Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * execMain.c
4 : * top level executor interface routines
5 : *
6 : * INTERFACE ROUTINES
7 : * ExecutorStart()
8 : * ExecutorRun()
9 : * ExecutorFinish()
10 : * ExecutorEnd()
11 : *
12 : * These four procedures are the external interface to the executor.
13 : * In each case, the query descriptor is required as an argument.
14 : *
15 : * ExecutorStart must be called at the beginning of execution of any
16 : * query plan and ExecutorEnd must always be called at the end of
17 : * execution of a plan (unless it is aborted due to error).
18 : *
19 : * ExecutorRun accepts direction and count arguments that specify whether
20 : * the plan is to be executed forwards, backwards, and for how many tuples.
21 : * In some cases ExecutorRun may be called multiple times to process all
22 : * the tuples for a plan. It is also acceptable to stop short of executing
23 : * the whole plan (but only if it is a SELECT).
24 : *
25 : * ExecutorFinish must be called after the final ExecutorRun call and
26 : * before ExecutorEnd. This can be omitted only in case of EXPLAIN,
27 : * which should also omit ExecutorRun.
28 : *
29 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
30 : * Portions Copyright (c) 1994, Regents of the University of California
31 : *
32 : *
33 : * IDENTIFICATION
34 : * src/backend/executor/execMain.c
35 : *
36 : *-------------------------------------------------------------------------
37 : */
38 : #include "postgres.h"
39 :
40 : #include "access/sysattr.h"
41 : #include "access/table.h"
42 : #include "access/tableam.h"
43 : #include "access/xact.h"
44 : #include "catalog/namespace.h"
45 : #include "catalog/partition.h"
46 : #include "commands/matview.h"
47 : #include "commands/trigger.h"
48 : #include "executor/executor.h"
49 : #include "executor/execPartition.h"
50 : #include "executor/nodeSubplan.h"
51 : #include "foreign/fdwapi.h"
52 : #include "mb/pg_wchar.h"
53 : #include "miscadmin.h"
54 : #include "nodes/queryjumble.h"
55 : #include "parser/parse_relation.h"
56 : #include "pgstat.h"
57 : #include "rewrite/rewriteHandler.h"
58 : #include "tcop/utility.h"
59 : #include "utils/acl.h"
60 : #include "utils/backend_status.h"
61 : #include "utils/lsyscache.h"
62 : #include "utils/partcache.h"
63 : #include "utils/rls.h"
64 : #include "utils/snapmgr.h"
65 :
66 :
67 : /* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
68 : ExecutorStart_hook_type ExecutorStart_hook = NULL;
69 : ExecutorRun_hook_type ExecutorRun_hook = NULL;
70 : ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
71 : ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
72 :
73 : /* Hook for plugin to get control in ExecCheckPermissions() */
74 : ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
75 :
76 : /* decls for local routines only used within this module */
77 : static void InitPlan(QueryDesc *queryDesc, int eflags);
78 : static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
79 : static void ExecPostprocessPlan(EState *estate);
80 : static void ExecEndPlan(PlanState *planstate, EState *estate);
81 : static void ExecutePlan(QueryDesc *queryDesc,
82 : CmdType operation,
83 : bool sendTuples,
84 : uint64 numberTuples,
85 : ScanDirection direction,
86 : DestReceiver *dest);
87 : static bool ExecCheckPermissionsModified(Oid relOid, Oid userid,
88 : Bitmapset *modifiedCols,
89 : AclMode requiredPerms);
90 : static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
91 : static void EvalPlanQualStart(EPQState *epqstate, Plan *planTree);
92 : static void ReportNotNullViolationError(ResultRelInfo *resultRelInfo,
93 : TupleTableSlot *slot,
94 : EState *estate, int attnum);
95 :
96 : /* end of local decls */
97 :
98 :
99 : /* ----------------------------------------------------------------
100 : * ExecutorStart
101 : *
102 : * This routine must be called at the beginning of any execution of any
103 : * query plan
104 : *
105 : * Takes a QueryDesc previously created by CreateQueryDesc (which is separate
106 : * only because some places use QueryDescs for utility commands). The tupDesc
107 : * field of the QueryDesc is filled in to describe the tuples that will be
108 : * returned, and the internal fields (estate and planstate) are set up.
109 : *
110 : * eflags contains flag bits as described in executor.h.
111 : *
112 : * NB: the CurrentMemoryContext when this is called will become the parent
113 : * of the per-query context used for this Executor invocation.
114 : *
115 : * We provide a function hook variable that lets loadable plugins
116 : * get control when ExecutorStart is called. Such a plugin would
117 : * normally call standard_ExecutorStart().
118 : *
119 : * ----------------------------------------------------------------
120 : */
121 : void
122 578234 : ExecutorStart(QueryDesc *queryDesc, int eflags)
123 : {
124 : /*
125 : * In some cases (e.g. an EXECUTE statement or an execute message with the
126 : * extended query protocol) the query_id won't be reported, so do it now.
127 : *
128 : * Note that it's harmless to report the query_id multiple times, as the
129 : * call will be ignored if the top level query_id has already been
130 : * reported.
131 : */
132 578234 : pgstat_report_query_id(queryDesc->plannedstmt->queryId, false);
133 :
134 578234 : if (ExecutorStart_hook)
135 116324 : (*ExecutorStart_hook) (queryDesc, eflags);
136 : else
137 461910 : standard_ExecutorStart(queryDesc, eflags);
138 576548 : }
139 :
140 : void
141 578234 : standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
142 : {
143 : EState *estate;
144 : MemoryContext oldcontext;
145 :
146 : /* sanity checks: queryDesc must not be started already */
147 : Assert(queryDesc != NULL);
148 : Assert(queryDesc->estate == NULL);
149 :
150 : /* caller must ensure the query's snapshot is active */
151 : Assert(GetActiveSnapshot() == queryDesc->snapshot);
152 :
153 : /*
154 : * If the transaction is read-only, we need to check if any writes are
155 : * planned to non-temporary tables. EXPLAIN is considered read-only.
156 : *
157 : * Don't allow writes in parallel mode. Supporting UPDATE and DELETE
158 : * would require (a) storing the combo CID hash in shared memory, rather
159 : * than synchronizing it just once at the start of parallelism, and (b) an
160 : * alternative to heap_update()'s reliance on xmax for mutual exclusion.
161 : * INSERT may have no such troubles, but we forbid it to simplify the
162 : * checks.
163 : *
164 : * We have lower-level defenses in CommandCounterIncrement and elsewhere
165 : * against performing unsafe operations in parallel mode, but this gives a
166 : * more user-friendly error message.
167 : */
168 578234 : if ((XactReadOnly || IsInParallelMode()) &&
169 61920 : !(eflags & EXEC_FLAG_EXPLAIN_ONLY))
170 61920 : ExecCheckXactReadOnly(queryDesc->plannedstmt);
171 :
172 : /*
173 : * Build EState, switch into per-query memory context for startup.
174 : */
175 578218 : estate = CreateExecutorState();
176 578218 : queryDesc->estate = estate;
177 :
178 578218 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
179 :
180 : /*
181 : * Fill in external parameters, if any, from queryDesc; and allocate
182 : * workspace for internal parameters
183 : */
184 578218 : estate->es_param_list_info = queryDesc->params;
185 :
186 578218 : if (queryDesc->plannedstmt->paramExecTypes != NIL)
187 : {
188 : int nParamExec;
189 :
190 186654 : nParamExec = list_length(queryDesc->plannedstmt->paramExecTypes);
191 186654 : estate->es_param_exec_vals = (ParamExecData *)
192 186654 : palloc0(nParamExec * sizeof(ParamExecData));
193 : }
194 :
195 : /* We now require all callers to provide sourceText */
196 : Assert(queryDesc->sourceText != NULL);
197 578218 : estate->es_sourceText = queryDesc->sourceText;
198 :
199 : /*
200 : * Fill in the query environment, if any, from queryDesc.
201 : */
202 578218 : estate->es_queryEnv = queryDesc->queryEnv;
203 :
204 : /*
205 : * If non-read-only query, set the command ID to mark output tuples with
206 : */
207 578218 : switch (queryDesc->operation)
208 : {
209 461150 : case CMD_SELECT:
210 :
211 : /*
212 : * SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark
213 : * tuples
214 : */
215 461150 : if (queryDesc->plannedstmt->rowMarks != NIL ||
216 453036 : queryDesc->plannedstmt->hasModifyingCTE)
217 8252 : estate->es_output_cid = GetCurrentCommandId(true);
218 :
219 : /*
220 : * A SELECT without modifying CTEs can't possibly queue triggers,
221 : * so force skip-triggers mode. This is just a marginal efficiency
222 : * hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
223 : * all that expensive, but we might as well do it.
224 : */
225 461150 : if (!queryDesc->plannedstmt->hasModifyingCTE)
226 461006 : eflags |= EXEC_FLAG_SKIP_TRIGGERS;
227 461150 : break;
228 :
229 117068 : case CMD_INSERT:
230 : case CMD_DELETE:
231 : case CMD_UPDATE:
232 : case CMD_MERGE:
233 117068 : estate->es_output_cid = GetCurrentCommandId(true);
234 117068 : break;
235 :
236 0 : default:
237 0 : elog(ERROR, "unrecognized operation code: %d",
238 : (int) queryDesc->operation);
239 : break;
240 : }
241 :
242 : /*
243 : * Copy other important information into the EState
244 : */
245 578218 : estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
246 578218 : estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
247 578218 : estate->es_top_eflags = eflags;
248 578218 : estate->es_instrument = queryDesc->instrument_options;
249 578218 : estate->es_jit_flags = queryDesc->plannedstmt->jitFlags;
250 :
251 : /*
252 : * Set up an AFTER-trigger statement context, unless told not to, or
253 : * unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
254 : */
255 578218 : if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY)))
256 115568 : AfterTriggerBeginQuery();
257 :
258 : /*
259 : * Initialize the plan state tree
260 : */
261 578218 : InitPlan(queryDesc, eflags);
262 :
263 576548 : MemoryContextSwitchTo(oldcontext);
264 576548 : }
265 :
266 : /* ----------------------------------------------------------------
267 : * ExecutorRun
268 : *
269 : * This is the main routine of the executor module. It accepts
270 : * the query descriptor from the traffic cop and executes the
271 : * query plan.
272 : *
273 : * ExecutorStart must have been called already.
274 : *
275 : * If direction is NoMovementScanDirection then nothing is done
276 : * except to start up/shut down the destination. Otherwise,
277 : * we retrieve up to 'count' tuples in the specified direction.
278 : *
279 : * Note: count = 0 is interpreted as no portal limit, i.e., run to
280 : * completion. Also note that the count limit is only applied to
281 : * retrieved tuples, not for instance to those inserted/updated/deleted
282 : * by a ModifyTable plan node.
283 : *
284 : * There is no return value, but output tuples (if any) are sent to
285 : * the destination receiver specified in the QueryDesc; and the number
286 : * of tuples processed at the top level can be found in
287 : * estate->es_processed. The total number of tuples processed in all
288 : * the ExecutorRun calls can be found in estate->es_total_processed.
289 : *
290 : * We provide a function hook variable that lets loadable plugins
291 : * get control when ExecutorRun is called. Such a plugin would
292 : * normally call standard_ExecutorRun().
293 : *
294 : * ----------------------------------------------------------------
295 : */
296 : void
297 568156 : ExecutorRun(QueryDesc *queryDesc,
298 : ScanDirection direction, uint64 count)
299 : {
300 568156 : if (ExecutorRun_hook)
301 113168 : (*ExecutorRun_hook) (queryDesc, direction, count);
302 : else
303 454988 : standard_ExecutorRun(queryDesc, direction, count);
304 544290 : }
305 :
306 : void
307 568156 : standard_ExecutorRun(QueryDesc *queryDesc,
308 : ScanDirection direction, uint64 count)
309 : {
310 : EState *estate;
311 : CmdType operation;
312 : DestReceiver *dest;
313 : bool sendTuples;
314 : MemoryContext oldcontext;
315 :
316 : /* sanity checks */
317 : Assert(queryDesc != NULL);
318 :
319 568156 : estate = queryDesc->estate;
320 :
321 : Assert(estate != NULL);
322 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
323 :
324 : /* caller must ensure the query's snapshot is active */
325 : Assert(GetActiveSnapshot() == estate->es_snapshot);
326 :
327 : /*
328 : * Switch into per-query memory context
329 : */
330 568156 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
331 :
332 : /* Allow instrumentation of Executor overall runtime */
333 568156 : if (queryDesc->totaltime)
334 77410 : InstrStartNode(queryDesc->totaltime);
335 :
336 : /*
337 : * extract information from the query descriptor and the query feature.
338 : */
339 568156 : operation = queryDesc->operation;
340 568156 : dest = queryDesc->dest;
341 :
342 : /*
343 : * startup tuple receiver, if we will be emitting tuples
344 : */
345 568156 : estate->es_processed = 0;
346 :
347 683206 : sendTuples = (operation == CMD_SELECT ||
348 115050 : queryDesc->plannedstmt->hasReturning);
349 :
350 568156 : if (sendTuples)
351 457324 : dest->rStartup(dest, operation, queryDesc->tupDesc);
352 :
353 : /*
354 : * Run plan, unless direction is NoMovement.
355 : *
356 : * Note: pquery.c selects NoMovement if a prior call already reached
357 : * end-of-data in the user-specified fetch direction. This is important
358 : * because various parts of the executor can misbehave if called again
359 : * after reporting EOF. For example, heapam.c would actually restart a
360 : * heapscan and return all its data afresh. There is also some doubt
361 : * about whether a parallel plan would operate properly if an additional,
362 : * necessarily non-parallel execution request occurs after completing a
363 : * parallel execution. (That case should work, but it's untested.)
364 : */
365 568118 : if (!ScanDirectionIsNoMovement(direction))
366 566814 : ExecutePlan(queryDesc,
367 : operation,
368 : sendTuples,
369 : count,
370 : direction,
371 : dest);
372 :
373 : /*
374 : * Update es_total_processed to keep track of the number of tuples
375 : * processed across multiple ExecutorRun() calls.
376 : */
377 544290 : estate->es_total_processed += estate->es_processed;
378 :
379 : /*
380 : * shutdown tuple receiver, if we started it
381 : */
382 544290 : if (sendTuples)
383 436606 : dest->rShutdown(dest);
384 :
385 544290 : if (queryDesc->totaltime)
386 74648 : InstrStopNode(queryDesc->totaltime, estate->es_processed);
387 :
388 544290 : MemoryContextSwitchTo(oldcontext);
389 544290 : }
390 :
391 : /* ----------------------------------------------------------------
392 : * ExecutorFinish
393 : *
394 : * This routine must be called after the last ExecutorRun call.
395 : * It performs cleanup such as firing AFTER triggers. It is
396 : * separate from ExecutorEnd because EXPLAIN ANALYZE needs to
397 : * include these actions in the total runtime.
398 : *
399 : * We provide a function hook variable that lets loadable plugins
400 : * get control when ExecutorFinish is called. Such a plugin would
401 : * normally call standard_ExecutorFinish().
402 : *
403 : * ----------------------------------------------------------------
404 : */
405 : void
406 529742 : ExecutorFinish(QueryDesc *queryDesc)
407 : {
408 529742 : if (ExecutorFinish_hook)
409 102364 : (*ExecutorFinish_hook) (queryDesc);
410 : else
411 427378 : standard_ExecutorFinish(queryDesc);
412 528602 : }
413 :
414 : void
415 529742 : standard_ExecutorFinish(QueryDesc *queryDesc)
416 : {
417 : EState *estate;
418 : MemoryContext oldcontext;
419 :
420 : /* sanity checks */
421 : Assert(queryDesc != NULL);
422 :
423 529742 : estate = queryDesc->estate;
424 :
425 : Assert(estate != NULL);
426 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
427 :
428 : /* This should be run once and only once per Executor instance */
429 : Assert(!estate->es_finished);
430 :
431 : /* Switch into per-query memory context */
432 529742 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
433 :
434 : /* Allow instrumentation of Executor overall runtime */
435 529742 : if (queryDesc->totaltime)
436 74648 : InstrStartNode(queryDesc->totaltime);
437 :
438 : /* Run ModifyTable nodes to completion */
439 529742 : ExecPostprocessPlan(estate);
440 :
441 : /* Execute queued AFTER triggers, unless told not to */
442 529742 : if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS))
443 111286 : AfterTriggerEndQuery(estate);
444 :
445 528602 : if (queryDesc->totaltime)
446 74326 : InstrStopNode(queryDesc->totaltime, 0);
447 :
448 528602 : MemoryContextSwitchTo(oldcontext);
449 :
450 528602 : estate->es_finished = true;
451 528602 : }
452 :
453 : /* ----------------------------------------------------------------
454 : * ExecutorEnd
455 : *
456 : * This routine must be called at the end of execution of any
457 : * query plan
458 : *
459 : * We provide a function hook variable that lets loadable plugins
460 : * get control when ExecutorEnd is called. Such a plugin would
461 : * normally call standard_ExecutorEnd().
462 : *
463 : * ----------------------------------------------------------------
464 : */
465 : void
466 549500 : ExecutorEnd(QueryDesc *queryDesc)
467 : {
468 549500 : if (ExecutorEnd_hook)
469 107922 : (*ExecutorEnd_hook) (queryDesc);
470 : else
471 441578 : standard_ExecutorEnd(queryDesc);
472 549500 : }
473 :
474 : void
475 549500 : standard_ExecutorEnd(QueryDesc *queryDesc)
476 : {
477 : EState *estate;
478 : MemoryContext oldcontext;
479 :
480 : /* sanity checks */
481 : Assert(queryDesc != NULL);
482 :
483 549500 : estate = queryDesc->estate;
484 :
485 : Assert(estate != NULL);
486 :
487 549500 : if (estate->es_parallel_workers_to_launch > 0)
488 688 : pgstat_update_parallel_workers_stats((PgStat_Counter) estate->es_parallel_workers_to_launch,
489 688 : (PgStat_Counter) estate->es_parallel_workers_launched);
490 :
491 : /*
492 : * Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
493 : * Assert is needed because ExecutorFinish is new as of 9.1, and callers
494 : * might forget to call it.
495 : */
496 : Assert(estate->es_finished ||
497 : (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
498 :
499 : /*
500 : * Switch into per-query memory context to run ExecEndPlan
501 : */
502 549500 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
503 :
504 549500 : ExecEndPlan(queryDesc->planstate, estate);
505 :
506 : /* do away with our snapshots */
507 549500 : UnregisterSnapshot(estate->es_snapshot);
508 549500 : UnregisterSnapshot(estate->es_crosscheck_snapshot);
509 :
510 : /*
511 : * Must switch out of context before destroying it
512 : */
513 549500 : MemoryContextSwitchTo(oldcontext);
514 :
515 : /*
516 : * Release EState and per-query memory context. This should release
517 : * everything the executor has allocated.
518 : */
519 549500 : FreeExecutorState(estate);
520 :
521 : /* Reset queryDesc fields that no longer point to anything */
522 549500 : queryDesc->tupDesc = NULL;
523 549500 : queryDesc->estate = NULL;
524 549500 : queryDesc->planstate = NULL;
525 549500 : queryDesc->totaltime = NULL;
526 549500 : }
527 :
528 : /* ----------------------------------------------------------------
529 : * ExecutorRewind
530 : *
531 : * This routine may be called on an open queryDesc to rewind it
532 : * to the start.
533 : * ----------------------------------------------------------------
534 : */
535 : void
536 108 : ExecutorRewind(QueryDesc *queryDesc)
537 : {
538 : EState *estate;
539 : MemoryContext oldcontext;
540 :
541 : /* sanity checks */
542 : Assert(queryDesc != NULL);
543 :
544 108 : estate = queryDesc->estate;
545 :
546 : Assert(estate != NULL);
547 :
548 : /* It's probably not sensible to rescan updating queries */
549 : Assert(queryDesc->operation == CMD_SELECT);
550 :
551 : /*
552 : * Switch into per-query memory context
553 : */
554 108 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
555 :
556 : /*
557 : * rescan plan
558 : */
559 108 : ExecReScan(queryDesc->planstate);
560 :
561 108 : MemoryContextSwitchTo(oldcontext);
562 108 : }
563 :
564 :
565 : /*
566 : * ExecCheckPermissions
567 : * Check access permissions of relations mentioned in a query
568 : *
569 : * Returns true if permissions are adequate. Otherwise, throws an appropriate
570 : * error if ereport_on_violation is true, or simply returns false otherwise.
571 : *
572 : * Note that this does NOT address row-level security policies (aka: RLS). If
573 : * rows will be returned to the user as a result of this permission check
574 : * passing, then RLS also needs to be consulted (and check_enable_rls()).
575 : *
576 : * See rewrite/rowsecurity.c.
577 : *
578 : * NB: rangeTable is no longer used by us, but kept around for the hooks that
579 : * might still want to look at the RTEs.
580 : */
581 : bool
582 589860 : ExecCheckPermissions(List *rangeTable, List *rteperminfos,
583 : bool ereport_on_violation)
584 : {
585 : ListCell *l;
586 589860 : bool result = true;
587 :
588 : #ifdef USE_ASSERT_CHECKING
589 : Bitmapset *indexset = NULL;
590 :
591 : /* Check that rteperminfos is consistent with rangeTable */
592 : foreach(l, rangeTable)
593 : {
594 : RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
595 :
596 : if (rte->perminfoindex != 0)
597 : {
598 : /* Sanity checks */
599 :
600 : /*
601 : * Only relation RTEs and subquery RTEs that were once relation
602 : * RTEs (views) have their perminfoindex set.
603 : */
604 : Assert(rte->rtekind == RTE_RELATION ||
605 : (rte->rtekind == RTE_SUBQUERY &&
606 : rte->relkind == RELKIND_VIEW));
607 :
608 : (void) getRTEPermissionInfo(rteperminfos, rte);
609 : /* Many-to-one mapping not allowed */
610 : Assert(!bms_is_member(rte->perminfoindex, indexset));
611 : indexset = bms_add_member(indexset, rte->perminfoindex);
612 : }
613 : }
614 :
615 : /* All rteperminfos are referenced */
616 : Assert(bms_num_members(indexset) == list_length(rteperminfos));
617 : #endif
618 :
619 1159164 : foreach(l, rteperminfos)
620 : {
621 570616 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
622 :
623 : Assert(OidIsValid(perminfo->relid));
624 570616 : result = ExecCheckOneRelPerms(perminfo);
625 570616 : if (!result)
626 : {
627 1312 : if (ereport_on_violation)
628 1300 : aclcheck_error(ACLCHECK_NO_PRIV,
629 1300 : get_relkind_objtype(get_rel_relkind(perminfo->relid)),
630 1300 : get_rel_name(perminfo->relid));
631 12 : return false;
632 : }
633 : }
634 :
635 588548 : if (ExecutorCheckPerms_hook)
636 12 : result = (*ExecutorCheckPerms_hook) (rangeTable, rteperminfos,
637 : ereport_on_violation);
638 588548 : return result;
639 : }
640 :
641 : /*
642 : * ExecCheckOneRelPerms
643 : * Check access permissions for a single relation.
644 : */
645 : bool
646 591644 : ExecCheckOneRelPerms(RTEPermissionInfo *perminfo)
647 : {
648 : AclMode requiredPerms;
649 : AclMode relPerms;
650 : AclMode remainingPerms;
651 : Oid userid;
652 591644 : Oid relOid = perminfo->relid;
653 :
654 591644 : requiredPerms = perminfo->requiredPerms;
655 : Assert(requiredPerms != 0);
656 :
657 : /*
658 : * userid to check as: current user unless we have a setuid indication.
659 : *
660 : * Note: GetUserId() is presently fast enough that there's no harm in
661 : * calling it separately for each relation. If that stops being true, we
662 : * could call it once in ExecCheckPermissions and pass the userid down
663 : * from there. But for now, no need for the extra clutter.
664 : */
665 1183288 : userid = OidIsValid(perminfo->checkAsUser) ?
666 591644 : perminfo->checkAsUser : GetUserId();
667 :
668 : /*
669 : * We must have *all* the requiredPerms bits, but some of the bits can be
670 : * satisfied from column-level rather than relation-level permissions.
671 : * First, remove any bits that are satisfied by relation permissions.
672 : */
673 591644 : relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL);
674 591644 : remainingPerms = requiredPerms & ~relPerms;
675 591644 : if (remainingPerms != 0)
676 : {
677 2870 : int col = -1;
678 :
679 : /*
680 : * If we lack any permissions that exist only as relation permissions,
681 : * we can fail straight away.
682 : */
683 2870 : if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE))
684 156 : return false;
685 :
686 : /*
687 : * Check to see if we have the needed privileges at column level.
688 : *
689 : * Note: failures just report a table-level error; it would be nicer
690 : * to report a column-level error if we have some but not all of the
691 : * column privileges.
692 : */
693 2714 : if (remainingPerms & ACL_SELECT)
694 : {
695 : /*
696 : * When the query doesn't explicitly reference any columns (for
697 : * example, SELECT COUNT(*) FROM table), allow the query if we
698 : * have SELECT on any column of the rel, as per SQL spec.
699 : */
700 1506 : if (bms_is_empty(perminfo->selectedCols))
701 : {
702 54 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
703 : ACLMASK_ANY) != ACLCHECK_OK)
704 12 : return false;
705 : }
706 :
707 2426 : while ((col = bms_next_member(perminfo->selectedCols, col)) >= 0)
708 : {
709 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
710 1902 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
711 :
712 1902 : if (attno == InvalidAttrNumber)
713 : {
714 : /* Whole-row reference, must have priv on all cols */
715 66 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
716 : ACLMASK_ALL) != ACLCHECK_OK)
717 42 : return false;
718 : }
719 : else
720 : {
721 1836 : if (pg_attribute_aclcheck(relOid, attno, userid,
722 : ACL_SELECT) != ACLCHECK_OK)
723 928 : return false;
724 : }
725 : }
726 : }
727 :
728 : /*
729 : * Basically the same for the mod columns, for both INSERT and UPDATE
730 : * privilege as specified by remainingPerms.
731 : */
732 1732 : if (remainingPerms & ACL_INSERT &&
733 308 : !ExecCheckPermissionsModified(relOid,
734 : userid,
735 : perminfo->insertedCols,
736 : ACL_INSERT))
737 176 : return false;
738 :
739 1556 : if (remainingPerms & ACL_UPDATE &&
740 1140 : !ExecCheckPermissionsModified(relOid,
741 : userid,
742 : perminfo->updatedCols,
743 : ACL_UPDATE))
744 384 : return false;
745 : }
746 589946 : return true;
747 : }
748 :
749 : /*
750 : * ExecCheckPermissionsModified
751 : * Check INSERT or UPDATE access permissions for a single relation (these
752 : * are processed uniformly).
753 : */
754 : static bool
755 1448 : ExecCheckPermissionsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols,
756 : AclMode requiredPerms)
757 : {
758 1448 : int col = -1;
759 :
760 : /*
761 : * When the query doesn't explicitly update any columns, allow the query
762 : * if we have permission on any column of the rel. This is to handle
763 : * SELECT FOR UPDATE as well as possible corner cases in UPDATE.
764 : */
765 1448 : if (bms_is_empty(modifiedCols))
766 : {
767 48 : if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms,
768 : ACLMASK_ANY) != ACLCHECK_OK)
769 48 : return false;
770 : }
771 :
772 2438 : while ((col = bms_next_member(modifiedCols, col)) >= 0)
773 : {
774 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
775 1550 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
776 :
777 1550 : if (attno == InvalidAttrNumber)
778 : {
779 : /* whole-row reference can't happen here */
780 0 : elog(ERROR, "whole-row update is not implemented");
781 : }
782 : else
783 : {
784 1550 : if (pg_attribute_aclcheck(relOid, attno, userid,
785 : requiredPerms) != ACLCHECK_OK)
786 512 : return false;
787 : }
788 : }
789 888 : return true;
790 : }
791 :
792 : /*
793 : * Check that the query does not imply any writes to non-temp tables;
794 : * unless we're in parallel mode, in which case don't even allow writes
795 : * to temp tables.
796 : *
797 : * Note: in a Hot Standby this would need to reject writes to temp
798 : * tables just as we do in parallel mode; but an HS standby can't have created
799 : * any temp tables in the first place, so no need to check that.
800 : */
801 : static void
802 61920 : ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
803 : {
804 : ListCell *l;
805 :
806 : /*
807 : * Fail if write permissions are requested in parallel mode for table
808 : * (temp or non-temp), otherwise fail for any non-temp table.
809 : */
810 174494 : foreach(l, plannedstmt->permInfos)
811 : {
812 112590 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
813 :
814 112590 : if ((perminfo->requiredPerms & (~ACL_SELECT)) == 0)
815 112562 : continue;
816 :
817 28 : if (isTempNamespace(get_rel_namespace(perminfo->relid)))
818 12 : continue;
819 :
820 16 : PreventCommandIfReadOnly(CreateCommandName((Node *) plannedstmt));
821 : }
822 :
823 61904 : if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE)
824 12 : PreventCommandIfParallelMode(CreateCommandName((Node *) plannedstmt));
825 61904 : }
826 :
827 :
828 : /* ----------------------------------------------------------------
829 : * InitPlan
830 : *
831 : * Initializes the query plan: open files, allocate storage
832 : * and start up the rule manager
833 : * ----------------------------------------------------------------
834 : */
835 : static void
836 578218 : InitPlan(QueryDesc *queryDesc, int eflags)
837 : {
838 578218 : CmdType operation = queryDesc->operation;
839 578218 : PlannedStmt *plannedstmt = queryDesc->plannedstmt;
840 578218 : Plan *plan = plannedstmt->planTree;
841 578218 : List *rangeTable = plannedstmt->rtable;
842 578218 : EState *estate = queryDesc->estate;
843 : PlanState *planstate;
844 : TupleDesc tupType;
845 : ListCell *l;
846 : int i;
847 :
848 : /*
849 : * Do permissions checks
850 : */
851 578218 : ExecCheckPermissions(rangeTable, plannedstmt->permInfos, true);
852 :
853 : /*
854 : * initialize the node's execution state
855 : */
856 577002 : ExecInitRangeTable(estate, rangeTable, plannedstmt->permInfos,
857 577002 : bms_copy(plannedstmt->unprunableRelids));
858 :
859 577002 : estate->es_plannedstmt = plannedstmt;
860 577002 : estate->es_part_prune_infos = plannedstmt->partPruneInfos;
861 :
862 : /*
863 : * Perform runtime "initial" pruning to identify which child subplans,
864 : * corresponding to the children of plan nodes that contain
865 : * PartitionPruneInfo such as Append, will not be executed. The results,
866 : * which are bitmapsets of indexes of the child subplans that will be
867 : * executed, are saved in es_part_prune_results. These results correspond
868 : * to each PartitionPruneInfo entry, and the es_part_prune_results list is
869 : * parallel to es_part_prune_infos.
870 : */
871 577002 : ExecDoInitialPruning(estate);
872 :
873 : /*
874 : * Next, build the ExecRowMark array from the PlanRowMark(s), if any.
875 : */
876 577002 : if (plannedstmt->rowMarks)
877 : {
878 10246 : estate->es_rowmarks = (ExecRowMark **)
879 10246 : palloc0(estate->es_range_table_size * sizeof(ExecRowMark *));
880 23920 : foreach(l, plannedstmt->rowMarks)
881 : {
882 13680 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
883 : Oid relid;
884 : Relation relation;
885 : ExecRowMark *erm;
886 :
887 : /*
888 : * Ignore "parent" rowmarks, because they are irrelevant at
889 : * runtime. Also ignore the rowmarks belonging to child tables
890 : * that have been pruned in ExecDoInitialPruning().
891 : */
892 13680 : if (rc->isParent ||
893 11758 : !bms_is_member(rc->rti, estate->es_unpruned_relids))
894 2450 : continue;
895 :
896 : /* get relation's OID (will produce InvalidOid if subquery) */
897 11230 : relid = exec_rt_fetch(rc->rti, estate)->relid;
898 :
899 : /* open relation, if we need to access it for this mark type */
900 11230 : switch (rc->markType)
901 : {
902 10890 : case ROW_MARK_EXCLUSIVE:
903 : case ROW_MARK_NOKEYEXCLUSIVE:
904 : case ROW_MARK_SHARE:
905 : case ROW_MARK_KEYSHARE:
906 : case ROW_MARK_REFERENCE:
907 10890 : relation = ExecGetRangeTableRelation(estate, rc->rti, false);
908 10890 : break;
909 340 : case ROW_MARK_COPY:
910 : /* no physical table access is required */
911 340 : relation = NULL;
912 340 : break;
913 0 : default:
914 0 : elog(ERROR, "unrecognized markType: %d", rc->markType);
915 : relation = NULL; /* keep compiler quiet */
916 : break;
917 : }
918 :
919 : /* Check that relation is a legal target for marking */
920 11230 : if (relation)
921 10890 : CheckValidRowMarkRel(relation, rc->markType);
922 :
923 11224 : erm = (ExecRowMark *) palloc(sizeof(ExecRowMark));
924 11224 : erm->relation = relation;
925 11224 : erm->relid = relid;
926 11224 : erm->rti = rc->rti;
927 11224 : erm->prti = rc->prti;
928 11224 : erm->rowmarkId = rc->rowmarkId;
929 11224 : erm->markType = rc->markType;
930 11224 : erm->strength = rc->strength;
931 11224 : erm->waitPolicy = rc->waitPolicy;
932 11224 : erm->ermActive = false;
933 11224 : ItemPointerSetInvalid(&(erm->curCtid));
934 11224 : erm->ermExtra = NULL;
935 :
936 : Assert(erm->rti > 0 && erm->rti <= estate->es_range_table_size &&
937 : estate->es_rowmarks[erm->rti - 1] == NULL);
938 :
939 11224 : estate->es_rowmarks[erm->rti - 1] = erm;
940 : }
941 : }
942 :
943 : /*
944 : * Initialize the executor's tuple table to empty.
945 : */
946 576996 : estate->es_tupleTable = NIL;
947 :
948 : /* signal that this EState is not used for EPQ */
949 576996 : estate->es_epq_active = NULL;
950 :
951 : /*
952 : * Initialize private state information for each SubPlan. We must do this
953 : * before running ExecInitNode on the main query tree, since
954 : * ExecInitSubPlan expects to be able to find these entries.
955 : */
956 : Assert(estate->es_subplanstates == NIL);
957 576996 : i = 1; /* subplan indices count from 1 */
958 621898 : foreach(l, plannedstmt->subplans)
959 : {
960 44902 : Plan *subplan = (Plan *) lfirst(l);
961 : PlanState *subplanstate;
962 : int sp_eflags;
963 :
964 : /*
965 : * A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
966 : * it is a parameterless subplan (not initplan), we suggest that it be
967 : * prepared to handle REWIND efficiently; otherwise there is no need.
968 : */
969 44902 : sp_eflags = eflags
970 : & ~(EXEC_FLAG_REWIND | EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK);
971 44902 : if (bms_is_member(i, plannedstmt->rewindPlanIDs))
972 42 : sp_eflags |= EXEC_FLAG_REWIND;
973 :
974 44902 : subplanstate = ExecInitNode(subplan, estate, sp_eflags);
975 :
976 44902 : estate->es_subplanstates = lappend(estate->es_subplanstates,
977 : subplanstate);
978 :
979 44902 : i++;
980 : }
981 :
982 : /*
983 : * Initialize the private state information for all the nodes in the query
984 : * tree. This opens files, allocates storage and leaves us ready to start
985 : * processing tuples.
986 : */
987 576996 : planstate = ExecInitNode(plan, estate, eflags);
988 :
989 : /*
990 : * Get the tuple descriptor describing the type of tuples to return.
991 : */
992 576548 : tupType = ExecGetResultType(planstate);
993 :
994 : /*
995 : * Initialize the junk filter if needed. SELECT queries need a filter if
996 : * there are any junk attrs in the top-level tlist.
997 : */
998 576548 : if (operation == CMD_SELECT)
999 : {
1000 460484 : bool junk_filter_needed = false;
1001 : ListCell *tlist;
1002 :
1003 1699114 : foreach(tlist, plan->targetlist)
1004 : {
1005 1263854 : TargetEntry *tle = (TargetEntry *) lfirst(tlist);
1006 :
1007 1263854 : if (tle->resjunk)
1008 : {
1009 25224 : junk_filter_needed = true;
1010 25224 : break;
1011 : }
1012 : }
1013 :
1014 460484 : if (junk_filter_needed)
1015 : {
1016 : JunkFilter *j;
1017 : TupleTableSlot *slot;
1018 :
1019 25224 : slot = ExecInitExtraTupleSlot(estate, NULL, &TTSOpsVirtual);
1020 25224 : j = ExecInitJunkFilter(planstate->plan->targetlist,
1021 : slot);
1022 25224 : estate->es_junkFilter = j;
1023 :
1024 : /* Want to return the cleaned tuple type */
1025 25224 : tupType = j->jf_cleanTupType;
1026 : }
1027 : }
1028 :
1029 576548 : queryDesc->tupDesc = tupType;
1030 576548 : queryDesc->planstate = planstate;
1031 576548 : }
1032 :
1033 : /*
1034 : * Check that a proposed result relation is a legal target for the operation
1035 : *
1036 : * Generally the parser and/or planner should have noticed any such mistake
1037 : * already, but let's make sure.
1038 : *
1039 : * For INSERT ON CONFLICT, the result relation is required to support the
1040 : * onConflictAction, regardless of whether a conflict actually occurs.
1041 : *
1042 : * For MERGE, mergeActions is the list of actions that may be performed. The
1043 : * result relation is required to support every action, regardless of whether
1044 : * or not they are all executed.
1045 : *
1046 : * Note: when changing this function, you probably also need to look at
1047 : * CheckValidRowMarkRel.
1048 : */
1049 : void
1050 127982 : CheckValidResultRel(ResultRelInfo *resultRelInfo, CmdType operation,
1051 : OnConflictAction onConflictAction, List *mergeActions)
1052 : {
1053 127982 : Relation resultRel = resultRelInfo->ri_RelationDesc;
1054 : FdwRoutine *fdwroutine;
1055 :
1056 : /* Expect a fully-formed ResultRelInfo from InitResultRelInfo(). */
1057 : Assert(resultRelInfo->ri_needLockTagTuple ==
1058 : IsInplaceUpdateRelation(resultRel));
1059 :
1060 127982 : switch (resultRel->rd_rel->relkind)
1061 : {
1062 126748 : case RELKIND_RELATION:
1063 : case RELKIND_PARTITIONED_TABLE:
1064 :
1065 : /*
1066 : * For MERGE, check that the target relation supports each action.
1067 : * For other operations, just check the operation itself.
1068 : */
1069 126748 : if (operation == CMD_MERGE)
1070 6630 : foreach_node(MergeAction, action, mergeActions)
1071 3102 : CheckCmdReplicaIdentity(resultRel, action->commandType);
1072 : else
1073 124972 : CheckCmdReplicaIdentity(resultRel, operation);
1074 :
1075 : /*
1076 : * For INSERT ON CONFLICT DO UPDATE, additionally check that the
1077 : * target relation supports UPDATE.
1078 : */
1079 126428 : if (onConflictAction == ONCONFLICT_UPDATE)
1080 1118 : CheckCmdReplicaIdentity(resultRel, CMD_UPDATE);
1081 126416 : break;
1082 0 : case RELKIND_SEQUENCE:
1083 0 : ereport(ERROR,
1084 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1085 : errmsg("cannot change sequence \"%s\"",
1086 : RelationGetRelationName(resultRel))));
1087 : break;
1088 0 : case RELKIND_TOASTVALUE:
1089 0 : ereport(ERROR,
1090 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1091 : errmsg("cannot change TOAST relation \"%s\"",
1092 : RelationGetRelationName(resultRel))));
1093 : break;
1094 420 : case RELKIND_VIEW:
1095 :
1096 : /*
1097 : * Okay only if there's a suitable INSTEAD OF trigger. Otherwise,
1098 : * complain, but omit errdetail because we haven't got the
1099 : * information handy (and given that it really shouldn't happen,
1100 : * it's not worth great exertion to get).
1101 : */
1102 420 : if (!view_has_instead_trigger(resultRel, operation, mergeActions))
1103 0 : error_view_not_updatable(resultRel, operation, mergeActions,
1104 : NULL);
1105 420 : break;
1106 120 : case RELKIND_MATVIEW:
1107 120 : if (!MatViewIncrementalMaintenanceIsEnabled())
1108 0 : ereport(ERROR,
1109 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1110 : errmsg("cannot change materialized view \"%s\"",
1111 : RelationGetRelationName(resultRel))));
1112 120 : break;
1113 694 : case RELKIND_FOREIGN_TABLE:
1114 : /* Okay only if the FDW supports it */
1115 694 : fdwroutine = resultRelInfo->ri_FdwRoutine;
1116 : switch (operation)
1117 : {
1118 314 : case CMD_INSERT:
1119 314 : if (fdwroutine->ExecForeignInsert == NULL)
1120 10 : ereport(ERROR,
1121 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1122 : errmsg("cannot insert into foreign table \"%s\"",
1123 : RelationGetRelationName(resultRel))));
1124 304 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1125 304 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0)
1126 0 : ereport(ERROR,
1127 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1128 : errmsg("foreign table \"%s\" does not allow inserts",
1129 : RelationGetRelationName(resultRel))));
1130 304 : break;
1131 214 : case CMD_UPDATE:
1132 214 : if (fdwroutine->ExecForeignUpdate == NULL)
1133 4 : ereport(ERROR,
1134 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1135 : errmsg("cannot update foreign table \"%s\"",
1136 : RelationGetRelationName(resultRel))));
1137 210 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1138 210 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0)
1139 0 : ereport(ERROR,
1140 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1141 : errmsg("foreign table \"%s\" does not allow updates",
1142 : RelationGetRelationName(resultRel))));
1143 210 : break;
1144 166 : case CMD_DELETE:
1145 166 : if (fdwroutine->ExecForeignDelete == NULL)
1146 4 : ereport(ERROR,
1147 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1148 : errmsg("cannot delete from foreign table \"%s\"",
1149 : RelationGetRelationName(resultRel))));
1150 162 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1151 162 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0)
1152 0 : ereport(ERROR,
1153 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1154 : errmsg("foreign table \"%s\" does not allow deletes",
1155 : RelationGetRelationName(resultRel))));
1156 162 : break;
1157 0 : default:
1158 0 : elog(ERROR, "unrecognized CmdType: %d", (int) operation);
1159 : break;
1160 : }
1161 676 : break;
1162 0 : default:
1163 0 : ereport(ERROR,
1164 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1165 : errmsg("cannot change relation \"%s\"",
1166 : RelationGetRelationName(resultRel))));
1167 : break;
1168 : }
1169 127632 : }
1170 :
1171 : /*
1172 : * Check that a proposed rowmark target relation is a legal target
1173 : *
1174 : * In most cases parser and/or planner should have noticed this already, but
1175 : * they don't cover all cases.
1176 : */
1177 : static void
1178 10890 : CheckValidRowMarkRel(Relation rel, RowMarkType markType)
1179 : {
1180 : FdwRoutine *fdwroutine;
1181 :
1182 10890 : switch (rel->rd_rel->relkind)
1183 : {
1184 10878 : case RELKIND_RELATION:
1185 : case RELKIND_PARTITIONED_TABLE:
1186 : /* OK */
1187 10878 : break;
1188 0 : case RELKIND_SEQUENCE:
1189 : /* Must disallow this because we don't vacuum sequences */
1190 0 : ereport(ERROR,
1191 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1192 : errmsg("cannot lock rows in sequence \"%s\"",
1193 : RelationGetRelationName(rel))));
1194 : break;
1195 0 : case RELKIND_TOASTVALUE:
1196 : /* We could allow this, but there seems no good reason to */
1197 0 : ereport(ERROR,
1198 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1199 : errmsg("cannot lock rows in TOAST relation \"%s\"",
1200 : RelationGetRelationName(rel))));
1201 : break;
1202 0 : case RELKIND_VIEW:
1203 : /* Should not get here; planner should have expanded the view */
1204 0 : ereport(ERROR,
1205 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1206 : errmsg("cannot lock rows in view \"%s\"",
1207 : RelationGetRelationName(rel))));
1208 : break;
1209 12 : case RELKIND_MATVIEW:
1210 : /* Allow referencing a matview, but not actual locking clauses */
1211 12 : if (markType != ROW_MARK_REFERENCE)
1212 6 : ereport(ERROR,
1213 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1214 : errmsg("cannot lock rows in materialized view \"%s\"",
1215 : RelationGetRelationName(rel))));
1216 6 : break;
1217 0 : case RELKIND_FOREIGN_TABLE:
1218 : /* Okay only if the FDW supports it */
1219 0 : fdwroutine = GetFdwRoutineForRelation(rel, false);
1220 0 : if (fdwroutine->RefetchForeignRow == NULL)
1221 0 : ereport(ERROR,
1222 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1223 : errmsg("cannot lock rows in foreign table \"%s\"",
1224 : RelationGetRelationName(rel))));
1225 0 : break;
1226 0 : default:
1227 0 : ereport(ERROR,
1228 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1229 : errmsg("cannot lock rows in relation \"%s\"",
1230 : RelationGetRelationName(rel))));
1231 : break;
1232 : }
1233 10884 : }
1234 :
1235 : /*
1236 : * Initialize ResultRelInfo data for one result relation
1237 : *
1238 : * Caution: before Postgres 9.1, this function included the relkind checking
1239 : * that's now in CheckValidResultRel, and it also did ExecOpenIndices if
1240 : * appropriate. Be sure callers cover those needs.
1241 : */
1242 : void
1243 433404 : InitResultRelInfo(ResultRelInfo *resultRelInfo,
1244 : Relation resultRelationDesc,
1245 : Index resultRelationIndex,
1246 : ResultRelInfo *partition_root_rri,
1247 : int instrument_options)
1248 : {
1249 22103604 : MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
1250 433404 : resultRelInfo->type = T_ResultRelInfo;
1251 433404 : resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
1252 433404 : resultRelInfo->ri_RelationDesc = resultRelationDesc;
1253 433404 : resultRelInfo->ri_NumIndices = 0;
1254 433404 : resultRelInfo->ri_IndexRelationDescs = NULL;
1255 433404 : resultRelInfo->ri_IndexRelationInfo = NULL;
1256 433404 : resultRelInfo->ri_needLockTagTuple =
1257 433404 : IsInplaceUpdateRelation(resultRelationDesc);
1258 : /* make a copy so as not to depend on relcache info not changing... */
1259 433404 : resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
1260 433404 : if (resultRelInfo->ri_TrigDesc)
1261 : {
1262 18688 : int n = resultRelInfo->ri_TrigDesc->numtriggers;
1263 :
1264 18688 : resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
1265 18688 : palloc0(n * sizeof(FmgrInfo));
1266 18688 : resultRelInfo->ri_TrigWhenExprs = (ExprState **)
1267 18688 : palloc0(n * sizeof(ExprState *));
1268 18688 : if (instrument_options)
1269 0 : resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options, false);
1270 : }
1271 : else
1272 : {
1273 414716 : resultRelInfo->ri_TrigFunctions = NULL;
1274 414716 : resultRelInfo->ri_TrigWhenExprs = NULL;
1275 414716 : resultRelInfo->ri_TrigInstrument = NULL;
1276 : }
1277 433404 : if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1278 720 : resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
1279 : else
1280 432684 : resultRelInfo->ri_FdwRoutine = NULL;
1281 :
1282 : /* The following fields are set later if needed */
1283 433404 : resultRelInfo->ri_RowIdAttNo = 0;
1284 433404 : resultRelInfo->ri_extraUpdatedCols = NULL;
1285 433404 : resultRelInfo->ri_projectNew = NULL;
1286 433404 : resultRelInfo->ri_newTupleSlot = NULL;
1287 433404 : resultRelInfo->ri_oldTupleSlot = NULL;
1288 433404 : resultRelInfo->ri_projectNewInfoValid = false;
1289 433404 : resultRelInfo->ri_FdwState = NULL;
1290 433404 : resultRelInfo->ri_usesFdwDirectModify = false;
1291 433404 : resultRelInfo->ri_CheckConstraintExprs = NULL;
1292 433404 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs = NULL;
1293 433404 : resultRelInfo->ri_GeneratedExprsI = NULL;
1294 433404 : resultRelInfo->ri_GeneratedExprsU = NULL;
1295 433404 : resultRelInfo->ri_projectReturning = NULL;
1296 433404 : resultRelInfo->ri_onConflictArbiterIndexes = NIL;
1297 433404 : resultRelInfo->ri_onConflict = NULL;
1298 433404 : resultRelInfo->ri_ReturningSlot = NULL;
1299 433404 : resultRelInfo->ri_TrigOldSlot = NULL;
1300 433404 : resultRelInfo->ri_TrigNewSlot = NULL;
1301 433404 : resultRelInfo->ri_AllNullSlot = NULL;
1302 433404 : resultRelInfo->ri_MergeActions[MERGE_WHEN_MATCHED] = NIL;
1303 433404 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = NIL;
1304 433404 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = NIL;
1305 433404 : resultRelInfo->ri_MergeJoinCondition = NULL;
1306 :
1307 : /*
1308 : * Only ExecInitPartitionInfo() and ExecInitPartitionDispatchInfo() pass
1309 : * non-NULL partition_root_rri. For child relations that are part of the
1310 : * initial query rather than being dynamically added by tuple routing,
1311 : * this field is filled in ExecInitModifyTable().
1312 : */
1313 433404 : resultRelInfo->ri_RootResultRelInfo = partition_root_rri;
1314 : /* Set by ExecGetRootToChildMap */
1315 433404 : resultRelInfo->ri_RootToChildMap = NULL;
1316 433404 : resultRelInfo->ri_RootToChildMapValid = false;
1317 : /* Set by ExecInitRoutingInfo */
1318 433404 : resultRelInfo->ri_PartitionTupleSlot = NULL;
1319 433404 : resultRelInfo->ri_ChildToRootMap = NULL;
1320 433404 : resultRelInfo->ri_ChildToRootMapValid = false;
1321 433404 : resultRelInfo->ri_CopyMultiInsertBuffer = NULL;
1322 433404 : }
1323 :
1324 : /*
1325 : * ExecGetTriggerResultRel
1326 : * Get a ResultRelInfo for a trigger target relation.
1327 : *
1328 : * Most of the time, triggers are fired on one of the result relations of the
1329 : * query, and so we can just return a suitable one we already made and stored
1330 : * in the es_opened_result_relations or es_tuple_routing_result_relations
1331 : * Lists.
1332 : *
1333 : * However, it is sometimes necessary to fire triggers on other relations;
1334 : * this happens mainly when an RI update trigger queues additional triggers
1335 : * on other relations, which will be processed in the context of the outer
1336 : * query. For efficiency's sake, we want to have a ResultRelInfo for those
1337 : * triggers too; that can avoid repeated re-opening of the relation. (It
1338 : * also provides a way for EXPLAIN ANALYZE to report the runtimes of such
1339 : * triggers.) So we make additional ResultRelInfo's as needed, and save them
1340 : * in es_trig_target_relations.
1341 : */
1342 : ResultRelInfo *
1343 8298 : ExecGetTriggerResultRel(EState *estate, Oid relid,
1344 : ResultRelInfo *rootRelInfo)
1345 : {
1346 : ResultRelInfo *rInfo;
1347 : ListCell *l;
1348 : Relation rel;
1349 : MemoryContext oldcontext;
1350 :
1351 : /*
1352 : * Before creating a new ResultRelInfo, check if we've already made and
1353 : * cached one for this relation. We must ensure that the given
1354 : * 'rootRelInfo' matches the one stored in the cached ResultRelInfo as
1355 : * trigger handling for partitions can result in mixed requirements for
1356 : * what ri_RootResultRelInfo is set to.
1357 : */
1358 :
1359 : /* Search through the query result relations */
1360 11094 : foreach(l, estate->es_opened_result_relations)
1361 : {
1362 9204 : rInfo = lfirst(l);
1363 9204 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1364 6808 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1365 6408 : return rInfo;
1366 : }
1367 :
1368 : /*
1369 : * Search through the result relations that were created during tuple
1370 : * routing, if any.
1371 : */
1372 2952 : foreach(l, estate->es_tuple_routing_result_relations)
1373 : {
1374 1092 : rInfo = (ResultRelInfo *) lfirst(l);
1375 1092 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1376 702 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1377 30 : return rInfo;
1378 : }
1379 :
1380 : /* Nope, but maybe we already made an extra ResultRelInfo for it */
1381 2648 : foreach(l, estate->es_trig_target_relations)
1382 : {
1383 806 : rInfo = (ResultRelInfo *) lfirst(l);
1384 806 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1385 36 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1386 18 : return rInfo;
1387 : }
1388 : /* Nope, so we need a new one */
1389 :
1390 : /*
1391 : * Open the target relation's relcache entry. We assume that an
1392 : * appropriate lock is still held by the backend from whenever the trigger
1393 : * event got queued, so we need take no new lock here. Also, we need not
1394 : * recheck the relkind, so no need for CheckValidResultRel.
1395 : */
1396 1842 : rel = table_open(relid, NoLock);
1397 :
1398 : /*
1399 : * Make the new entry in the right context.
1400 : */
1401 1842 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
1402 1842 : rInfo = makeNode(ResultRelInfo);
1403 1842 : InitResultRelInfo(rInfo,
1404 : rel,
1405 : 0, /* dummy rangetable index */
1406 : rootRelInfo,
1407 : estate->es_instrument);
1408 1842 : estate->es_trig_target_relations =
1409 1842 : lappend(estate->es_trig_target_relations, rInfo);
1410 1842 : MemoryContextSwitchTo(oldcontext);
1411 :
1412 : /*
1413 : * Currently, we don't need any index information in ResultRelInfos used
1414 : * only for triggers, so no need to call ExecOpenIndices.
1415 : */
1416 :
1417 1842 : return rInfo;
1418 : }
1419 :
1420 : /*
1421 : * Return the ancestor relations of a given leaf partition result relation
1422 : * up to and including the query's root target relation.
1423 : *
1424 : * These work much like the ones opened by ExecGetTriggerResultRel, except
1425 : * that we need to keep them in a separate list.
1426 : *
1427 : * These are closed by ExecCloseResultRelations.
1428 : */
1429 : List *
1430 306 : ExecGetAncestorResultRels(EState *estate, ResultRelInfo *resultRelInfo)
1431 : {
1432 306 : ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
1433 306 : Relation partRel = resultRelInfo->ri_RelationDesc;
1434 : Oid rootRelOid;
1435 :
1436 306 : if (!partRel->rd_rel->relispartition)
1437 0 : elog(ERROR, "cannot find ancestors of a non-partition result relation");
1438 : Assert(rootRelInfo != NULL);
1439 306 : rootRelOid = RelationGetRelid(rootRelInfo->ri_RelationDesc);
1440 306 : if (resultRelInfo->ri_ancestorResultRels == NIL)
1441 : {
1442 : ListCell *lc;
1443 240 : List *oids = get_partition_ancestors(RelationGetRelid(partRel));
1444 240 : List *ancResultRels = NIL;
1445 :
1446 306 : foreach(lc, oids)
1447 : {
1448 306 : Oid ancOid = lfirst_oid(lc);
1449 : Relation ancRel;
1450 : ResultRelInfo *rInfo;
1451 :
1452 : /*
1453 : * Ignore the root ancestor here, and use ri_RootResultRelInfo
1454 : * (below) for it instead. Also, we stop climbing up the
1455 : * hierarchy when we find the table that was mentioned in the
1456 : * query.
1457 : */
1458 306 : if (ancOid == rootRelOid)
1459 240 : break;
1460 :
1461 : /*
1462 : * All ancestors up to the root target relation must have been
1463 : * locked by the planner or AcquireExecutorLocks().
1464 : */
1465 66 : ancRel = table_open(ancOid, NoLock);
1466 66 : rInfo = makeNode(ResultRelInfo);
1467 :
1468 : /* dummy rangetable index */
1469 66 : InitResultRelInfo(rInfo, ancRel, 0, NULL,
1470 : estate->es_instrument);
1471 66 : ancResultRels = lappend(ancResultRels, rInfo);
1472 : }
1473 240 : ancResultRels = lappend(ancResultRels, rootRelInfo);
1474 240 : resultRelInfo->ri_ancestorResultRels = ancResultRels;
1475 : }
1476 :
1477 : /* We must have found some ancestor */
1478 : Assert(resultRelInfo->ri_ancestorResultRels != NIL);
1479 :
1480 306 : return resultRelInfo->ri_ancestorResultRels;
1481 : }
1482 :
1483 : /* ----------------------------------------------------------------
1484 : * ExecPostprocessPlan
1485 : *
1486 : * Give plan nodes a final chance to execute before shutdown
1487 : * ----------------------------------------------------------------
1488 : */
1489 : static void
1490 529742 : ExecPostprocessPlan(EState *estate)
1491 : {
1492 : ListCell *lc;
1493 :
1494 : /*
1495 : * Make sure nodes run forward.
1496 : */
1497 529742 : estate->es_direction = ForwardScanDirection;
1498 :
1499 : /*
1500 : * Run any secondary ModifyTable nodes to completion, in case the main
1501 : * query did not fetch all rows from them. (We do this to ensure that
1502 : * such nodes have predictable results.)
1503 : */
1504 530596 : foreach(lc, estate->es_auxmodifytables)
1505 : {
1506 854 : PlanState *ps = (PlanState *) lfirst(lc);
1507 :
1508 : for (;;)
1509 138 : {
1510 : TupleTableSlot *slot;
1511 :
1512 : /* Reset the per-output-tuple exprcontext each time */
1513 992 : ResetPerTupleExprContext(estate);
1514 :
1515 992 : slot = ExecProcNode(ps);
1516 :
1517 992 : if (TupIsNull(slot))
1518 : break;
1519 : }
1520 : }
1521 529742 : }
1522 :
1523 : /* ----------------------------------------------------------------
1524 : * ExecEndPlan
1525 : *
1526 : * Cleans up the query plan -- closes files and frees up storage
1527 : *
1528 : * NOTE: we are no longer very worried about freeing storage per se
1529 : * in this code; FreeExecutorState should be guaranteed to release all
1530 : * memory that needs to be released. What we are worried about doing
1531 : * is closing relations and dropping buffer pins. Thus, for example,
1532 : * tuple tables must be cleared or dropped to ensure pins are released.
1533 : * ----------------------------------------------------------------
1534 : */
1535 : static void
1536 549500 : ExecEndPlan(PlanState *planstate, EState *estate)
1537 : {
1538 : ListCell *l;
1539 :
1540 : /*
1541 : * shut down the node-type-specific query processing
1542 : */
1543 549500 : ExecEndNode(planstate);
1544 :
1545 : /*
1546 : * for subplans too
1547 : */
1548 593814 : foreach(l, estate->es_subplanstates)
1549 : {
1550 44314 : PlanState *subplanstate = (PlanState *) lfirst(l);
1551 :
1552 44314 : ExecEndNode(subplanstate);
1553 : }
1554 :
1555 : /*
1556 : * destroy the executor's tuple table. Actually we only care about
1557 : * releasing buffer pins and tupdesc refcounts; there's no need to pfree
1558 : * the TupleTableSlots, since the containing memory context is about to go
1559 : * away anyway.
1560 : */
1561 549500 : ExecResetTupleTable(estate->es_tupleTable, false);
1562 :
1563 : /*
1564 : * Close any Relations that have been opened for range table entries or
1565 : * result relations.
1566 : */
1567 549500 : ExecCloseResultRelations(estate);
1568 549500 : ExecCloseRangeTableRelations(estate);
1569 549500 : }
1570 :
1571 : /*
1572 : * Close any relations that have been opened for ResultRelInfos.
1573 : */
1574 : void
1575 551524 : ExecCloseResultRelations(EState *estate)
1576 : {
1577 : ListCell *l;
1578 :
1579 : /*
1580 : * close indexes of result relation(s) if any. (Rels themselves are
1581 : * closed in ExecCloseRangeTableRelations())
1582 : *
1583 : * In addition, close the stub RTs that may be in each resultrel's
1584 : * ri_ancestorResultRels.
1585 : */
1586 669522 : foreach(l, estate->es_opened_result_relations)
1587 : {
1588 117998 : ResultRelInfo *resultRelInfo = lfirst(l);
1589 : ListCell *lc;
1590 :
1591 117998 : ExecCloseIndices(resultRelInfo);
1592 118256 : foreach(lc, resultRelInfo->ri_ancestorResultRels)
1593 : {
1594 258 : ResultRelInfo *rInfo = lfirst(lc);
1595 :
1596 : /*
1597 : * Ancestors with RTI > 0 (should only be the root ancestor) are
1598 : * closed by ExecCloseRangeTableRelations.
1599 : */
1600 258 : if (rInfo->ri_RangeTableIndex > 0)
1601 210 : continue;
1602 :
1603 48 : table_close(rInfo->ri_RelationDesc, NoLock);
1604 : }
1605 : }
1606 :
1607 : /* Close any relations that have been opened by ExecGetTriggerResultRel(). */
1608 552806 : foreach(l, estate->es_trig_target_relations)
1609 : {
1610 1282 : ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l);
1611 :
1612 : /*
1613 : * Assert this is a "dummy" ResultRelInfo, see above. Otherwise we
1614 : * might be issuing a duplicate close against a Relation opened by
1615 : * ExecGetRangeTableRelation.
1616 : */
1617 : Assert(resultRelInfo->ri_RangeTableIndex == 0);
1618 :
1619 : /*
1620 : * Since ExecGetTriggerResultRel doesn't call ExecOpenIndices for
1621 : * these rels, we needn't call ExecCloseIndices either.
1622 : */
1623 : Assert(resultRelInfo->ri_NumIndices == 0);
1624 :
1625 1282 : table_close(resultRelInfo->ri_RelationDesc, NoLock);
1626 : }
1627 551524 : }
1628 :
1629 : /*
1630 : * Close all relations opened by ExecGetRangeTableRelation().
1631 : *
1632 : * We do not release any locks we might hold on those rels.
1633 : */
1634 : void
1635 551092 : ExecCloseRangeTableRelations(EState *estate)
1636 : {
1637 : int i;
1638 :
1639 1650106 : for (i = 0; i < estate->es_range_table_size; i++)
1640 : {
1641 1099014 : if (estate->es_relations[i])
1642 530932 : table_close(estate->es_relations[i], NoLock);
1643 : }
1644 551092 : }
1645 :
1646 : /* ----------------------------------------------------------------
1647 : * ExecutePlan
1648 : *
1649 : * Processes the query plan until we have retrieved 'numberTuples' tuples,
1650 : * moving in the specified direction.
1651 : *
1652 : * Runs to completion if numberTuples is 0
1653 : * ----------------------------------------------------------------
1654 : */
1655 : static void
1656 566814 : ExecutePlan(QueryDesc *queryDesc,
1657 : CmdType operation,
1658 : bool sendTuples,
1659 : uint64 numberTuples,
1660 : ScanDirection direction,
1661 : DestReceiver *dest)
1662 : {
1663 566814 : EState *estate = queryDesc->estate;
1664 566814 : PlanState *planstate = queryDesc->planstate;
1665 : bool use_parallel_mode;
1666 : TupleTableSlot *slot;
1667 : uint64 current_tuple_count;
1668 :
1669 : /*
1670 : * initialize local variables
1671 : */
1672 566814 : current_tuple_count = 0;
1673 :
1674 : /*
1675 : * Set the direction.
1676 : */
1677 566814 : estate->es_direction = direction;
1678 :
1679 : /*
1680 : * Set up parallel mode if appropriate.
1681 : *
1682 : * Parallel mode only supports complete execution of a plan. If we've
1683 : * already partially executed it, or if the caller asks us to exit early,
1684 : * we must force the plan to run without parallelism.
1685 : */
1686 566814 : if (queryDesc->already_executed || numberTuples != 0)
1687 128456 : use_parallel_mode = false;
1688 : else
1689 438358 : use_parallel_mode = queryDesc->plannedstmt->parallelModeNeeded;
1690 566814 : queryDesc->already_executed = true;
1691 :
1692 566814 : estate->es_use_parallel_mode = use_parallel_mode;
1693 566814 : if (use_parallel_mode)
1694 700 : EnterParallelMode();
1695 :
1696 : /*
1697 : * Loop until we've processed the proper number of tuples from the plan.
1698 : */
1699 : for (;;)
1700 : {
1701 : /* Reset the per-output-tuple exprcontext */
1702 12780478 : ResetPerTupleExprContext(estate);
1703 :
1704 : /*
1705 : * Execute the plan and obtain a tuple
1706 : */
1707 12780478 : slot = ExecProcNode(planstate);
1708 :
1709 : /*
1710 : * if the tuple is null, then we assume there is nothing more to
1711 : * process so we just end the loop...
1712 : */
1713 12756650 : if (TupIsNull(slot))
1714 : break;
1715 :
1716 : /*
1717 : * If we have a junk filter, then project a new tuple with the junk
1718 : * removed.
1719 : *
1720 : * Store this new "clean" tuple in the junkfilter's resultSlot.
1721 : * (Formerly, we stored it back over the "dirty" tuple, which is WRONG
1722 : * because that tuple slot has the wrong descriptor.)
1723 : */
1724 12312012 : if (estate->es_junkFilter != NULL)
1725 269076 : slot = ExecFilterJunk(estate->es_junkFilter, slot);
1726 :
1727 : /*
1728 : * If we are supposed to send the tuple somewhere, do so. (In
1729 : * practice, this is probably always the case at this point.)
1730 : */
1731 12312012 : if (sendTuples)
1732 : {
1733 : /*
1734 : * If we are not able to send the tuple, we assume the destination
1735 : * has closed and no more tuples can be sent. If that's the case,
1736 : * end the loop.
1737 : */
1738 12312012 : if (!dest->receiveSlot(slot, dest))
1739 0 : break;
1740 : }
1741 :
1742 : /*
1743 : * Count tuples processed, if this is a SELECT. (For other operation
1744 : * types, the ModifyTable plan node must count the appropriate
1745 : * events.)
1746 : */
1747 12312012 : if (operation == CMD_SELECT)
1748 12305288 : (estate->es_processed)++;
1749 :
1750 : /*
1751 : * check our tuple count.. if we've processed the proper number then
1752 : * quit, else loop again and process more tuples. Zero numberTuples
1753 : * means no limit.
1754 : */
1755 12312012 : current_tuple_count++;
1756 12312012 : if (numberTuples && numberTuples == current_tuple_count)
1757 98348 : break;
1758 : }
1759 :
1760 : /*
1761 : * If we know we won't need to back up, we can release resources at this
1762 : * point.
1763 : */
1764 542986 : if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD))
1765 535560 : ExecShutdownNode(planstate);
1766 :
1767 542986 : if (use_parallel_mode)
1768 688 : ExitParallelMode();
1769 542986 : }
1770 :
1771 :
1772 : /*
1773 : * ExecRelCheck --- check that tuple meets check constraints for result relation
1774 : *
1775 : * Returns NULL if OK, else name of failed check constraint
1776 : */
1777 : static const char *
1778 2762 : ExecRelCheck(ResultRelInfo *resultRelInfo,
1779 : TupleTableSlot *slot, EState *estate)
1780 : {
1781 2762 : Relation rel = resultRelInfo->ri_RelationDesc;
1782 2762 : int ncheck = rel->rd_att->constr->num_check;
1783 2762 : ConstrCheck *check = rel->rd_att->constr->check;
1784 : ExprContext *econtext;
1785 : MemoryContext oldContext;
1786 :
1787 : /*
1788 : * CheckNNConstraintFetch let this pass with only a warning, but now we
1789 : * should fail rather than possibly failing to enforce an important
1790 : * constraint.
1791 : */
1792 2762 : if (ncheck != rel->rd_rel->relchecks)
1793 0 : elog(ERROR, "%d pg_constraint record(s) missing for relation \"%s\"",
1794 : rel->rd_rel->relchecks - ncheck, RelationGetRelationName(rel));
1795 :
1796 : /*
1797 : * If first time through for this result relation, build expression
1798 : * nodetrees for rel's constraint expressions. Keep them in the per-query
1799 : * memory context so they'll survive throughout the query.
1800 : */
1801 2762 : if (resultRelInfo->ri_CheckConstraintExprs == NULL)
1802 : {
1803 1310 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1804 1310 : resultRelInfo->ri_CheckConstraintExprs = palloc0_array(ExprState *, ncheck);
1805 3300 : for (int i = 0; i < ncheck; i++)
1806 : {
1807 : Expr *checkconstr;
1808 :
1809 : /* Skip not enforced constraint */
1810 1996 : if (!check[i].ccenforced)
1811 204 : continue;
1812 :
1813 1792 : checkconstr = stringToNode(check[i].ccbin);
1814 1792 : checkconstr = (Expr *) expand_generated_columns_in_expr((Node *) checkconstr, rel, 1);
1815 1786 : resultRelInfo->ri_CheckConstraintExprs[i] =
1816 1792 : ExecPrepareExpr(checkconstr, estate);
1817 : }
1818 1304 : MemoryContextSwitchTo(oldContext);
1819 : }
1820 :
1821 : /*
1822 : * We will use the EState's per-tuple context for evaluating constraint
1823 : * expressions (creating it if it's not already there).
1824 : */
1825 2756 : econtext = GetPerTupleExprContext(estate);
1826 :
1827 : /* Arrange for econtext's scan tuple to be the tuple under test */
1828 2756 : econtext->ecxt_scantuple = slot;
1829 :
1830 : /* And evaluate the constraints */
1831 6188 : for (int i = 0; i < ncheck; i++)
1832 : {
1833 3880 : ExprState *checkconstr = resultRelInfo->ri_CheckConstraintExprs[i];
1834 :
1835 : /*
1836 : * NOTE: SQL specifies that a NULL result from a constraint expression
1837 : * is not to be treated as a failure. Therefore, use ExecCheck not
1838 : * ExecQual.
1839 : */
1840 3880 : if (checkconstr && !ExecCheck(checkconstr, econtext))
1841 448 : return check[i].ccname;
1842 : }
1843 :
1844 : /* NULL result means no error */
1845 2308 : return NULL;
1846 : }
1847 :
1848 : /*
1849 : * ExecPartitionCheck --- check that tuple meets the partition constraint.
1850 : *
1851 : * Returns true if it meets the partition constraint. If the constraint
1852 : * fails and we're asked to emit an error, do so and don't return; otherwise
1853 : * return false.
1854 : */
1855 : bool
1856 13420 : ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
1857 : EState *estate, bool emitError)
1858 : {
1859 : ExprContext *econtext;
1860 : bool success;
1861 :
1862 : /*
1863 : * If first time through, build expression state tree for the partition
1864 : * check expression. (In the corner case where the partition check
1865 : * expression is empty, ie there's a default partition and nothing else,
1866 : * we'll be fooled into executing this code each time through. But it's
1867 : * pretty darn cheap in that case, so we don't worry about it.)
1868 : */
1869 13420 : if (resultRelInfo->ri_PartitionCheckExpr == NULL)
1870 : {
1871 : /*
1872 : * Ensure that the qual tree and prepared expression are in the
1873 : * query-lifespan context.
1874 : */
1875 3556 : MemoryContext oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
1876 3556 : List *qual = RelationGetPartitionQual(resultRelInfo->ri_RelationDesc);
1877 :
1878 3556 : resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate);
1879 3556 : MemoryContextSwitchTo(oldcxt);
1880 : }
1881 :
1882 : /*
1883 : * We will use the EState's per-tuple context for evaluating constraint
1884 : * expressions (creating it if it's not already there).
1885 : */
1886 13420 : econtext = GetPerTupleExprContext(estate);
1887 :
1888 : /* Arrange for econtext's scan tuple to be the tuple under test */
1889 13420 : econtext->ecxt_scantuple = slot;
1890 :
1891 : /*
1892 : * As in case of the cataloged constraints, we treat a NULL result as
1893 : * success here, not a failure.
1894 : */
1895 13420 : success = ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext);
1896 :
1897 : /* if asked to emit error, don't actually return on failure */
1898 13420 : if (!success && emitError)
1899 202 : ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
1900 :
1901 13218 : return success;
1902 : }
1903 :
1904 : /*
1905 : * ExecPartitionCheckEmitError - Form and emit an error message after a failed
1906 : * partition constraint check.
1907 : */
1908 : void
1909 250 : ExecPartitionCheckEmitError(ResultRelInfo *resultRelInfo,
1910 : TupleTableSlot *slot,
1911 : EState *estate)
1912 : {
1913 : Oid root_relid;
1914 : TupleDesc tupdesc;
1915 : char *val_desc;
1916 : Bitmapset *modifiedCols;
1917 :
1918 : /*
1919 : * If the tuple has been routed, it's been converted to the partition's
1920 : * rowtype, which might differ from the root table's. We must convert it
1921 : * back to the root table's rowtype so that val_desc in the error message
1922 : * matches the input tuple.
1923 : */
1924 250 : if (resultRelInfo->ri_RootResultRelInfo)
1925 : {
1926 20 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
1927 : TupleDesc old_tupdesc;
1928 : AttrMap *map;
1929 :
1930 20 : root_relid = RelationGetRelid(rootrel->ri_RelationDesc);
1931 20 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
1932 :
1933 20 : old_tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1934 : /* a reverse map */
1935 20 : map = build_attrmap_by_name_if_req(old_tupdesc, tupdesc, false);
1936 :
1937 : /*
1938 : * Partition-specific slot's tupdesc can't be changed, so allocate a
1939 : * new one.
1940 : */
1941 20 : if (map != NULL)
1942 8 : slot = execute_attr_map_slot(map, slot,
1943 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
1944 20 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
1945 20 : ExecGetUpdatedCols(rootrel, estate));
1946 : }
1947 : else
1948 : {
1949 230 : root_relid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1950 230 : tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1951 230 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
1952 230 : ExecGetUpdatedCols(resultRelInfo, estate));
1953 : }
1954 :
1955 250 : val_desc = ExecBuildSlotValueDescription(root_relid,
1956 : slot,
1957 : tupdesc,
1958 : modifiedCols,
1959 : 64);
1960 250 : ereport(ERROR,
1961 : (errcode(ERRCODE_CHECK_VIOLATION),
1962 : errmsg("new row for relation \"%s\" violates partition constraint",
1963 : RelationGetRelationName(resultRelInfo->ri_RelationDesc)),
1964 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
1965 : errtable(resultRelInfo->ri_RelationDesc)));
1966 : }
1967 :
1968 : /*
1969 : * ExecConstraints - check constraints of the tuple in 'slot'
1970 : *
1971 : * This checks the traditional NOT NULL and check constraints.
1972 : *
1973 : * The partition constraint is *NOT* checked.
1974 : *
1975 : * Note: 'slot' contains the tuple to check the constraints of, which may
1976 : * have been converted from the original input tuple after tuple routing.
1977 : * 'resultRelInfo' is the final result relation, after tuple routing.
1978 : */
1979 : void
1980 4533084 : ExecConstraints(ResultRelInfo *resultRelInfo,
1981 : TupleTableSlot *slot, EState *estate)
1982 : {
1983 4533084 : Relation rel = resultRelInfo->ri_RelationDesc;
1984 4533084 : TupleDesc tupdesc = RelationGetDescr(rel);
1985 4533084 : TupleConstr *constr = tupdesc->constr;
1986 : Bitmapset *modifiedCols;
1987 4533084 : List *notnull_virtual_attrs = NIL;
1988 :
1989 : Assert(constr); /* we should not be called otherwise */
1990 :
1991 : /*
1992 : * Verify not-null constraints.
1993 : *
1994 : * Not-null constraints on virtual generated columns are collected and
1995 : * checked separately below.
1996 : */
1997 4533084 : if (constr->has_not_null)
1998 : {
1999 16802404 : for (AttrNumber attnum = 1; attnum <= tupdesc->natts; attnum++)
2000 : {
2001 12275514 : Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
2002 :
2003 12275514 : if (att->attnotnull && att->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
2004 90 : notnull_virtual_attrs = lappend_int(notnull_virtual_attrs, attnum);
2005 12275424 : else if (att->attnotnull && slot_attisnull(slot, attnum))
2006 314 : ReportNotNullViolationError(resultRelInfo, slot, estate, attnum);
2007 : }
2008 : }
2009 :
2010 : /*
2011 : * Verify not-null constraints on virtual generated column, if any.
2012 : */
2013 4532770 : if (notnull_virtual_attrs)
2014 : {
2015 : AttrNumber attnum;
2016 :
2017 90 : attnum = ExecRelGenVirtualNotNull(resultRelInfo, slot, estate,
2018 : notnull_virtual_attrs);
2019 90 : if (attnum != InvalidAttrNumber)
2020 42 : ReportNotNullViolationError(resultRelInfo, slot, estate, attnum);
2021 : }
2022 :
2023 : /*
2024 : * Verify check constraints.
2025 : */
2026 4532728 : if (rel->rd_rel->relchecks > 0)
2027 : {
2028 : const char *failed;
2029 :
2030 2762 : if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
2031 : {
2032 : char *val_desc;
2033 448 : Relation orig_rel = rel;
2034 :
2035 : /*
2036 : * If the tuple has been routed, it's been converted to the
2037 : * partition's rowtype, which might differ from the root table's.
2038 : * We must convert it back to the root table's rowtype so that
2039 : * val_desc shown error message matches the input tuple.
2040 : */
2041 448 : if (resultRelInfo->ri_RootResultRelInfo)
2042 : {
2043 90 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2044 90 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2045 : AttrMap *map;
2046 :
2047 90 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2048 : /* a reverse map */
2049 90 : map = build_attrmap_by_name_if_req(old_tupdesc,
2050 : tupdesc,
2051 : false);
2052 :
2053 : /*
2054 : * Partition-specific slot's tupdesc can't be changed, so
2055 : * allocate a new one.
2056 : */
2057 90 : if (map != NULL)
2058 60 : slot = execute_attr_map_slot(map, slot,
2059 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2060 90 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2061 90 : ExecGetUpdatedCols(rootrel, estate));
2062 90 : rel = rootrel->ri_RelationDesc;
2063 : }
2064 : else
2065 358 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2066 358 : ExecGetUpdatedCols(resultRelInfo, estate));
2067 448 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2068 : slot,
2069 : tupdesc,
2070 : modifiedCols,
2071 : 64);
2072 448 : ereport(ERROR,
2073 : (errcode(ERRCODE_CHECK_VIOLATION),
2074 : errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
2075 : RelationGetRelationName(orig_rel), failed),
2076 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
2077 : errtableconstraint(orig_rel, failed)));
2078 : }
2079 : }
2080 4532274 : }
2081 :
2082 : /*
2083 : * Verify not-null constraints on virtual generated columns of the given
2084 : * tuple slot.
2085 : *
2086 : * Return value of InvalidAttrNumber means all not-null constraints on virtual
2087 : * generated columns are satisfied. A return value > 0 means a not-null
2088 : * violation happened for that attribute.
2089 : *
2090 : * notnull_virtual_attrs is the list of the attnums of virtual generated column with
2091 : * not-null constraints.
2092 : */
2093 : AttrNumber
2094 174 : ExecRelGenVirtualNotNull(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
2095 : EState *estate, List *notnull_virtual_attrs)
2096 : {
2097 174 : Relation rel = resultRelInfo->ri_RelationDesc;
2098 : ExprContext *econtext;
2099 : MemoryContext oldContext;
2100 :
2101 : /*
2102 : * We implement this by building a NullTest node for each virtual
2103 : * generated column, which we cache in resultRelInfo, and running those
2104 : * through ExecCheck().
2105 : */
2106 174 : if (resultRelInfo->ri_GenVirtualNotNullConstraintExprs == NULL)
2107 : {
2108 126 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
2109 126 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs =
2110 126 : palloc0_array(ExprState *, list_length(notnull_virtual_attrs));
2111 :
2112 408 : foreach_int(attnum, notnull_virtual_attrs)
2113 : {
2114 156 : int i = foreach_current_index(attnum);
2115 : NullTest *nnulltest;
2116 :
2117 : /* "generated_expression IS NOT NULL" check. */
2118 156 : nnulltest = makeNode(NullTest);
2119 156 : nnulltest->arg = (Expr *) build_generation_expression(rel, attnum);
2120 156 : nnulltest->nulltesttype = IS_NOT_NULL;
2121 156 : nnulltest->argisrow = false;
2122 156 : nnulltest->location = -1;
2123 :
2124 156 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs[i] =
2125 156 : ExecPrepareExpr((Expr *) nnulltest, estate);
2126 : }
2127 126 : MemoryContextSwitchTo(oldContext);
2128 : }
2129 :
2130 : /*
2131 : * We will use the EState's per-tuple context for evaluating virtual
2132 : * generated column not null constraint expressions (creating it if it's
2133 : * not already there).
2134 : */
2135 174 : econtext = GetPerTupleExprContext(estate);
2136 :
2137 : /* Arrange for econtext's scan tuple to be the tuple under test */
2138 174 : econtext->ecxt_scantuple = slot;
2139 :
2140 : /* And evaluate the check constraints for virtual generated column */
2141 432 : foreach_int(attnum, notnull_virtual_attrs)
2142 : {
2143 228 : int i = foreach_current_index(attnum);
2144 228 : ExprState *exprstate = resultRelInfo->ri_GenVirtualNotNullConstraintExprs[i];
2145 :
2146 : Assert(exprstate != NULL);
2147 228 : if (!ExecCheck(exprstate, econtext))
2148 72 : return attnum;
2149 : }
2150 :
2151 : /* InvalidAttrNumber result means no error */
2152 102 : return InvalidAttrNumber;
2153 : }
2154 :
2155 : /*
2156 : * Report a violation of a not-null constraint that was already detected.
2157 : */
2158 : static void
2159 356 : ReportNotNullViolationError(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
2160 : EState *estate, int attnum)
2161 : {
2162 : Bitmapset *modifiedCols;
2163 : char *val_desc;
2164 356 : Relation rel = resultRelInfo->ri_RelationDesc;
2165 356 : Relation orig_rel = rel;
2166 356 : TupleDesc tupdesc = RelationGetDescr(rel);
2167 356 : TupleDesc orig_tupdesc = RelationGetDescr(rel);
2168 356 : Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
2169 :
2170 : Assert(attnum > 0);
2171 :
2172 : /*
2173 : * If the tuple has been routed, it's been converted to the partition's
2174 : * rowtype, which might differ from the root table's. We must convert it
2175 : * back to the root table's rowtype so that val_desc shown error message
2176 : * matches the input tuple.
2177 : */
2178 356 : if (resultRelInfo->ri_RootResultRelInfo)
2179 : {
2180 72 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2181 : AttrMap *map;
2182 :
2183 72 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2184 : /* a reverse map */
2185 72 : map = build_attrmap_by_name_if_req(orig_tupdesc,
2186 : tupdesc,
2187 : false);
2188 :
2189 : /*
2190 : * Partition-specific slot's tupdesc can't be changed, so allocate a
2191 : * new one.
2192 : */
2193 72 : if (map != NULL)
2194 42 : slot = execute_attr_map_slot(map, slot,
2195 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2196 72 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2197 72 : ExecGetUpdatedCols(rootrel, estate));
2198 72 : rel = rootrel->ri_RelationDesc;
2199 : }
2200 : else
2201 284 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2202 284 : ExecGetUpdatedCols(resultRelInfo, estate));
2203 :
2204 356 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2205 : slot,
2206 : tupdesc,
2207 : modifiedCols,
2208 : 64);
2209 356 : ereport(ERROR,
2210 : errcode(ERRCODE_NOT_NULL_VIOLATION),
2211 : errmsg("null value in column \"%s\" of relation \"%s\" violates not-null constraint",
2212 : NameStr(att->attname),
2213 : RelationGetRelationName(orig_rel)),
2214 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
2215 : errtablecol(orig_rel, attnum));
2216 : }
2217 :
2218 : /*
2219 : * ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
2220 : * of the specified kind.
2221 : *
2222 : * Note that this needs to be called multiple times to ensure that all kinds of
2223 : * WITH CHECK OPTIONs are handled (both those from views which have the WITH
2224 : * CHECK OPTION set and from row-level security policies). See ExecInsert()
2225 : * and ExecUpdate().
2226 : */
2227 : void
2228 2330 : ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
2229 : TupleTableSlot *slot, EState *estate)
2230 : {
2231 2330 : Relation rel = resultRelInfo->ri_RelationDesc;
2232 2330 : TupleDesc tupdesc = RelationGetDescr(rel);
2233 : ExprContext *econtext;
2234 : ListCell *l1,
2235 : *l2;
2236 :
2237 : /*
2238 : * We will use the EState's per-tuple context for evaluating constraint
2239 : * expressions (creating it if it's not already there).
2240 : */
2241 2330 : econtext = GetPerTupleExprContext(estate);
2242 :
2243 : /* Arrange for econtext's scan tuple to be the tuple under test */
2244 2330 : econtext->ecxt_scantuple = slot;
2245 :
2246 : /* Check each of the constraints */
2247 6256 : forboth(l1, resultRelInfo->ri_WithCheckOptions,
2248 : l2, resultRelInfo->ri_WithCheckOptionExprs)
2249 : {
2250 4448 : WithCheckOption *wco = (WithCheckOption *) lfirst(l1);
2251 4448 : ExprState *wcoExpr = (ExprState *) lfirst(l2);
2252 :
2253 : /*
2254 : * Skip any WCOs which are not the kind we are looking for at this
2255 : * time.
2256 : */
2257 4448 : if (wco->kind != kind)
2258 2686 : continue;
2259 :
2260 : /*
2261 : * WITH CHECK OPTION checks are intended to ensure that the new tuple
2262 : * is visible (in the case of a view) or that it passes the
2263 : * 'with-check' policy (in the case of row security). If the qual
2264 : * evaluates to NULL or FALSE, then the new tuple won't be included in
2265 : * the view or doesn't pass the 'with-check' policy for the table.
2266 : */
2267 1762 : if (!ExecQual(wcoExpr, econtext))
2268 : {
2269 : char *val_desc;
2270 : Bitmapset *modifiedCols;
2271 :
2272 522 : switch (wco->kind)
2273 : {
2274 : /*
2275 : * For WITH CHECK OPTIONs coming from views, we might be
2276 : * able to provide the details on the row, depending on
2277 : * the permissions on the relation (that is, if the user
2278 : * could view it directly anyway). For RLS violations, we
2279 : * don't include the data since we don't know if the user
2280 : * should be able to view the tuple as that depends on the
2281 : * USING policy.
2282 : */
2283 228 : case WCO_VIEW_CHECK:
2284 : /* See the comment in ExecConstraints(). */
2285 228 : if (resultRelInfo->ri_RootResultRelInfo)
2286 : {
2287 42 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2288 42 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2289 : AttrMap *map;
2290 :
2291 42 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2292 : /* a reverse map */
2293 42 : map = build_attrmap_by_name_if_req(old_tupdesc,
2294 : tupdesc,
2295 : false);
2296 :
2297 : /*
2298 : * Partition-specific slot's tupdesc can't be changed,
2299 : * so allocate a new one.
2300 : */
2301 42 : if (map != NULL)
2302 24 : slot = execute_attr_map_slot(map, slot,
2303 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2304 :
2305 42 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2306 42 : ExecGetUpdatedCols(rootrel, estate));
2307 42 : rel = rootrel->ri_RelationDesc;
2308 : }
2309 : else
2310 186 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2311 186 : ExecGetUpdatedCols(resultRelInfo, estate));
2312 228 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2313 : slot,
2314 : tupdesc,
2315 : modifiedCols,
2316 : 64);
2317 :
2318 228 : ereport(ERROR,
2319 : (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
2320 : errmsg("new row violates check option for view \"%s\"",
2321 : wco->relname),
2322 : val_desc ? errdetail("Failing row contains %s.",
2323 : val_desc) : 0));
2324 : break;
2325 246 : case WCO_RLS_INSERT_CHECK:
2326 : case WCO_RLS_UPDATE_CHECK:
2327 246 : if (wco->polname != NULL)
2328 60 : ereport(ERROR,
2329 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2330 : errmsg("new row violates row-level security policy \"%s\" for table \"%s\"",
2331 : wco->polname, wco->relname)));
2332 : else
2333 186 : ereport(ERROR,
2334 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2335 : errmsg("new row violates row-level security policy for table \"%s\"",
2336 : wco->relname)));
2337 : break;
2338 24 : case WCO_RLS_MERGE_UPDATE_CHECK:
2339 : case WCO_RLS_MERGE_DELETE_CHECK:
2340 24 : if (wco->polname != NULL)
2341 0 : ereport(ERROR,
2342 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2343 : errmsg("target row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2344 : wco->polname, wco->relname)));
2345 : else
2346 24 : ereport(ERROR,
2347 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2348 : errmsg("target row violates row-level security policy (USING expression) for table \"%s\"",
2349 : wco->relname)));
2350 : break;
2351 24 : case WCO_RLS_CONFLICT_CHECK:
2352 24 : if (wco->polname != NULL)
2353 0 : ereport(ERROR,
2354 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2355 : errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2356 : wco->polname, wco->relname)));
2357 : else
2358 24 : ereport(ERROR,
2359 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2360 : errmsg("new row violates row-level security policy (USING expression) for table \"%s\"",
2361 : wco->relname)));
2362 : break;
2363 0 : default:
2364 0 : elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
2365 : break;
2366 : }
2367 : }
2368 : }
2369 1808 : }
2370 :
2371 : /*
2372 : * ExecBuildSlotValueDescription -- construct a string representing a tuple
2373 : *
2374 : * This is intentionally very similar to BuildIndexValueDescription, but
2375 : * unlike that function, we truncate long field values (to at most maxfieldlen
2376 : * bytes). That seems necessary here since heap field values could be very
2377 : * long, whereas index entries typically aren't so wide.
2378 : *
2379 : * Also, unlike the case with index entries, we need to be prepared to ignore
2380 : * dropped columns. We used to use the slot's tuple descriptor to decode the
2381 : * data, but the slot's descriptor doesn't identify dropped columns, so we
2382 : * now need to be passed the relation's descriptor.
2383 : *
2384 : * Note that, like BuildIndexValueDescription, if the user does not have
2385 : * permission to view any of the columns involved, a NULL is returned. Unlike
2386 : * BuildIndexValueDescription, if the user has access to view a subset of the
2387 : * column involved, that subset will be returned with a key identifying which
2388 : * columns they are.
2389 : */
2390 : char *
2391 1518 : ExecBuildSlotValueDescription(Oid reloid,
2392 : TupleTableSlot *slot,
2393 : TupleDesc tupdesc,
2394 : Bitmapset *modifiedCols,
2395 : int maxfieldlen)
2396 : {
2397 : StringInfoData buf;
2398 : StringInfoData collist;
2399 1518 : bool write_comma = false;
2400 1518 : bool write_comma_collist = false;
2401 : int i;
2402 : AclResult aclresult;
2403 1518 : bool table_perm = false;
2404 1518 : bool any_perm = false;
2405 :
2406 : /*
2407 : * Check if RLS is enabled and should be active for the relation; if so,
2408 : * then don't return anything. Otherwise, go through normal permission
2409 : * checks.
2410 : */
2411 1518 : if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED)
2412 0 : return NULL;
2413 :
2414 1518 : initStringInfo(&buf);
2415 :
2416 1518 : appendStringInfoChar(&buf, '(');
2417 :
2418 : /*
2419 : * Check if the user has permissions to see the row. Table-level SELECT
2420 : * allows access to all columns. If the user does not have table-level
2421 : * SELECT then we check each column and include those the user has SELECT
2422 : * rights on. Additionally, we always include columns the user provided
2423 : * data for.
2424 : */
2425 1518 : aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
2426 1518 : if (aclresult != ACLCHECK_OK)
2427 : {
2428 : /* Set up the buffer for the column list */
2429 60 : initStringInfo(&collist);
2430 60 : appendStringInfoChar(&collist, '(');
2431 : }
2432 : else
2433 1458 : table_perm = any_perm = true;
2434 :
2435 : /* Make sure the tuple is fully deconstructed */
2436 1518 : slot_getallattrs(slot);
2437 :
2438 5460 : for (i = 0; i < tupdesc->natts; i++)
2439 : {
2440 3942 : bool column_perm = false;
2441 : char *val;
2442 : int vallen;
2443 3942 : Form_pg_attribute att = TupleDescAttr(tupdesc, i);
2444 :
2445 : /* ignore dropped columns */
2446 3942 : if (att->attisdropped)
2447 38 : continue;
2448 :
2449 3904 : if (!table_perm)
2450 : {
2451 : /*
2452 : * No table-level SELECT, so need to make sure they either have
2453 : * SELECT rights on the column or that they have provided the data
2454 : * for the column. If not, omit this column from the error
2455 : * message.
2456 : */
2457 234 : aclresult = pg_attribute_aclcheck(reloid, att->attnum,
2458 : GetUserId(), ACL_SELECT);
2459 234 : if (bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber,
2460 138 : modifiedCols) || aclresult == ACLCHECK_OK)
2461 : {
2462 144 : column_perm = any_perm = true;
2463 :
2464 144 : if (write_comma_collist)
2465 84 : appendStringInfoString(&collist, ", ");
2466 : else
2467 60 : write_comma_collist = true;
2468 :
2469 144 : appendStringInfoString(&collist, NameStr(att->attname));
2470 : }
2471 : }
2472 :
2473 3904 : if (table_perm || column_perm)
2474 : {
2475 3814 : if (att->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
2476 54 : val = "virtual";
2477 3760 : else if (slot->tts_isnull[i])
2478 634 : val = "null";
2479 : else
2480 : {
2481 : Oid foutoid;
2482 : bool typisvarlena;
2483 :
2484 3126 : getTypeOutputInfo(att->atttypid,
2485 : &foutoid, &typisvarlena);
2486 3126 : val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
2487 : }
2488 :
2489 3814 : if (write_comma)
2490 2296 : appendStringInfoString(&buf, ", ");
2491 : else
2492 1518 : write_comma = true;
2493 :
2494 : /* truncate if needed */
2495 3814 : vallen = strlen(val);
2496 3814 : if (vallen <= maxfieldlen)
2497 3812 : appendBinaryStringInfo(&buf, val, vallen);
2498 : else
2499 : {
2500 2 : vallen = pg_mbcliplen(val, vallen, maxfieldlen);
2501 2 : appendBinaryStringInfo(&buf, val, vallen);
2502 2 : appendStringInfoString(&buf, "...");
2503 : }
2504 : }
2505 : }
2506 :
2507 : /* If we end up with zero columns being returned, then return NULL. */
2508 1518 : if (!any_perm)
2509 0 : return NULL;
2510 :
2511 1518 : appendStringInfoChar(&buf, ')');
2512 :
2513 1518 : if (!table_perm)
2514 : {
2515 60 : appendStringInfoString(&collist, ") = ");
2516 60 : appendBinaryStringInfo(&collist, buf.data, buf.len);
2517 :
2518 60 : return collist.data;
2519 : }
2520 :
2521 1458 : return buf.data;
2522 : }
2523 :
2524 :
2525 : /*
2526 : * ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
2527 : * given ResultRelInfo
2528 : */
2529 : LockTupleMode
2530 7906 : ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
2531 : {
2532 : Bitmapset *keyCols;
2533 : Bitmapset *updatedCols;
2534 :
2535 : /*
2536 : * Compute lock mode to use. If columns that are part of the key have not
2537 : * been modified, then we can use a weaker lock, allowing for better
2538 : * concurrency.
2539 : */
2540 7906 : updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
2541 7906 : keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
2542 : INDEX_ATTR_BITMAP_KEY);
2543 :
2544 7906 : if (bms_overlap(keyCols, updatedCols))
2545 264 : return LockTupleExclusive;
2546 :
2547 7642 : return LockTupleNoKeyExclusive;
2548 : }
2549 :
2550 : /*
2551 : * ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
2552 : *
2553 : * If no such struct, either return NULL or throw error depending on missing_ok
2554 : */
2555 : ExecRowMark *
2556 11192 : ExecFindRowMark(EState *estate, Index rti, bool missing_ok)
2557 : {
2558 11192 : if (rti > 0 && rti <= estate->es_range_table_size &&
2559 11192 : estate->es_rowmarks != NULL)
2560 : {
2561 11192 : ExecRowMark *erm = estate->es_rowmarks[rti - 1];
2562 :
2563 11192 : if (erm)
2564 11192 : return erm;
2565 : }
2566 0 : if (!missing_ok)
2567 0 : elog(ERROR, "failed to find ExecRowMark for rangetable index %u", rti);
2568 0 : return NULL;
2569 : }
2570 :
2571 : /*
2572 : * ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
2573 : *
2574 : * Inputs are the underlying ExecRowMark struct and the targetlist of the
2575 : * input plan node (not planstate node!). We need the latter to find out
2576 : * the column numbers of the resjunk columns.
2577 : */
2578 : ExecAuxRowMark *
2579 11192 : ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
2580 : {
2581 11192 : ExecAuxRowMark *aerm = (ExecAuxRowMark *) palloc0(sizeof(ExecAuxRowMark));
2582 : char resname[32];
2583 :
2584 11192 : aerm->rowmark = erm;
2585 :
2586 : /* Look up the resjunk columns associated with this rowmark */
2587 11192 : if (erm->markType != ROW_MARK_COPY)
2588 : {
2589 : /* need ctid for all methods other than COPY */
2590 10892 : snprintf(resname, sizeof(resname), "ctid%u", erm->rowmarkId);
2591 10892 : aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2592 : resname);
2593 10892 : if (!AttributeNumberIsValid(aerm->ctidAttNo))
2594 0 : elog(ERROR, "could not find junk %s column", resname);
2595 : }
2596 : else
2597 : {
2598 : /* need wholerow if COPY */
2599 300 : snprintf(resname, sizeof(resname), "wholerow%u", erm->rowmarkId);
2600 300 : aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist,
2601 : resname);
2602 300 : if (!AttributeNumberIsValid(aerm->wholeAttNo))
2603 0 : elog(ERROR, "could not find junk %s column", resname);
2604 : }
2605 :
2606 : /* if child rel, need tableoid */
2607 11192 : if (erm->rti != erm->prti)
2608 : {
2609 1978 : snprintf(resname, sizeof(resname), "tableoid%u", erm->rowmarkId);
2610 1978 : aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2611 : resname);
2612 1978 : if (!AttributeNumberIsValid(aerm->toidAttNo))
2613 0 : elog(ERROR, "could not find junk %s column", resname);
2614 : }
2615 :
2616 11192 : return aerm;
2617 : }
2618 :
2619 :
2620 : /*
2621 : * EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
2622 : * process the updated version under READ COMMITTED rules.
2623 : *
2624 : * See backend/executor/README for some info about how this works.
2625 : */
2626 :
2627 :
2628 : /*
2629 : * Check the updated version of a tuple to see if we want to process it under
2630 : * READ COMMITTED rules.
2631 : *
2632 : * epqstate - state for EvalPlanQual rechecking
2633 : * relation - table containing tuple
2634 : * rti - rangetable index of table containing tuple
2635 : * inputslot - tuple for processing - this can be the slot from
2636 : * EvalPlanQualSlot() for this rel, for increased efficiency.
2637 : *
2638 : * This tests whether the tuple in inputslot still matches the relevant
2639 : * quals. For that result to be useful, typically the input tuple has to be
2640 : * last row version (otherwise the result isn't particularly useful) and
2641 : * locked (otherwise the result might be out of date). That's typically
2642 : * achieved by using table_tuple_lock() with the
2643 : * TUPLE_LOCK_FLAG_FIND_LAST_VERSION flag.
2644 : *
2645 : * Returns a slot containing the new candidate update/delete tuple, or
2646 : * NULL if we determine we shouldn't process the row.
2647 : */
2648 : TupleTableSlot *
2649 274 : EvalPlanQual(EPQState *epqstate, Relation relation,
2650 : Index rti, TupleTableSlot *inputslot)
2651 : {
2652 : TupleTableSlot *slot;
2653 : TupleTableSlot *testslot;
2654 :
2655 : Assert(rti > 0);
2656 :
2657 : /*
2658 : * Need to run a recheck subquery. Initialize or reinitialize EPQ state.
2659 : */
2660 274 : EvalPlanQualBegin(epqstate);
2661 :
2662 : /*
2663 : * Callers will often use the EvalPlanQualSlot to store the tuple to avoid
2664 : * an unnecessary copy.
2665 : */
2666 274 : testslot = EvalPlanQualSlot(epqstate, relation, rti);
2667 274 : if (testslot != inputslot)
2668 12 : ExecCopySlot(testslot, inputslot);
2669 :
2670 : /*
2671 : * Mark that an EPQ tuple is available for this relation. (If there is
2672 : * more than one result relation, the others remain marked as having no
2673 : * tuple available.)
2674 : */
2675 274 : epqstate->relsubs_done[rti - 1] = false;
2676 274 : epqstate->relsubs_blocked[rti - 1] = false;
2677 :
2678 : /*
2679 : * Run the EPQ query. We assume it will return at most one tuple.
2680 : */
2681 274 : slot = EvalPlanQualNext(epqstate);
2682 :
2683 : /*
2684 : * If we got a tuple, force the slot to materialize the tuple so that it
2685 : * is not dependent on any local state in the EPQ query (in particular,
2686 : * it's highly likely that the slot contains references to any pass-by-ref
2687 : * datums that may be present in copyTuple). As with the next step, this
2688 : * is to guard against early re-use of the EPQ query.
2689 : */
2690 274 : if (!TupIsNull(slot))
2691 202 : ExecMaterializeSlot(slot);
2692 :
2693 : /*
2694 : * Clear out the test tuple, and mark that no tuple is available here.
2695 : * This is needed in case the EPQ state is re-used to test a tuple for a
2696 : * different target relation.
2697 : */
2698 274 : ExecClearTuple(testslot);
2699 274 : epqstate->relsubs_blocked[rti - 1] = true;
2700 :
2701 274 : return slot;
2702 : }
2703 :
2704 : /*
2705 : * EvalPlanQualInit -- initialize during creation of a plan state node
2706 : * that might need to invoke EPQ processing.
2707 : *
2708 : * If the caller intends to use EvalPlanQual(), resultRelations should be
2709 : * a list of RT indexes of potential target relations for EvalPlanQual(),
2710 : * and we will arrange that the other listed relations don't return any
2711 : * tuple during an EvalPlanQual() call. Otherwise resultRelations
2712 : * should be NIL.
2713 : *
2714 : * Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
2715 : * with EvalPlanQualSetPlan.
2716 : */
2717 : void
2718 269626 : EvalPlanQualInit(EPQState *epqstate, EState *parentestate,
2719 : Plan *subplan, List *auxrowmarks,
2720 : int epqParam, List *resultRelations)
2721 : {
2722 269626 : Index rtsize = parentestate->es_range_table_size;
2723 :
2724 : /* initialize data not changing over EPQState's lifetime */
2725 269626 : epqstate->parentestate = parentestate;
2726 269626 : epqstate->epqParam = epqParam;
2727 269626 : epqstate->resultRelations = resultRelations;
2728 :
2729 : /*
2730 : * Allocate space to reference a slot for each potential rti - do so now
2731 : * rather than in EvalPlanQualBegin(), as done for other dynamically
2732 : * allocated resources, so EvalPlanQualSlot() can be used to hold tuples
2733 : * that *may* need EPQ later, without forcing the overhead of
2734 : * EvalPlanQualBegin().
2735 : */
2736 269626 : epqstate->tuple_table = NIL;
2737 269626 : epqstate->relsubs_slot = (TupleTableSlot **)
2738 269626 : palloc0(rtsize * sizeof(TupleTableSlot *));
2739 :
2740 : /* ... and remember data that EvalPlanQualBegin will need */
2741 269626 : epqstate->plan = subplan;
2742 269626 : epqstate->arowMarks = auxrowmarks;
2743 :
2744 : /* ... and mark the EPQ state inactive */
2745 269626 : epqstate->origslot = NULL;
2746 269626 : epqstate->recheckestate = NULL;
2747 269626 : epqstate->recheckplanstate = NULL;
2748 269626 : epqstate->relsubs_rowmark = NULL;
2749 269626 : epqstate->relsubs_done = NULL;
2750 269626 : epqstate->relsubs_blocked = NULL;
2751 269626 : }
2752 :
2753 : /*
2754 : * EvalPlanQualSetPlan -- set or change subplan of an EPQState.
2755 : *
2756 : * We used to need this so that ModifyTable could deal with multiple subplans.
2757 : * It could now be refactored out of existence.
2758 : */
2759 : void
2760 116384 : EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
2761 : {
2762 : /* If we have a live EPQ query, shut it down */
2763 116384 : EvalPlanQualEnd(epqstate);
2764 : /* And set/change the plan pointer */
2765 116384 : epqstate->plan = subplan;
2766 : /* The rowmarks depend on the plan, too */
2767 116384 : epqstate->arowMarks = auxrowmarks;
2768 116384 : }
2769 :
2770 : /*
2771 : * Return, and create if necessary, a slot for an EPQ test tuple.
2772 : *
2773 : * Note this only requires EvalPlanQualInit() to have been called,
2774 : * EvalPlanQualBegin() is not necessary.
2775 : */
2776 : TupleTableSlot *
2777 17656 : EvalPlanQualSlot(EPQState *epqstate,
2778 : Relation relation, Index rti)
2779 : {
2780 : TupleTableSlot **slot;
2781 :
2782 : Assert(relation);
2783 : Assert(rti > 0 && rti <= epqstate->parentestate->es_range_table_size);
2784 17656 : slot = &epqstate->relsubs_slot[rti - 1];
2785 :
2786 17656 : if (*slot == NULL)
2787 : {
2788 : MemoryContext oldcontext;
2789 :
2790 6138 : oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt);
2791 6138 : *slot = table_slot_create(relation, &epqstate->tuple_table);
2792 6138 : MemoryContextSwitchTo(oldcontext);
2793 : }
2794 :
2795 17656 : return *slot;
2796 : }
2797 :
2798 : /*
2799 : * Fetch the current row value for a non-locked relation, identified by rti,
2800 : * that needs to be scanned by an EvalPlanQual operation. origslot must have
2801 : * been set to contain the current result row (top-level row) that we need to
2802 : * recheck. Returns true if a substitution tuple was found, false if not.
2803 : */
2804 : bool
2805 32 : EvalPlanQualFetchRowMark(EPQState *epqstate, Index rti, TupleTableSlot *slot)
2806 : {
2807 32 : ExecAuxRowMark *earm = epqstate->relsubs_rowmark[rti - 1];
2808 : ExecRowMark *erm;
2809 : Datum datum;
2810 : bool isNull;
2811 :
2812 : Assert(earm != NULL);
2813 : Assert(epqstate->origslot != NULL);
2814 :
2815 32 : erm = earm->rowmark;
2816 :
2817 32 : if (RowMarkRequiresRowShareLock(erm->markType))
2818 0 : elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
2819 :
2820 : /* if child rel, must check whether it produced this row */
2821 32 : if (erm->rti != erm->prti)
2822 : {
2823 : Oid tableoid;
2824 :
2825 0 : datum = ExecGetJunkAttribute(epqstate->origslot,
2826 0 : earm->toidAttNo,
2827 : &isNull);
2828 : /* non-locked rels could be on the inside of outer joins */
2829 0 : if (isNull)
2830 0 : return false;
2831 :
2832 0 : tableoid = DatumGetObjectId(datum);
2833 :
2834 : Assert(OidIsValid(erm->relid));
2835 0 : if (tableoid != erm->relid)
2836 : {
2837 : /* this child is inactive right now */
2838 0 : return false;
2839 : }
2840 : }
2841 :
2842 32 : if (erm->markType == ROW_MARK_REFERENCE)
2843 : {
2844 : Assert(erm->relation != NULL);
2845 :
2846 : /* fetch the tuple's ctid */
2847 26 : datum = ExecGetJunkAttribute(epqstate->origslot,
2848 26 : earm->ctidAttNo,
2849 : &isNull);
2850 : /* non-locked rels could be on the inside of outer joins */
2851 26 : if (isNull)
2852 0 : return false;
2853 :
2854 : /* fetch requests on foreign tables must be passed to their FDW */
2855 26 : if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
2856 : {
2857 : FdwRoutine *fdwroutine;
2858 0 : bool updated = false;
2859 :
2860 0 : fdwroutine = GetFdwRoutineForRelation(erm->relation, false);
2861 : /* this should have been checked already, but let's be safe */
2862 0 : if (fdwroutine->RefetchForeignRow == NULL)
2863 0 : ereport(ERROR,
2864 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2865 : errmsg("cannot lock rows in foreign table \"%s\"",
2866 : RelationGetRelationName(erm->relation))));
2867 :
2868 0 : fdwroutine->RefetchForeignRow(epqstate->recheckestate,
2869 : erm,
2870 : datum,
2871 : slot,
2872 : &updated);
2873 0 : if (TupIsNull(slot))
2874 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2875 :
2876 : /*
2877 : * Ideally we'd insist on updated == false here, but that assumes
2878 : * that FDWs can track that exactly, which they might not be able
2879 : * to. So just ignore the flag.
2880 : */
2881 0 : return true;
2882 : }
2883 : else
2884 : {
2885 : /* ordinary table, fetch the tuple */
2886 26 : if (!table_tuple_fetch_row_version(erm->relation,
2887 26 : (ItemPointer) DatumGetPointer(datum),
2888 : SnapshotAny, slot))
2889 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2890 26 : return true;
2891 : }
2892 : }
2893 : else
2894 : {
2895 : Assert(erm->markType == ROW_MARK_COPY);
2896 :
2897 : /* fetch the whole-row Var for the relation */
2898 6 : datum = ExecGetJunkAttribute(epqstate->origslot,
2899 6 : earm->wholeAttNo,
2900 : &isNull);
2901 : /* non-locked rels could be on the inside of outer joins */
2902 6 : if (isNull)
2903 0 : return false;
2904 :
2905 6 : ExecStoreHeapTupleDatum(datum, slot);
2906 6 : return true;
2907 : }
2908 : }
2909 :
2910 : /*
2911 : * Fetch the next row (if any) from EvalPlanQual testing
2912 : *
2913 : * (In practice, there should never be more than one row...)
2914 : */
2915 : TupleTableSlot *
2916 342 : EvalPlanQualNext(EPQState *epqstate)
2917 : {
2918 : MemoryContext oldcontext;
2919 : TupleTableSlot *slot;
2920 :
2921 342 : oldcontext = MemoryContextSwitchTo(epqstate->recheckestate->es_query_cxt);
2922 342 : slot = ExecProcNode(epqstate->recheckplanstate);
2923 342 : MemoryContextSwitchTo(oldcontext);
2924 :
2925 342 : return slot;
2926 : }
2927 :
2928 : /*
2929 : * Initialize or reset an EvalPlanQual state tree
2930 : */
2931 : void
2932 408 : EvalPlanQualBegin(EPQState *epqstate)
2933 : {
2934 408 : EState *parentestate = epqstate->parentestate;
2935 408 : EState *recheckestate = epqstate->recheckestate;
2936 :
2937 408 : if (recheckestate == NULL)
2938 : {
2939 : /* First time through, so create a child EState */
2940 256 : EvalPlanQualStart(epqstate, epqstate->plan);
2941 : }
2942 : else
2943 : {
2944 : /*
2945 : * We already have a suitable child EPQ tree, so just reset it.
2946 : */
2947 152 : Index rtsize = parentestate->es_range_table_size;
2948 152 : PlanState *rcplanstate = epqstate->recheckplanstate;
2949 :
2950 : /*
2951 : * Reset the relsubs_done[] flags to equal relsubs_blocked[], so that
2952 : * the EPQ run will never attempt to fetch tuples from blocked target
2953 : * relations.
2954 : */
2955 152 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
2956 : rtsize * sizeof(bool));
2957 :
2958 : /* Recopy current values of parent parameters */
2959 152 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
2960 : {
2961 : int i;
2962 :
2963 : /*
2964 : * Force evaluation of any InitPlan outputs that could be needed
2965 : * by the subplan, just in case they got reset since
2966 : * EvalPlanQualStart (see comments therein).
2967 : */
2968 152 : ExecSetParamPlanMulti(rcplanstate->plan->extParam,
2969 152 : GetPerTupleExprContext(parentestate));
2970 :
2971 152 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
2972 :
2973 324 : while (--i >= 0)
2974 : {
2975 : /* copy value if any, but not execPlan link */
2976 172 : recheckestate->es_param_exec_vals[i].value =
2977 172 : parentestate->es_param_exec_vals[i].value;
2978 172 : recheckestate->es_param_exec_vals[i].isnull =
2979 172 : parentestate->es_param_exec_vals[i].isnull;
2980 : }
2981 : }
2982 :
2983 : /*
2984 : * Mark child plan tree as needing rescan at all scan nodes. The
2985 : * first ExecProcNode will take care of actually doing the rescan.
2986 : */
2987 152 : rcplanstate->chgParam = bms_add_member(rcplanstate->chgParam,
2988 : epqstate->epqParam);
2989 : }
2990 408 : }
2991 :
2992 : /*
2993 : * Start execution of an EvalPlanQual plan tree.
2994 : *
2995 : * This is a cut-down version of ExecutorStart(): we copy some state from
2996 : * the top-level estate rather than initializing it fresh.
2997 : */
2998 : static void
2999 256 : EvalPlanQualStart(EPQState *epqstate, Plan *planTree)
3000 : {
3001 256 : EState *parentestate = epqstate->parentestate;
3002 256 : Index rtsize = parentestate->es_range_table_size;
3003 : EState *rcestate;
3004 : MemoryContext oldcontext;
3005 : ListCell *l;
3006 :
3007 256 : epqstate->recheckestate = rcestate = CreateExecutorState();
3008 :
3009 256 : oldcontext = MemoryContextSwitchTo(rcestate->es_query_cxt);
3010 :
3011 : /* signal that this is an EState for executing EPQ */
3012 256 : rcestate->es_epq_active = epqstate;
3013 :
3014 : /*
3015 : * Child EPQ EStates share the parent's copy of unchanging state such as
3016 : * the snapshot, rangetable, and external Param info. They need their own
3017 : * copies of local state, including a tuple table, es_param_exec_vals,
3018 : * result-rel info, etc.
3019 : */
3020 256 : rcestate->es_direction = ForwardScanDirection;
3021 256 : rcestate->es_snapshot = parentestate->es_snapshot;
3022 256 : rcestate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
3023 256 : rcestate->es_range_table = parentestate->es_range_table;
3024 256 : rcestate->es_range_table_size = parentestate->es_range_table_size;
3025 256 : rcestate->es_relations = parentestate->es_relations;
3026 256 : rcestate->es_rowmarks = parentestate->es_rowmarks;
3027 256 : rcestate->es_rteperminfos = parentestate->es_rteperminfos;
3028 256 : rcestate->es_plannedstmt = parentestate->es_plannedstmt;
3029 256 : rcestate->es_junkFilter = parentestate->es_junkFilter;
3030 256 : rcestate->es_output_cid = parentestate->es_output_cid;
3031 256 : rcestate->es_queryEnv = parentestate->es_queryEnv;
3032 :
3033 : /*
3034 : * ResultRelInfos needed by subplans are initialized from scratch when the
3035 : * subplans themselves are initialized.
3036 : */
3037 256 : rcestate->es_result_relations = NULL;
3038 : /* es_trig_target_relations must NOT be copied */
3039 256 : rcestate->es_top_eflags = parentestate->es_top_eflags;
3040 256 : rcestate->es_instrument = parentestate->es_instrument;
3041 : /* es_auxmodifytables must NOT be copied */
3042 :
3043 : /*
3044 : * The external param list is simply shared from parent. The internal
3045 : * param workspace has to be local state, but we copy the initial values
3046 : * from the parent, so as to have access to any param values that were
3047 : * already set from other parts of the parent's plan tree.
3048 : */
3049 256 : rcestate->es_param_list_info = parentestate->es_param_list_info;
3050 256 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
3051 : {
3052 : int i;
3053 :
3054 : /*
3055 : * Force evaluation of any InitPlan outputs that could be needed by
3056 : * the subplan. (With more complexity, maybe we could postpone this
3057 : * till the subplan actually demands them, but it doesn't seem worth
3058 : * the trouble; this is a corner case already, since usually the
3059 : * InitPlans would have been evaluated before reaching EvalPlanQual.)
3060 : *
3061 : * This will not touch output params of InitPlans that occur somewhere
3062 : * within the subplan tree, only those that are attached to the
3063 : * ModifyTable node or above it and are referenced within the subplan.
3064 : * That's OK though, because the planner would only attach such
3065 : * InitPlans to a lower-level SubqueryScan node, and EPQ execution
3066 : * will not descend into a SubqueryScan.
3067 : *
3068 : * The EState's per-output-tuple econtext is sufficiently short-lived
3069 : * for this, since it should get reset before there is any chance of
3070 : * doing EvalPlanQual again.
3071 : */
3072 256 : ExecSetParamPlanMulti(planTree->extParam,
3073 256 : GetPerTupleExprContext(parentestate));
3074 :
3075 : /* now make the internal param workspace ... */
3076 256 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
3077 256 : rcestate->es_param_exec_vals = (ParamExecData *)
3078 256 : palloc0(i * sizeof(ParamExecData));
3079 : /* ... and copy down all values, whether really needed or not */
3080 620 : while (--i >= 0)
3081 : {
3082 : /* copy value if any, but not execPlan link */
3083 364 : rcestate->es_param_exec_vals[i].value =
3084 364 : parentestate->es_param_exec_vals[i].value;
3085 364 : rcestate->es_param_exec_vals[i].isnull =
3086 364 : parentestate->es_param_exec_vals[i].isnull;
3087 : }
3088 : }
3089 :
3090 : /*
3091 : * Copy es_unpruned_relids so that pruned relations are ignored by
3092 : * ExecInitLockRows() and ExecInitModifyTable() when initializing the plan
3093 : * trees below.
3094 : */
3095 256 : rcestate->es_unpruned_relids = parentestate->es_unpruned_relids;
3096 :
3097 : /*
3098 : * Also make the PartitionPruneInfo and the results of pruning available.
3099 : * These need to match exactly so that we initialize all the same Append
3100 : * and MergeAppend subplans as the parent did.
3101 : */
3102 256 : rcestate->es_part_prune_infos = parentestate->es_part_prune_infos;
3103 256 : rcestate->es_part_prune_states = parentestate->es_part_prune_states;
3104 256 : rcestate->es_part_prune_results = parentestate->es_part_prune_results;
3105 :
3106 : /* We'll also borrow the es_partition_directory from the parent state */
3107 256 : rcestate->es_partition_directory = parentestate->es_partition_directory;
3108 :
3109 : /*
3110 : * Initialize private state information for each SubPlan. We must do this
3111 : * before running ExecInitNode on the main query tree, since
3112 : * ExecInitSubPlan expects to be able to find these entries. Some of the
3113 : * SubPlans might not be used in the part of the plan tree we intend to
3114 : * run, but since it's not easy to tell which, we just initialize them
3115 : * all.
3116 : */
3117 : Assert(rcestate->es_subplanstates == NIL);
3118 320 : foreach(l, parentestate->es_plannedstmt->subplans)
3119 : {
3120 64 : Plan *subplan = (Plan *) lfirst(l);
3121 : PlanState *subplanstate;
3122 :
3123 64 : subplanstate = ExecInitNode(subplan, rcestate, 0);
3124 64 : rcestate->es_subplanstates = lappend(rcestate->es_subplanstates,
3125 : subplanstate);
3126 : }
3127 :
3128 : /*
3129 : * Build an RTI indexed array of rowmarks, so that
3130 : * EvalPlanQualFetchRowMark() can efficiently access the to be fetched
3131 : * rowmark.
3132 : */
3133 256 : epqstate->relsubs_rowmark = (ExecAuxRowMark **)
3134 256 : palloc0(rtsize * sizeof(ExecAuxRowMark *));
3135 276 : foreach(l, epqstate->arowMarks)
3136 : {
3137 20 : ExecAuxRowMark *earm = (ExecAuxRowMark *) lfirst(l);
3138 :
3139 20 : epqstate->relsubs_rowmark[earm->rowmark->rti - 1] = earm;
3140 : }
3141 :
3142 : /*
3143 : * Initialize per-relation EPQ tuple states. Result relations, if any,
3144 : * get marked as blocked; others as not-fetched.
3145 : */
3146 256 : epqstate->relsubs_done = palloc_array(bool, rtsize);
3147 256 : epqstate->relsubs_blocked = palloc0_array(bool, rtsize);
3148 :
3149 508 : foreach(l, epqstate->resultRelations)
3150 : {
3151 252 : int rtindex = lfirst_int(l);
3152 :
3153 : Assert(rtindex > 0 && rtindex <= rtsize);
3154 252 : epqstate->relsubs_blocked[rtindex - 1] = true;
3155 : }
3156 :
3157 256 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
3158 : rtsize * sizeof(bool));
3159 :
3160 : /*
3161 : * Initialize the private state information for all the nodes in the part
3162 : * of the plan tree we need to run. This opens files, allocates storage
3163 : * and leaves us ready to start processing tuples.
3164 : */
3165 256 : epqstate->recheckplanstate = ExecInitNode(planTree, rcestate, 0);
3166 :
3167 256 : MemoryContextSwitchTo(oldcontext);
3168 256 : }
3169 :
3170 : /*
3171 : * EvalPlanQualEnd -- shut down at termination of parent plan state node,
3172 : * or if we are done with the current EPQ child.
3173 : *
3174 : * This is a cut-down version of ExecutorEnd(); basically we want to do most
3175 : * of the normal cleanup, but *not* close result relations (which we are
3176 : * just sharing from the outer query). We do, however, have to close any
3177 : * result and trigger target relations that got opened, since those are not
3178 : * shared. (There probably shouldn't be any of the latter, but just in
3179 : * case...)
3180 : */
3181 : void
3182 384470 : EvalPlanQualEnd(EPQState *epqstate)
3183 : {
3184 384470 : EState *estate = epqstate->recheckestate;
3185 : Index rtsize;
3186 : MemoryContext oldcontext;
3187 : ListCell *l;
3188 :
3189 384470 : rtsize = epqstate->parentestate->es_range_table_size;
3190 :
3191 : /*
3192 : * We may have a tuple table, even if EPQ wasn't started, because we allow
3193 : * use of EvalPlanQualSlot() without calling EvalPlanQualBegin().
3194 : */
3195 384470 : if (epqstate->tuple_table != NIL)
3196 : {
3197 5864 : memset(epqstate->relsubs_slot, 0,
3198 : rtsize * sizeof(TupleTableSlot *));
3199 5864 : ExecResetTupleTable(epqstate->tuple_table, true);
3200 5864 : epqstate->tuple_table = NIL;
3201 : }
3202 :
3203 : /* EPQ wasn't started, nothing further to do */
3204 384470 : if (estate == NULL)
3205 384230 : return;
3206 :
3207 240 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
3208 :
3209 240 : ExecEndNode(epqstate->recheckplanstate);
3210 :
3211 298 : foreach(l, estate->es_subplanstates)
3212 : {
3213 58 : PlanState *subplanstate = (PlanState *) lfirst(l);
3214 :
3215 58 : ExecEndNode(subplanstate);
3216 : }
3217 :
3218 : /* throw away the per-estate tuple table, some node may have used it */
3219 240 : ExecResetTupleTable(estate->es_tupleTable, false);
3220 :
3221 : /* Close any result and trigger target relations attached to this EState */
3222 240 : ExecCloseResultRelations(estate);
3223 :
3224 240 : MemoryContextSwitchTo(oldcontext);
3225 :
3226 : /*
3227 : * NULLify the partition directory before freeing the executor state.
3228 : * Since EvalPlanQualStart() just borrowed the parent EState's directory,
3229 : * we'd better leave it up to the parent to delete it.
3230 : */
3231 240 : estate->es_partition_directory = NULL;
3232 :
3233 240 : FreeExecutorState(estate);
3234 :
3235 : /* Mark EPQState idle */
3236 240 : epqstate->origslot = NULL;
3237 240 : epqstate->recheckestate = NULL;
3238 240 : epqstate->recheckplanstate = NULL;
3239 240 : epqstate->relsubs_rowmark = NULL;
3240 240 : epqstate->relsubs_done = NULL;
3241 240 : epqstate->relsubs_blocked = NULL;
3242 : }
|