if (likely(dispatch->indexes[partidx] >= 0))
     389             :             {
     390             :                 /* Already built. */
     391             :                 Assert(dispatch->indexes[partidx] < proute->num_dispatch);
     392             : 
     393      111332 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     394             : 
     395             :                 /*
     396             :                  * Move down to the next partition level and search again
     397             :                  * until we find a leaf partition that matches this tuple
     398             :                  */
     399      111332 :                 dispatch = pd[dispatch->indexes[partidx]];
     400             :             }
     401             :             else
     402             :             {
     403             :                 /* Not yet built. Do that now. */
     404             :                 PartitionDispatch subdispatch;
     405             : 
     406             :                 /*
     407             :                  * Create the new PartitionDispatch.  We pass the current one
     408             :                  * in as the parent PartitionDispatch
     409             :                  */
     410        1164 :                 subdispatch = ExecInitPartitionDispatchInfo(estate,
     411             :                                                             proute,
     412        1164 :                                                             partdesc->oids[partidx],
     413             :                                                             dispatch, partidx,
     414             :                                                             mtstate->rootResultRelInfo);
     415             :                 Assert(dispatch->indexes[partidx] >= 0 &&
     416             :                        dispatch->indexes[partidx] < proute->num_dispatch);
     417             : 
     418        1164 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     419        1164 :                 dispatch = subdispatch;
     420             :             }
     421             : 
     422             :             /*
     423             :              * Convert the tuple to the new parent's layout, if different from
     424             :              * the previous parent.
     425             :              */
     426      112496 :             if (dispatch->tupslot)
     427             :             {
     428       61692 :                 AttrMap    *map = dispatch->tupmap;
     429       61692 :                 TupleTableSlot *tempslot = myslot;
     430             : 
     431       61692 :                 myslot = dispatch->tupslot;
     432       61692 :                 slot = execute_attr_map_slot(map, slot, myslot);
     433             : 
     434       61692 :                 if (tempslot != NULL)
     435         294 :                     ExecClearTuple(tempslot);
     436             :             }
     437             :         }
     438             : 
     439             :         /*
     440             :          * If this partition is the default one, we must check its partition
     441             :          * constraint now, which may have changed concurrently due to
     442             :          * partitions being added to the parent.
     443             :          *
     444             :          * (We do this here, and do not rely on ExecInsert doing it, because
     445             :          * we don't want to miss doing it for non-leaf partitions.)
     446             :          */
     447     1109040 :         if (partidx == partdesc->boundinfo->default_index)
     448             :         {
     449             :             /*
     450             :              * The tuple must match the partition's layout for the constraint
     451             :              * expression to be evaluated successfully.  If the partition is
     452             :              * sub-partitioned, that would already be the case due to the code
     453             :              * above, but for a leaf partition the tuple still matches the
     454             :              * parent's layout.
     455             :              *
     456             :              * Note that we have a map to convert from root to current
     457             :              * partition, but not from immediate parent to current partition.
     458             :              * So if we have to convert, do it from the root slot; if not, use
     459             :              * the root slot as-is.
     460             :              */
     461         582 :             if (is_leaf)
     462             :             {
     463         538 :                 TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
     464             : 
     465         538 :                 if (map)
     466         162 :                     slot = execute_attr_map_slot(map->attrMap, rootslot,
     467             :                                                  rri->ri_PartitionTupleSlot);
     468             :                 else
     469         376 :                     slot = rootslot;
     470             :             }
     471             : 
     472         582 :             ExecPartitionCheck(rri, slot, estate, true);
     473             :         }
     474             :     }
     475             : 
     476             :     /* Release the tuple in the lowest parent's dedicated slot. */
     477      996544 :     if (myslot != NULL)
     478       61360 :         ExecClearTuple(myslot);
     479             :     /* and restore ecxt's scantuple */
     480      996544 :     ecxt->ecxt_scantuple = ecxt_scantuple_saved;
     481      996544 :     MemoryContextSwitchTo(oldcxt);
     482             : 
     483      996544 :     return rri;
     484             : }
     485             : 
     486             : /*
     487             :  * ExecInitPartitionInfo
     488             :  *      Lock the partition and initialize ResultRelInfo.  Also setup other
     489             :  *      information for the partition and store it in the next empty slot in
     490             :  *      the proute->partitions array.
     491             :  *
     492             :  * Returns the ResultRelInfo
     493             :  */
     494             : static ResultRelInfo *
     495        8198 : ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
     496             :                       PartitionTupleRouting *proute,
     497             :                       PartitionDispatch dispatch,
     498             :                       ResultRelInfo *rootResultRelInfo,
     499             :                       int partidx)
     500             : {
     501        8198 :     ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
     502        8198 :     Oid         partOid = dispatch->partdesc->oids[partidx];
     503             :     Relation    partrel;
     504        8198 :     int         firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
     505        8198 :     Relation    firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
     506             :     ResultRelInfo *leaf_part_rri;
     507             :     MemoryContext oldcxt;
     508        8198 :     AttrMap    *part_attmap = NULL;
     509             :     bool        found_whole_row;
     510             : 
     511        8198 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
     512             : 
     513        8198 :     partrel = table_open(partOid, RowExclusiveLock);
     514             : 
     515        8198 :     leaf_part_rri = makeNode(ResultRelInfo);
     516        8198 :     InitResultRelInfo(leaf_part_rri,
     517             :                       partrel,
     518             :                       0,
     519             :                       rootResultRelInfo,
     520             :                       estate->es_instrument);
     521             : 
     522             :     /*
     523             :      * Verify result relation is a valid target for an INSERT.  An UPDATE of a
     524             :      * partition-key becomes a DELETE+INSERT operation, so this check is still
     525             :      * required when the operation is CMD_UPDATE.
     526             :      */
     527        8198 :     CheckValidResultRel(leaf_part_rri, CMD_INSERT, NIL);
     528             : 
     529             :     /*
     530             :      * Open partition indices.  The user may have asked to check for conflicts
     531             :      * within this leaf partition and do "nothing" instead of throwing an
     532             :      * error.  Be prepared in that case by initializing the index information
     533             :      * needed by ExecInsert() to perform speculative insertions.
     534             :      */
     535        8192 :     if (partrel->rd_rel->relhasindex &&
     536        1852 :         leaf_part_rri->ri_IndexRelationDescs == NULL)
     537        1852 :         ExecOpenIndices(leaf_part_rri,
     538        3532 :                         (node != NULL &&
     539        1680 :                          node->onConflictAction != ONCONFLICT_NONE));
     540             : 
     541             :     /*
     542             :      * Build WITH CHECK OPTION constraints for the partition.  Note that we
     543             :      * didn't build the withCheckOptionList for partitions within the planner,
     544             :      * but simple translation of varattnos will suffice.  This only occurs for
     545             :      * the INSERT case or in the case of UPDATE/MERGE tuple routing where we
     546             :      * didn't find a result rel to reuse.
     547             :      */
     548        8192 :     if (node && node->withCheckOptionLists != NIL)
     549             :     {
     550             :         List       *wcoList;
     551          96 :         List       *wcoExprs = NIL;
     552             :         ListCell   *ll;
     553             : 
     554             :         /*
     555             :          * In the case of INSERT on a partitioned table, there is only one
     556             :          * plan.  Likewise, there is only one WCO list, not one per partition.
     557             :          * For UPDATE/MERGE, there are as many WCO lists as there are plans.
     558             :          */
     559             :         Assert((node->operation == CMD_INSERT &&
     560             :                 list_length(node->withCheckOptionLists) == 1 &&
     561             :                 list_length(node->resultRelations) == 1) ||
     562             :                (node->operation == CMD_UPDATE &&
     563             :                 list_length(node->withCheckOptionLists) ==
     564             :                 list_length(node->resultRelations)) ||
     565             :                (node->operation == CMD_MERGE &&
     566             :                 list_length(node->withCheckOptionLists) ==
     567             :                 list_length(node->resultRelations)));
     568             : 
     569             :         /*
     570             :          * Use the WCO list of the first plan as a reference to calculate
     571             :          * attno's for the WCO list of this partition.  In the INSERT case,
     572             :          * that refers to the root partitioned table, whereas in the UPDATE
     573             :          * tuple routing case, that refers to the first partition in the
     574             :          * mtstate->resultRelInfo array.  In any case, both that relation and
     575             :          * this partition should have the same columns, so we should be able
     576             :          * to map attributes successfully.
     577             :          */
     578          96 :         wcoList = linitial(node->withCheckOptionLists);
     579             : 
     580             :         /*
     581             :          * Convert Vars in it to contain this partition's attribute numbers.
     582             :          */
     583             :         part_attmap =
     584          96 :             build_attrmap_by_name(RelationGetDescr(partrel),
     585             :                                   RelationGetDescr(firstResultRel),
     586             :                                   false);
     587             :         wcoList = (List *)
     588          96 :             map_variable_attnos((Node *) wcoList,
     589             :                                 firstVarno, 0,
     590             :                                 part_attmap,
     591          96 :                                 RelationGetForm(partrel)->reltype,
     592             :                                 &found_whole_row);
     593             :         /* We ignore the value of found_whole_row. */
     594             : 
     595         270 :         foreach(ll, wcoList)
     596             :         {
     597         174 :             WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
     598         174 :             ExprState  *wcoExpr = ExecInitQual(castNode(List, wco->qual),
     599             :                                                &mtstate->ps);
     600             : 
     601         174 :             wcoExprs = lappend(wcoExprs, wcoExpr);
     602             :         }
     603             : 
     604          96 :         leaf_part_rri->ri_WithCheckOptions = wcoList;
     605          96 :         leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
     606             :     }
     607             : 
     608             :     /*
     609             :      * Build the RETURNING projection for the partition.  Note that we didn't
     610             :      * build the returningList for partitions within the planner, but simple
     611             :      * translation of varattnos will suffice.  This only occurs for the INSERT
     612             :      * case or in the case of UPDATE/MERGE tuple routing where we didn't find
     613             :      * a result rel to reuse.
     614             :      */
     615        8192 :     if (node && node->returningLists != NIL)
     616             :     {
     617             :         TupleTableSlot *slot;
     618             :         ExprContext *econtext;
     619             :         List       *returningList;
     620             : 
     621             :         /* See the comment above for WCO lists. */
     622             :         Assert((node->operation == CMD_INSERT &&
     623             :                 list_length(node->returningLists) == 1 &&
     624             :                 list_length(node->resultRelations) == 1) ||
     625             :                (node->operation == CMD_UPDATE &&
     626             :                 list_length(node->returningLists) ==
     627             :                 list_length(node->resultRelations)) ||
     628             :                (node->operation == CMD_MERGE &&
     629             :                 list_length(node->returningLists) ==
     630             :                 list_length(node->resultRelations)));
     631             : 
     632             :         /*
     633             :          * Use the RETURNING list of the first plan as a reference to
     634             :          * calculate attno's for the RETURNING list of this partition.  See
     635             :          * the comment above for WCO lists for more details on why this is
     636             :          * okay.
     637             :          */
     638         206 :         returningList = linitial(node->returningLists);
     639             : 
     640             :         /*
     641             :          * Convert Vars in it to contain this partition's attribute numbers.
     642             :          */
     643         206 :         if (part_attmap == NULL)
     644             :             part_attmap =
     645         206 :                 build_attrmap_by_name(RelationGetDescr(partrel),
     646             :                                       RelationGetDescr(firstResultRel),
     647             :                                       false);
     648             :         returningList = (List *)
     649         206 :             map_variable_attnos((Node *) returningList,
     650             :                                 firstVarno, 0,
     651             :                                 part_attmap,
     652         206 :                                 RelationGetForm(partrel)->reltype,
     653             :                                 &found_whole_row);
     654             :         /* We ignore the value of found_whole_row. */
     655             : 
     656         206 :         leaf_part_rri->ri_returningList = returningList;
     657             : 
     658             :         /*
     659             :          * Initialize the projection itself.
     660             :          *
     661             :          * Use the slot and the expression context that would have been set up
     662             :          * in ExecInitModifyTable() for projection's output.
     663             :          */
     664             :         Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
     665         206 :         slot = mtstate->ps.ps_ResultTupleSlot;
     666             :         Assert(mtstate->ps.ps_ExprContext != NULL);
     667         206 :         econtext = mtstate->ps.ps_ExprContext;
     668         206 :         leaf_part_rri->ri_projectReturning =
     669         206 :             ExecBuildProjectionInfo(returningList, econtext, slot,
     670             :                                     &mtstate->ps, RelationGetDescr(partrel));
     671             :     }
     672             : 
     673             :     /* Set up information needed for routing tuples to the partition. */
     674        8192 :     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     675             :                         leaf_part_rri, partidx, false);
     676             : 
     677             :     /*
     678             :      * If there is an ON CONFLICT clause, initialize state for it.
     679             :      */
     680        8192 :     if (node && node->onConflictAction != ONCONFLICT_NONE)
     681             :     {
     682         222 :         TupleDesc   partrelDesc = RelationGetDescr(partrel);
     683         222 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
     684             :         ListCell   *lc;
     685         222 :         List       *arbiterIndexes = NIL;
     686             : 
     687             :         /*
     688             :          * If there is a list of arbiter indexes, map it to a list of indexes
     689             :          * in the partition.  We do that by scanning the partition's index
     690             :          * list and searching for ancestry relationships to each index in the
     691             :          * ancestor table.
     692             :          */
     693         222 :         if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
     694             :         {
     695             :             List       *childIdxs;
     696             : 
     697         172 :             childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
     698             : 
     699         356 :             foreach(lc, childIdxs)
     700             :             {
     701         184 :                 Oid         childIdx = lfirst_oid(lc);
     702             :                 List       *ancestors;
     703             :                 ListCell   *lc2;
     704             : 
     705         184 :                 ancestors = get_partition_ancestors(childIdx);
     706         368 :                 foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes)
     707             :                 {
     708         184 :                     if (list_member_oid(ancestors, lfirst_oid(lc2)))
     709         172 :                         arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
     710             :                 }
     711         184 :                 list_free(ancestors);
     712             :             }
     713             :         }
     714             : 
     715             :         /*
     716             :          * If the resulting lists are of inequal length, something is wrong.
     717             :          * (This shouldn't happen, since arbiter index selection should not
     718             :          * pick up an invalid index.)
     719             :          */
     720         444 :         if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
     721         222 :             list_length(arbiterIndexes))
     722           0 :             elog(ERROR, "invalid arbiter index list");
     723         222 :         leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
     724             : 
     725             :         /*
     726             :          * In the DO UPDATE case, we have some more state to initialize.
     727             :          */
     728         222 :         if (node->onConflictAction == ONCONFLICT_UPDATE)
     729             :         {
     730         166 :             OnConflictSetState *onconfl = makeNode(OnConflictSetState);
     731             :             TupleConversionMap *map;
     732             : 
     733         166 :             map = ExecGetRootToChildMap(leaf_part_rri, estate);
     734             : 
     735             :             Assert(node->onConflictSet != NIL);
     736             :             Assert(rootResultRelInfo->ri_onConflict != NULL);
     737             : 
     738         166 :             leaf_part_rri->ri_onConflict = onconfl;
     739             : 
     740             :             /*
     741             :              * Need a separate existing slot for each partition, as the
     742             :              * partition could be of a different AM, even if the tuple
     743             :              * descriptors match.
     744             :              */
     745         166 :             onconfl->oc_Existing =
     746         166 :                 table_slot_create(leaf_part_rri->ri_RelationDesc,
     747         166 :                                   &mtstate->ps.state->es_tupleTable);
     748             : 
     749             :             /*
     750             :              * If the partition's tuple descriptor matches exactly the root
     751             :              * parent (the common case), we can re-use most of the parent's ON
     752             :              * CONFLICT SET state, skipping a bunch of work.  Otherwise, we
     753             :              * need to create state specific to this partition.
     754             :              */
     755         166 :             if (map == NULL)
     756             :             {
     757             :                 /*
     758             :                  * It's safe to reuse these from the partition root, as we
     759             :                  * only process one tuple at a time (therefore we won't
     760             :                  * overwrite needed data in slots), and the results of
     761             :                  * projections are independent of the underlying storage.
     762             :                  * Projections and where clauses themselves don't store state
     763             :                  * / are independent of the underlying storage.
     764             :                  */
     765          90 :                 onconfl->oc_ProjSlot =
     766          90 :                     rootResultRelInfo->ri_onConflict->oc_ProjSlot;
     767          90 :                 onconfl->oc_ProjInfo =
     768          90 :                     rootResultRelInfo->ri_onConflict->oc_ProjInfo;
     769          90 :                 onconfl->oc_WhereClause =
     770          90 :                     rootResultRelInfo->ri_onConflict->oc_WhereClause;
     771             :             }
     772             :             else
     773             :             {
     774             :                 List       *onconflset;
     775             :                 List       *onconflcols;
     776             : 
     777             :                 /*
     778             :                  * Translate expressions in onConflictSet to account for
     779             :                  * different attribute numbers.  For that, map partition
     780             :                  * varattnos twice: first to catch the EXCLUDED
     781             :                  * pseudo-relation (INNER_VAR), and second to handle the main
     782             :                  * target relation (firstVarno).
     783             :                  */
     784          76 :                 onconflset = copyObject(node->onConflictSet);
     785          76 :                 if (part_attmap == NULL)
     786             :                     part_attmap =
     787          70 :                         build_attrmap_by_name(RelationGetDescr(partrel),
     788             :                                               RelationGetDescr(firstResultRel),
     789             :                                               false);
     790             :                 onconflset = (List *)
     791          76 :                     map_variable_attnos((Node *) onconflset,
     792             :                                         INNER_VAR, 0,
     793             :                                         part_attmap,
     794          76 :                                         RelationGetForm(partrel)->reltype,
     795             :                                         &found_whole_row);
     796             :                 /* We ignore the value of found_whole_row. */
     797             :                 onconflset = (List *)
     798          76 :                     map_variable_attnos((Node *) onconflset,
     799             :                                         firstVarno, 0,
     800             :                                         part_attmap,
     801          76 :                                         RelationGetForm(partrel)->reltype,
     802             :                                         &found_whole_row);
     803             :                 /* We ignore the value of found_whole_row. */
     804             : 
     805             :                 /* Finally, adjust the target colnos to match the partition. */
     806          76 :                 onconflcols = adjust_partition_colnos(node->onConflictCols,
     807             :                                                       leaf_part_rri);
     808             : 
     809             :                 /* create the tuple slot for the UPDATE SET projection */
     810          76 :                 onconfl->oc_ProjSlot =
     811          76 :                     table_slot_create(partrel,
     812          76 :                                       &mtstate->ps.state->es_tupleTable);
     813             : 
     814             :                 /* build UPDATE SET projection state */
     815          76 :                 onconfl->oc_ProjInfo =
     816          76 :                     ExecBuildUpdateProjection(onconflset,
     817             :                                               true,
     818             :                                               onconflcols,
     819             :                                               partrelDesc,
     820             :                                               econtext,
     821             :                                               onconfl->oc_ProjSlot,
     822             :                                               &mtstate->ps);
     823             : 
     824             :                 /*
     825             :                  * If there is a WHERE clause, initialize state where it will
     826             :                  * be evaluated, mapping the attribute numbers appropriately.
     827             :                  * As with onConflictSet, we need to map partition varattnos
     828             :                  * to the partition's tupdesc.
     829             :                  */
     830          76 :                 if (node->onConflictWhere)
     831             :                 {
     832             :                     List       *clause;
     833             : 
     834          30 :                     clause = copyObject((List *) node->onConflictWhere);
     835             :                     clause = (List *)
     836          30 :                         map_variable_attnos((Node *) clause,
     837             :                                             INNER_VAR, 0,
     838             :                                             part_attmap,
     839          30 :                                             RelationGetForm(partrel)->reltype,
     840             :                                             &found_whole_row);
     841             :                     /* We ignore the value of found_whole_row. */
     842             :                     clause = (List *)
     843          30 :                         map_variable_attnos((Node *) clause,
     844             :                                             firstVarno, 0,
     845             :                                             part_attmap,
     846          30 :                                             RelationGetForm(partrel)->reltype,
     847             :                                             &found_whole_row);
     848             :                     /* We ignore the value of found_whole_row. */
     849          30 :                     onconfl->oc_WhereClause =
     850          30 :                         ExecInitQual((List *) clause, &mtstate->ps);
     851             :                 }
     852             :             }
     853             :         }
     854             :     }
     855             : 
     856             :     /*
     857             :      * Since we've just initialized this ResultRelInfo, it's not in any list
     858             :      * attached to the estate as yet.  Add it, so that it can be found later.
     859             :      *
     860             :      * Note that the entries in this list appear in no predetermined order,
     861             :      * because partition result rels are initialized as and when they're
     862             :      * needed.
     863             :      */
     864        8192 :     MemoryContextSwitchTo(estate->es_query_cxt);
     865        8192 :     estate->es_tuple_routing_result_relations =
     866        8192 :         lappend(estate->es_tuple_routing_result_relations,
     867             :                 leaf_part_rri);
     868             : 
     869             :     /*
     870             :      * Initialize information about this partition that's needed to handle
     871             :      * MERGE.  We take the "first" result relation's mergeActionList as
     872             :      * reference and make copy for this relation, converting stuff that
     873             :      * references attribute numbers to match this relation's.
     874             :      *
     875             :      * This duplicates much of the logic in ExecInitMerge(), so something
     876             :      * changes there, look here too.
     877             :      */
     878        8192 :     if (node && node->operation == CMD_MERGE)
     879             :     {
     880          18 :         List       *firstMergeActionList = linitial(node->mergeActionLists);
     881             :         ListCell   *lc;
     882          18 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
     883             :         Node       *joinCondition;
     884             : 
     885          18 :         if (part_attmap == NULL)
     886             :             part_attmap =
     887           6 :                 build_attrmap_by_name(RelationGetDescr(partrel),
     888             :                                       RelationGetDescr(firstResultRel),
     889             :                                       false);
     890             : 
     891          18 :         if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
     892          18 :             ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
     893             : 
     894             :         /* Initialize state for join condition checking. */
     895             :         joinCondition =
     896          18 :             map_variable_attnos(linitial(node->mergeJoinConditions),
     897             :                                 firstVarno, 0,
     898             :                                 part_attmap,
     899          18 :                                 RelationGetForm(partrel)->reltype,
     900             :                                 &found_whole_row);
     901             :         /* We ignore the value of found_whole_row. */
     902          18 :         leaf_part_rri->ri_MergeJoinCondition =
     903          18 :             ExecInitQual((List *) joinCondition, &mtstate->ps);
     904             : 
     905          42 :         foreach(lc, firstMergeActionList)
     906             :         {
     907             :             /* Make a copy for this relation to be safe.  */
     908          24 :             MergeAction *action = copyObject(lfirst(lc));
     909             :             MergeActionState *action_state;
     910             : 
     911             :             /* Generate the action's state for this relation */
     912          24 :             action_state = makeNode(MergeActionState);
     913          24 :             action_state->mas_action = action;
     914             : 
     915             :             /* And put the action in the appropriate list */
     916          48 :             leaf_part_rri->ri_MergeActions[action->matchKind] =
     917          24 :                 lappend(leaf_part_rri->ri_MergeActions[action->matchKind],
     918             :                         action_state);
     919             : 
     920          24 :             switch (action->commandType)
     921             :             {
     922           6 :                 case CMD_INSERT:
     923             : 
     924             :                     /*
     925             :                      * ExecCheckPlanOutput() already done on the targetlist
     926             :                      * when "first" result relation initialized and it is same
     927             :                      * for all result relations.
     928             :                      */
     929           6 :                     action_state->mas_proj =
     930           6 :                         ExecBuildProjectionInfo(action->targetList, econtext,
     931             :                                                 leaf_part_rri->ri_newTupleSlot,
     932             :                                                 &mtstate->ps,
     933             :                                                 RelationGetDescr(partrel));
     934           6 :                     break;
     935          18 :                 case CMD_UPDATE:
     936             : 
     937             :                     /*
     938             :                      * Convert updateColnos from "first" result relation
     939             :                      * attribute numbers to this result rel's.
     940             :                      */
     941          18 :                     if (part_attmap)
     942          18 :                         action->updateColnos =
     943          18 :                             adjust_partition_colnos_using_map(action->updateColnos,
     944             :                                                               part_attmap);
     945          18 :                     action_state->mas_proj =
     946          18 :                         ExecBuildUpdateProjection(action->targetList,
     947             :                                                   true,
     948             :                                                   action->updateColnos,
     949          18 :                                                   RelationGetDescr(leaf_part_rri->ri_RelationDesc),
     950             :                                                   econtext,
     951             :                                                   leaf_part_rri->ri_newTupleSlot,
     952             :                                                   NULL);
     953          18 :                     break;
     954           0 :                 case CMD_DELETE:
     955           0 :                     break;
     956             : 
     957           0 :                 default:
     958           0 :                     elog(ERROR, "unknown action in MERGE WHEN clause");
     959             :             }
     960             : 
     961             :             /* found_whole_row intentionally ignored. */
     962          24 :             action->qual =
     963          24 :                 map_variable_attnos(action->qual,
     964             :                                     firstVarno, 0,
     965             :                                     part_attmap,
     966          24 :                                     RelationGetForm(partrel)->reltype,
     967             :                                     &found_whole_row);
     968          24 :             action_state->mas_whenqual =
     969          24 :                 ExecInitQual((List *) action->qual, &mtstate->ps);
     970             :         }
     971             :     }
     972        8192 :     MemoryContextSwitchTo(oldcxt);
     973             : 
     974        8192 :     return leaf_part_rri;
     975             : }
     976             : 
     977             : /*
     978             :  * ExecInitRoutingInfo
     979             :  *      Set up information needed for translating tuples between root
     980             :  *      partitioned table format and partition format, and keep track of it
     981             :  *      in PartitionTupleRouting.
     982             :  */
     983             : static void
     984        8674 : ExecInitRoutingInfo(ModifyTableState *mtstate,
     985             :                     EState *estate,
     986             :                     PartitionTupleRouting *proute,
     987             :                     PartitionDispatch dispatch,
     988             :                     ResultRelInfo *partRelInfo,
     989             :                     int partidx,
     990             :                     bool is_borrowed_rel)
     991             : {
     992             :     MemoryContext oldcxt;
     993             :     int         rri_index;
     994             : 
     995        8674 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
     996             : 
     997             :     /*
     998             :      * Set up tuple conversion between root parent and the partition if the
     999             :      * two have different rowtypes.  If conversion is indeed required, also
    1000             :      * initialize a slot dedicated to storing this partition's converted
    1001             :      * tuples.  Various operations that are applied to tuples after routing,
    1002             :      * such as checking constraints, will refer to this slot.
    1003             :      */
    1004        8674 :     if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
    1005             :     {
    1006        1274 :         Relation    partrel = partRelInfo->ri_RelationDesc;
    1007             : 
    1008             :         /*
    1009             :          * This pins the partition's TupleDesc, which will be released at the
    1010             :          * end of the command.
    1011             :          */
    1012        1274 :         partRelInfo->ri_PartitionTupleSlot =
    1013        1274 :             table_slot_create(partrel, &estate->es_tupleTable);
    1014             :     }
    1015             :     else
    1016        7400 :         partRelInfo->ri_PartitionTupleSlot = NULL;
    1017             : 
    1018             :     /*
    1019             :      * If the partition is a foreign table, let the FDW init itself for
    1020             :      * routing tuples to the partition.
    1021             :      */
    1022        8674 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1023          84 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
    1024          84 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
    1025             : 
    1026             :     /*
    1027             :      * Determine if the FDW supports batch insert and determine the batch size
    1028             :      * (a FDW may support batching, but it may be disabled for the
    1029             :      * server/table or for this particular query).
    1030             :      *
    1031             :      * If the FDW does not support batching, we set the batch size to 1.
    1032             :      */
    1033        8662 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1034          72 :         partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
    1035          72 :         partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
    1036          72 :         partRelInfo->ri_BatchSize =
    1037          72 :             partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
    1038             :     else
    1039        8590 :         partRelInfo->ri_BatchSize = 1;
    1040             : 
    1041             :     Assert(partRelInfo->ri_BatchSize >= 1);
    1042             : 
    1043        8662 :     partRelInfo->ri_CopyMultiInsertBuffer = NULL;
    1044             : 
    1045             :     /*
    1046             :      * Keep track of it in the PartitionTupleRouting->partitions array.
    1047             :      */
    1048             :     Assert(dispatch->indexes[partidx] == -1);
    1049             : 
    1050        8662 :     rri_index = proute->num_partitions++;
    1051             : 
    1052             :     /* Allocate or enlarge the array, as needed */
    1053        8662 :     if (proute->num_partitions >= proute->max_partitions)
    1054             :     {
    1055        6612 :         if (proute->max_partitions == 0)
    1056             :         {
    1057        6600 :             proute->max_partitions = 8;
    1058        6600 :             proute->partitions = (ResultRelInfo **)
    1059        6600 :                 palloc(sizeof(ResultRelInfo *) * proute->max_partitions);
    1060        6600 :             proute->is_borrowed_rel = (bool *)
    1061        6600 :                 palloc(sizeof(bool) * proute->max_partitions);
    1062             :         }
    1063             :         else
    1064             :         {
    1065          12 :             proute->max_partitions *= 2;
    1066          12 :             proute->partitions = (ResultRelInfo **)
    1067          12 :                 repalloc(proute->partitions, sizeof(ResultRelInfo *) *
    1068          12 :                          proute->max_partitions);
    1069          12 :             proute->is_borrowed_rel = (bool *)
    1070          12 :                 repalloc(proute->is_borrowed_rel, sizeof(bool) *
    1071          12 :                          proute->max_partitions);
    1072             :         }
    1073             :     }
    1074             : 
    1075        8662 :     proute->partitions[rri_index] = partRelInfo;
    1076        8662 :     proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
    1077        8662 :     dispatch->indexes[partidx] = rri_index;
    1078             : 
    1079        8662 :     MemoryContextSwitchTo(oldcxt);
    1080        8662 : }
    1081             : 
    1082             : /*
    1083             :  * ExecInitPartitionDispatchInfo
    1084             :  *      Lock the partitioned table (if not locked already) and initialize
    1085             :  *      PartitionDispatch for a partitioned table and store it in the next
    1086             :  *      available slot in the proute->partition_dispatch_info array.  Also,
    1087             :  *      record the index into this array in the parent_pd->indexes[] array in
    1088             :  *      the partidx element so that we can properly retrieve the newly created
    1089             :  *      PartitionDispatch later.
    1090             :  */
    1091             : static PartitionDispatch
    1092        8042 : ExecInitPartitionDispatchInfo(EState *estate,
    1093             :                               PartitionTupleRouting *proute, Oid partoid,
    1094             :                               PartitionDispatch parent_pd, int partidx,
    1095             :                               ResultRelInfo *rootResultRelInfo)
    1096             : {
    1097             :     Relation    rel;
    1098             :     PartitionDesc partdesc;
    1099             :     PartitionDispatch pd;
    1100             :     int         dispatchidx;
    1101             :     MemoryContext oldcxt;
    1102             : 
    1103             :     /*
    1104             :      * For data modification, it is better that executor does not include
    1105             :      * partitions being detached, except when running in snapshot-isolation
    1106             :      * mode.  This means that a read-committed transaction immediately gets a
    1107             :      * "no partition for tuple" error when a tuple is inserted into a
    1108             :      * partition that's being detached concurrently, but a transaction in
    1109             :      * repeatable-read mode can still use such a partition.
    1110             :      */
    1111        8042 :     if (estate->es_partition_directory == NULL)
    1112        6866 :         estate->es_partition_directory =
    1113        6866 :             CreatePartitionDirectory(estate->es_query_cxt,
    1114             :                                      !IsolationUsesXactSnapshot());
    1115             : 
    1116        8042 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
    1117             : 
    1118             :     /*
    1119             :      * Only sub-partitioned tables need to be locked here.  The root
    1120             :      * partitioned table will already have been locked as it's referenced in
    1121             :      * the query's rtable.
    1122             :      */
    1123        8042 :     if (partoid != RelationGetRelid(proute->partition_root))
    1124        1164 :         rel = table_open(partoid, RowExclusiveLock);
    1125             :     else
    1126        6878 :         rel = proute->partition_root;
    1127        8042 :     partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
    1128             : 
    1129        8042 :     pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
    1130        8042 :                                     partdesc->nparts * sizeof(int));
    1131        8042 :     pd->reldesc = rel;
    1132        8042 :     pd->key = RelationGetPartitionKey(rel);
    1133        8042 :     pd->keystate = NIL;
    1134        8042 :     pd->partdesc = partdesc;
    1135        8042 :     if (parent_pd != NULL)
    1136             :     {
    1137        1164 :         TupleDesc   tupdesc = RelationGetDescr(rel);
    1138             : 
    1139             :         /*
    1140             :          * For sub-partitioned tables where the column order differs from its
    1141             :          * direct parent partitioned table, we must store a tuple table slot
    1142             :          * initialized with its tuple descriptor and a tuple conversion map to
    1143             :          * convert a tuple from its parent's rowtype to its own.  This is to
    1144             :          * make sure that we are looking at the correct row using the correct
    1145             :          * tuple descriptor when computing its partition key for tuple
    1146             :          * routing.
    1147             :          */
    1148        1164 :         pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
    1149             :                                                   tupdesc,
    1150             :                                                   false);
    1151        1164 :         pd->tupslot = pd->tupmap ?
    1152        1164 :             MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
    1153             :     }
    1154             :     else
    1155             :     {
    1156             :         /* Not required for the root partitioned table */
    1157        6878 :         pd->tupmap = NULL;
    1158        6878 :         pd->tupslot = NULL;
    1159             :     }
    1160             : 
    1161             :     /*
    1162             :      * Initialize with -1 to signify that the corresponding partition's
    1163             :      * ResultRelInfo or PartitionDispatch has not been created yet.
    1164             :      */
    1165        8042 :     memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
    1166             : 
    1167             :     /* Track in PartitionTupleRouting for later use */
    1168        8042 :     dispatchidx = proute->num_dispatch++;
    1169             : 
    1170             :     /* Allocate or enlarge the array, as needed */
    1171        8042 :     if (proute->num_dispatch >= proute->max_dispatch)
    1172             :     {
    1173        6878 :         if (proute->max_dispatch == 0)
    1174             :         {
    1175        6878 :             proute->max_dispatch = 4;
    1176        6878 :             proute->partition_dispatch_info = (PartitionDispatch *)
    1177        6878 :                 palloc(sizeof(PartitionDispatch) * proute->max_dispatch);
    1178        6878 :             proute->nonleaf_partitions = (ResultRelInfo **)
    1179        6878 :                 palloc(sizeof(ResultRelInfo *) * proute->max_dispatch);
    1180             :         }
    1181             :         else
    1182             :         {
    1183           0 :             proute->max_dispatch *= 2;
    1184           0 :             proute->partition_dispatch_info = (PartitionDispatch *)
    1185           0 :                 repalloc(proute->partition_dispatch_info,
    1186           0 :                          sizeof(PartitionDispatch) * proute->max_dispatch);
    1187           0 :             proute->nonleaf_partitions = (ResultRelInfo **)
    1188           0 :                 repalloc(proute->nonleaf_partitions,
    1189           0 :                          sizeof(ResultRelInfo *) * proute->max_dispatch);
    1190             :         }
    1191             :     }
    1192        8042 :     proute->partition_dispatch_info[dispatchidx] = pd;
    1193             : 
    1194             :     /*
    1195             :      * If setting up a PartitionDispatch for a sub-partitioned table, we may
    1196             :      * also need a minimally valid ResultRelInfo for checking the partition
    1197             :      * constraint later; set that up now.
    1198             :      */
    1199        8042 :     if (parent_pd)
    1200             :     {
    1201        1164 :         ResultRelInfo *rri = makeNode(ResultRelInfo);
    1202             : 
    1203        1164 :         InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
    1204        1164 :         proute->nonleaf_partitions[dispatchidx] = rri;
    1205             :     }
    1206             :     else
    1207        6878 :         proute->nonleaf_partitions[dispatchidx] = NULL;
    1208             : 
    1209             :     /*
    1210             :      * Finally, if setting up a PartitionDispatch for a sub-partitioned table,
    1211             :      * install a downlink in the parent to allow quick descent.
    1212             :      */
    1213        8042 :     if (parent_pd)
    1214             :     {
    1215             :         Assert(parent_pd->indexes[partidx] == -1);
    1216        1164 :         parent_pd->indexes[partidx] = dispatchidx;
    1217             :     }
    1218             : 
    1219        8042 :     MemoryContextSwitchTo(oldcxt);
    1220             : 
    1221        8042 :     return pd;
    1222             : }
    1223             : 
    1224             : /*
    1225             :  * ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
    1226             :  * routing.
    1227             :  *
    1228             :  * Close all the partitioned tables, leaf partitions, and their indices.
    1229             :  */
    1230             : void
    1231        6150 : ExecCleanupTupleRouting(ModifyTableState *mtstate,
    1232             :                         PartitionTupleRouting *proute)
    1233             : {
    1234             :     int         i;
    1235             : 
    1236             :     /*
    1237             :      * Remember, proute->partition_dispatch_info[0] corresponds to the root
    1238             :      * partitioned table, which we must not try to close, because it is the
    1239             :      * main target table of the query that will be closed by callers such as
    1240             :      * ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
    1241             :      * partitioned table.
    1242             :      */
    1243        7090 :     for (i = 1; i < proute->num_dispatch; i++)
    1244             :     {
    1245         940 :         PartitionDispatch pd = proute->partition_dispatch_info[i];
    1246             : 
    1247         940 :         table_close(pd->reldesc, NoLock);
    1248             : 
    1249         940 :         if (pd->tupslot)
    1250         448 :             ExecDropSingleTupleTableSlot(pd->tupslot);
    1251             :     }
    1252             : 
    1253       14302 :     for (i = 0; i < proute->num_partitions; i++)
    1254             :     {
    1255        8152 :         ResultRelInfo *resultRelInfo = proute->partitions[i];
    1256             : 
    1257             :         /* Allow any FDWs to shut down */
    1258        8152 :         if (resultRelInfo->ri_FdwRoutine != NULL &&
    1259          68 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
    1260          68 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
    1261             :                                                            resultRelInfo);
    1262             : 
    1263             :         /*
    1264             :          * Close it if it's not one of the result relations borrowed from the
    1265             :          * owning ModifyTableState; those will be closed by ExecEndPlan().
    1266             :          */
    1267        8152 :         if (proute->is_borrowed_rel[i])
    1268         434 :             continue;
    1269             : 
    1270        7718 :         ExecCloseIndices(resultRelInfo);
    1271        7718 :         table_close(resultRelInfo->ri_RelationDesc, NoLock);
    1272             :     }
    1273        6150 : }
    1274             : 
    1275             : /* ----------------
    1276             :  *      FormPartitionKeyDatum
    1277             :  *          Construct values[] and isnull[] arrays for the partition key
    1278             :  *          of a tuple.
    1279             :  *
    1280             :  *  pd              Partition dispatch object of the partitioned table
    1281             :  *  slot            Heap tuple from which to extract partition key
    1282             :  *  estate          executor state for evaluating any partition key
    1283             :  *                  expressions (must be non-NULL)
    1284             :  *  values          Array of partition key Datums (output area)
    1285             :  *  isnull          Array of is-null indicators (output area)
    1286             :  *
    1287             :  * the ecxt_scantuple slot of estate's per-tuple expr context must point to
    1288             :  * the heap tuple passed in.
    1289             :  * ----------------
    1290             :  */
    1291             : static void
    1292     1109212 : FormPartitionKeyDatum(PartitionDispatch pd,
    1293             :                       TupleTableSlot *slot,
    1294             :                       EState *estate,
    1295             :                       Datum *values,
    1296             :                       bool *isnull)
    1297             : {
    1298             :     ListCell   *partexpr_item;
    1299             :     int         i;
    1300             : 
    1301     1109212 :     if (pd->key->partexprs != NIL && pd->keystate == NIL)
    1302             :     {
    1303             :         /* Check caller has set up context correctly */
    1304             :         Assert(estate != NULL &&
    1305             :                GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
    1306             : 
    1307             :         /* First time through, set up expression evaluation state */
    1308         534 :         pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
    1309             :     }
    1310             : 
    1311     1109212 :     partexpr_item = list_head(pd->keystate);
    1312     2241224 :     for (i = 0; i < pd->key->partnatts; i++)
    1313             :     {
    1314     1132012 :         AttrNumber  keycol = pd->key->partattrs[i];
    1315             :         Datum       datum;
    1316             :         bool        isNull;
    1317             : 
    1318     1132012 :         if (keycol != 0)
    1319             :         {
    1320             :             /* Plain column; get the value directly from the heap tuple */
    1321     1044388 :             datum = slot_getattr(slot, keycol, &isNull);
    1322             :         }
    1323             :         else
    1324             :         {
    1325             :             /* Expression; need to evaluate it */
    1326       87624 :             if (partexpr_item == NULL)
    1327           0 :                 elog(ERROR, "wrong number of partition key expressions");
    1328       87624 :             datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
    1329       87624 :                                               GetPerTupleExprContext(estate),
    1330             :                                               &isNull);
    1331       87624 :             partexpr_item = lnext(pd->keystate, partexpr_item);
    1332             :         }
    1333     1132012 :         values[i] = datum;
    1334     1132012 :         isnull[i] = isNull;
    1335             :     }
    1336             : 
    1337     1109212 :     if (partexpr_item != NULL)
    1338           0 :         elog(ERROR, "wrong number of partition key expressions");
    1339     1109212 : }
    1340             : 
    1341             : /*
    1342             :  * The number of times the same partition must be found in a row before we
    1343             :  * switch from a binary search for the given values to just checking if the
    1344             :  * values belong to the last found partition.  This must be above 0.
    1345             :  */
    1346             : #define PARTITION_CACHED_FIND_THRESHOLD         16
    1347             : 
    1348             : /*
    1349             :  * get_partition_for_tuple
    1350             :  *      Finds partition of relation which accepts the partition key specified
    1351             :  *      in values and isnull.
    1352             :  *
    1353             :  * Calling this function can be quite expensive when LIST and RANGE
    1354             :  * partitioned tables have many partitions.  This is due to the binary search
    1355             :  * that's done to find the correct partition.  Many of the use cases for LIST
    1356             :  * and RANGE partitioned tables make it likely that the same partition is
    1357             :  * found in subsequent ExecFindPartition() calls.  This is especially true for
    1358             :  * cases such as RANGE partitioned tables on a TIMESTAMP column where the
    1359             :  * partition key is the current time.  When asked to find a partition for a
    1360             :  * RANGE or LIST partitioned table, we record the partition index and datum
    1361             :  * offset we've found for the given 'values' in the PartitionDesc (which is
    1362             :  * stored in relcache), and if we keep finding the same partition
    1363             :  * PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
    1364             :  * logic and instead of performing a binary search to find the correct
    1365             :  * partition, we'll just double-check that 'values' still belong to the last
    1366             :  * found partition, and if so, we'll return that partition index, thus
    1367             :  * skipping the need for the binary search.  If we fail to match the last
    1368             :  * partition when double checking, then we fall back on doing a binary search.
    1369             :  * In this case, unless we find 'values' belong to the DEFAULT partition,
    1370             :  * we'll reset the number of times we've hit the same partition so that we
    1371             :  * don't attempt to use the cache again until we've found that partition at
    1372             :  * least PARTITION_CACHED_FIND_THRESHOLD times in a row.
    1373             :  *
    1374             :  * For cases where the partition changes on each lookup, the amount of
    1375             :  * additional work required just amounts to recording the last found partition
    1376             :  * and bound offset then resetting the found counter.  This is cheap and does
    1377             :  * not appear to cause any meaningful slowdowns for such cases.
    1378             :  *
    1379             :  * No caching of partitions is done when the last found partition is the
    1380             :  * DEFAULT or NULL partition.  For the case of the DEFAULT partition, there
    1381             :  * is no bound offset storing the matching datum, so we cannot confirm the
    1382             :  * indexes match.  For the NULL partition, this is just so cheap, there's no
    1383             :  * sense in caching.
    1384             :  *
    1385             :  * Return value is index of the partition (>= 0 and < partdesc->nparts) if one
    1386             :  * found or -1 if none found.
    1387             :  */
    1388             : static int
    1389     1109170 : get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull)
    1390             : {
    1391     1109170 :     int         bound_offset = -1;
    1392     1109170 :     int         part_index = -1;
    1393     1109170 :     PartitionKey key = pd->key;
    1394     1109170 :     PartitionDesc partdesc = pd->partdesc;
    1395     1109170 :     PartitionBoundInfo boundinfo = partdesc->boundinfo;
    1396             : 
    1397             :     /*
    1398             :      * In the switch statement below, when we perform a cached lookup for
    1399             :      * RANGE and LIST partitioned tables, if we find that the last found
    1400             :      * partition matches the 'values', we return the partition index right
    1401             :      * away.  We do this instead of breaking out of the switch as we don't
    1402             :      * want to execute the code about the DEFAULT partition or do any updates
    1403             :      * for any of the cache-related fields.  That would be a waste of effort
    1404             :      * as we already know it's not the DEFAULT partition and have no need to
    1405             :      * increment the number of times we found the same partition any higher
    1406             :      * than PARTITION_CACHED_FIND_THRESHOLD.
    1407             :      */
    1408             : 
    1409             :     /* Route as appropriate based on partitioning strategy. */
    1410     1109170 :     switch (key->strategy)
    1411             :     {
    1412      212726 :         case PARTITION_STRATEGY_HASH:
    1413             :             {
    1414             :                 uint64      rowHash;
    1415             : 
    1416             :                 /* hash partitioning is too cheap to bother caching */
    1417      212726 :                 rowHash = compute_partition_hash_value(key->partnatts,
    1418             :                                                        key->partsupfunc,
    1419      212726 :                                                        key->partcollation,
    1420             :                                                        values, isnull);
    1421             : 
    1422             :                 /*
    1423             :                  * HASH partitions can't have a DEFAULT partition and we don't
    1424             :                  * do any caching work for them, so just return the part index
    1425             :                  */
    1426      212726 :                 return boundinfo->indexes[rowHash % boundinfo->nindexes];
    1427             :             }
    1428             : 
    1429      170956 :         case PARTITION_STRATEGY_LIST:
    1430      170956 :             if (isnull[0])
    1431             :             {
    1432             :                 /* this is far too cheap to bother doing any caching */
    1433         132 :                 if (partition_bound_accepts_nulls(boundinfo))
    1434             :                 {
    1435             :                     /*
    1436             :                      * When there is a NULL partition we just return that
    1437             :                      * directly.  We don't have a bound_offset so it's not
    1438             :                      * valid to drop into the code after the switch which
    1439             :                      * checks and updates the cache fields.  We perhaps should
    1440             :                      * be invalidating the details of the last cached
    1441             :                      * partition but there's no real need to.  Keeping those
    1442             :                      * fields set gives a chance at matching to the cached
    1443             :                      * partition on the next lookup.
    1444             :                      */
    1445         102 :                     return boundinfo->null_index;
    1446             :                 }
    1447             :             }
    1448             :             else
    1449             :             {
    1450             :                 bool        equal;
    1451             : 
    1452      170824 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1453             :                 {
    1454       23892 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1455       23892 :                     Datum       lastDatum = boundinfo->datums[last_datum_offset][0];
    1456             :                     int32       cmpval;
    1457             : 
    1458             :                     /* does the last found datum index match this datum? */
    1459       23892 :                     cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
    1460       23892 :                                                              key->partcollation[0],
    1461             :                                                              lastDatum,
    1462             :                                                              values[0]));
    1463             : 
    1464       23892 :                     if (cmpval == 0)
    1465       23538 :                         return boundinfo->indexes[last_datum_offset];
    1466             : 
    1467             :                     /* fall-through and do a manual lookup */
    1468             :                 }
    1469             : 
    1470      147286 :                 bound_offset = partition_list_bsearch(key->partsupfunc,
    1471             :                                                       key->partcollation,
    1472             :                                                       boundinfo,
    1473             :                                                       values[0], &equal);
    1474      147286 :                 if (bound_offset >= 0 && equal)
    1475      146888 :                     part_index = boundinfo->indexes[bound_offset];
    1476             :             }
    1477      147316 :             break;
    1478             : 
    1479      725488 :         case PARTITION_STRATEGY_RANGE:
    1480             :             {
    1481      725488 :                 bool        equal = false,
    1482      725488 :                             range_partkey_has_null = false;
    1483             :                 int         i;
    1484             : 
    1485             :                 /*
    1486             :                  * No range includes NULL, so this will be accepted by the
    1487             :                  * default partition if there is one, and otherwise rejected.
    1488             :                  */
    1489     1473356 :                 for (i = 0; i < key->partnatts; i++)
    1490             :                 {
    1491      747922 :                     if (isnull[i])
    1492             :                     {
    1493          54 :                         range_partkey_has_null = true;
    1494          54 :                         break;
    1495             :                     }
    1496             :                 }
    1497             : 
    1498             :                 /* NULLs belong in the DEFAULT partition */
    1499      725488 :                 if (range_partkey_has_null)
    1500          54 :                     break;
    1501             : 
    1502      725434 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1503             :                 {
    1504      238962 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1505      238962 :                     Datum      *lastDatums = boundinfo->datums[last_datum_offset];
    1506      238962 :                     PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
    1507             :                     int32       cmpval;
    1508             : 
    1509             :                     /* check if the value is >= to the lower bound */
    1510      238962 :                     cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1511             :                                                         key->partcollation,
    1512             :                                                         lastDatums,
    1513             :                                                         kind,
    1514             :                                                         values,
    1515      238962 :                                                         key->partnatts);
    1516             : 
    1517             :                     /*
    1518             :                      * If it's equal to the lower bound then no need to check
    1519             :                      * the upper bound.
    1520             :                      */
    1521      238962 :                     if (cmpval == 0)
    1522      238772 :                         return boundinfo->indexes[last_datum_offset + 1];
    1523             : 
    1524      233064 :                     if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
    1525             :                     {
    1526             :                         /* check if the value is below the upper bound */
    1527      233064 :                         lastDatums = boundinfo->datums[last_datum_offset + 1];
    1528      233064 :                         kind = boundinfo->kind[last_datum_offset + 1];
    1529      233064 :                         cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1530             :                                                             key->partcollation,
    1531             :                                                             lastDatums,
    1532             :                                                             kind,
    1533             :                                                             values,
    1534      233064 :                                                             key->partnatts);
    1535             : 
    1536      233064 :                         if (cmpval > 0)
    1537      232874 :                             return boundinfo->indexes[last_datum_offset + 1];
    1538             :                     }
    1539             :                     /* fall-through and do a manual lookup */
    1540             :                 }
    1541             : 
    1542      486662 :                 bound_offset = partition_range_datum_bsearch(key->partsupfunc,
    1543             :                                                              key->partcollation,
    1544             :                                                              boundinfo,
    1545      486662 :                                                              key->partnatts,
    1546             :                                                              values,
    1547             :                                                              &equal);
    1548             : 
    1549             :                 /*
    1550             :                  * The bound at bound_offset is less than or equal to the
    1551             :                  * tuple value, so the bound at offset+1 is the upper bound of
    1552             :                  * the partition we're looking for, if there actually exists
    1553             :                  * one.
    1554             :                  */
    1555      486662 :                 part_index = boundinfo->indexes[bound_offset + 1];
    1556             :             }
    1557      486662 :             break;
    1558             : 
    1559           0 :         default:
    1560           0 :             elog(ERROR, "unexpected partition strategy: %d",
    1561             :                  (int) key->strategy);
    1562             :     }
    1563             : 
    1564             :     /*
    1565             :      * part_index < 0 means we failed to find a partition of this parent. Use
    1566             :      * the default partition, if there is one.
    1567             :      */
    1568      634032 :     if (part_index < 0)
    1569             :     {
    1570             :         /*
    1571             :          * No need to reset the cache fields here.  The next set of values
    1572             :          * might end up belonging to the cached partition, so leaving the
    1573             :          * cache alone improves the chances of a cache hit on the next lookup.
    1574             :          */
    1575         694 :         return boundinfo->default_index;
    1576             :     }
    1577             : 
    1578             :     /* we should only make it here when the code above set bound_offset */
    1579             :     Assert(bound_offset >= 0);
    1580             : 
    1581             :     /*
    1582             :      * Attend to the cache fields.  If the bound_offset matches the last
    1583             :      * cached bound offset then we've found the same partition as last time,
    1584             :      * so bump the count by one.  If all goes well, we'll eventually reach
    1585             :      * PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
    1586             :      * around.  Otherwise, we'll reset the cache count back to 1 to mark that
    1587             :      * we've found this partition for the first time.
    1588             :      */
    1589      633338 :     if (bound_offset == partdesc->last_found_datum_index)
    1590      436590 :         partdesc->last_found_count++;
    1591             :     else
    1592             :     {
    1593      196748 :         partdesc->last_found_count = 1;
    1594      196748 :         partdesc->last_found_part_index = part_index;
    1595      196748 :         partdesc->last_found_datum_index = bound_offset;
    1596             :     }
    1597             : 
    1598      633338 :     return part_index;
    1599             : }
    1600             : 
    1601             : /*
    1602             :  * ExecBuildSlotPartitionKeyDescription
    1603             :  *
    1604             :  * This works very much like BuildIndexValueDescription() and is currently
    1605             :  * used for building error messages when ExecFindPartition() fails to find
    1606             :  * partition for a row.
    1607             :  */
    1608             : static char *
    1609         154 : ExecBuildSlotPartitionKeyDescription(Relation rel,
    1610             :                                      Datum *values,
    1611             :                                      bool *isnull,
    1612             :                                      int maxfieldlen)
    1613             : {
    1614             :     StringInfoData buf;
    1615         154 :     PartitionKey key = RelationGetPartitionKey(rel);
    1616         154 :     int         partnatts = get_partition_natts(key);
    1617             :     int         i;
    1618         154 :     Oid         relid = RelationGetRelid(rel);
    1619             :     AclResult   aclresult;
    1620             : 
    1621         154 :     if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
    1622           0 :         return NULL;
    1623             : 
    1624             :     /* If the user has table-level access, just go build the description. */
    1625         154 :     aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
    1626         154 :     if (aclresult != ACLCHECK_OK)
    1627             :     {
    1628             :         /*
    1629             :          * Step through the columns of the partition key and make sure the
    1630             :          * user has SELECT rights on all of them.
    1631             :          */
    1632          24 :         for (i = 0; i < partnatts; i++)
    1633             :         {
    1634          18 :             AttrNumber  attnum = get_partition_col_attnum(key, i);
    1635             : 
    1636             :             /*
    1637             :              * If this partition key column is an expression, we return no
    1638             :              * detail rather than try to figure out what column(s) the
    1639             :              * expression includes and if the user has SELECT rights on them.
    1640             :              */
    1641          30 :             if (attnum == InvalidAttrNumber ||
    1642          12 :                 pg_attribute_aclcheck(relid, attnum, GetUserId(),
    1643             :                                       ACL_SELECT) != ACLCHECK_OK)
    1644          12 :                 return NULL;
    1645             :         }
    1646             :     }
    1647             : 
    1648         142 :     initStringInfo(&buf);
    1649         142 :     appendStringInfo(&buf, "(%s) = (",
    1650             :                      pg_get_partkeydef_columns(relid, true));
    1651             : 
    1652         338 :     for (i = 0; i < partnatts; i++)
    1653             :     {
    1654             :         char       *val;
    1655             :         int         vallen;
    1656             : 
    1657         196 :         if (isnull[i])
    1658          30 :             val = "null";
    1659             :         else
    1660             :         {
    1661             :             Oid         foutoid;
    1662             :             bool        typisvarlena;
    1663             : 
    1664         166 :             getTypeOutputInfo(get_partition_col_typid(key, i),
    1665             :                               &foutoid, &typisvarlena);
    1666         166 :             val = OidOutputFunctionCall(foutoid, values[i]);
    1667             :         }
    1668             : 
    1669         196 :         if (i > 0)
    1670          54 :             appendStringInfoString(&buf, ", ");
    1671             : 
    1672             :         /* truncate if needed */
    1673         196 :         vallen = strlen(val);
    1674         196 :         if (vallen <= maxfieldlen)
    1675         196 :             appendBinaryStringInfo(&buf, val, vallen);
    1676             :         else
    1677             :         {
    1678           0 :             vallen = pg_mbcliplen(val, vallen, maxfieldlen);
    1679           0 :             appendBinaryStringInfo(&buf, val, vallen);
    1680           0 :             appendStringInfoString(&buf, "...");
    1681             :         }
    1682             :     }
    1683             : 
    1684         142 :     appendStringInfoChar(&buf, ')');
    1685             : 
    1686         142 :     return buf.data;
    1687             : }
    1688             : 
    1689             : /*
    1690             :  * adjust_partition_colnos
    1691             :  *      Adjust the list of UPDATE target column numbers to account for
    1692             :  *      attribute differences between the parent and the partition.
    1693             :  *
    1694             :  * Note: mustn't be called if no adjustment is required.
    1695             :  */
    1696             : static List *
    1697          76 : adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
    1698             : {
    1699          76 :     TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
    1700             : 
    1701             :     Assert(map != NULL);
    1702             : 
    1703          76 :     return adjust_partition_colnos_using_map(colnos, map->attrMap);
    1704             : }
    1705             : 
    1706             : /*
    1707             :  * adjust_partition_colnos_using_map
    1708             :  *      Like adjust_partition_colnos, but uses a caller-supplied map instead
    1709             :  *      of assuming to map from the "root" result relation.
    1710             :  *
    1711             :  * Note: mustn't be called if no adjustment is required.
    1712             :  */
    1713             : static List *
    1714          94 : adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
    1715             : {
    1716          94 :     List       *new_colnos = NIL;
    1717             :     ListCell   *lc;
    1718             : 
    1719             :     Assert(attrMap != NULL);    /* else we shouldn't be here */
    1720             : 
    1721         232 :     foreach(lc, colnos)
    1722             :     {
    1723         138 :         AttrNumber  parentattrno = lfirst_int(lc);
    1724             : 
    1725         138 :         if (parentattrno <= 0 ||
    1726         138 :             parentattrno > attrMap->maplen ||
    1727         138 :             attrMap->attnums[parentattrno - 1] == 0)
    1728           0 :             elog(ERROR, "unexpected attno %d in target column list",
    1729             :                  parentattrno);
    1730         138 :         new_colnos = lappend_int(new_colnos,
    1731         138 :                                  attrMap->attnums[parentattrno - 1]);
    1732             :     }
    1733             : 
    1734          94 :     return new_colnos;
    1735             : }
    1736             : 
    1737             : /*-------------------------------------------------------------------------
    1738             :  * Run-Time Partition Pruning Support.
    1739             :  *
    1740             :  * The following series of functions exist to support the removal of unneeded
    1741             :  * subplans for queries against partitioned tables.  The supporting functions
    1742             :  * here are designed to work with any plan type which supports an arbitrary
    1743             :  * number of subplans, e.g. Append, MergeAppend.
    1744             :  *
    1745             :  * When pruning involves comparison of a partition key to a constant, it's
    1746             :  * done by the planner.  However, if we have a comparison to a non-constant
    1747             :  * but not volatile expression, that presents an opportunity for run-time
    1748             :  * pruning by the executor, allowing irrelevant partitions to be skipped
    1749             :  * dynamically.
    1750             :  *
    1751             :  * We must distinguish expressions containing PARAM_EXEC Params from
    1752             :  * expressions that don't contain those.  Even though a PARAM_EXEC Param is
    1753             :  * considered to be a stable expression, it can change value from one plan
    1754             :  * node scan to the next during query execution.  Stable comparison
    1755             :  * expressions that don't involve such Params allow partition pruning to be
    1756             :  * done once during executor startup.  Expressions that do involve such Params
    1757             :  * require us to prune separately for each scan of the parent plan node.
    1758             :  *
    1759             :  * Note that pruning away unneeded subplans during executor startup has the
    1760             :  * added benefit of not having to initialize the unneeded subplans at all.
    1761             :  *
    1762             :  *
    1763             :  * Functions:
    1764             :  *
    1765             :  * ExecInitPartitionPruning:
    1766             :  *      Creates the PartitionPruneState required by ExecFindMatchingSubPlans.
    1767             :  *      Details stored include how to map the partition index returned by the
    1768             :  *      partition pruning code into subplan indexes.  Also determines the set
    1769             :  *      of subplans to initialize considering the result of performing initial
    1770             :  *      pruning steps if any.  Maps in PartitionPruneState are updated to
    1771             :  *      account for initial pruning possibly having eliminated some of the
    1772             :  *      subplans.
    1773             :  *
    1774             :  * ExecFindMatchingSubPlans:
    1775             :  *      Returns indexes of matching subplans after evaluating the expressions
    1776             :  *      that are safe to evaluate at a given point.  This function is first
    1777             :  *      called during ExecInitPartitionPruning() to find the initially
    1778             :  *      matching subplans based on performing the initial pruning steps and
    1779             :  *      then must be called again each time the value of a Param listed in
    1780             :  *      PartitionPruneState's 'execparamids' changes.
    1781             :  *-------------------------------------------------------------------------
    1782             :  */
    1783             : 
    1784             : /*
    1785             :  * ExecInitPartitionPruning
    1786             :  *      Initialize data structure needed for run-time partition pruning and
    1787             :  *      do initial pruning if needed
    1788             :  *
    1789             :  * On return, *initially_valid_subplans is assigned the set of indexes of
    1790             :  * child subplans that must be initialized along with the parent plan node.
    1791             :  * Initial pruning is performed here if needed and in that case only the
    1792             :  * surviving subplans' indexes are added.
    1793             :  *
    1794             :  * If subplans are indeed pruned, subplan_map arrays contained in the returned
    1795             :  * PartitionPruneState are re-sequenced to not count those, though only if the
    1796             :  * maps will be needed for subsequent execution pruning passes.
    1797             :  */
    1798             : PartitionPruneState *
    1799         690 : ExecInitPartitionPruning(PlanState *planstate,
    1800             :                          int n_total_subplans,
    1801             :                          PartitionPruneInfo *pruneinfo,
    1802             :                          Bitmapset **initially_valid_subplans)
    1803             : {
    1804             :     PartitionPruneState *prunestate;
    1805         690 :     EState     *estate = planstate->state;
    1806             : 
    1807             :     /* We may need an expression context to evaluate partition exprs */
    1808         690 :     ExecAssignExprContext(estate, planstate);
    1809             : 
    1810             :     /* Create the working data structure for pruning */
    1811         690 :     prunestate = CreatePartitionPruneState(planstate, pruneinfo);
    1812             : 
    1813             :     /*
    1814             :      * Perform an initial partition prune pass, if required.
    1815             :      */
    1816         690 :     if (prunestate->do_initial_prune)
    1817         338 :         *initially_valid_subplans = ExecFindMatchingSubPlans(prunestate, true);
    1818             :     else
    1819             :     {
    1820             :         /* No pruning, so we'll need to initialize all subplans */
    1821             :         Assert(n_total_subplans > 0);
    1822         352 :         *initially_valid_subplans = bms_add_range(NULL, 0,
    1823             :                                                   n_total_subplans - 1);
    1824             :     }
    1825             : 
    1826             :     /*
    1827             :      * Re-sequence subplan indexes contained in prunestate to account for any
    1828             :      * that were removed above due to initial pruning.  No need to do this if
    1829             :      * no steps were removed.
    1830             :      */
    1831         690 :     if (bms_num_members(*initially_valid_subplans) < n_total_subplans)
    1832             :     {
    1833             :         /*
    1834             :          * We can safely skip this when !do_exec_prune, even though that
    1835             :          * leaves invalid data in prunestate, because that data won't be
    1836             :          * consulted again (cf initial Assert in ExecFindMatchingSubPlans).
    1837             :          */
    1838         338 :         if (prunestate->do_exec_prune)
    1839          48 :             PartitionPruneFixSubPlanMap(prunestate,
    1840             :                                         *initially_valid_subplans,
    1841             :                                         n_total_subplans);
    1842             :     }
    1843             : 
    1844         690 :     return prunestate;
    1845             : }
    1846             : 
    1847             : /*
    1848             :  * CreatePartitionPruneState
    1849             :  *      Build the data structure required for calling ExecFindMatchingSubPlans
    1850             :  *
    1851             :  * 'planstate' is the parent plan node's execution state.
    1852             :  *
    1853             :  * 'pruneinfo' is a PartitionPruneInfo as generated by
    1854             :  * make_partition_pruneinfo.  Here we build a PartitionPruneState containing a
    1855             :  * PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
    1856             :  * pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
    1857             :  * for each PartitionedRelPruneInfo appearing in that sublist.  This two-level
    1858             :  * system is needed to keep from confusing the different hierarchies when a
    1859             :  * UNION ALL contains multiple partitioned tables as children.  The data
    1860             :  * stored in each PartitionedRelPruningData can be re-used each time we
    1861             :  * re-evaluate which partitions match the pruning steps provided in each
    1862             :  * PartitionedRelPruneInfo.
    1863             :  */
    1864             : static PartitionPruneState *
    1865         690 : CreatePartitionPruneState(PlanState *planstate, PartitionPruneInfo *pruneinfo)
    1866             : {
    1867         690 :     EState     *estate = planstate->state;
    1868             :     PartitionPruneState *prunestate;
    1869             :     int         n_part_hierarchies;
    1870             :     ListCell   *lc;
    1871             :     int         i;
    1872         690 :     ExprContext *econtext = planstate->ps_ExprContext;
    1873             : 
    1874             :     /* For data reading, executor always includes detached partitions */
    1875         690 :     if (estate->es_partition_directory == NULL)
    1876         660 :         estate->es_partition_directory =
    1877         660 :             CreatePartitionDirectory(estate->es_query_cxt, false);
    1878             : 
    1879         690 :     n_part_hierarchies = list_length(pruneinfo->prune_infos);
    1880             :     Assert(n_part_hierarchies > 0);
    1881             : 
    1882             :     /*
    1883             :      * Allocate the data structure
    1884             :      */
    1885             :     prunestate = (PartitionPruneState *)
    1886         690 :         palloc(offsetof(PartitionPruneState, partprunedata) +
    1887             :                sizeof(PartitionPruningData *) * n_part_hierarchies);
    1888             : 
    1889         690 :     prunestate->execparamids = NULL;
    1890             :     /* other_subplans can change at runtime, so we need our own copy */
    1891         690 :     prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
    1892         690 :     prunestate->do_initial_prune = false;    /* may be set below */
    1893         690 :     prunestate->do_exec_prune = false;   /* may be set below */
    1894         690 :     prunestate->num_partprunedata = n_part_hierarchies;
    1895             : 
    1896             :     /*
    1897             :      * Create a short-term memory context which we'll use when making calls to
    1898             :      * the partition pruning functions.  This avoids possible memory leaks,
    1899             :      * since the pruning functions call comparison functions that aren't under
    1900             :      * our control.
    1901             :      */
    1902         690 :     prunestate->prune_context =
    1903         690 :         AllocSetContextCreate(CurrentMemoryContext,
    1904             :                               "Partition Prune",
    1905             :                               ALLOCSET_DEFAULT_SIZES);
    1906             : 
    1907         690 :     i = 0;
    1908        1404 :     foreach(lc, pruneinfo->prune_infos)
    1909             :     {
    1910         714 :         List       *partrelpruneinfos = lfirst_node(List, lc);
    1911         714 :         int         npartrelpruneinfos = list_length(partrelpruneinfos);
    1912             :         PartitionPruningData *prunedata;
    1913             :         ListCell   *lc2;
    1914             :         int         j;
    1915             : 
    1916             :         prunedata = (PartitionPruningData *)
    1917         714 :             palloc(offsetof(PartitionPruningData, partrelprunedata) +
    1918         714 :                    npartrelpruneinfos * sizeof(PartitionedRelPruningData));
    1919         714 :         prunestate->partprunedata[i] = prunedata;
    1920         714 :         prunedata->num_partrelprunedata = npartrelpruneinfos;
    1921             : 
    1922         714 :         j = 0;
    1923        2238 :         foreach(lc2, partrelpruneinfos)
    1924             :         {
    1925        1524 :             PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
    1926        1524 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    1927             :             Relation    partrel;
    1928             :             PartitionDesc partdesc;
    1929             :             PartitionKey partkey;
    1930             : 
    1931             :             /*
    1932             :              * We can rely on the copies of the partitioned table's partition
    1933             :              * key and partition descriptor appearing in its relcache entry,
    1934             :              * because that entry will be held open and locked for the
    1935             :              * duration of this executor run.
    1936             :              */
    1937        1524 :             partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
    1938        1524 :             partkey = RelationGetPartitionKey(partrel);
    1939        1524 :             partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
    1940             :                                                 partrel);
    1941             : 
    1942             :             /*
    1943             :              * Initialize the subplan_map and subpart_map.
    1944             :              *
    1945             :              * The set of partitions that exist now might not be the same that
    1946             :              * existed when the plan was made.  The normal case is that it is;
    1947             :              * optimize for that case with a quick comparison, and just copy
    1948             :              * the subplan_map and make subpart_map point to the one in
    1949             :              * PruneInfo.
    1950             :              *
    1951             :              * For the case where they aren't identical, we could have more
    1952             :              * partitions on either side; or even exactly the same number of
    1953             :              * them on both but the set of OIDs doesn't match fully.  Handle
    1954             :              * this by creating new subplan_map and subpart_map arrays that
    1955             :              * corresponds to the ones in the PruneInfo where the new
    1956             :              * partition descriptor's OIDs match.  Any that don't match can be
    1957             :              * set to -1, as if they were pruned.  By construction, both
    1958             :              * arrays are in partition bounds order.
    1959             :              */
    1960        1524 :             pprune->nparts = partdesc->nparts;
    1961        1524 :             pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts);
    1962             : 
    1963        1524 :             if (partdesc->nparts == pinfo->nparts &&
    1964        1522 :                 memcmp(partdesc->oids, pinfo->relid_map,
    1965        1522 :                        sizeof(int) * partdesc->nparts) == 0)
    1966             :             {
    1967        1400 :                 pprune->subpart_map = pinfo->subpart_map;
    1968        1400 :                 memcpy(pprune->subplan_map, pinfo->subplan_map,
    1969        1400 :                        sizeof(int) * pinfo->nparts);
    1970             :             }
    1971             :             else
    1972             :             {
    1973         124 :                 int         pd_idx = 0;
    1974             :                 int         pp_idx;
    1975             : 
    1976             :                 /*
    1977             :                  * When the partition arrays are not identical, there could be
    1978             :                  * some new ones but it's also possible that one was removed;
    1979             :                  * we cope with both situations by walking the arrays and
    1980             :                  * discarding those that don't match.
    1981             :                  *
    1982             :                  * If the number of partitions on both sides match, it's still
    1983             :                  * possible that one partition has been detached and another
    1984             :                  * attached.  Cope with that by creating a map that skips any
    1985             :                  * mismatches.
    1986             :                  */
    1987         124 :                 pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts);
    1988             : 
    1989         528 :                 for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
    1990             :                 {
    1991             :                     /* Skip any InvalidOid relid_map entries */
    1992         624 :                     while (pd_idx < pinfo->nparts &&
    1993         504 :                            !OidIsValid(pinfo->relid_map[pd_idx]))
    1994         220 :                         pd_idx++;
    1995             : 
    1996         404 :             recheck:
    1997         404 :                     if (pd_idx < pinfo->nparts &&
    1998         284 :                         pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
    1999             :                     {
    2000             :                         /* match... */
    2001         182 :                         pprune->subplan_map[pp_idx] =
    2002         182 :                             pinfo->subplan_map[pd_idx];
    2003         182 :                         pprune->subpart_map[pp_idx] =
    2004         182 :                             pinfo->subpart_map[pd_idx];
    2005         182 :                         pd_idx++;
    2006         182 :                         continue;
    2007             :                     }
    2008             : 
    2009             :                     /*
    2010             :                      * There isn't an exact match in the corresponding
    2011             :                      * positions of both arrays.  Peek ahead in
    2012             :                      * pinfo->relid_map to see if we have a match for the
    2013             :                      * current partition in partdesc.  Normally if a match
    2014             :                      * exists it's just one element ahead, and it means the
    2015             :                      * planner saw one extra partition that we no longer see
    2016             :                      * now (its concurrent detach finished just in between);
    2017             :                      * so we skip that one by updating pd_idx to the new
    2018             :                      * location and jumping above.  We can then continue to
    2019             :                      * match the rest of the elements after skipping the OID
    2020             :                      * with no match; no future matches are tried for the
    2021             :                      * element that was skipped, because we know the arrays to
    2022             :                      * be in the same order.
    2023             :                      *
    2024             :                      * If we don't see a match anywhere in the rest of the
    2025             :                      * pinfo->relid_map array, that means we see an element
    2026             :                      * now that the planner didn't see, so mark that one as
    2027             :                      * pruned and move on.
    2028             :                      */
    2029         288 :                     for (int pd_idx2 = pd_idx + 1; pd_idx2 < pinfo->nparts; pd_idx2++)
    2030             :                     {
    2031          66 :                         if (pd_idx2 >= pinfo->nparts)
    2032           0 :                             break;
    2033          66 :                         if (pinfo->relid_map[pd_idx2] == partdesc->oids[pp_idx])
    2034             :                         {
    2035           0 :                             pd_idx = pd_idx2;
    2036           0 :                             goto recheck;
    2037             :                         }
    2038             :                     }
    2039             : 
    2040         222 :                     pprune->subpart_map[pp_idx] = -1;
    2041         222 :                     pprune->subplan_map[pp_idx] = -1;
    2042             :                 }
    2043             :             }
    2044             : 
    2045             :             /* present_parts is also subject to later modification */
    2046        1524 :             pprune->present_parts = bms_copy(pinfo->present_parts);
    2047             : 
    2048             :             /*
    2049             :              * Initialize pruning contexts as needed.  Note that we must skip
    2050             :              * execution-time partition pruning in EXPLAIN (GENERIC_PLAN),
    2051             :              * since parameter values may be missing.
    2052             :              */
    2053        1524 :             pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
    2054        1524 :             if (pinfo->initial_pruning_steps &&
    2055         446 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2056             :             {
    2057         440 :                 InitPartitionPruneContext(&pprune->initial_context,
    2058             :                                           pinfo->initial_pruning_steps,
    2059             :                                           partdesc, partkey, planstate,
    2060             :                                           econtext);
    2061             :                 /* Record whether initial pruning is needed at any level */
    2062         440 :                 prunestate->do_initial_prune = true;
    2063             :             }
    2064        1524 :             pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
    2065        1524 :             if (pinfo->exec_pruning_steps &&
    2066         508 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2067             :             {
    2068         508 :                 InitPartitionPruneContext(&pprune->exec_context,
    2069             :                                           pinfo->exec_pruning_steps,
    2070             :                                           partdesc, partkey, planstate,
    2071             :                                           econtext);
    2072             :                 /* Record whether exec pruning is needed at any level */
    2073         508 :                 prunestate->do_exec_prune = true;
    2074             :             }
    2075             : 
    2076             :             /*
    2077             :              * Accumulate the IDs of all PARAM_EXEC Params affecting the
    2078             :              * partitioning decisions at this plan node.
    2079             :              */
    2080        3048 :             prunestate->execparamids = bms_add_members(prunestate->execparamids,
    2081        1524 :                                                        pinfo->execparamids);
    2082             : 
    2083        1524 :             j++;
    2084             :         }
    2085         714 :         i++;
    2086             :     }
    2087             : 
    2088         690 :     return prunestate;
    2089             : }
    2090             : 
    2091             : /*
    2092             :  * Initialize a PartitionPruneContext for the given list of pruning steps.
    2093             :  */
    2094             : static void
    2095         948 : InitPartitionPruneContext(PartitionPruneContext *context,
    2096             :                           List *pruning_steps,
    2097             :                           PartitionDesc partdesc,
    2098             :                           PartitionKey partkey,
    2099             :                           PlanState *planstate,
    2100             :                           ExprContext *econtext)
    2101             : {
    2102             :     int         n_steps;
    2103             :     int         partnatts;
    2104             :     ListCell   *lc;
    2105             : 
    2106         948 :     n_steps = list_length(pruning_steps);
    2107             : 
    2108         948 :     context->strategy = partkey->strategy;
    2109         948 :     context->partnatts = partnatts = partkey->partnatts;
    2110         948 :     context->nparts = partdesc->nparts;
    2111         948 :     context->boundinfo = partdesc->boundinfo;
    2112         948 :     context->partcollation = partkey->partcollation;
    2113         948 :     context->partsupfunc = partkey->partsupfunc;
    2114             : 
    2115             :     /* We'll look up type-specific support functions as needed */
    2116         948 :     context->stepcmpfuncs = (FmgrInfo *)
    2117         948 :         palloc0(sizeof(FmgrInfo) * n_steps * partnatts);
    2118             : 
    2119         948 :     context->ppccontext = CurrentMemoryContext;
    2120         948 :     context->planstate = planstate;
    2121         948 :     context->exprcontext = econtext;
    2122             : 
    2123             :     /* Initialize expression state for each expression we need */
    2124         948 :     context->exprstates = (ExprState **)
    2125         948 :         palloc0(sizeof(ExprState *) * n_steps * partnatts);
    2126        2558 :     foreach(lc, pruning_steps)
    2127             :     {
    2128        1610 :         PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
    2129        1610 :         ListCell   *lc2 = list_head(step->exprs);
    2130             :         int         keyno;
    2131             : 
    2132             :         /* not needed for other step kinds */
    2133        1610 :         if (!IsA(step, PartitionPruneStepOp))
    2134         286 :             continue;
    2135             : 
    2136             :         Assert(list_length(step->exprs) <= partnatts);
    2137             : 
    2138        2798 :         for (keyno = 0; keyno < partnatts; keyno++)
    2139             :         {
    2140        1474 :             if (bms_is_member(keyno, step->nullkeys))
    2141           6 :                 continue;
    2142             : 
    2143        1468 :             if (lc2 != NULL)
    2144             :             {
    2145        1372 :                 Expr       *expr = lfirst(lc2);
    2146             : 
    2147             :                 /* not needed for Consts */
    2148        1372 :                 if (!IsA(expr, Const))
    2149             :                 {
    2150        1278 :                     int         stateidx = PruneCxtStateIdx(partnatts,
    2151             :                                                             step->step.step_id,
    2152             :                                                             keyno);
    2153             : 
    2154             :                     /*
    2155             :                      * When planstate is NULL, pruning_steps is known not to
    2156             :                      * contain any expressions that depend on the parent plan.
    2157             :                      * Information of any available EXTERN parameters must be
    2158             :                      * passed explicitly in that case, which the caller must
    2159             :                      * have made available via econtext.
    2160             :                      */
    2161        1278 :                     if (planstate == NULL)
    2162           0 :                         context->exprstates[stateidx] =
    2163           0 :                             ExecInitExprWithParams(expr,
    2164             :                                                    econtext->ecxt_param_list_info);
    2165             :                     else
    2166        1278 :                         context->exprstates[stateidx] =
    2167        1278 :                             ExecInitExpr(expr, context->planstate);
    2168             :                 }
    2169        1372 :                 lc2 = lnext(step->exprs, lc2);
    2170             :             }
    2171             :         }
    2172             :     }
    2173         948 : }
    2174             : 
    2175             : /*
    2176             :  * PartitionPruneFixSubPlanMap
    2177             :  *      Fix mapping of partition indexes to subplan indexes contained in
    2178             :  *      prunestate by considering the new list of subplans that survived
    2179             :  *      initial pruning
    2180             :  *
    2181             :  * Current values of the indexes present in PartitionPruneState count all the
    2182             :  * subplans that would be present before initial pruning was done.  If initial
    2183             :  * pruning got rid of some of the subplans, any subsequent pruning passes will
    2184             :  * be looking at a different set of target subplans to choose from than those
    2185             :  * in the pre-initial-pruning set, so the maps in PartitionPruneState
    2186             :  * containing those indexes must be updated to reflect the new indexes of
    2187             :  * subplans in the post-initial-pruning set.
    2188             :  */
    2189             : static void
    2190          48 : PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
    2191             :                             Bitmapset *initially_valid_subplans,
    2192             :                             int n_total_subplans)
    2193             : {
    2194             :     int        *new_subplan_indexes;
    2195             :     Bitmapset  *new_other_subplans;
    2196             :     int         i;
    2197             :     int         newidx;
    2198             : 
    2199             :     /*
    2200             :      * First we must build a temporary array which maps old subplan indexes to
    2201             :      * new ones.  For convenience of initialization, we use 1-based indexes in
    2202             :      * this array and leave pruned items as 0.
    2203             :      */
    2204          48 :     new_subplan_indexes = (int *) palloc0(sizeof(int) * n_total_subplans);
    2205          48 :     newidx = 1;
    2206          48 :     i = -1;
    2207         186 :     while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
    2208             :     {
    2209             :         Assert(i < n_total_subplans);
    2210         138 :         new_subplan_indexes[i] = newidx++;
    2211             :     }
    2212             : 
    2213             :     /*
    2214             :      * Now we can update each PartitionedRelPruneInfo's subplan_map with new
    2215             :      * subplan indexes.  We must also recompute its present_parts bitmap.
    2216             :      */
    2217         120 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2218             :     {
    2219          72 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2220             :         int         j;
    2221             : 
    2222             :         /*
    2223             :          * Within each hierarchy, we perform this loop in back-to-front order
    2224             :          * so that we determine present_parts for the lowest-level partitioned
    2225             :          * tables first.  This way we can tell whether a sub-partitioned
    2226             :          * table's partitions were entirely pruned so we can exclude it from
    2227             :          * the current level's present_parts.
    2228             :          */
    2229         264 :         for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
    2230             :         {
    2231         192 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    2232         192 :             int         nparts = pprune->nparts;
    2233             :             int         k;
    2234             : 
    2235             :             /* We just rebuild present_parts from scratch */
    2236         192 :             bms_free(pprune->present_parts);
    2237         192 :             pprune->present_parts = NULL;
    2238             : 
    2239         708 :             for (k = 0; k < nparts; k++)
    2240             :             {
    2241         516 :                 int         oldidx = pprune->subplan_map[k];
    2242             :                 int         subidx;
    2243             : 
    2244             :                 /*
    2245             :                  * If this partition existed as a subplan then change the old
    2246             :                  * subplan index to the new subplan index.  The new index may
    2247             :                  * become -1 if the partition was pruned above, or it may just
    2248             :                  * come earlier in the subplan list due to some subplans being
    2249             :                  * removed earlier in the list.  If it's a subpartition, add
    2250             :                  * it to present_parts unless it's entirely pruned.
    2251             :                  */
    2252         516 :                 if (oldidx >= 0)
    2253             :                 {
    2254             :                     Assert(oldidx < n_total_subplans);
    2255         396 :                     pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
    2256             : 
    2257         396 :                     if (new_subplan_indexes[oldidx] > 0)
    2258         114 :                         pprune->present_parts =
    2259         114 :                             bms_add_member(pprune->present_parts, k);
    2260             :                 }
    2261         120 :                 else if ((subidx = pprune->subpart_map[k]) >= 0)
    2262             :                 {
    2263             :                     PartitionedRelPruningData *subprune;
    2264             : 
    2265         120 :                     subprune = &prunedata->partrelprunedata[subidx];
    2266             : 
    2267         120 :                     if (!bms_is_empty(subprune->present_parts))
    2268          48 :                         pprune->present_parts =
    2269          48 :                             bms_add_member(pprune->present_parts, k);
    2270             :                 }
    2271             :             }
    2272             :         }
    2273             :     }
    2274             : 
    2275             :     /*
    2276             :      * We must also recompute the other_subplans set, since indexes in it may
    2277             :      * change.
    2278             :      */
    2279          48 :     new_other_subplans = NULL;
    2280          48 :     i = -1;
    2281          72 :     while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
    2282          24 :         new_other_subplans = bms_add_member(new_other_subplans,
    2283          24 :                                             new_subplan_indexes[i] - 1);
    2284             : 
    2285          48 :     bms_free(prunestate->other_subplans);
    2286          48 :     prunestate->other_subplans = new_other_subplans;
    2287             : 
    2288          48 :     pfree(new_subplan_indexes);
    2289          48 : }
    2290             : 
    2291             : /*
    2292             :  * ExecFindMatchingSubPlans
    2293             :  *      Determine which subplans match the pruning steps detailed in
    2294             :  *      'prunestate' for the current comparison expression values.
    2295             :  *
    2296             :  * Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated.  This
    2297             :  * differentiates the initial executor-time pruning step from later
    2298             :  * runtime pruning.
    2299             :  */
    2300             : Bitmapset *
    2301        3784 : ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
    2302             :                          bool initial_prune)
    2303             : {
    2304        3784 :     Bitmapset  *result = NULL;
    2305             :     MemoryContext oldcontext;
    2306             :     int         i;
    2307             : 
    2308             :     /*
    2309             :      * Either we're here on the initial prune done during pruning
    2310             :      * initialization, or we're at a point where PARAM_EXEC Params can be
    2311             :      * evaluated *and* there are steps in which to do so.
    2312             :      */
    2313             :     Assert(initial_prune || prunestate->do_exec_prune);
    2314             : 
    2315             :     /*
    2316             :      * Switch to a temp context to avoid leaking memory in the executor's
    2317             :      * query-lifespan memory context.
    2318             :      */
    2319        3784 :     oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
    2320             : 
    2321             :     /*
    2322             :      * For each hierarchy, do the pruning tests, and add nondeletable
    2323             :      * subplans' indexes to "result".
    2324             :      */
    2325        7610 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2326             :     {
    2327        3826 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2328             :         PartitionedRelPruningData *pprune;
    2329             : 
    2330             :         /*
    2331             :          * We pass the zeroth item, belonging to the root table of the
    2332             :          * hierarchy, and find_matching_subplans_recurse() takes care of
    2333             :          * recursing to other (lower-level) parents as needed.
    2334             :          */
    2335        3826 :         pprune = &prunedata->partrelprunedata[0];
    2336        3826 :         find_matching_subplans_recurse(prunedata, pprune, initial_prune,
    2337             :                                        &result);
    2338             : 
    2339             :         /* Expression eval may have used space in ExprContext too */
    2340        3826 :         if (pprune->exec_pruning_steps)
    2341        3410 :             ResetExprContext(pprune->exec_context.exprcontext);
    2342             :     }
    2343             : 
    2344             :     /* Add in any subplans that partition pruning didn't account for */
    2345        3784 :     result = bms_add_members(result, prunestate->other_subplans);
    2346             : 
    2347        3784 :     MemoryContextSwitchTo(oldcontext);
    2348             : 
    2349             :     /* Copy result out of the temp context before we reset it */
    2350        3784 :     result = bms_copy(result);
    2351             : 
    2352        3784 :     MemoryContextReset(prunestate->prune_context);
    2353             : 
    2354        3784 :     return result;
    2355             : }
    2356             : 
    2357             : /*
    2358             :  * find_matching_subplans_recurse
    2359             :  *      Recursive worker function for ExecFindMatchingSubPlans
    2360             :  *
    2361             :  * Adds valid (non-prunable) subplan IDs to *validsubplans
    2362             :  */
    2363             : static void
    2364        4240 : find_matching_subplans_recurse(PartitionPruningData *prunedata,
    2365             :                                PartitionedRelPruningData *pprune,
    2366             :                                bool initial_prune,
    2367             :                                Bitmapset **validsubplans)
    2368             : {
    2369             :     Bitmapset  *partset;
    2370             :     int         i;
    2371             : 
    2372             :     /* Guard against stack overflow due to overly deep partition hierarchy. */
    2373        4240 :     check_stack_depth();
    2374             : 
    2375             :     /*
    2376             :      * Prune as appropriate, if we have pruning steps matching the current
    2377             :      * execution context.  Otherwise just include all partitions at this
    2378             :      * level.
    2379             :      */
    2380        4240 :     if (initial_prune && pprune->initial_pruning_steps)
    2381         422 :         partset = get_matching_partitions(&pprune->initial_context,
    2382             :                                           pprune->initial_pruning_steps);
    2383        3818 :     else if (!initial_prune && pprune->exec_pruning_steps)
    2384        3476 :         partset = get_matching_partitions(&pprune->exec_context,
    2385             :                                           pprune->exec_pruning_steps);
    2386             :     else
    2387         342 :         partset = pprune->present_parts;
    2388             : 
    2389             :     /* Translate partset into subplan indexes */
    2390        4240 :     i = -1;
    2391        5960 :     while ((i = bms_next_member(partset, i)) >= 0)
    2392             :     {
    2393        1720 :         if (pprune->subplan_map[i] >= 0)
    2394        1304 :             *validsubplans = bms_add_member(*validsubplans,
    2395        1304 :                                             pprune->subplan_map[i]);
    2396             :         else
    2397             :         {
    2398         416 :             int         partidx = pprune->subpart_map[i];
    2399             : 
    2400         416 :             if (partidx >= 0)
    2401         414 :                 find_matching_subplans_recurse(prunedata,
    2402             :                                                &prunedata->partrelprunedata[partidx],
    2403             :                                                initial_prune, validsubplans);
    2404             :             else
    2405             :             {
    2406             :                 /*
    2407             :                  * We get here if the planner already pruned all the sub-
    2408             :                  * partitions for this partition.  Silently ignore this
    2409             :                  * partition in this case.  The end result is the same: we
    2410             :                  * would have pruned all partitions just the same, but we
    2411             :                  * don't have any pruning steps to execute to verify this.
    2412             :                  */
    2413             :             }
    2414             :         }
    2415             :     }
    2416        4240 : }

Generated by: LCOV version 1.14