Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * execExpr.c
4 : * Expression evaluation infrastructure.
5 : *
6 : * During executor startup, we compile each expression tree (which has
7 : * previously been processed by the parser and planner) into an ExprState,
8 : * using ExecInitExpr() et al. This converts the tree into a flat array
9 : * of ExprEvalSteps, which may be thought of as instructions in a program.
10 : * At runtime, we'll execute steps, starting with the first, until we reach
11 : * an EEOP_DONE_{RETURN|NO_RETURN} opcode.
12 : *
13 : * This file contains the "compilation" logic. It is independent of the
14 : * specific execution technology we use (switch statement, computed goto,
15 : * JIT compilation, etc).
16 : *
17 : * See src/backend/executor/README for some background, specifically the
18 : * "Expression Trees and ExprState nodes", "Expression Initialization",
19 : * and "Expression Evaluation" sections.
20 : *
21 : *
22 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
23 : * Portions Copyright (c) 1994, Regents of the University of California
24 : *
25 : *
26 : * IDENTIFICATION
27 : * src/backend/executor/execExpr.c
28 : *
29 : *-------------------------------------------------------------------------
30 : */
31 : #include "postgres.h"
32 :
33 : #include "access/nbtree.h"
34 : #include "catalog/objectaccess.h"
35 : #include "catalog/pg_proc.h"
36 : #include "catalog/pg_type.h"
37 : #include "executor/execExpr.h"
38 : #include "executor/nodeSubplan.h"
39 : #include "funcapi.h"
40 : #include "jit/jit.h"
41 : #include "miscadmin.h"
42 : #include "nodes/makefuncs.h"
43 : #include "nodes/nodeFuncs.h"
44 : #include "nodes/subscripting.h"
45 : #include "optimizer/optimizer.h"
46 : #include "pgstat.h"
47 : #include "utils/acl.h"
48 : #include "utils/array.h"
49 : #include "utils/builtins.h"
50 : #include "utils/jsonfuncs.h"
51 : #include "utils/jsonpath.h"
52 : #include "utils/lsyscache.h"
53 : #include "utils/typcache.h"
54 :
55 :
56 : typedef struct ExprSetupInfo
57 : {
58 : /*
59 : * Highest attribute numbers fetched from inner/outer/scan/old/new tuple
60 : * slots:
61 : */
62 : AttrNumber last_inner;
63 : AttrNumber last_outer;
64 : AttrNumber last_scan;
65 : AttrNumber last_old;
66 : AttrNumber last_new;
67 : /* MULTIEXPR SubPlan nodes appearing in the expression: */
68 : List *multiexpr_subplans;
69 : } ExprSetupInfo;
70 :
71 : static void ExecReadyExpr(ExprState *state);
72 : static void ExecInitExprRec(Expr *node, ExprState *state,
73 : Datum *resv, bool *resnull);
74 : static void ExecInitFunc(ExprEvalStep *scratch, Expr *node, List *args,
75 : Oid funcid, Oid inputcollid,
76 : ExprState *state);
77 : static void ExecInitSubPlanExpr(SubPlan *subplan,
78 : ExprState *state,
79 : Datum *resv, bool *resnull);
80 : static void ExecCreateExprSetupSteps(ExprState *state, Node *node);
81 : static void ExecPushExprSetupSteps(ExprState *state, ExprSetupInfo *info);
82 : static bool expr_setup_walker(Node *node, ExprSetupInfo *info);
83 : static bool ExecComputeSlotInfo(ExprState *state, ExprEvalStep *op);
84 : static void ExecInitWholeRowVar(ExprEvalStep *scratch, Var *variable,
85 : ExprState *state);
86 : static void ExecInitSubscriptingRef(ExprEvalStep *scratch,
87 : SubscriptingRef *sbsref,
88 : ExprState *state,
89 : Datum *resv, bool *resnull);
90 : static bool isAssignmentIndirectionExpr(Expr *expr);
91 : static void ExecInitCoerceToDomain(ExprEvalStep *scratch, CoerceToDomain *ctest,
92 : ExprState *state,
93 : Datum *resv, bool *resnull);
94 : static void ExecBuildAggTransCall(ExprState *state, AggState *aggstate,
95 : ExprEvalStep *scratch,
96 : FunctionCallInfo fcinfo, AggStatePerTrans pertrans,
97 : int transno, int setno, int setoff, bool ishash,
98 : bool nullcheck);
99 : static void ExecInitJsonExpr(JsonExpr *jsexpr, ExprState *state,
100 : Datum *resv, bool *resnull,
101 : ExprEvalStep *scratch);
102 : static void ExecInitJsonCoercion(ExprState *state, JsonReturning *returning,
103 : ErrorSaveContext *escontext, bool omit_quotes,
104 : bool exists_coerce,
105 : Datum *resv, bool *resnull);
106 :
107 :
108 : /*
109 : * ExecInitExpr: prepare an expression tree for execution
110 : *
111 : * This function builds and returns an ExprState implementing the given
112 : * Expr node tree. The return ExprState can then be handed to ExecEvalExpr
113 : * for execution. Because the Expr tree itself is read-only as far as
114 : * ExecInitExpr and ExecEvalExpr are concerned, several different executions
115 : * of the same plan tree can occur concurrently. (But note that an ExprState
116 : * does mutate at runtime, so it can't be re-used concurrently.)
117 : *
118 : * This must be called in a memory context that will last as long as repeated
119 : * executions of the expression are needed. Typically the context will be
120 : * the same as the per-query context of the associated ExprContext.
121 : *
122 : * Any Aggref, WindowFunc, or SubPlan nodes found in the tree are added to
123 : * the lists of such nodes held by the parent PlanState.
124 : *
125 : * Note: there is no ExecEndExpr function; we assume that any resource
126 : * cleanup needed will be handled by just releasing the memory context
127 : * in which the state tree is built. Functions that require additional
128 : * cleanup work can register a shutdown callback in the ExprContext.
129 : *
130 : * 'node' is the root of the expression tree to compile.
131 : * 'parent' is the PlanState node that owns the expression.
132 : *
133 : * 'parent' may be NULL if we are preparing an expression that is not
134 : * associated with a plan tree. (If so, it can't have aggs or subplans.)
135 : * Such cases should usually come through ExecPrepareExpr, not directly here.
136 : *
137 : * Also, if 'node' is NULL, we just return NULL. This is convenient for some
138 : * callers that may or may not have an expression that needs to be compiled.
139 : * Note that a NULL ExprState pointer *cannot* be handed to ExecEvalExpr,
140 : * although ExecQual and ExecCheck will accept one (and treat it as "true").
141 : */
142 : ExprState *
143 1072760 : ExecInitExpr(Expr *node, PlanState *parent)
144 : {
145 : ExprState *state;
146 1072760 : ExprEvalStep scratch = {0};
147 :
148 : /* Special case: NULL expression produces a NULL ExprState pointer */
149 1072760 : if (node == NULL)
150 54064 : return NULL;
151 :
152 : /* Initialize ExprState with empty step list */
153 1018696 : state = makeNode(ExprState);
154 1018696 : state->expr = node;
155 1018696 : state->parent = parent;
156 1018696 : state->ext_params = NULL;
157 :
158 : /* Insert setup steps as needed */
159 1018696 : ExecCreateExprSetupSteps(state, (Node *) node);
160 :
161 : /* Compile the expression proper */
162 1018696 : ExecInitExprRec(node, state, &state->resvalue, &state->resnull);
163 :
164 : /* Finally, append a DONE step */
165 1018666 : scratch.opcode = EEOP_DONE_RETURN;
166 1018666 : ExprEvalPushStep(state, &scratch);
167 :
168 1018666 : ExecReadyExpr(state);
169 :
170 1018666 : return state;
171 : }
172 :
173 : /*
174 : * ExecInitExprWithParams: prepare a standalone expression tree for execution
175 : *
176 : * This is the same as ExecInitExpr, except that there is no parent PlanState,
177 : * and instead we may have a ParamListInfo describing PARAM_EXTERN Params.
178 : */
179 : ExprState *
180 80040 : ExecInitExprWithParams(Expr *node, ParamListInfo ext_params)
181 : {
182 : ExprState *state;
183 80040 : ExprEvalStep scratch = {0};
184 :
185 : /* Special case: NULL expression produces a NULL ExprState pointer */
186 80040 : if (node == NULL)
187 0 : return NULL;
188 :
189 : /* Initialize ExprState with empty step list */
190 80040 : state = makeNode(ExprState);
191 80040 : state->expr = node;
192 80040 : state->parent = NULL;
193 80040 : state->ext_params = ext_params;
194 :
195 : /* Insert setup steps as needed */
196 80040 : ExecCreateExprSetupSteps(state, (Node *) node);
197 :
198 : /* Compile the expression proper */
199 80040 : ExecInitExprRec(node, state, &state->resvalue, &state->resnull);
200 :
201 : /* Finally, append a DONE step */
202 80040 : scratch.opcode = EEOP_DONE_RETURN;
203 80040 : ExprEvalPushStep(state, &scratch);
204 :
205 80040 : ExecReadyExpr(state);
206 :
207 80040 : return state;
208 : }
209 :
210 : /*
211 : * ExecInitQual: prepare a qual for execution by ExecQual
212 : *
213 : * Prepares for the evaluation of a conjunctive boolean expression (qual list
214 : * with implicit AND semantics) that returns true if none of the
215 : * subexpressions are false.
216 : *
217 : * We must return true if the list is empty. Since that's a very common case,
218 : * we optimize it a bit further by translating to a NULL ExprState pointer
219 : * rather than setting up an ExprState that computes constant TRUE. (Some
220 : * especially hot-spot callers of ExecQual detect this and avoid calling
221 : * ExecQual at all.)
222 : *
223 : * If any of the subexpressions yield NULL, then the result of the conjunction
224 : * is false. This makes ExecQual primarily useful for evaluating WHERE
225 : * clauses, since SQL specifies that tuples with null WHERE results do not
226 : * get selected.
227 : */
228 : ExprState *
229 2024868 : ExecInitQual(List *qual, PlanState *parent)
230 : {
231 : ExprState *state;
232 2024868 : ExprEvalStep scratch = {0};
233 2024868 : List *adjust_jumps = NIL;
234 :
235 : /* short-circuit (here and in ExecQual) for empty restriction list */
236 2024868 : if (qual == NIL)
237 1483524 : return NULL;
238 :
239 : Assert(IsA(qual, List));
240 :
241 541344 : state = makeNode(ExprState);
242 541344 : state->expr = (Expr *) qual;
243 541344 : state->parent = parent;
244 541344 : state->ext_params = NULL;
245 :
246 : /* mark expression as to be used with ExecQual() */
247 541344 : state->flags = EEO_FLAG_IS_QUAL;
248 :
249 : /* Insert setup steps as needed */
250 541344 : ExecCreateExprSetupSteps(state, (Node *) qual);
251 :
252 : /*
253 : * ExecQual() needs to return false for an expression returning NULL. That
254 : * allows us to short-circuit the evaluation the first time a NULL is
255 : * encountered. As qual evaluation is a hot-path this warrants using a
256 : * special opcode for qual evaluation that's simpler than BOOL_AND (which
257 : * has more complex NULL handling).
258 : */
259 541344 : scratch.opcode = EEOP_QUAL;
260 :
261 : /*
262 : * We can use ExprState's resvalue/resnull as target for each qual expr.
263 : */
264 541344 : scratch.resvalue = &state->resvalue;
265 541344 : scratch.resnull = &state->resnull;
266 :
267 1743788 : foreach_ptr(Expr, node, qual)
268 : {
269 : /* first evaluate expression */
270 661100 : ExecInitExprRec(node, state, &state->resvalue, &state->resnull);
271 :
272 : /* then emit EEOP_QUAL to detect if it's false (or null) */
273 661100 : scratch.d.qualexpr.jumpdone = -1;
274 661100 : ExprEvalPushStep(state, &scratch);
275 661100 : adjust_jumps = lappend_int(adjust_jumps,
276 661100 : state->steps_len - 1);
277 : }
278 :
279 : /* adjust jump targets */
280 1743788 : foreach_int(jump, adjust_jumps)
281 : {
282 661100 : ExprEvalStep *as = &state->steps[jump];
283 :
284 : Assert(as->opcode == EEOP_QUAL);
285 : Assert(as->d.qualexpr.jumpdone == -1);
286 661100 : as->d.qualexpr.jumpdone = state->steps_len;
287 : }
288 :
289 : /*
290 : * At the end, we don't need to do anything more. The last qual expr must
291 : * have yielded TRUE, and since its result is stored in the desired output
292 : * location, we're done.
293 : */
294 541344 : scratch.opcode = EEOP_DONE_RETURN;
295 541344 : ExprEvalPushStep(state, &scratch);
296 :
297 541344 : ExecReadyExpr(state);
298 :
299 541344 : return state;
300 : }
301 :
302 : /*
303 : * ExecInitCheck: prepare a check constraint for execution by ExecCheck
304 : *
305 : * This is much like ExecInitQual/ExecQual, except that a null result from
306 : * the conjunction is treated as TRUE. This behavior is appropriate for
307 : * evaluating CHECK constraints, since SQL specifies that NULL constraint
308 : * conditions are not failures.
309 : *
310 : * Note that like ExecInitQual, this expects input in implicit-AND format.
311 : * Users of ExecCheck that have expressions in normal explicit-AND format
312 : * can just apply ExecInitExpr to produce suitable input for ExecCheck.
313 : */
314 : ExprState *
315 5496 : ExecInitCheck(List *qual, PlanState *parent)
316 : {
317 : /* short-circuit (here and in ExecCheck) for empty restriction list */
318 5496 : if (qual == NIL)
319 96 : return NULL;
320 :
321 : Assert(IsA(qual, List));
322 :
323 : /*
324 : * Just convert the implicit-AND list to an explicit AND (if there's more
325 : * than one entry), and compile normally. Unlike ExecQual, we can't
326 : * short-circuit on NULL results, so the regular AND behavior is needed.
327 : */
328 5400 : return ExecInitExpr(make_ands_explicit(qual), parent);
329 : }
330 :
331 : /*
332 : * Call ExecInitExpr() on a list of expressions, return a list of ExprStates.
333 : */
334 : List *
335 485244 : ExecInitExprList(List *nodes, PlanState *parent)
336 : {
337 485244 : List *result = NIL;
338 : ListCell *lc;
339 :
340 903848 : foreach(lc, nodes)
341 : {
342 418604 : Expr *e = lfirst(lc);
343 :
344 418604 : result = lappend(result, ExecInitExpr(e, parent));
345 : }
346 :
347 485244 : return result;
348 : }
349 :
350 : /*
351 : * ExecBuildProjectionInfo
352 : *
353 : * Build a ProjectionInfo node for evaluating the given tlist in the given
354 : * econtext, and storing the result into the tuple slot. (Caller must have
355 : * ensured that tuple slot has a descriptor matching the tlist!)
356 : *
357 : * inputDesc can be NULL, but if it is not, we check to see whether simple
358 : * Vars in the tlist match the descriptor. It is important to provide
359 : * inputDesc for relation-scan plan nodes, as a cross check that the relation
360 : * hasn't been changed since the plan was made. At higher levels of a plan,
361 : * there is no need to recheck.
362 : *
363 : * This is implemented by internally building an ExprState that performs the
364 : * whole projection in one go.
365 : *
366 : * Caution: before PG v10, the targetList was a list of ExprStates; now it
367 : * should be the planner-created targetlist, since we do the compilation here.
368 : */
369 : ProjectionInfo *
370 841836 : ExecBuildProjectionInfo(List *targetList,
371 : ExprContext *econtext,
372 : TupleTableSlot *slot,
373 : PlanState *parent,
374 : TupleDesc inputDesc)
375 : {
376 841836 : ProjectionInfo *projInfo = makeNode(ProjectionInfo);
377 : ExprState *state;
378 841836 : ExprEvalStep scratch = {0};
379 : ListCell *lc;
380 :
381 841836 : projInfo->pi_exprContext = econtext;
382 : /* We embed ExprState into ProjectionInfo instead of doing extra palloc */
383 841836 : projInfo->pi_state.type = T_ExprState;
384 841836 : state = &projInfo->pi_state;
385 841836 : state->expr = (Expr *) targetList;
386 841836 : state->parent = parent;
387 841836 : state->ext_params = NULL;
388 :
389 841836 : state->resultslot = slot;
390 :
391 : /* Insert setup steps as needed */
392 841836 : ExecCreateExprSetupSteps(state, (Node *) targetList);
393 :
394 : /* Now compile each tlist column */
395 3571666 : foreach(lc, targetList)
396 : {
397 2729898 : TargetEntry *tle = lfirst_node(TargetEntry, lc);
398 2729898 : Var *variable = NULL;
399 2729898 : AttrNumber attnum = 0;
400 2729898 : bool isSafeVar = false;
401 :
402 : /*
403 : * If tlist expression is a safe non-system Var, use the fast-path
404 : * ASSIGN_*_VAR opcodes. "Safe" means that we don't need to apply
405 : * CheckVarSlotCompatibility() during plan startup. If a source slot
406 : * was provided, we make the equivalent tests here; if a slot was not
407 : * provided, we assume that no check is needed because we're dealing
408 : * with a non-relation-scan-level expression.
409 : */
410 2729898 : if (tle->expr != NULL &&
411 2729898 : IsA(tle->expr, Var) &&
412 1761452 : ((Var *) tle->expr)->varattno > 0)
413 : {
414 : /* Non-system Var, but how safe is it? */
415 1677960 : variable = (Var *) tle->expr;
416 1677960 : attnum = variable->varattno;
417 :
418 1677960 : if (inputDesc == NULL)
419 1057472 : isSafeVar = true; /* can't check, just assume OK */
420 620488 : else if (attnum <= inputDesc->natts)
421 : {
422 619850 : Form_pg_attribute attr = TupleDescAttr(inputDesc, attnum - 1);
423 :
424 : /*
425 : * If user attribute is dropped or has a type mismatch, don't
426 : * use ASSIGN_*_VAR. Instead let the normal expression
427 : * machinery handle it (which'll possibly error out).
428 : */
429 619850 : if (!attr->attisdropped && variable->vartype == attr->atttypid)
430 : {
431 618934 : isSafeVar = true;
432 : }
433 : }
434 : }
435 :
436 2729898 : if (isSafeVar)
437 : {
438 : /* Fast-path: just generate an EEOP_ASSIGN_*_VAR step */
439 1676406 : switch (variable->varno)
440 : {
441 434902 : case INNER_VAR:
442 : /* get the tuple from the inner node */
443 434902 : scratch.opcode = EEOP_ASSIGN_INNER_VAR;
444 434902 : break;
445 :
446 621556 : case OUTER_VAR:
447 : /* get the tuple from the outer node */
448 621556 : scratch.opcode = EEOP_ASSIGN_OUTER_VAR;
449 621556 : break;
450 :
451 : /* INDEX_VAR is handled by default case */
452 :
453 619948 : default:
454 :
455 : /*
456 : * Get the tuple from the relation being scanned, or the
457 : * old/new tuple slot, if old/new values were requested.
458 : */
459 619948 : switch (variable->varreturningtype)
460 : {
461 618078 : case VAR_RETURNING_DEFAULT:
462 618078 : scratch.opcode = EEOP_ASSIGN_SCAN_VAR;
463 618078 : break;
464 934 : case VAR_RETURNING_OLD:
465 934 : scratch.opcode = EEOP_ASSIGN_OLD_VAR;
466 934 : state->flags |= EEO_FLAG_HAS_OLD;
467 934 : break;
468 936 : case VAR_RETURNING_NEW:
469 936 : scratch.opcode = EEOP_ASSIGN_NEW_VAR;
470 936 : state->flags |= EEO_FLAG_HAS_NEW;
471 936 : break;
472 : }
473 619948 : break;
474 : }
475 :
476 1676406 : scratch.d.assign_var.attnum = attnum - 1;
477 1676406 : scratch.d.assign_var.resultnum = tle->resno - 1;
478 1676406 : ExprEvalPushStep(state, &scratch);
479 : }
480 : else
481 : {
482 : /*
483 : * Otherwise, compile the column expression normally.
484 : *
485 : * We can't tell the expression to evaluate directly into the
486 : * result slot, as the result slot (and the exprstate for that
487 : * matter) can change between executions. We instead evaluate
488 : * into the ExprState's resvalue/resnull and then move.
489 : */
490 1053492 : ExecInitExprRec(tle->expr, state,
491 : &state->resvalue, &state->resnull);
492 :
493 : /*
494 : * Column might be referenced multiple times in upper nodes, so
495 : * force value to R/O - but only if it could be an expanded datum.
496 : */
497 1053424 : if (get_typlen(exprType((Node *) tle->expr)) == -1)
498 387736 : scratch.opcode = EEOP_ASSIGN_TMP_MAKE_RO;
499 : else
500 665688 : scratch.opcode = EEOP_ASSIGN_TMP;
501 1053424 : scratch.d.assign_tmp.resultnum = tle->resno - 1;
502 1053424 : ExprEvalPushStep(state, &scratch);
503 : }
504 : }
505 :
506 841768 : scratch.opcode = EEOP_DONE_NO_RETURN;
507 841768 : ExprEvalPushStep(state, &scratch);
508 :
509 841768 : ExecReadyExpr(state);
510 :
511 841768 : return projInfo;
512 : }
513 :
514 : /*
515 : * ExecBuildUpdateProjection
516 : *
517 : * Build a ProjectionInfo node for constructing a new tuple during UPDATE.
518 : * The projection will be executed in the given econtext and the result will
519 : * be stored into the given tuple slot. (Caller must have ensured that tuple
520 : * slot has a descriptor matching the target rel!)
521 : *
522 : * When evalTargetList is false, targetList contains the UPDATE ... SET
523 : * expressions that have already been computed by a subplan node; the values
524 : * from this tlist are assumed to be available in the "outer" tuple slot.
525 : * When evalTargetList is true, targetList contains the UPDATE ... SET
526 : * expressions that must be computed (which could contain references to
527 : * the outer, inner, or scan tuple slots).
528 : *
529 : * In either case, targetColnos contains a list of the target column numbers
530 : * corresponding to the non-resjunk entries of targetList. The tlist values
531 : * are assigned into these columns of the result tuple slot. Target columns
532 : * not listed in targetColnos are filled from the UPDATE's old tuple, which
533 : * is assumed to be available in the "scan" tuple slot.
534 : *
535 : * targetList can also contain resjunk columns. These must be evaluated
536 : * if evalTargetList is true, but their values are discarded.
537 : *
538 : * relDesc must describe the relation we intend to update.
539 : *
540 : * This is basically a specialized variant of ExecBuildProjectionInfo.
541 : * However, it also performs sanity checks equivalent to ExecCheckPlanOutput.
542 : * Since we never make a normal tlist equivalent to the whole
543 : * tuple-to-be-assigned, there is no convenient way to apply
544 : * ExecCheckPlanOutput, so we must do our safety checks here.
545 : */
546 : ProjectionInfo *
547 15612 : ExecBuildUpdateProjection(List *targetList,
548 : bool evalTargetList,
549 : List *targetColnos,
550 : TupleDesc relDesc,
551 : ExprContext *econtext,
552 : TupleTableSlot *slot,
553 : PlanState *parent)
554 : {
555 15612 : ProjectionInfo *projInfo = makeNode(ProjectionInfo);
556 : ExprState *state;
557 : int nAssignableCols;
558 : bool sawJunk;
559 : Bitmapset *assignedCols;
560 15612 : ExprSetupInfo deform = {0, 0, 0, 0, 0, NIL};
561 15612 : ExprEvalStep scratch = {0};
562 : int outerattnum;
563 : ListCell *lc,
564 : *lc2;
565 :
566 15612 : projInfo->pi_exprContext = econtext;
567 : /* We embed ExprState into ProjectionInfo instead of doing extra palloc */
568 15612 : projInfo->pi_state.type = T_ExprState;
569 15612 : state = &projInfo->pi_state;
570 15612 : if (evalTargetList)
571 2534 : state->expr = (Expr *) targetList;
572 : else
573 13078 : state->expr = NULL; /* not used */
574 15612 : state->parent = parent;
575 15612 : state->ext_params = NULL;
576 :
577 15612 : state->resultslot = slot;
578 :
579 : /*
580 : * Examine the targetList to see how many non-junk columns there are, and
581 : * to verify that the non-junk columns come before the junk ones.
582 : */
583 15612 : nAssignableCols = 0;
584 15612 : sawJunk = false;
585 52414 : foreach(lc, targetList)
586 : {
587 36802 : TargetEntry *tle = lfirst_node(TargetEntry, lc);
588 :
589 36802 : if (tle->resjunk)
590 16612 : sawJunk = true;
591 : else
592 : {
593 20190 : if (sawJunk)
594 0 : elog(ERROR, "subplan target list is out of order");
595 20190 : nAssignableCols++;
596 : }
597 : }
598 :
599 : /* We should have one targetColnos entry per non-junk column */
600 15612 : if (nAssignableCols != list_length(targetColnos))
601 0 : elog(ERROR, "targetColnos does not match subplan target list");
602 :
603 : /*
604 : * Build a bitmapset of the columns in targetColnos. (We could just use
605 : * list_member_int() tests, but that risks O(N^2) behavior with many
606 : * columns.)
607 : */
608 15612 : assignedCols = NULL;
609 35802 : foreach(lc, targetColnos)
610 : {
611 20190 : AttrNumber targetattnum = lfirst_int(lc);
612 :
613 20190 : assignedCols = bms_add_member(assignedCols, targetattnum);
614 : }
615 :
616 : /*
617 : * We need to insert EEOP_*_FETCHSOME steps to ensure the input tuples are
618 : * sufficiently deconstructed. The scan tuple must be deconstructed at
619 : * least as far as the last old column we need.
620 : */
621 26208 : for (int attnum = relDesc->natts; attnum > 0; attnum--)
622 : {
623 23690 : CompactAttribute *attr = TupleDescCompactAttr(relDesc, attnum - 1);
624 :
625 23690 : if (attr->attisdropped)
626 216 : continue;
627 23474 : if (bms_is_member(attnum, assignedCols))
628 10380 : continue;
629 13094 : deform.last_scan = attnum;
630 13094 : break;
631 : }
632 :
633 : /*
634 : * If we're actually evaluating the tlist, incorporate its input
635 : * requirements too; otherwise, we'll just need to fetch the appropriate
636 : * number of columns of the "outer" tuple.
637 : */
638 15612 : if (evalTargetList)
639 2534 : expr_setup_walker((Node *) targetList, &deform);
640 : else
641 13078 : deform.last_outer = nAssignableCols;
642 :
643 15612 : ExecPushExprSetupSteps(state, &deform);
644 :
645 : /*
646 : * Now generate code to evaluate the tlist's assignable expressions or
647 : * fetch them from the outer tuple, incidentally validating that they'll
648 : * be of the right data type. The checks above ensure that the forboth()
649 : * will iterate over exactly the non-junk columns. Note that we don't
650 : * bother evaluating any remaining resjunk columns.
651 : */
652 15612 : outerattnum = 0;
653 35802 : forboth(lc, targetList, lc2, targetColnos)
654 : {
655 20190 : TargetEntry *tle = lfirst_node(TargetEntry, lc);
656 20190 : AttrNumber targetattnum = lfirst_int(lc2);
657 : Form_pg_attribute attr;
658 :
659 : Assert(!tle->resjunk);
660 :
661 : /*
662 : * Apply sanity checks comparable to ExecCheckPlanOutput().
663 : */
664 20190 : if (targetattnum <= 0 || targetattnum > relDesc->natts)
665 0 : ereport(ERROR,
666 : (errcode(ERRCODE_DATATYPE_MISMATCH),
667 : errmsg("table row type and query-specified row type do not match"),
668 : errdetail("Query has too many columns.")));
669 20190 : attr = TupleDescAttr(relDesc, targetattnum - 1);
670 :
671 20190 : if (attr->attisdropped)
672 0 : ereport(ERROR,
673 : (errcode(ERRCODE_DATATYPE_MISMATCH),
674 : errmsg("table row type and query-specified row type do not match"),
675 : errdetail("Query provides a value for a dropped column at ordinal position %d.",
676 : targetattnum)));
677 20190 : if (exprType((Node *) tle->expr) != attr->atttypid)
678 0 : ereport(ERROR,
679 : (errcode(ERRCODE_DATATYPE_MISMATCH),
680 : errmsg("table row type and query-specified row type do not match"),
681 : errdetail("Table has type %s at ordinal position %d, but query expects %s.",
682 : format_type_be(attr->atttypid),
683 : targetattnum,
684 : format_type_be(exprType((Node *) tle->expr)))));
685 :
686 : /* OK, generate code to perform the assignment. */
687 20190 : if (evalTargetList)
688 : {
689 : /*
690 : * We must evaluate the TLE's expression and assign it. We do not
691 : * bother jumping through hoops for "safe" Vars like
692 : * ExecBuildProjectionInfo does; this is a relatively less-used
693 : * path and it doesn't seem worth expending code for that.
694 : */
695 3436 : ExecInitExprRec(tle->expr, state,
696 : &state->resvalue, &state->resnull);
697 : /* Needn't worry about read-only-ness here, either. */
698 3436 : scratch.opcode = EEOP_ASSIGN_TMP;
699 3436 : scratch.d.assign_tmp.resultnum = targetattnum - 1;
700 3436 : ExprEvalPushStep(state, &scratch);
701 : }
702 : else
703 : {
704 : /* Just assign from the outer tuple. */
705 16754 : scratch.opcode = EEOP_ASSIGN_OUTER_VAR;
706 16754 : scratch.d.assign_var.attnum = outerattnum;
707 16754 : scratch.d.assign_var.resultnum = targetattnum - 1;
708 16754 : ExprEvalPushStep(state, &scratch);
709 : }
710 20190 : outerattnum++;
711 : }
712 :
713 : /*
714 : * Now generate code to copy over any old columns that were not assigned
715 : * to, and to ensure that dropped columns are set to NULL.
716 : */
717 147732 : for (int attnum = 1; attnum <= relDesc->natts; attnum++)
718 : {
719 132120 : CompactAttribute *attr = TupleDescCompactAttr(relDesc, attnum - 1);
720 :
721 132120 : if (attr->attisdropped)
722 : {
723 : /* Put a null into the ExprState's resvalue/resnull ... */
724 404 : scratch.opcode = EEOP_CONST;
725 404 : scratch.resvalue = &state->resvalue;
726 404 : scratch.resnull = &state->resnull;
727 404 : scratch.d.constval.value = (Datum) 0;
728 404 : scratch.d.constval.isnull = true;
729 404 : ExprEvalPushStep(state, &scratch);
730 : /* ... then assign it to the result slot */
731 404 : scratch.opcode = EEOP_ASSIGN_TMP;
732 404 : scratch.d.assign_tmp.resultnum = attnum - 1;
733 404 : ExprEvalPushStep(state, &scratch);
734 : }
735 131716 : else if (!bms_is_member(attnum, assignedCols))
736 : {
737 : /* Certainly the right type, so needn't check */
738 111526 : scratch.opcode = EEOP_ASSIGN_SCAN_VAR;
739 111526 : scratch.d.assign_var.attnum = attnum - 1;
740 111526 : scratch.d.assign_var.resultnum = attnum - 1;
741 111526 : ExprEvalPushStep(state, &scratch);
742 : }
743 : }
744 :
745 15612 : scratch.opcode = EEOP_DONE_NO_RETURN;
746 15612 : ExprEvalPushStep(state, &scratch);
747 :
748 15612 : ExecReadyExpr(state);
749 :
750 15612 : return projInfo;
751 : }
752 :
753 : /*
754 : * ExecPrepareExpr --- initialize for expression execution outside a normal
755 : * Plan tree context.
756 : *
757 : * This differs from ExecInitExpr in that we don't assume the caller is
758 : * already running in the EState's per-query context. Also, we run the
759 : * passed expression tree through expression_planner() to prepare it for
760 : * execution. (In ordinary Plan trees the regular planning process will have
761 : * made the appropriate transformations on expressions, but for standalone
762 : * expressions this won't have happened.)
763 : */
764 : ExprState *
765 48844 : ExecPrepareExpr(Expr *node, EState *estate)
766 : {
767 : ExprState *result;
768 : MemoryContext oldcontext;
769 :
770 48844 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
771 :
772 48844 : node = expression_planner(node);
773 :
774 48838 : result = ExecInitExpr(node, NULL);
775 :
776 48832 : MemoryContextSwitchTo(oldcontext);
777 :
778 48832 : return result;
779 : }
780 :
781 : /*
782 : * ExecPrepareQual --- initialize for qual execution outside a normal
783 : * Plan tree context.
784 : *
785 : * This differs from ExecInitQual in that we don't assume the caller is
786 : * already running in the EState's per-query context. Also, we run the
787 : * passed expression tree through expression_planner() to prepare it for
788 : * execution. (In ordinary Plan trees the regular planning process will have
789 : * made the appropriate transformations on expressions, but for standalone
790 : * expressions this won't have happened.)
791 : */
792 : ExprState *
793 56698 : ExecPrepareQual(List *qual, EState *estate)
794 : {
795 : ExprState *result;
796 : MemoryContext oldcontext;
797 :
798 56698 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
799 :
800 56698 : qual = (List *) expression_planner((Expr *) qual);
801 :
802 56698 : result = ExecInitQual(qual, NULL);
803 :
804 56698 : MemoryContextSwitchTo(oldcontext);
805 :
806 56698 : return result;
807 : }
808 :
809 : /*
810 : * ExecPrepareCheck -- initialize check constraint for execution outside a
811 : * normal Plan tree context.
812 : *
813 : * See ExecPrepareExpr() and ExecInitCheck() for details.
814 : */
815 : ExprState *
816 5496 : ExecPrepareCheck(List *qual, EState *estate)
817 : {
818 : ExprState *result;
819 : MemoryContext oldcontext;
820 :
821 5496 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
822 :
823 5496 : qual = (List *) expression_planner((Expr *) qual);
824 :
825 5496 : result = ExecInitCheck(qual, NULL);
826 :
827 5496 : MemoryContextSwitchTo(oldcontext);
828 :
829 5496 : return result;
830 : }
831 :
832 : /*
833 : * Call ExecPrepareExpr() on each member of a list of Exprs, and return
834 : * a list of ExprStates.
835 : *
836 : * See ExecPrepareExpr() for details.
837 : */
838 : List *
839 28606 : ExecPrepareExprList(List *nodes, EState *estate)
840 : {
841 28606 : List *result = NIL;
842 : MemoryContext oldcontext;
843 : ListCell *lc;
844 :
845 : /* Ensure that the list cell nodes are in the right context too */
846 28606 : oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
847 :
848 69672 : foreach(lc, nodes)
849 : {
850 41066 : Expr *e = (Expr *) lfirst(lc);
851 :
852 41066 : result = lappend(result, ExecPrepareExpr(e, estate));
853 : }
854 :
855 28606 : MemoryContextSwitchTo(oldcontext);
856 :
857 28606 : return result;
858 : }
859 :
860 : /*
861 : * ExecCheck - evaluate a check constraint
862 : *
863 : * For check constraints, a null result is taken as TRUE, ie the constraint
864 : * passes.
865 : *
866 : * The check constraint may have been prepared with ExecInitCheck
867 : * (possibly via ExecPrepareCheck) if the caller had it in implicit-AND
868 : * format, but a regular boolean expression prepared with ExecInitExpr or
869 : * ExecPrepareExpr works too.
870 : */
871 : bool
872 103278 : ExecCheck(ExprState *state, ExprContext *econtext)
873 : {
874 : Datum ret;
875 : bool isnull;
876 :
877 : /* short-circuit (here and in ExecInitCheck) for empty restriction list */
878 103278 : if (state == NULL)
879 96 : return true;
880 :
881 : /* verify that expression was not compiled using ExecInitQual */
882 : Assert(!(state->flags & EEO_FLAG_IS_QUAL));
883 :
884 103182 : ret = ExecEvalExprSwitchContext(state, econtext, &isnull);
885 :
886 103176 : if (isnull)
887 2836 : return true;
888 :
889 100340 : return DatumGetBool(ret);
890 : }
891 :
892 : /*
893 : * Prepare a compiled expression for execution. This has to be called for
894 : * every ExprState before it can be executed.
895 : *
896 : * NB: While this currently only calls ExecReadyInterpretedExpr(),
897 : * this will likely get extended to further expression evaluation methods.
898 : * Therefore this should be used instead of directly calling
899 : * ExecReadyInterpretedExpr().
900 : */
901 : static void
902 2637580 : ExecReadyExpr(ExprState *state)
903 : {
904 2637580 : if (jit_compile_expr(state))
905 9078 : return;
906 :
907 2628502 : ExecReadyInterpretedExpr(state);
908 : }
909 :
910 : /*
911 : * Append the steps necessary for the evaluation of node to ExprState->steps,
912 : * possibly recursing into sub-expressions of node.
913 : *
914 : * node - expression to evaluate
915 : * state - ExprState to whose ->steps to append the necessary operations
916 : * resv / resnull - where to store the result of the node into
917 : */
918 : static void
919 8147960 : ExecInitExprRec(Expr *node, ExprState *state,
920 : Datum *resv, bool *resnull)
921 : {
922 8147960 : ExprEvalStep scratch = {0};
923 :
924 : /* Guard against stack overflow due to overly complex expressions */
925 8147960 : check_stack_depth();
926 :
927 : /* Step's output location is always what the caller gave us */
928 : Assert(resv != NULL && resnull != NULL);
929 8147960 : scratch.resvalue = resv;
930 8147960 : scratch.resnull = resnull;
931 :
932 : /* cases should be ordered as they are in enum NodeTag */
933 8147960 : switch (nodeTag(node))
934 : {
935 2600700 : case T_Var:
936 : {
937 2600700 : Var *variable = (Var *) node;
938 :
939 2600700 : if (variable->varattno == InvalidAttrNumber)
940 : {
941 : /* whole-row Var */
942 4294 : ExecInitWholeRowVar(&scratch, variable, state);
943 : }
944 2596406 : else if (variable->varattno <= 0)
945 : {
946 : /* system column */
947 83984 : scratch.d.var.attnum = variable->varattno;
948 83984 : scratch.d.var.vartype = variable->vartype;
949 83984 : scratch.d.var.varreturningtype = variable->varreturningtype;
950 83984 : switch (variable->varno)
951 : {
952 6 : case INNER_VAR:
953 6 : scratch.opcode = EEOP_INNER_SYSVAR;
954 6 : break;
955 12 : case OUTER_VAR:
956 12 : scratch.opcode = EEOP_OUTER_SYSVAR;
957 12 : break;
958 :
959 : /* INDEX_VAR is handled by default case */
960 :
961 83966 : default:
962 83966 : switch (variable->varreturningtype)
963 : {
964 83318 : case VAR_RETURNING_DEFAULT:
965 83318 : scratch.opcode = EEOP_SCAN_SYSVAR;
966 83318 : break;
967 324 : case VAR_RETURNING_OLD:
968 324 : scratch.opcode = EEOP_OLD_SYSVAR;
969 324 : state->flags |= EEO_FLAG_HAS_OLD;
970 324 : break;
971 324 : case VAR_RETURNING_NEW:
972 324 : scratch.opcode = EEOP_NEW_SYSVAR;
973 324 : state->flags |= EEO_FLAG_HAS_NEW;
974 324 : break;
975 : }
976 83966 : break;
977 : }
978 : }
979 : else
980 : {
981 : /* regular user column */
982 2512422 : scratch.d.var.attnum = variable->varattno - 1;
983 2512422 : scratch.d.var.vartype = variable->vartype;
984 2512422 : scratch.d.var.varreturningtype = variable->varreturningtype;
985 2512422 : switch (variable->varno)
986 : {
987 357162 : case INNER_VAR:
988 357162 : scratch.opcode = EEOP_INNER_VAR;
989 357162 : break;
990 1369520 : case OUTER_VAR:
991 1369520 : scratch.opcode = EEOP_OUTER_VAR;
992 1369520 : break;
993 :
994 : /* INDEX_VAR is handled by default case */
995 :
996 785740 : default:
997 785740 : switch (variable->varreturningtype)
998 : {
999 785296 : case VAR_RETURNING_DEFAULT:
1000 785296 : scratch.opcode = EEOP_SCAN_VAR;
1001 785296 : break;
1002 222 : case VAR_RETURNING_OLD:
1003 222 : scratch.opcode = EEOP_OLD_VAR;
1004 222 : state->flags |= EEO_FLAG_HAS_OLD;
1005 222 : break;
1006 222 : case VAR_RETURNING_NEW:
1007 222 : scratch.opcode = EEOP_NEW_VAR;
1008 222 : state->flags |= EEO_FLAG_HAS_NEW;
1009 222 : break;
1010 : }
1011 785740 : break;
1012 : }
1013 : }
1014 :
1015 2600700 : ExprEvalPushStep(state, &scratch);
1016 2600700 : break;
1017 : }
1018 :
1019 1414154 : case T_Const:
1020 : {
1021 1414154 : Const *con = (Const *) node;
1022 :
1023 1414154 : scratch.opcode = EEOP_CONST;
1024 1414154 : scratch.d.constval.value = con->constvalue;
1025 1414154 : scratch.d.constval.isnull = con->constisnull;
1026 :
1027 1414154 : ExprEvalPushStep(state, &scratch);
1028 1414154 : break;
1029 : }
1030 :
1031 970128 : case T_Param:
1032 : {
1033 970128 : Param *param = (Param *) node;
1034 : ParamListInfo params;
1035 :
1036 970128 : switch (param->paramkind)
1037 : {
1038 316606 : case PARAM_EXEC:
1039 316606 : scratch.opcode = EEOP_PARAM_EXEC;
1040 316606 : scratch.d.param.paramid = param->paramid;
1041 316606 : scratch.d.param.paramtype = param->paramtype;
1042 316606 : ExprEvalPushStep(state, &scratch);
1043 316606 : break;
1044 653522 : case PARAM_EXTERN:
1045 :
1046 : /*
1047 : * If we have a relevant ParamCompileHook, use it;
1048 : * otherwise compile a standard EEOP_PARAM_EXTERN
1049 : * step. ext_params, if supplied, takes precedence
1050 : * over info from the parent node's EState (if any).
1051 : */
1052 653522 : if (state->ext_params)
1053 72428 : params = state->ext_params;
1054 581094 : else if (state->parent &&
1055 580794 : state->parent->state)
1056 580794 : params = state->parent->state->es_param_list_info;
1057 : else
1058 300 : params = NULL;
1059 653522 : if (params && params->paramCompile)
1060 : {
1061 145696 : params->paramCompile(params, param, state,
1062 : resv, resnull);
1063 : }
1064 : else
1065 : {
1066 507826 : scratch.opcode = EEOP_PARAM_EXTERN;
1067 507826 : scratch.d.param.paramid = param->paramid;
1068 507826 : scratch.d.param.paramtype = param->paramtype;
1069 507826 : ExprEvalPushStep(state, &scratch);
1070 : }
1071 653522 : break;
1072 0 : default:
1073 0 : elog(ERROR, "unrecognized paramkind: %d",
1074 : (int) param->paramkind);
1075 : break;
1076 : }
1077 970128 : break;
1078 : }
1079 :
1080 53634 : case T_Aggref:
1081 : {
1082 53634 : Aggref *aggref = (Aggref *) node;
1083 :
1084 53634 : scratch.opcode = EEOP_AGGREF;
1085 53634 : scratch.d.aggref.aggno = aggref->aggno;
1086 :
1087 53634 : if (state->parent && IsA(state->parent, AggState))
1088 53634 : {
1089 53634 : AggState *aggstate = (AggState *) state->parent;
1090 :
1091 53634 : aggstate->aggs = lappend(aggstate->aggs, aggref);
1092 : }
1093 : else
1094 : {
1095 : /* planner messed up */
1096 0 : elog(ERROR, "Aggref found in non-Agg plan node");
1097 : }
1098 :
1099 53634 : ExprEvalPushStep(state, &scratch);
1100 53634 : break;
1101 : }
1102 :
1103 350 : case T_GroupingFunc:
1104 : {
1105 350 : GroupingFunc *grp_node = (GroupingFunc *) node;
1106 : Agg *agg;
1107 :
1108 350 : if (!state->parent || !IsA(state->parent, AggState) ||
1109 350 : !IsA(state->parent->plan, Agg))
1110 0 : elog(ERROR, "GroupingFunc found in non-Agg plan node");
1111 :
1112 350 : scratch.opcode = EEOP_GROUPING_FUNC;
1113 :
1114 350 : agg = (Agg *) (state->parent->plan);
1115 :
1116 350 : if (agg->groupingSets)
1117 260 : scratch.d.grouping_func.clauses = grp_node->cols;
1118 : else
1119 90 : scratch.d.grouping_func.clauses = NIL;
1120 :
1121 350 : ExprEvalPushStep(state, &scratch);
1122 350 : break;
1123 : }
1124 :
1125 3254 : case T_WindowFunc:
1126 : {
1127 3254 : WindowFunc *wfunc = (WindowFunc *) node;
1128 3254 : WindowFuncExprState *wfstate = makeNode(WindowFuncExprState);
1129 :
1130 3254 : wfstate->wfunc = wfunc;
1131 :
1132 3254 : if (state->parent && IsA(state->parent, WindowAggState))
1133 3254 : {
1134 3254 : WindowAggState *winstate = (WindowAggState *) state->parent;
1135 : int nfuncs;
1136 :
1137 3254 : winstate->funcs = lappend(winstate->funcs, wfstate);
1138 3254 : nfuncs = ++winstate->numfuncs;
1139 3254 : if (wfunc->winagg)
1140 1538 : winstate->numaggs++;
1141 :
1142 : /* for now initialize agg using old style expressions */
1143 6508 : wfstate->args = ExecInitExprList(wfunc->args,
1144 3254 : state->parent);
1145 6508 : wfstate->aggfilter = ExecInitExpr(wfunc->aggfilter,
1146 3254 : state->parent);
1147 :
1148 : /*
1149 : * Complain if the windowfunc's arguments contain any
1150 : * windowfuncs; nested window functions are semantically
1151 : * nonsensical. (This should have been caught earlier,
1152 : * but we defend against it here anyway.)
1153 : */
1154 3254 : if (nfuncs != winstate->numfuncs)
1155 0 : ereport(ERROR,
1156 : (errcode(ERRCODE_WINDOWING_ERROR),
1157 : errmsg("window function calls cannot be nested")));
1158 : }
1159 : else
1160 : {
1161 : /* planner messed up */
1162 0 : elog(ERROR, "WindowFunc found in non-WindowAgg plan node");
1163 : }
1164 :
1165 3254 : scratch.opcode = EEOP_WINDOW_FUNC;
1166 3254 : scratch.d.window_func.wfstate = wfstate;
1167 3254 : ExprEvalPushStep(state, &scratch);
1168 3254 : break;
1169 : }
1170 :
1171 222 : case T_MergeSupportFunc:
1172 : {
1173 : /* must be in a MERGE, else something messed up */
1174 222 : if (!state->parent ||
1175 222 : !IsA(state->parent, ModifyTableState) ||
1176 222 : ((ModifyTableState *) state->parent)->operation != CMD_MERGE)
1177 0 : elog(ERROR, "MergeSupportFunc found in non-merge plan node");
1178 :
1179 222 : scratch.opcode = EEOP_MERGE_SUPPORT_FUNC;
1180 222 : ExprEvalPushStep(state, &scratch);
1181 222 : break;
1182 : }
1183 :
1184 146924 : case T_SubscriptingRef:
1185 : {
1186 146924 : SubscriptingRef *sbsref = (SubscriptingRef *) node;
1187 :
1188 146924 : ExecInitSubscriptingRef(&scratch, sbsref, state, resv, resnull);
1189 146924 : break;
1190 : }
1191 :
1192 673590 : case T_FuncExpr:
1193 : {
1194 673590 : FuncExpr *func = (FuncExpr *) node;
1195 :
1196 673590 : ExecInitFunc(&scratch, node,
1197 : func->args, func->funcid, func->inputcollid,
1198 : state);
1199 673498 : ExprEvalPushStep(state, &scratch);
1200 673498 : break;
1201 : }
1202 :
1203 1559590 : case T_OpExpr:
1204 : {
1205 1559590 : OpExpr *op = (OpExpr *) node;
1206 :
1207 1559590 : ExecInitFunc(&scratch, node,
1208 : op->args, op->opfuncid, op->inputcollid,
1209 : state);
1210 1559590 : ExprEvalPushStep(state, &scratch);
1211 1559590 : break;
1212 : }
1213 :
1214 1132 : case T_DistinctExpr:
1215 : {
1216 1132 : DistinctExpr *op = (DistinctExpr *) node;
1217 :
1218 1132 : ExecInitFunc(&scratch, node,
1219 : op->args, op->opfuncid, op->inputcollid,
1220 : state);
1221 :
1222 : /*
1223 : * Change opcode of call instruction to EEOP_DISTINCT.
1224 : *
1225 : * XXX: historically we've not called the function usage
1226 : * pgstat infrastructure - that seems inconsistent given that
1227 : * we do so for normal function *and* operator evaluation. If
1228 : * we decided to do that here, we'd probably want separate
1229 : * opcodes for FUSAGE or not.
1230 : */
1231 1132 : scratch.opcode = EEOP_DISTINCT;
1232 1132 : ExprEvalPushStep(state, &scratch);
1233 1132 : break;
1234 : }
1235 :
1236 504 : case T_NullIfExpr:
1237 : {
1238 504 : NullIfExpr *op = (NullIfExpr *) node;
1239 :
1240 504 : ExecInitFunc(&scratch, node,
1241 : op->args, op->opfuncid, op->inputcollid,
1242 : state);
1243 :
1244 : /*
1245 : * If first argument is of varlena type, we'll need to ensure
1246 : * that the value passed to the comparison function is a
1247 : * read-only pointer.
1248 : */
1249 504 : scratch.d.func.make_ro =
1250 504 : (get_typlen(exprType((Node *) linitial(op->args))) == -1);
1251 :
1252 : /*
1253 : * Change opcode of call instruction to EEOP_NULLIF.
1254 : *
1255 : * XXX: historically we've not called the function usage
1256 : * pgstat infrastructure - that seems inconsistent given that
1257 : * we do so for normal function *and* operator evaluation. If
1258 : * we decided to do that here, we'd probably want separate
1259 : * opcodes for FUSAGE or not.
1260 : */
1261 504 : scratch.opcode = EEOP_NULLIF;
1262 504 : ExprEvalPushStep(state, &scratch);
1263 504 : break;
1264 : }
1265 :
1266 37206 : case T_ScalarArrayOpExpr:
1267 : {
1268 37206 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1269 : Expr *scalararg;
1270 : Expr *arrayarg;
1271 : FmgrInfo *finfo;
1272 : FunctionCallInfo fcinfo;
1273 : AclResult aclresult;
1274 : Oid cmpfuncid;
1275 :
1276 : /*
1277 : * Select the correct comparison function. When we do hashed
1278 : * NOT IN clauses, the opfuncid will be the inequality
1279 : * comparison function and negfuncid will be set to equality.
1280 : * We need to use the equality function for hash probes.
1281 : */
1282 37206 : if (OidIsValid(opexpr->negfuncid))
1283 : {
1284 : Assert(OidIsValid(opexpr->hashfuncid));
1285 70 : cmpfuncid = opexpr->negfuncid;
1286 : }
1287 : else
1288 37136 : cmpfuncid = opexpr->opfuncid;
1289 :
1290 : Assert(list_length(opexpr->args) == 2);
1291 37206 : scalararg = (Expr *) linitial(opexpr->args);
1292 37206 : arrayarg = (Expr *) lsecond(opexpr->args);
1293 :
1294 : /* Check permission to call function */
1295 37206 : aclresult = object_aclcheck(ProcedureRelationId, cmpfuncid,
1296 : GetUserId(),
1297 : ACL_EXECUTE);
1298 37206 : if (aclresult != ACLCHECK_OK)
1299 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
1300 0 : get_func_name(cmpfuncid));
1301 37206 : InvokeFunctionExecuteHook(cmpfuncid);
1302 :
1303 37206 : if (OidIsValid(opexpr->hashfuncid))
1304 : {
1305 310 : aclresult = object_aclcheck(ProcedureRelationId, opexpr->hashfuncid,
1306 : GetUserId(),
1307 : ACL_EXECUTE);
1308 310 : if (aclresult != ACLCHECK_OK)
1309 0 : aclcheck_error(aclresult, OBJECT_FUNCTION,
1310 0 : get_func_name(opexpr->hashfuncid));
1311 310 : InvokeFunctionExecuteHook(opexpr->hashfuncid);
1312 : }
1313 :
1314 : /* Set up the primary fmgr lookup information */
1315 37206 : finfo = palloc0(sizeof(FmgrInfo));
1316 37206 : fcinfo = palloc0(SizeForFunctionCallInfo(2));
1317 37206 : fmgr_info(cmpfuncid, finfo);
1318 37206 : fmgr_info_set_expr((Node *) node, finfo);
1319 37206 : InitFunctionCallInfoData(*fcinfo, finfo, 2,
1320 : opexpr->inputcollid, NULL, NULL);
1321 :
1322 : /*
1323 : * If hashfuncid is set, we create a EEOP_HASHED_SCALARARRAYOP
1324 : * step instead of a EEOP_SCALARARRAYOP. This provides much
1325 : * faster lookup performance than the normal linear search
1326 : * when the number of items in the array is anything but very
1327 : * small.
1328 : */
1329 37206 : if (OidIsValid(opexpr->hashfuncid))
1330 : {
1331 : /* Evaluate scalar directly into left function argument */
1332 310 : ExecInitExprRec(scalararg, state,
1333 : &fcinfo->args[0].value, &fcinfo->args[0].isnull);
1334 :
1335 : /*
1336 : * Evaluate array argument into our return value. There's
1337 : * no danger in that, because the return value is
1338 : * guaranteed to be overwritten by
1339 : * EEOP_HASHED_SCALARARRAYOP, and will not be passed to
1340 : * any other expression.
1341 : */
1342 310 : ExecInitExprRec(arrayarg, state, resv, resnull);
1343 :
1344 : /* And perform the operation */
1345 310 : scratch.opcode = EEOP_HASHED_SCALARARRAYOP;
1346 310 : scratch.d.hashedscalararrayop.inclause = opexpr->useOr;
1347 310 : scratch.d.hashedscalararrayop.finfo = finfo;
1348 310 : scratch.d.hashedscalararrayop.fcinfo_data = fcinfo;
1349 310 : scratch.d.hashedscalararrayop.saop = opexpr;
1350 :
1351 :
1352 310 : ExprEvalPushStep(state, &scratch);
1353 : }
1354 : else
1355 : {
1356 : /* Evaluate scalar directly into left function argument */
1357 36896 : ExecInitExprRec(scalararg, state,
1358 : &fcinfo->args[0].value,
1359 : &fcinfo->args[0].isnull);
1360 :
1361 : /*
1362 : * Evaluate array argument into our return value. There's
1363 : * no danger in that, because the return value is
1364 : * guaranteed to be overwritten by EEOP_SCALARARRAYOP, and
1365 : * will not be passed to any other expression.
1366 : */
1367 36896 : ExecInitExprRec(arrayarg, state, resv, resnull);
1368 :
1369 : /* And perform the operation */
1370 36896 : scratch.opcode = EEOP_SCALARARRAYOP;
1371 36896 : scratch.d.scalararrayop.element_type = InvalidOid;
1372 36896 : scratch.d.scalararrayop.useOr = opexpr->useOr;
1373 36896 : scratch.d.scalararrayop.finfo = finfo;
1374 36896 : scratch.d.scalararrayop.fcinfo_data = fcinfo;
1375 36896 : scratch.d.scalararrayop.fn_addr = finfo->fn_addr;
1376 36896 : ExprEvalPushStep(state, &scratch);
1377 : }
1378 37206 : break;
1379 : }
1380 :
1381 128406 : case T_BoolExpr:
1382 : {
1383 128406 : BoolExpr *boolexpr = (BoolExpr *) node;
1384 128406 : int nargs = list_length(boolexpr->args);
1385 128406 : List *adjust_jumps = NIL;
1386 : int off;
1387 : ListCell *lc;
1388 :
1389 : /* allocate scratch memory used by all steps of AND/OR */
1390 128406 : if (boolexpr->boolop != NOT_EXPR)
1391 78872 : scratch.d.boolexpr.anynull = (bool *) palloc(sizeof(bool));
1392 :
1393 : /*
1394 : * For each argument evaluate the argument itself, then
1395 : * perform the bool operation's appropriate handling.
1396 : *
1397 : * We can evaluate each argument into our result area, since
1398 : * the short-circuiting logic means we only need to remember
1399 : * previous NULL values.
1400 : *
1401 : * AND/OR is split into separate STEP_FIRST (one) / STEP (zero
1402 : * or more) / STEP_LAST (one) steps, as each of those has to
1403 : * perform different work. The FIRST/LAST split is valid
1404 : * because AND/OR have at least two arguments.
1405 : */
1406 128406 : off = 0;
1407 348646 : foreach(lc, boolexpr->args)
1408 : {
1409 220240 : Expr *arg = (Expr *) lfirst(lc);
1410 :
1411 : /* Evaluate argument into our output variable */
1412 220240 : ExecInitExprRec(arg, state, resv, resnull);
1413 :
1414 : /* Perform the appropriate step type */
1415 220240 : switch (boolexpr->boolop)
1416 : {
1417 98304 : case AND_EXPR:
1418 : Assert(nargs >= 2);
1419 :
1420 98304 : if (off == 0)
1421 45164 : scratch.opcode = EEOP_BOOL_AND_STEP_FIRST;
1422 53140 : else if (off + 1 == nargs)
1423 45164 : scratch.opcode = EEOP_BOOL_AND_STEP_LAST;
1424 : else
1425 7976 : scratch.opcode = EEOP_BOOL_AND_STEP;
1426 98304 : break;
1427 72402 : case OR_EXPR:
1428 : Assert(nargs >= 2);
1429 :
1430 72402 : if (off == 0)
1431 33708 : scratch.opcode = EEOP_BOOL_OR_STEP_FIRST;
1432 38694 : else if (off + 1 == nargs)
1433 33708 : scratch.opcode = EEOP_BOOL_OR_STEP_LAST;
1434 : else
1435 4986 : scratch.opcode = EEOP_BOOL_OR_STEP;
1436 72402 : break;
1437 49534 : case NOT_EXPR:
1438 : Assert(nargs == 1);
1439 :
1440 49534 : scratch.opcode = EEOP_BOOL_NOT_STEP;
1441 49534 : break;
1442 0 : default:
1443 0 : elog(ERROR, "unrecognized boolop: %d",
1444 : (int) boolexpr->boolop);
1445 : break;
1446 : }
1447 :
1448 220240 : scratch.d.boolexpr.jumpdone = -1;
1449 220240 : ExprEvalPushStep(state, &scratch);
1450 220240 : adjust_jumps = lappend_int(adjust_jumps,
1451 220240 : state->steps_len - 1);
1452 220240 : off++;
1453 : }
1454 :
1455 : /* adjust jump targets */
1456 348646 : foreach(lc, adjust_jumps)
1457 : {
1458 220240 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
1459 :
1460 : Assert(as->d.boolexpr.jumpdone == -1);
1461 220240 : as->d.boolexpr.jumpdone = state->steps_len;
1462 : }
1463 :
1464 128406 : break;
1465 : }
1466 :
1467 28552 : case T_SubPlan:
1468 : {
1469 28552 : SubPlan *subplan = (SubPlan *) node;
1470 :
1471 : /*
1472 : * Real execution of a MULTIEXPR SubPlan has already been
1473 : * done. What we have to do here is return a dummy NULL record
1474 : * value in case this targetlist element is assigned
1475 : * someplace.
1476 : */
1477 28552 : if (subplan->subLinkType == MULTIEXPR_SUBLINK)
1478 : {
1479 60 : scratch.opcode = EEOP_CONST;
1480 60 : scratch.d.constval.value = (Datum) 0;
1481 60 : scratch.d.constval.isnull = true;
1482 60 : ExprEvalPushStep(state, &scratch);
1483 60 : break;
1484 : }
1485 :
1486 28492 : ExecInitSubPlanExpr(subplan, state, resv, resnull);
1487 28492 : break;
1488 : }
1489 :
1490 8804 : case T_FieldSelect:
1491 : {
1492 8804 : FieldSelect *fselect = (FieldSelect *) node;
1493 :
1494 : /* evaluate row/record argument into result area */
1495 8804 : ExecInitExprRec(fselect->arg, state, resv, resnull);
1496 :
1497 : /* and extract field */
1498 8804 : scratch.opcode = EEOP_FIELDSELECT;
1499 8804 : scratch.d.fieldselect.fieldnum = fselect->fieldnum;
1500 8804 : scratch.d.fieldselect.resulttype = fselect->resulttype;
1501 8804 : scratch.d.fieldselect.rowcache.cacheptr = NULL;
1502 :
1503 8804 : ExprEvalPushStep(state, &scratch);
1504 8804 : break;
1505 : }
1506 :
1507 382 : case T_FieldStore:
1508 : {
1509 382 : FieldStore *fstore = (FieldStore *) node;
1510 : TupleDesc tupDesc;
1511 : ExprEvalRowtypeCache *rowcachep;
1512 : Datum *values;
1513 : bool *nulls;
1514 : int ncolumns;
1515 : ListCell *l1,
1516 : *l2;
1517 :
1518 : /* find out the number of columns in the composite type */
1519 382 : tupDesc = lookup_rowtype_tupdesc(fstore->resulttype, -1);
1520 382 : ncolumns = tupDesc->natts;
1521 382 : ReleaseTupleDesc(tupDesc);
1522 :
1523 : /* create workspace for column values */
1524 382 : values = (Datum *) palloc(sizeof(Datum) * ncolumns);
1525 382 : nulls = (bool *) palloc(sizeof(bool) * ncolumns);
1526 :
1527 : /* create shared composite-type-lookup cache struct */
1528 382 : rowcachep = palloc(sizeof(ExprEvalRowtypeCache));
1529 382 : rowcachep->cacheptr = NULL;
1530 :
1531 : /* emit code to evaluate the composite input value */
1532 382 : ExecInitExprRec(fstore->arg, state, resv, resnull);
1533 :
1534 : /* next, deform the input tuple into our workspace */
1535 382 : scratch.opcode = EEOP_FIELDSTORE_DEFORM;
1536 382 : scratch.d.fieldstore.fstore = fstore;
1537 382 : scratch.d.fieldstore.rowcache = rowcachep;
1538 382 : scratch.d.fieldstore.values = values;
1539 382 : scratch.d.fieldstore.nulls = nulls;
1540 382 : scratch.d.fieldstore.ncolumns = ncolumns;
1541 382 : ExprEvalPushStep(state, &scratch);
1542 :
1543 : /* evaluate new field values, store in workspace columns */
1544 890 : forboth(l1, fstore->newvals, l2, fstore->fieldnums)
1545 : {
1546 508 : Expr *e = (Expr *) lfirst(l1);
1547 508 : AttrNumber fieldnum = lfirst_int(l2);
1548 : Datum *save_innermost_caseval;
1549 : bool *save_innermost_casenull;
1550 :
1551 508 : if (fieldnum <= 0 || fieldnum > ncolumns)
1552 0 : elog(ERROR, "field number %d is out of range in FieldStore",
1553 : fieldnum);
1554 :
1555 : /*
1556 : * Use the CaseTestExpr mechanism to pass down the old
1557 : * value of the field being replaced; this is needed in
1558 : * case the newval is itself a FieldStore or
1559 : * SubscriptingRef that has to obtain and modify the old
1560 : * value. It's safe to reuse the CASE mechanism because
1561 : * there cannot be a CASE between here and where the value
1562 : * would be needed, and a field assignment can't be within
1563 : * a CASE either. (So saving and restoring
1564 : * innermost_caseval is just paranoia, but let's do it
1565 : * anyway.)
1566 : *
1567 : * Another non-obvious point is that it's safe to use the
1568 : * field's values[]/nulls[] entries as both the caseval
1569 : * source and the result address for this subexpression.
1570 : * That's okay only because (1) both FieldStore and
1571 : * SubscriptingRef evaluate their arg or refexpr inputs
1572 : * first, and (2) any such CaseTestExpr is directly the
1573 : * arg or refexpr input. So any read of the caseval will
1574 : * occur before there's a chance to overwrite it. Also,
1575 : * if multiple entries in the newvals/fieldnums lists
1576 : * target the same field, they'll effectively be applied
1577 : * left-to-right which is what we want.
1578 : */
1579 508 : save_innermost_caseval = state->innermost_caseval;
1580 508 : save_innermost_casenull = state->innermost_casenull;
1581 508 : state->innermost_caseval = &values[fieldnum - 1];
1582 508 : state->innermost_casenull = &nulls[fieldnum - 1];
1583 :
1584 508 : ExecInitExprRec(e, state,
1585 508 : &values[fieldnum - 1],
1586 508 : &nulls[fieldnum - 1]);
1587 :
1588 508 : state->innermost_caseval = save_innermost_caseval;
1589 508 : state->innermost_casenull = save_innermost_casenull;
1590 : }
1591 :
1592 : /* finally, form result tuple */
1593 382 : scratch.opcode = EEOP_FIELDSTORE_FORM;
1594 382 : scratch.d.fieldstore.fstore = fstore;
1595 382 : scratch.d.fieldstore.rowcache = rowcachep;
1596 382 : scratch.d.fieldstore.values = values;
1597 382 : scratch.d.fieldstore.nulls = nulls;
1598 382 : scratch.d.fieldstore.ncolumns = ncolumns;
1599 382 : ExprEvalPushStep(state, &scratch);
1600 382 : break;
1601 : }
1602 :
1603 115056 : case T_RelabelType:
1604 : {
1605 : /* relabel doesn't need to do anything at runtime */
1606 115056 : RelabelType *relabel = (RelabelType *) node;
1607 :
1608 115056 : ExecInitExprRec(relabel->arg, state, resv, resnull);
1609 115056 : break;
1610 : }
1611 :
1612 36896 : case T_CoerceViaIO:
1613 : {
1614 36896 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
1615 : Oid iofunc;
1616 : bool typisvarlena;
1617 : Oid typioparam;
1618 : FunctionCallInfo fcinfo_in;
1619 :
1620 : /* evaluate argument into step's result area */
1621 36896 : ExecInitExprRec(iocoerce->arg, state, resv, resnull);
1622 :
1623 : /*
1624 : * Prepare both output and input function calls, to be
1625 : * evaluated inside a single evaluation step for speed - this
1626 : * can be a very common operation.
1627 : *
1628 : * We don't check permissions here as a type's input/output
1629 : * function are assumed to be executable by everyone.
1630 : */
1631 36896 : if (state->escontext == NULL)
1632 36896 : scratch.opcode = EEOP_IOCOERCE;
1633 : else
1634 0 : scratch.opcode = EEOP_IOCOERCE_SAFE;
1635 :
1636 : /* lookup the source type's output function */
1637 36896 : scratch.d.iocoerce.finfo_out = palloc0(sizeof(FmgrInfo));
1638 36896 : scratch.d.iocoerce.fcinfo_data_out = palloc0(SizeForFunctionCallInfo(1));
1639 :
1640 36896 : getTypeOutputInfo(exprType((Node *) iocoerce->arg),
1641 : &iofunc, &typisvarlena);
1642 36896 : fmgr_info(iofunc, scratch.d.iocoerce.finfo_out);
1643 36896 : fmgr_info_set_expr((Node *) node, scratch.d.iocoerce.finfo_out);
1644 36896 : InitFunctionCallInfoData(*scratch.d.iocoerce.fcinfo_data_out,
1645 : scratch.d.iocoerce.finfo_out,
1646 : 1, InvalidOid, NULL, NULL);
1647 :
1648 : /* lookup the result type's input function */
1649 36896 : scratch.d.iocoerce.finfo_in = palloc0(sizeof(FmgrInfo));
1650 36896 : scratch.d.iocoerce.fcinfo_data_in = palloc0(SizeForFunctionCallInfo(3));
1651 :
1652 36896 : getTypeInputInfo(iocoerce->resulttype,
1653 : &iofunc, &typioparam);
1654 36896 : fmgr_info(iofunc, scratch.d.iocoerce.finfo_in);
1655 36896 : fmgr_info_set_expr((Node *) node, scratch.d.iocoerce.finfo_in);
1656 36896 : InitFunctionCallInfoData(*scratch.d.iocoerce.fcinfo_data_in,
1657 : scratch.d.iocoerce.finfo_in,
1658 : 3, InvalidOid, NULL, NULL);
1659 :
1660 : /*
1661 : * We can preload the second and third arguments for the input
1662 : * function, since they're constants.
1663 : */
1664 36896 : fcinfo_in = scratch.d.iocoerce.fcinfo_data_in;
1665 36896 : fcinfo_in->args[1].value = ObjectIdGetDatum(typioparam);
1666 36896 : fcinfo_in->args[1].isnull = false;
1667 36896 : fcinfo_in->args[2].value = Int32GetDatum(-1);
1668 36896 : fcinfo_in->args[2].isnull = false;
1669 :
1670 36896 : fcinfo_in->context = (Node *) state->escontext;
1671 :
1672 36896 : ExprEvalPushStep(state, &scratch);
1673 36896 : break;
1674 : }
1675 :
1676 5586 : case T_ArrayCoerceExpr:
1677 : {
1678 5586 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
1679 : Oid resultelemtype;
1680 : ExprState *elemstate;
1681 :
1682 : /* evaluate argument into step's result area */
1683 5586 : ExecInitExprRec(acoerce->arg, state, resv, resnull);
1684 :
1685 5586 : resultelemtype = get_element_type(acoerce->resulttype);
1686 5586 : if (!OidIsValid(resultelemtype))
1687 0 : ereport(ERROR,
1688 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1689 : errmsg("target type is not an array")));
1690 :
1691 : /*
1692 : * Construct a sub-expression for the per-element expression;
1693 : * but don't ready it until after we check it for triviality.
1694 : * We assume it hasn't any Var references, but does have a
1695 : * CaseTestExpr representing the source array element values.
1696 : */
1697 5586 : elemstate = makeNode(ExprState);
1698 5586 : elemstate->expr = acoerce->elemexpr;
1699 5586 : elemstate->parent = state->parent;
1700 5586 : elemstate->ext_params = state->ext_params;
1701 :
1702 5586 : elemstate->innermost_caseval = (Datum *) palloc(sizeof(Datum));
1703 5586 : elemstate->innermost_casenull = (bool *) palloc(sizeof(bool));
1704 :
1705 5586 : ExecInitExprRec(acoerce->elemexpr, elemstate,
1706 : &elemstate->resvalue, &elemstate->resnull);
1707 :
1708 5580 : if (elemstate->steps_len == 1 &&
1709 5136 : elemstate->steps[0].opcode == EEOP_CASE_TESTVAL)
1710 : {
1711 : /* Trivial, so we need no per-element work at runtime */
1712 5136 : elemstate = NULL;
1713 : }
1714 : else
1715 : {
1716 : /* Not trivial, so append a DONE step */
1717 444 : scratch.opcode = EEOP_DONE_RETURN;
1718 444 : ExprEvalPushStep(elemstate, &scratch);
1719 : /* and ready the subexpression */
1720 444 : ExecReadyExpr(elemstate);
1721 : }
1722 :
1723 5580 : scratch.opcode = EEOP_ARRAYCOERCE;
1724 5580 : scratch.d.arraycoerce.elemexprstate = elemstate;
1725 5580 : scratch.d.arraycoerce.resultelemtype = resultelemtype;
1726 :
1727 5580 : if (elemstate)
1728 : {
1729 : /* Set up workspace for array_map */
1730 444 : scratch.d.arraycoerce.amstate =
1731 444 : (ArrayMapState *) palloc0(sizeof(ArrayMapState));
1732 : }
1733 : else
1734 : {
1735 : /* Don't need workspace if there's no subexpression */
1736 5136 : scratch.d.arraycoerce.amstate = NULL;
1737 : }
1738 :
1739 5580 : ExprEvalPushStep(state, &scratch);
1740 5580 : break;
1741 : }
1742 :
1743 812 : case T_ConvertRowtypeExpr:
1744 : {
1745 812 : ConvertRowtypeExpr *convert = (ConvertRowtypeExpr *) node;
1746 : ExprEvalRowtypeCache *rowcachep;
1747 :
1748 : /* cache structs must be out-of-line for space reasons */
1749 812 : rowcachep = palloc(2 * sizeof(ExprEvalRowtypeCache));
1750 812 : rowcachep[0].cacheptr = NULL;
1751 812 : rowcachep[1].cacheptr = NULL;
1752 :
1753 : /* evaluate argument into step's result area */
1754 812 : ExecInitExprRec(convert->arg, state, resv, resnull);
1755 :
1756 : /* and push conversion step */
1757 812 : scratch.opcode = EEOP_CONVERT_ROWTYPE;
1758 812 : scratch.d.convert_rowtype.inputtype =
1759 812 : exprType((Node *) convert->arg);
1760 812 : scratch.d.convert_rowtype.outputtype = convert->resulttype;
1761 812 : scratch.d.convert_rowtype.incache = &rowcachep[0];
1762 812 : scratch.d.convert_rowtype.outcache = &rowcachep[1];
1763 812 : scratch.d.convert_rowtype.map = NULL;
1764 :
1765 812 : ExprEvalPushStep(state, &scratch);
1766 812 : break;
1767 : }
1768 :
1769 : /* note that CaseWhen expressions are handled within this block */
1770 233512 : case T_CaseExpr:
1771 : {
1772 233512 : CaseExpr *caseExpr = (CaseExpr *) node;
1773 233512 : List *adjust_jumps = NIL;
1774 233512 : Datum *caseval = NULL;
1775 233512 : bool *casenull = NULL;
1776 : ListCell *lc;
1777 :
1778 : /*
1779 : * If there's a test expression, we have to evaluate it and
1780 : * save the value where the CaseTestExpr placeholders can find
1781 : * it.
1782 : */
1783 233512 : if (caseExpr->arg != NULL)
1784 : {
1785 : /* Evaluate testexpr into caseval/casenull workspace */
1786 4618 : caseval = palloc(sizeof(Datum));
1787 4618 : casenull = palloc(sizeof(bool));
1788 :
1789 4618 : ExecInitExprRec(caseExpr->arg, state,
1790 : caseval, casenull);
1791 :
1792 : /*
1793 : * Since value might be read multiple times, force to R/O
1794 : * - but only if it could be an expanded datum.
1795 : */
1796 4618 : if (get_typlen(exprType((Node *) caseExpr->arg)) == -1)
1797 : {
1798 : /* change caseval in-place */
1799 84 : scratch.opcode = EEOP_MAKE_READONLY;
1800 84 : scratch.resvalue = caseval;
1801 84 : scratch.resnull = casenull;
1802 84 : scratch.d.make_readonly.value = caseval;
1803 84 : scratch.d.make_readonly.isnull = casenull;
1804 84 : ExprEvalPushStep(state, &scratch);
1805 : /* restore normal settings of scratch fields */
1806 84 : scratch.resvalue = resv;
1807 84 : scratch.resnull = resnull;
1808 : }
1809 : }
1810 :
1811 : /*
1812 : * Prepare to evaluate each of the WHEN clauses in turn; as
1813 : * soon as one is true we return the value of the
1814 : * corresponding THEN clause. If none are true then we return
1815 : * the value of the ELSE clause, or NULL if there is none.
1816 : */
1817 1044058 : foreach(lc, caseExpr->args)
1818 : {
1819 810546 : CaseWhen *when = (CaseWhen *) lfirst(lc);
1820 : Datum *save_innermost_caseval;
1821 : bool *save_innermost_casenull;
1822 : int whenstep;
1823 :
1824 : /*
1825 : * Make testexpr result available to CaseTestExpr nodes
1826 : * within the condition. We must save and restore prior
1827 : * setting of innermost_caseval fields, in case this node
1828 : * is itself within a larger CASE.
1829 : *
1830 : * If there's no test expression, we don't actually need
1831 : * to save and restore these fields; but it's less code to
1832 : * just do so unconditionally.
1833 : */
1834 810546 : save_innermost_caseval = state->innermost_caseval;
1835 810546 : save_innermost_casenull = state->innermost_casenull;
1836 810546 : state->innermost_caseval = caseval;
1837 810546 : state->innermost_casenull = casenull;
1838 :
1839 : /* evaluate condition into CASE's result variables */
1840 810546 : ExecInitExprRec(when->expr, state, resv, resnull);
1841 :
1842 810546 : state->innermost_caseval = save_innermost_caseval;
1843 810546 : state->innermost_casenull = save_innermost_casenull;
1844 :
1845 : /* If WHEN result isn't true, jump to next CASE arm */
1846 810546 : scratch.opcode = EEOP_JUMP_IF_NOT_TRUE;
1847 810546 : scratch.d.jump.jumpdone = -1; /* computed later */
1848 810546 : ExprEvalPushStep(state, &scratch);
1849 810546 : whenstep = state->steps_len - 1;
1850 :
1851 : /*
1852 : * If WHEN result is true, evaluate THEN result, storing
1853 : * it into the CASE's result variables.
1854 : */
1855 810546 : ExecInitExprRec(when->result, state, resv, resnull);
1856 :
1857 : /* Emit JUMP step to jump to end of CASE's code */
1858 810546 : scratch.opcode = EEOP_JUMP;
1859 810546 : scratch.d.jump.jumpdone = -1; /* computed later */
1860 810546 : ExprEvalPushStep(state, &scratch);
1861 :
1862 : /*
1863 : * Don't know address for that jump yet, compute once the
1864 : * whole CASE expression is built.
1865 : */
1866 810546 : adjust_jumps = lappend_int(adjust_jumps,
1867 810546 : state->steps_len - 1);
1868 :
1869 : /*
1870 : * But we can set WHEN test's jump target now, to make it
1871 : * jump to the next WHEN subexpression or the ELSE.
1872 : */
1873 810546 : state->steps[whenstep].d.jump.jumpdone = state->steps_len;
1874 : }
1875 :
1876 : /* transformCaseExpr always adds a default */
1877 : Assert(caseExpr->defresult);
1878 :
1879 : /* evaluate ELSE expr into CASE's result variables */
1880 233512 : ExecInitExprRec(caseExpr->defresult, state,
1881 : resv, resnull);
1882 :
1883 : /* adjust jump targets */
1884 1044058 : foreach(lc, adjust_jumps)
1885 : {
1886 810546 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
1887 :
1888 : Assert(as->opcode == EEOP_JUMP);
1889 : Assert(as->d.jump.jumpdone == -1);
1890 810546 : as->d.jump.jumpdone = state->steps_len;
1891 : }
1892 :
1893 233512 : break;
1894 : }
1895 :
1896 25376 : case T_CaseTestExpr:
1897 : {
1898 : /*
1899 : * Read from location identified by innermost_caseval. Note
1900 : * that innermost_caseval could be NULL, if this node isn't
1901 : * actually within a CaseExpr, ArrayCoerceExpr, etc structure.
1902 : * That can happen because some parts of the system abuse
1903 : * CaseTestExpr to cause a read of a value externally supplied
1904 : * in econtext->caseValue_datum. We'll take care of that by
1905 : * generating a specialized operation.
1906 : */
1907 25376 : if (state->innermost_caseval == NULL)
1908 1480 : scratch.opcode = EEOP_CASE_TESTVAL_EXT;
1909 : else
1910 : {
1911 23896 : scratch.opcode = EEOP_CASE_TESTVAL;
1912 23896 : scratch.d.casetest.value = state->innermost_caseval;
1913 23896 : scratch.d.casetest.isnull = state->innermost_casenull;
1914 : }
1915 25376 : ExprEvalPushStep(state, &scratch);
1916 25376 : break;
1917 : }
1918 :
1919 29688 : case T_ArrayExpr:
1920 : {
1921 29688 : ArrayExpr *arrayexpr = (ArrayExpr *) node;
1922 29688 : int nelems = list_length(arrayexpr->elements);
1923 : ListCell *lc;
1924 : int elemoff;
1925 :
1926 : /*
1927 : * Evaluate by computing each element, and then forming the
1928 : * array. Elements are computed into scratch arrays
1929 : * associated with the ARRAYEXPR step.
1930 : */
1931 29688 : scratch.opcode = EEOP_ARRAYEXPR;
1932 29688 : scratch.d.arrayexpr.elemvalues =
1933 29688 : (Datum *) palloc(sizeof(Datum) * nelems);
1934 29688 : scratch.d.arrayexpr.elemnulls =
1935 29688 : (bool *) palloc(sizeof(bool) * nelems);
1936 29688 : scratch.d.arrayexpr.nelems = nelems;
1937 :
1938 : /* fill remaining fields of step */
1939 29688 : scratch.d.arrayexpr.multidims = arrayexpr->multidims;
1940 29688 : scratch.d.arrayexpr.elemtype = arrayexpr->element_typeid;
1941 :
1942 : /* do one-time catalog lookup for type info */
1943 29688 : get_typlenbyvalalign(arrayexpr->element_typeid,
1944 : &scratch.d.arrayexpr.elemlength,
1945 : &scratch.d.arrayexpr.elembyval,
1946 : &scratch.d.arrayexpr.elemalign);
1947 :
1948 : /* prepare to evaluate all arguments */
1949 29688 : elemoff = 0;
1950 108952 : foreach(lc, arrayexpr->elements)
1951 : {
1952 79264 : Expr *e = (Expr *) lfirst(lc);
1953 :
1954 79264 : ExecInitExprRec(e, state,
1955 79264 : &scratch.d.arrayexpr.elemvalues[elemoff],
1956 79264 : &scratch.d.arrayexpr.elemnulls[elemoff]);
1957 79264 : elemoff++;
1958 : }
1959 :
1960 : /* and then collect all into an array */
1961 29688 : ExprEvalPushStep(state, &scratch);
1962 29688 : break;
1963 : }
1964 :
1965 5512 : case T_RowExpr:
1966 : {
1967 5512 : RowExpr *rowexpr = (RowExpr *) node;
1968 5512 : int nelems = list_length(rowexpr->args);
1969 : TupleDesc tupdesc;
1970 : int i;
1971 : ListCell *l;
1972 :
1973 : /* Build tupdesc to describe result tuples */
1974 5512 : if (rowexpr->row_typeid == RECORDOID)
1975 : {
1976 : /* generic record, use types of given expressions */
1977 2908 : tupdesc = ExecTypeFromExprList(rowexpr->args);
1978 : /* ... but adopt RowExpr's column aliases */
1979 2908 : ExecTypeSetColNames(tupdesc, rowexpr->colnames);
1980 : /* Bless the tupdesc so it can be looked up later */
1981 2908 : BlessTupleDesc(tupdesc);
1982 : }
1983 : else
1984 : {
1985 : /* it's been cast to a named type, use that */
1986 2604 : tupdesc = lookup_rowtype_tupdesc_copy(rowexpr->row_typeid, -1);
1987 : }
1988 :
1989 : /*
1990 : * In the named-type case, the tupdesc could have more columns
1991 : * than are in the args list, since the type might have had
1992 : * columns added since the ROW() was parsed. We want those
1993 : * extra columns to go to nulls, so we make sure that the
1994 : * workspace arrays are large enough and then initialize any
1995 : * extra columns to read as NULLs.
1996 : */
1997 : Assert(nelems <= tupdesc->natts);
1998 5512 : nelems = Max(nelems, tupdesc->natts);
1999 :
2000 : /*
2001 : * Evaluate by first building datums for each field, and then
2002 : * a final step forming the composite datum.
2003 : */
2004 5512 : scratch.opcode = EEOP_ROW;
2005 5512 : scratch.d.row.tupdesc = tupdesc;
2006 :
2007 : /* space for the individual field datums */
2008 5512 : scratch.d.row.elemvalues =
2009 5512 : (Datum *) palloc(sizeof(Datum) * nelems);
2010 5512 : scratch.d.row.elemnulls =
2011 5512 : (bool *) palloc(sizeof(bool) * nelems);
2012 : /* as explained above, make sure any extra columns are null */
2013 5512 : memset(scratch.d.row.elemnulls, true, sizeof(bool) * nelems);
2014 :
2015 : /* Set up evaluation, skipping any deleted columns */
2016 5512 : i = 0;
2017 20062 : foreach(l, rowexpr->args)
2018 : {
2019 14556 : Form_pg_attribute att = TupleDescAttr(tupdesc, i);
2020 14556 : Expr *e = (Expr *) lfirst(l);
2021 :
2022 14556 : if (!att->attisdropped)
2023 : {
2024 : /*
2025 : * Guard against ALTER COLUMN TYPE on rowtype since
2026 : * the RowExpr was created. XXX should we check
2027 : * typmod too? Not sure we can be sure it'll be the
2028 : * same.
2029 : */
2030 14538 : if (exprType((Node *) e) != att->atttypid)
2031 6 : ereport(ERROR,
2032 : (errcode(ERRCODE_DATATYPE_MISMATCH),
2033 : errmsg("ROW() column has type %s instead of type %s",
2034 : format_type_be(exprType((Node *) e)),
2035 : format_type_be(att->atttypid))));
2036 : }
2037 : else
2038 : {
2039 : /*
2040 : * Ignore original expression and insert a NULL. We
2041 : * don't really care what type of NULL it is, so
2042 : * always make an int4 NULL.
2043 : */
2044 18 : e = (Expr *) makeNullConst(INT4OID, -1, InvalidOid);
2045 : }
2046 :
2047 : /* Evaluate column expr into appropriate workspace slot */
2048 14550 : ExecInitExprRec(e, state,
2049 14550 : &scratch.d.row.elemvalues[i],
2050 14550 : &scratch.d.row.elemnulls[i]);
2051 14550 : i++;
2052 : }
2053 :
2054 : /* And finally build the row value */
2055 5506 : ExprEvalPushStep(state, &scratch);
2056 5506 : break;
2057 : }
2058 :
2059 228 : case T_RowCompareExpr:
2060 : {
2061 228 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2062 228 : int nopers = list_length(rcexpr->opnos);
2063 228 : List *adjust_jumps = NIL;
2064 : ListCell *l_left_expr,
2065 : *l_right_expr,
2066 : *l_opno,
2067 : *l_opfamily,
2068 : *l_inputcollid;
2069 : ListCell *lc;
2070 :
2071 : /*
2072 : * Iterate over each field, prepare comparisons. To handle
2073 : * NULL results, prepare jumps to after the expression. If a
2074 : * comparison yields a != 0 result, jump to the final step.
2075 : */
2076 : Assert(list_length(rcexpr->largs) == nopers);
2077 : Assert(list_length(rcexpr->rargs) == nopers);
2078 : Assert(list_length(rcexpr->opfamilies) == nopers);
2079 : Assert(list_length(rcexpr->inputcollids) == nopers);
2080 :
2081 738 : forfive(l_left_expr, rcexpr->largs,
2082 : l_right_expr, rcexpr->rargs,
2083 : l_opno, rcexpr->opnos,
2084 : l_opfamily, rcexpr->opfamilies,
2085 : l_inputcollid, rcexpr->inputcollids)
2086 : {
2087 510 : Expr *left_expr = (Expr *) lfirst(l_left_expr);
2088 510 : Expr *right_expr = (Expr *) lfirst(l_right_expr);
2089 510 : Oid opno = lfirst_oid(l_opno);
2090 510 : Oid opfamily = lfirst_oid(l_opfamily);
2091 510 : Oid inputcollid = lfirst_oid(l_inputcollid);
2092 : int strategy;
2093 : Oid lefttype;
2094 : Oid righttype;
2095 : Oid proc;
2096 : FmgrInfo *finfo;
2097 : FunctionCallInfo fcinfo;
2098 :
2099 510 : get_op_opfamily_properties(opno, opfamily, false,
2100 : &strategy,
2101 : &lefttype,
2102 : &righttype);
2103 510 : proc = get_opfamily_proc(opfamily,
2104 : lefttype,
2105 : righttype,
2106 : BTORDER_PROC);
2107 510 : if (!OidIsValid(proc))
2108 0 : elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
2109 : BTORDER_PROC, lefttype, righttype, opfamily);
2110 :
2111 : /* Set up the primary fmgr lookup information */
2112 510 : finfo = palloc0(sizeof(FmgrInfo));
2113 510 : fcinfo = palloc0(SizeForFunctionCallInfo(2));
2114 510 : fmgr_info(proc, finfo);
2115 510 : fmgr_info_set_expr((Node *) node, finfo);
2116 510 : InitFunctionCallInfoData(*fcinfo, finfo, 2,
2117 : inputcollid, NULL, NULL);
2118 :
2119 : /*
2120 : * If we enforced permissions checks on index support
2121 : * functions, we'd need to make a check here. But the
2122 : * index support machinery doesn't do that, and thus
2123 : * neither does this code.
2124 : */
2125 :
2126 : /* evaluate left and right args directly into fcinfo */
2127 510 : ExecInitExprRec(left_expr, state,
2128 : &fcinfo->args[0].value, &fcinfo->args[0].isnull);
2129 510 : ExecInitExprRec(right_expr, state,
2130 : &fcinfo->args[1].value, &fcinfo->args[1].isnull);
2131 :
2132 510 : scratch.opcode = EEOP_ROWCOMPARE_STEP;
2133 510 : scratch.d.rowcompare_step.finfo = finfo;
2134 510 : scratch.d.rowcompare_step.fcinfo_data = fcinfo;
2135 510 : scratch.d.rowcompare_step.fn_addr = finfo->fn_addr;
2136 : /* jump targets filled below */
2137 510 : scratch.d.rowcompare_step.jumpnull = -1;
2138 510 : scratch.d.rowcompare_step.jumpdone = -1;
2139 :
2140 510 : ExprEvalPushStep(state, &scratch);
2141 510 : adjust_jumps = lappend_int(adjust_jumps,
2142 510 : state->steps_len - 1);
2143 : }
2144 :
2145 : /*
2146 : * We could have a zero-column rowtype, in which case the rows
2147 : * necessarily compare equal.
2148 : */
2149 228 : if (nopers == 0)
2150 : {
2151 0 : scratch.opcode = EEOP_CONST;
2152 0 : scratch.d.constval.value = Int32GetDatum(0);
2153 0 : scratch.d.constval.isnull = false;
2154 0 : ExprEvalPushStep(state, &scratch);
2155 : }
2156 :
2157 : /* Finally, examine the last comparison result */
2158 228 : scratch.opcode = EEOP_ROWCOMPARE_FINAL;
2159 228 : scratch.d.rowcompare_final.cmptype = rcexpr->cmptype;
2160 228 : ExprEvalPushStep(state, &scratch);
2161 :
2162 : /* adjust jump targets */
2163 738 : foreach(lc, adjust_jumps)
2164 : {
2165 510 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
2166 :
2167 : Assert(as->opcode == EEOP_ROWCOMPARE_STEP);
2168 : Assert(as->d.rowcompare_step.jumpdone == -1);
2169 : Assert(as->d.rowcompare_step.jumpnull == -1);
2170 :
2171 : /* jump to comparison evaluation */
2172 510 : as->d.rowcompare_step.jumpdone = state->steps_len - 1;
2173 : /* jump to the following expression */
2174 510 : as->d.rowcompare_step.jumpnull = state->steps_len;
2175 : }
2176 :
2177 228 : break;
2178 : }
2179 :
2180 3730 : case T_CoalesceExpr:
2181 : {
2182 3730 : CoalesceExpr *coalesce = (CoalesceExpr *) node;
2183 3730 : List *adjust_jumps = NIL;
2184 : ListCell *lc;
2185 :
2186 : /* We assume there's at least one arg */
2187 : Assert(coalesce->args != NIL);
2188 :
2189 : /*
2190 : * Prepare evaluation of all coalesced arguments, after each
2191 : * one push a step that short-circuits if not null.
2192 : */
2193 11148 : foreach(lc, coalesce->args)
2194 : {
2195 7418 : Expr *e = (Expr *) lfirst(lc);
2196 :
2197 : /* evaluate argument, directly into result datum */
2198 7418 : ExecInitExprRec(e, state, resv, resnull);
2199 :
2200 : /* if it's not null, skip to end of COALESCE expr */
2201 7418 : scratch.opcode = EEOP_JUMP_IF_NOT_NULL;
2202 7418 : scratch.d.jump.jumpdone = -1; /* adjust later */
2203 7418 : ExprEvalPushStep(state, &scratch);
2204 :
2205 7418 : adjust_jumps = lappend_int(adjust_jumps,
2206 7418 : state->steps_len - 1);
2207 : }
2208 :
2209 : /*
2210 : * No need to add a constant NULL return - we only can get to
2211 : * the end of the expression if a NULL already is being
2212 : * returned.
2213 : */
2214 :
2215 : /* adjust jump targets */
2216 11148 : foreach(lc, adjust_jumps)
2217 : {
2218 7418 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
2219 :
2220 : Assert(as->opcode == EEOP_JUMP_IF_NOT_NULL);
2221 : Assert(as->d.jump.jumpdone == -1);
2222 7418 : as->d.jump.jumpdone = state->steps_len;
2223 : }
2224 :
2225 3730 : break;
2226 : }
2227 :
2228 2446 : case T_MinMaxExpr:
2229 : {
2230 2446 : MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
2231 2446 : int nelems = list_length(minmaxexpr->args);
2232 : TypeCacheEntry *typentry;
2233 : FmgrInfo *finfo;
2234 : FunctionCallInfo fcinfo;
2235 : ListCell *lc;
2236 : int off;
2237 :
2238 : /* Look up the btree comparison function for the datatype */
2239 2446 : typentry = lookup_type_cache(minmaxexpr->minmaxtype,
2240 : TYPECACHE_CMP_PROC);
2241 2446 : if (!OidIsValid(typentry->cmp_proc))
2242 0 : ereport(ERROR,
2243 : (errcode(ERRCODE_UNDEFINED_FUNCTION),
2244 : errmsg("could not identify a comparison function for type %s",
2245 : format_type_be(minmaxexpr->minmaxtype))));
2246 :
2247 : /*
2248 : * If we enforced permissions checks on index support
2249 : * functions, we'd need to make a check here. But the index
2250 : * support machinery doesn't do that, and thus neither does
2251 : * this code.
2252 : */
2253 :
2254 : /* Perform function lookup */
2255 2446 : finfo = palloc0(sizeof(FmgrInfo));
2256 2446 : fcinfo = palloc0(SizeForFunctionCallInfo(2));
2257 2446 : fmgr_info(typentry->cmp_proc, finfo);
2258 2446 : fmgr_info_set_expr((Node *) node, finfo);
2259 2446 : InitFunctionCallInfoData(*fcinfo, finfo, 2,
2260 : minmaxexpr->inputcollid, NULL, NULL);
2261 :
2262 2446 : scratch.opcode = EEOP_MINMAX;
2263 : /* allocate space to store arguments */
2264 2446 : scratch.d.minmax.values =
2265 2446 : (Datum *) palloc(sizeof(Datum) * nelems);
2266 2446 : scratch.d.minmax.nulls =
2267 2446 : (bool *) palloc(sizeof(bool) * nelems);
2268 2446 : scratch.d.minmax.nelems = nelems;
2269 :
2270 2446 : scratch.d.minmax.op = minmaxexpr->op;
2271 2446 : scratch.d.minmax.finfo = finfo;
2272 2446 : scratch.d.minmax.fcinfo_data = fcinfo;
2273 :
2274 : /* evaluate expressions into minmax->values/nulls */
2275 2446 : off = 0;
2276 7446 : foreach(lc, minmaxexpr->args)
2277 : {
2278 5000 : Expr *e = (Expr *) lfirst(lc);
2279 :
2280 5000 : ExecInitExprRec(e, state,
2281 5000 : &scratch.d.minmax.values[off],
2282 5000 : &scratch.d.minmax.nulls[off]);
2283 5000 : off++;
2284 : }
2285 :
2286 : /* and push the final comparison */
2287 2446 : ExprEvalPushStep(state, &scratch);
2288 2446 : break;
2289 : }
2290 :
2291 5276 : case T_SQLValueFunction:
2292 : {
2293 5276 : SQLValueFunction *svf = (SQLValueFunction *) node;
2294 :
2295 5276 : scratch.opcode = EEOP_SQLVALUEFUNCTION;
2296 5276 : scratch.d.sqlvaluefunction.svf = svf;
2297 :
2298 5276 : ExprEvalPushStep(state, &scratch);
2299 5276 : break;
2300 : }
2301 :
2302 702 : case T_XmlExpr:
2303 : {
2304 702 : XmlExpr *xexpr = (XmlExpr *) node;
2305 702 : int nnamed = list_length(xexpr->named_args);
2306 702 : int nargs = list_length(xexpr->args);
2307 : int off;
2308 : ListCell *arg;
2309 :
2310 702 : scratch.opcode = EEOP_XMLEXPR;
2311 702 : scratch.d.xmlexpr.xexpr = xexpr;
2312 :
2313 : /* allocate space for storing all the arguments */
2314 702 : if (nnamed)
2315 : {
2316 60 : scratch.d.xmlexpr.named_argvalue =
2317 60 : (Datum *) palloc(sizeof(Datum) * nnamed);
2318 60 : scratch.d.xmlexpr.named_argnull =
2319 60 : (bool *) palloc(sizeof(bool) * nnamed);
2320 : }
2321 : else
2322 : {
2323 642 : scratch.d.xmlexpr.named_argvalue = NULL;
2324 642 : scratch.d.xmlexpr.named_argnull = NULL;
2325 : }
2326 :
2327 702 : if (nargs)
2328 : {
2329 618 : scratch.d.xmlexpr.argvalue =
2330 618 : (Datum *) palloc(sizeof(Datum) * nargs);
2331 618 : scratch.d.xmlexpr.argnull =
2332 618 : (bool *) palloc(sizeof(bool) * nargs);
2333 : }
2334 : else
2335 : {
2336 84 : scratch.d.xmlexpr.argvalue = NULL;
2337 84 : scratch.d.xmlexpr.argnull = NULL;
2338 : }
2339 :
2340 : /* prepare argument execution */
2341 702 : off = 0;
2342 870 : foreach(arg, xexpr->named_args)
2343 : {
2344 168 : Expr *e = (Expr *) lfirst(arg);
2345 :
2346 168 : ExecInitExprRec(e, state,
2347 168 : &scratch.d.xmlexpr.named_argvalue[off],
2348 168 : &scratch.d.xmlexpr.named_argnull[off]);
2349 168 : off++;
2350 : }
2351 :
2352 702 : off = 0;
2353 1638 : foreach(arg, xexpr->args)
2354 : {
2355 936 : Expr *e = (Expr *) lfirst(arg);
2356 :
2357 936 : ExecInitExprRec(e, state,
2358 936 : &scratch.d.xmlexpr.argvalue[off],
2359 936 : &scratch.d.xmlexpr.argnull[off]);
2360 936 : off++;
2361 : }
2362 :
2363 : /* and evaluate the actual XML expression */
2364 702 : ExprEvalPushStep(state, &scratch);
2365 702 : break;
2366 : }
2367 :
2368 228 : case T_JsonValueExpr:
2369 : {
2370 228 : JsonValueExpr *jve = (JsonValueExpr *) node;
2371 :
2372 : Assert(jve->raw_expr != NULL);
2373 228 : ExecInitExprRec(jve->raw_expr, state, resv, resnull);
2374 : Assert(jve->formatted_expr != NULL);
2375 228 : ExecInitExprRec(jve->formatted_expr, state, resv, resnull);
2376 228 : break;
2377 : }
2378 :
2379 1348 : case T_JsonConstructorExpr:
2380 : {
2381 1348 : JsonConstructorExpr *ctor = (JsonConstructorExpr *) node;
2382 1348 : List *args = ctor->args;
2383 : ListCell *lc;
2384 1348 : int nargs = list_length(args);
2385 1348 : int argno = 0;
2386 :
2387 1348 : if (ctor->func)
2388 : {
2389 414 : ExecInitExprRec(ctor->func, state, resv, resnull);
2390 : }
2391 934 : else if ((ctor->type == JSCTOR_JSON_PARSE && !ctor->unique) ||
2392 812 : ctor->type == JSCTOR_JSON_SERIALIZE)
2393 : {
2394 : /* Use the value of the first argument as result */
2395 220 : ExecInitExprRec(linitial(args), state, resv, resnull);
2396 : }
2397 : else
2398 : {
2399 : JsonConstructorExprState *jcstate;
2400 :
2401 714 : jcstate = palloc0(sizeof(JsonConstructorExprState));
2402 :
2403 714 : scratch.opcode = EEOP_JSON_CONSTRUCTOR;
2404 714 : scratch.d.json_constructor.jcstate = jcstate;
2405 :
2406 714 : jcstate->constructor = ctor;
2407 714 : jcstate->arg_values = (Datum *) palloc(sizeof(Datum) * nargs);
2408 714 : jcstate->arg_nulls = (bool *) palloc(sizeof(bool) * nargs);
2409 714 : jcstate->arg_types = (Oid *) palloc(sizeof(Oid) * nargs);
2410 714 : jcstate->nargs = nargs;
2411 :
2412 2242 : foreach(lc, args)
2413 : {
2414 1528 : Expr *arg = (Expr *) lfirst(lc);
2415 :
2416 1528 : jcstate->arg_types[argno] = exprType((Node *) arg);
2417 :
2418 1528 : if (IsA(arg, Const))
2419 : {
2420 : /* Don't evaluate const arguments every round */
2421 1402 : Const *con = (Const *) arg;
2422 :
2423 1402 : jcstate->arg_values[argno] = con->constvalue;
2424 1402 : jcstate->arg_nulls[argno] = con->constisnull;
2425 : }
2426 : else
2427 : {
2428 126 : ExecInitExprRec(arg, state,
2429 126 : &jcstate->arg_values[argno],
2430 126 : &jcstate->arg_nulls[argno]);
2431 : }
2432 1528 : argno++;
2433 : }
2434 :
2435 : /* prepare type cache for datum_to_json[b]() */
2436 714 : if (ctor->type == JSCTOR_JSON_SCALAR)
2437 : {
2438 112 : bool is_jsonb =
2439 112 : ctor->returning->format->format_type == JS_FORMAT_JSONB;
2440 :
2441 112 : jcstate->arg_type_cache =
2442 112 : palloc(sizeof(*jcstate->arg_type_cache) * nargs);
2443 :
2444 224 : for (int i = 0; i < nargs; i++)
2445 : {
2446 : JsonTypeCategory category;
2447 : Oid outfuncid;
2448 112 : Oid typid = jcstate->arg_types[i];
2449 :
2450 112 : json_categorize_type(typid, is_jsonb,
2451 : &category, &outfuncid);
2452 :
2453 112 : jcstate->arg_type_cache[i].outfuncid = outfuncid;
2454 112 : jcstate->arg_type_cache[i].category = (int) category;
2455 : }
2456 : }
2457 :
2458 714 : ExprEvalPushStep(state, &scratch);
2459 : }
2460 :
2461 1348 : if (ctor->coercion)
2462 : {
2463 374 : Datum *innermost_caseval = state->innermost_caseval;
2464 374 : bool *innermost_isnull = state->innermost_casenull;
2465 :
2466 374 : state->innermost_caseval = resv;
2467 374 : state->innermost_casenull = resnull;
2468 :
2469 374 : ExecInitExprRec(ctor->coercion, state, resv, resnull);
2470 :
2471 374 : state->innermost_caseval = innermost_caseval;
2472 374 : state->innermost_casenull = innermost_isnull;
2473 : }
2474 : }
2475 1348 : break;
2476 :
2477 350 : case T_JsonIsPredicate:
2478 : {
2479 350 : JsonIsPredicate *pred = (JsonIsPredicate *) node;
2480 :
2481 350 : ExecInitExprRec((Expr *) pred->expr, state, resv, resnull);
2482 :
2483 350 : scratch.opcode = EEOP_IS_JSON;
2484 350 : scratch.d.is_json.pred = pred;
2485 :
2486 350 : ExprEvalPushStep(state, &scratch);
2487 350 : break;
2488 : }
2489 :
2490 2692 : case T_JsonExpr:
2491 : {
2492 2692 : JsonExpr *jsexpr = castNode(JsonExpr, node);
2493 :
2494 : /*
2495 : * No need to initialize a full JsonExprState For
2496 : * JSON_TABLE(), because the upstream caller tfuncFetchRows()
2497 : * is only interested in the value of formatted_expr.
2498 : */
2499 2692 : if (jsexpr->op == JSON_TABLE_OP)
2500 404 : ExecInitExprRec((Expr *) jsexpr->formatted_expr, state,
2501 : resv, resnull);
2502 : else
2503 2288 : ExecInitJsonExpr(jsexpr, state, resv, resnull, &scratch);
2504 2692 : break;
2505 : }
2506 :
2507 26900 : case T_NullTest:
2508 : {
2509 26900 : NullTest *ntest = (NullTest *) node;
2510 :
2511 26900 : if (ntest->nulltesttype == IS_NULL)
2512 : {
2513 7604 : if (ntest->argisrow)
2514 228 : scratch.opcode = EEOP_NULLTEST_ROWISNULL;
2515 : else
2516 7376 : scratch.opcode = EEOP_NULLTEST_ISNULL;
2517 : }
2518 19296 : else if (ntest->nulltesttype == IS_NOT_NULL)
2519 : {
2520 19296 : if (ntest->argisrow)
2521 240 : scratch.opcode = EEOP_NULLTEST_ROWISNOTNULL;
2522 : else
2523 19056 : scratch.opcode = EEOP_NULLTEST_ISNOTNULL;
2524 : }
2525 : else
2526 : {
2527 0 : elog(ERROR, "unrecognized nulltesttype: %d",
2528 : (int) ntest->nulltesttype);
2529 : }
2530 : /* initialize cache in case it's a row test */
2531 26900 : scratch.d.nulltest_row.rowcache.cacheptr = NULL;
2532 :
2533 : /* first evaluate argument into result variable */
2534 26900 : ExecInitExprRec(ntest->arg, state,
2535 : resv, resnull);
2536 :
2537 : /* then push the test of that argument */
2538 26900 : ExprEvalPushStep(state, &scratch);
2539 26900 : break;
2540 : }
2541 :
2542 1336 : case T_BooleanTest:
2543 : {
2544 1336 : BooleanTest *btest = (BooleanTest *) node;
2545 :
2546 : /*
2547 : * Evaluate argument, directly into result datum. That's ok,
2548 : * because resv/resnull is definitely not used anywhere else,
2549 : * and will get overwritten by the below EEOP_BOOLTEST_IS_*
2550 : * step.
2551 : */
2552 1336 : ExecInitExprRec(btest->arg, state, resv, resnull);
2553 :
2554 1336 : switch (btest->booltesttype)
2555 : {
2556 478 : case IS_TRUE:
2557 478 : scratch.opcode = EEOP_BOOLTEST_IS_TRUE;
2558 478 : break;
2559 398 : case IS_NOT_TRUE:
2560 398 : scratch.opcode = EEOP_BOOLTEST_IS_NOT_TRUE;
2561 398 : break;
2562 118 : case IS_FALSE:
2563 118 : scratch.opcode = EEOP_BOOLTEST_IS_FALSE;
2564 118 : break;
2565 170 : case IS_NOT_FALSE:
2566 170 : scratch.opcode = EEOP_BOOLTEST_IS_NOT_FALSE;
2567 170 : break;
2568 58 : case IS_UNKNOWN:
2569 : /* Same as scalar IS NULL test */
2570 58 : scratch.opcode = EEOP_NULLTEST_ISNULL;
2571 58 : break;
2572 114 : case IS_NOT_UNKNOWN:
2573 : /* Same as scalar IS NOT NULL test */
2574 114 : scratch.opcode = EEOP_NULLTEST_ISNOTNULL;
2575 114 : break;
2576 0 : default:
2577 0 : elog(ERROR, "unrecognized booltesttype: %d",
2578 : (int) btest->booltesttype);
2579 : }
2580 :
2581 1336 : ExprEvalPushStep(state, &scratch);
2582 1336 : break;
2583 : }
2584 :
2585 8942 : case T_CoerceToDomain:
2586 : {
2587 8942 : CoerceToDomain *ctest = (CoerceToDomain *) node;
2588 :
2589 8942 : ExecInitCoerceToDomain(&scratch, ctest, state,
2590 : resv, resnull);
2591 8942 : break;
2592 : }
2593 :
2594 12898 : case T_CoerceToDomainValue:
2595 : {
2596 : /*
2597 : * Read from location identified by innermost_domainval. Note
2598 : * that innermost_domainval could be NULL, if we're compiling
2599 : * a standalone domain check rather than one embedded in a
2600 : * larger expression. In that case we must read from
2601 : * econtext->domainValue_datum. We'll take care of that by
2602 : * generating a specialized operation.
2603 : */
2604 12898 : if (state->innermost_domainval == NULL)
2605 2760 : scratch.opcode = EEOP_DOMAIN_TESTVAL_EXT;
2606 : else
2607 : {
2608 10138 : scratch.opcode = EEOP_DOMAIN_TESTVAL;
2609 : /* we share instruction union variant with case testval */
2610 10138 : scratch.d.casetest.value = state->innermost_domainval;
2611 10138 : scratch.d.casetest.isnull = state->innermost_domainnull;
2612 : }
2613 12898 : ExprEvalPushStep(state, &scratch);
2614 12898 : break;
2615 : }
2616 :
2617 2 : case T_CurrentOfExpr:
2618 : {
2619 2 : scratch.opcode = EEOP_CURRENTOFEXPR;
2620 2 : ExprEvalPushStep(state, &scratch);
2621 2 : break;
2622 : }
2623 :
2624 504 : case T_NextValueExpr:
2625 : {
2626 504 : NextValueExpr *nve = (NextValueExpr *) node;
2627 :
2628 504 : scratch.opcode = EEOP_NEXTVALUEEXPR;
2629 504 : scratch.d.nextvalueexpr.seqid = nve->seqid;
2630 504 : scratch.d.nextvalueexpr.seqtypid = nve->typeId;
2631 :
2632 504 : ExprEvalPushStep(state, &scratch);
2633 504 : break;
2634 : }
2635 :
2636 408 : case T_ReturningExpr:
2637 : {
2638 408 : ReturningExpr *rexpr = (ReturningExpr *) node;
2639 : int retstep;
2640 :
2641 : /* Skip expression evaluation if OLD/NEW row doesn't exist */
2642 408 : scratch.opcode = EEOP_RETURNINGEXPR;
2643 408 : scratch.d.returningexpr.nullflag = rexpr->retold ?
2644 : EEO_FLAG_OLD_IS_NULL : EEO_FLAG_NEW_IS_NULL;
2645 408 : scratch.d.returningexpr.jumpdone = -1; /* set below */
2646 408 : ExprEvalPushStep(state, &scratch);
2647 408 : retstep = state->steps_len - 1;
2648 :
2649 : /* Steps to evaluate expression to return */
2650 408 : ExecInitExprRec(rexpr->retexpr, state, resv, resnull);
2651 :
2652 : /* Jump target used if OLD/NEW row doesn't exist */
2653 408 : state->steps[retstep].d.returningexpr.jumpdone = state->steps_len;
2654 :
2655 : /* Update ExprState flags */
2656 408 : if (rexpr->retold)
2657 204 : state->flags |= EEO_FLAG_HAS_OLD;
2658 : else
2659 204 : state->flags |= EEO_FLAG_HAS_NEW;
2660 :
2661 408 : break;
2662 : }
2663 :
2664 0 : default:
2665 0 : elog(ERROR, "unrecognized node type: %d",
2666 : (int) nodeTag(node));
2667 : break;
2668 : }
2669 8147856 : }
2670 :
2671 : /*
2672 : * Add another expression evaluation step to ExprState->steps.
2673 : *
2674 : * Note that this potentially re-allocates es->steps, therefore no pointer
2675 : * into that array may be used while the expression is still being built.
2676 : */
2677 : void
2678 17388820 : ExprEvalPushStep(ExprState *es, const ExprEvalStep *s)
2679 : {
2680 17388820 : if (es->steps_alloc == 0)
2681 : {
2682 2642740 : es->steps_alloc = 16;
2683 2642740 : es->steps = palloc(sizeof(ExprEvalStep) * es->steps_alloc);
2684 : }
2685 14746080 : else if (es->steps_alloc == es->steps_len)
2686 : {
2687 171680 : es->steps_alloc *= 2;
2688 171680 : es->steps = repalloc(es->steps,
2689 171680 : sizeof(ExprEvalStep) * es->steps_alloc);
2690 : }
2691 :
2692 17388820 : memcpy(&es->steps[es->steps_len++], s, sizeof(ExprEvalStep));
2693 17388820 : }
2694 :
2695 : /*
2696 : * Perform setup necessary for the evaluation of a function-like expression,
2697 : * appending argument evaluation steps to the steps list in *state, and
2698 : * setting up *scratch so it is ready to be pushed.
2699 : *
2700 : * *scratch is not pushed here, so that callers may override the opcode,
2701 : * which is useful for function-like cases like DISTINCT.
2702 : */
2703 : static void
2704 2234816 : ExecInitFunc(ExprEvalStep *scratch, Expr *node, List *args, Oid funcid,
2705 : Oid inputcollid, ExprState *state)
2706 : {
2707 2234816 : int nargs = list_length(args);
2708 : AclResult aclresult;
2709 : FmgrInfo *flinfo;
2710 : FunctionCallInfo fcinfo;
2711 : int argno;
2712 : ListCell *lc;
2713 :
2714 : /* Check permission to call function */
2715 2234816 : aclresult = object_aclcheck(ProcedureRelationId, funcid, GetUserId(), ACL_EXECUTE);
2716 2234816 : if (aclresult != ACLCHECK_OK)
2717 92 : aclcheck_error(aclresult, OBJECT_FUNCTION, get_func_name(funcid));
2718 2234724 : InvokeFunctionExecuteHook(funcid);
2719 :
2720 : /*
2721 : * Safety check on nargs. Under normal circumstances this should never
2722 : * fail, as parser should check sooner. But possibly it might fail if
2723 : * server has been compiled with FUNC_MAX_ARGS smaller than some functions
2724 : * declared in pg_proc?
2725 : */
2726 2234724 : if (nargs > FUNC_MAX_ARGS)
2727 0 : ereport(ERROR,
2728 : (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
2729 : errmsg_plural("cannot pass more than %d argument to a function",
2730 : "cannot pass more than %d arguments to a function",
2731 : FUNC_MAX_ARGS,
2732 : FUNC_MAX_ARGS)));
2733 :
2734 : /* Allocate function lookup data and parameter workspace for this call */
2735 2234724 : scratch->d.func.finfo = palloc0(sizeof(FmgrInfo));
2736 2234724 : scratch->d.func.fcinfo_data = palloc0(SizeForFunctionCallInfo(nargs));
2737 2234724 : flinfo = scratch->d.func.finfo;
2738 2234724 : fcinfo = scratch->d.func.fcinfo_data;
2739 :
2740 : /* Set up the primary fmgr lookup information */
2741 2234724 : fmgr_info(funcid, flinfo);
2742 2234724 : fmgr_info_set_expr((Node *) node, flinfo);
2743 :
2744 : /* Initialize function call parameter structure too */
2745 2234724 : InitFunctionCallInfoData(*fcinfo, flinfo,
2746 : nargs, inputcollid, NULL, NULL);
2747 :
2748 : /* Keep extra copies of this info to save an indirection at runtime */
2749 2234724 : scratch->d.func.fn_addr = flinfo->fn_addr;
2750 2234724 : scratch->d.func.nargs = nargs;
2751 :
2752 : /* We only support non-set functions here */
2753 2234724 : if (flinfo->fn_retset)
2754 0 : ereport(ERROR,
2755 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2756 : errmsg("set-valued function called in context that cannot accept a set"),
2757 : state->parent ?
2758 : executor_errposition(state->parent->state,
2759 : exprLocation((Node *) node)) : 0));
2760 :
2761 : /* Build code to evaluate arguments directly into the fcinfo struct */
2762 2234724 : argno = 0;
2763 6205192 : foreach(lc, args)
2764 : {
2765 3970468 : Expr *arg = (Expr *) lfirst(lc);
2766 :
2767 3970468 : if (IsA(arg, Const))
2768 : {
2769 : /*
2770 : * Don't evaluate const arguments every round; especially
2771 : * interesting for constants in comparisons.
2772 : */
2773 1584078 : Const *con = (Const *) arg;
2774 :
2775 1584078 : fcinfo->args[argno].value = con->constvalue;
2776 1584078 : fcinfo->args[argno].isnull = con->constisnull;
2777 : }
2778 : else
2779 : {
2780 2386390 : ExecInitExprRec(arg, state,
2781 : &fcinfo->args[argno].value,
2782 : &fcinfo->args[argno].isnull);
2783 : }
2784 3970468 : argno++;
2785 : }
2786 :
2787 : /* Insert appropriate opcode depending on strictness and stats level */
2788 2234724 : if (pgstat_track_functions <= flinfo->fn_stats)
2789 : {
2790 2234510 : if (flinfo->fn_strict && nargs > 0)
2791 : {
2792 : /* Choose nargs optimized implementation if available. */
2793 2080904 : if (nargs == 1)
2794 353274 : scratch->opcode = EEOP_FUNCEXPR_STRICT_1;
2795 1727630 : else if (nargs == 2)
2796 1682860 : scratch->opcode = EEOP_FUNCEXPR_STRICT_2;
2797 : else
2798 44770 : scratch->opcode = EEOP_FUNCEXPR_STRICT;
2799 : }
2800 : else
2801 153606 : scratch->opcode = EEOP_FUNCEXPR;
2802 : }
2803 : else
2804 : {
2805 214 : if (flinfo->fn_strict && nargs > 0)
2806 6 : scratch->opcode = EEOP_FUNCEXPR_STRICT_FUSAGE;
2807 : else
2808 208 : scratch->opcode = EEOP_FUNCEXPR_FUSAGE;
2809 : }
2810 2234724 : }
2811 :
2812 : /*
2813 : * Append the steps necessary for the evaluation of a SubPlan node to
2814 : * ExprState->steps.
2815 : *
2816 : * subplan - SubPlan expression to evaluate
2817 : * state - ExprState to whose ->steps to append the necessary operations
2818 : * resv / resnull - where to store the result of the node into
2819 : */
2820 : static void
2821 28618 : ExecInitSubPlanExpr(SubPlan *subplan,
2822 : ExprState *state,
2823 : Datum *resv, bool *resnull)
2824 : {
2825 28618 : ExprEvalStep scratch = {0};
2826 : SubPlanState *sstate;
2827 : ListCell *pvar;
2828 : ListCell *l;
2829 :
2830 28618 : if (!state->parent)
2831 0 : elog(ERROR, "SubPlan found with no parent plan");
2832 :
2833 : /*
2834 : * Generate steps to evaluate input arguments for the subplan.
2835 : *
2836 : * We evaluate the argument expressions into ExprState's resvalue/resnull,
2837 : * and then use PARAM_SET to update the parameter. We do that, instead of
2838 : * evaluating directly into the param, to avoid depending on the pointer
2839 : * value remaining stable / being included in the generated expression. No
2840 : * danger of conflicts with other uses of resvalue/resnull as storing and
2841 : * using the value always is in subsequent steps.
2842 : *
2843 : * Any calculation we have to do can be done in the parent econtext, since
2844 : * the Param values don't need to have per-query lifetime.
2845 : */
2846 : Assert(list_length(subplan->parParam) == list_length(subplan->args));
2847 72254 : forboth(l, subplan->parParam, pvar, subplan->args)
2848 : {
2849 43636 : int paramid = lfirst_int(l);
2850 43636 : Expr *arg = (Expr *) lfirst(pvar);
2851 :
2852 43636 : ExecInitExprRec(arg, state,
2853 : &state->resvalue, &state->resnull);
2854 :
2855 43636 : scratch.opcode = EEOP_PARAM_SET;
2856 43636 : scratch.d.param.paramid = paramid;
2857 : /* paramtype's not actually used, but we might as well fill it */
2858 43636 : scratch.d.param.paramtype = exprType((Node *) arg);
2859 43636 : ExprEvalPushStep(state, &scratch);
2860 : }
2861 :
2862 28618 : sstate = ExecInitSubPlan(subplan, state->parent);
2863 :
2864 : /* add SubPlanState nodes to state->parent->subPlan */
2865 28618 : state->parent->subPlan = lappend(state->parent->subPlan,
2866 : sstate);
2867 :
2868 28618 : scratch.opcode = EEOP_SUBPLAN;
2869 28618 : scratch.resvalue = resv;
2870 28618 : scratch.resnull = resnull;
2871 28618 : scratch.d.subplan.sstate = sstate;
2872 :
2873 28618 : ExprEvalPushStep(state, &scratch);
2874 28618 : }
2875 :
2876 : /*
2877 : * Add expression steps performing setup that's needed before any of the
2878 : * main execution of the expression.
2879 : */
2880 : static void
2881 2545380 : ExecCreateExprSetupSteps(ExprState *state, Node *node)
2882 : {
2883 2545380 : ExprSetupInfo info = {0, 0, 0, 0, 0, NIL};
2884 :
2885 : /* Prescan to find out what we need. */
2886 2545380 : expr_setup_walker(node, &info);
2887 :
2888 : /* And generate those steps. */
2889 2545380 : ExecPushExprSetupSteps(state, &info);
2890 2545380 : }
2891 :
2892 : /*
2893 : * Add steps performing expression setup as indicated by "info".
2894 : * This is useful when building an ExprState covering more than one expression.
2895 : */
2896 : static void
2897 2609448 : ExecPushExprSetupSteps(ExprState *state, ExprSetupInfo *info)
2898 : {
2899 2609448 : ExprEvalStep scratch = {0};
2900 : ListCell *lc;
2901 :
2902 2609448 : scratch.resvalue = NULL;
2903 2609448 : scratch.resnull = NULL;
2904 :
2905 : /*
2906 : * Add steps deforming the ExprState's inner/outer/scan/old/new slots as
2907 : * much as required by any Vars appearing in the expression.
2908 : */
2909 2609448 : if (info->last_inner > 0)
2910 : {
2911 221820 : scratch.opcode = EEOP_INNER_FETCHSOME;
2912 221820 : scratch.d.fetch.last_var = info->last_inner;
2913 221820 : scratch.d.fetch.fixed = false;
2914 221820 : scratch.d.fetch.kind = NULL;
2915 221820 : scratch.d.fetch.known_desc = NULL;
2916 221820 : if (ExecComputeSlotInfo(state, &scratch))
2917 211760 : ExprEvalPushStep(state, &scratch);
2918 : }
2919 2609448 : if (info->last_outer > 0)
2920 : {
2921 373404 : scratch.opcode = EEOP_OUTER_FETCHSOME;
2922 373404 : scratch.d.fetch.last_var = info->last_outer;
2923 373404 : scratch.d.fetch.fixed = false;
2924 373404 : scratch.d.fetch.kind = NULL;
2925 373404 : scratch.d.fetch.known_desc = NULL;
2926 373404 : if (ExecComputeSlotInfo(state, &scratch))
2927 186404 : ExprEvalPushStep(state, &scratch);
2928 : }
2929 2609448 : if (info->last_scan > 0)
2930 : {
2931 668930 : scratch.opcode = EEOP_SCAN_FETCHSOME;
2932 668930 : scratch.d.fetch.last_var = info->last_scan;
2933 668930 : scratch.d.fetch.fixed = false;
2934 668930 : scratch.d.fetch.kind = NULL;
2935 668930 : scratch.d.fetch.known_desc = NULL;
2936 668930 : if (ExecComputeSlotInfo(state, &scratch))
2937 626128 : ExprEvalPushStep(state, &scratch);
2938 : }
2939 2609448 : if (info->last_old > 0)
2940 : {
2941 346 : scratch.opcode = EEOP_OLD_FETCHSOME;
2942 346 : scratch.d.fetch.last_var = info->last_old;
2943 346 : scratch.d.fetch.fixed = false;
2944 346 : scratch.d.fetch.kind = NULL;
2945 346 : scratch.d.fetch.known_desc = NULL;
2946 346 : if (ExecComputeSlotInfo(state, &scratch))
2947 346 : ExprEvalPushStep(state, &scratch);
2948 : }
2949 2609448 : if (info->last_new > 0)
2950 : {
2951 348 : scratch.opcode = EEOP_NEW_FETCHSOME;
2952 348 : scratch.d.fetch.last_var = info->last_new;
2953 348 : scratch.d.fetch.fixed = false;
2954 348 : scratch.d.fetch.kind = NULL;
2955 348 : scratch.d.fetch.known_desc = NULL;
2956 348 : if (ExecComputeSlotInfo(state, &scratch))
2957 348 : ExprEvalPushStep(state, &scratch);
2958 : }
2959 :
2960 : /*
2961 : * Add steps to execute any MULTIEXPR SubPlans appearing in the
2962 : * expression. We need to evaluate these before any of the Params
2963 : * referencing their outputs are used, but after we've prepared for any
2964 : * Var references they may contain. (There cannot be cross-references
2965 : * between MULTIEXPR SubPlans, so we needn't worry about their order.)
2966 : */
2967 2609574 : foreach(lc, info->multiexpr_subplans)
2968 : {
2969 126 : SubPlan *subplan = (SubPlan *) lfirst(lc);
2970 :
2971 : Assert(subplan->subLinkType == MULTIEXPR_SUBLINK);
2972 :
2973 : /* The result can be ignored, but we better put it somewhere */
2974 126 : ExecInitSubPlanExpr(subplan, state,
2975 : &state->resvalue, &state->resnull);
2976 : }
2977 2609448 : }
2978 :
2979 : /*
2980 : * expr_setup_walker: expression walker for ExecCreateExprSetupSteps
2981 : */
2982 : static bool
2983 16339330 : expr_setup_walker(Node *node, ExprSetupInfo *info)
2984 : {
2985 16339330 : if (node == NULL)
2986 660932 : return false;
2987 15678398 : if (IsA(node, Var))
2988 : {
2989 4279898 : Var *variable = (Var *) node;
2990 4279898 : AttrNumber attnum = variable->varattno;
2991 :
2992 4279898 : switch (variable->varno)
2993 : {
2994 792208 : case INNER_VAR:
2995 792208 : info->last_inner = Max(info->last_inner, attnum);
2996 792208 : break;
2997 :
2998 1993388 : case OUTER_VAR:
2999 1993388 : info->last_outer = Max(info->last_outer, attnum);
3000 1993388 : break;
3001 :
3002 : /* INDEX_VAR is handled by default case */
3003 :
3004 1494302 : default:
3005 1494302 : switch (variable->varreturningtype)
3006 : {
3007 1491124 : case VAR_RETURNING_DEFAULT:
3008 1491124 : info->last_scan = Max(info->last_scan, attnum);
3009 1491124 : break;
3010 1588 : case VAR_RETURNING_OLD:
3011 1588 : info->last_old = Max(info->last_old, attnum);
3012 1588 : break;
3013 1590 : case VAR_RETURNING_NEW:
3014 1590 : info->last_new = Max(info->last_new, attnum);
3015 1590 : break;
3016 : }
3017 1494302 : break;
3018 : }
3019 4279898 : return false;
3020 : }
3021 :
3022 : /* Collect all MULTIEXPR SubPlans, too */
3023 11398500 : if (IsA(node, SubPlan))
3024 : {
3025 28618 : SubPlan *subplan = (SubPlan *) node;
3026 :
3027 28618 : if (subplan->subLinkType == MULTIEXPR_SUBLINK)
3028 126 : info->multiexpr_subplans = lappend(info->multiexpr_subplans,
3029 : subplan);
3030 : }
3031 :
3032 : /*
3033 : * Don't examine the arguments or filters of Aggrefs or WindowFuncs,
3034 : * because those do not represent expressions to be evaluated within the
3035 : * calling expression's econtext. GroupingFunc arguments are never
3036 : * evaluated at all.
3037 : */
3038 11398500 : if (IsA(node, Aggref))
3039 53634 : return false;
3040 11344866 : if (IsA(node, WindowFunc))
3041 3254 : return false;
3042 11341612 : if (IsA(node, GroupingFunc))
3043 350 : return false;
3044 11341262 : return expression_tree_walker(node, expr_setup_walker, info);
3045 : }
3046 :
3047 : /*
3048 : * Compute additional information for EEOP_*_FETCHSOME ops.
3049 : *
3050 : * The goal is to determine whether a slot is 'fixed', that is, every
3051 : * evaluation of the expression will have the same type of slot, with an
3052 : * equivalent descriptor.
3053 : *
3054 : * EEOP_OLD_FETCHSOME and EEOP_NEW_FETCHSOME are used to process RETURNING, if
3055 : * OLD/NEW columns are referred to explicitly. In both cases, the tuple
3056 : * descriptor comes from the parent scan node, so we treat them the same as
3057 : * EEOP_SCAN_FETCHSOME.
3058 : *
3059 : * Returns true if the deforming step is required, false otherwise.
3060 : */
3061 : static bool
3062 1312858 : ExecComputeSlotInfo(ExprState *state, ExprEvalStep *op)
3063 : {
3064 1312858 : PlanState *parent = state->parent;
3065 1312858 : TupleDesc desc = NULL;
3066 1312858 : const TupleTableSlotOps *tts_ops = NULL;
3067 1312858 : bool isfixed = false;
3068 1312858 : ExprEvalOp opcode = op->opcode;
3069 :
3070 : Assert(opcode == EEOP_INNER_FETCHSOME ||
3071 : opcode == EEOP_OUTER_FETCHSOME ||
3072 : opcode == EEOP_SCAN_FETCHSOME ||
3073 : opcode == EEOP_OLD_FETCHSOME ||
3074 : opcode == EEOP_NEW_FETCHSOME);
3075 :
3076 1312858 : if (op->d.fetch.known_desc != NULL)
3077 : {
3078 48010 : desc = op->d.fetch.known_desc;
3079 48010 : tts_ops = op->d.fetch.kind;
3080 48010 : isfixed = op->d.fetch.kind != NULL;
3081 : }
3082 1264848 : else if (!parent)
3083 : {
3084 15604 : isfixed = false;
3085 : }
3086 1249244 : else if (opcode == EEOP_INNER_FETCHSOME)
3087 : {
3088 221708 : PlanState *is = innerPlanState(parent);
3089 :
3090 221708 : if (parent->inneropsset && !parent->inneropsfixed)
3091 : {
3092 0 : isfixed = false;
3093 : }
3094 221708 : else if (parent->inneropsset && parent->innerops)
3095 : {
3096 0 : isfixed = true;
3097 0 : tts_ops = parent->innerops;
3098 0 : desc = ExecGetResultType(is);
3099 : }
3100 221708 : else if (is)
3101 : {
3102 219148 : tts_ops = ExecGetResultSlotOps(is, &isfixed);
3103 219148 : desc = ExecGetResultType(is);
3104 : }
3105 : }
3106 1027536 : else if (opcode == EEOP_OUTER_FETCHSOME)
3107 : {
3108 373190 : PlanState *os = outerPlanState(parent);
3109 :
3110 373190 : if (parent->outeropsset && !parent->outeropsfixed)
3111 : {
3112 1134 : isfixed = false;
3113 : }
3114 372056 : else if (parent->outeropsset && parent->outerops)
3115 : {
3116 42040 : isfixed = true;
3117 42040 : tts_ops = parent->outerops;
3118 42040 : desc = ExecGetResultType(os);
3119 : }
3120 330016 : else if (os)
3121 : {
3122 330004 : tts_ops = ExecGetResultSlotOps(os, &isfixed);
3123 330004 : desc = ExecGetResultType(os);
3124 : }
3125 : }
3126 654346 : else if (opcode == EEOP_SCAN_FETCHSOME ||
3127 348 : opcode == EEOP_OLD_FETCHSOME ||
3128 : opcode == EEOP_NEW_FETCHSOME)
3129 : {
3130 654346 : desc = parent->scandesc;
3131 :
3132 654346 : if (parent->scanops)
3133 632050 : tts_ops = parent->scanops;
3134 :
3135 654346 : if (parent->scanopsset)
3136 632050 : isfixed = parent->scanopsfixed;
3137 : }
3138 :
3139 1312858 : if (isfixed && desc != NULL && tts_ops != NULL)
3140 : {
3141 1245558 : op->d.fetch.fixed = true;
3142 1245558 : op->d.fetch.kind = tts_ops;
3143 1245558 : op->d.fetch.known_desc = desc;
3144 : }
3145 : else
3146 : {
3147 67300 : op->d.fetch.fixed = false;
3148 67300 : op->d.fetch.kind = NULL;
3149 67300 : op->d.fetch.known_desc = NULL;
3150 : }
3151 :
3152 : /* if the slot is known to always virtual we never need to deform */
3153 1312858 : if (op->d.fetch.fixed && op->d.fetch.kind == &TTSOpsVirtual)
3154 246714 : return false;
3155 :
3156 1066144 : return true;
3157 : }
3158 :
3159 : /*
3160 : * Prepare step for the evaluation of a whole-row variable.
3161 : * The caller still has to push the step.
3162 : */
3163 : static void
3164 4294 : ExecInitWholeRowVar(ExprEvalStep *scratch, Var *variable, ExprState *state)
3165 : {
3166 4294 : PlanState *parent = state->parent;
3167 :
3168 : /* fill in all but the target */
3169 4294 : scratch->opcode = EEOP_WHOLEROW;
3170 4294 : scratch->d.wholerow.var = variable;
3171 4294 : scratch->d.wholerow.first = true;
3172 4294 : scratch->d.wholerow.slow = false;
3173 4294 : scratch->d.wholerow.tupdesc = NULL; /* filled at runtime */
3174 4294 : scratch->d.wholerow.junkFilter = NULL;
3175 :
3176 : /* update ExprState flags if Var refers to OLD/NEW */
3177 4294 : if (variable->varreturningtype == VAR_RETURNING_OLD)
3178 108 : state->flags |= EEO_FLAG_HAS_OLD;
3179 4186 : else if (variable->varreturningtype == VAR_RETURNING_NEW)
3180 108 : state->flags |= EEO_FLAG_HAS_NEW;
3181 :
3182 : /*
3183 : * If the input tuple came from a subquery, it might contain "resjunk"
3184 : * columns (such as GROUP BY or ORDER BY columns), which we don't want to
3185 : * keep in the whole-row result. We can get rid of such columns by
3186 : * passing the tuple through a JunkFilter --- but to make one, we have to
3187 : * lay our hands on the subquery's targetlist. Fortunately, there are not
3188 : * very many cases where this can happen, and we can identify all of them
3189 : * by examining our parent PlanState. We assume this is not an issue in
3190 : * standalone expressions that don't have parent plans. (Whole-row Vars
3191 : * can occur in such expressions, but they will always be referencing
3192 : * table rows.)
3193 : */
3194 4294 : if (parent)
3195 : {
3196 4244 : PlanState *subplan = NULL;
3197 :
3198 4244 : switch (nodeTag(parent))
3199 : {
3200 328 : case T_SubqueryScanState:
3201 328 : subplan = ((SubqueryScanState *) parent)->subplan;
3202 328 : break;
3203 172 : case T_CteScanState:
3204 172 : subplan = ((CteScanState *) parent)->cteplanstate;
3205 172 : break;
3206 3744 : default:
3207 3744 : break;
3208 : }
3209 :
3210 4244 : if (subplan)
3211 : {
3212 500 : bool junk_filter_needed = false;
3213 : ListCell *tlist;
3214 :
3215 : /* Detect whether subplan tlist actually has any junk columns */
3216 1548 : foreach(tlist, subplan->plan->targetlist)
3217 : {
3218 1060 : TargetEntry *tle = (TargetEntry *) lfirst(tlist);
3219 :
3220 1060 : if (tle->resjunk)
3221 : {
3222 12 : junk_filter_needed = true;
3223 12 : break;
3224 : }
3225 : }
3226 :
3227 : /* If so, build the junkfilter now */
3228 500 : if (junk_filter_needed)
3229 : {
3230 12 : scratch->d.wholerow.junkFilter =
3231 12 : ExecInitJunkFilter(subplan->plan->targetlist,
3232 : ExecInitExtraTupleSlot(parent->state, NULL,
3233 : &TTSOpsVirtual));
3234 : }
3235 : }
3236 : }
3237 4294 : }
3238 :
3239 : /*
3240 : * Prepare evaluation of a SubscriptingRef expression.
3241 : */
3242 : static void
3243 146924 : ExecInitSubscriptingRef(ExprEvalStep *scratch, SubscriptingRef *sbsref,
3244 : ExprState *state, Datum *resv, bool *resnull)
3245 : {
3246 146924 : bool isAssignment = (sbsref->refassgnexpr != NULL);
3247 146924 : int nupper = list_length(sbsref->refupperindexpr);
3248 146924 : int nlower = list_length(sbsref->reflowerindexpr);
3249 : const SubscriptRoutines *sbsroutines;
3250 : SubscriptingRefState *sbsrefstate;
3251 : SubscriptExecSteps methods;
3252 : char *ptr;
3253 146924 : List *adjust_jumps = NIL;
3254 : ListCell *lc;
3255 : int i;
3256 :
3257 : /* Look up the subscripting support methods */
3258 146924 : sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype, NULL);
3259 146924 : if (!sbsroutines)
3260 0 : ereport(ERROR,
3261 : (errcode(ERRCODE_DATATYPE_MISMATCH),
3262 : errmsg("cannot subscript type %s because it does not support subscripting",
3263 : format_type_be(sbsref->refcontainertype)),
3264 : state->parent ?
3265 : executor_errposition(state->parent->state,
3266 : exprLocation((Node *) sbsref)) : 0));
3267 :
3268 : /* Allocate sbsrefstate, with enough space for per-subscript arrays too */
3269 146924 : sbsrefstate = palloc0(MAXALIGN(sizeof(SubscriptingRefState)) +
3270 146924 : (nupper + nlower) * (sizeof(Datum) +
3271 : 2 * sizeof(bool)));
3272 :
3273 : /* Fill constant fields of SubscriptingRefState */
3274 146924 : sbsrefstate->isassignment = isAssignment;
3275 146924 : sbsrefstate->numupper = nupper;
3276 146924 : sbsrefstate->numlower = nlower;
3277 : /* Set up per-subscript arrays */
3278 146924 : ptr = ((char *) sbsrefstate) + MAXALIGN(sizeof(SubscriptingRefState));
3279 146924 : sbsrefstate->upperindex = (Datum *) ptr;
3280 146924 : ptr += nupper * sizeof(Datum);
3281 146924 : sbsrefstate->lowerindex = (Datum *) ptr;
3282 146924 : ptr += nlower * sizeof(Datum);
3283 146924 : sbsrefstate->upperprovided = (bool *) ptr;
3284 146924 : ptr += nupper * sizeof(bool);
3285 146924 : sbsrefstate->lowerprovided = (bool *) ptr;
3286 146924 : ptr += nlower * sizeof(bool);
3287 146924 : sbsrefstate->upperindexnull = (bool *) ptr;
3288 146924 : ptr += nupper * sizeof(bool);
3289 146924 : sbsrefstate->lowerindexnull = (bool *) ptr;
3290 : /* ptr += nlower * sizeof(bool); */
3291 :
3292 : /*
3293 : * Let the container-type-specific code have a chance. It must fill the
3294 : * "methods" struct with function pointers for us to possibly use in
3295 : * execution steps below; and it can optionally set up some data pointed
3296 : * to by the workspace field.
3297 : */
3298 146924 : memset(&methods, 0, sizeof(methods));
3299 146924 : sbsroutines->exec_setup(sbsref, sbsrefstate, &methods);
3300 :
3301 : /*
3302 : * Evaluate array input. It's safe to do so into resv/resnull, because we
3303 : * won't use that as target for any of the other subexpressions, and it'll
3304 : * be overwritten by the final EEOP_SBSREF_FETCH/ASSIGN step, which is
3305 : * pushed last.
3306 : */
3307 146924 : ExecInitExprRec(sbsref->refexpr, state, resv, resnull);
3308 :
3309 : /*
3310 : * If refexpr yields NULL, and the operation should be strict, then result
3311 : * is NULL. We can implement this with just JUMP_IF_NULL, since we
3312 : * evaluated the array into the desired target location.
3313 : */
3314 146924 : if (!isAssignment && sbsroutines->fetch_strict)
3315 : {
3316 145604 : scratch->opcode = EEOP_JUMP_IF_NULL;
3317 145604 : scratch->d.jump.jumpdone = -1; /* adjust later */
3318 145604 : ExprEvalPushStep(state, scratch);
3319 145604 : adjust_jumps = lappend_int(adjust_jumps,
3320 145604 : state->steps_len - 1);
3321 : }
3322 :
3323 : /* Evaluate upper subscripts */
3324 146924 : i = 0;
3325 294432 : foreach(lc, sbsref->refupperindexpr)
3326 : {
3327 147508 : Expr *e = (Expr *) lfirst(lc);
3328 :
3329 : /* When slicing, individual subscript bounds can be omitted */
3330 147508 : if (!e)
3331 : {
3332 78 : sbsrefstate->upperprovided[i] = false;
3333 78 : sbsrefstate->upperindexnull[i] = true;
3334 : }
3335 : else
3336 : {
3337 147430 : sbsrefstate->upperprovided[i] = true;
3338 : /* Each subscript is evaluated into appropriate array entry */
3339 147430 : ExecInitExprRec(e, state,
3340 147430 : &sbsrefstate->upperindex[i],
3341 147430 : &sbsrefstate->upperindexnull[i]);
3342 : }
3343 147508 : i++;
3344 : }
3345 :
3346 : /* Evaluate lower subscripts similarly */
3347 146924 : i = 0;
3348 147500 : foreach(lc, sbsref->reflowerindexpr)
3349 : {
3350 576 : Expr *e = (Expr *) lfirst(lc);
3351 :
3352 : /* When slicing, individual subscript bounds can be omitted */
3353 576 : if (!e)
3354 : {
3355 78 : sbsrefstate->lowerprovided[i] = false;
3356 78 : sbsrefstate->lowerindexnull[i] = true;
3357 : }
3358 : else
3359 : {
3360 498 : sbsrefstate->lowerprovided[i] = true;
3361 : /* Each subscript is evaluated into appropriate array entry */
3362 498 : ExecInitExprRec(e, state,
3363 498 : &sbsrefstate->lowerindex[i],
3364 498 : &sbsrefstate->lowerindexnull[i]);
3365 : }
3366 576 : i++;
3367 : }
3368 :
3369 : /* SBSREF_SUBSCRIPTS checks and converts all the subscripts at once */
3370 146924 : if (methods.sbs_check_subscripts)
3371 : {
3372 146910 : scratch->opcode = EEOP_SBSREF_SUBSCRIPTS;
3373 146910 : scratch->d.sbsref_subscript.subscriptfunc = methods.sbs_check_subscripts;
3374 146910 : scratch->d.sbsref_subscript.state = sbsrefstate;
3375 146910 : scratch->d.sbsref_subscript.jumpdone = -1; /* adjust later */
3376 146910 : ExprEvalPushStep(state, scratch);
3377 146910 : adjust_jumps = lappend_int(adjust_jumps,
3378 146910 : state->steps_len - 1);
3379 : }
3380 :
3381 146924 : if (isAssignment)
3382 : {
3383 : Datum *save_innermost_caseval;
3384 : bool *save_innermost_casenull;
3385 :
3386 : /* Check for unimplemented methods */
3387 1320 : if (!methods.sbs_assign)
3388 0 : ereport(ERROR,
3389 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3390 : errmsg("type %s does not support subscripted assignment",
3391 : format_type_be(sbsref->refcontainertype))));
3392 :
3393 : /*
3394 : * We might have a nested-assignment situation, in which the
3395 : * refassgnexpr is itself a FieldStore or SubscriptingRef that needs
3396 : * to obtain and modify the previous value of the array element or
3397 : * slice being replaced. If so, we have to extract that value from
3398 : * the array and pass it down via the CaseTestExpr mechanism. It's
3399 : * safe to reuse the CASE mechanism because there cannot be a CASE
3400 : * between here and where the value would be needed, and an array
3401 : * assignment can't be within a CASE either. (So saving and restoring
3402 : * innermost_caseval is just paranoia, but let's do it anyway.)
3403 : *
3404 : * Since fetching the old element might be a nontrivial expense, do it
3405 : * only if the argument actually needs it.
3406 : */
3407 1320 : if (isAssignmentIndirectionExpr(sbsref->refassgnexpr))
3408 : {
3409 186 : if (!methods.sbs_fetch_old)
3410 0 : ereport(ERROR,
3411 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3412 : errmsg("type %s does not support subscripted assignment",
3413 : format_type_be(sbsref->refcontainertype))));
3414 186 : scratch->opcode = EEOP_SBSREF_OLD;
3415 186 : scratch->d.sbsref.subscriptfunc = methods.sbs_fetch_old;
3416 186 : scratch->d.sbsref.state = sbsrefstate;
3417 186 : ExprEvalPushStep(state, scratch);
3418 : }
3419 :
3420 : /* SBSREF_OLD puts extracted value into prevvalue/prevnull */
3421 1320 : save_innermost_caseval = state->innermost_caseval;
3422 1320 : save_innermost_casenull = state->innermost_casenull;
3423 1320 : state->innermost_caseval = &sbsrefstate->prevvalue;
3424 1320 : state->innermost_casenull = &sbsrefstate->prevnull;
3425 :
3426 : /* evaluate replacement value into replacevalue/replacenull */
3427 1320 : ExecInitExprRec(sbsref->refassgnexpr, state,
3428 : &sbsrefstate->replacevalue, &sbsrefstate->replacenull);
3429 :
3430 1320 : state->innermost_caseval = save_innermost_caseval;
3431 1320 : state->innermost_casenull = save_innermost_casenull;
3432 :
3433 : /* and perform the assignment */
3434 1320 : scratch->opcode = EEOP_SBSREF_ASSIGN;
3435 1320 : scratch->d.sbsref.subscriptfunc = methods.sbs_assign;
3436 1320 : scratch->d.sbsref.state = sbsrefstate;
3437 1320 : ExprEvalPushStep(state, scratch);
3438 : }
3439 : else
3440 : {
3441 : /* array fetch is much simpler */
3442 145604 : scratch->opcode = EEOP_SBSREF_FETCH;
3443 145604 : scratch->d.sbsref.subscriptfunc = methods.sbs_fetch;
3444 145604 : scratch->d.sbsref.state = sbsrefstate;
3445 145604 : ExprEvalPushStep(state, scratch);
3446 : }
3447 :
3448 : /* adjust jump targets */
3449 439438 : foreach(lc, adjust_jumps)
3450 : {
3451 292514 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
3452 :
3453 292514 : if (as->opcode == EEOP_SBSREF_SUBSCRIPTS)
3454 : {
3455 : Assert(as->d.sbsref_subscript.jumpdone == -1);
3456 146910 : as->d.sbsref_subscript.jumpdone = state->steps_len;
3457 : }
3458 : else
3459 : {
3460 : Assert(as->opcode == EEOP_JUMP_IF_NULL);
3461 : Assert(as->d.jump.jumpdone == -1);
3462 145604 : as->d.jump.jumpdone = state->steps_len;
3463 : }
3464 : }
3465 146924 : }
3466 :
3467 : /*
3468 : * Helper for preparing SubscriptingRef expressions for evaluation: is expr
3469 : * a nested FieldStore or SubscriptingRef that needs the old element value
3470 : * passed down?
3471 : *
3472 : * (We could use this in FieldStore too, but in that case passing the old
3473 : * value is so cheap there's no need.)
3474 : *
3475 : * Note: it might seem that this needs to recurse, but in most cases it does
3476 : * not; the CaseTestExpr, if any, will be directly the arg or refexpr of the
3477 : * top-level node. Nested-assignment situations give rise to expression
3478 : * trees in which each level of assignment has its own CaseTestExpr, and the
3479 : * recursive structure appears within the newvals or refassgnexpr field.
3480 : * There is an exception, though: if the array is an array-of-domain, we will
3481 : * have a CoerceToDomain or RelabelType as the refassgnexpr, and we need to
3482 : * be able to look through that.
3483 : */
3484 : static bool
3485 1404 : isAssignmentIndirectionExpr(Expr *expr)
3486 : {
3487 1404 : if (expr == NULL)
3488 0 : return false; /* just paranoia */
3489 1404 : if (IsA(expr, FieldStore))
3490 : {
3491 186 : FieldStore *fstore = (FieldStore *) expr;
3492 :
3493 186 : if (fstore->arg && IsA(fstore->arg, CaseTestExpr))
3494 186 : return true;
3495 : }
3496 1218 : else if (IsA(expr, SubscriptingRef))
3497 : {
3498 32 : SubscriptingRef *sbsRef = (SubscriptingRef *) expr;
3499 :
3500 32 : if (sbsRef->refexpr && IsA(sbsRef->refexpr, CaseTestExpr))
3501 0 : return true;
3502 : }
3503 1186 : else if (IsA(expr, CoerceToDomain))
3504 : {
3505 66 : CoerceToDomain *cd = (CoerceToDomain *) expr;
3506 :
3507 66 : return isAssignmentIndirectionExpr(cd->arg);
3508 : }
3509 1120 : else if (IsA(expr, RelabelType))
3510 : {
3511 18 : RelabelType *r = (RelabelType *) expr;
3512 :
3513 18 : return isAssignmentIndirectionExpr(r->arg);
3514 : }
3515 1134 : return false;
3516 : }
3517 :
3518 : /*
3519 : * Prepare evaluation of a CoerceToDomain expression.
3520 : */
3521 : static void
3522 8942 : ExecInitCoerceToDomain(ExprEvalStep *scratch, CoerceToDomain *ctest,
3523 : ExprState *state, Datum *resv, bool *resnull)
3524 : {
3525 : DomainConstraintRef *constraint_ref;
3526 8942 : Datum *domainval = NULL;
3527 8942 : bool *domainnull = NULL;
3528 : ListCell *l;
3529 :
3530 8942 : scratch->d.domaincheck.resulttype = ctest->resulttype;
3531 : /* we'll allocate workspace only if needed */
3532 8942 : scratch->d.domaincheck.checkvalue = NULL;
3533 8942 : scratch->d.domaincheck.checknull = NULL;
3534 8942 : scratch->d.domaincheck.escontext = state->escontext;
3535 :
3536 : /*
3537 : * Evaluate argument - it's fine to directly store it into resv/resnull,
3538 : * if there's constraint failures there'll be errors, otherwise it's what
3539 : * needs to be returned.
3540 : */
3541 8942 : ExecInitExprRec(ctest->arg, state, resv, resnull);
3542 :
3543 : /*
3544 : * Note: if the argument is of varlena type, it could be a R/W expanded
3545 : * object. We want to return the R/W pointer as the final result, but we
3546 : * have to pass a R/O pointer as the value to be tested by any functions
3547 : * in check expressions. We don't bother to emit a MAKE_READONLY step
3548 : * unless there's actually at least one check expression, though. Until
3549 : * we've tested that, domainval/domainnull are NULL.
3550 : */
3551 :
3552 : /*
3553 : * Collect the constraints associated with the domain.
3554 : *
3555 : * Note: before PG v10 we'd recheck the set of constraints during each
3556 : * evaluation of the expression. Now we bake them into the ExprState
3557 : * during executor initialization. That means we don't need typcache.c to
3558 : * provide compiled exprs.
3559 : */
3560 : constraint_ref = (DomainConstraintRef *)
3561 8942 : palloc(sizeof(DomainConstraintRef));
3562 8942 : InitDomainConstraintRef(ctest->resulttype,
3563 : constraint_ref,
3564 : CurrentMemoryContext,
3565 : false);
3566 :
3567 : /*
3568 : * Compile code to check each domain constraint. NOTNULL constraints can
3569 : * just be applied on the resv/resnull value, but for CHECK constraints we
3570 : * need more pushups.
3571 : */
3572 18882 : foreach(l, constraint_ref->constraints)
3573 : {
3574 9940 : DomainConstraintState *con = (DomainConstraintState *) lfirst(l);
3575 : Datum *save_innermost_domainval;
3576 : bool *save_innermost_domainnull;
3577 :
3578 9940 : scratch->d.domaincheck.constraintname = con->name;
3579 :
3580 9940 : switch (con->constrainttype)
3581 : {
3582 396 : case DOM_CONSTRAINT_NOTNULL:
3583 396 : scratch->opcode = EEOP_DOMAIN_NOTNULL;
3584 396 : ExprEvalPushStep(state, scratch);
3585 396 : break;
3586 9544 : case DOM_CONSTRAINT_CHECK:
3587 : /* Allocate workspace for CHECK output if we didn't yet */
3588 9544 : if (scratch->d.domaincheck.checkvalue == NULL)
3589 : {
3590 8684 : scratch->d.domaincheck.checkvalue =
3591 8684 : (Datum *) palloc(sizeof(Datum));
3592 8684 : scratch->d.domaincheck.checknull =
3593 8684 : (bool *) palloc(sizeof(bool));
3594 : }
3595 :
3596 : /*
3597 : * If first time through, determine where CoerceToDomainValue
3598 : * nodes should read from.
3599 : */
3600 9544 : if (domainval == NULL)
3601 : {
3602 : /*
3603 : * Since value might be read multiple times, force to R/O
3604 : * - but only if it could be an expanded datum.
3605 : */
3606 8684 : if (get_typlen(ctest->resulttype) == -1)
3607 : {
3608 2970 : ExprEvalStep scratch2 = {0};
3609 :
3610 : /* Yes, so make output workspace for MAKE_READONLY */
3611 2970 : domainval = (Datum *) palloc(sizeof(Datum));
3612 2970 : domainnull = (bool *) palloc(sizeof(bool));
3613 :
3614 : /* Emit MAKE_READONLY */
3615 2970 : scratch2.opcode = EEOP_MAKE_READONLY;
3616 2970 : scratch2.resvalue = domainval;
3617 2970 : scratch2.resnull = domainnull;
3618 2970 : scratch2.d.make_readonly.value = resv;
3619 2970 : scratch2.d.make_readonly.isnull = resnull;
3620 2970 : ExprEvalPushStep(state, &scratch2);
3621 : }
3622 : else
3623 : {
3624 : /* No, so it's fine to read from resv/resnull */
3625 5714 : domainval = resv;
3626 5714 : domainnull = resnull;
3627 : }
3628 : }
3629 :
3630 : /*
3631 : * Set up value to be returned by CoerceToDomainValue nodes.
3632 : * We must save and restore innermost_domainval/null fields,
3633 : * in case this node is itself within a check expression for
3634 : * another domain.
3635 : */
3636 9544 : save_innermost_domainval = state->innermost_domainval;
3637 9544 : save_innermost_domainnull = state->innermost_domainnull;
3638 9544 : state->innermost_domainval = domainval;
3639 9544 : state->innermost_domainnull = domainnull;
3640 :
3641 : /* evaluate check expression value */
3642 9544 : ExecInitExprRec(con->check_expr, state,
3643 : scratch->d.domaincheck.checkvalue,
3644 : scratch->d.domaincheck.checknull);
3645 :
3646 9544 : state->innermost_domainval = save_innermost_domainval;
3647 9544 : state->innermost_domainnull = save_innermost_domainnull;
3648 :
3649 : /* now test result */
3650 9544 : scratch->opcode = EEOP_DOMAIN_CHECK;
3651 9544 : ExprEvalPushStep(state, scratch);
3652 :
3653 9544 : break;
3654 0 : default:
3655 0 : elog(ERROR, "unrecognized constraint type: %d",
3656 : (int) con->constrainttype);
3657 : break;
3658 : }
3659 : }
3660 8942 : }
3661 :
3662 : /*
3663 : * Build transition/combine function invocations for all aggregate transition
3664 : * / combination function invocations in a grouping sets phase. This has to
3665 : * invoke all sort based transitions in a phase (if doSort is true), all hash
3666 : * based transitions (if doHash is true), or both (both true).
3667 : *
3668 : * The resulting expression will, for each set of transition values, first
3669 : * check for filters, evaluate aggregate input, check that that input is not
3670 : * NULL for a strict transition function, and then finally invoke the
3671 : * transition for each of the concurrently computed grouping sets.
3672 : *
3673 : * If nullcheck is true, the generated code will check for a NULL pointer to
3674 : * the array of AggStatePerGroup, and skip evaluation if so.
3675 : */
3676 : ExprState *
3677 48456 : ExecBuildAggTrans(AggState *aggstate, AggStatePerPhase phase,
3678 : bool doSort, bool doHash, bool nullcheck)
3679 : {
3680 48456 : ExprState *state = makeNode(ExprState);
3681 48456 : PlanState *parent = &aggstate->ss.ps;
3682 48456 : ExprEvalStep scratch = {0};
3683 48456 : bool isCombine = DO_AGGSPLIT_COMBINE(aggstate->aggsplit);
3684 48456 : ExprSetupInfo deform = {0, 0, 0, 0, 0, NIL};
3685 :
3686 48456 : state->expr = (Expr *) aggstate;
3687 48456 : state->parent = parent;
3688 :
3689 48456 : scratch.resvalue = &state->resvalue;
3690 48456 : scratch.resnull = &state->resnull;
3691 :
3692 : /*
3693 : * First figure out which slots, and how many columns from each, we're
3694 : * going to need.
3695 : */
3696 101924 : for (int transno = 0; transno < aggstate->numtrans; transno++)
3697 : {
3698 53468 : AggStatePerTrans pertrans = &aggstate->pertrans[transno];
3699 :
3700 53468 : expr_setup_walker((Node *) pertrans->aggref->aggdirectargs,
3701 : &deform);
3702 53468 : expr_setup_walker((Node *) pertrans->aggref->args,
3703 : &deform);
3704 53468 : expr_setup_walker((Node *) pertrans->aggref->aggorder,
3705 : &deform);
3706 53468 : expr_setup_walker((Node *) pertrans->aggref->aggdistinct,
3707 : &deform);
3708 53468 : expr_setup_walker((Node *) pertrans->aggref->aggfilter,
3709 : &deform);
3710 : }
3711 48456 : ExecPushExprSetupSteps(state, &deform);
3712 :
3713 : /*
3714 : * Emit instructions for each transition value / grouping set combination.
3715 : */
3716 101924 : for (int transno = 0; transno < aggstate->numtrans; transno++)
3717 : {
3718 53468 : AggStatePerTrans pertrans = &aggstate->pertrans[transno];
3719 53468 : FunctionCallInfo trans_fcinfo = pertrans->transfn_fcinfo;
3720 53468 : List *adjust_bailout = NIL;
3721 53468 : NullableDatum *strictargs = NULL;
3722 53468 : bool *strictnulls = NULL;
3723 : int argno;
3724 : ListCell *bail;
3725 :
3726 : /*
3727 : * If filter present, emit. Do so before evaluating the input, to
3728 : * avoid potentially unneeded computations, or even worse, unintended
3729 : * side-effects. When combining, all the necessary filtering has
3730 : * already been done.
3731 : */
3732 53468 : if (pertrans->aggref->aggfilter && !isCombine)
3733 : {
3734 : /* evaluate filter expression */
3735 734 : ExecInitExprRec(pertrans->aggref->aggfilter, state,
3736 : &state->resvalue, &state->resnull);
3737 : /* and jump out if false */
3738 734 : scratch.opcode = EEOP_JUMP_IF_NOT_TRUE;
3739 734 : scratch.d.jump.jumpdone = -1; /* adjust later */
3740 734 : ExprEvalPushStep(state, &scratch);
3741 734 : adjust_bailout = lappend_int(adjust_bailout,
3742 734 : state->steps_len - 1);
3743 : }
3744 :
3745 : /*
3746 : * Evaluate arguments to aggregate/combine function.
3747 : */
3748 53468 : argno = 0;
3749 53468 : if (isCombine)
3750 : {
3751 : /*
3752 : * Combining two aggregate transition values. Instead of directly
3753 : * coming from a tuple the input is a, potentially deserialized,
3754 : * transition value.
3755 : */
3756 : TargetEntry *source_tle;
3757 :
3758 : Assert(pertrans->numSortCols == 0);
3759 : Assert(list_length(pertrans->aggref->args) == 1);
3760 :
3761 1354 : strictargs = trans_fcinfo->args + 1;
3762 1354 : source_tle = (TargetEntry *) linitial(pertrans->aggref->args);
3763 :
3764 : /*
3765 : * deserialfn_oid will be set if we must deserialize the input
3766 : * state before calling the combine function.
3767 : */
3768 1354 : if (!OidIsValid(pertrans->deserialfn_oid))
3769 : {
3770 : /*
3771 : * Start from 1, since the 0th arg will be the transition
3772 : * value
3773 : */
3774 1234 : ExecInitExprRec(source_tle->expr, state,
3775 1234 : &trans_fcinfo->args[argno + 1].value,
3776 1234 : &trans_fcinfo->args[argno + 1].isnull);
3777 : }
3778 : else
3779 : {
3780 120 : FunctionCallInfo ds_fcinfo = pertrans->deserialfn_fcinfo;
3781 :
3782 : /* evaluate argument */
3783 120 : ExecInitExprRec(source_tle->expr, state,
3784 : &ds_fcinfo->args[0].value,
3785 : &ds_fcinfo->args[0].isnull);
3786 :
3787 : /* Dummy second argument for type-safety reasons */
3788 120 : ds_fcinfo->args[1].value = PointerGetDatum(NULL);
3789 120 : ds_fcinfo->args[1].isnull = false;
3790 :
3791 : /*
3792 : * Don't call a strict deserialization function with NULL
3793 : * input
3794 : */
3795 120 : if (pertrans->deserialfn.fn_strict)
3796 120 : scratch.opcode = EEOP_AGG_STRICT_DESERIALIZE;
3797 : else
3798 0 : scratch.opcode = EEOP_AGG_DESERIALIZE;
3799 :
3800 120 : scratch.d.agg_deserialize.fcinfo_data = ds_fcinfo;
3801 120 : scratch.d.agg_deserialize.jumpnull = -1; /* adjust later */
3802 120 : scratch.resvalue = &trans_fcinfo->args[argno + 1].value;
3803 120 : scratch.resnull = &trans_fcinfo->args[argno + 1].isnull;
3804 :
3805 120 : ExprEvalPushStep(state, &scratch);
3806 : /* don't add an adjustment unless the function is strict */
3807 120 : if (pertrans->deserialfn.fn_strict)
3808 120 : adjust_bailout = lappend_int(adjust_bailout,
3809 120 : state->steps_len - 1);
3810 :
3811 : /* restore normal settings of scratch fields */
3812 120 : scratch.resvalue = &state->resvalue;
3813 120 : scratch.resnull = &state->resnull;
3814 : }
3815 1354 : argno++;
3816 :
3817 : Assert(pertrans->numInputs == argno);
3818 : }
3819 52114 : else if (!pertrans->aggsortrequired)
3820 : {
3821 : ListCell *arg;
3822 :
3823 : /*
3824 : * Normal transition function without ORDER BY / DISTINCT or with
3825 : * ORDER BY / DISTINCT but the planner has given us pre-sorted
3826 : * input.
3827 : */
3828 51838 : strictargs = trans_fcinfo->args + 1;
3829 :
3830 94344 : foreach(arg, pertrans->aggref->args)
3831 : {
3832 43996 : TargetEntry *source_tle = (TargetEntry *) lfirst(arg);
3833 :
3834 : /*
3835 : * Don't initialize args for any ORDER BY clause that might
3836 : * exist in a presorted aggregate.
3837 : */
3838 43996 : if (argno == pertrans->numTransInputs)
3839 1490 : break;
3840 :
3841 : /*
3842 : * Start from 1, since the 0th arg will be the transition
3843 : * value
3844 : */
3845 42506 : ExecInitExprRec(source_tle->expr, state,
3846 42506 : &trans_fcinfo->args[argno + 1].value,
3847 42506 : &trans_fcinfo->args[argno + 1].isnull);
3848 42506 : argno++;
3849 : }
3850 : Assert(pertrans->numTransInputs == argno);
3851 : }
3852 276 : else if (pertrans->numInputs == 1)
3853 : {
3854 : /*
3855 : * Non-presorted DISTINCT and/or ORDER BY case, with a single
3856 : * column sorted on.
3857 : */
3858 246 : TargetEntry *source_tle =
3859 246 : (TargetEntry *) linitial(pertrans->aggref->args);
3860 :
3861 : Assert(list_length(pertrans->aggref->args) == 1);
3862 :
3863 246 : ExecInitExprRec(source_tle->expr, state,
3864 : &state->resvalue,
3865 : &state->resnull);
3866 246 : strictnulls = &state->resnull;
3867 246 : argno++;
3868 :
3869 : Assert(pertrans->numInputs == argno);
3870 : }
3871 : else
3872 : {
3873 : /*
3874 : * Non-presorted DISTINCT and/or ORDER BY case, with multiple
3875 : * columns sorted on.
3876 : */
3877 30 : Datum *values = pertrans->sortslot->tts_values;
3878 30 : bool *nulls = pertrans->sortslot->tts_isnull;
3879 : ListCell *arg;
3880 :
3881 30 : strictnulls = nulls;
3882 :
3883 114 : foreach(arg, pertrans->aggref->args)
3884 : {
3885 84 : TargetEntry *source_tle = (TargetEntry *) lfirst(arg);
3886 :
3887 84 : ExecInitExprRec(source_tle->expr, state,
3888 84 : &values[argno], &nulls[argno]);
3889 84 : argno++;
3890 : }
3891 : Assert(pertrans->numInputs == argno);
3892 : }
3893 :
3894 : /*
3895 : * For a strict transfn, nothing happens when there's a NULL input; we
3896 : * just keep the prior transValue. This is true for both plain and
3897 : * sorted/distinct aggregates.
3898 : */
3899 53468 : if (trans_fcinfo->flinfo->fn_strict && pertrans->numTransInputs > 0)
3900 : {
3901 13672 : if (strictnulls)
3902 162 : scratch.opcode = EEOP_AGG_STRICT_INPUT_CHECK_NULLS;
3903 13510 : else if (strictargs && pertrans->numTransInputs == 1)
3904 13330 : scratch.opcode = EEOP_AGG_STRICT_INPUT_CHECK_ARGS_1;
3905 : else
3906 180 : scratch.opcode = EEOP_AGG_STRICT_INPUT_CHECK_ARGS;
3907 13672 : scratch.d.agg_strict_input_check.nulls = strictnulls;
3908 13672 : scratch.d.agg_strict_input_check.args = strictargs;
3909 13672 : scratch.d.agg_strict_input_check.jumpnull = -1; /* adjust later */
3910 13672 : scratch.d.agg_strict_input_check.nargs = pertrans->numTransInputs;
3911 13672 : ExprEvalPushStep(state, &scratch);
3912 13672 : adjust_bailout = lappend_int(adjust_bailout,
3913 13672 : state->steps_len - 1);
3914 : }
3915 :
3916 : /* Handle DISTINCT aggregates which have pre-sorted input */
3917 53468 : if (pertrans->numDistinctCols > 0 && !pertrans->aggsortrequired)
3918 : {
3919 426 : if (pertrans->numDistinctCols > 1)
3920 96 : scratch.opcode = EEOP_AGG_PRESORTED_DISTINCT_MULTI;
3921 : else
3922 330 : scratch.opcode = EEOP_AGG_PRESORTED_DISTINCT_SINGLE;
3923 :
3924 426 : scratch.d.agg_presorted_distinctcheck.pertrans = pertrans;
3925 426 : scratch.d.agg_presorted_distinctcheck.jumpdistinct = -1; /* adjust later */
3926 426 : ExprEvalPushStep(state, &scratch);
3927 426 : adjust_bailout = lappend_int(adjust_bailout,
3928 426 : state->steps_len - 1);
3929 : }
3930 :
3931 : /*
3932 : * Call transition function (once for each concurrently evaluated
3933 : * grouping set). Do so for both sort and hash based computations, as
3934 : * applicable.
3935 : */
3936 53468 : if (doSort)
3937 : {
3938 47144 : int processGroupingSets = Max(phase->numsets, 1);
3939 47144 : int setoff = 0;
3940 :
3941 95410 : for (int setno = 0; setno < processGroupingSets; setno++)
3942 : {
3943 48266 : ExecBuildAggTransCall(state, aggstate, &scratch, trans_fcinfo,
3944 : pertrans, transno, setno, setoff, false,
3945 : nullcheck);
3946 48266 : setoff++;
3947 : }
3948 : }
3949 :
3950 53468 : if (doHash)
3951 : {
3952 6698 : int numHashes = aggstate->num_hashes;
3953 : int setoff;
3954 :
3955 : /* in MIXED mode, there'll be preceding transition values */
3956 6698 : if (aggstate->aggstrategy != AGG_HASHED)
3957 398 : setoff = aggstate->maxsets;
3958 : else
3959 6300 : setoff = 0;
3960 :
3961 14606 : for (int setno = 0; setno < numHashes; setno++)
3962 : {
3963 7908 : ExecBuildAggTransCall(state, aggstate, &scratch, trans_fcinfo,
3964 : pertrans, transno, setno, setoff, true,
3965 : nullcheck);
3966 7908 : setoff++;
3967 : }
3968 : }
3969 :
3970 : /* adjust early bail out jump target(s) */
3971 68420 : foreach(bail, adjust_bailout)
3972 : {
3973 14952 : ExprEvalStep *as = &state->steps[lfirst_int(bail)];
3974 :
3975 14952 : if (as->opcode == EEOP_JUMP_IF_NOT_TRUE)
3976 : {
3977 : Assert(as->d.jump.jumpdone == -1);
3978 734 : as->d.jump.jumpdone = state->steps_len;
3979 : }
3980 14218 : else if (as->opcode == EEOP_AGG_STRICT_INPUT_CHECK_ARGS ||
3981 14038 : as->opcode == EEOP_AGG_STRICT_INPUT_CHECK_ARGS_1 ||
3982 708 : as->opcode == EEOP_AGG_STRICT_INPUT_CHECK_NULLS)
3983 : {
3984 : Assert(as->d.agg_strict_input_check.jumpnull == -1);
3985 13672 : as->d.agg_strict_input_check.jumpnull = state->steps_len;
3986 : }
3987 546 : else if (as->opcode == EEOP_AGG_STRICT_DESERIALIZE)
3988 : {
3989 : Assert(as->d.agg_deserialize.jumpnull == -1);
3990 120 : as->d.agg_deserialize.jumpnull = state->steps_len;
3991 : }
3992 426 : else if (as->opcode == EEOP_AGG_PRESORTED_DISTINCT_SINGLE ||
3993 96 : as->opcode == EEOP_AGG_PRESORTED_DISTINCT_MULTI)
3994 : {
3995 : Assert(as->d.agg_presorted_distinctcheck.jumpdistinct == -1);
3996 426 : as->d.agg_presorted_distinctcheck.jumpdistinct = state->steps_len;
3997 : }
3998 : else
3999 : Assert(false);
4000 : }
4001 : }
4002 :
4003 48456 : scratch.resvalue = NULL;
4004 48456 : scratch.resnull = NULL;
4005 48456 : scratch.opcode = EEOP_DONE_NO_RETURN;
4006 48456 : ExprEvalPushStep(state, &scratch);
4007 :
4008 48456 : ExecReadyExpr(state);
4009 :
4010 48456 : return state;
4011 : }
4012 :
4013 : /*
4014 : * Build transition/combine function invocation for a single transition
4015 : * value. This is separated from ExecBuildAggTrans() because there are
4016 : * multiple callsites (hash and sort in some grouping set cases).
4017 : */
4018 : static void
4019 56174 : ExecBuildAggTransCall(ExprState *state, AggState *aggstate,
4020 : ExprEvalStep *scratch,
4021 : FunctionCallInfo fcinfo, AggStatePerTrans pertrans,
4022 : int transno, int setno, int setoff, bool ishash,
4023 : bool nullcheck)
4024 : {
4025 : ExprContext *aggcontext;
4026 56174 : int adjust_jumpnull = -1;
4027 :
4028 56174 : if (ishash)
4029 7908 : aggcontext = aggstate->hashcontext;
4030 : else
4031 48266 : aggcontext = aggstate->aggcontexts[setno];
4032 :
4033 : /* add check for NULL pointer? */
4034 56174 : if (nullcheck)
4035 : {
4036 420 : scratch->opcode = EEOP_AGG_PLAIN_PERGROUP_NULLCHECK;
4037 420 : scratch->d.agg_plain_pergroup_nullcheck.setoff = setoff;
4038 : /* adjust later */
4039 420 : scratch->d.agg_plain_pergroup_nullcheck.jumpnull = -1;
4040 420 : ExprEvalPushStep(state, scratch);
4041 420 : adjust_jumpnull = state->steps_len - 1;
4042 : }
4043 :
4044 : /*
4045 : * Determine appropriate transition implementation.
4046 : *
4047 : * For non-ordered aggregates and ORDER BY / DISTINCT aggregates with
4048 : * presorted input:
4049 : *
4050 : * If the initial value for the transition state doesn't exist in the
4051 : * pg_aggregate table then we will let the first non-NULL value returned
4052 : * from the outer procNode become the initial value. (This is useful for
4053 : * aggregates like max() and min().) The noTransValue flag signals that we
4054 : * need to do so. If true, generate a
4055 : * EEOP_AGG_INIT_STRICT_PLAIN_TRANS{,_BYVAL} step. This step also needs to
4056 : * do the work described next:
4057 : *
4058 : * If the function is strict, but does have an initial value, choose
4059 : * EEOP_AGG_STRICT_PLAIN_TRANS{,_BYVAL}, which skips the transition
4060 : * function if the transition value has become NULL (because a previous
4061 : * transition function returned NULL). This step also needs to do the work
4062 : * described next:
4063 : *
4064 : * Otherwise we call EEOP_AGG_PLAIN_TRANS{,_BYVAL}, which does not have to
4065 : * perform either of the above checks.
4066 : *
4067 : * Having steps with overlapping responsibilities is not nice, but
4068 : * aggregations are very performance sensitive, making this worthwhile.
4069 : *
4070 : * For ordered aggregates:
4071 : *
4072 : * Only need to choose between the faster path for a single ordered
4073 : * column, and the one between multiple columns. Checking strictness etc
4074 : * is done when finalizing the aggregate. See
4075 : * process_ordered_aggregate_{single, multi} and
4076 : * advance_transition_function.
4077 : */
4078 56174 : if (!pertrans->aggsortrequired)
4079 : {
4080 55850 : if (pertrans->transtypeByVal)
4081 : {
4082 52070 : if (fcinfo->flinfo->fn_strict &&
4083 26120 : pertrans->initValueIsNull)
4084 4866 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYVAL;
4085 47204 : else if (fcinfo->flinfo->fn_strict)
4086 21254 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_STRICT_BYVAL;
4087 : else
4088 25950 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_BYVAL;
4089 : }
4090 : else
4091 : {
4092 3780 : if (fcinfo->flinfo->fn_strict &&
4093 3408 : pertrans->initValueIsNull)
4094 1002 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_INIT_STRICT_BYREF;
4095 2778 : else if (fcinfo->flinfo->fn_strict)
4096 2406 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_STRICT_BYREF;
4097 : else
4098 372 : scratch->opcode = EEOP_AGG_PLAIN_TRANS_BYREF;
4099 : }
4100 : }
4101 324 : else if (pertrans->numInputs == 1)
4102 282 : scratch->opcode = EEOP_AGG_ORDERED_TRANS_DATUM;
4103 : else
4104 42 : scratch->opcode = EEOP_AGG_ORDERED_TRANS_TUPLE;
4105 :
4106 56174 : scratch->d.agg_trans.pertrans = pertrans;
4107 56174 : scratch->d.agg_trans.setno = setno;
4108 56174 : scratch->d.agg_trans.setoff = setoff;
4109 56174 : scratch->d.agg_trans.transno = transno;
4110 56174 : scratch->d.agg_trans.aggcontext = aggcontext;
4111 56174 : ExprEvalPushStep(state, scratch);
4112 :
4113 : /* fix up jumpnull */
4114 56174 : if (adjust_jumpnull != -1)
4115 : {
4116 420 : ExprEvalStep *as = &state->steps[adjust_jumpnull];
4117 :
4118 : Assert(as->opcode == EEOP_AGG_PLAIN_PERGROUP_NULLCHECK);
4119 : Assert(as->d.agg_plain_pergroup_nullcheck.jumpnull == -1);
4120 420 : as->d.agg_plain_pergroup_nullcheck.jumpnull = state->steps_len;
4121 : }
4122 56174 : }
4123 :
4124 : /*
4125 : * Build an ExprState that calls the given hash function(s) on the attnums
4126 : * given by 'keyColIdx' . When numCols > 1, the hash values returned by each
4127 : * hash function are combined to produce a single hash value.
4128 : *
4129 : * desc: tuple descriptor for the to-be-hashed columns
4130 : * ops: TupleTableSlotOps to use for the give TupleDesc
4131 : * hashfunctions: FmgrInfos for each hash function to call, one per numCols.
4132 : * These are used directly in the returned ExprState so must remain allocated.
4133 : * collations: collation to use when calling the hash function.
4134 : * numCols: array length of hashfunctions, collations and keyColIdx.
4135 : * parent: PlanState node that the resulting ExprState will be evaluated at
4136 : * init_value: Normally 0, but can be set to other values to seed the hash
4137 : * with. Non-zero is marginally slower, so best to only use if it's provably
4138 : * worthwhile.
4139 : */
4140 : ExprState *
4141 7562 : ExecBuildHash32FromAttrs(TupleDesc desc, const TupleTableSlotOps *ops,
4142 : FmgrInfo *hashfunctions, Oid *collations,
4143 : int numCols, AttrNumber *keyColIdx,
4144 : PlanState *parent, uint32 init_value)
4145 : {
4146 7562 : ExprState *state = makeNode(ExprState);
4147 7562 : ExprEvalStep scratch = {0};
4148 7562 : NullableDatum *iresult = NULL;
4149 : intptr_t opcode;
4150 7562 : AttrNumber last_attnum = 0;
4151 :
4152 : Assert(numCols >= 0);
4153 :
4154 7562 : state->parent = parent;
4155 :
4156 : /*
4157 : * Make a place to store intermediate hash values between subsequent
4158 : * hashing of individual columns. We only need this if there is more than
4159 : * one column to hash or an initial value plus one column.
4160 : */
4161 7562 : if ((int64) numCols + (init_value != 0) > 1)
4162 2844 : iresult = palloc(sizeof(NullableDatum));
4163 :
4164 : /* find the highest attnum so we deform the tuple to that point */
4165 19356 : for (int i = 0; i < numCols; i++)
4166 11794 : last_attnum = Max(last_attnum, keyColIdx[i]);
4167 :
4168 7562 : scratch.opcode = EEOP_INNER_FETCHSOME;
4169 7562 : scratch.d.fetch.last_var = last_attnum;
4170 7562 : scratch.d.fetch.fixed = false;
4171 7562 : scratch.d.fetch.kind = ops;
4172 7562 : scratch.d.fetch.known_desc = desc;
4173 7562 : if (ExecComputeSlotInfo(state, &scratch))
4174 4946 : ExprEvalPushStep(state, &scratch);
4175 :
4176 7562 : if (init_value == 0)
4177 : {
4178 : /*
4179 : * No initial value, so we can assign the result of the hash function
4180 : * for the first attribute without having to concern ourselves with
4181 : * combining the result with any initial value.
4182 : */
4183 7028 : opcode = EEOP_HASHDATUM_FIRST;
4184 : }
4185 : else
4186 : {
4187 : /*
4188 : * Set up operation to set the initial value. Normally we store this
4189 : * in the intermediate hash value location, but if there are no
4190 : * columns to hash, store it in the ExprState's result field.
4191 : */
4192 534 : scratch.opcode = EEOP_HASHDATUM_SET_INITVAL;
4193 534 : scratch.d.hashdatum_initvalue.init_value = UInt32GetDatum(init_value);
4194 534 : scratch.resvalue = numCols > 0 ? &iresult->value : &state->resvalue;
4195 534 : scratch.resnull = numCols > 0 ? &iresult->isnull : &state->resnull;
4196 :
4197 534 : ExprEvalPushStep(state, &scratch);
4198 :
4199 : /*
4200 : * When using an initial value use the NEXT32 ops as the FIRST ops
4201 : * would overwrite the stored initial value.
4202 : */
4203 534 : opcode = EEOP_HASHDATUM_NEXT32;
4204 : }
4205 :
4206 19356 : for (int i = 0; i < numCols; i++)
4207 : {
4208 : FmgrInfo *finfo;
4209 : FunctionCallInfo fcinfo;
4210 11794 : Oid inputcollid = collations[i];
4211 11794 : AttrNumber attnum = keyColIdx[i] - 1;
4212 :
4213 11794 : finfo = &hashfunctions[i];
4214 11794 : fcinfo = palloc0(SizeForFunctionCallInfo(1));
4215 :
4216 : /* Initialize function call parameter structure too */
4217 11794 : InitFunctionCallInfoData(*fcinfo, finfo, 1, inputcollid, NULL, NULL);
4218 :
4219 : /*
4220 : * Fetch inner Var for this attnum and store it in the 1st arg of the
4221 : * hash func.
4222 : */
4223 11794 : scratch.opcode = EEOP_INNER_VAR;
4224 11794 : scratch.resvalue = &fcinfo->args[0].value;
4225 11794 : scratch.resnull = &fcinfo->args[0].isnull;
4226 11794 : scratch.d.var.attnum = attnum;
4227 11794 : scratch.d.var.vartype = TupleDescAttr(desc, attnum)->atttypid;
4228 11794 : scratch.d.var.varreturningtype = VAR_RETURNING_DEFAULT;
4229 :
4230 11794 : ExprEvalPushStep(state, &scratch);
4231 :
4232 : /* Call the hash function */
4233 11794 : scratch.opcode = opcode;
4234 :
4235 11794 : if (i == numCols - 1)
4236 : {
4237 : /*
4238 : * The result for hashing the final column is stored in the
4239 : * ExprState.
4240 : */
4241 7562 : scratch.resvalue = &state->resvalue;
4242 7562 : scratch.resnull = &state->resnull;
4243 : }
4244 : else
4245 : {
4246 : Assert(iresult != NULL);
4247 :
4248 : /* intermediate values are stored in an intermediate result */
4249 4232 : scratch.resvalue = &iresult->value;
4250 4232 : scratch.resnull = &iresult->isnull;
4251 : }
4252 :
4253 : /*
4254 : * NEXT32 opcodes need to look at the intermediate result. We might
4255 : * as well just set this for all ops. FIRSTs won't look at it.
4256 : */
4257 11794 : scratch.d.hashdatum.iresult = iresult;
4258 :
4259 11794 : scratch.d.hashdatum.finfo = finfo;
4260 11794 : scratch.d.hashdatum.fcinfo_data = fcinfo;
4261 11794 : scratch.d.hashdatum.fn_addr = finfo->fn_addr;
4262 11794 : scratch.d.hashdatum.jumpdone = -1;
4263 :
4264 11794 : ExprEvalPushStep(state, &scratch);
4265 :
4266 : /* subsequent attnums must be combined with the previous */
4267 11794 : opcode = EEOP_HASHDATUM_NEXT32;
4268 : }
4269 :
4270 7562 : scratch.resvalue = NULL;
4271 7562 : scratch.resnull = NULL;
4272 7562 : scratch.opcode = EEOP_DONE_RETURN;
4273 7562 : ExprEvalPushStep(state, &scratch);
4274 :
4275 7562 : ExecReadyExpr(state);
4276 :
4277 7562 : return state;
4278 : }
4279 :
4280 : /*
4281 : * Build an ExprState that calls the given hash function(s) on the given
4282 : * 'hash_exprs'. When multiple expressions are present, the hash values
4283 : * returned by each hash function are combined to produce a single hash value.
4284 : *
4285 : * desc: tuple descriptor for the to-be-hashed expressions
4286 : * ops: TupleTableSlotOps for the TupleDesc
4287 : * hashfunc_oids: Oid for each hash function to call, one for each 'hash_expr'
4288 : * collations: collation to use when calling the hash function.
4289 : * hash_expr: list of expressions to hash the value of
4290 : * opstrict: array corresponding to the 'hashfunc_oids' to store op_strict()
4291 : * parent: PlanState node that the 'hash_exprs' will be evaluated at
4292 : * init_value: Normally 0, but can be set to other values to seed the hash
4293 : * with some other value. Using non-zero is slightly less efficient but can
4294 : * be useful.
4295 : * keep_nulls: if true, evaluation of the returned ExprState will abort early
4296 : * returning NULL if the given hash function is strict and the Datum to hash
4297 : * is null. When set to false, any NULL input Datums are skipped.
4298 : */
4299 : ExprState *
4300 63464 : ExecBuildHash32Expr(TupleDesc desc, const TupleTableSlotOps *ops,
4301 : const Oid *hashfunc_oids, const List *collations,
4302 : const List *hash_exprs, const bool *opstrict,
4303 : PlanState *parent, uint32 init_value, bool keep_nulls)
4304 : {
4305 63464 : ExprState *state = makeNode(ExprState);
4306 63464 : ExprEvalStep scratch = {0};
4307 63464 : NullableDatum *iresult = NULL;
4308 63464 : List *adjust_jumps = NIL;
4309 : ListCell *lc;
4310 : ListCell *lc2;
4311 : intptr_t strict_opcode;
4312 : intptr_t opcode;
4313 63464 : int num_exprs = list_length(hash_exprs);
4314 :
4315 : Assert(num_exprs == list_length(collations));
4316 :
4317 63464 : state->parent = parent;
4318 :
4319 : /* Insert setup steps as needed. */
4320 63464 : ExecCreateExprSetupSteps(state, (Node *) hash_exprs);
4321 :
4322 : /*
4323 : * Make a place to store intermediate hash values between subsequent
4324 : * hashing of individual expressions. We only need this if there is more
4325 : * than one expression to hash or an initial value plus one expression.
4326 : */
4327 63464 : if ((int64) num_exprs + (init_value != 0) > 1)
4328 4684 : iresult = palloc(sizeof(NullableDatum));
4329 :
4330 63464 : if (init_value == 0)
4331 : {
4332 : /*
4333 : * No initial value, so we can assign the result of the hash function
4334 : * for the first hash_expr without having to concern ourselves with
4335 : * combining the result with any initial value.
4336 : */
4337 63464 : strict_opcode = EEOP_HASHDATUM_FIRST_STRICT;
4338 63464 : opcode = EEOP_HASHDATUM_FIRST;
4339 : }
4340 : else
4341 : {
4342 : /*
4343 : * Set up operation to set the initial value. Normally we store this
4344 : * in the intermediate hash value location, but if there are no exprs
4345 : * to hash, store it in the ExprState's result field.
4346 : */
4347 0 : scratch.opcode = EEOP_HASHDATUM_SET_INITVAL;
4348 0 : scratch.d.hashdatum_initvalue.init_value = UInt32GetDatum(init_value);
4349 0 : scratch.resvalue = num_exprs > 0 ? &iresult->value : &state->resvalue;
4350 0 : scratch.resnull = num_exprs > 0 ? &iresult->isnull : &state->resnull;
4351 :
4352 0 : ExprEvalPushStep(state, &scratch);
4353 :
4354 : /*
4355 : * When using an initial value use the NEXT32/NEXT32_STRICT ops as the
4356 : * FIRST/FIRST_STRICT ops would overwrite the stored initial value.
4357 : */
4358 0 : strict_opcode = EEOP_HASHDATUM_NEXT32_STRICT;
4359 0 : opcode = EEOP_HASHDATUM_NEXT32;
4360 : }
4361 :
4362 131792 : forboth(lc, hash_exprs, lc2, collations)
4363 : {
4364 68328 : Expr *expr = (Expr *) lfirst(lc);
4365 : FmgrInfo *finfo;
4366 : FunctionCallInfo fcinfo;
4367 68328 : int i = foreach_current_index(lc);
4368 : Oid funcid;
4369 68328 : Oid inputcollid = lfirst_oid(lc2);
4370 :
4371 68328 : funcid = hashfunc_oids[i];
4372 :
4373 : /* Allocate hash function lookup data. */
4374 68328 : finfo = palloc0(sizeof(FmgrInfo));
4375 68328 : fcinfo = palloc0(SizeForFunctionCallInfo(1));
4376 :
4377 68328 : fmgr_info(funcid, finfo);
4378 :
4379 : /*
4380 : * Build the steps to evaluate the hash function's argument have it so
4381 : * the value of that is stored in the 0th argument of the hash func.
4382 : */
4383 68328 : ExecInitExprRec(expr,
4384 : state,
4385 : &fcinfo->args[0].value,
4386 : &fcinfo->args[0].isnull);
4387 :
4388 68328 : if (i == num_exprs - 1)
4389 : {
4390 : /* the result for hashing the final expr is stored in the state */
4391 63464 : scratch.resvalue = &state->resvalue;
4392 63464 : scratch.resnull = &state->resnull;
4393 : }
4394 : else
4395 : {
4396 : Assert(iresult != NULL);
4397 :
4398 : /* intermediate values are stored in an intermediate result */
4399 4864 : scratch.resvalue = &iresult->value;
4400 4864 : scratch.resnull = &iresult->isnull;
4401 : }
4402 :
4403 : /*
4404 : * NEXT32 opcodes need to look at the intermediate result. We might
4405 : * as well just set this for all ops. FIRSTs won't look at it.
4406 : */
4407 68328 : scratch.d.hashdatum.iresult = iresult;
4408 :
4409 : /* Initialize function call parameter structure too */
4410 68328 : InitFunctionCallInfoData(*fcinfo, finfo, 1, inputcollid, NULL, NULL);
4411 :
4412 68328 : scratch.d.hashdatum.finfo = finfo;
4413 68328 : scratch.d.hashdatum.fcinfo_data = fcinfo;
4414 68328 : scratch.d.hashdatum.fn_addr = finfo->fn_addr;
4415 :
4416 68328 : scratch.opcode = opstrict[i] && !keep_nulls ? strict_opcode : opcode;
4417 68328 : scratch.d.hashdatum.jumpdone = -1;
4418 :
4419 68328 : ExprEvalPushStep(state, &scratch);
4420 68328 : adjust_jumps = lappend_int(adjust_jumps, state->steps_len - 1);
4421 :
4422 : /*
4423 : * For subsequent keys we must combine the hash value with the
4424 : * previous hashes.
4425 : */
4426 68328 : strict_opcode = EEOP_HASHDATUM_NEXT32_STRICT;
4427 68328 : opcode = EEOP_HASHDATUM_NEXT32;
4428 : }
4429 :
4430 : /* adjust jump targets */
4431 131792 : foreach(lc, adjust_jumps)
4432 : {
4433 68328 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
4434 :
4435 : Assert(as->opcode == EEOP_HASHDATUM_FIRST ||
4436 : as->opcode == EEOP_HASHDATUM_FIRST_STRICT ||
4437 : as->opcode == EEOP_HASHDATUM_NEXT32 ||
4438 : as->opcode == EEOP_HASHDATUM_NEXT32_STRICT);
4439 : Assert(as->d.hashdatum.jumpdone == -1);
4440 68328 : as->d.hashdatum.jumpdone = state->steps_len;
4441 : }
4442 :
4443 63464 : scratch.resvalue = NULL;
4444 63464 : scratch.resnull = NULL;
4445 63464 : scratch.opcode = EEOP_DONE_RETURN;
4446 63464 : ExprEvalPushStep(state, &scratch);
4447 :
4448 63464 : ExecReadyExpr(state);
4449 :
4450 63464 : return state;
4451 : }
4452 :
4453 : /*
4454 : * Build equality expression that can be evaluated using ExecQual(), returning
4455 : * true if the expression context's inner/outer tuple are NOT DISTINCT. I.e
4456 : * two nulls match, a null and a not-null don't match.
4457 : *
4458 : * desc: tuple descriptor of the to-be-compared tuples
4459 : * numCols: the number of attributes to be examined
4460 : * keyColIdx: array of attribute column numbers
4461 : * eqFunctions: array of function oids of the equality functions to use
4462 : * parent: parent executor node
4463 : */
4464 : ExprState *
4465 18604 : ExecBuildGroupingEqual(TupleDesc ldesc, TupleDesc rdesc,
4466 : const TupleTableSlotOps *lops, const TupleTableSlotOps *rops,
4467 : int numCols,
4468 : const AttrNumber *keyColIdx,
4469 : const Oid *eqfunctions,
4470 : const Oid *collations,
4471 : PlanState *parent)
4472 : {
4473 18604 : ExprState *state = makeNode(ExprState);
4474 18604 : ExprEvalStep scratch = {0};
4475 18604 : int maxatt = -1;
4476 18604 : List *adjust_jumps = NIL;
4477 : ListCell *lc;
4478 :
4479 : /*
4480 : * When no columns are actually compared, the result's always true. See
4481 : * special case in ExecQual().
4482 : */
4483 18604 : if (numCols == 0)
4484 0 : return NULL;
4485 :
4486 18604 : state->expr = NULL;
4487 18604 : state->flags = EEO_FLAG_IS_QUAL;
4488 18604 : state->parent = parent;
4489 :
4490 18604 : scratch.resvalue = &state->resvalue;
4491 18604 : scratch.resnull = &state->resnull;
4492 :
4493 : /* compute max needed attribute */
4494 49670 : for (int natt = 0; natt < numCols; natt++)
4495 : {
4496 31066 : int attno = keyColIdx[natt];
4497 :
4498 31066 : if (attno > maxatt)
4499 30700 : maxatt = attno;
4500 : }
4501 : Assert(maxatt >= 0);
4502 :
4503 : /* push deform steps */
4504 18604 : scratch.opcode = EEOP_INNER_FETCHSOME;
4505 18604 : scratch.d.fetch.last_var = maxatt;
4506 18604 : scratch.d.fetch.fixed = false;
4507 18604 : scratch.d.fetch.known_desc = ldesc;
4508 18604 : scratch.d.fetch.kind = lops;
4509 18604 : if (ExecComputeSlotInfo(state, &scratch))
4510 15988 : ExprEvalPushStep(state, &scratch);
4511 :
4512 18604 : scratch.opcode = EEOP_OUTER_FETCHSOME;
4513 18604 : scratch.d.fetch.last_var = maxatt;
4514 18604 : scratch.d.fetch.fixed = false;
4515 18604 : scratch.d.fetch.known_desc = rdesc;
4516 18604 : scratch.d.fetch.kind = rops;
4517 18604 : if (ExecComputeSlotInfo(state, &scratch))
4518 18604 : ExprEvalPushStep(state, &scratch);
4519 :
4520 : /*
4521 : * Start comparing at the last field (least significant sort key). That's
4522 : * the most likely to be different if we are dealing with sorted input.
4523 : */
4524 49670 : for (int natt = numCols; --natt >= 0;)
4525 : {
4526 31066 : int attno = keyColIdx[natt];
4527 31066 : Form_pg_attribute latt = TupleDescAttr(ldesc, attno - 1);
4528 31066 : Form_pg_attribute ratt = TupleDescAttr(rdesc, attno - 1);
4529 31066 : Oid foid = eqfunctions[natt];
4530 31066 : Oid collid = collations[natt];
4531 : FmgrInfo *finfo;
4532 : FunctionCallInfo fcinfo;
4533 : AclResult aclresult;
4534 :
4535 : /* Check permission to call function */
4536 31066 : aclresult = object_aclcheck(ProcedureRelationId, foid, GetUserId(), ACL_EXECUTE);
4537 31066 : if (aclresult != ACLCHECK_OK)
4538 0 : aclcheck_error(aclresult, OBJECT_FUNCTION, get_func_name(foid));
4539 :
4540 31066 : InvokeFunctionExecuteHook(foid);
4541 :
4542 : /* Set up the primary fmgr lookup information */
4543 31066 : finfo = palloc0(sizeof(FmgrInfo));
4544 31066 : fcinfo = palloc0(SizeForFunctionCallInfo(2));
4545 31066 : fmgr_info(foid, finfo);
4546 31066 : fmgr_info_set_expr(NULL, finfo);
4547 31066 : InitFunctionCallInfoData(*fcinfo, finfo, 2,
4548 : collid, NULL, NULL);
4549 :
4550 : /* left arg */
4551 31066 : scratch.opcode = EEOP_INNER_VAR;
4552 31066 : scratch.d.var.attnum = attno - 1;
4553 31066 : scratch.d.var.vartype = latt->atttypid;
4554 31066 : scratch.d.var.varreturningtype = VAR_RETURNING_DEFAULT;
4555 31066 : scratch.resvalue = &fcinfo->args[0].value;
4556 31066 : scratch.resnull = &fcinfo->args[0].isnull;
4557 31066 : ExprEvalPushStep(state, &scratch);
4558 :
4559 : /* right arg */
4560 31066 : scratch.opcode = EEOP_OUTER_VAR;
4561 31066 : scratch.d.var.attnum = attno - 1;
4562 31066 : scratch.d.var.vartype = ratt->atttypid;
4563 31066 : scratch.d.var.varreturningtype = VAR_RETURNING_DEFAULT;
4564 31066 : scratch.resvalue = &fcinfo->args[1].value;
4565 31066 : scratch.resnull = &fcinfo->args[1].isnull;
4566 31066 : ExprEvalPushStep(state, &scratch);
4567 :
4568 : /* evaluate distinctness */
4569 31066 : scratch.opcode = EEOP_NOT_DISTINCT;
4570 31066 : scratch.d.func.finfo = finfo;
4571 31066 : scratch.d.func.fcinfo_data = fcinfo;
4572 31066 : scratch.d.func.fn_addr = finfo->fn_addr;
4573 31066 : scratch.d.func.nargs = 2;
4574 31066 : scratch.resvalue = &state->resvalue;
4575 31066 : scratch.resnull = &state->resnull;
4576 31066 : ExprEvalPushStep(state, &scratch);
4577 :
4578 : /* then emit EEOP_QUAL to detect if result is false (or null) */
4579 31066 : scratch.opcode = EEOP_QUAL;
4580 31066 : scratch.d.qualexpr.jumpdone = -1;
4581 31066 : scratch.resvalue = &state->resvalue;
4582 31066 : scratch.resnull = &state->resnull;
4583 31066 : ExprEvalPushStep(state, &scratch);
4584 31066 : adjust_jumps = lappend_int(adjust_jumps,
4585 31066 : state->steps_len - 1);
4586 : }
4587 :
4588 : /* adjust jump targets */
4589 49670 : foreach(lc, adjust_jumps)
4590 : {
4591 31066 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
4592 :
4593 : Assert(as->opcode == EEOP_QUAL);
4594 : Assert(as->d.qualexpr.jumpdone == -1);
4595 31066 : as->d.qualexpr.jumpdone = state->steps_len;
4596 : }
4597 :
4598 18604 : scratch.resvalue = NULL;
4599 18604 : scratch.resnull = NULL;
4600 18604 : scratch.opcode = EEOP_DONE_RETURN;
4601 18604 : ExprEvalPushStep(state, &scratch);
4602 :
4603 18604 : ExecReadyExpr(state);
4604 :
4605 18604 : return state;
4606 : }
4607 :
4608 : /*
4609 : * Build equality expression that can be evaluated using ExecQual(), returning
4610 : * true if the expression context's inner/outer tuples are equal. Datums in
4611 : * the inner/outer slots are assumed to be in the same order and quantity as
4612 : * the 'eqfunctions' parameter. NULLs are treated as equal.
4613 : *
4614 : * desc: tuple descriptor of the to-be-compared tuples
4615 : * lops: the slot ops for the inner tuple slots
4616 : * rops: the slot ops for the outer tuple slots
4617 : * eqFunctions: array of function oids of the equality functions to use
4618 : * this must be the same length as the 'param_exprs' list.
4619 : * collations: collation Oids to use for equality comparison. Must be the
4620 : * same length as the 'param_exprs' list.
4621 : * parent: parent executor node
4622 : */
4623 : ExprState *
4624 1620 : ExecBuildParamSetEqual(TupleDesc desc,
4625 : const TupleTableSlotOps *lops,
4626 : const TupleTableSlotOps *rops,
4627 : const Oid *eqfunctions,
4628 : const Oid *collations,
4629 : const List *param_exprs,
4630 : PlanState *parent)
4631 : {
4632 1620 : ExprState *state = makeNode(ExprState);
4633 1620 : ExprEvalStep scratch = {0};
4634 1620 : int maxatt = list_length(param_exprs);
4635 1620 : List *adjust_jumps = NIL;
4636 : ListCell *lc;
4637 :
4638 1620 : state->expr = NULL;
4639 1620 : state->flags = EEO_FLAG_IS_QUAL;
4640 1620 : state->parent = parent;
4641 :
4642 1620 : scratch.resvalue = &state->resvalue;
4643 1620 : scratch.resnull = &state->resnull;
4644 :
4645 : /* push deform steps */
4646 1620 : scratch.opcode = EEOP_INNER_FETCHSOME;
4647 1620 : scratch.d.fetch.last_var = maxatt;
4648 1620 : scratch.d.fetch.fixed = false;
4649 1620 : scratch.d.fetch.known_desc = desc;
4650 1620 : scratch.d.fetch.kind = lops;
4651 1620 : if (ExecComputeSlotInfo(state, &scratch))
4652 1620 : ExprEvalPushStep(state, &scratch);
4653 :
4654 1620 : scratch.opcode = EEOP_OUTER_FETCHSOME;
4655 1620 : scratch.d.fetch.last_var = maxatt;
4656 1620 : scratch.d.fetch.fixed = false;
4657 1620 : scratch.d.fetch.known_desc = desc;
4658 1620 : scratch.d.fetch.kind = rops;
4659 1620 : if (ExecComputeSlotInfo(state, &scratch))
4660 0 : ExprEvalPushStep(state, &scratch);
4661 :
4662 3288 : for (int attno = 0; attno < maxatt; attno++)
4663 : {
4664 1668 : Form_pg_attribute att = TupleDescAttr(desc, attno);
4665 1668 : Oid foid = eqfunctions[attno];
4666 1668 : Oid collid = collations[attno];
4667 : FmgrInfo *finfo;
4668 : FunctionCallInfo fcinfo;
4669 : AclResult aclresult;
4670 :
4671 : /* Check permission to call function */
4672 1668 : aclresult = object_aclcheck(ProcedureRelationId, foid, GetUserId(), ACL_EXECUTE);
4673 1668 : if (aclresult != ACLCHECK_OK)
4674 0 : aclcheck_error(aclresult, OBJECT_FUNCTION, get_func_name(foid));
4675 :
4676 1668 : InvokeFunctionExecuteHook(foid);
4677 :
4678 : /* Set up the primary fmgr lookup information */
4679 1668 : finfo = palloc0(sizeof(FmgrInfo));
4680 1668 : fcinfo = palloc0(SizeForFunctionCallInfo(2));
4681 1668 : fmgr_info(foid, finfo);
4682 1668 : fmgr_info_set_expr(NULL, finfo);
4683 1668 : InitFunctionCallInfoData(*fcinfo, finfo, 2,
4684 : collid, NULL, NULL);
4685 :
4686 : /* left arg */
4687 1668 : scratch.opcode = EEOP_INNER_VAR;
4688 1668 : scratch.d.var.attnum = attno;
4689 1668 : scratch.d.var.vartype = att->atttypid;
4690 1668 : scratch.d.var.varreturningtype = VAR_RETURNING_DEFAULT;
4691 1668 : scratch.resvalue = &fcinfo->args[0].value;
4692 1668 : scratch.resnull = &fcinfo->args[0].isnull;
4693 1668 : ExprEvalPushStep(state, &scratch);
4694 :
4695 : /* right arg */
4696 1668 : scratch.opcode = EEOP_OUTER_VAR;
4697 1668 : scratch.d.var.attnum = attno;
4698 1668 : scratch.d.var.vartype = att->atttypid;
4699 1668 : scratch.d.var.varreturningtype = VAR_RETURNING_DEFAULT;
4700 1668 : scratch.resvalue = &fcinfo->args[1].value;
4701 1668 : scratch.resnull = &fcinfo->args[1].isnull;
4702 1668 : ExprEvalPushStep(state, &scratch);
4703 :
4704 : /* evaluate distinctness */
4705 1668 : scratch.opcode = EEOP_NOT_DISTINCT;
4706 1668 : scratch.d.func.finfo = finfo;
4707 1668 : scratch.d.func.fcinfo_data = fcinfo;
4708 1668 : scratch.d.func.fn_addr = finfo->fn_addr;
4709 1668 : scratch.d.func.nargs = 2;
4710 1668 : scratch.resvalue = &state->resvalue;
4711 1668 : scratch.resnull = &state->resnull;
4712 1668 : ExprEvalPushStep(state, &scratch);
4713 :
4714 : /* then emit EEOP_QUAL to detect if result is false (or null) */
4715 1668 : scratch.opcode = EEOP_QUAL;
4716 1668 : scratch.d.qualexpr.jumpdone = -1;
4717 1668 : scratch.resvalue = &state->resvalue;
4718 1668 : scratch.resnull = &state->resnull;
4719 1668 : ExprEvalPushStep(state, &scratch);
4720 1668 : adjust_jumps = lappend_int(adjust_jumps,
4721 1668 : state->steps_len - 1);
4722 : }
4723 :
4724 : /* adjust jump targets */
4725 3288 : foreach(lc, adjust_jumps)
4726 : {
4727 1668 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
4728 :
4729 : Assert(as->opcode == EEOP_QUAL);
4730 : Assert(as->d.qualexpr.jumpdone == -1);
4731 1668 : as->d.qualexpr.jumpdone = state->steps_len;
4732 : }
4733 :
4734 1620 : scratch.resvalue = NULL;
4735 1620 : scratch.resnull = NULL;
4736 1620 : scratch.opcode = EEOP_DONE_RETURN;
4737 1620 : ExprEvalPushStep(state, &scratch);
4738 :
4739 1620 : ExecReadyExpr(state);
4740 :
4741 1620 : return state;
4742 : }
4743 :
4744 : /*
4745 : * Push steps to evaluate a JsonExpr and its various subsidiary expressions.
4746 : */
4747 : static void
4748 2288 : ExecInitJsonExpr(JsonExpr *jsexpr, ExprState *state,
4749 : Datum *resv, bool *resnull,
4750 : ExprEvalStep *scratch)
4751 : {
4752 2288 : JsonExprState *jsestate = palloc0(sizeof(JsonExprState));
4753 : ListCell *argexprlc;
4754 : ListCell *argnamelc;
4755 2288 : List *jumps_return_null = NIL;
4756 2288 : List *jumps_to_end = NIL;
4757 : ListCell *lc;
4758 : ErrorSaveContext *escontext;
4759 2288 : bool returning_domain =
4760 2288 : get_typtype(jsexpr->returning->typid) == TYPTYPE_DOMAIN;
4761 :
4762 : Assert(jsexpr->on_error != NULL);
4763 :
4764 2288 : jsestate->jsexpr = jsexpr;
4765 :
4766 : /*
4767 : * Evaluate formatted_expr storing the result into
4768 : * jsestate->formatted_expr.
4769 : */
4770 2288 : ExecInitExprRec((Expr *) jsexpr->formatted_expr, state,
4771 : &jsestate->formatted_expr.value,
4772 : &jsestate->formatted_expr.isnull);
4773 :
4774 : /* JUMP to return NULL if formatted_expr evaluates to NULL */
4775 2288 : jumps_return_null = lappend_int(jumps_return_null, state->steps_len);
4776 2288 : scratch->opcode = EEOP_JUMP_IF_NULL;
4777 2288 : scratch->resnull = &jsestate->formatted_expr.isnull;
4778 2288 : scratch->d.jump.jumpdone = -1; /* set below */
4779 2288 : ExprEvalPushStep(state, scratch);
4780 :
4781 : /*
4782 : * Evaluate pathspec expression storing the result into
4783 : * jsestate->pathspec.
4784 : */
4785 2288 : ExecInitExprRec((Expr *) jsexpr->path_spec, state,
4786 : &jsestate->pathspec.value,
4787 : &jsestate->pathspec.isnull);
4788 :
4789 : /* JUMP to return NULL if path_spec evaluates to NULL */
4790 2288 : jumps_return_null = lappend_int(jumps_return_null, state->steps_len);
4791 2288 : scratch->opcode = EEOP_JUMP_IF_NULL;
4792 2288 : scratch->resnull = &jsestate->pathspec.isnull;
4793 2288 : scratch->d.jump.jumpdone = -1; /* set below */
4794 2288 : ExprEvalPushStep(state, scratch);
4795 :
4796 : /* Steps to compute PASSING args. */
4797 2288 : jsestate->args = NIL;
4798 3194 : forboth(argexprlc, jsexpr->passing_values,
4799 : argnamelc, jsexpr->passing_names)
4800 : {
4801 906 : Expr *argexpr = (Expr *) lfirst(argexprlc);
4802 906 : String *argname = lfirst_node(String, argnamelc);
4803 906 : JsonPathVariable *var = palloc(sizeof(*var));
4804 :
4805 906 : var->name = argname->sval;
4806 906 : var->namelen = strlen(var->name);
4807 906 : var->typid = exprType((Node *) argexpr);
4808 906 : var->typmod = exprTypmod((Node *) argexpr);
4809 :
4810 906 : ExecInitExprRec((Expr *) argexpr, state, &var->value, &var->isnull);
4811 :
4812 906 : jsestate->args = lappend(jsestate->args, var);
4813 : }
4814 :
4815 : /* Step for jsonpath evaluation; see ExecEvalJsonExprPath(). */
4816 2288 : scratch->opcode = EEOP_JSONEXPR_PATH;
4817 2288 : scratch->resvalue = resv;
4818 2288 : scratch->resnull = resnull;
4819 2288 : scratch->d.jsonexpr.jsestate = jsestate;
4820 2288 : ExprEvalPushStep(state, scratch);
4821 :
4822 : /*
4823 : * Step to return NULL after jumping to skip the EEOP_JSONEXPR_PATH step
4824 : * when either formatted_expr or pathspec is NULL. Adjust jump target
4825 : * addresses of JUMPs that we added above.
4826 : */
4827 6864 : foreach(lc, jumps_return_null)
4828 : {
4829 4576 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
4830 :
4831 4576 : as->d.jump.jumpdone = state->steps_len;
4832 : }
4833 2288 : scratch->opcode = EEOP_CONST;
4834 2288 : scratch->resvalue = resv;
4835 2288 : scratch->resnull = resnull;
4836 2288 : scratch->d.constval.value = (Datum) 0;
4837 2288 : scratch->d.constval.isnull = true;
4838 2288 : ExprEvalPushStep(state, scratch);
4839 :
4840 4576 : escontext = jsexpr->on_error->btype != JSON_BEHAVIOR_ERROR ?
4841 2288 : &jsestate->escontext : NULL;
4842 :
4843 : /*
4844 : * To handle coercion errors softly, use the following ErrorSaveContext to
4845 : * pass to ExecInitExprRec() when initializing the coercion expressions
4846 : * and in the EEOP_JSONEXPR_COERCION step.
4847 : */
4848 2288 : jsestate->escontext.type = T_ErrorSaveContext;
4849 :
4850 : /*
4851 : * Steps to coerce the result value computed by EEOP_JSONEXPR_PATH or the
4852 : * NULL returned on NULL input as described above.
4853 : */
4854 2288 : jsestate->jump_eval_coercion = -1;
4855 2288 : if (jsexpr->use_json_coercion)
4856 : {
4857 888 : jsestate->jump_eval_coercion = state->steps_len;
4858 :
4859 888 : ExecInitJsonCoercion(state, jsexpr->returning, escontext,
4860 888 : jsexpr->omit_quotes,
4861 888 : jsexpr->op == JSON_EXISTS_OP,
4862 : resv, resnull);
4863 : }
4864 1400 : else if (jsexpr->use_io_coercion)
4865 : {
4866 : /*
4867 : * Here we only need to initialize the FunctionCallInfo for the target
4868 : * type's input function, which is called by ExecEvalJsonExprPath()
4869 : * itself, so no additional step is necessary.
4870 : */
4871 : Oid typinput;
4872 : Oid typioparam;
4873 : FmgrInfo *finfo;
4874 : FunctionCallInfo fcinfo;
4875 :
4876 626 : getTypeInputInfo(jsexpr->returning->typid, &typinput, &typioparam);
4877 626 : finfo = palloc0(sizeof(FmgrInfo));
4878 626 : fcinfo = palloc0(SizeForFunctionCallInfo(3));
4879 626 : fmgr_info(typinput, finfo);
4880 626 : fmgr_info_set_expr((Node *) jsexpr->returning, finfo);
4881 626 : InitFunctionCallInfoData(*fcinfo, finfo, 3, InvalidOid, NULL, NULL);
4882 :
4883 : /*
4884 : * We can preload the second and third arguments for the input
4885 : * function, since they're constants.
4886 : */
4887 626 : fcinfo->args[1].value = ObjectIdGetDatum(typioparam);
4888 626 : fcinfo->args[1].isnull = false;
4889 626 : fcinfo->args[2].value = Int32GetDatum(jsexpr->returning->typmod);
4890 626 : fcinfo->args[2].isnull = false;
4891 626 : fcinfo->context = (Node *) escontext;
4892 :
4893 626 : jsestate->input_fcinfo = fcinfo;
4894 : }
4895 :
4896 : /*
4897 : * Add a special step, if needed, to check if the coercion evaluation ran
4898 : * into an error but was not thrown because the ON ERROR behavior is not
4899 : * ERROR. It will set jsestate->error if an error did occur.
4900 : */
4901 2288 : if (jsestate->jump_eval_coercion >= 0 && escontext != NULL)
4902 : {
4903 666 : scratch->opcode = EEOP_JSONEXPR_COERCION_FINISH;
4904 666 : scratch->d.jsonexpr.jsestate = jsestate;
4905 666 : ExprEvalPushStep(state, scratch);
4906 : }
4907 :
4908 2288 : jsestate->jump_empty = jsestate->jump_error = -1;
4909 :
4910 : /*
4911 : * Step to check jsestate->error and return the ON ERROR expression if
4912 : * there is one. This handles both the errors that occur during jsonpath
4913 : * evaluation in EEOP_JSONEXPR_PATH and subsequent coercion evaluation.
4914 : *
4915 : * Speed up common cases by avoiding extra steps for a NULL-valued ON
4916 : * ERROR expression unless RETURNING a domain type, where constraints must
4917 : * be checked. ExecEvalJsonExprPath() already returns NULL on error,
4918 : * making additional steps unnecessary in typical scenarios. Note that the
4919 : * default ON ERROR behavior for JSON_VALUE() and JSON_QUERY() is to
4920 : * return NULL.
4921 : */
4922 2288 : if (jsexpr->on_error->btype != JSON_BEHAVIOR_ERROR &&
4923 1862 : (!(IsA(jsexpr->on_error->expr, Const) &&
4924 1814 : ((Const *) jsexpr->on_error->expr)->constisnull) ||
4925 : returning_domain))
4926 : {
4927 : ErrorSaveContext *saved_escontext;
4928 :
4929 570 : jsestate->jump_error = state->steps_len;
4930 :
4931 : /* JUMP to end if false, that is, skip the ON ERROR expression. */
4932 570 : jumps_to_end = lappend_int(jumps_to_end, state->steps_len);
4933 570 : scratch->opcode = EEOP_JUMP_IF_NOT_TRUE;
4934 570 : scratch->resvalue = &jsestate->error.value;
4935 570 : scratch->resnull = &jsestate->error.isnull;
4936 570 : scratch->d.jump.jumpdone = -1; /* set below */
4937 570 : ExprEvalPushStep(state, scratch);
4938 :
4939 : /*
4940 : * Steps to evaluate the ON ERROR expression; handle errors softly to
4941 : * rethrow them in COERCION_FINISH step that will be added later.
4942 : */
4943 570 : saved_escontext = state->escontext;
4944 570 : state->escontext = escontext;
4945 570 : ExecInitExprRec((Expr *) jsexpr->on_error->expr,
4946 : state, resv, resnull);
4947 570 : state->escontext = saved_escontext;
4948 :
4949 : /* Step to coerce the ON ERROR expression if needed */
4950 570 : if (jsexpr->on_error->coerce)
4951 150 : ExecInitJsonCoercion(state, jsexpr->returning, escontext,
4952 150 : jsexpr->omit_quotes, false,
4953 : resv, resnull);
4954 :
4955 : /*
4956 : * Add a COERCION_FINISH step to check for errors that may occur when
4957 : * coercing and rethrow them.
4958 : */
4959 570 : if (jsexpr->on_error->coerce ||
4960 420 : IsA(jsexpr->on_error->expr, CoerceViaIO) ||
4961 420 : IsA(jsexpr->on_error->expr, CoerceToDomain))
4962 : {
4963 198 : scratch->opcode = EEOP_JSONEXPR_COERCION_FINISH;
4964 198 : scratch->resvalue = resv;
4965 198 : scratch->resnull = resnull;
4966 198 : scratch->d.jsonexpr.jsestate = jsestate;
4967 198 : ExprEvalPushStep(state, scratch);
4968 : }
4969 :
4970 : /* JUMP to end to skip the ON EMPTY steps added below. */
4971 570 : jumps_to_end = lappend_int(jumps_to_end, state->steps_len);
4972 570 : scratch->opcode = EEOP_JUMP;
4973 570 : scratch->d.jump.jumpdone = -1;
4974 570 : ExprEvalPushStep(state, scratch);
4975 : }
4976 :
4977 : /*
4978 : * Step to check jsestate->empty and return the ON EMPTY expression if
4979 : * there is one.
4980 : *
4981 : * See the comment above for details on the optimization for NULL-valued
4982 : * expressions.
4983 : */
4984 2288 : if (jsexpr->on_empty != NULL &&
4985 1964 : jsexpr->on_empty->btype != JSON_BEHAVIOR_ERROR &&
4986 1898 : (!(IsA(jsexpr->on_empty->expr, Const) &&
4987 1844 : ((Const *) jsexpr->on_empty->expr)->constisnull) ||
4988 : returning_domain))
4989 : {
4990 : ErrorSaveContext *saved_escontext;
4991 :
4992 360 : jsestate->jump_empty = state->steps_len;
4993 :
4994 : /* JUMP to end if false, that is, skip the ON EMPTY expression. */
4995 360 : jumps_to_end = lappend_int(jumps_to_end, state->steps_len);
4996 360 : scratch->opcode = EEOP_JUMP_IF_NOT_TRUE;
4997 360 : scratch->resvalue = &jsestate->empty.value;
4998 360 : scratch->resnull = &jsestate->empty.isnull;
4999 360 : scratch->d.jump.jumpdone = -1; /* set below */
5000 360 : ExprEvalPushStep(state, scratch);
5001 :
5002 : /*
5003 : * Steps to evaluate the ON EMPTY expression; handle errors softly to
5004 : * rethrow them in COERCION_FINISH step that will be added later.
5005 : */
5006 360 : saved_escontext = state->escontext;
5007 360 : state->escontext = escontext;
5008 360 : ExecInitExprRec((Expr *) jsexpr->on_empty->expr,
5009 : state, resv, resnull);
5010 360 : state->escontext = saved_escontext;
5011 :
5012 : /* Step to coerce the ON EMPTY expression if needed */
5013 360 : if (jsexpr->on_empty->coerce)
5014 174 : ExecInitJsonCoercion(state, jsexpr->returning, escontext,
5015 174 : jsexpr->omit_quotes, false,
5016 : resv, resnull);
5017 :
5018 : /*
5019 : * Add a COERCION_FINISH step to check for errors that may occur when
5020 : * coercing and rethrow them.
5021 : */
5022 360 : if (jsexpr->on_empty->coerce ||
5023 186 : IsA(jsexpr->on_empty->expr, CoerceViaIO) ||
5024 186 : IsA(jsexpr->on_empty->expr, CoerceToDomain))
5025 : {
5026 :
5027 228 : scratch->opcode = EEOP_JSONEXPR_COERCION_FINISH;
5028 228 : scratch->resvalue = resv;
5029 228 : scratch->resnull = resnull;
5030 228 : scratch->d.jsonexpr.jsestate = jsestate;
5031 228 : ExprEvalPushStep(state, scratch);
5032 : }
5033 : }
5034 :
5035 3788 : foreach(lc, jumps_to_end)
5036 : {
5037 1500 : ExprEvalStep *as = &state->steps[lfirst_int(lc)];
5038 :
5039 1500 : as->d.jump.jumpdone = state->steps_len;
5040 : }
5041 :
5042 2288 : jsestate->jump_end = state->steps_len;
5043 2288 : }
5044 :
5045 : /*
5046 : * Initialize a EEOP_JSONEXPR_COERCION step to coerce the value given in resv
5047 : * to the given RETURNING type.
5048 : */
5049 : static void
5050 1212 : ExecInitJsonCoercion(ExprState *state, JsonReturning *returning,
5051 : ErrorSaveContext *escontext, bool omit_quotes,
5052 : bool exists_coerce,
5053 : Datum *resv, bool *resnull)
5054 : {
5055 1212 : ExprEvalStep scratch = {0};
5056 :
5057 : /* For json_populate_type() */
5058 1212 : scratch.opcode = EEOP_JSONEXPR_COERCION;
5059 1212 : scratch.resvalue = resv;
5060 1212 : scratch.resnull = resnull;
5061 1212 : scratch.d.jsonexpr_coercion.targettype = returning->typid;
5062 1212 : scratch.d.jsonexpr_coercion.targettypmod = returning->typmod;
5063 1212 : scratch.d.jsonexpr_coercion.json_coercion_cache = NULL;
5064 1212 : scratch.d.jsonexpr_coercion.escontext = escontext;
5065 1212 : scratch.d.jsonexpr_coercion.omit_quotes = omit_quotes;
5066 1212 : scratch.d.jsonexpr_coercion.exists_coerce = exists_coerce;
5067 1332 : scratch.d.jsonexpr_coercion.exists_cast_to_int = exists_coerce &&
5068 120 : getBaseType(returning->typid) == INT4OID;
5069 1332 : scratch.d.jsonexpr_coercion.exists_check_domain = exists_coerce &&
5070 120 : DomainHasConstraints(returning->typid);
5071 1212 : ExprEvalPushStep(state, &scratch);
5072 1212 : }
|