Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * execMain.c
4 : * top level executor interface routines
5 : *
6 : * INTERFACE ROUTINES
7 : * ExecutorStart()
8 : * ExecutorRun()
9 : * ExecutorFinish()
10 : * ExecutorEnd()
11 : *
12 : * These four procedures are the external interface to the executor.
13 : * In each case, the query descriptor is required as an argument.
14 : *
15 : * ExecutorStart must be called at the beginning of execution of any
16 : * query plan and ExecutorEnd must always be called at the end of
17 : * execution of a plan (unless it is aborted due to error).
18 : *
19 : * ExecutorRun accepts direction and count arguments that specify whether
20 : * the plan is to be executed forwards, backwards, and for how many tuples.
21 : * In some cases ExecutorRun may be called multiple times to process all
22 : * the tuples for a plan. It is also acceptable to stop short of executing
23 : * the whole plan (but only if it is a SELECT).
24 : *
25 : * ExecutorFinish must be called after the final ExecutorRun call and
26 : * before ExecutorEnd. This can be omitted only in case of EXPLAIN,
27 : * which should also omit ExecutorRun.
28 : *
29 : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
30 : * Portions Copyright (c) 1994, Regents of the University of California
31 : *
32 : *
33 : * IDENTIFICATION
34 : * src/backend/executor/execMain.c
35 : *
36 : *-------------------------------------------------------------------------
37 : */
38 : #include "postgres.h"
39 :
40 : #include "access/sysattr.h"
41 : #include "access/table.h"
42 : #include "access/tableam.h"
43 : #include "access/xact.h"
44 : #include "catalog/namespace.h"
45 : #include "catalog/partition.h"
46 : #include "commands/matview.h"
47 : #include "commands/trigger.h"
48 : #include "executor/executor.h"
49 : #include "executor/nodeSubplan.h"
50 : #include "foreign/fdwapi.h"
51 : #include "mb/pg_wchar.h"
52 : #include "miscadmin.h"
53 : #include "nodes/queryjumble.h"
54 : #include "parser/parse_relation.h"
55 : #include "pgstat.h"
56 : #include "rewrite/rewriteHandler.h"
57 : #include "tcop/utility.h"
58 : #include "utils/acl.h"
59 : #include "utils/backend_status.h"
60 : #include "utils/lsyscache.h"
61 : #include "utils/partcache.h"
62 : #include "utils/rls.h"
63 : #include "utils/snapmgr.h"
64 :
65 :
66 : /* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
67 : ExecutorStart_hook_type ExecutorStart_hook = NULL;
68 : ExecutorRun_hook_type ExecutorRun_hook = NULL;
69 : ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
70 : ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
71 :
72 : /* Hook for plugin to get control in ExecCheckPermissions() */
73 : ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
74 :
75 : /* decls for local routines only used within this module */
76 : static void InitPlan(QueryDesc *queryDesc, int eflags);
77 : static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
78 : static void ExecPostprocessPlan(EState *estate);
79 : static void ExecEndPlan(PlanState *planstate, EState *estate);
80 : static void ExecutePlan(EState *estate, PlanState *planstate,
81 : bool use_parallel_mode,
82 : CmdType operation,
83 : bool sendTuples,
84 : uint64 numberTuples,
85 : ScanDirection direction,
86 : DestReceiver *dest,
87 : bool execute_once);
88 : static bool ExecCheckOneRelPerms(RTEPermissionInfo *perminfo);
89 : static bool ExecCheckPermissionsModified(Oid relOid, Oid userid,
90 : Bitmapset *modifiedCols,
91 : AclMode requiredPerms);
92 : static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
93 : static void EvalPlanQualStart(EPQState *epqstate, Plan *planTree);
94 :
95 : /* end of local decls */
96 :
97 :
98 : /* ----------------------------------------------------------------
99 : * ExecutorStart
100 : *
101 : * This routine must be called at the beginning of any execution of any
102 : * query plan
103 : *
104 : * Takes a QueryDesc previously created by CreateQueryDesc (which is separate
105 : * only because some places use QueryDescs for utility commands). The tupDesc
106 : * field of the QueryDesc is filled in to describe the tuples that will be
107 : * returned, and the internal fields (estate and planstate) are set up.
108 : *
109 : * eflags contains flag bits as described in executor.h.
110 : *
111 : * NB: the CurrentMemoryContext when this is called will become the parent
112 : * of the per-query context used for this Executor invocation.
113 : *
114 : * We provide a function hook variable that lets loadable plugins
115 : * get control when ExecutorStart is called. Such a plugin would
116 : * normally call standard_ExecutorStart().
117 : *
118 : * ----------------------------------------------------------------
119 : */
120 : void
121 637572 : ExecutorStart(QueryDesc *queryDesc, int eflags)
122 : {
123 : /*
124 : * In some cases (e.g. an EXECUTE statement or an execute message with the
125 : * extended query protocol) the query_id won't be reported, so do it now.
126 : *
127 : * Note that it's harmless to report the query_id multiple times, as the
128 : * call will be ignored if the top level query_id has already been
129 : * reported.
130 : */
131 637572 : pgstat_report_query_id(queryDesc->plannedstmt->queryId, false);
132 :
133 637572 : if (ExecutorStart_hook)
134 109108 : (*ExecutorStart_hook) (queryDesc, eflags);
135 : else
136 528464 : standard_ExecutorStart(queryDesc, eflags);
137 635652 : }
138 :
139 : void
140 637572 : standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
141 : {
142 : EState *estate;
143 : MemoryContext oldcontext;
144 :
145 : /* sanity checks: queryDesc must not be started already */
146 : Assert(queryDesc != NULL);
147 : Assert(queryDesc->estate == NULL);
148 :
149 : /* caller must ensure the query's snapshot is active */
150 : Assert(GetActiveSnapshot() == queryDesc->snapshot);
151 :
152 : /*
153 : * If the transaction is read-only, we need to check if any writes are
154 : * planned to non-temporary tables. EXPLAIN is considered read-only.
155 : *
156 : * Don't allow writes in parallel mode. Supporting UPDATE and DELETE
157 : * would require (a) storing the combo CID hash in shared memory, rather
158 : * than synchronizing it just once at the start of parallelism, and (b) an
159 : * alternative to heap_update()'s reliance on xmax for mutual exclusion.
160 : * INSERT may have no such troubles, but we forbid it to simplify the
161 : * checks.
162 : *
163 : * We have lower-level defenses in CommandCounterIncrement and elsewhere
164 : * against performing unsafe operations in parallel mode, but this gives a
165 : * more user-friendly error message.
166 : */
167 637572 : if ((XactReadOnly || IsInParallelMode()) &&
168 137156 : !(eflags & EXEC_FLAG_EXPLAIN_ONLY))
169 137156 : ExecCheckXactReadOnly(queryDesc->plannedstmt);
170 :
171 : /*
172 : * Build EState, switch into per-query memory context for startup.
173 : */
174 637556 : estate = CreateExecutorState();
175 637556 : queryDesc->estate = estate;
176 :
177 637556 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
178 :
179 : /*
180 : * Fill in external parameters, if any, from queryDesc; and allocate
181 : * workspace for internal parameters
182 : */
183 637556 : estate->es_param_list_info = queryDesc->params;
184 :
185 637556 : if (queryDesc->plannedstmt->paramExecTypes != NIL)
186 : {
187 : int nParamExec;
188 :
189 185166 : nParamExec = list_length(queryDesc->plannedstmt->paramExecTypes);
190 185166 : estate->es_param_exec_vals = (ParamExecData *)
191 185166 : palloc0(nParamExec * sizeof(ParamExecData));
192 : }
193 :
194 : /* We now require all callers to provide sourceText */
195 : Assert(queryDesc->sourceText != NULL);
196 637556 : estate->es_sourceText = queryDesc->sourceText;
197 :
198 : /*
199 : * Fill in the query environment, if any, from queryDesc.
200 : */
201 637556 : estate->es_queryEnv = queryDesc->queryEnv;
202 :
203 : /*
204 : * If non-read-only query, set the command ID to mark output tuples with
205 : */
206 637556 : switch (queryDesc->operation)
207 : {
208 517618 : case CMD_SELECT:
209 :
210 : /*
211 : * SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark
212 : * tuples
213 : */
214 517618 : if (queryDesc->plannedstmt->rowMarks != NIL ||
215 509434 : queryDesc->plannedstmt->hasModifyingCTE)
216 8318 : estate->es_output_cid = GetCurrentCommandId(true);
217 :
218 : /*
219 : * A SELECT without modifying CTEs can't possibly queue triggers,
220 : * so force skip-triggers mode. This is just a marginal efficiency
221 : * hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
222 : * all that expensive, but we might as well do it.
223 : */
224 517618 : if (!queryDesc->plannedstmt->hasModifyingCTE)
225 517478 : eflags |= EXEC_FLAG_SKIP_TRIGGERS;
226 517618 : break;
227 :
228 119938 : case CMD_INSERT:
229 : case CMD_DELETE:
230 : case CMD_UPDATE:
231 : case CMD_MERGE:
232 119938 : estate->es_output_cid = GetCurrentCommandId(true);
233 119938 : break;
234 :
235 0 : default:
236 0 : elog(ERROR, "unrecognized operation code: %d",
237 : (int) queryDesc->operation);
238 : break;
239 : }
240 :
241 : /*
242 : * Copy other important information into the EState
243 : */
244 637556 : estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
245 637556 : estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
246 637556 : estate->es_top_eflags = eflags;
247 637556 : estate->es_instrument = queryDesc->instrument_options;
248 637556 : estate->es_jit_flags = queryDesc->plannedstmt->jitFlags;
249 :
250 : /*
251 : * Set up an AFTER-trigger statement context, unless told not to, or
252 : * unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
253 : */
254 637556 : if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY)))
255 118596 : AfterTriggerBeginQuery();
256 :
257 : /*
258 : * Initialize the plan state tree
259 : */
260 637556 : InitPlan(queryDesc, eflags);
261 :
262 635652 : MemoryContextSwitchTo(oldcontext);
263 635652 : }
264 :
265 : /* ----------------------------------------------------------------
266 : * ExecutorRun
267 : *
268 : * This is the main routine of the executor module. It accepts
269 : * the query descriptor from the traffic cop and executes the
270 : * query plan.
271 : *
272 : * ExecutorStart must have been called already.
273 : *
274 : * If direction is NoMovementScanDirection then nothing is done
275 : * except to start up/shut down the destination. Otherwise,
276 : * we retrieve up to 'count' tuples in the specified direction.
277 : *
278 : * Note: count = 0 is interpreted as no portal limit, i.e., run to
279 : * completion. Also note that the count limit is only applied to
280 : * retrieved tuples, not for instance to those inserted/updated/deleted
281 : * by a ModifyTable plan node.
282 : *
283 : * There is no return value, but output tuples (if any) are sent to
284 : * the destination receiver specified in the QueryDesc; and the number
285 : * of tuples processed at the top level can be found in
286 : * estate->es_processed. The total number of tuples processed in all
287 : * the ExecutorRun calls can be found in estate->es_total_processed.
288 : *
289 : * We provide a function hook variable that lets loadable plugins
290 : * get control when ExecutorRun is called. Such a plugin would
291 : * normally call standard_ExecutorRun().
292 : *
293 : * ----------------------------------------------------------------
294 : */
295 : void
296 629050 : ExecutorRun(QueryDesc *queryDesc,
297 : ScanDirection direction, uint64 count,
298 : bool execute_once)
299 : {
300 629050 : if (ExecutorRun_hook)
301 106382 : (*ExecutorRun_hook) (queryDesc, direction, count, execute_once);
302 : else
303 522668 : standard_ExecutorRun(queryDesc, direction, count, execute_once);
304 605318 : }
305 :
306 : void
307 629050 : standard_ExecutorRun(QueryDesc *queryDesc,
308 : ScanDirection direction, uint64 count, bool execute_once)
309 : {
310 : EState *estate;
311 : CmdType operation;
312 : DestReceiver *dest;
313 : bool sendTuples;
314 : MemoryContext oldcontext;
315 :
316 : /* sanity checks */
317 : Assert(queryDesc != NULL);
318 :
319 629050 : estate = queryDesc->estate;
320 :
321 : Assert(estate != NULL);
322 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
323 :
324 : /* caller must ensure the query's snapshot is active */
325 : Assert(GetActiveSnapshot() == estate->es_snapshot);
326 :
327 : /*
328 : * Switch into per-query memory context
329 : */
330 629050 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
331 :
332 : /* Allow instrumentation of Executor overall runtime */
333 629050 : if (queryDesc->totaltime)
334 71912 : InstrStartNode(queryDesc->totaltime);
335 :
336 : /*
337 : * extract information from the query descriptor and the query feature.
338 : */
339 629050 : operation = queryDesc->operation;
340 629050 : dest = queryDesc->dest;
341 :
342 : /*
343 : * startup tuple receiver, if we will be emitting tuples
344 : */
345 629050 : estate->es_processed = 0;
346 :
347 746900 : sendTuples = (operation == CMD_SELECT ||
348 117850 : queryDesc->plannedstmt->hasReturning);
349 :
350 629050 : if (sendTuples)
351 515026 : dest->rStartup(dest, operation, queryDesc->tupDesc);
352 :
353 : /*
354 : * run plan
355 : */
356 629014 : if (!ScanDirectionIsNoMovement(direction))
357 : {
358 627794 : if (execute_once && queryDesc->already_executed)
359 0 : elog(ERROR, "can't re-execute query flagged for single execution");
360 627794 : queryDesc->already_executed = true;
361 :
362 627794 : ExecutePlan(estate,
363 : queryDesc->planstate,
364 627794 : queryDesc->plannedstmt->parallelModeNeeded,
365 : operation,
366 : sendTuples,
367 : count,
368 : direction,
369 : dest,
370 : execute_once);
371 : }
372 :
373 : /*
374 : * Update es_total_processed to keep track of the number of tuples
375 : * processed across multiple ExecutorRun() calls.
376 : */
377 605318 : estate->es_total_processed += estate->es_processed;
378 :
379 : /*
380 : * shutdown tuple receiver, if we started it
381 : */
382 605318 : if (sendTuples)
383 494320 : dest->rShutdown(dest);
384 :
385 605318 : if (queryDesc->totaltime)
386 69278 : InstrStopNode(queryDesc->totaltime, estate->es_processed);
387 :
388 605318 : MemoryContextSwitchTo(oldcontext);
389 605318 : }
390 :
391 : /* ----------------------------------------------------------------
392 : * ExecutorFinish
393 : *
394 : * This routine must be called after the last ExecutorRun call.
395 : * It performs cleanup such as firing AFTER triggers. It is
396 : * separate from ExecutorEnd because EXPLAIN ANALYZE needs to
397 : * include these actions in the total runtime.
398 : *
399 : * We provide a function hook variable that lets loadable plugins
400 : * get control when ExecutorFinish is called. Such a plugin would
401 : * normally call standard_ExecutorFinish().
402 : *
403 : * ----------------------------------------------------------------
404 : */
405 : void
406 592758 : ExecutorFinish(QueryDesc *queryDesc)
407 : {
408 592758 : if (ExecutorFinish_hook)
409 96232 : (*ExecutorFinish_hook) (queryDesc);
410 : else
411 496526 : standard_ExecutorFinish(queryDesc);
412 591674 : }
413 :
414 : void
415 592758 : standard_ExecutorFinish(QueryDesc *queryDesc)
416 : {
417 : EState *estate;
418 : MemoryContext oldcontext;
419 :
420 : /* sanity checks */
421 : Assert(queryDesc != NULL);
422 :
423 592758 : estate = queryDesc->estate;
424 :
425 : Assert(estate != NULL);
426 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
427 :
428 : /* This should be run once and only once per Executor instance */
429 : Assert(!estate->es_finished);
430 :
431 : /* Switch into per-query memory context */
432 592758 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
433 :
434 : /* Allow instrumentation of Executor overall runtime */
435 592758 : if (queryDesc->totaltime)
436 69278 : InstrStartNode(queryDesc->totaltime);
437 :
438 : /* Run ModifyTable nodes to completion */
439 592758 : ExecPostprocessPlan(estate);
440 :
441 : /* Execute queued AFTER triggers, unless told not to */
442 592758 : if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS))
443 114234 : AfterTriggerEndQuery(estate);
444 :
445 591674 : if (queryDesc->totaltime)
446 68958 : InstrStopNode(queryDesc->totaltime, 0);
447 :
448 591674 : MemoryContextSwitchTo(oldcontext);
449 :
450 591674 : estate->es_finished = true;
451 591674 : }
452 :
453 : /* ----------------------------------------------------------------
454 : * ExecutorEnd
455 : *
456 : * This routine must be called at the end of execution of any
457 : * query plan
458 : *
459 : * We provide a function hook variable that lets loadable plugins
460 : * get control when ExecutorEnd is called. Such a plugin would
461 : * normally call standard_ExecutorEnd().
462 : *
463 : * ----------------------------------------------------------------
464 : */
465 : void
466 610516 : ExecutorEnd(QueryDesc *queryDesc)
467 : {
468 610516 : if (ExecutorEnd_hook)
469 101190 : (*ExecutorEnd_hook) (queryDesc);
470 : else
471 509326 : standard_ExecutorEnd(queryDesc);
472 610516 : }
473 :
474 : void
475 610516 : standard_ExecutorEnd(QueryDesc *queryDesc)
476 : {
477 : EState *estate;
478 : MemoryContext oldcontext;
479 :
480 : /* sanity checks */
481 : Assert(queryDesc != NULL);
482 :
483 610516 : estate = queryDesc->estate;
484 :
485 : Assert(estate != NULL);
486 :
487 610516 : if (estate->es_parallel_workers_to_launch > 0)
488 670 : pgstat_update_parallel_workers_stats((PgStat_Counter) estate->es_parallel_workers_to_launch,
489 670 : (PgStat_Counter) estate->es_parallel_workers_launched);
490 :
491 : /*
492 : * Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
493 : * Assert is needed because ExecutorFinish is new as of 9.1, and callers
494 : * might forget to call it.
495 : */
496 : Assert(estate->es_finished ||
497 : (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
498 :
499 : /*
500 : * Switch into per-query memory context to run ExecEndPlan
501 : */
502 610516 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
503 :
504 610516 : ExecEndPlan(queryDesc->planstate, estate);
505 :
506 : /* do away with our snapshots */
507 610516 : UnregisterSnapshot(estate->es_snapshot);
508 610516 : UnregisterSnapshot(estate->es_crosscheck_snapshot);
509 :
510 : /*
511 : * Must switch out of context before destroying it
512 : */
513 610516 : MemoryContextSwitchTo(oldcontext);
514 :
515 : /*
516 : * Release EState and per-query memory context. This should release
517 : * everything the executor has allocated.
518 : */
519 610516 : FreeExecutorState(estate);
520 :
521 : /* Reset queryDesc fields that no longer point to anything */
522 610516 : queryDesc->tupDesc = NULL;
523 610516 : queryDesc->estate = NULL;
524 610516 : queryDesc->planstate = NULL;
525 610516 : queryDesc->totaltime = NULL;
526 610516 : }
527 :
528 : /* ----------------------------------------------------------------
529 : * ExecutorRewind
530 : *
531 : * This routine may be called on an open queryDesc to rewind it
532 : * to the start.
533 : * ----------------------------------------------------------------
534 : */
535 : void
536 104 : ExecutorRewind(QueryDesc *queryDesc)
537 : {
538 : EState *estate;
539 : MemoryContext oldcontext;
540 :
541 : /* sanity checks */
542 : Assert(queryDesc != NULL);
543 :
544 104 : estate = queryDesc->estate;
545 :
546 : Assert(estate != NULL);
547 :
548 : /* It's probably not sensible to rescan updating queries */
549 : Assert(queryDesc->operation == CMD_SELECT);
550 :
551 : /*
552 : * Switch into per-query memory context
553 : */
554 104 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
555 :
556 : /*
557 : * rescan plan
558 : */
559 104 : ExecReScan(queryDesc->planstate);
560 :
561 104 : MemoryContextSwitchTo(oldcontext);
562 104 : }
563 :
564 :
565 : /*
566 : * ExecCheckPermissions
567 : * Check access permissions of relations mentioned in a query
568 : *
569 : * Returns true if permissions are adequate. Otherwise, throws an appropriate
570 : * error if ereport_on_violation is true, or simply returns false otherwise.
571 : *
572 : * Note that this does NOT address row-level security policies (aka: RLS). If
573 : * rows will be returned to the user as a result of this permission check
574 : * passing, then RLS also needs to be consulted (and check_enable_rls()).
575 : *
576 : * See rewrite/rowsecurity.c.
577 : *
578 : * NB: rangeTable is no longer used by us, but kept around for the hooks that
579 : * might still want to look at the RTEs.
580 : */
581 : bool
582 647820 : ExecCheckPermissions(List *rangeTable, List *rteperminfos,
583 : bool ereport_on_violation)
584 : {
585 : ListCell *l;
586 647820 : bool result = true;
587 :
588 : #ifdef USE_ASSERT_CHECKING
589 : Bitmapset *indexset = NULL;
590 :
591 : /* Check that rteperminfos is consistent with rangeTable */
592 : foreach(l, rangeTable)
593 : {
594 : RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
595 :
596 : if (rte->perminfoindex != 0)
597 : {
598 : /* Sanity checks */
599 :
600 : /*
601 : * Only relation RTEs and subquery RTEs that were once relation
602 : * RTEs (views) have their perminfoindex set.
603 : */
604 : Assert(rte->rtekind == RTE_RELATION ||
605 : (rte->rtekind == RTE_SUBQUERY &&
606 : rte->relkind == RELKIND_VIEW));
607 :
608 : (void) getRTEPermissionInfo(rteperminfos, rte);
609 : /* Many-to-one mapping not allowed */
610 : Assert(!bms_is_member(rte->perminfoindex, indexset));
611 : indexset = bms_add_member(indexset, rte->perminfoindex);
612 : }
613 : }
614 :
615 : /* All rteperminfos are referenced */
616 : Assert(bms_num_members(indexset) == list_length(rteperminfos));
617 : #endif
618 :
619 1170234 : foreach(l, rteperminfos)
620 : {
621 524028 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
622 :
623 : Assert(OidIsValid(perminfo->relid));
624 524028 : result = ExecCheckOneRelPerms(perminfo);
625 524028 : if (!result)
626 : {
627 1614 : if (ereport_on_violation)
628 1602 : aclcheck_error(ACLCHECK_NO_PRIV,
629 1602 : get_relkind_objtype(get_rel_relkind(perminfo->relid)),
630 1602 : get_rel_name(perminfo->relid));
631 12 : return false;
632 : }
633 : }
634 :
635 646206 : if (ExecutorCheckPerms_hook)
636 12 : result = (*ExecutorCheckPerms_hook) (rangeTable, rteperminfos,
637 : ereport_on_violation);
638 646206 : return result;
639 : }
640 :
641 : /*
642 : * ExecCheckOneRelPerms
643 : * Check access permissions for a single relation.
644 : */
645 : static bool
646 524028 : ExecCheckOneRelPerms(RTEPermissionInfo *perminfo)
647 : {
648 : AclMode requiredPerms;
649 : AclMode relPerms;
650 : AclMode remainingPerms;
651 : Oid userid;
652 524028 : Oid relOid = perminfo->relid;
653 :
654 524028 : requiredPerms = perminfo->requiredPerms;
655 : Assert(requiredPerms != 0);
656 :
657 : /*
658 : * userid to check as: current user unless we have a setuid indication.
659 : *
660 : * Note: GetUserId() is presently fast enough that there's no harm in
661 : * calling it separately for each relation. If that stops being true, we
662 : * could call it once in ExecCheckPermissions and pass the userid down
663 : * from there. But for now, no need for the extra clutter.
664 : */
665 1048056 : userid = OidIsValid(perminfo->checkAsUser) ?
666 524028 : perminfo->checkAsUser : GetUserId();
667 :
668 : /*
669 : * We must have *all* the requiredPerms bits, but some of the bits can be
670 : * satisfied from column-level rather than relation-level permissions.
671 : * First, remove any bits that are satisfied by relation permissions.
672 : */
673 524028 : relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL);
674 524028 : remainingPerms = requiredPerms & ~relPerms;
675 524028 : if (remainingPerms != 0)
676 : {
677 2516 : int col = -1;
678 :
679 : /*
680 : * If we lack any permissions that exist only as relation permissions,
681 : * we can fail straight away.
682 : */
683 2516 : if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE))
684 150 : return false;
685 :
686 : /*
687 : * Check to see if we have the needed privileges at column level.
688 : *
689 : * Note: failures just report a table-level error; it would be nicer
690 : * to report a column-level error if we have some but not all of the
691 : * column privileges.
692 : */
693 2366 : if (remainingPerms & ACL_SELECT)
694 : {
695 : /*
696 : * When the query doesn't explicitly reference any columns (for
697 : * example, SELECT COUNT(*) FROM table), allow the query if we
698 : * have SELECT on any column of the rel, as per SQL spec.
699 : */
700 1398 : if (bms_is_empty(perminfo->selectedCols))
701 : {
702 54 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
703 : ACLMASK_ANY) != ACLCHECK_OK)
704 12 : return false;
705 : }
706 :
707 2264 : while ((col = bms_next_member(perminfo->selectedCols, col)) >= 0)
708 : {
709 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
710 1770 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
711 :
712 1770 : if (attno == InvalidAttrNumber)
713 : {
714 : /* Whole-row reference, must have priv on all cols */
715 54 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
716 : ACLMASK_ALL) != ACLCHECK_OK)
717 30 : return false;
718 : }
719 : else
720 : {
721 1716 : if (pg_attribute_aclcheck(relOid, attno, userid,
722 : ACL_SELECT) != ACLCHECK_OK)
723 862 : return false;
724 : }
725 : }
726 : }
727 :
728 : /*
729 : * Basically the same for the mod columns, for both INSERT and UPDATE
730 : * privilege as specified by remainingPerms.
731 : */
732 1462 : if (remainingPerms & ACL_INSERT &&
733 308 : !ExecCheckPermissionsModified(relOid,
734 : userid,
735 : perminfo->insertedCols,
736 : ACL_INSERT))
737 176 : return false;
738 :
739 1286 : if (remainingPerms & ACL_UPDATE &&
740 876 : !ExecCheckPermissionsModified(relOid,
741 : userid,
742 : perminfo->updatedCols,
743 : ACL_UPDATE))
744 384 : return false;
745 : }
746 522414 : return true;
747 : }
748 :
749 : /*
750 : * ExecCheckPermissionsModified
751 : * Check INSERT or UPDATE access permissions for a single relation (these
752 : * are processed uniformly).
753 : */
754 : static bool
755 1184 : ExecCheckPermissionsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols,
756 : AclMode requiredPerms)
757 : {
758 1184 : int col = -1;
759 :
760 : /*
761 : * When the query doesn't explicitly update any columns, allow the query
762 : * if we have permission on any column of the rel. This is to handle
763 : * SELECT FOR UPDATE as well as possible corner cases in UPDATE.
764 : */
765 1184 : if (bms_is_empty(modifiedCols))
766 : {
767 48 : if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms,
768 : ACLMASK_ANY) != ACLCHECK_OK)
769 48 : return false;
770 : }
771 :
772 1892 : while ((col = bms_next_member(modifiedCols, col)) >= 0)
773 : {
774 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
775 1268 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
776 :
777 1268 : if (attno == InvalidAttrNumber)
778 : {
779 : /* whole-row reference can't happen here */
780 0 : elog(ERROR, "whole-row update is not implemented");
781 : }
782 : else
783 : {
784 1268 : if (pg_attribute_aclcheck(relOid, attno, userid,
785 : requiredPerms) != ACLCHECK_OK)
786 512 : return false;
787 : }
788 : }
789 624 : return true;
790 : }
791 :
792 : /*
793 : * Check that the query does not imply any writes to non-temp tables;
794 : * unless we're in parallel mode, in which case don't even allow writes
795 : * to temp tables.
796 : *
797 : * Note: in a Hot Standby this would need to reject writes to temp
798 : * tables just as we do in parallel mode; but an HS standby can't have created
799 : * any temp tables in the first place, so no need to check that.
800 : */
801 : static void
802 137156 : ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
803 : {
804 : ListCell *l;
805 :
806 : /*
807 : * Fail if write permissions are requested in parallel mode for table
808 : * (temp or non-temp), otherwise fail for any non-temp table.
809 : */
810 228480 : foreach(l, plannedstmt->permInfos)
811 : {
812 91340 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
813 :
814 91340 : if ((perminfo->requiredPerms & (~ACL_SELECT)) == 0)
815 91312 : continue;
816 :
817 28 : if (isTempNamespace(get_rel_namespace(perminfo->relid)))
818 12 : continue;
819 :
820 16 : PreventCommandIfReadOnly(CreateCommandName((Node *) plannedstmt));
821 : }
822 :
823 137140 : if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE)
824 12 : PreventCommandIfParallelMode(CreateCommandName((Node *) plannedstmt));
825 137140 : }
826 :
827 :
828 : /* ----------------------------------------------------------------
829 : * InitPlan
830 : *
831 : * Initializes the query plan: open files, allocate storage
832 : * and start up the rule manager
833 : * ----------------------------------------------------------------
834 : */
835 : static void
836 637556 : InitPlan(QueryDesc *queryDesc, int eflags)
837 : {
838 637556 : CmdType operation = queryDesc->operation;
839 637556 : PlannedStmt *plannedstmt = queryDesc->plannedstmt;
840 637556 : Plan *plan = plannedstmt->planTree;
841 637556 : List *rangeTable = plannedstmt->rtable;
842 637556 : EState *estate = queryDesc->estate;
843 : PlanState *planstate;
844 : TupleDesc tupType;
845 : ListCell *l;
846 : int i;
847 :
848 : /*
849 : * Do permissions checks
850 : */
851 637556 : ExecCheckPermissions(rangeTable, plannedstmt->permInfos, true);
852 :
853 : /*
854 : * initialize the node's execution state
855 : */
856 636038 : ExecInitRangeTable(estate, rangeTable, plannedstmt->permInfos);
857 :
858 636038 : estate->es_plannedstmt = plannedstmt;
859 :
860 : /*
861 : * Next, build the ExecRowMark array from the PlanRowMark(s), if any.
862 : */
863 636038 : if (plannedstmt->rowMarks)
864 : {
865 10058 : estate->es_rowmarks = (ExecRowMark **)
866 10058 : palloc0(estate->es_range_table_size * sizeof(ExecRowMark *));
867 23152 : foreach(l, plannedstmt->rowMarks)
868 : {
869 13100 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
870 : Oid relid;
871 : Relation relation;
872 : ExecRowMark *erm;
873 :
874 : /* ignore "parent" rowmarks; they are irrelevant at runtime */
875 13100 : if (rc->isParent)
876 1880 : continue;
877 :
878 : /* get relation's OID (will produce InvalidOid if subquery) */
879 11220 : relid = exec_rt_fetch(rc->rti, estate)->relid;
880 :
881 : /* open relation, if we need to access it for this mark type */
882 11220 : switch (rc->markType)
883 : {
884 10492 : case ROW_MARK_EXCLUSIVE:
885 : case ROW_MARK_NOKEYEXCLUSIVE:
886 : case ROW_MARK_SHARE:
887 : case ROW_MARK_KEYSHARE:
888 : case ROW_MARK_REFERENCE:
889 10492 : relation = ExecGetRangeTableRelation(estate, rc->rti);
890 10492 : break;
891 728 : case ROW_MARK_COPY:
892 : /* no physical table access is required */
893 728 : relation = NULL;
894 728 : break;
895 0 : default:
896 0 : elog(ERROR, "unrecognized markType: %d", rc->markType);
897 : relation = NULL; /* keep compiler quiet */
898 : break;
899 : }
900 :
901 : /* Check that relation is a legal target for marking */
902 11220 : if (relation)
903 10492 : CheckValidRowMarkRel(relation, rc->markType);
904 :
905 11214 : erm = (ExecRowMark *) palloc(sizeof(ExecRowMark));
906 11214 : erm->relation = relation;
907 11214 : erm->relid = relid;
908 11214 : erm->rti = rc->rti;
909 11214 : erm->prti = rc->prti;
910 11214 : erm->rowmarkId = rc->rowmarkId;
911 11214 : erm->markType = rc->markType;
912 11214 : erm->strength = rc->strength;
913 11214 : erm->waitPolicy = rc->waitPolicy;
914 11214 : erm->ermActive = false;
915 11214 : ItemPointerSetInvalid(&(erm->curCtid));
916 11214 : erm->ermExtra = NULL;
917 :
918 : Assert(erm->rti > 0 && erm->rti <= estate->es_range_table_size &&
919 : estate->es_rowmarks[erm->rti - 1] == NULL);
920 :
921 11214 : estate->es_rowmarks[erm->rti - 1] = erm;
922 : }
923 : }
924 :
925 : /*
926 : * Initialize the executor's tuple table to empty.
927 : */
928 636032 : estate->es_tupleTable = NIL;
929 :
930 : /* signal that this EState is not used for EPQ */
931 636032 : estate->es_epq_active = NULL;
932 :
933 : /*
934 : * Initialize private state information for each SubPlan. We must do this
935 : * before running ExecInitNode on the main query tree, since
936 : * ExecInitSubPlan expects to be able to find these entries.
937 : */
938 : Assert(estate->es_subplanstates == NIL);
939 636032 : i = 1; /* subplan indices count from 1 */
940 675950 : foreach(l, plannedstmt->subplans)
941 : {
942 39918 : Plan *subplan = (Plan *) lfirst(l);
943 : PlanState *subplanstate;
944 : int sp_eflags;
945 :
946 : /*
947 : * A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
948 : * it is a parameterless subplan (not initplan), we suggest that it be
949 : * prepared to handle REWIND efficiently; otherwise there is no need.
950 : */
951 39918 : sp_eflags = eflags
952 : & ~(EXEC_FLAG_REWIND | EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK);
953 39918 : if (bms_is_member(i, plannedstmt->rewindPlanIDs))
954 42 : sp_eflags |= EXEC_FLAG_REWIND;
955 :
956 39918 : subplanstate = ExecInitNode(subplan, estate, sp_eflags);
957 :
958 39918 : estate->es_subplanstates = lappend(estate->es_subplanstates,
959 : subplanstate);
960 :
961 39918 : i++;
962 : }
963 :
964 : /*
965 : * Initialize the private state information for all the nodes in the query
966 : * tree. This opens files, allocates storage and leaves us ready to start
967 : * processing tuples.
968 : */
969 636032 : planstate = ExecInitNode(plan, estate, eflags);
970 :
971 : /*
972 : * Get the tuple descriptor describing the type of tuples to return.
973 : */
974 635652 : tupType = ExecGetResultType(planstate);
975 :
976 : /*
977 : * Initialize the junk filter if needed. SELECT queries need a filter if
978 : * there are any junk attrs in the top-level tlist.
979 : */
980 635652 : if (operation == CMD_SELECT)
981 : {
982 516932 : bool junk_filter_needed = false;
983 : ListCell *tlist;
984 :
985 1737570 : foreach(tlist, plan->targetlist)
986 : {
987 1244508 : TargetEntry *tle = (TargetEntry *) lfirst(tlist);
988 :
989 1244508 : if (tle->resjunk)
990 : {
991 23870 : junk_filter_needed = true;
992 23870 : break;
993 : }
994 : }
995 :
996 516932 : if (junk_filter_needed)
997 : {
998 : JunkFilter *j;
999 : TupleTableSlot *slot;
1000 :
1001 23870 : slot = ExecInitExtraTupleSlot(estate, NULL, &TTSOpsVirtual);
1002 23870 : j = ExecInitJunkFilter(planstate->plan->targetlist,
1003 : slot);
1004 23870 : estate->es_junkFilter = j;
1005 :
1006 : /* Want to return the cleaned tuple type */
1007 23870 : tupType = j->jf_cleanTupType;
1008 : }
1009 : }
1010 :
1011 635652 : queryDesc->tupDesc = tupType;
1012 635652 : queryDesc->planstate = planstate;
1013 635652 : }
1014 :
1015 : /*
1016 : * Check that a proposed result relation is a legal target for the operation
1017 : *
1018 : * Generally the parser and/or planner should have noticed any such mistake
1019 : * already, but let's make sure.
1020 : *
1021 : * For MERGE, mergeActions is the list of actions that may be performed. The
1022 : * result relation is required to support every action, regardless of whether
1023 : * or not they are all executed.
1024 : *
1025 : * Note: when changing this function, you probably also need to look at
1026 : * CheckValidRowMarkRel.
1027 : */
1028 : void
1029 131840 : CheckValidResultRel(ResultRelInfo *resultRelInfo, CmdType operation,
1030 : List *mergeActions)
1031 : {
1032 131840 : Relation resultRel = resultRelInfo->ri_RelationDesc;
1033 : FdwRoutine *fdwroutine;
1034 :
1035 : /* Expect a fully-formed ResultRelInfo from InitResultRelInfo(). */
1036 : Assert(resultRelInfo->ri_needLockTagTuple ==
1037 : IsInplaceUpdateRelation(resultRel));
1038 :
1039 131840 : switch (resultRel->rd_rel->relkind)
1040 : {
1041 130662 : case RELKIND_RELATION:
1042 : case RELKIND_PARTITIONED_TABLE:
1043 130662 : CheckCmdReplicaIdentity(resultRel, operation);
1044 130398 : break;
1045 0 : case RELKIND_SEQUENCE:
1046 0 : ereport(ERROR,
1047 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1048 : errmsg("cannot change sequence \"%s\"",
1049 : RelationGetRelationName(resultRel))));
1050 : break;
1051 0 : case RELKIND_TOASTVALUE:
1052 0 : ereport(ERROR,
1053 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1054 : errmsg("cannot change TOAST relation \"%s\"",
1055 : RelationGetRelationName(resultRel))));
1056 : break;
1057 402 : case RELKIND_VIEW:
1058 :
1059 : /*
1060 : * Okay only if there's a suitable INSTEAD OF trigger. Otherwise,
1061 : * complain, but omit errdetail because we haven't got the
1062 : * information handy (and given that it really shouldn't happen,
1063 : * it's not worth great exertion to get).
1064 : */
1065 402 : if (!view_has_instead_trigger(resultRel, operation, mergeActions))
1066 0 : error_view_not_updatable(resultRel, operation, mergeActions,
1067 : NULL);
1068 402 : break;
1069 120 : case RELKIND_MATVIEW:
1070 120 : if (!MatViewIncrementalMaintenanceIsEnabled())
1071 0 : ereport(ERROR,
1072 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1073 : errmsg("cannot change materialized view \"%s\"",
1074 : RelationGetRelationName(resultRel))));
1075 120 : break;
1076 656 : case RELKIND_FOREIGN_TABLE:
1077 : /* Okay only if the FDW supports it */
1078 656 : fdwroutine = resultRelInfo->ri_FdwRoutine;
1079 : switch (operation)
1080 : {
1081 304 : case CMD_INSERT:
1082 304 : if (fdwroutine->ExecForeignInsert == NULL)
1083 10 : ereport(ERROR,
1084 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1085 : errmsg("cannot insert into foreign table \"%s\"",
1086 : RelationGetRelationName(resultRel))));
1087 294 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1088 294 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0)
1089 0 : ereport(ERROR,
1090 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1091 : errmsg("foreign table \"%s\" does not allow inserts",
1092 : RelationGetRelationName(resultRel))));
1093 294 : break;
1094 198 : case CMD_UPDATE:
1095 198 : if (fdwroutine->ExecForeignUpdate == NULL)
1096 4 : ereport(ERROR,
1097 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1098 : errmsg("cannot update foreign table \"%s\"",
1099 : RelationGetRelationName(resultRel))));
1100 194 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1101 194 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0)
1102 0 : ereport(ERROR,
1103 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1104 : errmsg("foreign table \"%s\" does not allow updates",
1105 : RelationGetRelationName(resultRel))));
1106 194 : break;
1107 154 : case CMD_DELETE:
1108 154 : if (fdwroutine->ExecForeignDelete == NULL)
1109 4 : ereport(ERROR,
1110 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1111 : errmsg("cannot delete from foreign table \"%s\"",
1112 : RelationGetRelationName(resultRel))));
1113 150 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1114 150 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0)
1115 0 : ereport(ERROR,
1116 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1117 : errmsg("foreign table \"%s\" does not allow deletes",
1118 : RelationGetRelationName(resultRel))));
1119 150 : break;
1120 0 : default:
1121 0 : elog(ERROR, "unrecognized CmdType: %d", (int) operation);
1122 : break;
1123 : }
1124 638 : break;
1125 0 : default:
1126 0 : ereport(ERROR,
1127 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1128 : errmsg("cannot change relation \"%s\"",
1129 : RelationGetRelationName(resultRel))));
1130 : break;
1131 : }
1132 131558 : }
1133 :
1134 : /*
1135 : * Check that a proposed rowmark target relation is a legal target
1136 : *
1137 : * In most cases parser and/or planner should have noticed this already, but
1138 : * they don't cover all cases.
1139 : */
1140 : static void
1141 10492 : CheckValidRowMarkRel(Relation rel, RowMarkType markType)
1142 : {
1143 : FdwRoutine *fdwroutine;
1144 :
1145 10492 : switch (rel->rd_rel->relkind)
1146 : {
1147 10480 : case RELKIND_RELATION:
1148 : case RELKIND_PARTITIONED_TABLE:
1149 : /* OK */
1150 10480 : break;
1151 0 : case RELKIND_SEQUENCE:
1152 : /* Must disallow this because we don't vacuum sequences */
1153 0 : ereport(ERROR,
1154 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1155 : errmsg("cannot lock rows in sequence \"%s\"",
1156 : RelationGetRelationName(rel))));
1157 : break;
1158 0 : case RELKIND_TOASTVALUE:
1159 : /* We could allow this, but there seems no good reason to */
1160 0 : ereport(ERROR,
1161 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1162 : errmsg("cannot lock rows in TOAST relation \"%s\"",
1163 : RelationGetRelationName(rel))));
1164 : break;
1165 0 : case RELKIND_VIEW:
1166 : /* Should not get here; planner should have expanded the view */
1167 0 : ereport(ERROR,
1168 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1169 : errmsg("cannot lock rows in view \"%s\"",
1170 : RelationGetRelationName(rel))));
1171 : break;
1172 12 : case RELKIND_MATVIEW:
1173 : /* Allow referencing a matview, but not actual locking clauses */
1174 12 : if (markType != ROW_MARK_REFERENCE)
1175 6 : ereport(ERROR,
1176 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1177 : errmsg("cannot lock rows in materialized view \"%s\"",
1178 : RelationGetRelationName(rel))));
1179 6 : break;
1180 0 : case RELKIND_FOREIGN_TABLE:
1181 : /* Okay only if the FDW supports it */
1182 0 : fdwroutine = GetFdwRoutineForRelation(rel, false);
1183 0 : if (fdwroutine->RefetchForeignRow == NULL)
1184 0 : ereport(ERROR,
1185 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1186 : errmsg("cannot lock rows in foreign table \"%s\"",
1187 : RelationGetRelationName(rel))));
1188 0 : break;
1189 0 : default:
1190 0 : ereport(ERROR,
1191 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1192 : errmsg("cannot lock rows in relation \"%s\"",
1193 : RelationGetRelationName(rel))));
1194 : break;
1195 : }
1196 10486 : }
1197 :
1198 : /*
1199 : * Initialize ResultRelInfo data for one result relation
1200 : *
1201 : * Caution: before Postgres 9.1, this function included the relkind checking
1202 : * that's now in CheckValidResultRel, and it also did ExecOpenIndices if
1203 : * appropriate. Be sure callers cover those needs.
1204 : */
1205 : void
1206 436558 : InitResultRelInfo(ResultRelInfo *resultRelInfo,
1207 : Relation resultRelationDesc,
1208 : Index resultRelationIndex,
1209 : ResultRelInfo *partition_root_rri,
1210 : int instrument_options)
1211 : {
1212 20954784 : MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
1213 436558 : resultRelInfo->type = T_ResultRelInfo;
1214 436558 : resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
1215 436558 : resultRelInfo->ri_RelationDesc = resultRelationDesc;
1216 436558 : resultRelInfo->ri_NumIndices = 0;
1217 436558 : resultRelInfo->ri_IndexRelationDescs = NULL;
1218 436558 : resultRelInfo->ri_IndexRelationInfo = NULL;
1219 436558 : resultRelInfo->ri_needLockTagTuple =
1220 436558 : IsInplaceUpdateRelation(resultRelationDesc);
1221 : /* make a copy so as not to depend on relcache info not changing... */
1222 436558 : resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
1223 436558 : if (resultRelInfo->ri_TrigDesc)
1224 : {
1225 17634 : int n = resultRelInfo->ri_TrigDesc->numtriggers;
1226 :
1227 17634 : resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
1228 17634 : palloc0(n * sizeof(FmgrInfo));
1229 17634 : resultRelInfo->ri_TrigWhenExprs = (ExprState **)
1230 17634 : palloc0(n * sizeof(ExprState *));
1231 17634 : if (instrument_options)
1232 0 : resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options, false);
1233 : }
1234 : else
1235 : {
1236 418924 : resultRelInfo->ri_TrigFunctions = NULL;
1237 418924 : resultRelInfo->ri_TrigWhenExprs = NULL;
1238 418924 : resultRelInfo->ri_TrigInstrument = NULL;
1239 : }
1240 436558 : if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1241 678 : resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
1242 : else
1243 435880 : resultRelInfo->ri_FdwRoutine = NULL;
1244 :
1245 : /* The following fields are set later if needed */
1246 436558 : resultRelInfo->ri_RowIdAttNo = 0;
1247 436558 : resultRelInfo->ri_extraUpdatedCols = NULL;
1248 436558 : resultRelInfo->ri_projectNew = NULL;
1249 436558 : resultRelInfo->ri_newTupleSlot = NULL;
1250 436558 : resultRelInfo->ri_oldTupleSlot = NULL;
1251 436558 : resultRelInfo->ri_projectNewInfoValid = false;
1252 436558 : resultRelInfo->ri_FdwState = NULL;
1253 436558 : resultRelInfo->ri_usesFdwDirectModify = false;
1254 436558 : resultRelInfo->ri_ConstraintExprs = NULL;
1255 436558 : resultRelInfo->ri_GeneratedExprsI = NULL;
1256 436558 : resultRelInfo->ri_GeneratedExprsU = NULL;
1257 436558 : resultRelInfo->ri_projectReturning = NULL;
1258 436558 : resultRelInfo->ri_onConflictArbiterIndexes = NIL;
1259 436558 : resultRelInfo->ri_onConflict = NULL;
1260 436558 : resultRelInfo->ri_ReturningSlot = NULL;
1261 436558 : resultRelInfo->ri_TrigOldSlot = NULL;
1262 436558 : resultRelInfo->ri_TrigNewSlot = NULL;
1263 436558 : resultRelInfo->ri_MergeActions[MERGE_WHEN_MATCHED] = NIL;
1264 436558 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = NIL;
1265 436558 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = NIL;
1266 436558 : resultRelInfo->ri_MergeJoinCondition = NULL;
1267 :
1268 : /*
1269 : * Only ExecInitPartitionInfo() and ExecInitPartitionDispatchInfo() pass
1270 : * non-NULL partition_root_rri. For child relations that are part of the
1271 : * initial query rather than being dynamically added by tuple routing,
1272 : * this field is filled in ExecInitModifyTable().
1273 : */
1274 436558 : resultRelInfo->ri_RootResultRelInfo = partition_root_rri;
1275 : /* Set by ExecGetRootToChildMap */
1276 436558 : resultRelInfo->ri_RootToChildMap = NULL;
1277 436558 : resultRelInfo->ri_RootToChildMapValid = false;
1278 : /* Set by ExecInitRoutingInfo */
1279 436558 : resultRelInfo->ri_PartitionTupleSlot = NULL;
1280 436558 : resultRelInfo->ri_ChildToRootMap = NULL;
1281 436558 : resultRelInfo->ri_ChildToRootMapValid = false;
1282 436558 : resultRelInfo->ri_CopyMultiInsertBuffer = NULL;
1283 436558 : }
1284 :
1285 : /*
1286 : * ExecGetTriggerResultRel
1287 : * Get a ResultRelInfo for a trigger target relation.
1288 : *
1289 : * Most of the time, triggers are fired on one of the result relations of the
1290 : * query, and so we can just return a member of the es_result_relations array,
1291 : * or the es_tuple_routing_result_relations list (if any). (Note: in self-join
1292 : * situations there might be multiple members with the same OID; if so it
1293 : * doesn't matter which one we pick.)
1294 : *
1295 : * However, it is sometimes necessary to fire triggers on other relations;
1296 : * this happens mainly when an RI update trigger queues additional triggers
1297 : * on other relations, which will be processed in the context of the outer
1298 : * query. For efficiency's sake, we want to have a ResultRelInfo for those
1299 : * triggers too; that can avoid repeated re-opening of the relation. (It
1300 : * also provides a way for EXPLAIN ANALYZE to report the runtimes of such
1301 : * triggers.) So we make additional ResultRelInfo's as needed, and save them
1302 : * in es_trig_target_relations.
1303 : */
1304 : ResultRelInfo *
1305 8132 : ExecGetTriggerResultRel(EState *estate, Oid relid,
1306 : ResultRelInfo *rootRelInfo)
1307 : {
1308 : ResultRelInfo *rInfo;
1309 : ListCell *l;
1310 : Relation rel;
1311 : MemoryContext oldcontext;
1312 :
1313 : /* Search through the query result relations */
1314 10414 : foreach(l, estate->es_opened_result_relations)
1315 : {
1316 8986 : rInfo = lfirst(l);
1317 8986 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
1318 6704 : return rInfo;
1319 : }
1320 :
1321 : /*
1322 : * Search through the result relations that were created during tuple
1323 : * routing, if any.
1324 : */
1325 1642 : foreach(l, estate->es_tuple_routing_result_relations)
1326 : {
1327 910 : rInfo = (ResultRelInfo *) lfirst(l);
1328 910 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
1329 696 : return rInfo;
1330 : }
1331 :
1332 : /* Nope, but maybe we already made an extra ResultRelInfo for it */
1333 1074 : foreach(l, estate->es_trig_target_relations)
1334 : {
1335 372 : rInfo = (ResultRelInfo *) lfirst(l);
1336 372 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
1337 30 : return rInfo;
1338 : }
1339 : /* Nope, so we need a new one */
1340 :
1341 : /*
1342 : * Open the target relation's relcache entry. We assume that an
1343 : * appropriate lock is still held by the backend from whenever the trigger
1344 : * event got queued, so we need take no new lock here. Also, we need not
1345 : * recheck the relkind, so no need for CheckValidResultRel.
1346 : */
1347 702 : rel = table_open(relid, NoLock);
1348 :
1349 : /*
1350 : * Make the new entry in the right context.
1351 : */
1352 702 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
1353 702 : rInfo = makeNode(ResultRelInfo);
1354 702 : InitResultRelInfo(rInfo,
1355 : rel,
1356 : 0, /* dummy rangetable index */
1357 : rootRelInfo,
1358 : estate->es_instrument);
1359 702 : estate->es_trig_target_relations =
1360 702 : lappend(estate->es_trig_target_relations, rInfo);
1361 702 : MemoryContextSwitchTo(oldcontext);
1362 :
1363 : /*
1364 : * Currently, we don't need any index information in ResultRelInfos used
1365 : * only for triggers, so no need to call ExecOpenIndices.
1366 : */
1367 :
1368 702 : return rInfo;
1369 : }
1370 :
1371 : /*
1372 : * Return the ancestor relations of a given leaf partition result relation
1373 : * up to and including the query's root target relation.
1374 : *
1375 : * These work much like the ones opened by ExecGetTriggerResultRel, except
1376 : * that we need to keep them in a separate list.
1377 : *
1378 : * These are closed by ExecCloseResultRelations.
1379 : */
1380 : List *
1381 300 : ExecGetAncestorResultRels(EState *estate, ResultRelInfo *resultRelInfo)
1382 : {
1383 300 : ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
1384 300 : Relation partRel = resultRelInfo->ri_RelationDesc;
1385 : Oid rootRelOid;
1386 :
1387 300 : if (!partRel->rd_rel->relispartition)
1388 0 : elog(ERROR, "cannot find ancestors of a non-partition result relation");
1389 : Assert(rootRelInfo != NULL);
1390 300 : rootRelOid = RelationGetRelid(rootRelInfo->ri_RelationDesc);
1391 300 : if (resultRelInfo->ri_ancestorResultRels == NIL)
1392 : {
1393 : ListCell *lc;
1394 234 : List *oids = get_partition_ancestors(RelationGetRelid(partRel));
1395 234 : List *ancResultRels = NIL;
1396 :
1397 300 : foreach(lc, oids)
1398 : {
1399 300 : Oid ancOid = lfirst_oid(lc);
1400 : Relation ancRel;
1401 : ResultRelInfo *rInfo;
1402 :
1403 : /*
1404 : * Ignore the root ancestor here, and use ri_RootResultRelInfo
1405 : * (below) for it instead. Also, we stop climbing up the
1406 : * hierarchy when we find the table that was mentioned in the
1407 : * query.
1408 : */
1409 300 : if (ancOid == rootRelOid)
1410 234 : break;
1411 :
1412 : /*
1413 : * All ancestors up to the root target relation must have been
1414 : * locked by the planner or AcquireExecutorLocks().
1415 : */
1416 66 : ancRel = table_open(ancOid, NoLock);
1417 66 : rInfo = makeNode(ResultRelInfo);
1418 :
1419 : /* dummy rangetable index */
1420 66 : InitResultRelInfo(rInfo, ancRel, 0, NULL,
1421 : estate->es_instrument);
1422 66 : ancResultRels = lappend(ancResultRels, rInfo);
1423 : }
1424 234 : ancResultRels = lappend(ancResultRels, rootRelInfo);
1425 234 : resultRelInfo->ri_ancestorResultRels = ancResultRels;
1426 : }
1427 :
1428 : /* We must have found some ancestor */
1429 : Assert(resultRelInfo->ri_ancestorResultRels != NIL);
1430 :
1431 300 : return resultRelInfo->ri_ancestorResultRels;
1432 : }
1433 :
1434 : /* ----------------------------------------------------------------
1435 : * ExecPostprocessPlan
1436 : *
1437 : * Give plan nodes a final chance to execute before shutdown
1438 : * ----------------------------------------------------------------
1439 : */
1440 : static void
1441 592758 : ExecPostprocessPlan(EState *estate)
1442 : {
1443 : ListCell *lc;
1444 :
1445 : /*
1446 : * Make sure nodes run forward.
1447 : */
1448 592758 : estate->es_direction = ForwardScanDirection;
1449 :
1450 : /*
1451 : * Run any secondary ModifyTable nodes to completion, in case the main
1452 : * query did not fetch all rows from them. (We do this to ensure that
1453 : * such nodes have predictable results.)
1454 : */
1455 593590 : foreach(lc, estate->es_auxmodifytables)
1456 : {
1457 832 : PlanState *ps = (PlanState *) lfirst(lc);
1458 :
1459 : for (;;)
1460 138 : {
1461 : TupleTableSlot *slot;
1462 :
1463 : /* Reset the per-output-tuple exprcontext each time */
1464 970 : ResetPerTupleExprContext(estate);
1465 :
1466 970 : slot = ExecProcNode(ps);
1467 :
1468 970 : if (TupIsNull(slot))
1469 : break;
1470 : }
1471 : }
1472 592758 : }
1473 :
1474 : /* ----------------------------------------------------------------
1475 : * ExecEndPlan
1476 : *
1477 : * Cleans up the query plan -- closes files and frees up storage
1478 : *
1479 : * NOTE: we are no longer very worried about freeing storage per se
1480 : * in this code; FreeExecutorState should be guaranteed to release all
1481 : * memory that needs to be released. What we are worried about doing
1482 : * is closing relations and dropping buffer pins. Thus, for example,
1483 : * tuple tables must be cleared or dropped to ensure pins are released.
1484 : * ----------------------------------------------------------------
1485 : */
1486 : static void
1487 610516 : ExecEndPlan(PlanState *planstate, EState *estate)
1488 : {
1489 : ListCell *l;
1490 :
1491 : /*
1492 : * shut down the node-type-specific query processing
1493 : */
1494 610516 : ExecEndNode(planstate);
1495 :
1496 : /*
1497 : * for subplans too
1498 : */
1499 649858 : foreach(l, estate->es_subplanstates)
1500 : {
1501 39342 : PlanState *subplanstate = (PlanState *) lfirst(l);
1502 :
1503 39342 : ExecEndNode(subplanstate);
1504 : }
1505 :
1506 : /*
1507 : * destroy the executor's tuple table. Actually we only care about
1508 : * releasing buffer pins and tupdesc refcounts; there's no need to pfree
1509 : * the TupleTableSlots, since the containing memory context is about to go
1510 : * away anyway.
1511 : */
1512 610516 : ExecResetTupleTable(estate->es_tupleTable, false);
1513 :
1514 : /*
1515 : * Close any Relations that have been opened for range table entries or
1516 : * result relations.
1517 : */
1518 610516 : ExecCloseResultRelations(estate);
1519 610516 : ExecCloseRangeTableRelations(estate);
1520 610516 : }
1521 :
1522 : /*
1523 : * Close any relations that have been opened for ResultRelInfos.
1524 : */
1525 : void
1526 612280 : ExecCloseResultRelations(EState *estate)
1527 : {
1528 : ListCell *l;
1529 :
1530 : /*
1531 : * close indexes of result relation(s) if any. (Rels themselves are
1532 : * closed in ExecCloseRangeTableRelations())
1533 : *
1534 : * In addition, close the stub RTs that may be in each resultrel's
1535 : * ri_ancestorResultRels.
1536 : */
1537 732522 : foreach(l, estate->es_opened_result_relations)
1538 : {
1539 120242 : ResultRelInfo *resultRelInfo = lfirst(l);
1540 : ListCell *lc;
1541 :
1542 120242 : ExecCloseIndices(resultRelInfo);
1543 120494 : foreach(lc, resultRelInfo->ri_ancestorResultRels)
1544 : {
1545 252 : ResultRelInfo *rInfo = lfirst(lc);
1546 :
1547 : /*
1548 : * Ancestors with RTI > 0 (should only be the root ancestor) are
1549 : * closed by ExecCloseRangeTableRelations.
1550 : */
1551 252 : if (rInfo->ri_RangeTableIndex > 0)
1552 204 : continue;
1553 :
1554 48 : table_close(rInfo->ri_RelationDesc, NoLock);
1555 : }
1556 : }
1557 :
1558 : /* Close any relations that have been opened by ExecGetTriggerResultRel(). */
1559 612770 : foreach(l, estate->es_trig_target_relations)
1560 : {
1561 490 : ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l);
1562 :
1563 : /*
1564 : * Assert this is a "dummy" ResultRelInfo, see above. Otherwise we
1565 : * might be issuing a duplicate close against a Relation opened by
1566 : * ExecGetRangeTableRelation.
1567 : */
1568 : Assert(resultRelInfo->ri_RangeTableIndex == 0);
1569 :
1570 : /*
1571 : * Since ExecGetTriggerResultRel doesn't call ExecOpenIndices for
1572 : * these rels, we needn't call ExecCloseIndices either.
1573 : */
1574 : Assert(resultRelInfo->ri_NumIndices == 0);
1575 :
1576 490 : table_close(resultRelInfo->ri_RelationDesc, NoLock);
1577 : }
1578 612280 : }
1579 :
1580 : /*
1581 : * Close all relations opened by ExecGetRangeTableRelation().
1582 : *
1583 : * We do not release any locks we might hold on those rels.
1584 : */
1585 : void
1586 611896 : ExecCloseRangeTableRelations(EState *estate)
1587 : {
1588 : int i;
1589 :
1590 1695300 : for (i = 0; i < estate->es_range_table_size; i++)
1591 : {
1592 1083404 : if (estate->es_relations[i])
1593 491240 : table_close(estate->es_relations[i], NoLock);
1594 : }
1595 611896 : }
1596 :
1597 : /* ----------------------------------------------------------------
1598 : * ExecutePlan
1599 : *
1600 : * Processes the query plan until we have retrieved 'numberTuples' tuples,
1601 : * moving in the specified direction.
1602 : *
1603 : * Runs to completion if numberTuples is 0
1604 : *
1605 : * Note: the ctid attribute is a 'junk' attribute that is removed before the
1606 : * user can see it
1607 : * ----------------------------------------------------------------
1608 : */
1609 : static void
1610 627794 : ExecutePlan(EState *estate,
1611 : PlanState *planstate,
1612 : bool use_parallel_mode,
1613 : CmdType operation,
1614 : bool sendTuples,
1615 : uint64 numberTuples,
1616 : ScanDirection direction,
1617 : DestReceiver *dest,
1618 : bool execute_once)
1619 : {
1620 : TupleTableSlot *slot;
1621 : uint64 current_tuple_count;
1622 :
1623 : /*
1624 : * initialize local variables
1625 : */
1626 627794 : current_tuple_count = 0;
1627 :
1628 : /*
1629 : * Set the direction.
1630 : */
1631 627794 : estate->es_direction = direction;
1632 :
1633 : /*
1634 : * If the plan might potentially be executed multiple times, we must force
1635 : * it to run without parallelism, because we might exit early.
1636 : */
1637 627794 : if (!execute_once)
1638 21064 : use_parallel_mode = false;
1639 :
1640 627794 : estate->es_use_parallel_mode = use_parallel_mode;
1641 627794 : if (use_parallel_mode)
1642 718 : EnterParallelMode();
1643 :
1644 : /*
1645 : * Loop until we've processed the proper number of tuples from the plan.
1646 : */
1647 : for (;;)
1648 : {
1649 : /* Reset the per-output-tuple exprcontext */
1650 11806788 : ResetPerTupleExprContext(estate);
1651 :
1652 : /*
1653 : * Execute the plan and obtain a tuple
1654 : */
1655 11806788 : slot = ExecProcNode(planstate);
1656 :
1657 : /*
1658 : * if the tuple is null, then we assume there is nothing more to
1659 : * process so we just end the loop...
1660 : */
1661 11783092 : if (TupIsNull(slot))
1662 : break;
1663 :
1664 : /*
1665 : * If we have a junk filter, then project a new tuple with the junk
1666 : * removed.
1667 : *
1668 : * Store this new "clean" tuple in the junkfilter's resultSlot.
1669 : * (Formerly, we stored it back over the "dirty" tuple, which is WRONG
1670 : * because that tuple slot has the wrong descriptor.)
1671 : */
1672 11324966 : if (estate->es_junkFilter != NULL)
1673 256888 : slot = ExecFilterJunk(estate->es_junkFilter, slot);
1674 :
1675 : /*
1676 : * If we are supposed to send the tuple somewhere, do so. (In
1677 : * practice, this is probably always the case at this point.)
1678 : */
1679 11324966 : if (sendTuples)
1680 : {
1681 : /*
1682 : * If we are not able to send the tuple, we assume the destination
1683 : * has closed and no more tuples can be sent. If that's the case,
1684 : * end the loop.
1685 : */
1686 11324966 : if (!dest->receiveSlot(slot, dest))
1687 0 : break;
1688 : }
1689 :
1690 : /*
1691 : * Count tuples processed, if this is a SELECT. (For other operation
1692 : * types, the ModifyTable plan node must count the appropriate
1693 : * events.)
1694 : */
1695 11324966 : if (operation == CMD_SELECT)
1696 11318864 : (estate->es_processed)++;
1697 :
1698 : /*
1699 : * check our tuple count.. if we've processed the proper number then
1700 : * quit, else loop again and process more tuples. Zero numberTuples
1701 : * means no limit.
1702 : */
1703 11324966 : current_tuple_count++;
1704 11324966 : if (numberTuples && numberTuples == current_tuple_count)
1705 145972 : break;
1706 : }
1707 :
1708 : /*
1709 : * If we know we won't need to back up, we can release resources at this
1710 : * point.
1711 : */
1712 604098 : if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD))
1713 598700 : ExecShutdownNode(planstate);
1714 :
1715 604098 : if (use_parallel_mode)
1716 706 : ExitParallelMode();
1717 604098 : }
1718 :
1719 :
1720 : /*
1721 : * ExecRelCheck --- check that tuple meets constraints for result relation
1722 : *
1723 : * Returns NULL if OK, else name of failed check constraint
1724 : */
1725 : static const char *
1726 2692 : ExecRelCheck(ResultRelInfo *resultRelInfo,
1727 : TupleTableSlot *slot, EState *estate)
1728 : {
1729 2692 : Relation rel = resultRelInfo->ri_RelationDesc;
1730 2692 : int ncheck = rel->rd_att->constr->num_check;
1731 2692 : ConstrCheck *check = rel->rd_att->constr->check;
1732 : ExprContext *econtext;
1733 : MemoryContext oldContext;
1734 : int i;
1735 :
1736 : /*
1737 : * CheckConstraintFetch let this pass with only a warning, but now we
1738 : * should fail rather than possibly failing to enforce an important
1739 : * constraint.
1740 : */
1741 2692 : if (ncheck != rel->rd_rel->relchecks)
1742 0 : elog(ERROR, "%d pg_constraint record(s) missing for relation \"%s\"",
1743 : rel->rd_rel->relchecks - ncheck, RelationGetRelationName(rel));
1744 :
1745 : /*
1746 : * If first time through for this result relation, build expression
1747 : * nodetrees for rel's constraint expressions. Keep them in the per-query
1748 : * memory context so they'll survive throughout the query.
1749 : */
1750 2692 : if (resultRelInfo->ri_ConstraintExprs == NULL)
1751 : {
1752 1240 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1753 1240 : resultRelInfo->ri_ConstraintExprs =
1754 1240 : (ExprState **) palloc(ncheck * sizeof(ExprState *));
1755 2992 : for (i = 0; i < ncheck; i++)
1756 : {
1757 : Expr *checkconstr;
1758 :
1759 1758 : checkconstr = stringToNode(check[i].ccbin);
1760 1752 : resultRelInfo->ri_ConstraintExprs[i] =
1761 1758 : ExecPrepareExpr(checkconstr, estate);
1762 : }
1763 1234 : MemoryContextSwitchTo(oldContext);
1764 : }
1765 :
1766 : /*
1767 : * We will use the EState's per-tuple context for evaluating constraint
1768 : * expressions (creating it if it's not already there).
1769 : */
1770 2686 : econtext = GetPerTupleExprContext(estate);
1771 :
1772 : /* Arrange for econtext's scan tuple to be the tuple under test */
1773 2686 : econtext->ecxt_scantuple = slot;
1774 :
1775 : /* And evaluate the constraints */
1776 5928 : for (i = 0; i < ncheck; i++)
1777 : {
1778 3672 : ExprState *checkconstr = resultRelInfo->ri_ConstraintExprs[i];
1779 :
1780 : /*
1781 : * NOTE: SQL specifies that a NULL result from a constraint expression
1782 : * is not to be treated as a failure. Therefore, use ExecCheck not
1783 : * ExecQual.
1784 : */
1785 3672 : if (!ExecCheck(checkconstr, econtext))
1786 430 : return check[i].ccname;
1787 : }
1788 :
1789 : /* NULL result means no error */
1790 2256 : return NULL;
1791 : }
1792 :
1793 : /*
1794 : * ExecPartitionCheck --- check that tuple meets the partition constraint.
1795 : *
1796 : * Returns true if it meets the partition constraint. If the constraint
1797 : * fails and we're asked to emit an error, do so and don't return; otherwise
1798 : * return false.
1799 : */
1800 : bool
1801 15322 : ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
1802 : EState *estate, bool emitError)
1803 : {
1804 : ExprContext *econtext;
1805 : bool success;
1806 :
1807 : /*
1808 : * If first time through, build expression state tree for the partition
1809 : * check expression. (In the corner case where the partition check
1810 : * expression is empty, ie there's a default partition and nothing else,
1811 : * we'll be fooled into executing this code each time through. But it's
1812 : * pretty darn cheap in that case, so we don't worry about it.)
1813 : */
1814 15322 : if (resultRelInfo->ri_PartitionCheckExpr == NULL)
1815 : {
1816 : /*
1817 : * Ensure that the qual tree and prepared expression are in the
1818 : * query-lifespan context.
1819 : */
1820 5460 : MemoryContext oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
1821 5460 : List *qual = RelationGetPartitionQual(resultRelInfo->ri_RelationDesc);
1822 :
1823 5460 : resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate);
1824 5460 : MemoryContextSwitchTo(oldcxt);
1825 : }
1826 :
1827 : /*
1828 : * We will use the EState's per-tuple context for evaluating constraint
1829 : * expressions (creating it if it's not already there).
1830 : */
1831 15322 : econtext = GetPerTupleExprContext(estate);
1832 :
1833 : /* Arrange for econtext's scan tuple to be the tuple under test */
1834 15322 : econtext->ecxt_scantuple = slot;
1835 :
1836 : /*
1837 : * As in case of the cataloged constraints, we treat a NULL result as
1838 : * success here, not a failure.
1839 : */
1840 15322 : success = ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext);
1841 :
1842 : /* if asked to emit error, don't actually return on failure */
1843 15322 : if (!success && emitError)
1844 202 : ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
1845 :
1846 15120 : return success;
1847 : }
1848 :
1849 : /*
1850 : * ExecPartitionCheckEmitError - Form and emit an error message after a failed
1851 : * partition constraint check.
1852 : */
1853 : void
1854 250 : ExecPartitionCheckEmitError(ResultRelInfo *resultRelInfo,
1855 : TupleTableSlot *slot,
1856 : EState *estate)
1857 : {
1858 : Oid root_relid;
1859 : TupleDesc tupdesc;
1860 : char *val_desc;
1861 : Bitmapset *modifiedCols;
1862 :
1863 : /*
1864 : * If the tuple has been routed, it's been converted to the partition's
1865 : * rowtype, which might differ from the root table's. We must convert it
1866 : * back to the root table's rowtype so that val_desc in the error message
1867 : * matches the input tuple.
1868 : */
1869 250 : if (resultRelInfo->ri_RootResultRelInfo)
1870 : {
1871 20 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
1872 : TupleDesc old_tupdesc;
1873 : AttrMap *map;
1874 :
1875 20 : root_relid = RelationGetRelid(rootrel->ri_RelationDesc);
1876 20 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
1877 :
1878 20 : old_tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1879 : /* a reverse map */
1880 20 : map = build_attrmap_by_name_if_req(old_tupdesc, tupdesc, false);
1881 :
1882 : /*
1883 : * Partition-specific slot's tupdesc can't be changed, so allocate a
1884 : * new one.
1885 : */
1886 20 : if (map != NULL)
1887 8 : slot = execute_attr_map_slot(map, slot,
1888 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
1889 20 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
1890 20 : ExecGetUpdatedCols(rootrel, estate));
1891 : }
1892 : else
1893 : {
1894 230 : root_relid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1895 230 : tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1896 230 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
1897 230 : ExecGetUpdatedCols(resultRelInfo, estate));
1898 : }
1899 :
1900 250 : val_desc = ExecBuildSlotValueDescription(root_relid,
1901 : slot,
1902 : tupdesc,
1903 : modifiedCols,
1904 : 64);
1905 250 : ereport(ERROR,
1906 : (errcode(ERRCODE_CHECK_VIOLATION),
1907 : errmsg("new row for relation \"%s\" violates partition constraint",
1908 : RelationGetRelationName(resultRelInfo->ri_RelationDesc)),
1909 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
1910 : errtable(resultRelInfo->ri_RelationDesc)));
1911 : }
1912 :
1913 : /*
1914 : * ExecConstraints - check constraints of the tuple in 'slot'
1915 : *
1916 : * This checks the traditional NOT NULL and check constraints.
1917 : *
1918 : * The partition constraint is *NOT* checked.
1919 : *
1920 : * Note: 'slot' contains the tuple to check the constraints of, which may
1921 : * have been converted from the original input tuple after tuple routing.
1922 : * 'resultRelInfo' is the final result relation, after tuple routing.
1923 : */
1924 : void
1925 4031364 : ExecConstraints(ResultRelInfo *resultRelInfo,
1926 : TupleTableSlot *slot, EState *estate)
1927 : {
1928 4031364 : Relation rel = resultRelInfo->ri_RelationDesc;
1929 4031364 : TupleDesc tupdesc = RelationGetDescr(rel);
1930 4031364 : TupleConstr *constr = tupdesc->constr;
1931 : Bitmapset *modifiedCols;
1932 :
1933 : Assert(constr); /* we should not be called otherwise */
1934 :
1935 4031364 : if (constr->has_not_null)
1936 : {
1937 4025700 : int natts = tupdesc->natts;
1938 : int attrChk;
1939 :
1940 15082542 : for (attrChk = 1; attrChk <= natts; attrChk++)
1941 : {
1942 11057144 : Form_pg_attribute att = TupleDescAttr(tupdesc, attrChk - 1);
1943 :
1944 11057144 : if (att->attnotnull && slot_attisnull(slot, attrChk))
1945 : {
1946 : char *val_desc;
1947 302 : Relation orig_rel = rel;
1948 302 : TupleDesc orig_tupdesc = RelationGetDescr(rel);
1949 :
1950 : /*
1951 : * If the tuple has been routed, it's been converted to the
1952 : * partition's rowtype, which might differ from the root
1953 : * table's. We must convert it back to the root table's
1954 : * rowtype so that val_desc shown error message matches the
1955 : * input tuple.
1956 : */
1957 302 : if (resultRelInfo->ri_RootResultRelInfo)
1958 : {
1959 60 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
1960 : AttrMap *map;
1961 :
1962 60 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
1963 : /* a reverse map */
1964 60 : map = build_attrmap_by_name_if_req(orig_tupdesc,
1965 : tupdesc,
1966 : false);
1967 :
1968 : /*
1969 : * Partition-specific slot's tupdesc can't be changed, so
1970 : * allocate a new one.
1971 : */
1972 60 : if (map != NULL)
1973 42 : slot = execute_attr_map_slot(map, slot,
1974 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
1975 60 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
1976 60 : ExecGetUpdatedCols(rootrel, estate));
1977 60 : rel = rootrel->ri_RelationDesc;
1978 : }
1979 : else
1980 242 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
1981 242 : ExecGetUpdatedCols(resultRelInfo, estate));
1982 302 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
1983 : slot,
1984 : tupdesc,
1985 : modifiedCols,
1986 : 64);
1987 :
1988 302 : ereport(ERROR,
1989 : (errcode(ERRCODE_NOT_NULL_VIOLATION),
1990 : errmsg("null value in column \"%s\" of relation \"%s\" violates not-null constraint",
1991 : NameStr(att->attname),
1992 : RelationGetRelationName(orig_rel)),
1993 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
1994 : errtablecol(orig_rel, attrChk)));
1995 : }
1996 : }
1997 : }
1998 :
1999 4031062 : if (rel->rd_rel->relchecks > 0)
2000 : {
2001 : const char *failed;
2002 :
2003 2692 : if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
2004 : {
2005 : char *val_desc;
2006 430 : Relation orig_rel = rel;
2007 :
2008 : /* See the comment above. */
2009 430 : if (resultRelInfo->ri_RootResultRelInfo)
2010 : {
2011 90 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2012 90 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2013 : AttrMap *map;
2014 :
2015 90 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2016 : /* a reverse map */
2017 90 : map = build_attrmap_by_name_if_req(old_tupdesc,
2018 : tupdesc,
2019 : false);
2020 :
2021 : /*
2022 : * Partition-specific slot's tupdesc can't be changed, so
2023 : * allocate a new one.
2024 : */
2025 90 : if (map != NULL)
2026 60 : slot = execute_attr_map_slot(map, slot,
2027 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2028 90 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2029 90 : ExecGetUpdatedCols(rootrel, estate));
2030 90 : rel = rootrel->ri_RelationDesc;
2031 : }
2032 : else
2033 340 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2034 340 : ExecGetUpdatedCols(resultRelInfo, estate));
2035 430 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2036 : slot,
2037 : tupdesc,
2038 : modifiedCols,
2039 : 64);
2040 430 : ereport(ERROR,
2041 : (errcode(ERRCODE_CHECK_VIOLATION),
2042 : errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
2043 : RelationGetRelationName(orig_rel), failed),
2044 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
2045 : errtableconstraint(orig_rel, failed)));
2046 : }
2047 : }
2048 4030626 : }
2049 :
2050 : /*
2051 : * ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
2052 : * of the specified kind.
2053 : *
2054 : * Note that this needs to be called multiple times to ensure that all kinds of
2055 : * WITH CHECK OPTIONs are handled (both those from views which have the WITH
2056 : * CHECK OPTION set and from row-level security policies). See ExecInsert()
2057 : * and ExecUpdate().
2058 : */
2059 : void
2060 2000 : ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
2061 : TupleTableSlot *slot, EState *estate)
2062 : {
2063 2000 : Relation rel = resultRelInfo->ri_RelationDesc;
2064 2000 : TupleDesc tupdesc = RelationGetDescr(rel);
2065 : ExprContext *econtext;
2066 : ListCell *l1,
2067 : *l2;
2068 :
2069 : /*
2070 : * We will use the EState's per-tuple context for evaluating constraint
2071 : * expressions (creating it if it's not already there).
2072 : */
2073 2000 : econtext = GetPerTupleExprContext(estate);
2074 :
2075 : /* Arrange for econtext's scan tuple to be the tuple under test */
2076 2000 : econtext->ecxt_scantuple = slot;
2077 :
2078 : /* Check each of the constraints */
2079 4750 : forboth(l1, resultRelInfo->ri_WithCheckOptions,
2080 : l2, resultRelInfo->ri_WithCheckOptionExprs)
2081 : {
2082 3248 : WithCheckOption *wco = (WithCheckOption *) lfirst(l1);
2083 3248 : ExprState *wcoExpr = (ExprState *) lfirst(l2);
2084 :
2085 : /*
2086 : * Skip any WCOs which are not the kind we are looking for at this
2087 : * time.
2088 : */
2089 3248 : if (wco->kind != kind)
2090 1816 : continue;
2091 :
2092 : /*
2093 : * WITH CHECK OPTION checks are intended to ensure that the new tuple
2094 : * is visible (in the case of a view) or that it passes the
2095 : * 'with-check' policy (in the case of row security). If the qual
2096 : * evaluates to NULL or FALSE, then the new tuple won't be included in
2097 : * the view or doesn't pass the 'with-check' policy for the table.
2098 : */
2099 1432 : if (!ExecQual(wcoExpr, econtext))
2100 : {
2101 : char *val_desc;
2102 : Bitmapset *modifiedCols;
2103 :
2104 498 : switch (wco->kind)
2105 : {
2106 : /*
2107 : * For WITH CHECK OPTIONs coming from views, we might be
2108 : * able to provide the details on the row, depending on
2109 : * the permissions on the relation (that is, if the user
2110 : * could view it directly anyway). For RLS violations, we
2111 : * don't include the data since we don't know if the user
2112 : * should be able to view the tuple as that depends on the
2113 : * USING policy.
2114 : */
2115 222 : case WCO_VIEW_CHECK:
2116 : /* See the comment in ExecConstraints(). */
2117 222 : if (resultRelInfo->ri_RootResultRelInfo)
2118 : {
2119 36 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2120 36 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2121 : AttrMap *map;
2122 :
2123 36 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2124 : /* a reverse map */
2125 36 : map = build_attrmap_by_name_if_req(old_tupdesc,
2126 : tupdesc,
2127 : false);
2128 :
2129 : /*
2130 : * Partition-specific slot's tupdesc can't be changed,
2131 : * so allocate a new one.
2132 : */
2133 36 : if (map != NULL)
2134 18 : slot = execute_attr_map_slot(map, slot,
2135 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2136 :
2137 36 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2138 36 : ExecGetUpdatedCols(rootrel, estate));
2139 36 : rel = rootrel->ri_RelationDesc;
2140 : }
2141 : else
2142 186 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2143 186 : ExecGetUpdatedCols(resultRelInfo, estate));
2144 222 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2145 : slot,
2146 : tupdesc,
2147 : modifiedCols,
2148 : 64);
2149 :
2150 222 : ereport(ERROR,
2151 : (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
2152 : errmsg("new row violates check option for view \"%s\"",
2153 : wco->relname),
2154 : val_desc ? errdetail("Failing row contains %s.",
2155 : val_desc) : 0));
2156 : break;
2157 228 : case WCO_RLS_INSERT_CHECK:
2158 : case WCO_RLS_UPDATE_CHECK:
2159 228 : if (wco->polname != NULL)
2160 48 : ereport(ERROR,
2161 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2162 : errmsg("new row violates row-level security policy \"%s\" for table \"%s\"",
2163 : wco->polname, wco->relname)));
2164 : else
2165 180 : ereport(ERROR,
2166 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2167 : errmsg("new row violates row-level security policy for table \"%s\"",
2168 : wco->relname)));
2169 : break;
2170 24 : case WCO_RLS_MERGE_UPDATE_CHECK:
2171 : case WCO_RLS_MERGE_DELETE_CHECK:
2172 24 : if (wco->polname != NULL)
2173 0 : ereport(ERROR,
2174 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2175 : errmsg("target row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2176 : wco->polname, wco->relname)));
2177 : else
2178 24 : ereport(ERROR,
2179 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2180 : errmsg("target row violates row-level security policy (USING expression) for table \"%s\"",
2181 : wco->relname)));
2182 : break;
2183 24 : case WCO_RLS_CONFLICT_CHECK:
2184 24 : if (wco->polname != NULL)
2185 0 : ereport(ERROR,
2186 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2187 : errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2188 : wco->polname, wco->relname)));
2189 : else
2190 24 : ereport(ERROR,
2191 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2192 : errmsg("new row violates row-level security policy (USING expression) for table \"%s\"",
2193 : wco->relname)));
2194 : break;
2195 0 : default:
2196 0 : elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
2197 : break;
2198 : }
2199 934 : }
2200 : }
2201 1502 : }
2202 :
2203 : /*
2204 : * ExecBuildSlotValueDescription -- construct a string representing a tuple
2205 : *
2206 : * This is intentionally very similar to BuildIndexValueDescription, but
2207 : * unlike that function, we truncate long field values (to at most maxfieldlen
2208 : * bytes). That seems necessary here since heap field values could be very
2209 : * long, whereas index entries typically aren't so wide.
2210 : *
2211 : * Also, unlike the case with index entries, we need to be prepared to ignore
2212 : * dropped columns. We used to use the slot's tuple descriptor to decode the
2213 : * data, but the slot's descriptor doesn't identify dropped columns, so we
2214 : * now need to be passed the relation's descriptor.
2215 : *
2216 : * Note that, like BuildIndexValueDescription, if the user does not have
2217 : * permission to view any of the columns involved, a NULL is returned. Unlike
2218 : * BuildIndexValueDescription, if the user has access to view a subset of the
2219 : * column involved, that subset will be returned with a key identifying which
2220 : * columns they are.
2221 : */
2222 : char *
2223 1262 : ExecBuildSlotValueDescription(Oid reloid,
2224 : TupleTableSlot *slot,
2225 : TupleDesc tupdesc,
2226 : Bitmapset *modifiedCols,
2227 : int maxfieldlen)
2228 : {
2229 : StringInfoData buf;
2230 : StringInfoData collist;
2231 1262 : bool write_comma = false;
2232 1262 : bool write_comma_collist = false;
2233 : int i;
2234 : AclResult aclresult;
2235 1262 : bool table_perm = false;
2236 1262 : bool any_perm = false;
2237 :
2238 : /*
2239 : * Check if RLS is enabled and should be active for the relation; if so,
2240 : * then don't return anything. Otherwise, go through normal permission
2241 : * checks.
2242 : */
2243 1262 : if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED)
2244 0 : return NULL;
2245 :
2246 1262 : initStringInfo(&buf);
2247 :
2248 1262 : appendStringInfoChar(&buf, '(');
2249 :
2250 : /*
2251 : * Check if the user has permissions to see the row. Table-level SELECT
2252 : * allows access to all columns. If the user does not have table-level
2253 : * SELECT then we check each column and include those the user has SELECT
2254 : * rights on. Additionally, we always include columns the user provided
2255 : * data for.
2256 : */
2257 1262 : aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
2258 1262 : if (aclresult != ACLCHECK_OK)
2259 : {
2260 : /* Set up the buffer for the column list */
2261 60 : initStringInfo(&collist);
2262 60 : appendStringInfoChar(&collist, '(');
2263 : }
2264 : else
2265 1202 : table_perm = any_perm = true;
2266 :
2267 : /* Make sure the tuple is fully deconstructed */
2268 1262 : slot_getallattrs(slot);
2269 :
2270 4512 : for (i = 0; i < tupdesc->natts; i++)
2271 : {
2272 3250 : bool column_perm = false;
2273 : char *val;
2274 : int vallen;
2275 3250 : Form_pg_attribute att = TupleDescAttr(tupdesc, i);
2276 :
2277 : /* ignore dropped columns */
2278 3250 : if (att->attisdropped)
2279 38 : continue;
2280 :
2281 3212 : if (!table_perm)
2282 : {
2283 : /*
2284 : * No table-level SELECT, so need to make sure they either have
2285 : * SELECT rights on the column or that they have provided the data
2286 : * for the column. If not, omit this column from the error
2287 : * message.
2288 : */
2289 234 : aclresult = pg_attribute_aclcheck(reloid, att->attnum,
2290 : GetUserId(), ACL_SELECT);
2291 234 : if (bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber,
2292 138 : modifiedCols) || aclresult == ACLCHECK_OK)
2293 : {
2294 144 : column_perm = any_perm = true;
2295 :
2296 144 : if (write_comma_collist)
2297 84 : appendStringInfoString(&collist, ", ");
2298 : else
2299 60 : write_comma_collist = true;
2300 :
2301 144 : appendStringInfoString(&collist, NameStr(att->attname));
2302 : }
2303 : }
2304 :
2305 3212 : if (table_perm || column_perm)
2306 : {
2307 3122 : if (slot->tts_isnull[i])
2308 592 : val = "null";
2309 : else
2310 : {
2311 : Oid foutoid;
2312 : bool typisvarlena;
2313 :
2314 2530 : getTypeOutputInfo(att->atttypid,
2315 : &foutoid, &typisvarlena);
2316 2530 : val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
2317 : }
2318 :
2319 3122 : if (write_comma)
2320 1860 : appendStringInfoString(&buf, ", ");
2321 : else
2322 1262 : write_comma = true;
2323 :
2324 : /* truncate if needed */
2325 3122 : vallen = strlen(val);
2326 3122 : if (vallen <= maxfieldlen)
2327 3120 : appendBinaryStringInfo(&buf, val, vallen);
2328 : else
2329 : {
2330 2 : vallen = pg_mbcliplen(val, vallen, maxfieldlen);
2331 2 : appendBinaryStringInfo(&buf, val, vallen);
2332 2 : appendStringInfoString(&buf, "...");
2333 : }
2334 : }
2335 : }
2336 :
2337 : /* If we end up with zero columns being returned, then return NULL. */
2338 1262 : if (!any_perm)
2339 0 : return NULL;
2340 :
2341 1262 : appendStringInfoChar(&buf, ')');
2342 :
2343 1262 : if (!table_perm)
2344 : {
2345 60 : appendStringInfoString(&collist, ") = ");
2346 60 : appendBinaryStringInfo(&collist, buf.data, buf.len);
2347 :
2348 60 : return collist.data;
2349 : }
2350 :
2351 1202 : return buf.data;
2352 : }
2353 :
2354 :
2355 : /*
2356 : * ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
2357 : * given ResultRelInfo
2358 : */
2359 : LockTupleMode
2360 7844 : ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
2361 : {
2362 : Bitmapset *keyCols;
2363 : Bitmapset *updatedCols;
2364 :
2365 : /*
2366 : * Compute lock mode to use. If columns that are part of the key have not
2367 : * been modified, then we can use a weaker lock, allowing for better
2368 : * concurrency.
2369 : */
2370 7844 : updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
2371 7844 : keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
2372 : INDEX_ATTR_BITMAP_KEY);
2373 :
2374 7844 : if (bms_overlap(keyCols, updatedCols))
2375 248 : return LockTupleExclusive;
2376 :
2377 7596 : return LockTupleNoKeyExclusive;
2378 : }
2379 :
2380 : /*
2381 : * ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
2382 : *
2383 : * If no such struct, either return NULL or throw error depending on missing_ok
2384 : */
2385 : ExecRowMark *
2386 11194 : ExecFindRowMark(EState *estate, Index rti, bool missing_ok)
2387 : {
2388 11194 : if (rti > 0 && rti <= estate->es_range_table_size &&
2389 11194 : estate->es_rowmarks != NULL)
2390 : {
2391 11194 : ExecRowMark *erm = estate->es_rowmarks[rti - 1];
2392 :
2393 11194 : if (erm)
2394 11194 : return erm;
2395 : }
2396 0 : if (!missing_ok)
2397 0 : elog(ERROR, "failed to find ExecRowMark for rangetable index %u", rti);
2398 0 : return NULL;
2399 : }
2400 :
2401 : /*
2402 : * ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
2403 : *
2404 : * Inputs are the underlying ExecRowMark struct and the targetlist of the
2405 : * input plan node (not planstate node!). We need the latter to find out
2406 : * the column numbers of the resjunk columns.
2407 : */
2408 : ExecAuxRowMark *
2409 11194 : ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
2410 : {
2411 11194 : ExecAuxRowMark *aerm = (ExecAuxRowMark *) palloc0(sizeof(ExecAuxRowMark));
2412 : char resname[32];
2413 :
2414 11194 : aerm->rowmark = erm;
2415 :
2416 : /* Look up the resjunk columns associated with this rowmark */
2417 11194 : if (erm->markType != ROW_MARK_COPY)
2418 : {
2419 : /* need ctid for all methods other than COPY */
2420 10506 : snprintf(resname, sizeof(resname), "ctid%u", erm->rowmarkId);
2421 10506 : aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2422 : resname);
2423 10506 : if (!AttributeNumberIsValid(aerm->ctidAttNo))
2424 0 : elog(ERROR, "could not find junk %s column", resname);
2425 : }
2426 : else
2427 : {
2428 : /* need wholerow if COPY */
2429 688 : snprintf(resname, sizeof(resname), "wholerow%u", erm->rowmarkId);
2430 688 : aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist,
2431 : resname);
2432 688 : if (!AttributeNumberIsValid(aerm->wholeAttNo))
2433 0 : elog(ERROR, "could not find junk %s column", resname);
2434 : }
2435 :
2436 : /* if child rel, need tableoid */
2437 11194 : if (erm->rti != erm->prti)
2438 : {
2439 2038 : snprintf(resname, sizeof(resname), "tableoid%u", erm->rowmarkId);
2440 2038 : aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2441 : resname);
2442 2038 : if (!AttributeNumberIsValid(aerm->toidAttNo))
2443 0 : elog(ERROR, "could not find junk %s column", resname);
2444 : }
2445 :
2446 11194 : return aerm;
2447 : }
2448 :
2449 :
2450 : /*
2451 : * EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
2452 : * process the updated version under READ COMMITTED rules.
2453 : *
2454 : * See backend/executor/README for some info about how this works.
2455 : */
2456 :
2457 :
2458 : /*
2459 : * Check the updated version of a tuple to see if we want to process it under
2460 : * READ COMMITTED rules.
2461 : *
2462 : * epqstate - state for EvalPlanQual rechecking
2463 : * relation - table containing tuple
2464 : * rti - rangetable index of table containing tuple
2465 : * inputslot - tuple for processing - this can be the slot from
2466 : * EvalPlanQualSlot() for this rel, for increased efficiency.
2467 : *
2468 : * This tests whether the tuple in inputslot still matches the relevant
2469 : * quals. For that result to be useful, typically the input tuple has to be
2470 : * last row version (otherwise the result isn't particularly useful) and
2471 : * locked (otherwise the result might be out of date). That's typically
2472 : * achieved by using table_tuple_lock() with the
2473 : * TUPLE_LOCK_FLAG_FIND_LAST_VERSION flag.
2474 : *
2475 : * Returns a slot containing the new candidate update/delete tuple, or
2476 : * NULL if we determine we shouldn't process the row.
2477 : */
2478 : TupleTableSlot *
2479 256 : EvalPlanQual(EPQState *epqstate, Relation relation,
2480 : Index rti, TupleTableSlot *inputslot)
2481 : {
2482 : TupleTableSlot *slot;
2483 : TupleTableSlot *testslot;
2484 :
2485 : Assert(rti > 0);
2486 :
2487 : /*
2488 : * Need to run a recheck subquery. Initialize or reinitialize EPQ state.
2489 : */
2490 256 : EvalPlanQualBegin(epqstate);
2491 :
2492 : /*
2493 : * Callers will often use the EvalPlanQualSlot to store the tuple to avoid
2494 : * an unnecessary copy.
2495 : */
2496 256 : testslot = EvalPlanQualSlot(epqstate, relation, rti);
2497 256 : if (testslot != inputslot)
2498 12 : ExecCopySlot(testslot, inputslot);
2499 :
2500 : /*
2501 : * Mark that an EPQ tuple is available for this relation. (If there is
2502 : * more than one result relation, the others remain marked as having no
2503 : * tuple available.)
2504 : */
2505 256 : epqstate->relsubs_done[rti - 1] = false;
2506 256 : epqstate->relsubs_blocked[rti - 1] = false;
2507 :
2508 : /*
2509 : * Run the EPQ query. We assume it will return at most one tuple.
2510 : */
2511 256 : slot = EvalPlanQualNext(epqstate);
2512 :
2513 : /*
2514 : * If we got a tuple, force the slot to materialize the tuple so that it
2515 : * is not dependent on any local state in the EPQ query (in particular,
2516 : * it's highly likely that the slot contains references to any pass-by-ref
2517 : * datums that may be present in copyTuple). As with the next step, this
2518 : * is to guard against early re-use of the EPQ query.
2519 : */
2520 256 : if (!TupIsNull(slot))
2521 188 : ExecMaterializeSlot(slot);
2522 :
2523 : /*
2524 : * Clear out the test tuple, and mark that no tuple is available here.
2525 : * This is needed in case the EPQ state is re-used to test a tuple for a
2526 : * different target relation.
2527 : */
2528 256 : ExecClearTuple(testslot);
2529 256 : epqstate->relsubs_blocked[rti - 1] = true;
2530 :
2531 256 : return slot;
2532 : }
2533 :
2534 : /*
2535 : * EvalPlanQualInit -- initialize during creation of a plan state node
2536 : * that might need to invoke EPQ processing.
2537 : *
2538 : * If the caller intends to use EvalPlanQual(), resultRelations should be
2539 : * a list of RT indexes of potential target relations for EvalPlanQual(),
2540 : * and we will arrange that the other listed relations don't return any
2541 : * tuple during an EvalPlanQual() call. Otherwise resultRelations
2542 : * should be NIL.
2543 : *
2544 : * Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
2545 : * with EvalPlanQualSetPlan.
2546 : */
2547 : void
2548 271878 : EvalPlanQualInit(EPQState *epqstate, EState *parentestate,
2549 : Plan *subplan, List *auxrowmarks,
2550 : int epqParam, List *resultRelations)
2551 : {
2552 271878 : Index rtsize = parentestate->es_range_table_size;
2553 :
2554 : /* initialize data not changing over EPQState's lifetime */
2555 271878 : epqstate->parentestate = parentestate;
2556 271878 : epqstate->epqParam = epqParam;
2557 271878 : epqstate->resultRelations = resultRelations;
2558 :
2559 : /*
2560 : * Allocate space to reference a slot for each potential rti - do so now
2561 : * rather than in EvalPlanQualBegin(), as done for other dynamically
2562 : * allocated resources, so EvalPlanQualSlot() can be used to hold tuples
2563 : * that *may* need EPQ later, without forcing the overhead of
2564 : * EvalPlanQualBegin().
2565 : */
2566 271878 : epqstate->tuple_table = NIL;
2567 271878 : epqstate->relsubs_slot = (TupleTableSlot **)
2568 271878 : palloc0(rtsize * sizeof(TupleTableSlot *));
2569 :
2570 : /* ... and remember data that EvalPlanQualBegin will need */
2571 271878 : epqstate->plan = subplan;
2572 271878 : epqstate->arowMarks = auxrowmarks;
2573 :
2574 : /* ... and mark the EPQ state inactive */
2575 271878 : epqstate->origslot = NULL;
2576 271878 : epqstate->recheckestate = NULL;
2577 271878 : epqstate->recheckplanstate = NULL;
2578 271878 : epqstate->relsubs_rowmark = NULL;
2579 271878 : epqstate->relsubs_done = NULL;
2580 271878 : epqstate->relsubs_blocked = NULL;
2581 271878 : }
2582 :
2583 : /*
2584 : * EvalPlanQualSetPlan -- set or change subplan of an EPQState.
2585 : *
2586 : * We used to need this so that ModifyTable could deal with multiple subplans.
2587 : * It could now be refactored out of existence.
2588 : */
2589 : void
2590 119014 : EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
2591 : {
2592 : /* If we have a live EPQ query, shut it down */
2593 119014 : EvalPlanQualEnd(epqstate);
2594 : /* And set/change the plan pointer */
2595 119014 : epqstate->plan = subplan;
2596 : /* The rowmarks depend on the plan, too */
2597 119014 : epqstate->arowMarks = auxrowmarks;
2598 119014 : }
2599 :
2600 : /*
2601 : * Return, and create if necessary, a slot for an EPQ test tuple.
2602 : *
2603 : * Note this only requires EvalPlanQualInit() to have been called,
2604 : * EvalPlanQualBegin() is not necessary.
2605 : */
2606 : TupleTableSlot *
2607 17814 : EvalPlanQualSlot(EPQState *epqstate,
2608 : Relation relation, Index rti)
2609 : {
2610 : TupleTableSlot **slot;
2611 :
2612 : Assert(relation);
2613 : Assert(rti > 0 && rti <= epqstate->parentestate->es_range_table_size);
2614 17814 : slot = &epqstate->relsubs_slot[rti - 1];
2615 :
2616 17814 : if (*slot == NULL)
2617 : {
2618 : MemoryContext oldcontext;
2619 :
2620 6010 : oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt);
2621 6010 : *slot = table_slot_create(relation, &epqstate->tuple_table);
2622 6010 : MemoryContextSwitchTo(oldcontext);
2623 : }
2624 :
2625 17814 : return *slot;
2626 : }
2627 :
2628 : /*
2629 : * Fetch the current row value for a non-locked relation, identified by rti,
2630 : * that needs to be scanned by an EvalPlanQual operation. origslot must have
2631 : * been set to contain the current result row (top-level row) that we need to
2632 : * recheck. Returns true if a substitution tuple was found, false if not.
2633 : */
2634 : bool
2635 34 : EvalPlanQualFetchRowMark(EPQState *epqstate, Index rti, TupleTableSlot *slot)
2636 : {
2637 34 : ExecAuxRowMark *earm = epqstate->relsubs_rowmark[rti - 1];
2638 34 : ExecRowMark *erm = earm->rowmark;
2639 : Datum datum;
2640 : bool isNull;
2641 :
2642 : Assert(earm != NULL);
2643 : Assert(epqstate->origslot != NULL);
2644 :
2645 34 : if (RowMarkRequiresRowShareLock(erm->markType))
2646 0 : elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
2647 :
2648 : /* if child rel, must check whether it produced this row */
2649 34 : if (erm->rti != erm->prti)
2650 : {
2651 : Oid tableoid;
2652 :
2653 0 : datum = ExecGetJunkAttribute(epqstate->origslot,
2654 0 : earm->toidAttNo,
2655 : &isNull);
2656 : /* non-locked rels could be on the inside of outer joins */
2657 0 : if (isNull)
2658 0 : return false;
2659 :
2660 0 : tableoid = DatumGetObjectId(datum);
2661 :
2662 : Assert(OidIsValid(erm->relid));
2663 0 : if (tableoid != erm->relid)
2664 : {
2665 : /* this child is inactive right now */
2666 0 : return false;
2667 : }
2668 : }
2669 :
2670 34 : if (erm->markType == ROW_MARK_REFERENCE)
2671 : {
2672 : Assert(erm->relation != NULL);
2673 :
2674 : /* fetch the tuple's ctid */
2675 26 : datum = ExecGetJunkAttribute(epqstate->origslot,
2676 26 : earm->ctidAttNo,
2677 : &isNull);
2678 : /* non-locked rels could be on the inside of outer joins */
2679 26 : if (isNull)
2680 0 : return false;
2681 :
2682 : /* fetch requests on foreign tables must be passed to their FDW */
2683 26 : if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
2684 : {
2685 : FdwRoutine *fdwroutine;
2686 0 : bool updated = false;
2687 :
2688 0 : fdwroutine = GetFdwRoutineForRelation(erm->relation, false);
2689 : /* this should have been checked already, but let's be safe */
2690 0 : if (fdwroutine->RefetchForeignRow == NULL)
2691 0 : ereport(ERROR,
2692 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2693 : errmsg("cannot lock rows in foreign table \"%s\"",
2694 : RelationGetRelationName(erm->relation))));
2695 :
2696 0 : fdwroutine->RefetchForeignRow(epqstate->recheckestate,
2697 : erm,
2698 : datum,
2699 : slot,
2700 : &updated);
2701 0 : if (TupIsNull(slot))
2702 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2703 :
2704 : /*
2705 : * Ideally we'd insist on updated == false here, but that assumes
2706 : * that FDWs can track that exactly, which they might not be able
2707 : * to. So just ignore the flag.
2708 : */
2709 0 : return true;
2710 : }
2711 : else
2712 : {
2713 : /* ordinary table, fetch the tuple */
2714 26 : if (!table_tuple_fetch_row_version(erm->relation,
2715 26 : (ItemPointer) DatumGetPointer(datum),
2716 : SnapshotAny, slot))
2717 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2718 26 : return true;
2719 : }
2720 : }
2721 : else
2722 : {
2723 : Assert(erm->markType == ROW_MARK_COPY);
2724 :
2725 : /* fetch the whole-row Var for the relation */
2726 8 : datum = ExecGetJunkAttribute(epqstate->origslot,
2727 8 : earm->wholeAttNo,
2728 : &isNull);
2729 : /* non-locked rels could be on the inside of outer joins */
2730 8 : if (isNull)
2731 0 : return false;
2732 :
2733 8 : ExecStoreHeapTupleDatum(datum, slot);
2734 8 : return true;
2735 : }
2736 : }
2737 :
2738 : /*
2739 : * Fetch the next row (if any) from EvalPlanQual testing
2740 : *
2741 : * (In practice, there should never be more than one row...)
2742 : */
2743 : TupleTableSlot *
2744 312 : EvalPlanQualNext(EPQState *epqstate)
2745 : {
2746 : MemoryContext oldcontext;
2747 : TupleTableSlot *slot;
2748 :
2749 312 : oldcontext = MemoryContextSwitchTo(epqstate->recheckestate->es_query_cxt);
2750 312 : slot = ExecProcNode(epqstate->recheckplanstate);
2751 312 : MemoryContextSwitchTo(oldcontext);
2752 :
2753 312 : return slot;
2754 : }
2755 :
2756 : /*
2757 : * Initialize or reset an EvalPlanQual state tree
2758 : */
2759 : void
2760 368 : EvalPlanQualBegin(EPQState *epqstate)
2761 : {
2762 368 : EState *parentestate = epqstate->parentestate;
2763 368 : EState *recheckestate = epqstate->recheckestate;
2764 :
2765 368 : if (recheckestate == NULL)
2766 : {
2767 : /* First time through, so create a child EState */
2768 224 : EvalPlanQualStart(epqstate, epqstate->plan);
2769 : }
2770 : else
2771 : {
2772 : /*
2773 : * We already have a suitable child EPQ tree, so just reset it.
2774 : */
2775 144 : Index rtsize = parentestate->es_range_table_size;
2776 144 : PlanState *rcplanstate = epqstate->recheckplanstate;
2777 :
2778 : /*
2779 : * Reset the relsubs_done[] flags to equal relsubs_blocked[], so that
2780 : * the EPQ run will never attempt to fetch tuples from blocked target
2781 : * relations.
2782 : */
2783 144 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
2784 : rtsize * sizeof(bool));
2785 :
2786 : /* Recopy current values of parent parameters */
2787 144 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
2788 : {
2789 : int i;
2790 :
2791 : /*
2792 : * Force evaluation of any InitPlan outputs that could be needed
2793 : * by the subplan, just in case they got reset since
2794 : * EvalPlanQualStart (see comments therein).
2795 : */
2796 144 : ExecSetParamPlanMulti(rcplanstate->plan->extParam,
2797 144 : GetPerTupleExprContext(parentestate));
2798 :
2799 144 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
2800 :
2801 306 : while (--i >= 0)
2802 : {
2803 : /* copy value if any, but not execPlan link */
2804 162 : recheckestate->es_param_exec_vals[i].value =
2805 162 : parentestate->es_param_exec_vals[i].value;
2806 162 : recheckestate->es_param_exec_vals[i].isnull =
2807 162 : parentestate->es_param_exec_vals[i].isnull;
2808 : }
2809 : }
2810 :
2811 : /*
2812 : * Mark child plan tree as needing rescan at all scan nodes. The
2813 : * first ExecProcNode will take care of actually doing the rescan.
2814 : */
2815 144 : rcplanstate->chgParam = bms_add_member(rcplanstate->chgParam,
2816 : epqstate->epqParam);
2817 : }
2818 368 : }
2819 :
2820 : /*
2821 : * Start execution of an EvalPlanQual plan tree.
2822 : *
2823 : * This is a cut-down version of ExecutorStart(): we copy some state from
2824 : * the top-level estate rather than initializing it fresh.
2825 : */
2826 : static void
2827 224 : EvalPlanQualStart(EPQState *epqstate, Plan *planTree)
2828 : {
2829 224 : EState *parentestate = epqstate->parentestate;
2830 224 : Index rtsize = parentestate->es_range_table_size;
2831 : EState *rcestate;
2832 : MemoryContext oldcontext;
2833 : ListCell *l;
2834 :
2835 224 : epqstate->recheckestate = rcestate = CreateExecutorState();
2836 :
2837 224 : oldcontext = MemoryContextSwitchTo(rcestate->es_query_cxt);
2838 :
2839 : /* signal that this is an EState for executing EPQ */
2840 224 : rcestate->es_epq_active = epqstate;
2841 :
2842 : /*
2843 : * Child EPQ EStates share the parent's copy of unchanging state such as
2844 : * the snapshot, rangetable, and external Param info. They need their own
2845 : * copies of local state, including a tuple table, es_param_exec_vals,
2846 : * result-rel info, etc.
2847 : */
2848 224 : rcestate->es_direction = ForwardScanDirection;
2849 224 : rcestate->es_snapshot = parentestate->es_snapshot;
2850 224 : rcestate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
2851 224 : rcestate->es_range_table = parentestate->es_range_table;
2852 224 : rcestate->es_range_table_size = parentestate->es_range_table_size;
2853 224 : rcestate->es_relations = parentestate->es_relations;
2854 224 : rcestate->es_rowmarks = parentestate->es_rowmarks;
2855 224 : rcestate->es_rteperminfos = parentestate->es_rteperminfos;
2856 224 : rcestate->es_plannedstmt = parentestate->es_plannedstmt;
2857 224 : rcestate->es_junkFilter = parentestate->es_junkFilter;
2858 224 : rcestate->es_output_cid = parentestate->es_output_cid;
2859 224 : rcestate->es_queryEnv = parentestate->es_queryEnv;
2860 :
2861 : /*
2862 : * ResultRelInfos needed by subplans are initialized from scratch when the
2863 : * subplans themselves are initialized.
2864 : */
2865 224 : rcestate->es_result_relations = NULL;
2866 : /* es_trig_target_relations must NOT be copied */
2867 224 : rcestate->es_top_eflags = parentestate->es_top_eflags;
2868 224 : rcestate->es_instrument = parentestate->es_instrument;
2869 : /* es_auxmodifytables must NOT be copied */
2870 :
2871 : /*
2872 : * The external param list is simply shared from parent. The internal
2873 : * param workspace has to be local state, but we copy the initial values
2874 : * from the parent, so as to have access to any param values that were
2875 : * already set from other parts of the parent's plan tree.
2876 : */
2877 224 : rcestate->es_param_list_info = parentestate->es_param_list_info;
2878 224 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
2879 : {
2880 : int i;
2881 :
2882 : /*
2883 : * Force evaluation of any InitPlan outputs that could be needed by
2884 : * the subplan. (With more complexity, maybe we could postpone this
2885 : * till the subplan actually demands them, but it doesn't seem worth
2886 : * the trouble; this is a corner case already, since usually the
2887 : * InitPlans would have been evaluated before reaching EvalPlanQual.)
2888 : *
2889 : * This will not touch output params of InitPlans that occur somewhere
2890 : * within the subplan tree, only those that are attached to the
2891 : * ModifyTable node or above it and are referenced within the subplan.
2892 : * That's OK though, because the planner would only attach such
2893 : * InitPlans to a lower-level SubqueryScan node, and EPQ execution
2894 : * will not descend into a SubqueryScan.
2895 : *
2896 : * The EState's per-output-tuple econtext is sufficiently short-lived
2897 : * for this, since it should get reset before there is any chance of
2898 : * doing EvalPlanQual again.
2899 : */
2900 224 : ExecSetParamPlanMulti(planTree->extParam,
2901 224 : GetPerTupleExprContext(parentestate));
2902 :
2903 : /* now make the internal param workspace ... */
2904 224 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
2905 224 : rcestate->es_param_exec_vals = (ParamExecData *)
2906 224 : palloc0(i * sizeof(ParamExecData));
2907 : /* ... and copy down all values, whether really needed or not */
2908 546 : while (--i >= 0)
2909 : {
2910 : /* copy value if any, but not execPlan link */
2911 322 : rcestate->es_param_exec_vals[i].value =
2912 322 : parentestate->es_param_exec_vals[i].value;
2913 322 : rcestate->es_param_exec_vals[i].isnull =
2914 322 : parentestate->es_param_exec_vals[i].isnull;
2915 : }
2916 : }
2917 :
2918 : /*
2919 : * Initialize private state information for each SubPlan. We must do this
2920 : * before running ExecInitNode on the main query tree, since
2921 : * ExecInitSubPlan expects to be able to find these entries. Some of the
2922 : * SubPlans might not be used in the part of the plan tree we intend to
2923 : * run, but since it's not easy to tell which, we just initialize them
2924 : * all.
2925 : */
2926 : Assert(rcestate->es_subplanstates == NIL);
2927 280 : foreach(l, parentestate->es_plannedstmt->subplans)
2928 : {
2929 56 : Plan *subplan = (Plan *) lfirst(l);
2930 : PlanState *subplanstate;
2931 :
2932 56 : subplanstate = ExecInitNode(subplan, rcestate, 0);
2933 56 : rcestate->es_subplanstates = lappend(rcestate->es_subplanstates,
2934 : subplanstate);
2935 : }
2936 :
2937 : /*
2938 : * Build an RTI indexed array of rowmarks, so that
2939 : * EvalPlanQualFetchRowMark() can efficiently access the to be fetched
2940 : * rowmark.
2941 : */
2942 224 : epqstate->relsubs_rowmark = (ExecAuxRowMark **)
2943 224 : palloc0(rtsize * sizeof(ExecAuxRowMark *));
2944 248 : foreach(l, epqstate->arowMarks)
2945 : {
2946 24 : ExecAuxRowMark *earm = (ExecAuxRowMark *) lfirst(l);
2947 :
2948 24 : epqstate->relsubs_rowmark[earm->rowmark->rti - 1] = earm;
2949 : }
2950 :
2951 : /*
2952 : * Initialize per-relation EPQ tuple states. Result relations, if any,
2953 : * get marked as blocked; others as not-fetched.
2954 : */
2955 224 : epqstate->relsubs_done = palloc_array(bool, rtsize);
2956 224 : epqstate->relsubs_blocked = palloc0_array(bool, rtsize);
2957 :
2958 448 : foreach(l, epqstate->resultRelations)
2959 : {
2960 224 : int rtindex = lfirst_int(l);
2961 :
2962 : Assert(rtindex > 0 && rtindex <= rtsize);
2963 224 : epqstate->relsubs_blocked[rtindex - 1] = true;
2964 : }
2965 :
2966 224 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
2967 : rtsize * sizeof(bool));
2968 :
2969 : /*
2970 : * Initialize the private state information for all the nodes in the part
2971 : * of the plan tree we need to run. This opens files, allocates storage
2972 : * and leaves us ready to start processing tuples.
2973 : */
2974 224 : epqstate->recheckplanstate = ExecInitNode(planTree, rcestate, 0);
2975 :
2976 224 : MemoryContextSwitchTo(oldcontext);
2977 224 : }
2978 :
2979 : /*
2980 : * EvalPlanQualEnd -- shut down at termination of parent plan state node,
2981 : * or if we are done with the current EPQ child.
2982 : *
2983 : * This is a cut-down version of ExecutorEnd(); basically we want to do most
2984 : * of the normal cleanup, but *not* close result relations (which we are
2985 : * just sharing from the outer query). We do, however, have to close any
2986 : * result and trigger target relations that got opened, since those are not
2987 : * shared. (There probably shouldn't be any of the latter, but just in
2988 : * case...)
2989 : */
2990 : void
2991 389626 : EvalPlanQualEnd(EPQState *epqstate)
2992 : {
2993 389626 : EState *estate = epqstate->recheckestate;
2994 : Index rtsize;
2995 : MemoryContext oldcontext;
2996 : ListCell *l;
2997 :
2998 389626 : rtsize = epqstate->parentestate->es_range_table_size;
2999 :
3000 : /*
3001 : * We may have a tuple table, even if EPQ wasn't started, because we allow
3002 : * use of EvalPlanQualSlot() without calling EvalPlanQualBegin().
3003 : */
3004 389626 : if (epqstate->tuple_table != NIL)
3005 : {
3006 5694 : memset(epqstate->relsubs_slot, 0,
3007 : rtsize * sizeof(TupleTableSlot *));
3008 5694 : ExecResetTupleTable(epqstate->tuple_table, true);
3009 5694 : epqstate->tuple_table = NIL;
3010 : }
3011 :
3012 : /* EPQ wasn't started, nothing further to do */
3013 389626 : if (estate == NULL)
3014 389414 : return;
3015 :
3016 212 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
3017 :
3018 212 : ExecEndNode(epqstate->recheckplanstate);
3019 :
3020 262 : foreach(l, estate->es_subplanstates)
3021 : {
3022 50 : PlanState *subplanstate = (PlanState *) lfirst(l);
3023 :
3024 50 : ExecEndNode(subplanstate);
3025 : }
3026 :
3027 : /* throw away the per-estate tuple table, some node may have used it */
3028 212 : ExecResetTupleTable(estate->es_tupleTable, false);
3029 :
3030 : /* Close any result and trigger target relations attached to this EState */
3031 212 : ExecCloseResultRelations(estate);
3032 :
3033 212 : MemoryContextSwitchTo(oldcontext);
3034 :
3035 212 : FreeExecutorState(estate);
3036 :
3037 : /* Mark EPQState idle */
3038 212 : epqstate->origslot = NULL;
3039 212 : epqstate->recheckestate = NULL;
3040 212 : epqstate->recheckplanstate = NULL;
3041 212 : epqstate->relsubs_rowmark = NULL;
3042 212 : epqstate->relsubs_done = NULL;
3043 212 : epqstate->relsubs_blocked = NULL;
3044 : }
|