Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * execMain.c
4 : * top level executor interface routines
5 : *
6 : * INTERFACE ROUTINES
7 : * ExecutorStart()
8 : * ExecutorRun()
9 : * ExecutorFinish()
10 : * ExecutorEnd()
11 : *
12 : * These four procedures are the external interface to the executor.
13 : * In each case, the query descriptor is required as an argument.
14 : *
15 : * ExecutorStart must be called at the beginning of execution of any
16 : * query plan and ExecutorEnd must always be called at the end of
17 : * execution of a plan (unless it is aborted due to error).
18 : *
19 : * ExecutorRun accepts direction and count arguments that specify whether
20 : * the plan is to be executed forwards, backwards, and for how many tuples.
21 : * In some cases ExecutorRun may be called multiple times to process all
22 : * the tuples for a plan. It is also acceptable to stop short of executing
23 : * the whole plan (but only if it is a SELECT).
24 : *
25 : * ExecutorFinish must be called after the final ExecutorRun call and
26 : * before ExecutorEnd. This can be omitted only in case of EXPLAIN,
27 : * which should also omit ExecutorRun.
28 : *
29 : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
30 : * Portions Copyright (c) 1994, Regents of the University of California
31 : *
32 : *
33 : * IDENTIFICATION
34 : * src/backend/executor/execMain.c
35 : *
36 : *-------------------------------------------------------------------------
37 : */
38 : #include "postgres.h"
39 :
40 : #include "access/sysattr.h"
41 : #include "access/table.h"
42 : #include "access/tableam.h"
43 : #include "access/xact.h"
44 : #include "catalog/namespace.h"
45 : #include "catalog/partition.h"
46 : #include "commands/matview.h"
47 : #include "commands/trigger.h"
48 : #include "executor/executor.h"
49 : #include "executor/execPartition.h"
50 : #include "executor/nodeSubplan.h"
51 : #include "foreign/fdwapi.h"
52 : #include "mb/pg_wchar.h"
53 : #include "miscadmin.h"
54 : #include "nodes/queryjumble.h"
55 : #include "parser/parse_relation.h"
56 : #include "pgstat.h"
57 : #include "rewrite/rewriteHandler.h"
58 : #include "tcop/utility.h"
59 : #include "utils/acl.h"
60 : #include "utils/backend_status.h"
61 : #include "utils/lsyscache.h"
62 : #include "utils/partcache.h"
63 : #include "utils/rls.h"
64 : #include "utils/snapmgr.h"
65 :
66 :
67 : /* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
68 : ExecutorStart_hook_type ExecutorStart_hook = NULL;
69 : ExecutorRun_hook_type ExecutorRun_hook = NULL;
70 : ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
71 : ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
72 :
73 : /* Hook for plugin to get control in ExecCheckPermissions() */
74 : ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
75 :
76 : /* decls for local routines only used within this module */
77 : static void InitPlan(QueryDesc *queryDesc, int eflags);
78 : static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
79 : static void ExecPostprocessPlan(EState *estate);
80 : static void ExecEndPlan(PlanState *planstate, EState *estate);
81 : static void ExecutePlan(QueryDesc *queryDesc,
82 : CmdType operation,
83 : bool sendTuples,
84 : uint64 numberTuples,
85 : ScanDirection direction,
86 : DestReceiver *dest);
87 : static bool ExecCheckPermissionsModified(Oid relOid, Oid userid,
88 : Bitmapset *modifiedCols,
89 : AclMode requiredPerms);
90 : static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
91 : static void EvalPlanQualStart(EPQState *epqstate, Plan *planTree);
92 : static void ReportNotNullViolationError(ResultRelInfo *resultRelInfo,
93 : TupleTableSlot *slot,
94 : EState *estate, int attnum);
95 :
96 : /* end of local decls */
97 :
98 :
99 : /* ----------------------------------------------------------------
100 : * ExecutorStart
101 : *
102 : * This routine must be called at the beginning of any execution of any
103 : * query plan
104 : *
105 : * Takes a QueryDesc previously created by CreateQueryDesc (which is separate
106 : * only because some places use QueryDescs for utility commands). The tupDesc
107 : * field of the QueryDesc is filled in to describe the tuples that will be
108 : * returned, and the internal fields (estate and planstate) are set up.
109 : *
110 : * eflags contains flag bits as described in executor.h.
111 : *
112 : * NB: the CurrentMemoryContext when this is called will become the parent
113 : * of the per-query context used for this Executor invocation.
114 : *
115 : * We provide a function hook variable that lets loadable plugins
116 : * get control when ExecutorStart is called. Such a plugin would
117 : * normally call standard_ExecutorStart().
118 : *
119 : * ----------------------------------------------------------------
120 : */
121 : void
122 591864 : ExecutorStart(QueryDesc *queryDesc, int eflags)
123 : {
124 : /*
125 : * In some cases (e.g. an EXECUTE statement or an execute message with the
126 : * extended query protocol) the query_id won't be reported, so do it now.
127 : *
128 : * Note that it's harmless to report the query_id multiple times, as the
129 : * call will be ignored if the top level query_id has already been
130 : * reported.
131 : */
132 591864 : pgstat_report_query_id(queryDesc->plannedstmt->queryId, false);
133 :
134 591864 : if (ExecutorStart_hook)
135 117632 : (*ExecutorStart_hook) (queryDesc, eflags);
136 : else
137 474232 : standard_ExecutorStart(queryDesc, eflags);
138 590176 : }
139 :
140 : void
141 591864 : standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
142 : {
143 : EState *estate;
144 : MemoryContext oldcontext;
145 :
146 : /* sanity checks: queryDesc must not be started already */
147 : Assert(queryDesc != NULL);
148 : Assert(queryDesc->estate == NULL);
149 :
150 : /* caller must ensure the query's snapshot is active */
151 : Assert(GetActiveSnapshot() == queryDesc->snapshot);
152 :
153 : /*
154 : * If the transaction is read-only, we need to check if any writes are
155 : * planned to non-temporary tables. EXPLAIN is considered read-only.
156 : *
157 : * Don't allow writes in parallel mode. Supporting UPDATE and DELETE
158 : * would require (a) storing the combo CID hash in shared memory, rather
159 : * than synchronizing it just once at the start of parallelism, and (b) an
160 : * alternative to heap_update()'s reliance on xmax for mutual exclusion.
161 : * INSERT may have no such troubles, but we forbid it to simplify the
162 : * checks.
163 : *
164 : * We have lower-level defenses in CommandCounterIncrement and elsewhere
165 : * against performing unsafe operations in parallel mode, but this gives a
166 : * more user-friendly error message.
167 : */
168 591864 : if ((XactReadOnly || IsInParallelMode()) &&
169 62586 : !(eflags & EXEC_FLAG_EXPLAIN_ONLY))
170 62586 : ExecCheckXactReadOnly(queryDesc->plannedstmt);
171 :
172 : /*
173 : * Build EState, switch into per-query memory context for startup.
174 : */
175 591848 : estate = CreateExecutorState();
176 591848 : queryDesc->estate = estate;
177 :
178 591848 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
179 :
180 : /*
181 : * Fill in external parameters, if any, from queryDesc; and allocate
182 : * workspace for internal parameters
183 : */
184 591848 : estate->es_param_list_info = queryDesc->params;
185 :
186 591848 : if (queryDesc->plannedstmt->paramExecTypes != NIL)
187 : {
188 : int nParamExec;
189 :
190 196426 : nParamExec = list_length(queryDesc->plannedstmt->paramExecTypes);
191 196426 : estate->es_param_exec_vals = (ParamExecData *)
192 196426 : palloc0_array(ParamExecData, nParamExec);
193 : }
194 :
195 : /* We now require all callers to provide sourceText */
196 : Assert(queryDesc->sourceText != NULL);
197 591848 : estate->es_sourceText = queryDesc->sourceText;
198 :
199 : /*
200 : * Fill in the query environment, if any, from queryDesc.
201 : */
202 591848 : estate->es_queryEnv = queryDesc->queryEnv;
203 :
204 : /*
205 : * If non-read-only query, set the command ID to mark output tuples with
206 : */
207 591848 : switch (queryDesc->operation)
208 : {
209 471984 : case CMD_SELECT:
210 :
211 : /*
212 : * SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark
213 : * tuples
214 : */
215 471984 : if (queryDesc->plannedstmt->rowMarks != NIL ||
216 458250 : queryDesc->plannedstmt->hasModifyingCTE)
217 13872 : estate->es_output_cid = GetCurrentCommandId(true);
218 :
219 : /*
220 : * A SELECT without modifying CTEs can't possibly queue triggers,
221 : * so force skip-triggers mode. This is just a marginal efficiency
222 : * hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
223 : * all that expensive, but we might as well do it.
224 : */
225 471984 : if (!queryDesc->plannedstmt->hasModifyingCTE)
226 471840 : eflags |= EXEC_FLAG_SKIP_TRIGGERS;
227 471984 : break;
228 :
229 119864 : case CMD_INSERT:
230 : case CMD_DELETE:
231 : case CMD_UPDATE:
232 : case CMD_MERGE:
233 119864 : estate->es_output_cid = GetCurrentCommandId(true);
234 119864 : break;
235 :
236 0 : default:
237 0 : elog(ERROR, "unrecognized operation code: %d",
238 : (int) queryDesc->operation);
239 : break;
240 : }
241 :
242 : /*
243 : * Copy other important information into the EState
244 : */
245 591848 : estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
246 591848 : estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
247 591848 : estate->es_top_eflags = eflags;
248 591848 : estate->es_instrument = queryDesc->instrument_options;
249 591848 : estate->es_jit_flags = queryDesc->plannedstmt->jitFlags;
250 :
251 : /*
252 : * Set up an AFTER-trigger statement context, unless told not to, or
253 : * unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
254 : */
255 591848 : if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY)))
256 118364 : AfterTriggerBeginQuery();
257 :
258 : /*
259 : * Initialize the plan state tree
260 : */
261 591848 : InitPlan(queryDesc, eflags);
262 :
263 590176 : MemoryContextSwitchTo(oldcontext);
264 590176 : }
265 :
266 : /* ----------------------------------------------------------------
267 : * ExecutorRun
268 : *
269 : * This is the main routine of the executor module. It accepts
270 : * the query descriptor from the traffic cop and executes the
271 : * query plan.
272 : *
273 : * ExecutorStart must have been called already.
274 : *
275 : * If direction is NoMovementScanDirection then nothing is done
276 : * except to start up/shut down the destination. Otherwise,
277 : * we retrieve up to 'count' tuples in the specified direction.
278 : *
279 : * Note: count = 0 is interpreted as no portal limit, i.e., run to
280 : * completion. Also note that the count limit is only applied to
281 : * retrieved tuples, not for instance to those inserted/updated/deleted
282 : * by a ModifyTable plan node.
283 : *
284 : * There is no return value, but output tuples (if any) are sent to
285 : * the destination receiver specified in the QueryDesc; and the number
286 : * of tuples processed at the top level can be found in
287 : * estate->es_processed. The total number of tuples processed in all
288 : * the ExecutorRun calls can be found in estate->es_total_processed.
289 : *
290 : * We provide a function hook variable that lets loadable plugins
291 : * get control when ExecutorRun is called. Such a plugin would
292 : * normally call standard_ExecutorRun().
293 : *
294 : * ----------------------------------------------------------------
295 : */
296 : void
297 581478 : ExecutorRun(QueryDesc *queryDesc,
298 : ScanDirection direction, uint64 count)
299 : {
300 581478 : if (ExecutorRun_hook)
301 114368 : (*ExecutorRun_hook) (queryDesc, direction, count);
302 : else
303 467110 : standard_ExecutorRun(queryDesc, direction, count);
304 557502 : }
305 :
306 : void
307 581478 : standard_ExecutorRun(QueryDesc *queryDesc,
308 : ScanDirection direction, uint64 count)
309 : {
310 : EState *estate;
311 : CmdType operation;
312 : DestReceiver *dest;
313 : bool sendTuples;
314 : MemoryContext oldcontext;
315 :
316 : /* sanity checks */
317 : Assert(queryDesc != NULL);
318 :
319 581478 : estate = queryDesc->estate;
320 :
321 : Assert(estate != NULL);
322 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
323 :
324 : /* caller must ensure the query's snapshot is active */
325 : Assert(GetActiveSnapshot() == estate->es_snapshot);
326 :
327 : /*
328 : * Switch into per-query memory context
329 : */
330 581478 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
331 :
332 : /* Allow instrumentation of Executor overall runtime */
333 581478 : if (queryDesc->totaltime)
334 78462 : InstrStartNode(queryDesc->totaltime);
335 :
336 : /*
337 : * extract information from the query descriptor and the query feature.
338 : */
339 581478 : operation = queryDesc->operation;
340 581478 : dest = queryDesc->dest;
341 :
342 : /*
343 : * startup tuple receiver, if we will be emitting tuples
344 : */
345 581478 : estate->es_processed = 0;
346 :
347 699324 : sendTuples = (operation == CMD_SELECT ||
348 117846 : queryDesc->plannedstmt->hasReturning);
349 :
350 581478 : if (sendTuples)
351 468804 : dest->rStartup(dest, operation, queryDesc->tupDesc);
352 :
353 : /*
354 : * Run plan, unless direction is NoMovement.
355 : *
356 : * Note: pquery.c selects NoMovement if a prior call already reached
357 : * end-of-data in the user-specified fetch direction. This is important
358 : * because various parts of the executor can misbehave if called again
359 : * after reporting EOF. For example, heapam.c would actually restart a
360 : * heapscan and return all its data afresh. There is also some doubt
361 : * about whether a parallel plan would operate properly if an additional,
362 : * necessarily non-parallel execution request occurs after completing a
363 : * parallel execution. (That case should work, but it's untested.)
364 : */
365 581440 : if (!ScanDirectionIsNoMovement(direction))
366 580122 : ExecutePlan(queryDesc,
367 : operation,
368 : sendTuples,
369 : count,
370 : direction,
371 : dest);
372 :
373 : /*
374 : * Update es_total_processed to keep track of the number of tuples
375 : * processed across multiple ExecutorRun() calls.
376 : */
377 557502 : estate->es_total_processed += estate->es_processed;
378 :
379 : /*
380 : * shutdown tuple receiver, if we started it
381 : */
382 557502 : if (sendTuples)
383 448002 : dest->rShutdown(dest);
384 :
385 557502 : if (queryDesc->totaltime)
386 75680 : InstrStopNode(queryDesc->totaltime, estate->es_processed);
387 :
388 557502 : MemoryContextSwitchTo(oldcontext);
389 557502 : }
390 :
391 : /* ----------------------------------------------------------------
392 : * ExecutorFinish
393 : *
394 : * This routine must be called after the last ExecutorRun call.
395 : * It performs cleanup such as firing AFTER triggers. It is
396 : * separate from ExecutorEnd because EXPLAIN ANALYZE needs to
397 : * include these actions in the total runtime.
398 : *
399 : * We provide a function hook variable that lets loadable plugins
400 : * get control when ExecutorFinish is called. Such a plugin would
401 : * normally call standard_ExecutorFinish().
402 : *
403 : * ----------------------------------------------------------------
404 : */
405 : void
406 542908 : ExecutorFinish(QueryDesc *queryDesc)
407 : {
408 542908 : if (ExecutorFinish_hook)
409 103538 : (*ExecutorFinish_hook) (queryDesc);
410 : else
411 439370 : standard_ExecutorFinish(queryDesc);
412 541756 : }
413 :
414 : void
415 542908 : standard_ExecutorFinish(QueryDesc *queryDesc)
416 : {
417 : EState *estate;
418 : MemoryContext oldcontext;
419 :
420 : /* sanity checks */
421 : Assert(queryDesc != NULL);
422 :
423 542908 : estate = queryDesc->estate;
424 :
425 : Assert(estate != NULL);
426 : Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
427 :
428 : /* This should be run once and only once per Executor instance */
429 : Assert(!estate->es_finished);
430 :
431 : /* Switch into per-query memory context */
432 542908 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
433 :
434 : /* Allow instrumentation of Executor overall runtime */
435 542908 : if (queryDesc->totaltime)
436 75680 : InstrStartNode(queryDesc->totaltime);
437 :
438 : /* Run ModifyTable nodes to completion */
439 542908 : ExecPostprocessPlan(estate);
440 :
441 : /* Execute queued AFTER triggers, unless told not to */
442 542908 : if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS))
443 114056 : AfterTriggerEndQuery(estate);
444 :
445 541756 : if (queryDesc->totaltime)
446 75354 : InstrStopNode(queryDesc->totaltime, 0);
447 :
448 541756 : MemoryContextSwitchTo(oldcontext);
449 :
450 541756 : estate->es_finished = true;
451 541756 : }
452 :
453 : /* ----------------------------------------------------------------
454 : * ExecutorEnd
455 : *
456 : * This routine must be called at the end of execution of any
457 : * query plan
458 : *
459 : * We provide a function hook variable that lets loadable plugins
460 : * get control when ExecutorEnd is called. Such a plugin would
461 : * normally call standard_ExecutorEnd().
462 : *
463 : * ----------------------------------------------------------------
464 : */
465 : void
466 562996 : ExecutorEnd(QueryDesc *queryDesc)
467 : {
468 562996 : if (ExecutorEnd_hook)
469 109206 : (*ExecutorEnd_hook) (queryDesc);
470 : else
471 453790 : standard_ExecutorEnd(queryDesc);
472 562996 : }
473 :
474 : void
475 562996 : standard_ExecutorEnd(QueryDesc *queryDesc)
476 : {
477 : EState *estate;
478 : MemoryContext oldcontext;
479 :
480 : /* sanity checks */
481 : Assert(queryDesc != NULL);
482 :
483 562996 : estate = queryDesc->estate;
484 :
485 : Assert(estate != NULL);
486 :
487 562996 : if (estate->es_parallel_workers_to_launch > 0)
488 718 : pgstat_update_parallel_workers_stats((PgStat_Counter) estate->es_parallel_workers_to_launch,
489 718 : (PgStat_Counter) estate->es_parallel_workers_launched);
490 :
491 : /*
492 : * Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
493 : * Assert is needed because ExecutorFinish is new as of 9.1, and callers
494 : * might forget to call it.
495 : */
496 : Assert(estate->es_finished ||
497 : (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
498 :
499 : /*
500 : * Switch into per-query memory context to run ExecEndPlan
501 : */
502 562996 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
503 :
504 562996 : ExecEndPlan(queryDesc->planstate, estate);
505 :
506 : /* do away with our snapshots */
507 562996 : UnregisterSnapshot(estate->es_snapshot);
508 562996 : UnregisterSnapshot(estate->es_crosscheck_snapshot);
509 :
510 : /*
511 : * Must switch out of context before destroying it
512 : */
513 562996 : MemoryContextSwitchTo(oldcontext);
514 :
515 : /*
516 : * Release EState and per-query memory context. This should release
517 : * everything the executor has allocated.
518 : */
519 562996 : FreeExecutorState(estate);
520 :
521 : /* Reset queryDesc fields that no longer point to anything */
522 562996 : queryDesc->tupDesc = NULL;
523 562996 : queryDesc->estate = NULL;
524 562996 : queryDesc->planstate = NULL;
525 562996 : queryDesc->totaltime = NULL;
526 562996 : }
527 :
528 : /* ----------------------------------------------------------------
529 : * ExecutorRewind
530 : *
531 : * This routine may be called on an open queryDesc to rewind it
532 : * to the start.
533 : * ----------------------------------------------------------------
534 : */
535 : void
536 110 : ExecutorRewind(QueryDesc *queryDesc)
537 : {
538 : EState *estate;
539 : MemoryContext oldcontext;
540 :
541 : /* sanity checks */
542 : Assert(queryDesc != NULL);
543 :
544 110 : estate = queryDesc->estate;
545 :
546 : Assert(estate != NULL);
547 :
548 : /* It's probably not sensible to rescan updating queries */
549 : Assert(queryDesc->operation == CMD_SELECT);
550 :
551 : /*
552 : * Switch into per-query memory context
553 : */
554 110 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
555 :
556 : /*
557 : * rescan plan
558 : */
559 110 : ExecReScan(queryDesc->planstate);
560 :
561 110 : MemoryContextSwitchTo(oldcontext);
562 110 : }
563 :
564 :
565 : /*
566 : * ExecCheckPermissions
567 : * Check access permissions of relations mentioned in a query
568 : *
569 : * Returns true if permissions are adequate. Otherwise, throws an appropriate
570 : * error if ereport_on_violation is true, or simply returns false otherwise.
571 : *
572 : * Note that this does NOT address row-level security policies (aka: RLS). If
573 : * rows will be returned to the user as a result of this permission check
574 : * passing, then RLS also needs to be consulted (and check_enable_rls()).
575 : *
576 : * See rewrite/rowsecurity.c.
577 : *
578 : * NB: rangeTable is no longer used by us, but kept around for the hooks that
579 : * might still want to look at the RTEs.
580 : */
581 : bool
582 603544 : ExecCheckPermissions(List *rangeTable, List *rteperminfos,
583 : bool ereport_on_violation)
584 : {
585 : ListCell *l;
586 603544 : bool result = true;
587 :
588 : #ifdef USE_ASSERT_CHECKING
589 : Bitmapset *indexset = NULL;
590 :
591 : /* Check that rteperminfos is consistent with rangeTable */
592 : foreach(l, rangeTable)
593 : {
594 : RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
595 :
596 : if (rte->perminfoindex != 0)
597 : {
598 : /* Sanity checks */
599 :
600 : /*
601 : * Only relation RTEs and subquery RTEs that were once relation
602 : * RTEs (views) have their perminfoindex set.
603 : */
604 : Assert(rte->rtekind == RTE_RELATION ||
605 : (rte->rtekind == RTE_SUBQUERY &&
606 : rte->relkind == RELKIND_VIEW));
607 :
608 : (void) getRTEPermissionInfo(rteperminfos, rte);
609 : /* Many-to-one mapping not allowed */
610 : Assert(!bms_is_member(rte->perminfoindex, indexset));
611 : indexset = bms_add_member(indexset, rte->perminfoindex);
612 : }
613 : }
614 :
615 : /* All rteperminfos are referenced */
616 : Assert(bms_num_members(indexset) == list_length(rteperminfos));
617 : #endif
618 :
619 1188194 : foreach(l, rteperminfos)
620 : {
621 585962 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
622 :
623 : Assert(OidIsValid(perminfo->relid));
624 585962 : result = ExecCheckOneRelPerms(perminfo);
625 585962 : if (!result)
626 : {
627 1312 : if (ereport_on_violation)
628 1300 : aclcheck_error(ACLCHECK_NO_PRIV,
629 1300 : get_relkind_objtype(get_rel_relkind(perminfo->relid)),
630 1300 : get_rel_name(perminfo->relid));
631 12 : return false;
632 : }
633 : }
634 :
635 602232 : if (ExecutorCheckPerms_hook)
636 12 : result = (*ExecutorCheckPerms_hook) (rangeTable, rteperminfos,
637 : ereport_on_violation);
638 602232 : return result;
639 : }
640 :
641 : /*
642 : * ExecCheckOneRelPerms
643 : * Check access permissions for a single relation.
644 : */
645 : bool
646 607422 : ExecCheckOneRelPerms(RTEPermissionInfo *perminfo)
647 : {
648 : AclMode requiredPerms;
649 : AclMode relPerms;
650 : AclMode remainingPerms;
651 : Oid userid;
652 607422 : Oid relOid = perminfo->relid;
653 :
654 607422 : requiredPerms = perminfo->requiredPerms;
655 : Assert(requiredPerms != 0);
656 :
657 : /*
658 : * userid to check as: current user unless we have a setuid indication.
659 : *
660 : * Note: GetUserId() is presently fast enough that there's no harm in
661 : * calling it separately for each relation. If that stops being true, we
662 : * could call it once in ExecCheckPermissions and pass the userid down
663 : * from there. But for now, no need for the extra clutter.
664 : */
665 1214844 : userid = OidIsValid(perminfo->checkAsUser) ?
666 607422 : perminfo->checkAsUser : GetUserId();
667 :
668 : /*
669 : * We must have *all* the requiredPerms bits, but some of the bits can be
670 : * satisfied from column-level rather than relation-level permissions.
671 : * First, remove any bits that are satisfied by relation permissions.
672 : */
673 607422 : relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL);
674 607422 : remainingPerms = requiredPerms & ~relPerms;
675 607422 : if (remainingPerms != 0)
676 : {
677 2872 : int col = -1;
678 :
679 : /*
680 : * If we lack any permissions that exist only as relation permissions,
681 : * we can fail straight away.
682 : */
683 2872 : if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE))
684 156 : return false;
685 :
686 : /*
687 : * Check to see if we have the needed privileges at column level.
688 : *
689 : * Note: failures just report a table-level error; it would be nicer
690 : * to report a column-level error if we have some but not all of the
691 : * column privileges.
692 : */
693 2716 : if (remainingPerms & ACL_SELECT)
694 : {
695 : /*
696 : * When the query doesn't explicitly reference any columns (for
697 : * example, SELECT COUNT(*) FROM table), allow the query if we
698 : * have SELECT on any column of the rel, as per SQL spec.
699 : */
700 1508 : if (bms_is_empty(perminfo->selectedCols))
701 : {
702 54 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
703 : ACLMASK_ANY) != ACLCHECK_OK)
704 12 : return false;
705 : }
706 :
707 2428 : while ((col = bms_next_member(perminfo->selectedCols, col)) >= 0)
708 : {
709 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
710 1904 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
711 :
712 1904 : if (attno == InvalidAttrNumber)
713 : {
714 : /* Whole-row reference, must have priv on all cols */
715 66 : if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
716 : ACLMASK_ALL) != ACLCHECK_OK)
717 42 : return false;
718 : }
719 : else
720 : {
721 1838 : if (pg_attribute_aclcheck(relOid, attno, userid,
722 : ACL_SELECT) != ACLCHECK_OK)
723 930 : return false;
724 : }
725 : }
726 : }
727 :
728 : /*
729 : * Basically the same for the mod columns, for both INSERT and UPDATE
730 : * privilege as specified by remainingPerms.
731 : */
732 1732 : if (remainingPerms & ACL_INSERT &&
733 308 : !ExecCheckPermissionsModified(relOid,
734 : userid,
735 : perminfo->insertedCols,
736 : ACL_INSERT))
737 176 : return false;
738 :
739 1556 : if (remainingPerms & ACL_UPDATE &&
740 1140 : !ExecCheckPermissionsModified(relOid,
741 : userid,
742 : perminfo->updatedCols,
743 : ACL_UPDATE))
744 384 : return false;
745 : }
746 605722 : return true;
747 : }
748 :
749 : /*
750 : * ExecCheckPermissionsModified
751 : * Check INSERT or UPDATE access permissions for a single relation (these
752 : * are processed uniformly).
753 : */
754 : static bool
755 1448 : ExecCheckPermissionsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols,
756 : AclMode requiredPerms)
757 : {
758 1448 : int col = -1;
759 :
760 : /*
761 : * When the query doesn't explicitly update any columns, allow the query
762 : * if we have permission on any column of the rel. This is to handle
763 : * SELECT FOR UPDATE as well as possible corner cases in UPDATE.
764 : */
765 1448 : if (bms_is_empty(modifiedCols))
766 : {
767 48 : if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms,
768 : ACLMASK_ANY) != ACLCHECK_OK)
769 48 : return false;
770 : }
771 :
772 2438 : while ((col = bms_next_member(modifiedCols, col)) >= 0)
773 : {
774 : /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
775 1550 : AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
776 :
777 1550 : if (attno == InvalidAttrNumber)
778 : {
779 : /* whole-row reference can't happen here */
780 0 : elog(ERROR, "whole-row update is not implemented");
781 : }
782 : else
783 : {
784 1550 : if (pg_attribute_aclcheck(relOid, attno, userid,
785 : requiredPerms) != ACLCHECK_OK)
786 512 : return false;
787 : }
788 : }
789 888 : return true;
790 : }
791 :
792 : /*
793 : * Check that the query does not imply any writes to non-temp tables;
794 : * unless we're in parallel mode, in which case don't even allow writes
795 : * to temp tables.
796 : *
797 : * Note: in a Hot Standby this would need to reject writes to temp
798 : * tables just as we do in parallel mode; but an HS standby can't have created
799 : * any temp tables in the first place, so no need to check that.
800 : */
801 : static void
802 62586 : ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
803 : {
804 : ListCell *l;
805 :
806 : /*
807 : * Fail if write permissions are requested in parallel mode for table
808 : * (temp or non-temp), otherwise fail for any non-temp table.
809 : */
810 176144 : foreach(l, plannedstmt->permInfos)
811 : {
812 113574 : RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
813 :
814 113574 : if ((perminfo->requiredPerms & (~ACL_SELECT)) == 0)
815 113546 : continue;
816 :
817 28 : if (isTempNamespace(get_rel_namespace(perminfo->relid)))
818 12 : continue;
819 :
820 16 : PreventCommandIfReadOnly(CreateCommandName((Node *) plannedstmt));
821 : }
822 :
823 62570 : if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE)
824 12 : PreventCommandIfParallelMode(CreateCommandName((Node *) plannedstmt));
825 62570 : }
826 :
827 :
828 : /* ----------------------------------------------------------------
829 : * InitPlan
830 : *
831 : * Initializes the query plan: open files, allocate storage
832 : * and start up the rule manager
833 : * ----------------------------------------------------------------
834 : */
835 : static void
836 591848 : InitPlan(QueryDesc *queryDesc, int eflags)
837 : {
838 591848 : CmdType operation = queryDesc->operation;
839 591848 : PlannedStmt *plannedstmt = queryDesc->plannedstmt;
840 591848 : Plan *plan = plannedstmt->planTree;
841 591848 : List *rangeTable = plannedstmt->rtable;
842 591848 : EState *estate = queryDesc->estate;
843 : PlanState *planstate;
844 : TupleDesc tupType;
845 : ListCell *l;
846 : int i;
847 :
848 : /*
849 : * Do permissions checks
850 : */
851 591848 : ExecCheckPermissions(rangeTable, plannedstmt->permInfos, true);
852 :
853 : /*
854 : * initialize the node's execution state
855 : */
856 590632 : ExecInitRangeTable(estate, rangeTable, plannedstmt->permInfos,
857 590632 : bms_copy(plannedstmt->unprunableRelids));
858 :
859 590632 : estate->es_plannedstmt = plannedstmt;
860 590632 : estate->es_part_prune_infos = plannedstmt->partPruneInfos;
861 :
862 : /*
863 : * Perform runtime "initial" pruning to identify which child subplans,
864 : * corresponding to the children of plan nodes that contain
865 : * PartitionPruneInfo such as Append, will not be executed. The results,
866 : * which are bitmapsets of indexes of the child subplans that will be
867 : * executed, are saved in es_part_prune_results. These results correspond
868 : * to each PartitionPruneInfo entry, and the es_part_prune_results list is
869 : * parallel to es_part_prune_infos.
870 : */
871 590632 : ExecDoInitialPruning(estate);
872 :
873 : /*
874 : * Next, build the ExecRowMark array from the PlanRowMark(s), if any.
875 : */
876 590632 : if (plannedstmt->rowMarks)
877 : {
878 15878 : estate->es_rowmarks = (ExecRowMark **)
879 15878 : palloc0_array(ExecRowMark *, estate->es_range_table_size);
880 35238 : foreach(l, plannedstmt->rowMarks)
881 : {
882 19366 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
883 19366 : RangeTblEntry *rte = exec_rt_fetch(rc->rti, estate);
884 : Oid relid;
885 : Relation relation;
886 : ExecRowMark *erm;
887 :
888 : /* ignore "parent" rowmarks; they are irrelevant at runtime */
889 19366 : if (rc->isParent)
890 1982 : continue;
891 :
892 : /*
893 : * Also ignore rowmarks belonging to child tables that have been
894 : * pruned in ExecDoInitialPruning().
895 : */
896 17384 : if (rte->rtekind == RTE_RELATION &&
897 16796 : !bms_is_member(rc->rti, estate->es_unpruned_relids))
898 72 : continue;
899 :
900 : /* get relation's OID (will produce InvalidOid if subquery) */
901 17312 : relid = rte->relid;
902 :
903 : /* open relation, if we need to access it for this mark type */
904 17312 : switch (rc->markType)
905 : {
906 16504 : case ROW_MARK_EXCLUSIVE:
907 : case ROW_MARK_NOKEYEXCLUSIVE:
908 : case ROW_MARK_SHARE:
909 : case ROW_MARK_KEYSHARE:
910 : case ROW_MARK_REFERENCE:
911 16504 : relation = ExecGetRangeTableRelation(estate, rc->rti, false);
912 16504 : break;
913 808 : case ROW_MARK_COPY:
914 : /* no physical table access is required */
915 808 : relation = NULL;
916 808 : break;
917 0 : default:
918 0 : elog(ERROR, "unrecognized markType: %d", rc->markType);
919 : relation = NULL; /* keep compiler quiet */
920 : break;
921 : }
922 :
923 : /* Check that relation is a legal target for marking */
924 17312 : if (relation)
925 16504 : CheckValidRowMarkRel(relation, rc->markType);
926 :
927 17306 : erm = palloc_object(ExecRowMark);
928 17306 : erm->relation = relation;
929 17306 : erm->relid = relid;
930 17306 : erm->rti = rc->rti;
931 17306 : erm->prti = rc->prti;
932 17306 : erm->rowmarkId = rc->rowmarkId;
933 17306 : erm->markType = rc->markType;
934 17306 : erm->strength = rc->strength;
935 17306 : erm->waitPolicy = rc->waitPolicy;
936 17306 : erm->ermActive = false;
937 17306 : ItemPointerSetInvalid(&(erm->curCtid));
938 17306 : erm->ermExtra = NULL;
939 :
940 : Assert(erm->rti > 0 && erm->rti <= estate->es_range_table_size &&
941 : estate->es_rowmarks[erm->rti - 1] == NULL);
942 :
943 17306 : estate->es_rowmarks[erm->rti - 1] = erm;
944 : }
945 : }
946 :
947 : /*
948 : * Initialize the executor's tuple table to empty.
949 : */
950 590626 : estate->es_tupleTable = NIL;
951 :
952 : /* signal that this EState is not used for EPQ */
953 590626 : estate->es_epq_active = NULL;
954 :
955 : /*
956 : * Initialize private state information for each SubPlan. We must do this
957 : * before running ExecInitNode on the main query tree, since
958 : * ExecInitSubPlan expects to be able to find these entries.
959 : */
960 : Assert(estate->es_subplanstates == NIL);
961 590626 : i = 1; /* subplan indices count from 1 */
962 636218 : foreach(l, plannedstmt->subplans)
963 : {
964 45592 : Plan *subplan = (Plan *) lfirst(l);
965 : PlanState *subplanstate;
966 : int sp_eflags;
967 :
968 : /*
969 : * A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
970 : * it is a parameterless subplan (not initplan), we suggest that it be
971 : * prepared to handle REWIND efficiently; otherwise there is no need.
972 : */
973 45592 : sp_eflags = eflags
974 : & ~(EXEC_FLAG_REWIND | EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK);
975 45592 : if (bms_is_member(i, plannedstmt->rewindPlanIDs))
976 42 : sp_eflags |= EXEC_FLAG_REWIND;
977 :
978 45592 : subplanstate = ExecInitNode(subplan, estate, sp_eflags);
979 :
980 45592 : estate->es_subplanstates = lappend(estate->es_subplanstates,
981 : subplanstate);
982 :
983 45592 : i++;
984 : }
985 :
986 : /*
987 : * Initialize the private state information for all the nodes in the query
988 : * tree. This opens files, allocates storage and leaves us ready to start
989 : * processing tuples.
990 : */
991 590626 : planstate = ExecInitNode(plan, estate, eflags);
992 :
993 : /*
994 : * Get the tuple descriptor describing the type of tuples to return.
995 : */
996 590176 : tupType = ExecGetResultType(planstate);
997 :
998 : /*
999 : * Initialize the junk filter if needed. SELECT queries need a filter if
1000 : * there are any junk attrs in the top-level tlist.
1001 : */
1002 590176 : if (operation == CMD_SELECT)
1003 : {
1004 471316 : bool junk_filter_needed = false;
1005 : ListCell *tlist;
1006 :
1007 1731834 : foreach(tlist, plan->targetlist)
1008 : {
1009 1286524 : TargetEntry *tle = (TargetEntry *) lfirst(tlist);
1010 :
1011 1286524 : if (tle->resjunk)
1012 : {
1013 26006 : junk_filter_needed = true;
1014 26006 : break;
1015 : }
1016 : }
1017 :
1018 471316 : if (junk_filter_needed)
1019 : {
1020 : JunkFilter *j;
1021 : TupleTableSlot *slot;
1022 :
1023 26006 : slot = ExecInitExtraTupleSlot(estate, NULL, &TTSOpsVirtual);
1024 26006 : j = ExecInitJunkFilter(planstate->plan->targetlist,
1025 : slot);
1026 26006 : estate->es_junkFilter = j;
1027 :
1028 : /* Want to return the cleaned tuple type */
1029 26006 : tupType = j->jf_cleanTupType;
1030 : }
1031 : }
1032 :
1033 590176 : queryDesc->tupDesc = tupType;
1034 590176 : queryDesc->planstate = planstate;
1035 590176 : }
1036 :
1037 : /*
1038 : * Check that a proposed result relation is a legal target for the operation
1039 : *
1040 : * Generally the parser and/or planner should have noticed any such mistake
1041 : * already, but let's make sure.
1042 : *
1043 : * For INSERT ON CONFLICT, the result relation is required to support the
1044 : * onConflictAction, regardless of whether a conflict actually occurs.
1045 : *
1046 : * For MERGE, mergeActions is the list of actions that may be performed. The
1047 : * result relation is required to support every action, regardless of whether
1048 : * or not they are all executed.
1049 : *
1050 : * Note: when changing this function, you probably also need to look at
1051 : * CheckValidRowMarkRel.
1052 : */
1053 : void
1054 131594 : CheckValidResultRel(ResultRelInfo *resultRelInfo, CmdType operation,
1055 : OnConflictAction onConflictAction, List *mergeActions)
1056 : {
1057 131594 : Relation resultRel = resultRelInfo->ri_RelationDesc;
1058 : FdwRoutine *fdwroutine;
1059 :
1060 : /* Expect a fully-formed ResultRelInfo from InitResultRelInfo(). */
1061 : Assert(resultRelInfo->ri_needLockTagTuple ==
1062 : IsInplaceUpdateRelation(resultRel));
1063 :
1064 131594 : switch (resultRel->rd_rel->relkind)
1065 : {
1066 130360 : case RELKIND_RELATION:
1067 : case RELKIND_PARTITIONED_TABLE:
1068 :
1069 : /*
1070 : * For MERGE, check that the target relation supports each action.
1071 : * For other operations, just check the operation itself.
1072 : */
1073 130360 : if (operation == CMD_MERGE)
1074 6712 : foreach_node(MergeAction, action, mergeActions)
1075 3148 : CheckCmdReplicaIdentity(resultRel, action->commandType);
1076 : else
1077 128566 : CheckCmdReplicaIdentity(resultRel, operation);
1078 :
1079 : /*
1080 : * For INSERT ON CONFLICT DO UPDATE, additionally check that the
1081 : * target relation supports UPDATE.
1082 : */
1083 130040 : if (onConflictAction == ONCONFLICT_UPDATE)
1084 1170 : CheckCmdReplicaIdentity(resultRel, CMD_UPDATE);
1085 130028 : break;
1086 0 : case RELKIND_SEQUENCE:
1087 0 : ereport(ERROR,
1088 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1089 : errmsg("cannot change sequence \"%s\"",
1090 : RelationGetRelationName(resultRel))));
1091 : break;
1092 0 : case RELKIND_TOASTVALUE:
1093 0 : ereport(ERROR,
1094 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1095 : errmsg("cannot change TOAST relation \"%s\"",
1096 : RelationGetRelationName(resultRel))));
1097 : break;
1098 420 : case RELKIND_VIEW:
1099 :
1100 : /*
1101 : * Okay only if there's a suitable INSTEAD OF trigger. Otherwise,
1102 : * complain, but omit errdetail because we haven't got the
1103 : * information handy (and given that it really shouldn't happen,
1104 : * it's not worth great exertion to get).
1105 : */
1106 420 : if (!view_has_instead_trigger(resultRel, operation, mergeActions))
1107 0 : error_view_not_updatable(resultRel, operation, mergeActions,
1108 : NULL);
1109 420 : break;
1110 120 : case RELKIND_MATVIEW:
1111 120 : if (!MatViewIncrementalMaintenanceIsEnabled())
1112 0 : ereport(ERROR,
1113 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1114 : errmsg("cannot change materialized view \"%s\"",
1115 : RelationGetRelationName(resultRel))));
1116 120 : break;
1117 694 : case RELKIND_FOREIGN_TABLE:
1118 : /* Okay only if the FDW supports it */
1119 694 : fdwroutine = resultRelInfo->ri_FdwRoutine;
1120 : switch (operation)
1121 : {
1122 314 : case CMD_INSERT:
1123 314 : if (fdwroutine->ExecForeignInsert == NULL)
1124 10 : ereport(ERROR,
1125 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1126 : errmsg("cannot insert into foreign table \"%s\"",
1127 : RelationGetRelationName(resultRel))));
1128 304 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1129 304 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0)
1130 0 : ereport(ERROR,
1131 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1132 : errmsg("foreign table \"%s\" does not allow inserts",
1133 : RelationGetRelationName(resultRel))));
1134 304 : break;
1135 214 : case CMD_UPDATE:
1136 214 : if (fdwroutine->ExecForeignUpdate == NULL)
1137 4 : ereport(ERROR,
1138 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1139 : errmsg("cannot update foreign table \"%s\"",
1140 : RelationGetRelationName(resultRel))));
1141 210 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1142 210 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0)
1143 0 : ereport(ERROR,
1144 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1145 : errmsg("foreign table \"%s\" does not allow updates",
1146 : RelationGetRelationName(resultRel))));
1147 210 : break;
1148 166 : case CMD_DELETE:
1149 166 : if (fdwroutine->ExecForeignDelete == NULL)
1150 4 : ereport(ERROR,
1151 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1152 : errmsg("cannot delete from foreign table \"%s\"",
1153 : RelationGetRelationName(resultRel))));
1154 162 : if (fdwroutine->IsForeignRelUpdatable != NULL &&
1155 162 : (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0)
1156 0 : ereport(ERROR,
1157 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
1158 : errmsg("foreign table \"%s\" does not allow deletes",
1159 : RelationGetRelationName(resultRel))));
1160 162 : break;
1161 0 : default:
1162 0 : elog(ERROR, "unrecognized CmdType: %d", (int) operation);
1163 : break;
1164 : }
1165 676 : break;
1166 0 : default:
1167 0 : ereport(ERROR,
1168 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1169 : errmsg("cannot change relation \"%s\"",
1170 : RelationGetRelationName(resultRel))));
1171 : break;
1172 : }
1173 131244 : }
1174 :
1175 : /*
1176 : * Check that a proposed rowmark target relation is a legal target
1177 : *
1178 : * In most cases parser and/or planner should have noticed this already, but
1179 : * they don't cover all cases.
1180 : */
1181 : static void
1182 16504 : CheckValidRowMarkRel(Relation rel, RowMarkType markType)
1183 : {
1184 : FdwRoutine *fdwroutine;
1185 :
1186 16504 : switch (rel->rd_rel->relkind)
1187 : {
1188 16492 : case RELKIND_RELATION:
1189 : case RELKIND_PARTITIONED_TABLE:
1190 : /* OK */
1191 16492 : break;
1192 0 : case RELKIND_SEQUENCE:
1193 : /* Must disallow this because we don't vacuum sequences */
1194 0 : ereport(ERROR,
1195 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1196 : errmsg("cannot lock rows in sequence \"%s\"",
1197 : RelationGetRelationName(rel))));
1198 : break;
1199 0 : case RELKIND_TOASTVALUE:
1200 : /* We could allow this, but there seems no good reason to */
1201 0 : ereport(ERROR,
1202 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1203 : errmsg("cannot lock rows in TOAST relation \"%s\"",
1204 : RelationGetRelationName(rel))));
1205 : break;
1206 0 : case RELKIND_VIEW:
1207 : /* Should not get here; planner should have expanded the view */
1208 0 : ereport(ERROR,
1209 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1210 : errmsg("cannot lock rows in view \"%s\"",
1211 : RelationGetRelationName(rel))));
1212 : break;
1213 12 : case RELKIND_MATVIEW:
1214 : /* Allow referencing a matview, but not actual locking clauses */
1215 12 : if (markType != ROW_MARK_REFERENCE)
1216 6 : ereport(ERROR,
1217 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1218 : errmsg("cannot lock rows in materialized view \"%s\"",
1219 : RelationGetRelationName(rel))));
1220 6 : break;
1221 0 : case RELKIND_FOREIGN_TABLE:
1222 : /* Okay only if the FDW supports it */
1223 0 : fdwroutine = GetFdwRoutineForRelation(rel, false);
1224 0 : if (fdwroutine->RefetchForeignRow == NULL)
1225 0 : ereport(ERROR,
1226 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1227 : errmsg("cannot lock rows in foreign table \"%s\"",
1228 : RelationGetRelationName(rel))));
1229 0 : break;
1230 0 : default:
1231 0 : ereport(ERROR,
1232 : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1233 : errmsg("cannot lock rows in relation \"%s\"",
1234 : RelationGetRelationName(rel))));
1235 : break;
1236 : }
1237 16498 : }
1238 :
1239 : /*
1240 : * Initialize ResultRelInfo data for one result relation
1241 : *
1242 : * Caution: before Postgres 9.1, this function included the relkind checking
1243 : * that's now in CheckValidResultRel, and it also did ExecOpenIndices if
1244 : * appropriate. Be sure callers cover those needs.
1245 : */
1246 : void
1247 437158 : InitResultRelInfo(ResultRelInfo *resultRelInfo,
1248 : Relation resultRelationDesc,
1249 : Index resultRelationIndex,
1250 : ResultRelInfo *partition_root_rri,
1251 : int instrument_options)
1252 : {
1253 22295058 : MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
1254 437158 : resultRelInfo->type = T_ResultRelInfo;
1255 437158 : resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
1256 437158 : resultRelInfo->ri_RelationDesc = resultRelationDesc;
1257 437158 : resultRelInfo->ri_NumIndices = 0;
1258 437158 : resultRelInfo->ri_IndexRelationDescs = NULL;
1259 437158 : resultRelInfo->ri_IndexRelationInfo = NULL;
1260 437158 : resultRelInfo->ri_needLockTagTuple =
1261 437158 : IsInplaceUpdateRelation(resultRelationDesc);
1262 : /* make a copy so as not to depend on relcache info not changing... */
1263 437158 : resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
1264 437158 : if (resultRelInfo->ri_TrigDesc)
1265 : {
1266 18884 : int n = resultRelInfo->ri_TrigDesc->numtriggers;
1267 :
1268 18884 : resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
1269 18884 : palloc0_array(FmgrInfo, n);
1270 18884 : resultRelInfo->ri_TrigWhenExprs = (ExprState **)
1271 18884 : palloc0_array(ExprState *, n);
1272 18884 : if (instrument_options)
1273 0 : resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options, false);
1274 : }
1275 : else
1276 : {
1277 418274 : resultRelInfo->ri_TrigFunctions = NULL;
1278 418274 : resultRelInfo->ri_TrigWhenExprs = NULL;
1279 418274 : resultRelInfo->ri_TrigInstrument = NULL;
1280 : }
1281 437158 : if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1282 720 : resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
1283 : else
1284 436438 : resultRelInfo->ri_FdwRoutine = NULL;
1285 :
1286 : /* The following fields are set later if needed */
1287 437158 : resultRelInfo->ri_RowIdAttNo = 0;
1288 437158 : resultRelInfo->ri_extraUpdatedCols = NULL;
1289 437158 : resultRelInfo->ri_projectNew = NULL;
1290 437158 : resultRelInfo->ri_newTupleSlot = NULL;
1291 437158 : resultRelInfo->ri_oldTupleSlot = NULL;
1292 437158 : resultRelInfo->ri_projectNewInfoValid = false;
1293 437158 : resultRelInfo->ri_FdwState = NULL;
1294 437158 : resultRelInfo->ri_usesFdwDirectModify = false;
1295 437158 : resultRelInfo->ri_CheckConstraintExprs = NULL;
1296 437158 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs = NULL;
1297 437158 : resultRelInfo->ri_GeneratedExprsI = NULL;
1298 437158 : resultRelInfo->ri_GeneratedExprsU = NULL;
1299 437158 : resultRelInfo->ri_projectReturning = NULL;
1300 437158 : resultRelInfo->ri_onConflictArbiterIndexes = NIL;
1301 437158 : resultRelInfo->ri_onConflict = NULL;
1302 437158 : resultRelInfo->ri_ReturningSlot = NULL;
1303 437158 : resultRelInfo->ri_TrigOldSlot = NULL;
1304 437158 : resultRelInfo->ri_TrigNewSlot = NULL;
1305 437158 : resultRelInfo->ri_AllNullSlot = NULL;
1306 437158 : resultRelInfo->ri_MergeActions[MERGE_WHEN_MATCHED] = NIL;
1307 437158 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = NIL;
1308 437158 : resultRelInfo->ri_MergeActions[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = NIL;
1309 437158 : resultRelInfo->ri_MergeJoinCondition = NULL;
1310 :
1311 : /*
1312 : * Only ExecInitPartitionInfo() and ExecInitPartitionDispatchInfo() pass
1313 : * non-NULL partition_root_rri. For child relations that are part of the
1314 : * initial query rather than being dynamically added by tuple routing,
1315 : * this field is filled in ExecInitModifyTable().
1316 : */
1317 437158 : resultRelInfo->ri_RootResultRelInfo = partition_root_rri;
1318 : /* Set by ExecGetRootToChildMap */
1319 437158 : resultRelInfo->ri_RootToChildMap = NULL;
1320 437158 : resultRelInfo->ri_RootToChildMapValid = false;
1321 : /* Set by ExecInitRoutingInfo */
1322 437158 : resultRelInfo->ri_PartitionTupleSlot = NULL;
1323 437158 : resultRelInfo->ri_ChildToRootMap = NULL;
1324 437158 : resultRelInfo->ri_ChildToRootMapValid = false;
1325 437158 : resultRelInfo->ri_CopyMultiInsertBuffer = NULL;
1326 437158 : }
1327 :
1328 : /*
1329 : * ExecGetTriggerResultRel
1330 : * Get a ResultRelInfo for a trigger target relation.
1331 : *
1332 : * Most of the time, triggers are fired on one of the result relations of the
1333 : * query, and so we can just return a suitable one we already made and stored
1334 : * in the es_opened_result_relations or es_tuple_routing_result_relations
1335 : * Lists.
1336 : *
1337 : * However, it is sometimes necessary to fire triggers on other relations;
1338 : * this happens mainly when an RI update trigger queues additional triggers
1339 : * on other relations, which will be processed in the context of the outer
1340 : * query. For efficiency's sake, we want to have a ResultRelInfo for those
1341 : * triggers too; that can avoid repeated re-opening of the relation. (It
1342 : * also provides a way for EXPLAIN ANALYZE to report the runtimes of such
1343 : * triggers.) So we make additional ResultRelInfo's as needed, and save them
1344 : * in es_trig_target_relations.
1345 : */
1346 : ResultRelInfo *
1347 8400 : ExecGetTriggerResultRel(EState *estate, Oid relid,
1348 : ResultRelInfo *rootRelInfo)
1349 : {
1350 : ResultRelInfo *rInfo;
1351 : ListCell *l;
1352 : Relation rel;
1353 : MemoryContext oldcontext;
1354 :
1355 : /*
1356 : * Before creating a new ResultRelInfo, check if we've already made and
1357 : * cached one for this relation. We must ensure that the given
1358 : * 'rootRelInfo' matches the one stored in the cached ResultRelInfo as
1359 : * trigger handling for partitions can result in mixed requirements for
1360 : * what ri_RootResultRelInfo is set to.
1361 : */
1362 :
1363 : /* Search through the query result relations */
1364 11232 : foreach(l, estate->es_opened_result_relations)
1365 : {
1366 9306 : rInfo = lfirst(l);
1367 9306 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1368 6874 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1369 6474 : return rInfo;
1370 : }
1371 :
1372 : /*
1373 : * Search through the result relations that were created during tuple
1374 : * routing, if any.
1375 : */
1376 3024 : foreach(l, estate->es_tuple_routing_result_relations)
1377 : {
1378 1128 : rInfo = (ResultRelInfo *) lfirst(l);
1379 1128 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1380 738 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1381 30 : return rInfo;
1382 : }
1383 :
1384 : /* Nope, but maybe we already made an extra ResultRelInfo for it */
1385 2684 : foreach(l, estate->es_trig_target_relations)
1386 : {
1387 806 : rInfo = (ResultRelInfo *) lfirst(l);
1388 806 : if (RelationGetRelid(rInfo->ri_RelationDesc) == relid &&
1389 36 : rInfo->ri_RootResultRelInfo == rootRelInfo)
1390 18 : return rInfo;
1391 : }
1392 : /* Nope, so we need a new one */
1393 :
1394 : /*
1395 : * Open the target relation's relcache entry. We assume that an
1396 : * appropriate lock is still held by the backend from whenever the trigger
1397 : * event got queued, so we need take no new lock here. Also, we need not
1398 : * recheck the relkind, so no need for CheckValidResultRel.
1399 : */
1400 1878 : rel = table_open(relid, NoLock);
1401 :
1402 : /*
1403 : * Make the new entry in the right context.
1404 : */
1405 1878 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
1406 1878 : rInfo = makeNode(ResultRelInfo);
1407 1878 : InitResultRelInfo(rInfo,
1408 : rel,
1409 : 0, /* dummy rangetable index */
1410 : rootRelInfo,
1411 : estate->es_instrument);
1412 1878 : estate->es_trig_target_relations =
1413 1878 : lappend(estate->es_trig_target_relations, rInfo);
1414 1878 : MemoryContextSwitchTo(oldcontext);
1415 :
1416 : /*
1417 : * Currently, we don't need any index information in ResultRelInfos used
1418 : * only for triggers, so no need to call ExecOpenIndices.
1419 : */
1420 :
1421 1878 : return rInfo;
1422 : }
1423 :
1424 : /*
1425 : * Return the ancestor relations of a given leaf partition result relation
1426 : * up to and including the query's root target relation.
1427 : *
1428 : * These work much like the ones opened by ExecGetTriggerResultRel, except
1429 : * that we need to keep them in a separate list.
1430 : *
1431 : * These are closed by ExecCloseResultRelations.
1432 : */
1433 : List *
1434 306 : ExecGetAncestorResultRels(EState *estate, ResultRelInfo *resultRelInfo)
1435 : {
1436 306 : ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
1437 306 : Relation partRel = resultRelInfo->ri_RelationDesc;
1438 : Oid rootRelOid;
1439 :
1440 306 : if (!partRel->rd_rel->relispartition)
1441 0 : elog(ERROR, "cannot find ancestors of a non-partition result relation");
1442 : Assert(rootRelInfo != NULL);
1443 306 : rootRelOid = RelationGetRelid(rootRelInfo->ri_RelationDesc);
1444 306 : if (resultRelInfo->ri_ancestorResultRels == NIL)
1445 : {
1446 : ListCell *lc;
1447 240 : List *oids = get_partition_ancestors(RelationGetRelid(partRel));
1448 240 : List *ancResultRels = NIL;
1449 :
1450 306 : foreach(lc, oids)
1451 : {
1452 306 : Oid ancOid = lfirst_oid(lc);
1453 : Relation ancRel;
1454 : ResultRelInfo *rInfo;
1455 :
1456 : /*
1457 : * Ignore the root ancestor here, and use ri_RootResultRelInfo
1458 : * (below) for it instead. Also, we stop climbing up the
1459 : * hierarchy when we find the table that was mentioned in the
1460 : * query.
1461 : */
1462 306 : if (ancOid == rootRelOid)
1463 240 : break;
1464 :
1465 : /*
1466 : * All ancestors up to the root target relation must have been
1467 : * locked by the planner or AcquireExecutorLocks().
1468 : */
1469 66 : ancRel = table_open(ancOid, NoLock);
1470 66 : rInfo = makeNode(ResultRelInfo);
1471 :
1472 : /* dummy rangetable index */
1473 66 : InitResultRelInfo(rInfo, ancRel, 0, NULL,
1474 : estate->es_instrument);
1475 66 : ancResultRels = lappend(ancResultRels, rInfo);
1476 : }
1477 240 : ancResultRels = lappend(ancResultRels, rootRelInfo);
1478 240 : resultRelInfo->ri_ancestorResultRels = ancResultRels;
1479 : }
1480 :
1481 : /* We must have found some ancestor */
1482 : Assert(resultRelInfo->ri_ancestorResultRels != NIL);
1483 :
1484 306 : return resultRelInfo->ri_ancestorResultRels;
1485 : }
1486 :
1487 : /* ----------------------------------------------------------------
1488 : * ExecPostprocessPlan
1489 : *
1490 : * Give plan nodes a final chance to execute before shutdown
1491 : * ----------------------------------------------------------------
1492 : */
1493 : static void
1494 542908 : ExecPostprocessPlan(EState *estate)
1495 : {
1496 : ListCell *lc;
1497 :
1498 : /*
1499 : * Make sure nodes run forward.
1500 : */
1501 542908 : estate->es_direction = ForwardScanDirection;
1502 :
1503 : /*
1504 : * Run any secondary ModifyTable nodes to completion, in case the main
1505 : * query did not fetch all rows from them. (We do this to ensure that
1506 : * such nodes have predictable results.)
1507 : */
1508 543784 : foreach(lc, estate->es_auxmodifytables)
1509 : {
1510 876 : PlanState *ps = (PlanState *) lfirst(lc);
1511 :
1512 : for (;;)
1513 150 : {
1514 : TupleTableSlot *slot;
1515 :
1516 : /* Reset the per-output-tuple exprcontext each time */
1517 1026 : ResetPerTupleExprContext(estate);
1518 :
1519 1026 : slot = ExecProcNode(ps);
1520 :
1521 1026 : if (TupIsNull(slot))
1522 : break;
1523 : }
1524 : }
1525 542908 : }
1526 :
1527 : /* ----------------------------------------------------------------
1528 : * ExecEndPlan
1529 : *
1530 : * Cleans up the query plan -- closes files and frees up storage
1531 : *
1532 : * NOTE: we are no longer very worried about freeing storage per se
1533 : * in this code; FreeExecutorState should be guaranteed to release all
1534 : * memory that needs to be released. What we are worried about doing
1535 : * is closing relations and dropping buffer pins. Thus, for example,
1536 : * tuple tables must be cleared or dropped to ensure pins are released.
1537 : * ----------------------------------------------------------------
1538 : */
1539 : static void
1540 562996 : ExecEndPlan(PlanState *planstate, EState *estate)
1541 : {
1542 : ListCell *l;
1543 :
1544 : /*
1545 : * shut down the node-type-specific query processing
1546 : */
1547 562996 : ExecEndNode(planstate);
1548 :
1549 : /*
1550 : * for subplans too
1551 : */
1552 608000 : foreach(l, estate->es_subplanstates)
1553 : {
1554 45004 : PlanState *subplanstate = (PlanState *) lfirst(l);
1555 :
1556 45004 : ExecEndNode(subplanstate);
1557 : }
1558 :
1559 : /*
1560 : * destroy the executor's tuple table. Actually we only care about
1561 : * releasing buffer pins and tupdesc refcounts; there's no need to pfree
1562 : * the TupleTableSlots, since the containing memory context is about to go
1563 : * away anyway.
1564 : */
1565 562996 : ExecResetTupleTable(estate->es_tupleTable, false);
1566 :
1567 : /*
1568 : * Close any Relations that have been opened for range table entries or
1569 : * result relations.
1570 : */
1571 562996 : ExecCloseResultRelations(estate);
1572 562996 : ExecCloseRangeTableRelations(estate);
1573 562996 : }
1574 :
1575 : /*
1576 : * Close any relations that have been opened for ResultRelInfos.
1577 : */
1578 : void
1579 565050 : ExecCloseResultRelations(EState *estate)
1580 : {
1581 : ListCell *l;
1582 :
1583 : /*
1584 : * close indexes of result relation(s) if any. (Rels themselves are
1585 : * closed in ExecCloseRangeTableRelations())
1586 : *
1587 : * In addition, close the stub RTs that may be in each resultrel's
1588 : * ri_ancestorResultRels.
1589 : */
1590 685876 : foreach(l, estate->es_opened_result_relations)
1591 : {
1592 120826 : ResultRelInfo *resultRelInfo = lfirst(l);
1593 : ListCell *lc;
1594 :
1595 120826 : ExecCloseIndices(resultRelInfo);
1596 121084 : foreach(lc, resultRelInfo->ri_ancestorResultRels)
1597 : {
1598 258 : ResultRelInfo *rInfo = lfirst(lc);
1599 :
1600 : /*
1601 : * Ancestors with RTI > 0 (should only be the root ancestor) are
1602 : * closed by ExecCloseRangeTableRelations.
1603 : */
1604 258 : if (rInfo->ri_RangeTableIndex > 0)
1605 210 : continue;
1606 :
1607 48 : table_close(rInfo->ri_RelationDesc, NoLock);
1608 : }
1609 : }
1610 :
1611 : /* Close any relations that have been opened by ExecGetTriggerResultRel(). */
1612 566362 : foreach(l, estate->es_trig_target_relations)
1613 : {
1614 1312 : ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l);
1615 :
1616 : /*
1617 : * Assert this is a "dummy" ResultRelInfo, see above. Otherwise we
1618 : * might be issuing a duplicate close against a Relation opened by
1619 : * ExecGetRangeTableRelation.
1620 : */
1621 : Assert(resultRelInfo->ri_RangeTableIndex == 0);
1622 :
1623 : /*
1624 : * Since ExecGetTriggerResultRel doesn't call ExecOpenIndices for
1625 : * these rels, we needn't call ExecCloseIndices either.
1626 : */
1627 : Assert(resultRelInfo->ri_NumIndices == 0);
1628 :
1629 1312 : table_close(resultRelInfo->ri_RelationDesc, NoLock);
1630 : }
1631 565050 : }
1632 :
1633 : /*
1634 : * Close all relations opened by ExecGetRangeTableRelation().
1635 : *
1636 : * We do not release any locks we might hold on those rels.
1637 : */
1638 : void
1639 564604 : ExecCloseRangeTableRelations(EState *estate)
1640 : {
1641 : int i;
1642 :
1643 1693184 : for (i = 0; i < estate->es_range_table_size; i++)
1644 : {
1645 1128580 : if (estate->es_relations[i])
1646 545760 : table_close(estate->es_relations[i], NoLock);
1647 : }
1648 564604 : }
1649 :
1650 : /* ----------------------------------------------------------------
1651 : * ExecutePlan
1652 : *
1653 : * Processes the query plan until we have retrieved 'numberTuples' tuples,
1654 : * moving in the specified direction.
1655 : *
1656 : * Runs to completion if numberTuples is 0
1657 : * ----------------------------------------------------------------
1658 : */
1659 : static void
1660 580124 : ExecutePlan(QueryDesc *queryDesc,
1661 : CmdType operation,
1662 : bool sendTuples,
1663 : uint64 numberTuples,
1664 : ScanDirection direction,
1665 : DestReceiver *dest)
1666 : {
1667 580124 : EState *estate = queryDesc->estate;
1668 580124 : PlanState *planstate = queryDesc->planstate;
1669 : bool use_parallel_mode;
1670 : TupleTableSlot *slot;
1671 : uint64 current_tuple_count;
1672 :
1673 : /*
1674 : * initialize local variables
1675 : */
1676 580124 : current_tuple_count = 0;
1677 :
1678 : /*
1679 : * Set the direction.
1680 : */
1681 580124 : estate->es_direction = direction;
1682 :
1683 : /*
1684 : * Set up parallel mode if appropriate.
1685 : *
1686 : * Parallel mode only supports complete execution of a plan. If we've
1687 : * already partially executed it, or if the caller asks us to exit early,
1688 : * we must force the plan to run without parallelism.
1689 : */
1690 580124 : if (queryDesc->already_executed || numberTuples != 0)
1691 129862 : use_parallel_mode = false;
1692 : else
1693 450262 : use_parallel_mode = queryDesc->plannedstmt->parallelModeNeeded;
1694 580124 : queryDesc->already_executed = true;
1695 :
1696 580124 : estate->es_use_parallel_mode = use_parallel_mode;
1697 580124 : if (use_parallel_mode)
1698 730 : EnterParallelMode();
1699 :
1700 : /*
1701 : * Loop until we've processed the proper number of tuples from the plan.
1702 : */
1703 : for (;;)
1704 : {
1705 : /* Reset the per-output-tuple exprcontext */
1706 12858062 : ResetPerTupleExprContext(estate);
1707 :
1708 : /*
1709 : * Execute the plan and obtain a tuple
1710 : */
1711 12858062 : slot = ExecProcNode(planstate);
1712 :
1713 : /*
1714 : * if the tuple is null, then we assume there is nothing more to
1715 : * process so we just end the loop...
1716 : */
1717 12834124 : if (TupIsNull(slot))
1718 : break;
1719 :
1720 : /*
1721 : * If we have a junk filter, then project a new tuple with the junk
1722 : * removed.
1723 : *
1724 : * Store this new "clean" tuple in the junkfilter's resultSlot.
1725 : * (Formerly, we stored it back over the "dirty" tuple, which is WRONG
1726 : * because that tuple slot has the wrong descriptor.)
1727 : */
1728 12376390 : if (estate->es_junkFilter != NULL)
1729 272580 : slot = ExecFilterJunk(estate->es_junkFilter, slot);
1730 :
1731 : /*
1732 : * If we are supposed to send the tuple somewhere, do so. (In
1733 : * practice, this is probably always the case at this point.)
1734 : */
1735 12376390 : if (sendTuples)
1736 : {
1737 : /*
1738 : * If we are not able to send the tuple, we assume the destination
1739 : * has closed and no more tuples can be sent. If that's the case,
1740 : * end the loop.
1741 : */
1742 12376390 : if (!dest->receiveSlot(slot, dest))
1743 0 : break;
1744 : }
1745 :
1746 : /*
1747 : * Count tuples processed, if this is a SELECT. (For other operation
1748 : * types, the ModifyTable plan node must count the appropriate
1749 : * events.)
1750 : */
1751 12376390 : if (operation == CMD_SELECT)
1752 12368716 : (estate->es_processed)++;
1753 :
1754 : /*
1755 : * check our tuple count.. if we've processed the proper number then
1756 : * quit, else loop again and process more tuples. Zero numberTuples
1757 : * means no limit.
1758 : */
1759 12376390 : current_tuple_count++;
1760 12376390 : if (numberTuples && numberTuples == current_tuple_count)
1761 98452 : break;
1762 : }
1763 :
1764 : /*
1765 : * If we know we won't need to back up, we can release resources at this
1766 : * point.
1767 : */
1768 556186 : if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD))
1769 548756 : ExecShutdownNode(planstate);
1770 :
1771 556186 : if (use_parallel_mode)
1772 718 : ExitParallelMode();
1773 556186 : }
1774 :
1775 :
1776 : /*
1777 : * ExecRelCheck --- check that tuple meets check constraints for result relation
1778 : *
1779 : * Returns NULL if OK, else name of failed check constraint
1780 : */
1781 : static const char *
1782 2864 : ExecRelCheck(ResultRelInfo *resultRelInfo,
1783 : TupleTableSlot *slot, EState *estate)
1784 : {
1785 2864 : Relation rel = resultRelInfo->ri_RelationDesc;
1786 2864 : int ncheck = rel->rd_att->constr->num_check;
1787 2864 : ConstrCheck *check = rel->rd_att->constr->check;
1788 : ExprContext *econtext;
1789 : MemoryContext oldContext;
1790 :
1791 : /*
1792 : * CheckNNConstraintFetch let this pass with only a warning, but now we
1793 : * should fail rather than possibly failing to enforce an important
1794 : * constraint.
1795 : */
1796 2864 : if (ncheck != rel->rd_rel->relchecks)
1797 0 : elog(ERROR, "%d pg_constraint record(s) missing for relation \"%s\"",
1798 : rel->rd_rel->relchecks - ncheck, RelationGetRelationName(rel));
1799 :
1800 : /*
1801 : * If first time through for this result relation, build expression
1802 : * nodetrees for rel's constraint expressions. Keep them in the per-query
1803 : * memory context so they'll survive throughout the query.
1804 : */
1805 2864 : if (resultRelInfo->ri_CheckConstraintExprs == NULL)
1806 : {
1807 1406 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1808 1406 : resultRelInfo->ri_CheckConstraintExprs = palloc0_array(ExprState *, ncheck);
1809 3588 : for (int i = 0; i < ncheck; i++)
1810 : {
1811 : Expr *checkconstr;
1812 :
1813 : /* Skip not enforced constraint */
1814 2188 : if (!check[i].ccenforced)
1815 240 : continue;
1816 :
1817 1948 : checkconstr = stringToNode(check[i].ccbin);
1818 1948 : checkconstr = (Expr *) expand_generated_columns_in_expr((Node *) checkconstr, rel, 1);
1819 1942 : resultRelInfo->ri_CheckConstraintExprs[i] =
1820 1948 : ExecPrepareExpr(checkconstr, estate);
1821 : }
1822 1400 : MemoryContextSwitchTo(oldContext);
1823 : }
1824 :
1825 : /*
1826 : * We will use the EState's per-tuple context for evaluating constraint
1827 : * expressions (creating it if it's not already there).
1828 : */
1829 2858 : econtext = GetPerTupleExprContext(estate);
1830 :
1831 : /* Arrange for econtext's scan tuple to be the tuple under test */
1832 2858 : econtext->ecxt_scantuple = slot;
1833 :
1834 : /* And evaluate the constraints */
1835 6476 : for (int i = 0; i < ncheck; i++)
1836 : {
1837 4078 : ExprState *checkconstr = resultRelInfo->ri_CheckConstraintExprs[i];
1838 :
1839 : /*
1840 : * NOTE: SQL specifies that a NULL result from a constraint expression
1841 : * is not to be treated as a failure. Therefore, use ExecCheck not
1842 : * ExecQual.
1843 : */
1844 4078 : if (checkconstr && !ExecCheck(checkconstr, econtext))
1845 460 : return check[i].ccname;
1846 : }
1847 :
1848 : /* NULL result means no error */
1849 2398 : return NULL;
1850 : }
1851 :
1852 : /*
1853 : * ExecPartitionCheck --- check that tuple meets the partition constraint.
1854 : *
1855 : * Returns true if it meets the partition constraint. If the constraint
1856 : * fails and we're asked to emit an error, do so and don't return; otherwise
1857 : * return false.
1858 : */
1859 : bool
1860 13758 : ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
1861 : EState *estate, bool emitError)
1862 : {
1863 : ExprContext *econtext;
1864 : bool success;
1865 :
1866 : /*
1867 : * If first time through, build expression state tree for the partition
1868 : * check expression. (In the corner case where the partition check
1869 : * expression is empty, ie there's a default partition and nothing else,
1870 : * we'll be fooled into executing this code each time through. But it's
1871 : * pretty darn cheap in that case, so we don't worry about it.)
1872 : */
1873 13758 : if (resultRelInfo->ri_PartitionCheckExpr == NULL)
1874 : {
1875 : /*
1876 : * Ensure that the qual tree and prepared expression are in the
1877 : * query-lifespan context.
1878 : */
1879 3832 : MemoryContext oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
1880 3832 : List *qual = RelationGetPartitionQual(resultRelInfo->ri_RelationDesc);
1881 :
1882 3832 : resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate);
1883 3832 : MemoryContextSwitchTo(oldcxt);
1884 : }
1885 :
1886 : /*
1887 : * We will use the EState's per-tuple context for evaluating constraint
1888 : * expressions (creating it if it's not already there).
1889 : */
1890 13758 : econtext = GetPerTupleExprContext(estate);
1891 :
1892 : /* Arrange for econtext's scan tuple to be the tuple under test */
1893 13758 : econtext->ecxt_scantuple = slot;
1894 :
1895 : /*
1896 : * As in case of the cataloged constraints, we treat a NULL result as
1897 : * success here, not a failure.
1898 : */
1899 13758 : success = ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext);
1900 :
1901 : /* if asked to emit error, don't actually return on failure */
1902 13758 : if (!success && emitError)
1903 202 : ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
1904 :
1905 13556 : return success;
1906 : }
1907 :
1908 : /*
1909 : * ExecPartitionCheckEmitError - Form and emit an error message after a failed
1910 : * partition constraint check.
1911 : */
1912 : void
1913 250 : ExecPartitionCheckEmitError(ResultRelInfo *resultRelInfo,
1914 : TupleTableSlot *slot,
1915 : EState *estate)
1916 : {
1917 : Oid root_relid;
1918 : TupleDesc tupdesc;
1919 : char *val_desc;
1920 : Bitmapset *modifiedCols;
1921 :
1922 : /*
1923 : * If the tuple has been routed, it's been converted to the partition's
1924 : * rowtype, which might differ from the root table's. We must convert it
1925 : * back to the root table's rowtype so that val_desc in the error message
1926 : * matches the input tuple.
1927 : */
1928 250 : if (resultRelInfo->ri_RootResultRelInfo)
1929 : {
1930 20 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
1931 : TupleDesc old_tupdesc;
1932 : AttrMap *map;
1933 :
1934 20 : root_relid = RelationGetRelid(rootrel->ri_RelationDesc);
1935 20 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
1936 :
1937 20 : old_tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1938 : /* a reverse map */
1939 20 : map = build_attrmap_by_name_if_req(old_tupdesc, tupdesc, false);
1940 :
1941 : /*
1942 : * Partition-specific slot's tupdesc can't be changed, so allocate a
1943 : * new one.
1944 : */
1945 20 : if (map != NULL)
1946 8 : slot = execute_attr_map_slot(map, slot,
1947 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
1948 20 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
1949 20 : ExecGetUpdatedCols(rootrel, estate));
1950 : }
1951 : else
1952 : {
1953 230 : root_relid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
1954 230 : tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
1955 230 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
1956 230 : ExecGetUpdatedCols(resultRelInfo, estate));
1957 : }
1958 :
1959 250 : val_desc = ExecBuildSlotValueDescription(root_relid,
1960 : slot,
1961 : tupdesc,
1962 : modifiedCols,
1963 : 64);
1964 250 : ereport(ERROR,
1965 : (errcode(ERRCODE_CHECK_VIOLATION),
1966 : errmsg("new row for relation \"%s\" violates partition constraint",
1967 : RelationGetRelationName(resultRelInfo->ri_RelationDesc)),
1968 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
1969 : errtable(resultRelInfo->ri_RelationDesc)));
1970 : }
1971 :
1972 : /*
1973 : * ExecConstraints - check constraints of the tuple in 'slot'
1974 : *
1975 : * This checks the traditional NOT NULL and check constraints.
1976 : *
1977 : * The partition constraint is *NOT* checked.
1978 : *
1979 : * Note: 'slot' contains the tuple to check the constraints of, which may
1980 : * have been converted from the original input tuple after tuple routing.
1981 : * 'resultRelInfo' is the final result relation, after tuple routing.
1982 : */
1983 : void
1984 4545604 : ExecConstraints(ResultRelInfo *resultRelInfo,
1985 : TupleTableSlot *slot, EState *estate)
1986 : {
1987 4545604 : Relation rel = resultRelInfo->ri_RelationDesc;
1988 4545604 : TupleDesc tupdesc = RelationGetDescr(rel);
1989 4545604 : TupleConstr *constr = tupdesc->constr;
1990 : Bitmapset *modifiedCols;
1991 4545604 : List *notnull_virtual_attrs = NIL;
1992 :
1993 : Assert(constr); /* we should not be called otherwise */
1994 :
1995 : /*
1996 : * Verify not-null constraints.
1997 : *
1998 : * Not-null constraints on virtual generated columns are collected and
1999 : * checked separately below.
2000 : */
2001 4545604 : if (constr->has_not_null)
2002 : {
2003 16901368 : for (AttrNumber attnum = 1; attnum <= tupdesc->natts; attnum++)
2004 : {
2005 12362160 : Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
2006 :
2007 12362160 : if (att->attnotnull && att->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
2008 90 : notnull_virtual_attrs = lappend_int(notnull_virtual_attrs, attnum);
2009 12362070 : else if (att->attnotnull && slot_attisnull(slot, attnum))
2010 314 : ReportNotNullViolationError(resultRelInfo, slot, estate, attnum);
2011 : }
2012 : }
2013 :
2014 : /*
2015 : * Verify not-null constraints on virtual generated column, if any.
2016 : */
2017 4545290 : if (notnull_virtual_attrs)
2018 : {
2019 : AttrNumber attnum;
2020 :
2021 90 : attnum = ExecRelGenVirtualNotNull(resultRelInfo, slot, estate,
2022 : notnull_virtual_attrs);
2023 90 : if (attnum != InvalidAttrNumber)
2024 42 : ReportNotNullViolationError(resultRelInfo, slot, estate, attnum);
2025 : }
2026 :
2027 : /*
2028 : * Verify check constraints.
2029 : */
2030 4545248 : if (rel->rd_rel->relchecks > 0)
2031 : {
2032 : const char *failed;
2033 :
2034 2864 : if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
2035 : {
2036 : char *val_desc;
2037 460 : Relation orig_rel = rel;
2038 :
2039 : /*
2040 : * If the tuple has been routed, it's been converted to the
2041 : * partition's rowtype, which might differ from the root table's.
2042 : * We must convert it back to the root table's rowtype so that
2043 : * val_desc shown error message matches the input tuple.
2044 : */
2045 460 : if (resultRelInfo->ri_RootResultRelInfo)
2046 : {
2047 102 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2048 102 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2049 : AttrMap *map;
2050 :
2051 102 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2052 : /* a reverse map */
2053 102 : map = build_attrmap_by_name_if_req(old_tupdesc,
2054 : tupdesc,
2055 : false);
2056 :
2057 : /*
2058 : * Partition-specific slot's tupdesc can't be changed, so
2059 : * allocate a new one.
2060 : */
2061 102 : if (map != NULL)
2062 60 : slot = execute_attr_map_slot(map, slot,
2063 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2064 102 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2065 102 : ExecGetUpdatedCols(rootrel, estate));
2066 102 : rel = rootrel->ri_RelationDesc;
2067 : }
2068 : else
2069 358 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2070 358 : ExecGetUpdatedCols(resultRelInfo, estate));
2071 460 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2072 : slot,
2073 : tupdesc,
2074 : modifiedCols,
2075 : 64);
2076 460 : ereport(ERROR,
2077 : (errcode(ERRCODE_CHECK_VIOLATION),
2078 : errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
2079 : RelationGetRelationName(orig_rel), failed),
2080 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
2081 : errtableconstraint(orig_rel, failed)));
2082 : }
2083 : }
2084 4544782 : }
2085 :
2086 : /*
2087 : * Verify not-null constraints on virtual generated columns of the given
2088 : * tuple slot.
2089 : *
2090 : * Return value of InvalidAttrNumber means all not-null constraints on virtual
2091 : * generated columns are satisfied. A return value > 0 means a not-null
2092 : * violation happened for that attribute.
2093 : *
2094 : * notnull_virtual_attrs is the list of the attnums of virtual generated column with
2095 : * not-null constraints.
2096 : */
2097 : AttrNumber
2098 174 : ExecRelGenVirtualNotNull(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
2099 : EState *estate, List *notnull_virtual_attrs)
2100 : {
2101 174 : Relation rel = resultRelInfo->ri_RelationDesc;
2102 : ExprContext *econtext;
2103 : MemoryContext oldContext;
2104 :
2105 : /*
2106 : * We implement this by building a NullTest node for each virtual
2107 : * generated column, which we cache in resultRelInfo, and running those
2108 : * through ExecCheck().
2109 : */
2110 174 : if (resultRelInfo->ri_GenVirtualNotNullConstraintExprs == NULL)
2111 : {
2112 126 : oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
2113 126 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs =
2114 126 : palloc0_array(ExprState *, list_length(notnull_virtual_attrs));
2115 :
2116 408 : foreach_int(attnum, notnull_virtual_attrs)
2117 : {
2118 156 : int i = foreach_current_index(attnum);
2119 : NullTest *nnulltest;
2120 :
2121 : /* "generated_expression IS NOT NULL" check. */
2122 156 : nnulltest = makeNode(NullTest);
2123 156 : nnulltest->arg = (Expr *) build_generation_expression(rel, attnum);
2124 156 : nnulltest->nulltesttype = IS_NOT_NULL;
2125 156 : nnulltest->argisrow = false;
2126 156 : nnulltest->location = -1;
2127 :
2128 156 : resultRelInfo->ri_GenVirtualNotNullConstraintExprs[i] =
2129 156 : ExecPrepareExpr((Expr *) nnulltest, estate);
2130 : }
2131 126 : MemoryContextSwitchTo(oldContext);
2132 : }
2133 :
2134 : /*
2135 : * We will use the EState's per-tuple context for evaluating virtual
2136 : * generated column not null constraint expressions (creating it if it's
2137 : * not already there).
2138 : */
2139 174 : econtext = GetPerTupleExprContext(estate);
2140 :
2141 : /* Arrange for econtext's scan tuple to be the tuple under test */
2142 174 : econtext->ecxt_scantuple = slot;
2143 :
2144 : /* And evaluate the check constraints for virtual generated column */
2145 432 : foreach_int(attnum, notnull_virtual_attrs)
2146 : {
2147 228 : int i = foreach_current_index(attnum);
2148 228 : ExprState *exprstate = resultRelInfo->ri_GenVirtualNotNullConstraintExprs[i];
2149 :
2150 : Assert(exprstate != NULL);
2151 228 : if (!ExecCheck(exprstate, econtext))
2152 72 : return attnum;
2153 : }
2154 :
2155 : /* InvalidAttrNumber result means no error */
2156 102 : return InvalidAttrNumber;
2157 : }
2158 :
2159 : /*
2160 : * Report a violation of a not-null constraint that was already detected.
2161 : */
2162 : static void
2163 356 : ReportNotNullViolationError(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
2164 : EState *estate, int attnum)
2165 : {
2166 : Bitmapset *modifiedCols;
2167 : char *val_desc;
2168 356 : Relation rel = resultRelInfo->ri_RelationDesc;
2169 356 : Relation orig_rel = rel;
2170 356 : TupleDesc tupdesc = RelationGetDescr(rel);
2171 356 : TupleDesc orig_tupdesc = RelationGetDescr(rel);
2172 356 : Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
2173 :
2174 : Assert(attnum > 0);
2175 :
2176 : /*
2177 : * If the tuple has been routed, it's been converted to the partition's
2178 : * rowtype, which might differ from the root table's. We must convert it
2179 : * back to the root table's rowtype so that val_desc shown error message
2180 : * matches the input tuple.
2181 : */
2182 356 : if (resultRelInfo->ri_RootResultRelInfo)
2183 : {
2184 72 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2185 : AttrMap *map;
2186 :
2187 72 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2188 : /* a reverse map */
2189 72 : map = build_attrmap_by_name_if_req(orig_tupdesc,
2190 : tupdesc,
2191 : false);
2192 :
2193 : /*
2194 : * Partition-specific slot's tupdesc can't be changed, so allocate a
2195 : * new one.
2196 : */
2197 72 : if (map != NULL)
2198 42 : slot = execute_attr_map_slot(map, slot,
2199 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2200 72 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2201 72 : ExecGetUpdatedCols(rootrel, estate));
2202 72 : rel = rootrel->ri_RelationDesc;
2203 : }
2204 : else
2205 284 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2206 284 : ExecGetUpdatedCols(resultRelInfo, estate));
2207 :
2208 356 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2209 : slot,
2210 : tupdesc,
2211 : modifiedCols,
2212 : 64);
2213 356 : ereport(ERROR,
2214 : errcode(ERRCODE_NOT_NULL_VIOLATION),
2215 : errmsg("null value in column \"%s\" of relation \"%s\" violates not-null constraint",
2216 : NameStr(att->attname),
2217 : RelationGetRelationName(orig_rel)),
2218 : val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
2219 : errtablecol(orig_rel, attnum));
2220 : }
2221 :
2222 : /*
2223 : * ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
2224 : * of the specified kind.
2225 : *
2226 : * Note that this needs to be called multiple times to ensure that all kinds of
2227 : * WITH CHECK OPTIONs are handled (both those from views which have the WITH
2228 : * CHECK OPTION set and from row-level security policies). See ExecInsert()
2229 : * and ExecUpdate().
2230 : */
2231 : void
2232 2330 : ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
2233 : TupleTableSlot *slot, EState *estate)
2234 : {
2235 2330 : Relation rel = resultRelInfo->ri_RelationDesc;
2236 2330 : TupleDesc tupdesc = RelationGetDescr(rel);
2237 : ExprContext *econtext;
2238 : ListCell *l1,
2239 : *l2;
2240 :
2241 : /*
2242 : * We will use the EState's per-tuple context for evaluating constraint
2243 : * expressions (creating it if it's not already there).
2244 : */
2245 2330 : econtext = GetPerTupleExprContext(estate);
2246 :
2247 : /* Arrange for econtext's scan tuple to be the tuple under test */
2248 2330 : econtext->ecxt_scantuple = slot;
2249 :
2250 : /* Check each of the constraints */
2251 6256 : forboth(l1, resultRelInfo->ri_WithCheckOptions,
2252 : l2, resultRelInfo->ri_WithCheckOptionExprs)
2253 : {
2254 4448 : WithCheckOption *wco = (WithCheckOption *) lfirst(l1);
2255 4448 : ExprState *wcoExpr = (ExprState *) lfirst(l2);
2256 :
2257 : /*
2258 : * Skip any WCOs which are not the kind we are looking for at this
2259 : * time.
2260 : */
2261 4448 : if (wco->kind != kind)
2262 2686 : continue;
2263 :
2264 : /*
2265 : * WITH CHECK OPTION checks are intended to ensure that the new tuple
2266 : * is visible (in the case of a view) or that it passes the
2267 : * 'with-check' policy (in the case of row security). If the qual
2268 : * evaluates to NULL or FALSE, then the new tuple won't be included in
2269 : * the view or doesn't pass the 'with-check' policy for the table.
2270 : */
2271 1762 : if (!ExecQual(wcoExpr, econtext))
2272 : {
2273 : char *val_desc;
2274 : Bitmapset *modifiedCols;
2275 :
2276 522 : switch (wco->kind)
2277 : {
2278 : /*
2279 : * For WITH CHECK OPTIONs coming from views, we might be
2280 : * able to provide the details on the row, depending on
2281 : * the permissions on the relation (that is, if the user
2282 : * could view it directly anyway). For RLS violations, we
2283 : * don't include the data since we don't know if the user
2284 : * should be able to view the tuple as that depends on the
2285 : * USING policy.
2286 : */
2287 228 : case WCO_VIEW_CHECK:
2288 : /* See the comment in ExecConstraints(). */
2289 228 : if (resultRelInfo->ri_RootResultRelInfo)
2290 : {
2291 42 : ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
2292 42 : TupleDesc old_tupdesc = RelationGetDescr(rel);
2293 : AttrMap *map;
2294 :
2295 42 : tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
2296 : /* a reverse map */
2297 42 : map = build_attrmap_by_name_if_req(old_tupdesc,
2298 : tupdesc,
2299 : false);
2300 :
2301 : /*
2302 : * Partition-specific slot's tupdesc can't be changed,
2303 : * so allocate a new one.
2304 : */
2305 42 : if (map != NULL)
2306 24 : slot = execute_attr_map_slot(map, slot,
2307 : MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
2308 :
2309 42 : modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
2310 42 : ExecGetUpdatedCols(rootrel, estate));
2311 42 : rel = rootrel->ri_RelationDesc;
2312 : }
2313 : else
2314 186 : modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
2315 186 : ExecGetUpdatedCols(resultRelInfo, estate));
2316 228 : val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
2317 : slot,
2318 : tupdesc,
2319 : modifiedCols,
2320 : 64);
2321 :
2322 228 : ereport(ERROR,
2323 : (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
2324 : errmsg("new row violates check option for view \"%s\"",
2325 : wco->relname),
2326 : val_desc ? errdetail("Failing row contains %s.",
2327 : val_desc) : 0));
2328 : break;
2329 246 : case WCO_RLS_INSERT_CHECK:
2330 : case WCO_RLS_UPDATE_CHECK:
2331 246 : if (wco->polname != NULL)
2332 60 : ereport(ERROR,
2333 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2334 : errmsg("new row violates row-level security policy \"%s\" for table \"%s\"",
2335 : wco->polname, wco->relname)));
2336 : else
2337 186 : ereport(ERROR,
2338 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2339 : errmsg("new row violates row-level security policy for table \"%s\"",
2340 : wco->relname)));
2341 : break;
2342 24 : case WCO_RLS_MERGE_UPDATE_CHECK:
2343 : case WCO_RLS_MERGE_DELETE_CHECK:
2344 24 : if (wco->polname != NULL)
2345 0 : ereport(ERROR,
2346 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2347 : errmsg("target row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2348 : wco->polname, wco->relname)));
2349 : else
2350 24 : ereport(ERROR,
2351 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2352 : errmsg("target row violates row-level security policy (USING expression) for table \"%s\"",
2353 : wco->relname)));
2354 : break;
2355 24 : case WCO_RLS_CONFLICT_CHECK:
2356 24 : if (wco->polname != NULL)
2357 0 : ereport(ERROR,
2358 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2359 : errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
2360 : wco->polname, wco->relname)));
2361 : else
2362 24 : ereport(ERROR,
2363 : (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2364 : errmsg("new row violates row-level security policy (USING expression) for table \"%s\"",
2365 : wco->relname)));
2366 : break;
2367 0 : default:
2368 0 : elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
2369 : break;
2370 : }
2371 : }
2372 : }
2373 1808 : }
2374 :
2375 : /*
2376 : * ExecBuildSlotValueDescription -- construct a string representing a tuple
2377 : *
2378 : * This is intentionally very similar to BuildIndexValueDescription, but
2379 : * unlike that function, we truncate long field values (to at most maxfieldlen
2380 : * bytes). That seems necessary here since heap field values could be very
2381 : * long, whereas index entries typically aren't so wide.
2382 : *
2383 : * Also, unlike the case with index entries, we need to be prepared to ignore
2384 : * dropped columns. We used to use the slot's tuple descriptor to decode the
2385 : * data, but the slot's descriptor doesn't identify dropped columns, so we
2386 : * now need to be passed the relation's descriptor.
2387 : *
2388 : * Note that, like BuildIndexValueDescription, if the user does not have
2389 : * permission to view any of the columns involved, a NULL is returned. Unlike
2390 : * BuildIndexValueDescription, if the user has access to view a subset of the
2391 : * column involved, that subset will be returned with a key identifying which
2392 : * columns they are.
2393 : */
2394 : char *
2395 1518 : ExecBuildSlotValueDescription(Oid reloid,
2396 : TupleTableSlot *slot,
2397 : TupleDesc tupdesc,
2398 : Bitmapset *modifiedCols,
2399 : int maxfieldlen)
2400 : {
2401 : StringInfoData buf;
2402 : StringInfoData collist;
2403 1518 : bool write_comma = false;
2404 1518 : bool write_comma_collist = false;
2405 : int i;
2406 : AclResult aclresult;
2407 1518 : bool table_perm = false;
2408 1518 : bool any_perm = false;
2409 :
2410 : /*
2411 : * Check if RLS is enabled and should be active for the relation; if so,
2412 : * then don't return anything. Otherwise, go through normal permission
2413 : * checks.
2414 : */
2415 1518 : if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED)
2416 0 : return NULL;
2417 :
2418 1518 : initStringInfo(&buf);
2419 :
2420 1518 : appendStringInfoChar(&buf, '(');
2421 :
2422 : /*
2423 : * Check if the user has permissions to see the row. Table-level SELECT
2424 : * allows access to all columns. If the user does not have table-level
2425 : * SELECT then we check each column and include those the user has SELECT
2426 : * rights on. Additionally, we always include columns the user provided
2427 : * data for.
2428 : */
2429 1518 : aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
2430 1518 : if (aclresult != ACLCHECK_OK)
2431 : {
2432 : /* Set up the buffer for the column list */
2433 60 : initStringInfo(&collist);
2434 60 : appendStringInfoChar(&collist, '(');
2435 : }
2436 : else
2437 1458 : table_perm = any_perm = true;
2438 :
2439 : /* Make sure the tuple is fully deconstructed */
2440 1518 : slot_getallattrs(slot);
2441 :
2442 5454 : for (i = 0; i < tupdesc->natts; i++)
2443 : {
2444 3936 : bool column_perm = false;
2445 : char *val;
2446 : int vallen;
2447 3936 : Form_pg_attribute att = TupleDescAttr(tupdesc, i);
2448 :
2449 : /* ignore dropped columns */
2450 3936 : if (att->attisdropped)
2451 38 : continue;
2452 :
2453 3898 : if (!table_perm)
2454 : {
2455 : /*
2456 : * No table-level SELECT, so need to make sure they either have
2457 : * SELECT rights on the column or that they have provided the data
2458 : * for the column. If not, omit this column from the error
2459 : * message.
2460 : */
2461 234 : aclresult = pg_attribute_aclcheck(reloid, att->attnum,
2462 : GetUserId(), ACL_SELECT);
2463 234 : if (bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber,
2464 138 : modifiedCols) || aclresult == ACLCHECK_OK)
2465 : {
2466 144 : column_perm = any_perm = true;
2467 :
2468 144 : if (write_comma_collist)
2469 84 : appendStringInfoString(&collist, ", ");
2470 : else
2471 60 : write_comma_collist = true;
2472 :
2473 144 : appendStringInfoString(&collist, NameStr(att->attname));
2474 : }
2475 : }
2476 :
2477 3898 : if (table_perm || column_perm)
2478 : {
2479 3808 : if (att->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
2480 60 : val = "virtual";
2481 3748 : else if (slot->tts_isnull[i])
2482 634 : val = "null";
2483 : else
2484 : {
2485 : Oid foutoid;
2486 : bool typisvarlena;
2487 :
2488 3114 : getTypeOutputInfo(att->atttypid,
2489 : &foutoid, &typisvarlena);
2490 3114 : val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
2491 : }
2492 :
2493 3808 : if (write_comma)
2494 2290 : appendStringInfoString(&buf, ", ");
2495 : else
2496 1518 : write_comma = true;
2497 :
2498 : /* truncate if needed */
2499 3808 : vallen = strlen(val);
2500 3808 : if (vallen <= maxfieldlen)
2501 3806 : appendBinaryStringInfo(&buf, val, vallen);
2502 : else
2503 : {
2504 2 : vallen = pg_mbcliplen(val, vallen, maxfieldlen);
2505 2 : appendBinaryStringInfo(&buf, val, vallen);
2506 2 : appendStringInfoString(&buf, "...");
2507 : }
2508 : }
2509 : }
2510 :
2511 : /* If we end up with zero columns being returned, then return NULL. */
2512 1518 : if (!any_perm)
2513 0 : return NULL;
2514 :
2515 1518 : appendStringInfoChar(&buf, ')');
2516 :
2517 1518 : if (!table_perm)
2518 : {
2519 60 : appendStringInfoString(&collist, ") = ");
2520 60 : appendBinaryStringInfo(&collist, buf.data, buf.len);
2521 :
2522 60 : return collist.data;
2523 : }
2524 :
2525 1458 : return buf.data;
2526 : }
2527 :
2528 :
2529 : /*
2530 : * ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
2531 : * given ResultRelInfo
2532 : */
2533 : LockTupleMode
2534 7934 : ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
2535 : {
2536 : Bitmapset *keyCols;
2537 : Bitmapset *updatedCols;
2538 :
2539 : /*
2540 : * Compute lock mode to use. If columns that are part of the key have not
2541 : * been modified, then we can use a weaker lock, allowing for better
2542 : * concurrency.
2543 : */
2544 7934 : updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
2545 7934 : keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
2546 : INDEX_ATTR_BITMAP_KEY);
2547 :
2548 7934 : if (bms_overlap(keyCols, updatedCols))
2549 266 : return LockTupleExclusive;
2550 :
2551 7668 : return LockTupleNoKeyExclusive;
2552 : }
2553 :
2554 : /*
2555 : * ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
2556 : *
2557 : * If no such struct, either return NULL or throw error depending on missing_ok
2558 : */
2559 : ExecRowMark *
2560 17274 : ExecFindRowMark(EState *estate, Index rti, bool missing_ok)
2561 : {
2562 17274 : if (rti > 0 && rti <= estate->es_range_table_size &&
2563 17274 : estate->es_rowmarks != NULL)
2564 : {
2565 17274 : ExecRowMark *erm = estate->es_rowmarks[rti - 1];
2566 :
2567 17274 : if (erm)
2568 17274 : return erm;
2569 : }
2570 0 : if (!missing_ok)
2571 0 : elog(ERROR, "failed to find ExecRowMark for rangetable index %u", rti);
2572 0 : return NULL;
2573 : }
2574 :
2575 : /*
2576 : * ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
2577 : *
2578 : * Inputs are the underlying ExecRowMark struct and the targetlist of the
2579 : * input plan node (not planstate node!). We need the latter to find out
2580 : * the column numbers of the resjunk columns.
2581 : */
2582 : ExecAuxRowMark *
2583 17274 : ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
2584 : {
2585 17274 : ExecAuxRowMark *aerm = palloc0_object(ExecAuxRowMark);
2586 : char resname[32];
2587 :
2588 17274 : aerm->rowmark = erm;
2589 :
2590 : /* Look up the resjunk columns associated with this rowmark */
2591 17274 : if (erm->markType != ROW_MARK_COPY)
2592 : {
2593 : /* need ctid for all methods other than COPY */
2594 16506 : snprintf(resname, sizeof(resname), "ctid%u", erm->rowmarkId);
2595 16506 : aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2596 : resname);
2597 16506 : if (!AttributeNumberIsValid(aerm->ctidAttNo))
2598 0 : elog(ERROR, "could not find junk %s column", resname);
2599 : }
2600 : else
2601 : {
2602 : /* need wholerow if COPY */
2603 768 : snprintf(resname, sizeof(resname), "wholerow%u", erm->rowmarkId);
2604 768 : aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist,
2605 : resname);
2606 768 : if (!AttributeNumberIsValid(aerm->wholeAttNo))
2607 0 : elog(ERROR, "could not find junk %s column", resname);
2608 : }
2609 :
2610 : /* if child rel, need tableoid */
2611 17274 : if (erm->rti != erm->prti)
2612 : {
2613 2032 : snprintf(resname, sizeof(resname), "tableoid%u", erm->rowmarkId);
2614 2032 : aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist,
2615 : resname);
2616 2032 : if (!AttributeNumberIsValid(aerm->toidAttNo))
2617 0 : elog(ERROR, "could not find junk %s column", resname);
2618 : }
2619 :
2620 17274 : return aerm;
2621 : }
2622 :
2623 :
2624 : /*
2625 : * EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
2626 : * process the updated version under READ COMMITTED rules.
2627 : *
2628 : * See backend/executor/README for some info about how this works.
2629 : */
2630 :
2631 :
2632 : /*
2633 : * Check the updated version of a tuple to see if we want to process it under
2634 : * READ COMMITTED rules.
2635 : *
2636 : * epqstate - state for EvalPlanQual rechecking
2637 : * relation - table containing tuple
2638 : * rti - rangetable index of table containing tuple
2639 : * inputslot - tuple for processing - this can be the slot from
2640 : * EvalPlanQualSlot() for this rel, for increased efficiency.
2641 : *
2642 : * This tests whether the tuple in inputslot still matches the relevant
2643 : * quals. For that result to be useful, typically the input tuple has to be
2644 : * last row version (otherwise the result isn't particularly useful) and
2645 : * locked (otherwise the result might be out of date). That's typically
2646 : * achieved by using table_tuple_lock() with the
2647 : * TUPLE_LOCK_FLAG_FIND_LAST_VERSION flag.
2648 : *
2649 : * Returns a slot containing the new candidate update/delete tuple, or
2650 : * NULL if we determine we shouldn't process the row.
2651 : */
2652 : TupleTableSlot *
2653 292 : EvalPlanQual(EPQState *epqstate, Relation relation,
2654 : Index rti, TupleTableSlot *inputslot)
2655 : {
2656 : TupleTableSlot *slot;
2657 : TupleTableSlot *testslot;
2658 :
2659 : Assert(rti > 0);
2660 :
2661 : /*
2662 : * Need to run a recheck subquery. Initialize or reinitialize EPQ state.
2663 : */
2664 292 : EvalPlanQualBegin(epqstate);
2665 :
2666 : /*
2667 : * Callers will often use the EvalPlanQualSlot to store the tuple to avoid
2668 : * an unnecessary copy.
2669 : */
2670 292 : testslot = EvalPlanQualSlot(epqstate, relation, rti);
2671 292 : if (testslot != inputslot)
2672 12 : ExecCopySlot(testslot, inputslot);
2673 :
2674 : /*
2675 : * Mark that an EPQ tuple is available for this relation. (If there is
2676 : * more than one result relation, the others remain marked as having no
2677 : * tuple available.)
2678 : */
2679 292 : epqstate->relsubs_done[rti - 1] = false;
2680 292 : epqstate->relsubs_blocked[rti - 1] = false;
2681 :
2682 : /*
2683 : * Run the EPQ query. We assume it will return at most one tuple.
2684 : */
2685 292 : slot = EvalPlanQualNext(epqstate);
2686 :
2687 : /*
2688 : * If we got a tuple, force the slot to materialize the tuple so that it
2689 : * is not dependent on any local state in the EPQ query (in particular,
2690 : * it's highly likely that the slot contains references to any pass-by-ref
2691 : * datums that may be present in copyTuple). As with the next step, this
2692 : * is to guard against early re-use of the EPQ query.
2693 : */
2694 292 : if (!TupIsNull(slot))
2695 220 : ExecMaterializeSlot(slot);
2696 :
2697 : /*
2698 : * Clear out the test tuple, and mark that no tuple is available here.
2699 : * This is needed in case the EPQ state is re-used to test a tuple for a
2700 : * different target relation.
2701 : */
2702 292 : ExecClearTuple(testslot);
2703 292 : epqstate->relsubs_blocked[rti - 1] = true;
2704 :
2705 292 : return slot;
2706 : }
2707 :
2708 : /*
2709 : * EvalPlanQualInit -- initialize during creation of a plan state node
2710 : * that might need to invoke EPQ processing.
2711 : *
2712 : * If the caller intends to use EvalPlanQual(), resultRelations should be
2713 : * a list of RT indexes of potential target relations for EvalPlanQual(),
2714 : * and we will arrange that the other listed relations don't return any
2715 : * tuple during an EvalPlanQual() call. Otherwise resultRelations
2716 : * should be NIL.
2717 : *
2718 : * Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
2719 : * with EvalPlanQualSetPlan.
2720 : */
2721 : void
2722 278066 : EvalPlanQualInit(EPQState *epqstate, EState *parentestate,
2723 : Plan *subplan, List *auxrowmarks,
2724 : int epqParam, List *resultRelations)
2725 : {
2726 278066 : Index rtsize = parentestate->es_range_table_size;
2727 :
2728 : /* initialize data not changing over EPQState's lifetime */
2729 278066 : epqstate->parentestate = parentestate;
2730 278066 : epqstate->epqParam = epqParam;
2731 278066 : epqstate->resultRelations = resultRelations;
2732 :
2733 : /*
2734 : * Allocate space to reference a slot for each potential rti - do so now
2735 : * rather than in EvalPlanQualBegin(), as done for other dynamically
2736 : * allocated resources, so EvalPlanQualSlot() can be used to hold tuples
2737 : * that *may* need EPQ later, without forcing the overhead of
2738 : * EvalPlanQualBegin().
2739 : */
2740 278066 : epqstate->tuple_table = NIL;
2741 278066 : epqstate->relsubs_slot = palloc0_array(TupleTableSlot *, rtsize);
2742 :
2743 : /* ... and remember data that EvalPlanQualBegin will need */
2744 278066 : epqstate->plan = subplan;
2745 278066 : epqstate->arowMarks = auxrowmarks;
2746 :
2747 : /* ... and mark the EPQ state inactive */
2748 278066 : epqstate->origslot = NULL;
2749 278066 : epqstate->recheckestate = NULL;
2750 278066 : epqstate->recheckplanstate = NULL;
2751 278066 : epqstate->relsubs_rowmark = NULL;
2752 278066 : epqstate->relsubs_done = NULL;
2753 278066 : epqstate->relsubs_blocked = NULL;
2754 278066 : }
2755 :
2756 : /*
2757 : * EvalPlanQualSetPlan -- set or change subplan of an EPQState.
2758 : *
2759 : * We used to need this so that ModifyTable could deal with multiple subplans.
2760 : * It could now be refactored out of existence.
2761 : */
2762 : void
2763 119202 : EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
2764 : {
2765 : /* If we have a live EPQ query, shut it down */
2766 119202 : EvalPlanQualEnd(epqstate);
2767 : /* And set/change the plan pointer */
2768 119202 : epqstate->plan = subplan;
2769 : /* The rowmarks depend on the plan, too */
2770 119202 : epqstate->arowMarks = auxrowmarks;
2771 119202 : }
2772 :
2773 : /*
2774 : * Return, and create if necessary, a slot for an EPQ test tuple.
2775 : *
2776 : * Note this only requires EvalPlanQualInit() to have been called,
2777 : * EvalPlanQualBegin() is not necessary.
2778 : */
2779 : TupleTableSlot *
2780 164376 : EvalPlanQualSlot(EPQState *epqstate,
2781 : Relation relation, Index rti)
2782 : {
2783 : TupleTableSlot **slot;
2784 :
2785 : Assert(relation);
2786 : Assert(rti > 0 && rti <= epqstate->parentestate->es_range_table_size);
2787 164376 : slot = &epqstate->relsubs_slot[rti - 1];
2788 :
2789 164376 : if (*slot == NULL)
2790 : {
2791 : MemoryContext oldcontext;
2792 :
2793 11760 : oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt);
2794 11760 : *slot = table_slot_create(relation, &epqstate->tuple_table);
2795 11760 : MemoryContextSwitchTo(oldcontext);
2796 : }
2797 :
2798 164376 : return *slot;
2799 : }
2800 :
2801 : /*
2802 : * Fetch the current row value for a non-locked relation, identified by rti,
2803 : * that needs to be scanned by an EvalPlanQual operation. origslot must have
2804 : * been set to contain the current result row (top-level row) that we need to
2805 : * recheck. Returns true if a substitution tuple was found, false if not.
2806 : */
2807 : bool
2808 44 : EvalPlanQualFetchRowMark(EPQState *epqstate, Index rti, TupleTableSlot *slot)
2809 : {
2810 44 : ExecAuxRowMark *earm = epqstate->relsubs_rowmark[rti - 1];
2811 : ExecRowMark *erm;
2812 : Datum datum;
2813 : bool isNull;
2814 :
2815 : Assert(earm != NULL);
2816 : Assert(epqstate->origslot != NULL);
2817 :
2818 44 : erm = earm->rowmark;
2819 :
2820 44 : if (RowMarkRequiresRowShareLock(erm->markType))
2821 0 : elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
2822 :
2823 : /* if child rel, must check whether it produced this row */
2824 44 : if (erm->rti != erm->prti)
2825 : {
2826 : Oid tableoid;
2827 :
2828 0 : datum = ExecGetJunkAttribute(epqstate->origslot,
2829 0 : earm->toidAttNo,
2830 : &isNull);
2831 : /* non-locked rels could be on the inside of outer joins */
2832 0 : if (isNull)
2833 0 : return false;
2834 :
2835 0 : tableoid = DatumGetObjectId(datum);
2836 :
2837 : Assert(OidIsValid(erm->relid));
2838 0 : if (tableoid != erm->relid)
2839 : {
2840 : /* this child is inactive right now */
2841 0 : return false;
2842 : }
2843 : }
2844 :
2845 44 : if (erm->markType == ROW_MARK_REFERENCE)
2846 : {
2847 : Assert(erm->relation != NULL);
2848 :
2849 : /* fetch the tuple's ctid */
2850 26 : datum = ExecGetJunkAttribute(epqstate->origslot,
2851 26 : earm->ctidAttNo,
2852 : &isNull);
2853 : /* non-locked rels could be on the inside of outer joins */
2854 26 : if (isNull)
2855 0 : return false;
2856 :
2857 : /* fetch requests on foreign tables must be passed to their FDW */
2858 26 : if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
2859 : {
2860 : FdwRoutine *fdwroutine;
2861 0 : bool updated = false;
2862 :
2863 0 : fdwroutine = GetFdwRoutineForRelation(erm->relation, false);
2864 : /* this should have been checked already, but let's be safe */
2865 0 : if (fdwroutine->RefetchForeignRow == NULL)
2866 0 : ereport(ERROR,
2867 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2868 : errmsg("cannot lock rows in foreign table \"%s\"",
2869 : RelationGetRelationName(erm->relation))));
2870 :
2871 0 : fdwroutine->RefetchForeignRow(epqstate->recheckestate,
2872 : erm,
2873 : datum,
2874 : slot,
2875 : &updated);
2876 0 : if (TupIsNull(slot))
2877 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2878 :
2879 : /*
2880 : * Ideally we'd insist on updated == false here, but that assumes
2881 : * that FDWs can track that exactly, which they might not be able
2882 : * to. So just ignore the flag.
2883 : */
2884 0 : return true;
2885 : }
2886 : else
2887 : {
2888 : /* ordinary table, fetch the tuple */
2889 26 : if (!table_tuple_fetch_row_version(erm->relation,
2890 26 : (ItemPointer) DatumGetPointer(datum),
2891 : SnapshotAny, slot))
2892 0 : elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
2893 26 : return true;
2894 : }
2895 : }
2896 : else
2897 : {
2898 : Assert(erm->markType == ROW_MARK_COPY);
2899 :
2900 : /* fetch the whole-row Var for the relation */
2901 18 : datum = ExecGetJunkAttribute(epqstate->origslot,
2902 18 : earm->wholeAttNo,
2903 : &isNull);
2904 : /* non-locked rels could be on the inside of outer joins */
2905 18 : if (isNull)
2906 0 : return false;
2907 :
2908 18 : ExecStoreHeapTupleDatum(datum, slot);
2909 18 : return true;
2910 : }
2911 : }
2912 :
2913 : /*
2914 : * Fetch the next row (if any) from EvalPlanQual testing
2915 : *
2916 : * (In practice, there should never be more than one row...)
2917 : */
2918 : TupleTableSlot *
2919 360 : EvalPlanQualNext(EPQState *epqstate)
2920 : {
2921 : MemoryContext oldcontext;
2922 : TupleTableSlot *slot;
2923 :
2924 360 : oldcontext = MemoryContextSwitchTo(epqstate->recheckestate->es_query_cxt);
2925 360 : slot = ExecProcNode(epqstate->recheckplanstate);
2926 360 : MemoryContextSwitchTo(oldcontext);
2927 :
2928 360 : return slot;
2929 : }
2930 :
2931 : /*
2932 : * Initialize or reset an EvalPlanQual state tree
2933 : */
2934 : void
2935 428 : EvalPlanQualBegin(EPQState *epqstate)
2936 : {
2937 428 : EState *parentestate = epqstate->parentestate;
2938 428 : EState *recheckestate = epqstate->recheckestate;
2939 :
2940 428 : if (recheckestate == NULL)
2941 : {
2942 : /* First time through, so create a child EState */
2943 270 : EvalPlanQualStart(epqstate, epqstate->plan);
2944 : }
2945 : else
2946 : {
2947 : /*
2948 : * We already have a suitable child EPQ tree, so just reset it.
2949 : */
2950 158 : Index rtsize = parentestate->es_range_table_size;
2951 158 : PlanState *rcplanstate = epqstate->recheckplanstate;
2952 :
2953 : /*
2954 : * Reset the relsubs_done[] flags to equal relsubs_blocked[], so that
2955 : * the EPQ run will never attempt to fetch tuples from blocked target
2956 : * relations.
2957 : */
2958 158 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
2959 : rtsize * sizeof(bool));
2960 :
2961 : /* Recopy current values of parent parameters */
2962 158 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
2963 : {
2964 : int i;
2965 :
2966 : /*
2967 : * Force evaluation of any InitPlan outputs that could be needed
2968 : * by the subplan, just in case they got reset since
2969 : * EvalPlanQualStart (see comments therein).
2970 : */
2971 158 : ExecSetParamPlanMulti(rcplanstate->plan->extParam,
2972 158 : GetPerTupleExprContext(parentestate));
2973 :
2974 158 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
2975 :
2976 338 : while (--i >= 0)
2977 : {
2978 : /* copy value if any, but not execPlan link */
2979 180 : recheckestate->es_param_exec_vals[i].value =
2980 180 : parentestate->es_param_exec_vals[i].value;
2981 180 : recheckestate->es_param_exec_vals[i].isnull =
2982 180 : parentestate->es_param_exec_vals[i].isnull;
2983 : }
2984 : }
2985 :
2986 : /*
2987 : * Mark child plan tree as needing rescan at all scan nodes. The
2988 : * first ExecProcNode will take care of actually doing the rescan.
2989 : */
2990 158 : rcplanstate->chgParam = bms_add_member(rcplanstate->chgParam,
2991 : epqstate->epqParam);
2992 : }
2993 428 : }
2994 :
2995 : /*
2996 : * Start execution of an EvalPlanQual plan tree.
2997 : *
2998 : * This is a cut-down version of ExecutorStart(): we copy some state from
2999 : * the top-level estate rather than initializing it fresh.
3000 : */
3001 : static void
3002 270 : EvalPlanQualStart(EPQState *epqstate, Plan *planTree)
3003 : {
3004 270 : EState *parentestate = epqstate->parentestate;
3005 270 : Index rtsize = parentestate->es_range_table_size;
3006 : EState *rcestate;
3007 : MemoryContext oldcontext;
3008 : ListCell *l;
3009 :
3010 270 : epqstate->recheckestate = rcestate = CreateExecutorState();
3011 :
3012 270 : oldcontext = MemoryContextSwitchTo(rcestate->es_query_cxt);
3013 :
3014 : /* signal that this is an EState for executing EPQ */
3015 270 : rcestate->es_epq_active = epqstate;
3016 :
3017 : /*
3018 : * Child EPQ EStates share the parent's copy of unchanging state such as
3019 : * the snapshot, rangetable, and external Param info. They need their own
3020 : * copies of local state, including a tuple table, es_param_exec_vals,
3021 : * result-rel info, etc.
3022 : */
3023 270 : rcestate->es_direction = ForwardScanDirection;
3024 270 : rcestate->es_snapshot = parentestate->es_snapshot;
3025 270 : rcestate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
3026 270 : rcestate->es_range_table = parentestate->es_range_table;
3027 270 : rcestate->es_range_table_size = parentestate->es_range_table_size;
3028 270 : rcestate->es_relations = parentestate->es_relations;
3029 270 : rcestate->es_rowmarks = parentestate->es_rowmarks;
3030 270 : rcestate->es_rteperminfos = parentestate->es_rteperminfos;
3031 270 : rcestate->es_plannedstmt = parentestate->es_plannedstmt;
3032 270 : rcestate->es_junkFilter = parentestate->es_junkFilter;
3033 270 : rcestate->es_output_cid = parentestate->es_output_cid;
3034 270 : rcestate->es_queryEnv = parentestate->es_queryEnv;
3035 :
3036 : /*
3037 : * ResultRelInfos needed by subplans are initialized from scratch when the
3038 : * subplans themselves are initialized.
3039 : */
3040 270 : rcestate->es_result_relations = NULL;
3041 : /* es_trig_target_relations must NOT be copied */
3042 270 : rcestate->es_top_eflags = parentestate->es_top_eflags;
3043 270 : rcestate->es_instrument = parentestate->es_instrument;
3044 : /* es_auxmodifytables must NOT be copied */
3045 :
3046 : /*
3047 : * The external param list is simply shared from parent. The internal
3048 : * param workspace has to be local state, but we copy the initial values
3049 : * from the parent, so as to have access to any param values that were
3050 : * already set from other parts of the parent's plan tree.
3051 : */
3052 270 : rcestate->es_param_list_info = parentestate->es_param_list_info;
3053 270 : if (parentestate->es_plannedstmt->paramExecTypes != NIL)
3054 : {
3055 : int i;
3056 :
3057 : /*
3058 : * Force evaluation of any InitPlan outputs that could be needed by
3059 : * the subplan. (With more complexity, maybe we could postpone this
3060 : * till the subplan actually demands them, but it doesn't seem worth
3061 : * the trouble; this is a corner case already, since usually the
3062 : * InitPlans would have been evaluated before reaching EvalPlanQual.)
3063 : *
3064 : * This will not touch output params of InitPlans that occur somewhere
3065 : * within the subplan tree, only those that are attached to the
3066 : * ModifyTable node or above it and are referenced within the subplan.
3067 : * That's OK though, because the planner would only attach such
3068 : * InitPlans to a lower-level SubqueryScan node, and EPQ execution
3069 : * will not descend into a SubqueryScan.
3070 : *
3071 : * The EState's per-output-tuple econtext is sufficiently short-lived
3072 : * for this, since it should get reset before there is any chance of
3073 : * doing EvalPlanQual again.
3074 : */
3075 270 : ExecSetParamPlanMulti(planTree->extParam,
3076 270 : GetPerTupleExprContext(parentestate));
3077 :
3078 : /* now make the internal param workspace ... */
3079 270 : i = list_length(parentestate->es_plannedstmt->paramExecTypes);
3080 270 : rcestate->es_param_exec_vals = palloc0_array(ParamExecData, i);
3081 : /* ... and copy down all values, whether really needed or not */
3082 650 : while (--i >= 0)
3083 : {
3084 : /* copy value if any, but not execPlan link */
3085 380 : rcestate->es_param_exec_vals[i].value =
3086 380 : parentestate->es_param_exec_vals[i].value;
3087 380 : rcestate->es_param_exec_vals[i].isnull =
3088 380 : parentestate->es_param_exec_vals[i].isnull;
3089 : }
3090 : }
3091 :
3092 : /*
3093 : * Copy es_unpruned_relids so that pruned relations are ignored by
3094 : * ExecInitLockRows() and ExecInitModifyTable() when initializing the plan
3095 : * trees below.
3096 : */
3097 270 : rcestate->es_unpruned_relids = parentestate->es_unpruned_relids;
3098 :
3099 : /*
3100 : * Also make the PartitionPruneInfo and the results of pruning available.
3101 : * These need to match exactly so that we initialize all the same Append
3102 : * and MergeAppend subplans as the parent did.
3103 : */
3104 270 : rcestate->es_part_prune_infos = parentestate->es_part_prune_infos;
3105 270 : rcestate->es_part_prune_states = parentestate->es_part_prune_states;
3106 270 : rcestate->es_part_prune_results = parentestate->es_part_prune_results;
3107 :
3108 : /* We'll also borrow the es_partition_directory from the parent state */
3109 270 : rcestate->es_partition_directory = parentestate->es_partition_directory;
3110 :
3111 : /*
3112 : * Initialize private state information for each SubPlan. We must do this
3113 : * before running ExecInitNode on the main query tree, since
3114 : * ExecInitSubPlan expects to be able to find these entries. Some of the
3115 : * SubPlans might not be used in the part of the plan tree we intend to
3116 : * run, but since it's not easy to tell which, we just initialize them
3117 : * all.
3118 : */
3119 : Assert(rcestate->es_subplanstates == NIL);
3120 334 : foreach(l, parentestate->es_plannedstmt->subplans)
3121 : {
3122 64 : Plan *subplan = (Plan *) lfirst(l);
3123 : PlanState *subplanstate;
3124 :
3125 64 : subplanstate = ExecInitNode(subplan, rcestate, 0);
3126 64 : rcestate->es_subplanstates = lappend(rcestate->es_subplanstates,
3127 : subplanstate);
3128 : }
3129 :
3130 : /*
3131 : * Build an RTI indexed array of rowmarks, so that
3132 : * EvalPlanQualFetchRowMark() can efficiently access the to be fetched
3133 : * rowmark.
3134 : */
3135 270 : epqstate->relsubs_rowmark = palloc0_array(ExecAuxRowMark *, rtsize);
3136 304 : foreach(l, epqstate->arowMarks)
3137 : {
3138 34 : ExecAuxRowMark *earm = (ExecAuxRowMark *) lfirst(l);
3139 :
3140 34 : epqstate->relsubs_rowmark[earm->rowmark->rti - 1] = earm;
3141 : }
3142 :
3143 : /*
3144 : * Initialize per-relation EPQ tuple states. Result relations, if any,
3145 : * get marked as blocked; others as not-fetched.
3146 : */
3147 270 : epqstate->relsubs_done = palloc_array(bool, rtsize);
3148 270 : epqstate->relsubs_blocked = palloc0_array(bool, rtsize);
3149 :
3150 540 : foreach(l, epqstate->resultRelations)
3151 : {
3152 270 : int rtindex = lfirst_int(l);
3153 :
3154 : Assert(rtindex > 0 && rtindex <= rtsize);
3155 270 : epqstate->relsubs_blocked[rtindex - 1] = true;
3156 : }
3157 :
3158 270 : memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
3159 : rtsize * sizeof(bool));
3160 :
3161 : /*
3162 : * Initialize the private state information for all the nodes in the part
3163 : * of the plan tree we need to run. This opens files, allocates storage
3164 : * and leaves us ready to start processing tuples.
3165 : */
3166 270 : epqstate->recheckplanstate = ExecInitNode(planTree, rcestate, 0);
3167 :
3168 270 : MemoryContextSwitchTo(oldcontext);
3169 270 : }
3170 :
3171 : /*
3172 : * EvalPlanQualEnd -- shut down at termination of parent plan state node,
3173 : * or if we are done with the current EPQ child.
3174 : *
3175 : * This is a cut-down version of ExecutorEnd(); basically we want to do most
3176 : * of the normal cleanup, but *not* close result relations (which we are
3177 : * just sharing from the outer query). We do, however, have to close any
3178 : * result and trigger target relations that got opened, since those are not
3179 : * shared. (There probably shouldn't be any of the latter, but just in
3180 : * case...)
3181 : */
3182 : void
3183 401248 : EvalPlanQualEnd(EPQState *epqstate)
3184 : {
3185 401248 : EState *estate = epqstate->recheckestate;
3186 : Index rtsize;
3187 : MemoryContext oldcontext;
3188 : ListCell *l;
3189 :
3190 401248 : rtsize = epqstate->parentestate->es_range_table_size;
3191 :
3192 : /*
3193 : * We may have a tuple table, even if EPQ wasn't started, because we allow
3194 : * use of EvalPlanQualSlot() without calling EvalPlanQualBegin().
3195 : */
3196 401248 : if (epqstate->tuple_table != NIL)
3197 : {
3198 11486 : memset(epqstate->relsubs_slot, 0,
3199 : rtsize * sizeof(TupleTableSlot *));
3200 11486 : ExecResetTupleTable(epqstate->tuple_table, true);
3201 11486 : epqstate->tuple_table = NIL;
3202 : }
3203 :
3204 : /* EPQ wasn't started, nothing further to do */
3205 401248 : if (estate == NULL)
3206 400994 : return;
3207 :
3208 254 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
3209 :
3210 254 : ExecEndNode(epqstate->recheckplanstate);
3211 :
3212 312 : foreach(l, estate->es_subplanstates)
3213 : {
3214 58 : PlanState *subplanstate = (PlanState *) lfirst(l);
3215 :
3216 58 : ExecEndNode(subplanstate);
3217 : }
3218 :
3219 : /* throw away the per-estate tuple table, some node may have used it */
3220 254 : ExecResetTupleTable(estate->es_tupleTable, false);
3221 :
3222 : /* Close any result and trigger target relations attached to this EState */
3223 254 : ExecCloseResultRelations(estate);
3224 :
3225 254 : MemoryContextSwitchTo(oldcontext);
3226 :
3227 : /*
3228 : * NULLify the partition directory before freeing the executor state.
3229 : * Since EvalPlanQualStart() just borrowed the parent EState's directory,
3230 : * we'd better leave it up to the parent to delete it.
3231 : */
3232 254 : estate->es_partition_directory = NULL;
3233 :
3234 254 : FreeExecutorState(estate);
3235 :
3236 : /* Mark EPQState idle */
3237 254 : epqstate->origslot = NULL;
3238 254 : epqstate->recheckestate = NULL;
3239 254 : epqstate->recheckplanstate = NULL;
3240 254 : epqstate->relsubs_rowmark = NULL;
3241 254 : epqstate->relsubs_done = NULL;
3242 254 : epqstate->relsubs_blocked = NULL;
3243 : }
|