LCOV - code coverage report
Current view: top level - src/backend/executor - execPartition.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 677 709 95.5 %
Date: 2026-02-07 07:17:36 Functions: 19 19 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * execPartition.c
       4             :  *    Support routines for partitioning.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  * IDENTIFICATION
      10             :  *    src/backend/executor/execPartition.c
      11             :  *
      12             :  *-------------------------------------------------------------------------
      13             :  */
      14             : #include "postgres.h"
      15             : 
      16             : #include "access/table.h"
      17             : #include "access/tableam.h"
      18             : #include "catalog/index.h"
      19             : #include "catalog/partition.h"
      20             : #include "executor/execPartition.h"
      21             : #include "executor/executor.h"
      22             : #include "executor/nodeModifyTable.h"
      23             : #include "foreign/fdwapi.h"
      24             : #include "mb/pg_wchar.h"
      25             : #include "miscadmin.h"
      26             : #include "partitioning/partbounds.h"
      27             : #include "partitioning/partdesc.h"
      28             : #include "partitioning/partprune.h"
      29             : #include "rewrite/rewriteManip.h"
      30             : #include "utils/acl.h"
      31             : #include "utils/injection_point.h"
      32             : #include "utils/lsyscache.h"
      33             : #include "utils/partcache.h"
      34             : #include "utils/rls.h"
      35             : #include "utils/ruleutils.h"
      36             : 
      37             : 
      38             : /*-----------------------
      39             :  * PartitionTupleRouting - Encapsulates all information required to
      40             :  * route a tuple inserted into a partitioned table to one of its leaf
      41             :  * partitions.
      42             :  *
      43             :  * partition_root
      44             :  *      The partitioned table that's the target of the command.
      45             :  *
      46             :  * partition_dispatch_info
      47             :  *      Array of 'max_dispatch' elements containing a pointer to a
      48             :  *      PartitionDispatch object for every partitioned table touched by tuple
      49             :  *      routing.  The entry for the target partitioned table is *always*
      50             :  *      present in the 0th element of this array.  See comment for
      51             :  *      PartitionDispatchData->indexes for details on how this array is
      52             :  *      indexed.
      53             :  *
      54             :  * nonleaf_partitions
      55             :  *      Array of 'max_dispatch' elements containing pointers to fake
      56             :  *      ResultRelInfo objects for nonleaf partitions, useful for checking
      57             :  *      the partition constraint.
      58             :  *
      59             :  * num_dispatch
      60             :  *      The current number of items stored in the 'partition_dispatch_info'
      61             :  *      array.  Also serves as the index of the next free array element for
      62             :  *      new PartitionDispatch objects that need to be stored.
      63             :  *
      64             :  * max_dispatch
      65             :  *      The current allocated size of the 'partition_dispatch_info' array.
      66             :  *
      67             :  * partitions
      68             :  *      Array of 'max_partitions' elements containing a pointer to a
      69             :  *      ResultRelInfo for every leaf partition touched by tuple routing.
      70             :  *      Some of these are pointers to ResultRelInfos which are borrowed out of
      71             :  *      the owning ModifyTableState node.  The remainder have been built
      72             :  *      especially for tuple routing.  See comment for
      73             :  *      PartitionDispatchData->indexes for details on how this array is
      74             :  *      indexed.
      75             :  *
      76             :  * is_borrowed_rel
      77             :  *      Array of 'max_partitions' booleans recording whether a given entry
      78             :  *      in 'partitions' is a ResultRelInfo pointer borrowed from the owning
      79             :  *      ModifyTableState node, rather than being built here.
      80             :  *
      81             :  * num_partitions
      82             :  *      The current number of items stored in the 'partitions' array.  Also
      83             :  *      serves as the index of the next free array element for new
      84             :  *      ResultRelInfo objects that need to be stored.
      85             :  *
      86             :  * max_partitions
      87             :  *      The current allocated size of the 'partitions' array.
      88             :  *
      89             :  * memcxt
      90             :  *      Memory context used to allocate subsidiary structs.
      91             :  *-----------------------
      92             :  */
      93             : struct PartitionTupleRouting
      94             : {
      95             :     Relation    partition_root;
      96             :     PartitionDispatch *partition_dispatch_info;
      97             :     ResultRelInfo **nonleaf_partitions;
      98             :     int         num_dispatch;
      99             :     int         max_dispatch;
     100             :     ResultRelInfo **partitions;
     101             :     bool       *is_borrowed_rel;
     102             :     int         num_partitions;
     103             :     int         max_partitions;
     104             :     MemoryContext memcxt;
     105             : };
     106             : 
     107             : /*-----------------------
     108             :  * PartitionDispatch - information about one partitioned table in a partition
     109             :  * hierarchy required to route a tuple to any of its partitions.  A
     110             :  * PartitionDispatch is always encapsulated inside a PartitionTupleRouting
     111             :  * struct and stored inside its 'partition_dispatch_info' array.
     112             :  *
     113             :  * reldesc
     114             :  *      Relation descriptor of the table
     115             :  *
     116             :  * key
     117             :  *      Partition key information of the table
     118             :  *
     119             :  * keystate
     120             :  *      Execution state required for expressions in the partition key
     121             :  *
     122             :  * partdesc
     123             :  *      Partition descriptor of the table
     124             :  *
     125             :  * tupslot
     126             :  *      A standalone TupleTableSlot initialized with this table's tuple
     127             :  *      descriptor, or NULL if no tuple conversion between the parent is
     128             :  *      required.
     129             :  *
     130             :  * tupmap
     131             :  *      TupleConversionMap to convert from the parent's rowtype to this table's
     132             :  *      rowtype  (when extracting the partition key of a tuple just before
     133             :  *      routing it through this table). A NULL value is stored if no tuple
     134             :  *      conversion is required.
     135             :  *
     136             :  * indexes
     137             :  *      Array of partdesc->nparts elements.  For leaf partitions the index
     138             :  *      corresponds to the partition's ResultRelInfo in the encapsulating
     139             :  *      PartitionTupleRouting's partitions array.  For partitioned partitions,
     140             :  *      the index corresponds to the PartitionDispatch for it in its
     141             :  *      partition_dispatch_info array.  -1 indicates we've not yet allocated
     142             :  *      anything in PartitionTupleRouting for the partition.
     143             :  *-----------------------
     144             :  */
     145             : typedef struct PartitionDispatchData
     146             : {
     147             :     Relation    reldesc;
     148             :     PartitionKey key;
     149             :     List       *keystate;       /* list of ExprState */
     150             :     PartitionDesc partdesc;
     151             :     TupleTableSlot *tupslot;
     152             :     AttrMap    *tupmap;
     153             :     int         indexes[FLEXIBLE_ARRAY_MEMBER];
     154             : }           PartitionDispatchData;
     155             : 
     156             : 
     157             : static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
     158             :                                             EState *estate, PartitionTupleRouting *proute,
     159             :                                             PartitionDispatch dispatch,
     160             :                                             ResultRelInfo *rootResultRelInfo,
     161             :                                             int partidx);
     162             : static void ExecInitRoutingInfo(ModifyTableState *mtstate,
     163             :                                 EState *estate,
     164             :                                 PartitionTupleRouting *proute,
     165             :                                 PartitionDispatch dispatch,
     166             :                                 ResultRelInfo *partRelInfo,
     167             :                                 int partidx,
     168             :                                 bool is_borrowed_rel);
     169             : static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
     170             :                                                        PartitionTupleRouting *proute,
     171             :                                                        Oid partoid, PartitionDispatch parent_pd,
     172             :                                                        int partidx, ResultRelInfo *rootResultRelInfo);
     173             : static void FormPartitionKeyDatum(PartitionDispatch pd,
     174             :                                   TupleTableSlot *slot,
     175             :                                   EState *estate,
     176             :                                   Datum *values,
     177             :                                   bool *isnull);
     178             : static int  get_partition_for_tuple(PartitionDispatch pd, const Datum *values,
     179             :                                     const bool *isnull);
     180             : static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
     181             :                                                   const Datum *values,
     182             :                                                   const bool *isnull,
     183             :                                                   int maxfieldlen);
     184             : static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
     185             : static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
     186             : static PartitionPruneState *CreatePartitionPruneState(EState *estate,
     187             :                                                       PartitionPruneInfo *pruneinfo,
     188             :                                                       Bitmapset **all_leafpart_rtis);
     189             : static void InitPartitionPruneContext(PartitionPruneContext *context,
     190             :                                       List *pruning_steps,
     191             :                                       PartitionDesc partdesc,
     192             :                                       PartitionKey partkey,
     193             :                                       PlanState *planstate,
     194             :                                       ExprContext *econtext);
     195             : static void InitExecPartitionPruneContexts(PartitionPruneState *prunestate,
     196             :                                            PlanState *parent_plan,
     197             :                                            Bitmapset *initially_valid_subplans,
     198             :                                            int n_total_subplans);
     199             : static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
     200             :                                            PartitionedRelPruningData *pprune,
     201             :                                            bool initial_prune,
     202             :                                            Bitmapset **validsubplans,
     203             :                                            Bitmapset **validsubplan_rtis);
     204             : 
     205             : 
     206             : /*
     207             :  * ExecSetupPartitionTupleRouting - sets up information needed during
     208             :  * tuple routing for partitioned tables, encapsulates it in
     209             :  * PartitionTupleRouting, and returns it.
     210             :  *
     211             :  * Callers must use the returned PartitionTupleRouting during calls to
     212             :  * ExecFindPartition().  The actual ResultRelInfo for a partition is only
     213             :  * allocated when the partition is found for the first time.
     214             :  *
     215             :  * The current memory context is used to allocate this struct and all
     216             :  * subsidiary structs that will be allocated from it later on.  Typically
     217             :  * it should be estate->es_query_cxt.
     218             :  */
     219             : PartitionTupleRouting *
     220        5670 : ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
     221             : {
     222             :     PartitionTupleRouting *proute;
     223             : 
     224             :     /*
     225             :      * Here we attempt to expend as little effort as possible in setting up
     226             :      * the PartitionTupleRouting.  Each partition's ResultRelInfo is built on
     227             :      * demand, only when we actually need to route a tuple to that partition.
     228             :      * The reason for this is that a common case is for INSERT to insert a
     229             :      * single tuple into a partitioned table and this must be fast.
     230             :      */
     231        5670 :     proute = palloc0_object(PartitionTupleRouting);
     232        5670 :     proute->partition_root = rel;
     233        5670 :     proute->memcxt = CurrentMemoryContext;
     234             :     /* Rest of members initialized by zeroing */
     235             : 
     236             :     /*
     237             :      * Initialize this table's PartitionDispatch object.  Here we pass in the
     238             :      * parent as NULL as we don't need to care about any parent of the target
     239             :      * partitioned table.
     240             :      */
     241        5670 :     ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
     242             :                                   NULL, 0, NULL);
     243             : 
     244        5670 :     return proute;
     245             : }
     246             : 
     247             : /*
     248             :  * ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
     249             :  * the tuple contained in *slot should belong to.
     250             :  *
     251             :  * If the partition's ResultRelInfo does not yet exist in 'proute' then we set
     252             :  * one up or reuse one from mtstate's resultRelInfo array.  When reusing a
     253             :  * ResultRelInfo from the mtstate we verify that the relation is a valid
     254             :  * target for INSERTs and initialize tuple routing information.
     255             :  *
     256             :  * rootResultRelInfo is the relation named in the query.
     257             :  *
     258             :  * estate must be non-NULL; we'll need it to compute any expressions in the
     259             :  * partition keys.  Also, its per-tuple contexts are used as evaluation
     260             :  * scratch space.
     261             :  *
     262             :  * If no leaf partition is found, this routine errors out with the appropriate
     263             :  * error message.  An error may also be raised if the found target partition
     264             :  * is not a valid target for an INSERT.
     265             :  */
     266             : ResultRelInfo *
     267     1033366 : ExecFindPartition(ModifyTableState *mtstate,
     268             :                   ResultRelInfo *rootResultRelInfo,
     269             :                   PartitionTupleRouting *proute,
     270             :                   TupleTableSlot *slot, EState *estate)
     271             : {
     272     1033366 :     PartitionDispatch *pd = proute->partition_dispatch_info;
     273             :     Datum       values[PARTITION_MAX_KEYS];
     274             :     bool        isnull[PARTITION_MAX_KEYS];
     275             :     Relation    rel;
     276             :     PartitionDispatch dispatch;
     277             :     PartitionDesc partdesc;
     278     1033366 :     ExprContext *ecxt = GetPerTupleExprContext(estate);
     279     1033366 :     TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
     280     1033366 :     TupleTableSlot *rootslot = slot;
     281     1033366 :     TupleTableSlot *myslot = NULL;
     282             :     MemoryContext oldcxt;
     283     1033366 :     ResultRelInfo *rri = NULL;
     284             : 
     285             :     /* use per-tuple context here to avoid leaking memory */
     286     1033366 :     oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
     287             : 
     288             :     /*
     289             :      * First check the root table's partition constraint, if any.  No point in
     290             :      * routing the tuple if it doesn't belong in the root table itself.
     291             :      */
     292     1033366 :     if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
     293        4502 :         ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
     294             : 
     295             :     /* start with the root partitioned table */
     296     1033334 :     dispatch = pd[0];
     297     2183020 :     while (dispatch != NULL)
     298             :     {
     299     1149878 :         int         partidx = -1;
     300             :         bool        is_leaf;
     301             : 
     302     1149878 :         CHECK_FOR_INTERRUPTS();
     303             : 
     304     1149878 :         rel = dispatch->reldesc;
     305     1149878 :         partdesc = dispatch->partdesc;
     306             : 
     307             :         /*
     308             :          * Extract partition key from tuple. Expression evaluation machinery
     309             :          * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
     310             :          * point to the correct tuple slot.  The slot might have changed from
     311             :          * what was used for the parent table if the table of the current
     312             :          * partitioning level has different tuple descriptor from the parent.
     313             :          * So update ecxt_scantuple accordingly.
     314             :          */
     315     1149878 :         ecxt->ecxt_scantuple = slot;
     316     1149878 :         FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
     317             : 
     318             :         /*
     319             :          * If this partitioned table has no partitions or no partition for
     320             :          * these values, error out.
     321             :          */
     322     2299702 :         if (partdesc->nparts == 0 ||
     323     1149836 :             (partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
     324             :         {
     325             :             char       *val_desc;
     326             : 
     327         154 :             val_desc = ExecBuildSlotPartitionKeyDescription(rel,
     328             :                                                             values, isnull, 64);
     329             :             Assert(OidIsValid(RelationGetRelid(rel)));
     330         154 :             ereport(ERROR,
     331             :                     (errcode(ERRCODE_CHECK_VIOLATION),
     332             :                      errmsg("no partition of relation \"%s\" found for row",
     333             :                             RelationGetRelationName(rel)),
     334             :                      val_desc ?
     335             :                      errdetail("Partition key of the failing row contains %s.",
     336             :                                val_desc) : 0,
     337             :                      errtable(rel)));
     338             :         }
     339             : 
     340     1149712 :         is_leaf = partdesc->is_leaf[partidx];
     341     1149712 :         if (is_leaf)
     342             :         {
     343             :             /*
     344             :              * We've reached the leaf -- hurray, we're done.  Look to see if
     345             :              * we've already got a ResultRelInfo for this partition.
     346             :              */
     347     1033166 :             if (likely(dispatch->indexes[partidx] >= 0))
     348             :             {
     349             :                 /* ResultRelInfo already built */
     350             :                 Assert(dispatch->indexes[partidx] < proute->num_partitions);
     351     1025358 :                 rri = proute->partitions[dispatch->indexes[partidx]];
     352             :             }
     353             :             else
     354             :             {
     355             :                 /*
     356             :                  * If the partition is known in the owning ModifyTableState
     357             :                  * node, we can re-use that ResultRelInfo instead of creating
     358             :                  * a new one with ExecInitPartitionInfo().
     359             :                  */
     360        7808 :                 rri = ExecLookupResultRelByOid(mtstate,
     361        7808 :                                                partdesc->oids[partidx],
     362             :                                                true, false);
     363        7808 :                 if (rri)
     364             :                 {
     365         508 :                     ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
     366             : 
     367             :                     /* Verify this ResultRelInfo allows INSERTs */
     368         508 :                     CheckValidResultRel(rri, CMD_INSERT,
     369             :                                         node ? node->onConflictAction : ONCONFLICT_NONE,
     370             :                                         NIL);
     371             : 
     372             :                     /*
     373             :                      * Initialize information needed to insert this and
     374             :                      * subsequent tuples routed to this partition.
     375             :                      */
     376         508 :                     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     377             :                                         rri, partidx, true);
     378             :                 }
     379             :                 else
     380             :                 {
     381             :                     /* We need to create a new one. */
     382        7300 :                     rri = ExecInitPartitionInfo(mtstate, estate, proute,
     383             :                                                 dispatch,
     384             :                                                 rootResultRelInfo, partidx);
     385             :                 }
     386             :             }
     387             :             Assert(rri != NULL);
     388             : 
     389             :             /* Signal to terminate the loop */
     390     1033142 :             dispatch = NULL;
     391             :         }
     392             :         else
     393             :         {
     394             :             /*
     395             :              * Partition is a sub-partitioned table; get the PartitionDispatch
     396             :              */
     397      116546 :             if (likely(dispatch->indexes[partidx] >= 0))
     398             :             {
     399             :                 /* Already built. */
     400             :                 Assert(dispatch->indexes[partidx] < proute->num_dispatch);
     401             : 
     402      115346 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     403             : 
     404             :                 /*
     405             :                  * Move down to the next partition level and search again
     406             :                  * until we find a leaf partition that matches this tuple
     407             :                  */
     408      115346 :                 dispatch = pd[dispatch->indexes[partidx]];
     409             :             }
     410             :             else
     411             :             {
     412             :                 /* Not yet built. Do that now. */
     413             :                 PartitionDispatch subdispatch;
     414             : 
     415             :                 /*
     416             :                  * Create the new PartitionDispatch.  We pass the current one
     417             :                  * in as the parent PartitionDispatch
     418             :                  */
     419        1200 :                 subdispatch = ExecInitPartitionDispatchInfo(estate,
     420             :                                                             proute,
     421        1200 :                                                             partdesc->oids[partidx],
     422             :                                                             dispatch, partidx,
     423             :                                                             mtstate->rootResultRelInfo);
     424             :                 Assert(dispatch->indexes[partidx] >= 0 &&
     425             :                        dispatch->indexes[partidx] < proute->num_dispatch);
     426             : 
     427        1200 :                 rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
     428        1200 :                 dispatch = subdispatch;
     429             :             }
     430             : 
     431             :             /*
     432             :              * Convert the tuple to the new parent's layout, if different from
     433             :              * the previous parent.
     434             :              */
     435      116546 :             if (dispatch->tupslot)
     436             :             {
     437       61716 :                 AttrMap    *map = dispatch->tupmap;
     438       61716 :                 TupleTableSlot *tempslot = myslot;
     439             : 
     440       61716 :                 myslot = dispatch->tupslot;
     441       61716 :                 slot = execute_attr_map_slot(map, slot, myslot);
     442             : 
     443       61716 :                 if (tempslot != NULL)
     444         294 :                     ExecClearTuple(tempslot);
     445             :             }
     446             :         }
     447             : 
     448             :         /*
     449             :          * If this partition is the default one, we must check its partition
     450             :          * constraint now, which may have changed concurrently due to
     451             :          * partitions being added to the parent.
     452             :          *
     453             :          * (We do this here, and do not rely on ExecInsert doing it, because
     454             :          * we don't want to miss doing it for non-leaf partitions.)
     455             :          */
     456     1149688 :         if (partidx == partdesc->boundinfo->default_index)
     457             :         {
     458             :             /*
     459             :              * The tuple must match the partition's layout for the constraint
     460             :              * expression to be evaluated successfully.  If the partition is
     461             :              * sub-partitioned, that would already be the case due to the code
     462             :              * above, but for a leaf partition the tuple still matches the
     463             :              * parent's layout.
     464             :              *
     465             :              * Note that we have a map to convert from root to current
     466             :              * partition, but not from immediate parent to current partition.
     467             :              * So if we have to convert, do it from the root slot; if not, use
     468             :              * the root slot as-is.
     469             :              */
     470         832 :             if (is_leaf)
     471             :             {
     472         788 :                 TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
     473             : 
     474         788 :                 if (map)
     475         162 :                     slot = execute_attr_map_slot(map->attrMap, rootslot,
     476             :                                                  rri->ri_PartitionTupleSlot);
     477             :                 else
     478         626 :                     slot = rootslot;
     479             :             }
     480             : 
     481         832 :             ExecPartitionCheck(rri, slot, estate, true);
     482             :         }
     483             :     }
     484             : 
     485             :     /* Release the tuple in the lowest parent's dedicated slot. */
     486     1033142 :     if (myslot != NULL)
     487       61384 :         ExecClearTuple(myslot);
     488             :     /* and restore ecxt's scantuple */
     489     1033142 :     ecxt->ecxt_scantuple = ecxt_scantuple_saved;
     490     1033142 :     MemoryContextSwitchTo(oldcxt);
     491             : 
     492     1033142 :     return rri;
     493             : }
     494             : 
     495             : /*
     496             :  * IsIndexCompatibleAsArbiter
     497             :  *      Return true if two indexes are identical for INSERT ON CONFLICT
     498             :  *      purposes.
     499             :  *
     500             :  * Only indexes of the same relation are supported.
     501             :  */
     502             : static bool
     503          26 : IsIndexCompatibleAsArbiter(Relation arbiterIndexRelation,
     504             :                            IndexInfo *arbiterIndexInfo,
     505             :                            Relation indexRelation,
     506             :                            IndexInfo *indexInfo)
     507             : {
     508             :     Assert(arbiterIndexRelation->rd_index->indrelid == indexRelation->rd_index->indrelid);
     509             : 
     510             :     /* must match whether they're unique */
     511          26 :     if (arbiterIndexInfo->ii_Unique != indexInfo->ii_Unique)
     512           0 :         return false;
     513             : 
     514             :     /* No support currently for comparing exclusion indexes. */
     515          26 :     if (arbiterIndexInfo->ii_ExclusionOps != NULL ||
     516          26 :         indexInfo->ii_ExclusionOps != NULL)
     517           0 :         return false;
     518             : 
     519             :     /* the "nulls not distinct" criterion must match */
     520          26 :     if (arbiterIndexInfo->ii_NullsNotDistinct !=
     521          26 :         indexInfo->ii_NullsNotDistinct)
     522           0 :         return false;
     523             : 
     524             :     /* number of key attributes must match */
     525          26 :     if (arbiterIndexInfo->ii_NumIndexKeyAttrs !=
     526          26 :         indexInfo->ii_NumIndexKeyAttrs)
     527           0 :         return false;
     528             : 
     529          40 :     for (int i = 0; i < arbiterIndexInfo->ii_NumIndexKeyAttrs; i++)
     530             :     {
     531          26 :         if (arbiterIndexRelation->rd_indcollation[i] !=
     532          26 :             indexRelation->rd_indcollation[i])
     533          12 :             return false;
     534             : 
     535          14 :         if (arbiterIndexRelation->rd_opfamily[i] !=
     536          14 :             indexRelation->rd_opfamily[i])
     537           0 :             return false;
     538             : 
     539          14 :         if (arbiterIndexRelation->rd_index->indkey.values[i] !=
     540          14 :             indexRelation->rd_index->indkey.values[i])
     541           0 :             return false;
     542             :     }
     543             : 
     544          14 :     if (list_difference(RelationGetIndexExpressions(arbiterIndexRelation),
     545          14 :                         RelationGetIndexExpressions(indexRelation)) != NIL)
     546           0 :         return false;
     547             : 
     548          14 :     if (list_difference(RelationGetIndexPredicate(arbiterIndexRelation),
     549          14 :                         RelationGetIndexPredicate(indexRelation)) != NIL)
     550           0 :         return false;
     551          14 :     return true;
     552             : }
     553             : 
     554             : /*
     555             :  * ExecInitPartitionInfo
     556             :  *      Lock the partition and initialize ResultRelInfo.  Also setup other
     557             :  *      information for the partition and store it in the next empty slot in
     558             :  *      the proute->partitions array.
     559             :  *
     560             :  * Returns the ResultRelInfo
     561             :  */
     562             : static ResultRelInfo *
     563        7300 : ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
     564             :                       PartitionTupleRouting *proute,
     565             :                       PartitionDispatch dispatch,
     566             :                       ResultRelInfo *rootResultRelInfo,
     567             :                       int partidx)
     568             : {
     569        7300 :     ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
     570        7300 :     Oid         partOid = dispatch->partdesc->oids[partidx];
     571             :     Relation    partrel;
     572        7300 :     int         firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
     573        7300 :     Relation    firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
     574             :     ResultRelInfo *leaf_part_rri;
     575             :     MemoryContext oldcxt;
     576        7300 :     AttrMap    *part_attmap = NULL;
     577             :     bool        found_whole_row;
     578             : 
     579        7300 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
     580             : 
     581        7300 :     partrel = table_open(partOid, RowExclusiveLock);
     582             : 
     583        7300 :     leaf_part_rri = makeNode(ResultRelInfo);
     584        7300 :     InitResultRelInfo(leaf_part_rri,
     585             :                       partrel,
     586             :                       0,
     587             :                       rootResultRelInfo,
     588             :                       estate->es_instrument);
     589             : 
     590             :     /*
     591             :      * Verify result relation is a valid target for an INSERT.  An UPDATE of a
     592             :      * partition-key becomes a DELETE+INSERT operation, so this check is still
     593             :      * required when the operation is CMD_UPDATE.
     594             :      */
     595        7300 :     CheckValidResultRel(leaf_part_rri, CMD_INSERT,
     596             :                         node ? node->onConflictAction : ONCONFLICT_NONE, NIL);
     597             : 
     598             :     /*
     599             :      * Open partition indices.  The user may have asked to check for conflicts
     600             :      * within this leaf partition and do "nothing" instead of throwing an
     601             :      * error.  Be prepared in that case by initializing the index information
     602             :      * needed by ExecInsert() to perform speculative insertions.
     603             :      */
     604        7288 :     if (partrel->rd_rel->relhasindex &&
     605        2106 :         leaf_part_rri->ri_IndexRelationDescs == NULL)
     606        2106 :         ExecOpenIndices(leaf_part_rri,
     607        4010 :                         (node != NULL &&
     608        1904 :                          node->onConflictAction != ONCONFLICT_NONE));
     609             : 
     610             :     /*
     611             :      * Build WITH CHECK OPTION constraints for the partition.  Note that we
     612             :      * didn't build the withCheckOptionList for partitions within the planner,
     613             :      * but simple translation of varattnos will suffice.  This only occurs for
     614             :      * the INSERT case or in the case of UPDATE/MERGE tuple routing where we
     615             :      * didn't find a result rel to reuse.
     616             :      */
     617        7288 :     if (node && node->withCheckOptionLists != NIL)
     618             :     {
     619             :         List       *wcoList;
     620          96 :         List       *wcoExprs = NIL;
     621             :         ListCell   *ll;
     622             : 
     623             :         /*
     624             :          * In the case of INSERT on a partitioned table, there is only one
     625             :          * plan.  Likewise, there is only one WCO list, not one per partition.
     626             :          * For UPDATE/MERGE, there are as many WCO lists as there are plans.
     627             :          */
     628             :         Assert((node->operation == CMD_INSERT &&
     629             :                 list_length(node->withCheckOptionLists) == 1 &&
     630             :                 list_length(node->resultRelations) == 1) ||
     631             :                (node->operation == CMD_UPDATE &&
     632             :                 list_length(node->withCheckOptionLists) ==
     633             :                 list_length(node->resultRelations)) ||
     634             :                (node->operation == CMD_MERGE &&
     635             :                 list_length(node->withCheckOptionLists) ==
     636             :                 list_length(node->resultRelations)));
     637             : 
     638             :         /*
     639             :          * Use the WCO list of the first plan as a reference to calculate
     640             :          * attno's for the WCO list of this partition.  In the INSERT case,
     641             :          * that refers to the root partitioned table, whereas in the UPDATE
     642             :          * tuple routing case, that refers to the first partition in the
     643             :          * mtstate->resultRelInfo array.  In any case, both that relation and
     644             :          * this partition should have the same columns, so we should be able
     645             :          * to map attributes successfully.
     646             :          */
     647          96 :         wcoList = linitial(node->withCheckOptionLists);
     648             : 
     649             :         /*
     650             :          * Convert Vars in it to contain this partition's attribute numbers.
     651             :          */
     652             :         part_attmap =
     653          96 :             build_attrmap_by_name(RelationGetDescr(partrel),
     654             :                                   RelationGetDescr(firstResultRel),
     655             :                                   false);
     656             :         wcoList = (List *)
     657          96 :             map_variable_attnos((Node *) wcoList,
     658             :                                 firstVarno, 0,
     659             :                                 part_attmap,
     660          96 :                                 RelationGetForm(partrel)->reltype,
     661             :                                 &found_whole_row);
     662             :         /* We ignore the value of found_whole_row. */
     663             : 
     664         270 :         foreach(ll, wcoList)
     665             :         {
     666         174 :             WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
     667         174 :             ExprState  *wcoExpr = ExecInitQual(castNode(List, wco->qual),
     668             :                                                &mtstate->ps);
     669             : 
     670         174 :             wcoExprs = lappend(wcoExprs, wcoExpr);
     671             :         }
     672             : 
     673          96 :         leaf_part_rri->ri_WithCheckOptions = wcoList;
     674          96 :         leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
     675             :     }
     676             : 
     677             :     /*
     678             :      * Build the RETURNING projection for the partition.  Note that we didn't
     679             :      * build the returningList for partitions within the planner, but simple
     680             :      * translation of varattnos will suffice.  This only occurs for the INSERT
     681             :      * case or in the case of UPDATE/MERGE tuple routing where we didn't find
     682             :      * a result rel to reuse.
     683             :      */
     684        7288 :     if (node && node->returningLists != NIL)
     685             :     {
     686             :         TupleTableSlot *slot;
     687             :         ExprContext *econtext;
     688             :         List       *returningList;
     689             : 
     690             :         /* See the comment above for WCO lists. */
     691             :         Assert((node->operation == CMD_INSERT &&
     692             :                 list_length(node->returningLists) == 1 &&
     693             :                 list_length(node->resultRelations) == 1) ||
     694             :                (node->operation == CMD_UPDATE &&
     695             :                 list_length(node->returningLists) ==
     696             :                 list_length(node->resultRelations)) ||
     697             :                (node->operation == CMD_MERGE &&
     698             :                 list_length(node->returningLists) ==
     699             :                 list_length(node->resultRelations)));
     700             : 
     701             :         /*
     702             :          * Use the RETURNING list of the first plan as a reference to
     703             :          * calculate attno's for the RETURNING list of this partition.  See
     704             :          * the comment above for WCO lists for more details on why this is
     705             :          * okay.
     706             :          */
     707         212 :         returningList = linitial(node->returningLists);
     708             : 
     709             :         /*
     710             :          * Convert Vars in it to contain this partition's attribute numbers.
     711             :          */
     712         212 :         if (part_attmap == NULL)
     713             :             part_attmap =
     714         212 :                 build_attrmap_by_name(RelationGetDescr(partrel),
     715             :                                       RelationGetDescr(firstResultRel),
     716             :                                       false);
     717             :         returningList = (List *)
     718         212 :             map_variable_attnos((Node *) returningList,
     719             :                                 firstVarno, 0,
     720             :                                 part_attmap,
     721         212 :                                 RelationGetForm(partrel)->reltype,
     722             :                                 &found_whole_row);
     723             :         /* We ignore the value of found_whole_row. */
     724             : 
     725         212 :         leaf_part_rri->ri_returningList = returningList;
     726             : 
     727             :         /*
     728             :          * Initialize the projection itself.
     729             :          *
     730             :          * Use the slot and the expression context that would have been set up
     731             :          * in ExecInitModifyTable() for projection's output.
     732             :          */
     733             :         Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
     734         212 :         slot = mtstate->ps.ps_ResultTupleSlot;
     735             :         Assert(mtstate->ps.ps_ExprContext != NULL);
     736         212 :         econtext = mtstate->ps.ps_ExprContext;
     737         212 :         leaf_part_rri->ri_projectReturning =
     738         212 :             ExecBuildProjectionInfo(returningList, econtext, slot,
     739             :                                     &mtstate->ps, RelationGetDescr(partrel));
     740             :     }
     741             : 
     742             :     /* Set up information needed for routing tuples to the partition. */
     743        7288 :     ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
     744             :                         leaf_part_rri, partidx, false);
     745             : 
     746             :     /*
     747             :      * If there is an ON CONFLICT clause, initialize state for it.
     748             :      */
     749        7288 :     if (node && node->onConflictAction != ONCONFLICT_NONE)
     750             :     {
     751         254 :         TupleDesc   partrelDesc = RelationGetDescr(partrel);
     752         254 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
     753         254 :         List       *arbiterIndexes = NIL;
     754         254 :         int         additional_arbiters = 0;
     755             : 
     756             :         /*
     757             :          * If there is a list of arbiter indexes, map it to a list of indexes
     758             :          * in the partition.  We also add any "identical indexes" to any of
     759             :          * those, to cover the case where one of them is concurrently being
     760             :          * reindexed.
     761             :          */
     762         254 :         if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
     763             :         {
     764         198 :             List       *unparented_idxs = NIL,
     765         198 :                        *arbiters_listidxs = NIL,
     766         198 :                        *ancestors_seen = NIL;
     767             : 
     768         422 :             for (int listidx = 0; listidx < leaf_part_rri->ri_NumIndices; listidx++)
     769             :             {
     770             :                 Oid         indexoid;
     771             :                 List       *ancestors;
     772             : 
     773             :                 /*
     774             :                  * If one of this index's ancestors is in the root's arbiter
     775             :                  * list, then use this index as arbiter for this partition.
     776             :                  * Otherwise, if this index has no parent, track it for later,
     777             :                  * in case REINDEX CONCURRENTLY is working on one of the
     778             :                  * arbiters.
     779             :                  *
     780             :                  * However, if two indexes appear to have the same parent,
     781             :                  * treat the second of these as if it had no parent.  This
     782             :                  * sounds counterintuitive, but it can happen if a transaction
     783             :                  * running REINDEX CONCURRENTLY commits right between those
     784             :                  * two indexes are checked by another process in this loop.
     785             :                  * This will have the effect of also treating that second
     786             :                  * index as arbiter.
     787             :                  *
     788             :                  * XXX get_partition_ancestors scans pg_inherits, which is not
     789             :                  * only slow, but also means the catalog snapshot can get
     790             :                  * invalidated each time through the loop (cf.
     791             :                  * GetNonHistoricCatalogSnapshot).  Consider a syscache or
     792             :                  * some other way to cache?
     793             :                  */
     794         224 :                 indexoid = RelationGetRelid(leaf_part_rri->ri_IndexRelationDescs[listidx]);
     795         224 :                 ancestors = get_partition_ancestors(indexoid);
     796         224 :                 INJECTION_POINT("exec-init-partition-after-get-partition-ancestors", NULL);
     797             : 
     798         224 :                 if (ancestors != NIL &&
     799         200 :                     !list_member_oid(ancestors_seen, linitial_oid(ancestors)))
     800             :                 {
     801         396 :                     foreach_oid(parent_idx, rootResultRelInfo->ri_onConflictArbiterIndexes)
     802             :                     {
     803         198 :                         if (list_member_oid(ancestors, parent_idx))
     804             :                         {
     805         198 :                             ancestors_seen = lappend_oid(ancestors_seen, linitial_oid(ancestors));
     806         198 :                             arbiterIndexes = lappend_oid(arbiterIndexes, indexoid);
     807         198 :                             arbiters_listidxs = lappend_int(arbiters_listidxs, listidx);
     808         198 :                             break;
     809             :                         }
     810             :                     }
     811             :                 }
     812             :                 else
     813          26 :                     unparented_idxs = lappend_int(unparented_idxs, listidx);
     814             : 
     815         224 :                 list_free(ancestors);
     816             :             }
     817             : 
     818             :             /*
     819             :              * If we found any indexes with no ancestors, it's possible that
     820             :              * some arbiter index is undergoing concurrent reindex.  Match all
     821             :              * unparented indexes against arbiters; add unparented matching
     822             :              * ones as "additional arbiters".
     823             :              *
     824             :              * This is critical so that all concurrent transactions use the
     825             :              * same set as arbiters during REINDEX CONCURRENTLY, to avoid
     826             :              * spurious "duplicate key" errors.
     827             :              */
     828         198 :             if (unparented_idxs && arbiterIndexes)
     829             :             {
     830          78 :                 foreach_int(unparented_i, unparented_idxs)
     831             :                 {
     832             :                     Relation    unparented_rel;
     833             :                     IndexInfo  *unparented_ii;
     834             : 
     835          26 :                     unparented_rel = leaf_part_rri->ri_IndexRelationDescs[unparented_i];
     836          26 :                     unparented_ii = leaf_part_rri->ri_IndexRelationInfo[unparented_i];
     837             : 
     838             :                     Assert(!list_member_oid(arbiterIndexes,
     839             :                                             unparented_rel->rd_index->indexrelid));
     840             : 
     841             :                     /* Ignore indexes not ready */
     842          26 :                     if (!unparented_ii->ii_ReadyForInserts)
     843           0 :                         continue;
     844             : 
     845          64 :                     foreach_int(arbiter_i, arbiters_listidxs)
     846             :                     {
     847             :                         Relation    arbiter_rel;
     848             :                         IndexInfo  *arbiter_ii;
     849             : 
     850          26 :                         arbiter_rel = leaf_part_rri->ri_IndexRelationDescs[arbiter_i];
     851          26 :                         arbiter_ii = leaf_part_rri->ri_IndexRelationInfo[arbiter_i];
     852             : 
     853             :                         /*
     854             :                          * If the non-ancestor index is compatible with the
     855             :                          * arbiter, use the non-ancestor as arbiter too.
     856             :                          */
     857          26 :                         if (IsIndexCompatibleAsArbiter(arbiter_rel,
     858             :                                                        arbiter_ii,
     859             :                                                        unparented_rel,
     860             :                                                        unparented_ii))
     861             :                         {
     862          14 :                             arbiterIndexes = lappend_oid(arbiterIndexes,
     863          14 :                                                          unparented_rel->rd_index->indexrelid);
     864          14 :                             additional_arbiters++;
     865          14 :                             break;
     866             :                         }
     867             :                     }
     868             :                 }
     869             :             }
     870         198 :             list_free(unparented_idxs);
     871         198 :             list_free(arbiters_listidxs);
     872         198 :             list_free(ancestors_seen);
     873             :         }
     874             : 
     875             :         /*
     876             :          * We expect to find as many arbiter indexes on this partition as the
     877             :          * root has, plus however many "additional arbiters" (to wit: those
     878             :          * being concurrently rebuilt) we found.
     879             :          */
     880         254 :         if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
     881         254 :             list_length(arbiterIndexes) - additional_arbiters)
     882           0 :             elog(ERROR, "invalid arbiter index list");
     883         254 :         leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
     884             : 
     885             :         /*
     886             :          * In the DO UPDATE case, we have some more state to initialize.
     887             :          */
     888         254 :         if (node->onConflictAction == ONCONFLICT_UPDATE)
     889             :         {
     890         186 :             OnConflictSetState *onconfl = makeNode(OnConflictSetState);
     891             :             TupleConversionMap *map;
     892             : 
     893         186 :             map = ExecGetRootToChildMap(leaf_part_rri, estate);
     894             : 
     895             :             Assert(node->onConflictSet != NIL);
     896             :             Assert(rootResultRelInfo->ri_onConflict != NULL);
     897             : 
     898         186 :             leaf_part_rri->ri_onConflict = onconfl;
     899             : 
     900             :             /*
     901             :              * Need a separate existing slot for each partition, as the
     902             :              * partition could be of a different AM, even if the tuple
     903             :              * descriptors match.
     904             :              */
     905         186 :             onconfl->oc_Existing =
     906         186 :                 table_slot_create(leaf_part_rri->ri_RelationDesc,
     907         186 :                                   &mtstate->ps.state->es_tupleTable);
     908             : 
     909             :             /*
     910             :              * If the partition's tuple descriptor matches exactly the root
     911             :              * parent (the common case), we can re-use most of the parent's ON
     912             :              * CONFLICT SET state, skipping a bunch of work.  Otherwise, we
     913             :              * need to create state specific to this partition.
     914             :              */
     915         186 :             if (map == NULL)
     916             :             {
     917             :                 /*
     918             :                  * It's safe to reuse these from the partition root, as we
     919             :                  * only process one tuple at a time (therefore we won't
     920             :                  * overwrite needed data in slots), and the results of
     921             :                  * projections are independent of the underlying storage.
     922             :                  * Projections and where clauses themselves don't store state
     923             :                  * / are independent of the underlying storage.
     924             :                  */
     925         110 :                 onconfl->oc_ProjSlot =
     926         110 :                     rootResultRelInfo->ri_onConflict->oc_ProjSlot;
     927         110 :                 onconfl->oc_ProjInfo =
     928         110 :                     rootResultRelInfo->ri_onConflict->oc_ProjInfo;
     929         110 :                 onconfl->oc_WhereClause =
     930         110 :                     rootResultRelInfo->ri_onConflict->oc_WhereClause;
     931             :             }
     932             :             else
     933             :             {
     934             :                 List       *onconflset;
     935             :                 List       *onconflcols;
     936             : 
     937             :                 /*
     938             :                  * Translate expressions in onConflictSet to account for
     939             :                  * different attribute numbers.  For that, map partition
     940             :                  * varattnos twice: first to catch the EXCLUDED
     941             :                  * pseudo-relation (INNER_VAR), and second to handle the main
     942             :                  * target relation (firstVarno).
     943             :                  */
     944          76 :                 onconflset = copyObject(node->onConflictSet);
     945          76 :                 if (part_attmap == NULL)
     946             :                     part_attmap =
     947          70 :                         build_attrmap_by_name(RelationGetDescr(partrel),
     948             :                                               RelationGetDescr(firstResultRel),
     949             :                                               false);
     950             :                 onconflset = (List *)
     951          76 :                     map_variable_attnos((Node *) onconflset,
     952             :                                         INNER_VAR, 0,
     953             :                                         part_attmap,
     954          76 :                                         RelationGetForm(partrel)->reltype,
     955             :                                         &found_whole_row);
     956             :                 /* We ignore the value of found_whole_row. */
     957             :                 onconflset = (List *)
     958          76 :                     map_variable_attnos((Node *) onconflset,
     959             :                                         firstVarno, 0,
     960             :                                         part_attmap,
     961          76 :                                         RelationGetForm(partrel)->reltype,
     962             :                                         &found_whole_row);
     963             :                 /* We ignore the value of found_whole_row. */
     964             : 
     965             :                 /* Finally, adjust the target colnos to match the partition. */
     966          76 :                 onconflcols = adjust_partition_colnos(node->onConflictCols,
     967             :                                                       leaf_part_rri);
     968             : 
     969             :                 /* create the tuple slot for the UPDATE SET projection */
     970          76 :                 onconfl->oc_ProjSlot =
     971          76 :                     table_slot_create(partrel,
     972          76 :                                       &mtstate->ps.state->es_tupleTable);
     973             : 
     974             :                 /* build UPDATE SET projection state */
     975          76 :                 onconfl->oc_ProjInfo =
     976          76 :                     ExecBuildUpdateProjection(onconflset,
     977             :                                               true,
     978             :                                               onconflcols,
     979             :                                               partrelDesc,
     980             :                                               econtext,
     981             :                                               onconfl->oc_ProjSlot,
     982             :                                               &mtstate->ps);
     983             : 
     984             :                 /*
     985             :                  * If there is a WHERE clause, initialize state where it will
     986             :                  * be evaluated, mapping the attribute numbers appropriately.
     987             :                  * As with onConflictSet, we need to map partition varattnos
     988             :                  * to the partition's tupdesc.
     989             :                  */
     990          76 :                 if (node->onConflictWhere)
     991             :                 {
     992             :                     List       *clause;
     993             : 
     994          30 :                     clause = copyObject((List *) node->onConflictWhere);
     995             :                     clause = (List *)
     996          30 :                         map_variable_attnos((Node *) clause,
     997             :                                             INNER_VAR, 0,
     998             :                                             part_attmap,
     999          30 :                                             RelationGetForm(partrel)->reltype,
    1000             :                                             &found_whole_row);
    1001             :                     /* We ignore the value of found_whole_row. */
    1002             :                     clause = (List *)
    1003          30 :                         map_variable_attnos((Node *) clause,
    1004             :                                             firstVarno, 0,
    1005             :                                             part_attmap,
    1006          30 :                                             RelationGetForm(partrel)->reltype,
    1007             :                                             &found_whole_row);
    1008             :                     /* We ignore the value of found_whole_row. */
    1009          30 :                     onconfl->oc_WhereClause =
    1010          30 :                         ExecInitQual(clause, &mtstate->ps);
    1011             :                 }
    1012             :             }
    1013             :         }
    1014             :     }
    1015             : 
    1016             :     /*
    1017             :      * Since we've just initialized this ResultRelInfo, it's not in any list
    1018             :      * attached to the estate as yet.  Add it, so that it can be found later.
    1019             :      *
    1020             :      * Note that the entries in this list appear in no predetermined order,
    1021             :      * because partition result rels are initialized as and when they're
    1022             :      * needed.
    1023             :      */
    1024        7288 :     MemoryContextSwitchTo(estate->es_query_cxt);
    1025        7288 :     estate->es_tuple_routing_result_relations =
    1026        7288 :         lappend(estate->es_tuple_routing_result_relations,
    1027             :                 leaf_part_rri);
    1028             : 
    1029             :     /*
    1030             :      * Initialize information about this partition that's needed to handle
    1031             :      * MERGE.  We take the "first" result relation's mergeActionList as
    1032             :      * reference and make copy for this relation, converting stuff that
    1033             :      * references attribute numbers to match this relation's.
    1034             :      *
    1035             :      * This duplicates much of the logic in ExecInitMerge(), so if something
    1036             :      * changes there, look here too.
    1037             :      */
    1038        7288 :     if (node && node->operation == CMD_MERGE)
    1039             :     {
    1040          24 :         List       *firstMergeActionList = linitial(node->mergeActionLists);
    1041             :         ListCell   *lc;
    1042          24 :         ExprContext *econtext = mtstate->ps.ps_ExprContext;
    1043             :         Node       *joinCondition;
    1044             : 
    1045          24 :         if (part_attmap == NULL)
    1046             :             part_attmap =
    1047          12 :                 build_attrmap_by_name(RelationGetDescr(partrel),
    1048             :                                       RelationGetDescr(firstResultRel),
    1049             :                                       false);
    1050             : 
    1051          24 :         if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
    1052          24 :             ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
    1053             : 
    1054             :         /* Initialize state for join condition checking. */
    1055             :         joinCondition =
    1056          24 :             map_variable_attnos(linitial(node->mergeJoinConditions),
    1057             :                                 firstVarno, 0,
    1058             :                                 part_attmap,
    1059          24 :                                 RelationGetForm(partrel)->reltype,
    1060             :                                 &found_whole_row);
    1061             :         /* We ignore the value of found_whole_row. */
    1062          24 :         leaf_part_rri->ri_MergeJoinCondition =
    1063          24 :             ExecInitQual((List *) joinCondition, &mtstate->ps);
    1064             : 
    1065          60 :         foreach(lc, firstMergeActionList)
    1066             :         {
    1067             :             /* Make a copy for this relation to be safe.  */
    1068          36 :             MergeAction *action = copyObject(lfirst(lc));
    1069             :             MergeActionState *action_state;
    1070             : 
    1071             :             /* Generate the action's state for this relation */
    1072          36 :             action_state = makeNode(MergeActionState);
    1073          36 :             action_state->mas_action = action;
    1074             : 
    1075             :             /* And put the action in the appropriate list */
    1076          72 :             leaf_part_rri->ri_MergeActions[action->matchKind] =
    1077          36 :                 lappend(leaf_part_rri->ri_MergeActions[action->matchKind],
    1078             :                         action_state);
    1079             : 
    1080          36 :             switch (action->commandType)
    1081             :             {
    1082          12 :                 case CMD_INSERT:
    1083             : 
    1084             :                     /*
    1085             :                      * ExecCheckPlanOutput() already done on the targetlist
    1086             :                      * when "first" result relation initialized and it is same
    1087             :                      * for all result relations.
    1088             :                      */
    1089          12 :                     action_state->mas_proj =
    1090          12 :                         ExecBuildProjectionInfo(action->targetList, econtext,
    1091             :                                                 leaf_part_rri->ri_newTupleSlot,
    1092             :                                                 &mtstate->ps,
    1093             :                                                 RelationGetDescr(partrel));
    1094          12 :                     break;
    1095          18 :                 case CMD_UPDATE:
    1096             : 
    1097             :                     /*
    1098             :                      * Convert updateColnos from "first" result relation
    1099             :                      * attribute numbers to this result rel's.
    1100             :                      */
    1101          18 :                     if (part_attmap)
    1102          18 :                         action->updateColnos =
    1103          18 :                             adjust_partition_colnos_using_map(action->updateColnos,
    1104             :                                                               part_attmap);
    1105          18 :                     action_state->mas_proj =
    1106          18 :                         ExecBuildUpdateProjection(action->targetList,
    1107             :                                                   true,
    1108             :                                                   action->updateColnos,
    1109          18 :                                                   RelationGetDescr(leaf_part_rri->ri_RelationDesc),
    1110             :                                                   econtext,
    1111             :                                                   leaf_part_rri->ri_newTupleSlot,
    1112             :                                                   NULL);
    1113          18 :                     break;
    1114           6 :                 case CMD_DELETE:
    1115             :                 case CMD_NOTHING:
    1116             :                     /* Nothing to do */
    1117           6 :                     break;
    1118             : 
    1119           0 :                 default:
    1120           0 :                     elog(ERROR, "unknown action in MERGE WHEN clause");
    1121             :             }
    1122             : 
    1123             :             /* found_whole_row intentionally ignored. */
    1124          36 :             action->qual =
    1125          36 :                 map_variable_attnos(action->qual,
    1126             :                                     firstVarno, 0,
    1127             :                                     part_attmap,
    1128          36 :                                     RelationGetForm(partrel)->reltype,
    1129             :                                     &found_whole_row);
    1130          36 :             action_state->mas_whenqual =
    1131          36 :                 ExecInitQual((List *) action->qual, &mtstate->ps);
    1132             :         }
    1133             :     }
    1134        7288 :     MemoryContextSwitchTo(oldcxt);
    1135             : 
    1136        7288 :     return leaf_part_rri;
    1137             : }
    1138             : 
    1139             : /*
    1140             :  * ExecInitRoutingInfo
    1141             :  *      Set up information needed for translating tuples between root
    1142             :  *      partitioned table format and partition format, and keep track of it
    1143             :  *      in PartitionTupleRouting.
    1144             :  */
    1145             : static void
    1146        7796 : ExecInitRoutingInfo(ModifyTableState *mtstate,
    1147             :                     EState *estate,
    1148             :                     PartitionTupleRouting *proute,
    1149             :                     PartitionDispatch dispatch,
    1150             :                     ResultRelInfo *partRelInfo,
    1151             :                     int partidx,
    1152             :                     bool is_borrowed_rel)
    1153             : {
    1154             :     MemoryContext oldcxt;
    1155             :     int         rri_index;
    1156             : 
    1157        7796 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
    1158             : 
    1159             :     /*
    1160             :      * Set up tuple conversion between root parent and the partition if the
    1161             :      * two have different rowtypes.  If conversion is indeed required, also
    1162             :      * initialize a slot dedicated to storing this partition's converted
    1163             :      * tuples.  Various operations that are applied to tuples after routing,
    1164             :      * such as checking constraints, will refer to this slot.
    1165             :      */
    1166        7796 :     if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
    1167             :     {
    1168        1348 :         Relation    partrel = partRelInfo->ri_RelationDesc;
    1169             : 
    1170             :         /*
    1171             :          * This pins the partition's TupleDesc, which will be released at the
    1172             :          * end of the command.
    1173             :          */
    1174        1348 :         partRelInfo->ri_PartitionTupleSlot =
    1175        1348 :             table_slot_create(partrel, &estate->es_tupleTable);
    1176             :     }
    1177             :     else
    1178        6448 :         partRelInfo->ri_PartitionTupleSlot = NULL;
    1179             : 
    1180             :     /*
    1181             :      * If the partition is a foreign table, let the FDW init itself for
    1182             :      * routing tuples to the partition.
    1183             :      */
    1184        7796 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1185          92 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
    1186          92 :         partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
    1187             : 
    1188             :     /*
    1189             :      * Determine if the FDW supports batch insert and determine the batch size
    1190             :      * (a FDW may support batching, but it may be disabled for the
    1191             :      * server/table or for this particular query).
    1192             :      *
    1193             :      * If the FDW does not support batching, we set the batch size to 1.
    1194             :      */
    1195        7784 :     if (partRelInfo->ri_FdwRoutine != NULL &&
    1196          80 :         partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
    1197          80 :         partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
    1198          80 :         partRelInfo->ri_BatchSize =
    1199          80 :             partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
    1200             :     else
    1201        7704 :         partRelInfo->ri_BatchSize = 1;
    1202             : 
    1203             :     Assert(partRelInfo->ri_BatchSize >= 1);
    1204             : 
    1205        7784 :     partRelInfo->ri_CopyMultiInsertBuffer = NULL;
    1206             : 
    1207             :     /*
    1208             :      * Keep track of it in the PartitionTupleRouting->partitions array.
    1209             :      */
    1210             :     Assert(dispatch->indexes[partidx] == -1);
    1211             : 
    1212        7784 :     rri_index = proute->num_partitions++;
    1213             : 
    1214             :     /* Allocate or enlarge the array, as needed */
    1215        7784 :     if (proute->num_partitions >= proute->max_partitions)
    1216             :     {
    1217        5356 :         if (proute->max_partitions == 0)
    1218             :         {
    1219        5344 :             proute->max_partitions = 8;
    1220        5344 :             proute->partitions = palloc_array(ResultRelInfo *, proute->max_partitions);
    1221        5344 :             proute->is_borrowed_rel = palloc_array(bool, proute->max_partitions);
    1222             :         }
    1223             :         else
    1224             :         {
    1225          12 :             proute->max_partitions *= 2;
    1226          12 :             proute->partitions = (ResultRelInfo **)
    1227          12 :                 repalloc(proute->partitions, sizeof(ResultRelInfo *) *
    1228          12 :                          proute->max_partitions);
    1229          12 :             proute->is_borrowed_rel = (bool *)
    1230          12 :                 repalloc(proute->is_borrowed_rel, sizeof(bool) *
    1231          12 :                          proute->max_partitions);
    1232             :         }
    1233             :     }
    1234             : 
    1235        7784 :     proute->partitions[rri_index] = partRelInfo;
    1236        7784 :     proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
    1237        7784 :     dispatch->indexes[partidx] = rri_index;
    1238             : 
    1239        7784 :     MemoryContextSwitchTo(oldcxt);
    1240        7784 : }
    1241             : 
    1242             : /*
    1243             :  * ExecInitPartitionDispatchInfo
    1244             :  *      Lock the partitioned table (if not locked already) and initialize
    1245             :  *      PartitionDispatch for a partitioned table and store it in the next
    1246             :  *      available slot in the proute->partition_dispatch_info array.  Also,
    1247             :  *      record the index into this array in the parent_pd->indexes[] array in
    1248             :  *      the partidx element so that we can properly retrieve the newly created
    1249             :  *      PartitionDispatch later.
    1250             :  */
    1251             : static PartitionDispatch
    1252        6870 : ExecInitPartitionDispatchInfo(EState *estate,
    1253             :                               PartitionTupleRouting *proute, Oid partoid,
    1254             :                               PartitionDispatch parent_pd, int partidx,
    1255             :                               ResultRelInfo *rootResultRelInfo)
    1256             : {
    1257             :     Relation    rel;
    1258             :     PartitionDesc partdesc;
    1259             :     PartitionDispatch pd;
    1260             :     int         dispatchidx;
    1261             :     MemoryContext oldcxt;
    1262             : 
    1263             :     /*
    1264             :      * For data modification, it is better that executor does not include
    1265             :      * partitions being detached, except when running in snapshot-isolation
    1266             :      * mode.  This means that a read-committed transaction immediately gets a
    1267             :      * "no partition for tuple" error when a tuple is inserted into a
    1268             :      * partition that's being detached concurrently, but a transaction in
    1269             :      * repeatable-read mode can still use such a partition.
    1270             :      */
    1271        6870 :     if (estate->es_partition_directory == NULL)
    1272        5634 :         estate->es_partition_directory =
    1273        5634 :             CreatePartitionDirectory(estate->es_query_cxt,
    1274             :                                      !IsolationUsesXactSnapshot());
    1275             : 
    1276        6870 :     oldcxt = MemoryContextSwitchTo(proute->memcxt);
    1277             : 
    1278             :     /*
    1279             :      * Only sub-partitioned tables need to be locked here.  The root
    1280             :      * partitioned table will already have been locked as it's referenced in
    1281             :      * the query's rtable.
    1282             :      */
    1283        6870 :     if (partoid != RelationGetRelid(proute->partition_root))
    1284        1200 :         rel = table_open(partoid, RowExclusiveLock);
    1285             :     else
    1286        5670 :         rel = proute->partition_root;
    1287        6870 :     partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
    1288             : 
    1289        6870 :     pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
    1290        6870 :                                     partdesc->nparts * sizeof(int));
    1291        6870 :     pd->reldesc = rel;
    1292        6870 :     pd->key = RelationGetPartitionKey(rel);
    1293        6870 :     pd->keystate = NIL;
    1294        6870 :     pd->partdesc = partdesc;
    1295        6870 :     if (parent_pd != NULL)
    1296             :     {
    1297        1200 :         TupleDesc   tupdesc = RelationGetDescr(rel);
    1298             : 
    1299             :         /*
    1300             :          * For sub-partitioned tables where the column order differs from its
    1301             :          * direct parent partitioned table, we must store a tuple table slot
    1302             :          * initialized with its tuple descriptor and a tuple conversion map to
    1303             :          * convert a tuple from its parent's rowtype to its own.  This is to
    1304             :          * make sure that we are looking at the correct row using the correct
    1305             :          * tuple descriptor when computing its partition key for tuple
    1306             :          * routing.
    1307             :          */
    1308        1200 :         pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
    1309             :                                                   tupdesc,
    1310             :                                                   false);
    1311        1200 :         pd->tupslot = pd->tupmap ?
    1312        1200 :             MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
    1313             :     }
    1314             :     else
    1315             :     {
    1316             :         /* Not required for the root partitioned table */
    1317        5670 :         pd->tupmap = NULL;
    1318        5670 :         pd->tupslot = NULL;
    1319             :     }
    1320             : 
    1321             :     /*
    1322             :      * Initialize with -1 to signify that the corresponding partition's
    1323             :      * ResultRelInfo or PartitionDispatch has not been created yet.
    1324             :      */
    1325        6870 :     memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
    1326             : 
    1327             :     /* Track in PartitionTupleRouting for later use */
    1328        6870 :     dispatchidx = proute->num_dispatch++;
    1329             : 
    1330             :     /* Allocate or enlarge the array, as needed */
    1331        6870 :     if (proute->num_dispatch >= proute->max_dispatch)
    1332             :     {
    1333        5670 :         if (proute->max_dispatch == 0)
    1334             :         {
    1335        5670 :             proute->max_dispatch = 4;
    1336        5670 :             proute->partition_dispatch_info = palloc_array(PartitionDispatch, proute->max_dispatch);
    1337        5670 :             proute->nonleaf_partitions = palloc_array(ResultRelInfo *, proute->max_dispatch);
    1338             :         }
    1339             :         else
    1340             :         {
    1341           0 :             proute->max_dispatch *= 2;
    1342           0 :             proute->partition_dispatch_info = (PartitionDispatch *)
    1343           0 :                 repalloc(proute->partition_dispatch_info,
    1344           0 :                          sizeof(PartitionDispatch) * proute->max_dispatch);
    1345           0 :             proute->nonleaf_partitions = (ResultRelInfo **)
    1346           0 :                 repalloc(proute->nonleaf_partitions,
    1347           0 :                          sizeof(ResultRelInfo *) * proute->max_dispatch);
    1348             :         }
    1349             :     }
    1350        6870 :     proute->partition_dispatch_info[dispatchidx] = pd;
    1351             : 
    1352             :     /*
    1353             :      * If setting up a PartitionDispatch for a sub-partitioned table, we may
    1354             :      * also need a minimally valid ResultRelInfo for checking the partition
    1355             :      * constraint later; set that up now.
    1356             :      */
    1357        6870 :     if (parent_pd)
    1358             :     {
    1359        1200 :         ResultRelInfo *rri = makeNode(ResultRelInfo);
    1360             : 
    1361        1200 :         InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
    1362        1200 :         proute->nonleaf_partitions[dispatchidx] = rri;
    1363             :     }
    1364             :     else
    1365        5670 :         proute->nonleaf_partitions[dispatchidx] = NULL;
    1366             : 
    1367             :     /*
    1368             :      * Finally, if setting up a PartitionDispatch for a sub-partitioned table,
    1369             :      * install a downlink in the parent to allow quick descent.
    1370             :      */
    1371        6870 :     if (parent_pd)
    1372             :     {
    1373             :         Assert(parent_pd->indexes[partidx] == -1);
    1374        1200 :         parent_pd->indexes[partidx] = dispatchidx;
    1375             :     }
    1376             : 
    1377        6870 :     MemoryContextSwitchTo(oldcxt);
    1378             : 
    1379        6870 :     return pd;
    1380             : }
    1381             : 
    1382             : /*
    1383             :  * ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
    1384             :  * routing.
    1385             :  *
    1386             :  * Close all the partitioned tables, leaf partitions, and their indices.
    1387             :  */
    1388             : void
    1389        4840 : ExecCleanupTupleRouting(ModifyTableState *mtstate,
    1390             :                         PartitionTupleRouting *proute)
    1391             : {
    1392             :     int         i;
    1393             : 
    1394             :     /*
    1395             :      * Remember, proute->partition_dispatch_info[0] corresponds to the root
    1396             :      * partitioned table, which we must not try to close, because it is the
    1397             :      * main target table of the query that will be closed by callers such as
    1398             :      * ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
    1399             :      * partitioned table.
    1400             :      */
    1401        5816 :     for (i = 1; i < proute->num_dispatch; i++)
    1402             :     {
    1403         976 :         PartitionDispatch pd = proute->partition_dispatch_info[i];
    1404             : 
    1405         976 :         table_close(pd->reldesc, NoLock);
    1406             : 
    1407         976 :         if (pd->tupslot)
    1408         454 :             ExecDropSingleTupleTableSlot(pd->tupslot);
    1409             :     }
    1410             : 
    1411       12034 :     for (i = 0; i < proute->num_partitions; i++)
    1412             :     {
    1413        7194 :         ResultRelInfo *resultRelInfo = proute->partitions[i];
    1414             : 
    1415             :         /* Allow any FDWs to shut down */
    1416        7194 :         if (resultRelInfo->ri_FdwRoutine != NULL &&
    1417          68 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
    1418          68 :             resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
    1419             :                                                            resultRelInfo);
    1420             : 
    1421             :         /*
    1422             :          * Close it if it's not one of the result relations borrowed from the
    1423             :          * owning ModifyTableState; those will be closed by ExecEndPlan().
    1424             :          */
    1425        7194 :         if (proute->is_borrowed_rel[i])
    1426         460 :             continue;
    1427             : 
    1428        6734 :         ExecCloseIndices(resultRelInfo);
    1429        6734 :         table_close(resultRelInfo->ri_RelationDesc, NoLock);
    1430             :     }
    1431        4840 : }
    1432             : 
    1433             : /* ----------------
    1434             :  *      FormPartitionKeyDatum
    1435             :  *          Construct values[] and isnull[] arrays for the partition key
    1436             :  *          of a tuple.
    1437             :  *
    1438             :  *  pd              Partition dispatch object of the partitioned table
    1439             :  *  slot            Heap tuple from which to extract partition key
    1440             :  *  estate          executor state for evaluating any partition key
    1441             :  *                  expressions (must be non-NULL)
    1442             :  *  values          Array of partition key Datums (output area)
    1443             :  *  isnull          Array of is-null indicators (output area)
    1444             :  *
    1445             :  * the ecxt_scantuple slot of estate's per-tuple expr context must point to
    1446             :  * the heap tuple passed in.
    1447             :  * ----------------
    1448             :  */
    1449             : static void
    1450     1149878 : FormPartitionKeyDatum(PartitionDispatch pd,
    1451             :                       TupleTableSlot *slot,
    1452             :                       EState *estate,
    1453             :                       Datum *values,
    1454             :                       bool *isnull)
    1455             : {
    1456             :     ListCell   *partexpr_item;
    1457             :     int         i;
    1458             : 
    1459     1149878 :     if (pd->key->partexprs != NIL && pd->keystate == NIL)
    1460             :     {
    1461             :         /* Check caller has set up context correctly */
    1462             :         Assert(estate != NULL &&
    1463             :                GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
    1464             : 
    1465             :         /* First time through, set up expression evaluation state */
    1466         546 :         pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
    1467             :     }
    1468             : 
    1469     1149878 :     partexpr_item = list_head(pd->keystate);
    1470     2322832 :     for (i = 0; i < pd->key->partnatts; i++)
    1471             :     {
    1472     1172954 :         AttrNumber  keycol = pd->key->partattrs[i];
    1473             :         Datum       datum;
    1474             :         bool        isNull;
    1475             : 
    1476     1172954 :         if (keycol != 0)
    1477             :         {
    1478             :             /* Plain column; get the value directly from the heap tuple */
    1479     1085318 :             datum = slot_getattr(slot, keycol, &isNull);
    1480             :         }
    1481             :         else
    1482             :         {
    1483             :             /* Expression; need to evaluate it */
    1484       87636 :             if (partexpr_item == NULL)
    1485           0 :                 elog(ERROR, "wrong number of partition key expressions");
    1486       87636 :             datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
    1487       87636 :                                               GetPerTupleExprContext(estate),
    1488             :                                               &isNull);
    1489       87636 :             partexpr_item = lnext(pd->keystate, partexpr_item);
    1490             :         }
    1491     1172954 :         values[i] = datum;
    1492     1172954 :         isnull[i] = isNull;
    1493             :     }
    1494             : 
    1495     1149878 :     if (partexpr_item != NULL)
    1496           0 :         elog(ERROR, "wrong number of partition key expressions");
    1497     1149878 : }
    1498             : 
    1499             : /*
    1500             :  * The number of times the same partition must be found in a row before we
    1501             :  * switch from a binary search for the given values to just checking if the
    1502             :  * values belong to the last found partition.  This must be above 0.
    1503             :  */
    1504             : #define PARTITION_CACHED_FIND_THRESHOLD         16
    1505             : 
    1506             : /*
    1507             :  * get_partition_for_tuple
    1508             :  *      Finds partition of relation which accepts the partition key specified
    1509             :  *      in values and isnull.
    1510             :  *
    1511             :  * Calling this function can be quite expensive when LIST and RANGE
    1512             :  * partitioned tables have many partitions.  This is due to the binary search
    1513             :  * that's done to find the correct partition.  Many of the use cases for LIST
    1514             :  * and RANGE partitioned tables make it likely that the same partition is
    1515             :  * found in subsequent ExecFindPartition() calls.  This is especially true for
    1516             :  * cases such as RANGE partitioned tables on a TIMESTAMP column where the
    1517             :  * partition key is the current time.  When asked to find a partition for a
    1518             :  * RANGE or LIST partitioned table, we record the partition index and datum
    1519             :  * offset we've found for the given 'values' in the PartitionDesc (which is
    1520             :  * stored in relcache), and if we keep finding the same partition
    1521             :  * PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
    1522             :  * logic and instead of performing a binary search to find the correct
    1523             :  * partition, we'll just double-check that 'values' still belong to the last
    1524             :  * found partition, and if so, we'll return that partition index, thus
    1525             :  * skipping the need for the binary search.  If we fail to match the last
    1526             :  * partition when double checking, then we fall back on doing a binary search.
    1527             :  * In this case, unless we find 'values' belong to the DEFAULT partition,
    1528             :  * we'll reset the number of times we've hit the same partition so that we
    1529             :  * don't attempt to use the cache again until we've found that partition at
    1530             :  * least PARTITION_CACHED_FIND_THRESHOLD times in a row.
    1531             :  *
    1532             :  * For cases where the partition changes on each lookup, the amount of
    1533             :  * additional work required just amounts to recording the last found partition
    1534             :  * and bound offset then resetting the found counter.  This is cheap and does
    1535             :  * not appear to cause any meaningful slowdowns for such cases.
    1536             :  *
    1537             :  * No caching of partitions is done when the last found partition is the
    1538             :  * DEFAULT or NULL partition.  For the case of the DEFAULT partition, there
    1539             :  * is no bound offset storing the matching datum, so we cannot confirm the
    1540             :  * indexes match.  For the NULL partition, this is just so cheap, there's no
    1541             :  * sense in caching.
    1542             :  *
    1543             :  * Return value is index of the partition (>= 0 and < partdesc->nparts) if one
    1544             :  * found or -1 if none found.
    1545             :  */
    1546             : static int
    1547     1149836 : get_partition_for_tuple(PartitionDispatch pd, const Datum *values, const bool *isnull)
    1548             : {
    1549     1149836 :     int         bound_offset = -1;
    1550     1149836 :     int         part_index = -1;
    1551     1149836 :     PartitionKey key = pd->key;
    1552     1149836 :     PartitionDesc partdesc = pd->partdesc;
    1553     1149836 :     PartitionBoundInfo boundinfo = partdesc->boundinfo;
    1554             : 
    1555             :     /*
    1556             :      * In the switch statement below, when we perform a cached lookup for
    1557             :      * RANGE and LIST partitioned tables, if we find that the last found
    1558             :      * partition matches the 'values', we return the partition index right
    1559             :      * away.  We do this instead of breaking out of the switch as we don't
    1560             :      * want to execute the code about the DEFAULT partition or do any updates
    1561             :      * for any of the cache-related fields.  That would be a waste of effort
    1562             :      * as we already know it's not the DEFAULT partition and have no need to
    1563             :      * increment the number of times we found the same partition any higher
    1564             :      * than PARTITION_CACHED_FIND_THRESHOLD.
    1565             :      */
    1566             : 
    1567             :     /* Route as appropriate based on partitioning strategy. */
    1568     1149836 :     switch (key->strategy)
    1569             :     {
    1570      210738 :         case PARTITION_STRATEGY_HASH:
    1571             :             {
    1572             :                 uint64      rowHash;
    1573             : 
    1574             :                 /* hash partitioning is too cheap to bother caching */
    1575      210738 :                 rowHash = compute_partition_hash_value(key->partnatts,
    1576             :                                                        key->partsupfunc,
    1577      210738 :                                                        key->partcollation,
    1578             :                                                        values, isnull);
    1579             : 
    1580             :                 /*
    1581             :                  * HASH partitions can't have a DEFAULT partition and we don't
    1582             :                  * do any caching work for them, so just return the part index
    1583             :                  */
    1584      210726 :                 return boundinfo->indexes[rowHash % boundinfo->nindexes];
    1585             :             }
    1586             : 
    1587      171204 :         case PARTITION_STRATEGY_LIST:
    1588      171204 :             if (isnull[0])
    1589             :             {
    1590             :                 /* this is far too cheap to bother doing any caching */
    1591         132 :                 if (partition_bound_accepts_nulls(boundinfo))
    1592             :                 {
    1593             :                     /*
    1594             :                      * When there is a NULL partition we just return that
    1595             :                      * directly.  We don't have a bound_offset so it's not
    1596             :                      * valid to drop into the code after the switch which
    1597             :                      * checks and updates the cache fields.  We perhaps should
    1598             :                      * be invalidating the details of the last cached
    1599             :                      * partition but there's no real need to.  Keeping those
    1600             :                      * fields set gives a chance at matching to the cached
    1601             :                      * partition on the next lookup.
    1602             :                      */
    1603         102 :                     return boundinfo->null_index;
    1604             :                 }
    1605             :             }
    1606             :             else
    1607             :             {
    1608             :                 bool        equal;
    1609             : 
    1610      171072 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1611             :                 {
    1612       23892 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1613       23892 :                     Datum       lastDatum = boundinfo->datums[last_datum_offset][0];
    1614             :                     int32       cmpval;
    1615             : 
    1616             :                     /* does the last found datum index match this datum? */
    1617       23892 :                     cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
    1618       23892 :                                                              key->partcollation[0],
    1619             :                                                              lastDatum,
    1620             :                                                              values[0]));
    1621             : 
    1622       23892 :                     if (cmpval == 0)
    1623       23538 :                         return boundinfo->indexes[last_datum_offset];
    1624             : 
    1625             :                     /* fall-through and do a manual lookup */
    1626             :                 }
    1627             : 
    1628      147534 :                 bound_offset = partition_list_bsearch(key->partsupfunc,
    1629             :                                                       key->partcollation,
    1630             :                                                       boundinfo,
    1631             :                                                       values[0], &equal);
    1632      147534 :                 if (bound_offset >= 0 && equal)
    1633      147134 :                     part_index = boundinfo->indexes[bound_offset];
    1634             :             }
    1635      147564 :             break;
    1636             : 
    1637      767894 :         case PARTITION_STRATEGY_RANGE:
    1638             :             {
    1639      767894 :                 bool        equal = false,
    1640      767894 :                             range_partkey_has_null = false;
    1641             :                 int         i;
    1642             : 
    1643             :                 /*
    1644             :                  * No range includes NULL, so this will be accepted by the
    1645             :                  * default partition if there is one, and otherwise rejected.
    1646             :                  */
    1647     1558444 :                 for (i = 0; i < key->partnatts; i++)
    1648             :                 {
    1649      790604 :                     if (isnull[i])
    1650             :                     {
    1651          54 :                         range_partkey_has_null = true;
    1652          54 :                         break;
    1653             :                     }
    1654             :                 }
    1655             : 
    1656             :                 /* NULLs belong in the DEFAULT partition */
    1657      767894 :                 if (range_partkey_has_null)
    1658          54 :                     break;
    1659             : 
    1660      767840 :                 if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
    1661             :                 {
    1662      249654 :                     int         last_datum_offset = partdesc->last_found_datum_index;
    1663      249654 :                     Datum      *lastDatums = boundinfo->datums[last_datum_offset];
    1664      249654 :                     PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
    1665             :                     int32       cmpval;
    1666             : 
    1667             :                     /* check if the value is >= to the lower bound */
    1668      249654 :                     cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1669             :                                                         key->partcollation,
    1670             :                                                         lastDatums,
    1671             :                                                         kind,
    1672             :                                                         values,
    1673      249654 :                                                         key->partnatts);
    1674             : 
    1675             :                     /*
    1676             :                      * If it's equal to the lower bound then no need to check
    1677             :                      * the upper bound.
    1678             :                      */
    1679      249654 :                     if (cmpval == 0)
    1680      249344 :                         return boundinfo->indexes[last_datum_offset + 1];
    1681             : 
    1682      243756 :                     if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
    1683             :                     {
    1684             :                         /* check if the value is below the upper bound */
    1685      243696 :                         lastDatums = boundinfo->datums[last_datum_offset + 1];
    1686      243696 :                         kind = boundinfo->kind[last_datum_offset + 1];
    1687      243696 :                         cmpval = partition_rbound_datum_cmp(key->partsupfunc,
    1688             :                                                             key->partcollation,
    1689             :                                                             lastDatums,
    1690             :                                                             kind,
    1691             :                                                             values,
    1692      243696 :                                                             key->partnatts);
    1693             : 
    1694      243696 :                         if (cmpval > 0)
    1695      243446 :                             return boundinfo->indexes[last_datum_offset + 1];
    1696             :                     }
    1697             :                     /* fall-through and do a manual lookup */
    1698             :                 }
    1699             : 
    1700      518496 :                 bound_offset = partition_range_datum_bsearch(key->partsupfunc,
    1701             :                                                              key->partcollation,
    1702             :                                                              boundinfo,
    1703      518496 :                                                              key->partnatts,
    1704             :                                                              values,
    1705             :                                                              &equal);
    1706             : 
    1707             :                 /*
    1708             :                  * The bound at bound_offset is less than or equal to the
    1709             :                  * tuple value, so the bound at offset+1 is the upper bound of
    1710             :                  * the partition we're looking for, if there actually exists
    1711             :                  * one.
    1712             :                  */
    1713      518496 :                 part_index = boundinfo->indexes[bound_offset + 1];
    1714             :             }
    1715      518496 :             break;
    1716             : 
    1717           0 :         default:
    1718           0 :             elog(ERROR, "unexpected partition strategy: %d",
    1719             :                  (int) key->strategy);
    1720             :     }
    1721             : 
    1722             :     /*
    1723             :      * part_index < 0 means we failed to find a partition of this parent. Use
    1724             :      * the default partition, if there is one.
    1725             :      */
    1726      666114 :     if (part_index < 0)
    1727             :     {
    1728             :         /*
    1729             :          * No need to reset the cache fields here.  The next set of values
    1730             :          * might end up belonging to the cached partition, so leaving the
    1731             :          * cache alone improves the chances of a cache hit on the next lookup.
    1732             :          */
    1733         944 :         return boundinfo->default_index;
    1734             :     }
    1735             : 
    1736             :     /* we should only make it here when the code above set bound_offset */
    1737             :     Assert(bound_offset >= 0);
    1738             : 
    1739             :     /*
    1740             :      * Attend to the cache fields.  If the bound_offset matches the last
    1741             :      * cached bound offset then we've found the same partition as last time,
    1742             :      * so bump the count by one.  If all goes well, we'll eventually reach
    1743             :      * PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
    1744             :      * around.  Otherwise, we'll reset the cache count back to 1 to mark that
    1745             :      * we've found this partition for the first time.
    1746             :      */
    1747      665170 :     if (bound_offset == partdesc->last_found_datum_index)
    1748      461682 :         partdesc->last_found_count++;
    1749             :     else
    1750             :     {
    1751      203488 :         partdesc->last_found_count = 1;
    1752      203488 :         partdesc->last_found_part_index = part_index;
    1753      203488 :         partdesc->last_found_datum_index = bound_offset;
    1754             :     }
    1755             : 
    1756      665170 :     return part_index;
    1757             : }
    1758             : 
    1759             : /*
    1760             :  * ExecBuildSlotPartitionKeyDescription
    1761             :  *
    1762             :  * This works very much like BuildIndexValueDescription() and is currently
    1763             :  * used for building error messages when ExecFindPartition() fails to find
    1764             :  * partition for a row.
    1765             :  */
    1766             : static char *
    1767         154 : ExecBuildSlotPartitionKeyDescription(Relation rel,
    1768             :                                      const Datum *values,
    1769             :                                      const bool *isnull,
    1770             :                                      int maxfieldlen)
    1771             : {
    1772             :     StringInfoData buf;
    1773         154 :     PartitionKey key = RelationGetPartitionKey(rel);
    1774         154 :     int         partnatts = get_partition_natts(key);
    1775             :     int         i;
    1776         154 :     Oid         relid = RelationGetRelid(rel);
    1777             :     AclResult   aclresult;
    1778             : 
    1779         154 :     if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
    1780           0 :         return NULL;
    1781             : 
    1782             :     /* If the user has table-level access, just go build the description. */
    1783         154 :     aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
    1784         154 :     if (aclresult != ACLCHECK_OK)
    1785             :     {
    1786             :         /*
    1787             :          * Step through the columns of the partition key and make sure the
    1788             :          * user has SELECT rights on all of them.
    1789             :          */
    1790          24 :         for (i = 0; i < partnatts; i++)
    1791             :         {
    1792          18 :             AttrNumber  attnum = get_partition_col_attnum(key, i);
    1793             : 
    1794             :             /*
    1795             :              * If this partition key column is an expression, we return no
    1796             :              * detail rather than try to figure out what column(s) the
    1797             :              * expression includes and if the user has SELECT rights on them.
    1798             :              */
    1799          30 :             if (attnum == InvalidAttrNumber ||
    1800          12 :                 pg_attribute_aclcheck(relid, attnum, GetUserId(),
    1801             :                                       ACL_SELECT) != ACLCHECK_OK)
    1802          12 :                 return NULL;
    1803             :         }
    1804             :     }
    1805             : 
    1806         142 :     initStringInfo(&buf);
    1807         142 :     appendStringInfo(&buf, "(%s) = (",
    1808             :                      pg_get_partkeydef_columns(relid, true));
    1809             : 
    1810         338 :     for (i = 0; i < partnatts; i++)
    1811             :     {
    1812             :         char       *val;
    1813             :         int         vallen;
    1814             : 
    1815         196 :         if (isnull[i])
    1816          30 :             val = "null";
    1817             :         else
    1818             :         {
    1819             :             Oid         foutoid;
    1820             :             bool        typisvarlena;
    1821             : 
    1822         166 :             getTypeOutputInfo(get_partition_col_typid(key, i),
    1823             :                               &foutoid, &typisvarlena);
    1824         166 :             val = OidOutputFunctionCall(foutoid, values[i]);
    1825             :         }
    1826             : 
    1827         196 :         if (i > 0)
    1828          54 :             appendStringInfoString(&buf, ", ");
    1829             : 
    1830             :         /* truncate if needed */
    1831         196 :         vallen = strlen(val);
    1832         196 :         if (vallen <= maxfieldlen)
    1833         196 :             appendBinaryStringInfo(&buf, val, vallen);
    1834             :         else
    1835             :         {
    1836           0 :             vallen = pg_mbcliplen(val, vallen, maxfieldlen);
    1837           0 :             appendBinaryStringInfo(&buf, val, vallen);
    1838           0 :             appendStringInfoString(&buf, "...");
    1839             :         }
    1840             :     }
    1841             : 
    1842         142 :     appendStringInfoChar(&buf, ')');
    1843             : 
    1844         142 :     return buf.data;
    1845             : }
    1846             : 
    1847             : /*
    1848             :  * adjust_partition_colnos
    1849             :  *      Adjust the list of UPDATE target column numbers to account for
    1850             :  *      attribute differences between the parent and the partition.
    1851             :  *
    1852             :  * Note: mustn't be called if no adjustment is required.
    1853             :  */
    1854             : static List *
    1855          76 : adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
    1856             : {
    1857          76 :     TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
    1858             : 
    1859             :     Assert(map != NULL);
    1860             : 
    1861          76 :     return adjust_partition_colnos_using_map(colnos, map->attrMap);
    1862             : }
    1863             : 
    1864             : /*
    1865             :  * adjust_partition_colnos_using_map
    1866             :  *      Like adjust_partition_colnos, but uses a caller-supplied map instead
    1867             :  *      of assuming to map from the "root" result relation.
    1868             :  *
    1869             :  * Note: mustn't be called if no adjustment is required.
    1870             :  */
    1871             : static List *
    1872          94 : adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
    1873             : {
    1874          94 :     List       *new_colnos = NIL;
    1875             :     ListCell   *lc;
    1876             : 
    1877             :     Assert(attrMap != NULL);    /* else we shouldn't be here */
    1878             : 
    1879         232 :     foreach(lc, colnos)
    1880             :     {
    1881         138 :         AttrNumber  parentattrno = lfirst_int(lc);
    1882             : 
    1883         138 :         if (parentattrno <= 0 ||
    1884         138 :             parentattrno > attrMap->maplen ||
    1885         138 :             attrMap->attnums[parentattrno - 1] == 0)
    1886           0 :             elog(ERROR, "unexpected attno %d in target column list",
    1887             :                  parentattrno);
    1888         138 :         new_colnos = lappend_int(new_colnos,
    1889         138 :                                  attrMap->attnums[parentattrno - 1]);
    1890             :     }
    1891             : 
    1892          94 :     return new_colnos;
    1893             : }
    1894             : 
    1895             : /*-------------------------------------------------------------------------
    1896             :  * Run-Time Partition Pruning Support.
    1897             :  *
    1898             :  * The following series of functions exist to support the removal of unneeded
    1899             :  * subplans for queries against partitioned tables.  The supporting functions
    1900             :  * here are designed to work with any plan type which supports an arbitrary
    1901             :  * number of subplans, e.g. Append, MergeAppend.
    1902             :  *
    1903             :  * When pruning involves comparison of a partition key to a constant, it's
    1904             :  * done by the planner.  However, if we have a comparison to a non-constant
    1905             :  * but not volatile expression, that presents an opportunity for run-time
    1906             :  * pruning by the executor, allowing irrelevant partitions to be skipped
    1907             :  * dynamically.
    1908             :  *
    1909             :  * We must distinguish expressions containing PARAM_EXEC Params from
    1910             :  * expressions that don't contain those.  Even though a PARAM_EXEC Param is
    1911             :  * considered to be a stable expression, it can change value from one plan
    1912             :  * node scan to the next during query execution.  Stable comparison
    1913             :  * expressions that don't involve such Params allow partition pruning to be
    1914             :  * done once during executor startup.  Expressions that do involve such Params
    1915             :  * require us to prune separately for each scan of the parent plan node.
    1916             :  *
    1917             :  * Note that pruning away unneeded subplans during executor startup has the
    1918             :  * added benefit of not having to initialize the unneeded subplans at all.
    1919             :  *
    1920             :  *
    1921             :  * Functions:
    1922             :  *
    1923             :  * ExecDoInitialPruning:
    1924             :  *      Perform runtime "initial" pruning, if necessary, to determine the set
    1925             :  *      of child subnodes that need to be initialized during ExecInitNode() for
    1926             :  *      all plan nodes that contain a PartitionPruneInfo.
    1927             :  *
    1928             :  * ExecInitPartitionExecPruning:
    1929             :  *      Updates the PartitionPruneState found at given part_prune_index in
    1930             :  *      EState.es_part_prune_states for use during "exec" pruning if required.
    1931             :  *      Also returns the set of subplans to initialize that would be stored at
    1932             :  *      part_prune_index in EState.es_part_prune_results by
    1933             :  *      ExecDoInitialPruning().  Maps in PartitionPruneState are updated to
    1934             :  *      account for initial pruning possibly having eliminated some of the
    1935             :  *      subplans.
    1936             :  *
    1937             :  * ExecFindMatchingSubPlans:
    1938             :  *      Returns indexes of matching subplans after evaluating the expressions
    1939             :  *      that are safe to evaluate at a given point.  This function is first
    1940             :  *      called during ExecDoInitialPruning() to find the initially matching
    1941             :  *      subplans based on performing the initial pruning steps and then must be
    1942             :  *      called again each time the value of a Param listed in
    1943             :  *      PartitionPruneState's 'execparamids' changes.
    1944             :  *-------------------------------------------------------------------------
    1945             :  */
    1946             : 
    1947             : 
    1948             : /*
    1949             :  * ExecDoInitialPruning
    1950             :  *      Perform runtime "initial" pruning, if necessary, to determine the set
    1951             :  *      of child subnodes that need to be initialized during ExecInitNode() for
    1952             :  *      plan nodes that support partition pruning.
    1953             :  *
    1954             :  * This function iterates over each PartitionPruneInfo entry in
    1955             :  * estate->es_part_prune_infos. For each entry, it creates a PartitionPruneState
    1956             :  * and adds it to es_part_prune_states.  ExecInitPartitionExecPruning() accesses
    1957             :  * these states through their corresponding indexes in es_part_prune_states and
    1958             :  * assign each state to the parent node's PlanState, from where it will be used
    1959             :  * for "exec" pruning.
    1960             :  *
    1961             :  * If initial pruning steps exist for a PartitionPruneInfo entry, this function
    1962             :  * executes those pruning steps and stores the result as a bitmapset of valid
    1963             :  * child subplans, identifying which subplans should be initialized for
    1964             :  * execution.  The results are saved in estate->es_part_prune_results.
    1965             :  *
    1966             :  * If no initial pruning is performed for a given PartitionPruneInfo, a NULL
    1967             :  * entry  is still added to es_part_prune_results to maintain alignment with
    1968             :  * es_part_prune_infos. This ensures that ExecInitPartitionExecPruning() can
    1969             :  * use the same index to retrieve the pruning results.
    1970             :  */
    1971             : void
    1972      592224 : ExecDoInitialPruning(EState *estate)
    1973             : {
    1974             :     ListCell   *lc;
    1975             : 
    1976      593026 :     foreach(lc, estate->es_part_prune_infos)
    1977             :     {
    1978         802 :         PartitionPruneInfo *pruneinfo = lfirst_node(PartitionPruneInfo, lc);
    1979             :         PartitionPruneState *prunestate;
    1980         802 :         Bitmapset  *validsubplans = NULL;
    1981         802 :         Bitmapset  *all_leafpart_rtis = NULL;
    1982         802 :         Bitmapset  *validsubplan_rtis = NULL;
    1983             : 
    1984             :         /* Create and save the PartitionPruneState. */
    1985         802 :         prunestate = CreatePartitionPruneState(estate, pruneinfo,
    1986             :                                                &all_leafpart_rtis);
    1987         802 :         estate->es_part_prune_states = lappend(estate->es_part_prune_states,
    1988             :                                                prunestate);
    1989             : 
    1990             :         /*
    1991             :          * Perform initial pruning steps, if any, and save the result
    1992             :          * bitmapset or NULL as described in the header comment.
    1993             :          */
    1994         802 :         if (prunestate->do_initial_prune)
    1995         448 :             validsubplans = ExecFindMatchingSubPlans(prunestate, true,
    1996             :                                                      &validsubplan_rtis);
    1997             :         else
    1998         354 :             validsubplan_rtis = all_leafpart_rtis;
    1999             : 
    2000         802 :         estate->es_unpruned_relids = bms_add_members(estate->es_unpruned_relids,
    2001             :                                                      validsubplan_rtis);
    2002         802 :         estate->es_part_prune_results = lappend(estate->es_part_prune_results,
    2003             :                                                 validsubplans);
    2004             :     }
    2005      592224 : }
    2006             : 
    2007             : /*
    2008             :  * ExecInitPartitionExecPruning
    2009             :  *      Initialize the data structures needed for runtime "exec" partition
    2010             :  *      pruning and return the result of initial pruning, if available.
    2011             :  *
    2012             :  * 'relids' identifies the relation to which both the parent plan and the
    2013             :  * PartitionPruneInfo given by 'part_prune_index' belong.
    2014             :  *
    2015             :  * On return, *initially_valid_subplans is assigned the set of indexes of
    2016             :  * child subplans that must be initialized along with the parent plan node.
    2017             :  * Initial pruning would have been performed by ExecDoInitialPruning(), if
    2018             :  * necessary, and the bitmapset of surviving subplans' indexes would have
    2019             :  * been stored as the part_prune_index'th element of
    2020             :  * EState.es_part_prune_results.
    2021             :  *
    2022             :  * If subplans were indeed pruned during initial pruning, the subplan_map
    2023             :  * arrays in the returned PartitionPruneState are re-sequenced to exclude those
    2024             :  * subplans, but only if the maps will be needed for subsequent execution
    2025             :  * pruning passes.
    2026             :  */
    2027             : PartitionPruneState *
    2028         806 : ExecInitPartitionExecPruning(PlanState *planstate,
    2029             :                              int n_total_subplans,
    2030             :                              int part_prune_index,
    2031             :                              Bitmapset *relids,
    2032             :                              Bitmapset **initially_valid_subplans)
    2033             : {
    2034             :     PartitionPruneState *prunestate;
    2035         806 :     EState     *estate = planstate->state;
    2036             :     PartitionPruneInfo *pruneinfo;
    2037             : 
    2038             :     /* Obtain the pruneinfo we need. */
    2039         806 :     pruneinfo = list_nth_node(PartitionPruneInfo, estate->es_part_prune_infos,
    2040             :                               part_prune_index);
    2041             : 
    2042             :     /* Its relids better match the plan node's or the planner messed up. */
    2043         806 :     if (!bms_equal(relids, pruneinfo->relids))
    2044           0 :         elog(ERROR, "wrong pruneinfo with relids=%s found at part_prune_index=%d contained in plan node with relids=%s",
    2045             :              bmsToString(pruneinfo->relids), part_prune_index,
    2046             :              bmsToString(relids));
    2047             : 
    2048             :     /*
    2049             :      * The PartitionPruneState would have been created by
    2050             :      * ExecDoInitialPruning() and stored as the part_prune_index'th element of
    2051             :      * EState.es_part_prune_states.
    2052             :      */
    2053         806 :     prunestate = list_nth(estate->es_part_prune_states, part_prune_index);
    2054             :     Assert(prunestate != NULL);
    2055             : 
    2056             :     /* Use the result of initial pruning done by ExecDoInitialPruning(). */
    2057         806 :     if (prunestate->do_initial_prune)
    2058         450 :         *initially_valid_subplans = list_nth_node(Bitmapset,
    2059             :                                                   estate->es_part_prune_results,
    2060             :                                                   part_prune_index);
    2061             :     else
    2062             :     {
    2063             :         /* No pruning, so we'll need to initialize all subplans */
    2064             :         Assert(n_total_subplans > 0);
    2065         356 :         *initially_valid_subplans = bms_add_range(NULL, 0,
    2066             :                                                   n_total_subplans - 1);
    2067             :     }
    2068             : 
    2069             :     /*
    2070             :      * The exec pruning state must also be initialized, if needed, before it
    2071             :      * can be used for pruning during execution.
    2072             :      *
    2073             :      * This also re-sequences subplan indexes contained in prunestate to
    2074             :      * account for any that were removed due to initial pruning; refer to the
    2075             :      * condition in InitExecPartitionPruneContexts() that is used to determine
    2076             :      * whether to do this.  If no exec pruning needs to be done, we would thus
    2077             :      * leave the maps to be in an invalid state, but that's ok since that data
    2078             :      * won't be consulted again (cf initial Assert in
    2079             :      * ExecFindMatchingSubPlans).
    2080             :      */
    2081         806 :     if (prunestate->do_exec_prune)
    2082         398 :         InitExecPartitionPruneContexts(prunestate, planstate,
    2083             :                                        *initially_valid_subplans,
    2084             :                                        n_total_subplans);
    2085             : 
    2086         806 :     return prunestate;
    2087             : }
    2088             : 
    2089             : /*
    2090             :  * CreatePartitionPruneState
    2091             :  *      Build the data structure required for calling ExecFindMatchingSubPlans
    2092             :  *
    2093             :  * This includes PartitionPruneContexts (stored in each
    2094             :  * PartitionedRelPruningData corresponding to a PartitionedRelPruneInfo),
    2095             :  * which hold the ExprStates needed to evaluate pruning expressions, and
    2096             :  * mapping arrays to convert partition indexes from the pruning logic
    2097             :  * into subplan indexes in the parent plan node's list of child subplans.
    2098             :  *
    2099             :  * 'pruneinfo' is a PartitionPruneInfo as generated by
    2100             :  * make_partition_pruneinfo.  Here we build a PartitionPruneState containing a
    2101             :  * PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
    2102             :  * pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
    2103             :  * for each PartitionedRelPruneInfo appearing in that sublist.  This two-level
    2104             :  * system is needed to keep from confusing the different hierarchies when a
    2105             :  * UNION ALL contains multiple partitioned tables as children.  The data
    2106             :  * stored in each PartitionedRelPruningData can be re-used each time we
    2107             :  * re-evaluate which partitions match the pruning steps provided in each
    2108             :  * PartitionedRelPruneInfo.
    2109             :  *
    2110             :  * Note that only the PartitionPruneContexts for initial pruning are
    2111             :  * initialized here. Those required for exec pruning are initialized later in
    2112             :  * ExecInitPartitionExecPruning(), as they depend on the availability of the
    2113             :  * parent plan node's PlanState.
    2114             :  *
    2115             :  * If initial pruning steps are to be skipped (e.g., during EXPLAIN
    2116             :  * (GENERIC_PLAN)), *all_leafpart_rtis will be populated with the RT indexes of
    2117             :  * all leaf partitions whose scanning subnode is included in the parent plan
    2118             :  * node's list of child plans. The caller must add these RT indexes to
    2119             :  * estate->es_unpruned_relids.
    2120             :  */
    2121             : static PartitionPruneState *
    2122         802 : CreatePartitionPruneState(EState *estate, PartitionPruneInfo *pruneinfo,
    2123             :                           Bitmapset **all_leafpart_rtis)
    2124             : {
    2125             :     PartitionPruneState *prunestate;
    2126             :     int         n_part_hierarchies;
    2127             :     ListCell   *lc;
    2128             :     int         i;
    2129             : 
    2130             :     /*
    2131             :      * Expression context that will be used by partkey_datum_from_expr() to
    2132             :      * evaluate expressions for comparison against partition bounds.
    2133             :      */
    2134         802 :     ExprContext *econtext = CreateExprContext(estate);
    2135             : 
    2136             :     /* For data reading, executor always includes detached partitions */
    2137         802 :     if (estate->es_partition_directory == NULL)
    2138         754 :         estate->es_partition_directory =
    2139         754 :             CreatePartitionDirectory(estate->es_query_cxt, false);
    2140             : 
    2141         802 :     n_part_hierarchies = list_length(pruneinfo->prune_infos);
    2142             :     Assert(n_part_hierarchies > 0);
    2143             : 
    2144             :     /*
    2145             :      * Allocate the data structure
    2146             :      */
    2147             :     prunestate = (PartitionPruneState *)
    2148         802 :         palloc(offsetof(PartitionPruneState, partprunedata) +
    2149             :                sizeof(PartitionPruningData *) * n_part_hierarchies);
    2150             : 
    2151             :     /* Save ExprContext for use during InitExecPartitionPruneContexts(). */
    2152         802 :     prunestate->econtext = econtext;
    2153         802 :     prunestate->execparamids = NULL;
    2154             :     /* other_subplans can change at runtime, so we need our own copy */
    2155         802 :     prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
    2156         802 :     prunestate->do_initial_prune = false;    /* may be set below */
    2157         802 :     prunestate->do_exec_prune = false;   /* may be set below */
    2158         802 :     prunestate->num_partprunedata = n_part_hierarchies;
    2159             : 
    2160             :     /*
    2161             :      * Create a short-term memory context which we'll use when making calls to
    2162             :      * the partition pruning functions.  This avoids possible memory leaks,
    2163             :      * since the pruning functions call comparison functions that aren't under
    2164             :      * our control.
    2165             :      */
    2166         802 :     prunestate->prune_context =
    2167         802 :         AllocSetContextCreate(CurrentMemoryContext,
    2168             :                               "Partition Prune",
    2169             :                               ALLOCSET_DEFAULT_SIZES);
    2170             : 
    2171         802 :     i = 0;
    2172        1628 :     foreach(lc, pruneinfo->prune_infos)
    2173             :     {
    2174         826 :         List       *partrelpruneinfos = lfirst_node(List, lc);
    2175         826 :         int         npartrelpruneinfos = list_length(partrelpruneinfos);
    2176             :         PartitionPruningData *prunedata;
    2177             :         ListCell   *lc2;
    2178             :         int         j;
    2179             : 
    2180             :         prunedata = (PartitionPruningData *)
    2181         826 :             palloc(offsetof(PartitionPruningData, partrelprunedata) +
    2182         826 :                    npartrelpruneinfos * sizeof(PartitionedRelPruningData));
    2183         826 :         prunestate->partprunedata[i] = prunedata;
    2184         826 :         prunedata->num_partrelprunedata = npartrelpruneinfos;
    2185             : 
    2186         826 :         j = 0;
    2187        2462 :         foreach(lc2, partrelpruneinfos)
    2188             :         {
    2189        1636 :             PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
    2190        1636 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    2191             :             Relation    partrel;
    2192             :             PartitionDesc partdesc;
    2193             :             PartitionKey partkey;
    2194             : 
    2195             :             /*
    2196             :              * We can rely on the copies of the partitioned table's partition
    2197             :              * key and partition descriptor appearing in its relcache entry,
    2198             :              * because that entry will be held open and locked for the
    2199             :              * duration of this executor run.
    2200             :              */
    2201        1636 :             partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex, false);
    2202             : 
    2203             :             /* Remember for InitExecPartitionPruneContexts(). */
    2204        1636 :             pprune->partrel = partrel;
    2205             : 
    2206        1636 :             partkey = RelationGetPartitionKey(partrel);
    2207        1636 :             partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
    2208             :                                                 partrel);
    2209             : 
    2210             :             /*
    2211             :              * Initialize the subplan_map and subpart_map.
    2212             :              *
    2213             :              * The set of partitions that exist now might not be the same that
    2214             :              * existed when the plan was made.  The normal case is that it is;
    2215             :              * optimize for that case with a quick comparison, and just copy
    2216             :              * the subplan_map and make subpart_map, leafpart_rti_map point to
    2217             :              * the ones in PruneInfo.
    2218             :              *
    2219             :              * For the case where they aren't identical, we could have more
    2220             :              * partitions on either side; or even exactly the same number of
    2221             :              * them on both but the set of OIDs doesn't match fully.  Handle
    2222             :              * this by creating new subplan_map and subpart_map arrays that
    2223             :              * corresponds to the ones in the PruneInfo where the new
    2224             :              * partition descriptor's OIDs match.  Any that don't match can be
    2225             :              * set to -1, as if they were pruned.  By construction, both
    2226             :              * arrays are in partition bounds order.
    2227             :              */
    2228        1636 :             pprune->nparts = partdesc->nparts;
    2229        1636 :             pprune->subplan_map = palloc_array(int, partdesc->nparts);
    2230             : 
    2231        1636 :             if (partdesc->nparts == pinfo->nparts &&
    2232        1634 :                 memcmp(partdesc->oids, pinfo->relid_map,
    2233        1634 :                        sizeof(int) * partdesc->nparts) == 0)
    2234             :             {
    2235        1512 :                 pprune->subpart_map = pinfo->subpart_map;
    2236        1512 :                 pprune->leafpart_rti_map = pinfo->leafpart_rti_map;
    2237        1512 :                 memcpy(pprune->subplan_map, pinfo->subplan_map,
    2238        1512 :                        sizeof(int) * pinfo->nparts);
    2239             :             }
    2240             :             else
    2241             :             {
    2242         124 :                 int         pd_idx = 0;
    2243             :                 int         pp_idx;
    2244             : 
    2245             :                 /*
    2246             :                  * When the partition arrays are not identical, there could be
    2247             :                  * some new ones but it's also possible that one was removed;
    2248             :                  * we cope with both situations by walking the arrays and
    2249             :                  * discarding those that don't match.
    2250             :                  *
    2251             :                  * If the number of partitions on both sides match, it's still
    2252             :                  * possible that one partition has been detached and another
    2253             :                  * attached.  Cope with that by creating a map that skips any
    2254             :                  * mismatches.
    2255             :                  */
    2256         124 :                 pprune->subpart_map = palloc_array(int, partdesc->nparts);
    2257         124 :                 pprune->leafpart_rti_map = palloc_array(int, partdesc->nparts);
    2258             : 
    2259         528 :                 for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
    2260             :                 {
    2261             :                     /* Skip any InvalidOid relid_map entries */
    2262         624 :                     while (pd_idx < pinfo->nparts &&
    2263         504 :                            !OidIsValid(pinfo->relid_map[pd_idx]))
    2264         220 :                         pd_idx++;
    2265             : 
    2266         404 :             recheck:
    2267         404 :                     if (pd_idx < pinfo->nparts &&
    2268         284 :                         pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
    2269             :                     {
    2270             :                         /* match... */
    2271         182 :                         pprune->subplan_map[pp_idx] =
    2272         182 :                             pinfo->subplan_map[pd_idx];
    2273         182 :                         pprune->subpart_map[pp_idx] =
    2274         182 :                             pinfo->subpart_map[pd_idx];
    2275         182 :                         pprune->leafpart_rti_map[pp_idx] =
    2276         182 :                             pinfo->leafpart_rti_map[pd_idx];
    2277         182 :                         pd_idx++;
    2278         182 :                         continue;
    2279             :                     }
    2280             : 
    2281             :                     /*
    2282             :                      * There isn't an exact match in the corresponding
    2283             :                      * positions of both arrays.  Peek ahead in
    2284             :                      * pinfo->relid_map to see if we have a match for the
    2285             :                      * current partition in partdesc.  Normally if a match
    2286             :                      * exists it's just one element ahead, and it means the
    2287             :                      * planner saw one extra partition that we no longer see
    2288             :                      * now (its concurrent detach finished just in between);
    2289             :                      * so we skip that one by updating pd_idx to the new
    2290             :                      * location and jumping above.  We can then continue to
    2291             :                      * match the rest of the elements after skipping the OID
    2292             :                      * with no match; no future matches are tried for the
    2293             :                      * element that was skipped, because we know the arrays to
    2294             :                      * be in the same order.
    2295             :                      *
    2296             :                      * If we don't see a match anywhere in the rest of the
    2297             :                      * pinfo->relid_map array, that means we see an element
    2298             :                      * now that the planner didn't see, so mark that one as
    2299             :                      * pruned and move on.
    2300             :                      */
    2301         288 :                     for (int pd_idx2 = pd_idx + 1; pd_idx2 < pinfo->nparts; pd_idx2++)
    2302             :                     {
    2303          66 :                         if (pd_idx2 >= pinfo->nparts)
    2304           0 :                             break;
    2305          66 :                         if (pinfo->relid_map[pd_idx2] == partdesc->oids[pp_idx])
    2306             :                         {
    2307           0 :                             pd_idx = pd_idx2;
    2308           0 :                             goto recheck;
    2309             :                         }
    2310             :                     }
    2311             : 
    2312         222 :                     pprune->subpart_map[pp_idx] = -1;
    2313         222 :                     pprune->subplan_map[pp_idx] = -1;
    2314         222 :                     pprune->leafpart_rti_map[pp_idx] = 0;
    2315             :                 }
    2316             :             }
    2317             : 
    2318             :             /* present_parts is also subject to later modification */
    2319        1636 :             pprune->present_parts = bms_copy(pinfo->present_parts);
    2320             : 
    2321             :             /*
    2322             :              * Only initial_context is initialized here.  exec_context is
    2323             :              * initialized during ExecInitPartitionExecPruning() when the
    2324             :              * parent plan's PlanState is available.
    2325             :              *
    2326             :              * Note that we must skip execution-time (both "init" and "exec")
    2327             :              * partition pruning in EXPLAIN (GENERIC_PLAN), since parameter
    2328             :              * values may be missing.
    2329             :              */
    2330        1636 :             pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
    2331        1636 :             if (pinfo->initial_pruning_steps &&
    2332         556 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2333             :             {
    2334         550 :                 InitPartitionPruneContext(&pprune->initial_context,
    2335             :                                           pprune->initial_pruning_steps,
    2336             :                                           partdesc, partkey, NULL,
    2337             :                                           econtext);
    2338             :                 /* Record whether initial pruning is needed at any level */
    2339         550 :                 prunestate->do_initial_prune = true;
    2340             :             }
    2341        1636 :             pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
    2342        1636 :             if (pinfo->exec_pruning_steps &&
    2343         510 :                 !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
    2344             :             {
    2345             :                 /* Record whether exec pruning is needed at any level */
    2346         510 :                 prunestate->do_exec_prune = true;
    2347             :             }
    2348             : 
    2349             :             /*
    2350             :              * Accumulate the IDs of all PARAM_EXEC Params affecting the
    2351             :              * partitioning decisions at this plan node.
    2352             :              */
    2353        3272 :             prunestate->execparamids = bms_add_members(prunestate->execparamids,
    2354        1636 :                                                        pinfo->execparamids);
    2355             : 
    2356             :             /*
    2357             :              * Return all leaf partition indexes if we're skipping pruning in
    2358             :              * the EXPLAIN (GENERIC_PLAN) case.
    2359             :              */
    2360        1636 :             if (pinfo->initial_pruning_steps && !prunestate->do_initial_prune)
    2361             :             {
    2362           6 :                 int         part_index = -1;
    2363             : 
    2364          18 :                 while ((part_index = bms_next_member(pprune->present_parts,
    2365          18 :                                                      part_index)) >= 0)
    2366             :                 {
    2367          12 :                     Index       rtindex = pprune->leafpart_rti_map[part_index];
    2368             : 
    2369          12 :                     if (rtindex)
    2370          12 :                         *all_leafpart_rtis = bms_add_member(*all_leafpart_rtis,
    2371             :                                                             rtindex);
    2372             :                 }
    2373             :             }
    2374             : 
    2375        1636 :             j++;
    2376             :         }
    2377         826 :         i++;
    2378             :     }
    2379             : 
    2380         802 :     return prunestate;
    2381             : }
    2382             : 
    2383             : /*
    2384             :  * Initialize a PartitionPruneContext for the given list of pruning steps.
    2385             :  */
    2386             : static void
    2387        1062 : InitPartitionPruneContext(PartitionPruneContext *context,
    2388             :                           List *pruning_steps,
    2389             :                           PartitionDesc partdesc,
    2390             :                           PartitionKey partkey,
    2391             :                           PlanState *planstate,
    2392             :                           ExprContext *econtext)
    2393             : {
    2394             :     int         n_steps;
    2395             :     int         partnatts;
    2396             :     ListCell   *lc;
    2397             : 
    2398        1062 :     n_steps = list_length(pruning_steps);
    2399             : 
    2400        1062 :     context->strategy = partkey->strategy;
    2401        1062 :     context->partnatts = partnatts = partkey->partnatts;
    2402        1062 :     context->nparts = partdesc->nparts;
    2403        1062 :     context->boundinfo = partdesc->boundinfo;
    2404        1062 :     context->partcollation = partkey->partcollation;
    2405        1062 :     context->partsupfunc = partkey->partsupfunc;
    2406             : 
    2407             :     /* We'll look up type-specific support functions as needed */
    2408        1062 :     context->stepcmpfuncs = palloc0_array(FmgrInfo, n_steps * partnatts);
    2409             : 
    2410        1062 :     context->ppccontext = CurrentMemoryContext;
    2411        1062 :     context->planstate = planstate;
    2412        1062 :     context->exprcontext = econtext;
    2413             : 
    2414             :     /* Initialize expression state for each expression we need */
    2415        1062 :     context->exprstates = palloc0_array(ExprState *, n_steps * partnatts);
    2416        2786 :     foreach(lc, pruning_steps)
    2417             :     {
    2418        1724 :         PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
    2419        1724 :         ListCell   *lc2 = list_head(step->exprs);
    2420             :         int         keyno;
    2421             : 
    2422             :         /* not needed for other step kinds */
    2423        1724 :         if (!IsA(step, PartitionPruneStepOp))
    2424         286 :             continue;
    2425             : 
    2426             :         Assert(list_length(step->exprs) <= partnatts);
    2427             : 
    2428        3026 :         for (keyno = 0; keyno < partnatts; keyno++)
    2429             :         {
    2430        1588 :             if (bms_is_member(keyno, step->nullkeys))
    2431           6 :                 continue;
    2432             : 
    2433        1582 :             if (lc2 != NULL)
    2434             :             {
    2435        1486 :                 Expr       *expr = lfirst(lc2);
    2436             : 
    2437             :                 /* not needed for Consts */
    2438        1486 :                 if (!IsA(expr, Const))
    2439             :                 {
    2440        1392 :                     int         stateidx = PruneCxtStateIdx(partnatts,
    2441             :                                                             step->step.step_id,
    2442             :                                                             keyno);
    2443             : 
    2444             :                     /*
    2445             :                      * When planstate is NULL, pruning_steps is known not to
    2446             :                      * contain any expressions that depend on the parent plan.
    2447             :                      * Information of any available EXTERN parameters must be
    2448             :                      * passed explicitly in that case, which the caller must
    2449             :                      * have made available via econtext.
    2450             :                      */
    2451        1392 :                     if (planstate == NULL)
    2452         814 :                         context->exprstates[stateidx] =
    2453         814 :                             ExecInitExprWithParams(expr,
    2454             :                                                    econtext->ecxt_param_list_info);
    2455             :                     else
    2456         578 :                         context->exprstates[stateidx] =
    2457         578 :                             ExecInitExpr(expr, context->planstate);
    2458             :                 }
    2459        1486 :                 lc2 = lnext(step->exprs, lc2);
    2460             :             }
    2461             :         }
    2462             :     }
    2463        1062 : }
    2464             : 
    2465             : /*
    2466             :  * InitExecPartitionPruneContexts
    2467             :  *      Initialize exec pruning contexts deferred by CreatePartitionPruneState()
    2468             :  *
    2469             :  * This function finalizes exec pruning setup for a PartitionPruneState by
    2470             :  * initializing contexts for pruning steps that require the parent plan's
    2471             :  * PlanState. It iterates over PartitionPruningData entries and sets up the
    2472             :  * necessary execution contexts for pruning during query execution.
    2473             :  *
    2474             :  * Also fix the mapping of partition indexes to subplan indexes contained in
    2475             :  * prunestate by considering the new list of subplans that survived initial
    2476             :  * pruning.
    2477             :  *
    2478             :  * Current values of the indexes present in PartitionPruneState count all the
    2479             :  * subplans that would be present before initial pruning was done.  If initial
    2480             :  * pruning got rid of some of the subplans, any subsequent pruning passes will
    2481             :  * be looking at a different set of target subplans to choose from than those
    2482             :  * in the pre-initial-pruning set, so the maps in PartitionPruneState
    2483             :  * containing those indexes must be updated to reflect the new indexes of
    2484             :  * subplans in the post-initial-pruning set.
    2485             :  */
    2486             : static void
    2487         398 : InitExecPartitionPruneContexts(PartitionPruneState *prunestate,
    2488             :                                PlanState *parent_plan,
    2489             :                                Bitmapset *initially_valid_subplans,
    2490             :                                int n_total_subplans)
    2491             : {
    2492             :     EState     *estate;
    2493         398 :     int        *new_subplan_indexes = NULL;
    2494             :     Bitmapset  *new_other_subplans;
    2495             :     int         i;
    2496             :     int         newidx;
    2497         398 :     bool        fix_subplan_map = false;
    2498             : 
    2499             :     Assert(prunestate->do_exec_prune);
    2500             :     Assert(parent_plan != NULL);
    2501         398 :     estate = parent_plan->state;
    2502             : 
    2503             :     /*
    2504             :      * No need to fix subplans maps if initial pruning didn't eliminate any
    2505             :      * subplans.
    2506             :      */
    2507         398 :     if (bms_num_members(initially_valid_subplans) < n_total_subplans)
    2508             :     {
    2509          48 :         fix_subplan_map = true;
    2510             : 
    2511             :         /*
    2512             :          * First we must build a temporary array which maps old subplan
    2513             :          * indexes to new ones.  For convenience of initialization, we use
    2514             :          * 1-based indexes in this array and leave pruned items as 0.
    2515             :          */
    2516          48 :         new_subplan_indexes = palloc0_array(int, n_total_subplans);
    2517          48 :         newidx = 1;
    2518          48 :         i = -1;
    2519         186 :         while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
    2520             :         {
    2521             :             Assert(i < n_total_subplans);
    2522         138 :             new_subplan_indexes[i] = newidx++;
    2523             :         }
    2524             :     }
    2525             : 
    2526             :     /*
    2527             :      * Now we can update each PartitionedRelPruneInfo's subplan_map with new
    2528             :      * subplan indexes.  We must also recompute its present_parts bitmap.
    2529             :      */
    2530         820 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2531             :     {
    2532         422 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2533             :         int         j;
    2534             : 
    2535             :         /*
    2536             :          * Within each hierarchy, we perform this loop in back-to-front order
    2537             :          * so that we determine present_parts for the lowest-level partitioned
    2538             :          * tables first.  This way we can tell whether a sub-partitioned
    2539             :          * table's partitions were entirely pruned so we can exclude it from
    2540             :          * the current level's present_parts.
    2541             :          */
    2542        1300 :         for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
    2543             :         {
    2544         878 :             PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
    2545         878 :             int         nparts = pprune->nparts;
    2546             :             int         k;
    2547             : 
    2548             :             /* Initialize PartitionPruneContext for exec pruning, if needed. */
    2549         878 :             if (pprune->exec_pruning_steps != NIL)
    2550             :             {
    2551             :                 PartitionKey partkey;
    2552             :                 PartitionDesc partdesc;
    2553             : 
    2554             :                 /*
    2555             :                  * See the comment in CreatePartitionPruneState() regarding
    2556             :                  * the usage of partdesc and partkey.
    2557             :                  */
    2558         512 :                 partkey = RelationGetPartitionKey(pprune->partrel);
    2559         512 :                 partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
    2560             :                                                     pprune->partrel);
    2561             : 
    2562         512 :                 InitPartitionPruneContext(&pprune->exec_context,
    2563             :                                           pprune->exec_pruning_steps,
    2564             :                                           partdesc, partkey, parent_plan,
    2565             :                                           prunestate->econtext);
    2566             :             }
    2567             : 
    2568         878 :             if (!fix_subplan_map)
    2569         686 :                 continue;
    2570             : 
    2571             :             /* We just rebuild present_parts from scratch */
    2572         192 :             bms_free(pprune->present_parts);
    2573         192 :             pprune->present_parts = NULL;
    2574             : 
    2575         708 :             for (k = 0; k < nparts; k++)
    2576             :             {
    2577         516 :                 int         oldidx = pprune->subplan_map[k];
    2578             :                 int         subidx;
    2579             : 
    2580             :                 /*
    2581             :                  * If this partition existed as a subplan then change the old
    2582             :                  * subplan index to the new subplan index.  The new index may
    2583             :                  * become -1 if the partition was pruned above, or it may just
    2584             :                  * come earlier in the subplan list due to some subplans being
    2585             :                  * removed earlier in the list.  If it's a subpartition, add
    2586             :                  * it to present_parts unless it's entirely pruned.
    2587             :                  */
    2588         516 :                 if (oldidx >= 0)
    2589             :                 {
    2590             :                     Assert(oldidx < n_total_subplans);
    2591         396 :                     pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
    2592             : 
    2593         396 :                     if (new_subplan_indexes[oldidx] > 0)
    2594         114 :                         pprune->present_parts =
    2595         114 :                             bms_add_member(pprune->present_parts, k);
    2596             :                 }
    2597         120 :                 else if ((subidx = pprune->subpart_map[k]) >= 0)
    2598             :                 {
    2599             :                     PartitionedRelPruningData *subprune;
    2600             : 
    2601         120 :                     subprune = &prunedata->partrelprunedata[subidx];
    2602             : 
    2603         120 :                     if (!bms_is_empty(subprune->present_parts))
    2604          48 :                         pprune->present_parts =
    2605          48 :                             bms_add_member(pprune->present_parts, k);
    2606             :                 }
    2607             :             }
    2608             :         }
    2609             :     }
    2610             : 
    2611             :     /*
    2612             :      * If we fixed subplan maps, we must also recompute the other_subplans
    2613             :      * set, since indexes in it may change.
    2614             :      */
    2615         398 :     if (fix_subplan_map)
    2616             :     {
    2617          48 :         new_other_subplans = NULL;
    2618          48 :         i = -1;
    2619          72 :         while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
    2620          24 :             new_other_subplans = bms_add_member(new_other_subplans,
    2621          24 :                                                 new_subplan_indexes[i] - 1);
    2622             : 
    2623          48 :         bms_free(prunestate->other_subplans);
    2624          48 :         prunestate->other_subplans = new_other_subplans;
    2625             : 
    2626          48 :         pfree(new_subplan_indexes);
    2627             :     }
    2628         398 : }
    2629             : 
    2630             : /*
    2631             :  * ExecFindMatchingSubPlans
    2632             :  *      Determine which subplans match the pruning steps detailed in
    2633             :  *      'prunestate' for the current comparison expression values.
    2634             :  *
    2635             :  * Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated.  This
    2636             :  * differentiates the initial executor-time pruning step from later
    2637             :  * runtime pruning.
    2638             :  *
    2639             :  * The caller must pass a non-NULL validsubplan_rtis during initial pruning
    2640             :  * to collect the RT indexes of leaf partitions whose subnodes will be
    2641             :  * executed.  These RT indexes are later added to EState.es_unpruned_relids.
    2642             :  */
    2643             : Bitmapset *
    2644        3898 : ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
    2645             :                          bool initial_prune,
    2646             :                          Bitmapset **validsubplan_rtis)
    2647             : {
    2648        3898 :     Bitmapset  *result = NULL;
    2649             :     MemoryContext oldcontext;
    2650             :     int         i;
    2651             : 
    2652             :     /*
    2653             :      * Either we're here on the initial prune done during pruning
    2654             :      * initialization, or we're at a point where PARAM_EXEC Params can be
    2655             :      * evaluated *and* there are steps in which to do so.
    2656             :      */
    2657             :     Assert(initial_prune || prunestate->do_exec_prune);
    2658             :     Assert(validsubplan_rtis != NULL || !initial_prune);
    2659             : 
    2660             :     /*
    2661             :      * Switch to a temp context to avoid leaking memory in the executor's
    2662             :      * query-lifespan memory context.
    2663             :      */
    2664        3898 :     oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
    2665             : 
    2666             :     /*
    2667             :      * For each hierarchy, do the pruning tests, and add nondeletable
    2668             :      * subplans' indexes to "result".
    2669             :      */
    2670        7838 :     for (i = 0; i < prunestate->num_partprunedata; i++)
    2671             :     {
    2672        3940 :         PartitionPruningData *prunedata = prunestate->partprunedata[i];
    2673             :         PartitionedRelPruningData *pprune;
    2674             : 
    2675             :         /*
    2676             :          * We pass the zeroth item, belonging to the root table of the
    2677             :          * hierarchy, and find_matching_subplans_recurse() takes care of
    2678             :          * recursing to other (lower-level) parents as needed.
    2679             :          */
    2680        3940 :         pprune = &prunedata->partrelprunedata[0];
    2681        3940 :         find_matching_subplans_recurse(prunedata, pprune, initial_prune,
    2682             :                                        &result, validsubplan_rtis);
    2683             : 
    2684             :         /*
    2685             :          * Expression eval may have used space in ExprContext too. Avoid
    2686             :          * accessing exec_context during initial pruning, as it is not valid
    2687             :          * at that stage.
    2688             :          */
    2689        3940 :         if (!initial_prune && pprune->exec_pruning_steps)
    2690        3396 :             ResetExprContext(pprune->exec_context.exprcontext);
    2691             :     }
    2692             : 
    2693             :     /* Add in any subplans that partition pruning didn't account for */
    2694        3898 :     result = bms_add_members(result, prunestate->other_subplans);
    2695             : 
    2696        3898 :     MemoryContextSwitchTo(oldcontext);
    2697             : 
    2698             :     /* Copy result out of the temp context before we reset it */
    2699        3898 :     result = bms_copy(result);
    2700        3898 :     if (validsubplan_rtis)
    2701         448 :         *validsubplan_rtis = bms_copy(*validsubplan_rtis);
    2702             : 
    2703        3898 :     MemoryContextReset(prunestate->prune_context);
    2704             : 
    2705        3898 :     return result;
    2706             : }
    2707             : 
    2708             : /*
    2709             :  * find_matching_subplans_recurse
    2710             :  *      Recursive worker function for ExecFindMatchingSubPlans
    2711             :  *
    2712             :  * Adds valid (non-prunable) subplan IDs to *validsubplans. If
    2713             :  * *validsubplan_rtis is non-NULL, it also adds the RT indexes of their
    2714             :  * corresponding partitions, but only if they are leaf partitions.
    2715             :  */
    2716             : static void
    2717        4354 : find_matching_subplans_recurse(PartitionPruningData *prunedata,
    2718             :                                PartitionedRelPruningData *pprune,
    2719             :                                bool initial_prune,
    2720             :                                Bitmapset **validsubplans,
    2721             :                                Bitmapset **validsubplan_rtis)
    2722             : {
    2723             :     Bitmapset  *partset;
    2724             :     int         i;
    2725             : 
    2726             :     /* Guard against stack overflow due to overly deep partition hierarchy. */
    2727        4354 :     check_stack_depth();
    2728             : 
    2729             :     /*
    2730             :      * Prune as appropriate, if we have pruning steps matching the current
    2731             :      * execution context.  Otherwise just include all partitions at this
    2732             :      * level.
    2733             :      */
    2734        4354 :     if (initial_prune && pprune->initial_pruning_steps)
    2735         532 :         partset = get_matching_partitions(&pprune->initial_context,
    2736             :                                           pprune->initial_pruning_steps);
    2737        3822 :     else if (!initial_prune && pprune->exec_pruning_steps)
    2738        3480 :         partset = get_matching_partitions(&pprune->exec_context,
    2739             :                                           pprune->exec_pruning_steps);
    2740             :     else
    2741         342 :         partset = pprune->present_parts;
    2742             : 
    2743             :     /* Translate partset into subplan indexes */
    2744        4354 :     i = -1;
    2745        6164 :     while ((i = bms_next_member(partset, i)) >= 0)
    2746             :     {
    2747        1810 :         if (pprune->subplan_map[i] >= 0)
    2748             :         {
    2749        2788 :             *validsubplans = bms_add_member(*validsubplans,
    2750        1394 :                                             pprune->subplan_map[i]);
    2751             : 
    2752             :             /*
    2753             :              * Only report leaf partitions. Non-leaf partitions may appear
    2754             :              * here when they use an unflattened Append or MergeAppend.
    2755             :              */
    2756        1394 :             if (validsubplan_rtis && pprune->leafpart_rti_map[i])
    2757         674 :                 *validsubplan_rtis = bms_add_member(*validsubplan_rtis,
    2758         674 :                                                     pprune->leafpart_rti_map[i]);
    2759             :         }
    2760             :         else
    2761             :         {
    2762         416 :             int         partidx = pprune->subpart_map[i];
    2763             : 
    2764         416 :             if (partidx >= 0)
    2765         414 :                 find_matching_subplans_recurse(prunedata,
    2766             :                                                &prunedata->partrelprunedata[partidx],
    2767             :                                                initial_prune, validsubplans,
    2768             :                                                validsubplan_rtis);
    2769             :             else
    2770             :             {
    2771             :                 /*
    2772             :                  * We get here if the planner already pruned all the sub-
    2773             :                  * partitions for this partition.  Silently ignore this
    2774             :                  * partition in this case.  The end result is the same: we
    2775             :                  * would have pruned all partitions just the same, but we
    2776             :                  * don't have any pruning steps to execute to verify this.
    2777             :                  */
    2778             :             }
    2779             :         }
    2780             :     }
    2781        4354 : }

Generated by: LCOV version 1.16