LCOV - code coverage report
Current view: top level - src/backend/commands - vacuum.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 655 719 91.1 %
Date: 2024-11-21 08:14:44 Functions: 21 22 95.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * vacuum.c
       4             :  *    The postgres vacuum cleaner.
       5             :  *
       6             :  * This file includes (a) control and dispatch code for VACUUM and ANALYZE
       7             :  * commands, (b) code to compute various vacuum thresholds, and (c) index
       8             :  * vacuum code.
       9             :  *
      10             :  * VACUUM for heap AM is implemented in vacuumlazy.c, parallel vacuum in
      11             :  * vacuumparallel.c, ANALYZE in analyze.c, and VACUUM FULL is a variant of
      12             :  * CLUSTER, handled in cluster.c.
      13             :  *
      14             :  *
      15             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
      16             :  * Portions Copyright (c) 1994, Regents of the University of California
      17             :  *
      18             :  *
      19             :  * IDENTIFICATION
      20             :  *    src/backend/commands/vacuum.c
      21             :  *
      22             :  *-------------------------------------------------------------------------
      23             :  */
      24             : #include "postgres.h"
      25             : 
      26             : #include <math.h>
      27             : 
      28             : #include "access/clog.h"
      29             : #include "access/commit_ts.h"
      30             : #include "access/genam.h"
      31             : #include "access/heapam.h"
      32             : #include "access/htup_details.h"
      33             : #include "access/multixact.h"
      34             : #include "access/tableam.h"
      35             : #include "access/transam.h"
      36             : #include "access/xact.h"
      37             : #include "catalog/namespace.h"
      38             : #include "catalog/pg_database.h"
      39             : #include "catalog/pg_inherits.h"
      40             : #include "commands/cluster.h"
      41             : #include "commands/defrem.h"
      42             : #include "commands/vacuum.h"
      43             : #include "miscadmin.h"
      44             : #include "nodes/makefuncs.h"
      45             : #include "pgstat.h"
      46             : #include "postmaster/autovacuum.h"
      47             : #include "postmaster/bgworker_internals.h"
      48             : #include "postmaster/interrupt.h"
      49             : #include "storage/bufmgr.h"
      50             : #include "storage/lmgr.h"
      51             : #include "storage/pmsignal.h"
      52             : #include "storage/proc.h"
      53             : #include "storage/procarray.h"
      54             : #include "utils/acl.h"
      55             : #include "utils/fmgroids.h"
      56             : #include "utils/guc.h"
      57             : #include "utils/guc_hooks.h"
      58             : #include "utils/memutils.h"
      59             : #include "utils/snapmgr.h"
      60             : #include "utils/syscache.h"
      61             : 
      62             : 
      63             : /*
      64             :  * GUC parameters
      65             :  */
      66             : int         vacuum_freeze_min_age;
      67             : int         vacuum_freeze_table_age;
      68             : int         vacuum_multixact_freeze_min_age;
      69             : int         vacuum_multixact_freeze_table_age;
      70             : int         vacuum_failsafe_age;
      71             : int         vacuum_multixact_failsafe_age;
      72             : 
      73             : /*
      74             :  * Variables for cost-based vacuum delay. The defaults differ between
      75             :  * autovacuum and vacuum. They should be set with the appropriate GUC value in
      76             :  * vacuum code. They are initialized here to the defaults for client backends
      77             :  * executing VACUUM or ANALYZE.
      78             :  */
      79             : double      vacuum_cost_delay = 0;
      80             : int         vacuum_cost_limit = 200;
      81             : 
      82             : /*
      83             :  * VacuumFailsafeActive is a defined as a global so that we can determine
      84             :  * whether or not to re-enable cost-based vacuum delay when vacuuming a table.
      85             :  * If failsafe mode has been engaged, we will not re-enable cost-based delay
      86             :  * for the table until after vacuuming has completed, regardless of other
      87             :  * settings.
      88             :  *
      89             :  * Only VACUUM code should inspect this variable and only table access methods
      90             :  * should set it to true. In Table AM-agnostic VACUUM code, this variable is
      91             :  * inspected to determine whether or not to allow cost-based delays. Table AMs
      92             :  * are free to set it if they desire this behavior, but it is false by default
      93             :  * and reset to false in between vacuuming each relation.
      94             :  */
      95             : bool        VacuumFailsafeActive = false;
      96             : 
      97             : /*
      98             :  * Variables for cost-based parallel vacuum.  See comments atop
      99             :  * compute_parallel_delay to understand how it works.
     100             :  */
     101             : pg_atomic_uint32 *VacuumSharedCostBalance = NULL;
     102             : pg_atomic_uint32 *VacuumActiveNWorkers = NULL;
     103             : int         VacuumCostBalanceLocal = 0;
     104             : 
     105             : /* non-export function prototypes */
     106             : static List *expand_vacuum_rel(VacuumRelation *vrel,
     107             :                                MemoryContext vac_context, int options);
     108             : static List *get_all_vacuum_rels(MemoryContext vac_context, int options);
     109             : static void vac_truncate_clog(TransactionId frozenXID,
     110             :                               MultiXactId minMulti,
     111             :                               TransactionId lastSaneFrozenXid,
     112             :                               MultiXactId lastSaneMinMulti);
     113             : static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
     114             :                        BufferAccessStrategy bstrategy);
     115             : static double compute_parallel_delay(void);
     116             : static VacOptValue get_vacoptval_from_boolean(DefElem *def);
     117             : static bool vac_tid_reaped(ItemPointer itemptr, void *state);
     118             : 
     119             : /*
     120             :  * GUC check function to ensure GUC value specified is within the allowable
     121             :  * range.
     122             :  */
     123             : bool
     124        1966 : check_vacuum_buffer_usage_limit(int *newval, void **extra,
     125             :                                 GucSource source)
     126             : {
     127             :     /* Value upper and lower hard limits are inclusive */
     128        1966 :     if (*newval == 0 || (*newval >= MIN_BAS_VAC_RING_SIZE_KB &&
     129        1966 :                          *newval <= MAX_BAS_VAC_RING_SIZE_KB))
     130        1966 :         return true;
     131             : 
     132             :     /* Value does not fall within any allowable range */
     133           0 :     GUC_check_errdetail("\"vacuum_buffer_usage_limit\" must be 0 or between %d kB and %d kB",
     134             :                         MIN_BAS_VAC_RING_SIZE_KB, MAX_BAS_VAC_RING_SIZE_KB);
     135             : 
     136           0 :     return false;
     137             : }
     138             : 
     139             : /*
     140             :  * Primary entry point for manual VACUUM and ANALYZE commands
     141             :  *
     142             :  * This is mainly a preparation wrapper for the real operations that will
     143             :  * happen in vacuum().
     144             :  */
     145             : void
     146       10674 : ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
     147             : {
     148             :     VacuumParams params;
     149       10674 :     BufferAccessStrategy bstrategy = NULL;
     150       10674 :     bool        verbose = false;
     151       10674 :     bool        skip_locked = false;
     152       10674 :     bool        analyze = false;
     153       10674 :     bool        freeze = false;
     154       10674 :     bool        full = false;
     155       10674 :     bool        disable_page_skipping = false;
     156       10674 :     bool        process_main = true;
     157       10674 :     bool        process_toast = true;
     158             :     int         ring_size;
     159       10674 :     bool        skip_database_stats = false;
     160       10674 :     bool        only_database_stats = false;
     161             :     MemoryContext vac_context;
     162             :     ListCell   *lc;
     163             : 
     164             :     /* index_cleanup and truncate values unspecified for now */
     165       10674 :     params.index_cleanup = VACOPTVALUE_UNSPECIFIED;
     166       10674 :     params.truncate = VACOPTVALUE_UNSPECIFIED;
     167             : 
     168             :     /* By default parallel vacuum is enabled */
     169       10674 :     params.nworkers = 0;
     170             : 
     171             :     /* Will be set later if we recurse to a TOAST table. */
     172       10674 :     params.toast_parent = InvalidOid;
     173             : 
     174             :     /*
     175             :      * Set this to an invalid value so it is clear whether or not a
     176             :      * BUFFER_USAGE_LIMIT was specified when making the access strategy.
     177             :      */
     178       10674 :     ring_size = -1;
     179             : 
     180             :     /* Parse options list */
     181       19646 :     foreach(lc, vacstmt->options)
     182             :     {
     183        9008 :         DefElem    *opt = (DefElem *) lfirst(lc);
     184             : 
     185             :         /* Parse common options for VACUUM and ANALYZE */
     186        9008 :         if (strcmp(opt->defname, "verbose") == 0)
     187          38 :             verbose = defGetBoolean(opt);
     188        8970 :         else if (strcmp(opt->defname, "skip_locked") == 0)
     189         334 :             skip_locked = defGetBoolean(opt);
     190        8636 :         else if (strcmp(opt->defname, "buffer_usage_limit") == 0)
     191             :         {
     192             :             const char *hintmsg;
     193             :             int         result;
     194             :             char       *vac_buffer_size;
     195             : 
     196          54 :             vac_buffer_size = defGetString(opt);
     197             : 
     198             :             /*
     199             :              * Check that the specified value is valid and the size falls
     200             :              * within the hard upper and lower limits if it is not 0.
     201             :              */
     202          54 :             if (!parse_int(vac_buffer_size, &result, GUC_UNIT_KB, &hintmsg) ||
     203          48 :                 (result != 0 &&
     204          36 :                  (result < MIN_BAS_VAC_RING_SIZE_KB || result > MAX_BAS_VAC_RING_SIZE_KB)))
     205             :             {
     206          18 :                 ereport(ERROR,
     207             :                         (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     208             :                          errmsg("BUFFER_USAGE_LIMIT option must be 0 or between %d kB and %d kB",
     209             :                                 MIN_BAS_VAC_RING_SIZE_KB, MAX_BAS_VAC_RING_SIZE_KB),
     210             :                          hintmsg ? errhint("%s", _(hintmsg)) : 0));
     211             :             }
     212             : 
     213          36 :             ring_size = result;
     214             :         }
     215        8582 :         else if (!vacstmt->is_vacuumcmd)
     216           6 :             ereport(ERROR,
     217             :                     (errcode(ERRCODE_SYNTAX_ERROR),
     218             :                      errmsg("unrecognized ANALYZE option \"%s\"", opt->defname),
     219             :                      parser_errposition(pstate, opt->location)));
     220             : 
     221             :         /* Parse options available on VACUUM */
     222        8576 :         else if (strcmp(opt->defname, "analyze") == 0)
     223        1370 :             analyze = defGetBoolean(opt);
     224        7206 :         else if (strcmp(opt->defname, "freeze") == 0)
     225        1162 :             freeze = defGetBoolean(opt);
     226        6044 :         else if (strcmp(opt->defname, "full") == 0)
     227         370 :             full = defGetBoolean(opt);
     228        5674 :         else if (strcmp(opt->defname, "disable_page_skipping") == 0)
     229         184 :             disable_page_skipping = defGetBoolean(opt);
     230        5490 :         else if (strcmp(opt->defname, "index_cleanup") == 0)
     231             :         {
     232             :             /* Interpret no string as the default, which is 'auto' */
     233         174 :             if (!opt->arg)
     234           0 :                 params.index_cleanup = VACOPTVALUE_AUTO;
     235             :             else
     236             :             {
     237         174 :                 char       *sval = defGetString(opt);
     238             : 
     239             :                 /* Try matching on 'auto' string, or fall back on boolean */
     240         174 :                 if (pg_strcasecmp(sval, "auto") == 0)
     241           6 :                     params.index_cleanup = VACOPTVALUE_AUTO;
     242             :                 else
     243         168 :                     params.index_cleanup = get_vacoptval_from_boolean(opt);
     244             :             }
     245             :         }
     246        5316 :         else if (strcmp(opt->defname, "process_main") == 0)
     247         154 :             process_main = defGetBoolean(opt);
     248        5162 :         else if (strcmp(opt->defname, "process_toast") == 0)
     249         160 :             process_toast = defGetBoolean(opt);
     250        5002 :         else if (strcmp(opt->defname, "truncate") == 0)
     251         148 :             params.truncate = get_vacoptval_from_boolean(opt);
     252        4854 :         else if (strcmp(opt->defname, "parallel") == 0)
     253             :         {
     254         338 :             if (opt->arg == NULL)
     255             :             {
     256           6 :                 ereport(ERROR,
     257             :                         (errcode(ERRCODE_SYNTAX_ERROR),
     258             :                          errmsg("parallel option requires a value between 0 and %d",
     259             :                                 MAX_PARALLEL_WORKER_LIMIT),
     260             :                          parser_errposition(pstate, opt->location)));
     261             :             }
     262             :             else
     263             :             {
     264             :                 int         nworkers;
     265             : 
     266         332 :                 nworkers = defGetInt32(opt);
     267         332 :                 if (nworkers < 0 || nworkers > MAX_PARALLEL_WORKER_LIMIT)
     268           6 :                     ereport(ERROR,
     269             :                             (errcode(ERRCODE_SYNTAX_ERROR),
     270             :                              errmsg("parallel workers for vacuum must be between 0 and %d",
     271             :                                     MAX_PARALLEL_WORKER_LIMIT),
     272             :                              parser_errposition(pstate, opt->location)));
     273             : 
     274             :                 /*
     275             :                  * Disable parallel vacuum, if user has specified parallel
     276             :                  * degree as zero.
     277             :                  */
     278         326 :                 if (nworkers == 0)
     279         154 :                     params.nworkers = -1;
     280             :                 else
     281         172 :                     params.nworkers = nworkers;
     282             :             }
     283             :         }
     284        4516 :         else if (strcmp(opt->defname, "skip_database_stats") == 0)
     285        4398 :             skip_database_stats = defGetBoolean(opt);
     286         118 :         else if (strcmp(opt->defname, "only_database_stats") == 0)
     287         118 :             only_database_stats = defGetBoolean(opt);
     288             :         else
     289           0 :             ereport(ERROR,
     290             :                     (errcode(ERRCODE_SYNTAX_ERROR),
     291             :                      errmsg("unrecognized VACUUM option \"%s\"", opt->defname),
     292             :                      parser_errposition(pstate, opt->location)));
     293             :     }
     294             : 
     295             :     /* Set vacuum options */
     296       10638 :     params.options =
     297       10638 :         (vacstmt->is_vacuumcmd ? VACOPT_VACUUM : VACOPT_ANALYZE) |
     298       10638 :         (verbose ? VACOPT_VERBOSE : 0) |
     299       10638 :         (skip_locked ? VACOPT_SKIP_LOCKED : 0) |
     300       10638 :         (analyze ? VACOPT_ANALYZE : 0) |
     301       10638 :         (freeze ? VACOPT_FREEZE : 0) |
     302       10638 :         (full ? VACOPT_FULL : 0) |
     303       10638 :         (disable_page_skipping ? VACOPT_DISABLE_PAGE_SKIPPING : 0) |
     304       10638 :         (process_main ? VACOPT_PROCESS_MAIN : 0) |
     305       10638 :         (process_toast ? VACOPT_PROCESS_TOAST : 0) |
     306       10638 :         (skip_database_stats ? VACOPT_SKIP_DATABASE_STATS : 0) |
     307       10638 :         (only_database_stats ? VACOPT_ONLY_DATABASE_STATS : 0);
     308             : 
     309             :     /* sanity checks on options */
     310             :     Assert(params.options & (VACOPT_VACUUM | VACOPT_ANALYZE));
     311             :     Assert((params.options & VACOPT_VACUUM) ||
     312             :            !(params.options & (VACOPT_FULL | VACOPT_FREEZE)));
     313             : 
     314       10638 :     if ((params.options & VACOPT_FULL) && params.nworkers > 0)
     315           6 :         ereport(ERROR,
     316             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     317             :                  errmsg("VACUUM FULL cannot be performed in parallel")));
     318             : 
     319             :     /*
     320             :      * BUFFER_USAGE_LIMIT does nothing for VACUUM (FULL) so just raise an
     321             :      * ERROR for that case.  VACUUM (FULL, ANALYZE) does make use of it, so
     322             :      * we'll permit that.
     323             :      */
     324       10632 :     if (ring_size != -1 && (params.options & VACOPT_FULL) &&
     325           6 :         !(params.options & VACOPT_ANALYZE))
     326           6 :         ereport(ERROR,
     327             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     328             :                  errmsg("BUFFER_USAGE_LIMIT cannot be specified for VACUUM FULL")));
     329             : 
     330             :     /*
     331             :      * Make sure VACOPT_ANALYZE is specified if any column lists are present.
     332             :      */
     333       10626 :     if (!(params.options & VACOPT_ANALYZE))
     334             :     {
     335        9276 :         foreach(lc, vacstmt->rels)
     336             :         {
     337        4552 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, lc);
     338             : 
     339        4552 :             if (vrel->va_cols != NIL)
     340           6 :                 ereport(ERROR,
     341             :                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     342             :                          errmsg("ANALYZE option must be specified when a column list is provided")));
     343             :         }
     344             :     }
     345             : 
     346             : 
     347             :     /*
     348             :      * Sanity check DISABLE_PAGE_SKIPPING option.
     349             :      */
     350       10620 :     if ((params.options & VACOPT_FULL) != 0 &&
     351         346 :         (params.options & VACOPT_DISABLE_PAGE_SKIPPING) != 0)
     352           0 :         ereport(ERROR,
     353             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     354             :                  errmsg("VACUUM option DISABLE_PAGE_SKIPPING cannot be used with FULL")));
     355             : 
     356             :     /* sanity check for PROCESS_TOAST */
     357       10620 :     if ((params.options & VACOPT_FULL) != 0 &&
     358         346 :         (params.options & VACOPT_PROCESS_TOAST) == 0)
     359           6 :         ereport(ERROR,
     360             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     361             :                  errmsg("PROCESS_TOAST required with VACUUM FULL")));
     362             : 
     363             :     /* sanity check for ONLY_DATABASE_STATS */
     364       10614 :     if (params.options & VACOPT_ONLY_DATABASE_STATS)
     365             :     {
     366             :         Assert(params.options & VACOPT_VACUUM);
     367         118 :         if (vacstmt->rels != NIL)
     368           6 :             ereport(ERROR,
     369             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     370             :                      errmsg("ONLY_DATABASE_STATS cannot be specified with a list of tables")));
     371             :         /* don't require people to turn off PROCESS_TOAST/MAIN explicitly */
     372         112 :         if (params.options & ~(VACOPT_VACUUM |
     373             :                                VACOPT_VERBOSE |
     374             :                                VACOPT_PROCESS_MAIN |
     375             :                                VACOPT_PROCESS_TOAST |
     376             :                                VACOPT_ONLY_DATABASE_STATS))
     377           0 :             ereport(ERROR,
     378             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     379             :                      errmsg("ONLY_DATABASE_STATS cannot be specified with other VACUUM options")));
     380             :     }
     381             : 
     382             :     /*
     383             :      * All freeze ages are zero if the FREEZE option is given; otherwise pass
     384             :      * them as -1 which means to use the default values.
     385             :      */
     386       10608 :     if (params.options & VACOPT_FREEZE)
     387             :     {
     388        1162 :         params.freeze_min_age = 0;
     389        1162 :         params.freeze_table_age = 0;
     390        1162 :         params.multixact_freeze_min_age = 0;
     391        1162 :         params.multixact_freeze_table_age = 0;
     392             :     }
     393             :     else
     394             :     {
     395        9446 :         params.freeze_min_age = -1;
     396        9446 :         params.freeze_table_age = -1;
     397        9446 :         params.multixact_freeze_min_age = -1;
     398        9446 :         params.multixact_freeze_table_age = -1;
     399             :     }
     400             : 
     401             :     /* user-invoked vacuum is never "for wraparound" */
     402       10608 :     params.is_wraparound = false;
     403             : 
     404             :     /* user-invoked vacuum uses VACOPT_VERBOSE instead of log_min_duration */
     405       10608 :     params.log_min_duration = -1;
     406             : 
     407             :     /*
     408             :      * Create special memory context for cross-transaction storage.
     409             :      *
     410             :      * Since it is a child of PortalContext, it will go away eventually even
     411             :      * if we suffer an error; there's no need for special abort cleanup logic.
     412             :      */
     413       10608 :     vac_context = AllocSetContextCreate(PortalContext,
     414             :                                         "Vacuum",
     415             :                                         ALLOCSET_DEFAULT_SIZES);
     416             : 
     417             :     /*
     418             :      * Make a buffer strategy object in the cross-transaction memory context.
     419             :      * We needn't bother making this for VACUUM (FULL) or VACUUM
     420             :      * (ONLY_DATABASE_STATS) as they'll not make use of it.  VACUUM (FULL,
     421             :      * ANALYZE) is possible, so we'd better ensure that we make a strategy
     422             :      * when we see ANALYZE.
     423             :      */
     424       10608 :     if ((params.options & (VACOPT_ONLY_DATABASE_STATS |
     425         452 :                            VACOPT_FULL)) == 0 ||
     426         452 :         (params.options & VACOPT_ANALYZE) != 0)
     427             :     {
     428             : 
     429       10162 :         MemoryContext old_context = MemoryContextSwitchTo(vac_context);
     430             : 
     431             :         Assert(ring_size >= -1);
     432             : 
     433             :         /*
     434             :          * If BUFFER_USAGE_LIMIT was specified by the VACUUM or ANALYZE
     435             :          * command, it overrides the value of VacuumBufferUsageLimit.  Either
     436             :          * value may be 0, in which case GetAccessStrategyWithSize() will
     437             :          * return NULL, effectively allowing full use of shared buffers.
     438             :          */
     439       10162 :         if (ring_size == -1)
     440       10132 :             ring_size = VacuumBufferUsageLimit;
     441             : 
     442       10162 :         bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, ring_size);
     443             : 
     444       10162 :         MemoryContextSwitchTo(old_context);
     445             :     }
     446             : 
     447             :     /* Now go through the common routine */
     448       10608 :     vacuum(vacstmt->rels, &params, bstrategy, vac_context, isTopLevel);
     449             : 
     450             :     /* Finally, clean up the vacuum memory context */
     451       10484 :     MemoryContextDelete(vac_context);
     452       10484 : }
     453             : 
     454             : /*
     455             :  * Internal entry point for autovacuum and the VACUUM / ANALYZE commands.
     456             :  *
     457             :  * relations, if not NIL, is a list of VacuumRelation to process; otherwise,
     458             :  * we process all relevant tables in the database.  For each VacuumRelation,
     459             :  * if a valid OID is supplied, the table with that OID is what to process;
     460             :  * otherwise, the VacuumRelation's RangeVar indicates what to process.
     461             :  *
     462             :  * params contains a set of parameters that can be used to customize the
     463             :  * behavior.
     464             :  *
     465             :  * bstrategy may be passed in as NULL when the caller does not want to
     466             :  * restrict the number of shared_buffers that VACUUM / ANALYZE can use,
     467             :  * otherwise, the caller must build a BufferAccessStrategy with the number of
     468             :  * shared_buffers that VACUUM / ANALYZE should try to limit themselves to
     469             :  * using.
     470             :  *
     471             :  * isTopLevel should be passed down from ProcessUtility.
     472             :  *
     473             :  * It is the caller's responsibility that all parameters are allocated in a
     474             :  * memory context that will not disappear at transaction commit.
     475             :  */
     476             : void
     477       87114 : vacuum(List *relations, VacuumParams *params, BufferAccessStrategy bstrategy,
     478             :        MemoryContext vac_context, bool isTopLevel)
     479             : {
     480             :     static bool in_vacuum = false;
     481             : 
     482             :     const char *stmttype;
     483             :     volatile bool in_outer_xact,
     484             :                 use_own_xacts;
     485             : 
     486             :     Assert(params != NULL);
     487             : 
     488       87114 :     stmttype = (params->options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE";
     489             : 
     490             :     /*
     491             :      * We cannot run VACUUM inside a user transaction block; if we were inside
     492             :      * a transaction, then our commit- and start-transaction-command calls
     493             :      * would not have the intended effect!  There are numerous other subtle
     494             :      * dependencies on this, too.
     495             :      *
     496             :      * ANALYZE (without VACUUM) can run either way.
     497             :      */
     498       87114 :     if (params->options & VACOPT_VACUUM)
     499             :     {
     500       82470 :         PreventInTransactionBlock(isTopLevel, stmttype);
     501       82458 :         in_outer_xact = false;
     502             :     }
     503             :     else
     504        4644 :         in_outer_xact = IsInTransactionBlock(isTopLevel);
     505             : 
     506             :     /*
     507             :      * Check for and disallow recursive calls.  This could happen when VACUUM
     508             :      * FULL or ANALYZE calls a hostile index expression that itself calls
     509             :      * ANALYZE.
     510             :      */
     511       87102 :     if (in_vacuum)
     512          12 :         ereport(ERROR,
     513             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     514             :                  errmsg("%s cannot be executed from VACUUM or ANALYZE",
     515             :                         stmttype)));
     516             : 
     517             :     /*
     518             :      * Build list of relation(s) to process, putting any new data in
     519             :      * vac_context for safekeeping.
     520             :      */
     521       87090 :     if (params->options & VACOPT_ONLY_DATABASE_STATS)
     522             :     {
     523             :         /* We don't process any tables in this case */
     524             :         Assert(relations == NIL);
     525             :     }
     526       86978 :     else if (relations != NIL)
     527             :     {
     528       86786 :         List       *newrels = NIL;
     529             :         ListCell   *lc;
     530             : 
     531      173660 :         foreach(lc, relations)
     532             :         {
     533       86910 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, lc);
     534             :             List       *sublist;
     535             :             MemoryContext old_context;
     536             : 
     537       86910 :             sublist = expand_vacuum_rel(vrel, vac_context, params->options);
     538       86874 :             old_context = MemoryContextSwitchTo(vac_context);
     539       86874 :             newrels = list_concat(newrels, sublist);
     540       86874 :             MemoryContextSwitchTo(old_context);
     541             :         }
     542       86750 :         relations = newrels;
     543             :     }
     544             :     else
     545         192 :         relations = get_all_vacuum_rels(vac_context, params->options);
     546             : 
     547             :     /*
     548             :      * Decide whether we need to start/commit our own transactions.
     549             :      *
     550             :      * For VACUUM (with or without ANALYZE): always do so, so that we can
     551             :      * release locks as soon as possible.  (We could possibly use the outer
     552             :      * transaction for a one-table VACUUM, but handling TOAST tables would be
     553             :      * problematic.)
     554             :      *
     555             :      * For ANALYZE (no VACUUM): if inside a transaction block, we cannot
     556             :      * start/commit our own transactions.  Also, there's no need to do so if
     557             :      * only processing one relation.  For multiple relations when not within a
     558             :      * transaction block, and also in an autovacuum worker, use own
     559             :      * transactions so we can release locks sooner.
     560             :      */
     561       87054 :     if (params->options & VACOPT_VACUUM)
     562       82446 :         use_own_xacts = true;
     563             :     else
     564             :     {
     565             :         Assert(params->options & VACOPT_ANALYZE);
     566        4608 :         if (AmAutoVacuumWorkerProcess())
     567         118 :             use_own_xacts = true;
     568        4490 :         else if (in_outer_xact)
     569         238 :             use_own_xacts = false;
     570        4252 :         else if (list_length(relations) > 1)
     571         722 :             use_own_xacts = true;
     572             :         else
     573        3530 :             use_own_xacts = false;
     574             :     }
     575             : 
     576             :     /*
     577             :      * vacuum_rel expects to be entered with no transaction active; it will
     578             :      * start and commit its own transaction.  But we are called by an SQL
     579             :      * command, and so we are executing inside a transaction already. We
     580             :      * commit the transaction started in PostgresMain() here, and start
     581             :      * another one before exiting to match the commit waiting for us back in
     582             :      * PostgresMain().
     583             :      */
     584       87054 :     if (use_own_xacts)
     585             :     {
     586             :         Assert(!in_outer_xact);
     587             : 
     588             :         /* ActiveSnapshot is not set by autovacuum */
     589       83286 :         if (ActiveSnapshotSet())
     590        6780 :             PopActiveSnapshot();
     591             : 
     592             :         /* matches the StartTransaction in PostgresMain() */
     593       83286 :         CommitTransactionCommand();
     594             :     }
     595             : 
     596             :     /* Turn vacuum cost accounting on or off, and set/clear in_vacuum */
     597       87054 :     PG_TRY();
     598             :     {
     599             :         ListCell   *cur;
     600             : 
     601       87054 :         in_vacuum = true;
     602       87054 :         VacuumFailsafeActive = false;
     603       87054 :         VacuumUpdateCosts();
     604       87054 :         VacuumCostBalance = 0;
     605       87054 :         VacuumCostBalanceLocal = 0;
     606       87054 :         VacuumSharedCostBalance = NULL;
     607       87054 :         VacuumActiveNWorkers = NULL;
     608             : 
     609             :         /*
     610             :          * Loop to process each selected relation.
     611             :          */
     612      189578 :         foreach(cur, relations)
     613             :         {
     614      102588 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, cur);
     615             : 
     616      102588 :             if (params->options & VACOPT_VACUUM)
     617             :             {
     618       90510 :                 if (!vacuum_rel(vrel->oid, vrel->relation, params, bstrategy))
     619         100 :                     continue;
     620             :             }
     621             : 
     622      102482 :             if (params->options & VACOPT_ANALYZE)
     623             :             {
     624             :                 /*
     625             :                  * If using separate xacts, start one for analyze. Otherwise,
     626             :                  * we can use the outer transaction.
     627             :                  */
     628       13610 :                 if (use_own_xacts)
     629             :                 {
     630        9892 :                     StartTransactionCommand();
     631             :                     /* functions in indexes may want a snapshot set */
     632        9892 :                     PushActiveSnapshot(GetTransactionSnapshot());
     633             :                 }
     634             : 
     635       13610 :                 analyze_rel(vrel->oid, vrel->relation, params,
     636             :                             vrel->va_cols, in_outer_xact, bstrategy);
     637             : 
     638       13552 :                 if (use_own_xacts)
     639             :                 {
     640        9854 :                     PopActiveSnapshot();
     641        9854 :                     CommitTransactionCommand();
     642             :                 }
     643             :                 else
     644             :                 {
     645             :                     /*
     646             :                      * If we're not using separate xacts, better separate the
     647             :                      * ANALYZE actions with CCIs.  This avoids trouble if user
     648             :                      * says "ANALYZE t, t".
     649             :                      */
     650        3698 :                     CommandCounterIncrement();
     651             :                 }
     652             :             }
     653             : 
     654             :             /*
     655             :              * Ensure VacuumFailsafeActive has been reset before vacuuming the
     656             :              * next relation.
     657             :              */
     658      102424 :             VacuumFailsafeActive = false;
     659             :         }
     660             :     }
     661          64 :     PG_FINALLY();
     662             :     {
     663       87054 :         in_vacuum = false;
     664       87054 :         VacuumCostActive = false;
     665       87054 :         VacuumFailsafeActive = false;
     666       87054 :         VacuumCostBalance = 0;
     667             :     }
     668       87054 :     PG_END_TRY();
     669             : 
     670             :     /*
     671             :      * Finish up processing.
     672             :      */
     673       86990 :     if (use_own_xacts)
     674             :     {
     675             :         /* here, we are not in a transaction */
     676             : 
     677             :         /*
     678             :          * This matches the CommitTransaction waiting for us in
     679             :          * PostgresMain().
     680             :          */
     681       83242 :         StartTransactionCommand();
     682             :     }
     683             : 
     684       86990 :     if ((params->options & VACOPT_VACUUM) &&
     685       82414 :         !(params->options & VACOPT_SKIP_DATABASE_STATS))
     686             :     {
     687             :         /*
     688             :          * Update pg_database.datfrozenxid, and truncate pg_xact if possible.
     689             :          */
     690        1630 :         vac_update_datfrozenxid();
     691             :     }
     692             : 
     693       86990 : }
     694             : 
     695             : /*
     696             :  * Check if the current user has privileges to vacuum or analyze the relation.
     697             :  * If not, issue a WARNING log message and return false to let the caller
     698             :  * decide what to do with this relation.  This routine is used to decide if a
     699             :  * relation can be processed for VACUUM or ANALYZE.
     700             :  */
     701             : bool
     702      135828 : vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple,
     703             :                                  bits32 options)
     704             : {
     705             :     char       *relname;
     706             : 
     707             :     Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0);
     708             : 
     709             :     /*----------
     710             :      * A role has privileges to vacuum or analyze the relation if any of the
     711             :      * following are true:
     712             :      *   - the role owns the current database and the relation is not shared
     713             :      *   - the role has the MAINTAIN privilege on the relation
     714             :      *----------
     715             :      */
     716      135828 :     if ((object_ownercheck(DatabaseRelationId, MyDatabaseId, GetUserId()) &&
     717      157264 :          !reltuple->relisshared) ||
     718       22210 :         pg_class_aclcheck(relid, GetUserId(), ACL_MAINTAIN) == ACLCHECK_OK)
     719      135488 :         return true;
     720             : 
     721         340 :     relname = NameStr(reltuple->relname);
     722             : 
     723         340 :     if ((options & VACOPT_VACUUM) != 0)
     724             :     {
     725         224 :         ereport(WARNING,
     726             :                 (errmsg("permission denied to vacuum \"%s\", skipping it",
     727             :                         relname)));
     728             : 
     729             :         /*
     730             :          * For VACUUM ANALYZE, both logs could show up, but just generate
     731             :          * information for VACUUM as that would be the first one to be
     732             :          * processed.
     733             :          */
     734         224 :         return false;
     735             :     }
     736             : 
     737         116 :     if ((options & VACOPT_ANALYZE) != 0)
     738         116 :         ereport(WARNING,
     739             :                 (errmsg("permission denied to analyze \"%s\", skipping it",
     740             :                         relname)));
     741             : 
     742         116 :     return false;
     743             : }
     744             : 
     745             : 
     746             : /*
     747             :  * vacuum_open_relation
     748             :  *
     749             :  * This routine is used for attempting to open and lock a relation which
     750             :  * is going to be vacuumed or analyzed.  If the relation cannot be opened
     751             :  * or locked, a log is emitted if possible.
     752             :  */
     753             : Relation
     754      111528 : vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options,
     755             :                      bool verbose, LOCKMODE lmode)
     756             : {
     757             :     Relation    rel;
     758      111528 :     bool        rel_lock = true;
     759             :     int         elevel;
     760             : 
     761             :     Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0);
     762             : 
     763             :     /*
     764             :      * Open the relation and get the appropriate lock on it.
     765             :      *
     766             :      * There's a race condition here: the relation may have gone away since
     767             :      * the last time we saw it.  If so, we don't need to vacuum or analyze it.
     768             :      *
     769             :      * If we've been asked not to wait for the relation lock, acquire it first
     770             :      * in non-blocking mode, before calling try_relation_open().
     771             :      */
     772      111528 :     if (!(options & VACOPT_SKIP_LOCKED))
     773      110806 :         rel = try_relation_open(relid, lmode);
     774         722 :     else if (ConditionalLockRelationOid(relid, lmode))
     775         702 :         rel = try_relation_open(relid, NoLock);
     776             :     else
     777             :     {
     778          20 :         rel = NULL;
     779          20 :         rel_lock = false;
     780             :     }
     781             : 
     782             :     /* if relation is opened, leave */
     783      111528 :     if (rel)
     784      111496 :         return rel;
     785             : 
     786             :     /*
     787             :      * Relation could not be opened, hence generate if possible a log
     788             :      * informing on the situation.
     789             :      *
     790             :      * If the RangeVar is not defined, we do not have enough information to
     791             :      * provide a meaningful log statement.  Chances are that the caller has
     792             :      * intentionally not provided this information so that this logging is
     793             :      * skipped, anyway.
     794             :      */
     795          32 :     if (relation == NULL)
     796          18 :         return NULL;
     797             : 
     798             :     /*
     799             :      * Determine the log level.
     800             :      *
     801             :      * For manual VACUUM or ANALYZE, we emit a WARNING to match the log
     802             :      * statements in the permission checks; otherwise, only log if the caller
     803             :      * so requested.
     804             :      */
     805          14 :     if (!AmAutoVacuumWorkerProcess())
     806          14 :         elevel = WARNING;
     807           0 :     else if (verbose)
     808           0 :         elevel = LOG;
     809             :     else
     810           0 :         return NULL;
     811             : 
     812          14 :     if ((options & VACOPT_VACUUM) != 0)
     813             :     {
     814          10 :         if (!rel_lock)
     815           6 :             ereport(elevel,
     816             :                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     817             :                      errmsg("skipping vacuum of \"%s\" --- lock not available",
     818             :                             relation->relname)));
     819             :         else
     820           4 :             ereport(elevel,
     821             :                     (errcode(ERRCODE_UNDEFINED_TABLE),
     822             :                      errmsg("skipping vacuum of \"%s\" --- relation no longer exists",
     823             :                             relation->relname)));
     824             : 
     825             :         /*
     826             :          * For VACUUM ANALYZE, both logs could show up, but just generate
     827             :          * information for VACUUM as that would be the first one to be
     828             :          * processed.
     829             :          */
     830          10 :         return NULL;
     831             :     }
     832             : 
     833           4 :     if ((options & VACOPT_ANALYZE) != 0)
     834             :     {
     835           4 :         if (!rel_lock)
     836           2 :             ereport(elevel,
     837             :                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     838             :                      errmsg("skipping analyze of \"%s\" --- lock not available",
     839             :                             relation->relname)));
     840             :         else
     841           2 :             ereport(elevel,
     842             :                     (errcode(ERRCODE_UNDEFINED_TABLE),
     843             :                      errmsg("skipping analyze of \"%s\" --- relation no longer exists",
     844             :                             relation->relname)));
     845             :     }
     846             : 
     847           4 :     return NULL;
     848             : }
     849             : 
     850             : 
     851             : /*
     852             :  * Given a VacuumRelation, fill in the table OID if it wasn't specified,
     853             :  * and optionally add VacuumRelations for partitions or inheritance children.
     854             :  *
     855             :  * If a VacuumRelation does not have an OID supplied and is a partitioned
     856             :  * table, an extra entry will be added to the output for each partition.
     857             :  * Presently, only autovacuum supplies OIDs when calling vacuum(), and
     858             :  * it does not want us to expand partitioned tables.
     859             :  *
     860             :  * We take care not to modify the input data structure, but instead build
     861             :  * new VacuumRelation(s) to return.  (But note that they will reference
     862             :  * unmodified parts of the input, eg column lists.)  New data structures
     863             :  * are made in vac_context.
     864             :  */
     865             : static List *
     866       86910 : expand_vacuum_rel(VacuumRelation *vrel, MemoryContext vac_context,
     867             :                   int options)
     868             : {
     869       86910 :     List       *vacrels = NIL;
     870             :     MemoryContext oldcontext;
     871             : 
     872             :     /* If caller supplied OID, there's nothing we need do here. */
     873       86910 :     if (OidIsValid(vrel->oid))
     874             :     {
     875       76506 :         oldcontext = MemoryContextSwitchTo(vac_context);
     876       76506 :         vacrels = lappend(vacrels, vrel);
     877       76506 :         MemoryContextSwitchTo(oldcontext);
     878             :     }
     879             :     else
     880             :     {
     881             :         /*
     882             :          * Process a specific relation, and possibly partitions or child
     883             :          * tables thereof.
     884             :          */
     885             :         Oid         relid;
     886             :         HeapTuple   tuple;
     887             :         Form_pg_class classForm;
     888             :         bool        include_children;
     889             :         bool        is_partitioned_table;
     890             :         int         rvr_opts;
     891             : 
     892             :         /*
     893             :          * Since autovacuum workers supply OIDs when calling vacuum(), no
     894             :          * autovacuum worker should reach this code.
     895             :          */
     896             :         Assert(!AmAutoVacuumWorkerProcess());
     897             : 
     898             :         /*
     899             :          * We transiently take AccessShareLock to protect the syscache lookup
     900             :          * below, as well as find_all_inheritors's expectation that the caller
     901             :          * holds some lock on the starting relation.
     902             :          */
     903       10404 :         rvr_opts = (options & VACOPT_SKIP_LOCKED) ? RVR_SKIP_LOCKED : 0;
     904       10404 :         relid = RangeVarGetRelidExtended(vrel->relation,
     905             :                                          AccessShareLock,
     906             :                                          rvr_opts,
     907             :                                          NULL, NULL);
     908             : 
     909             :         /*
     910             :          * If the lock is unavailable, emit the same log statement that
     911             :          * vacuum_rel() and analyze_rel() would.
     912             :          */
     913       10368 :         if (!OidIsValid(relid))
     914             :         {
     915           8 :             if (options & VACOPT_VACUUM)
     916           6 :                 ereport(WARNING,
     917             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     918             :                          errmsg("skipping vacuum of \"%s\" --- lock not available",
     919             :                                 vrel->relation->relname)));
     920             :             else
     921           2 :                 ereport(WARNING,
     922             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     923             :                          errmsg("skipping analyze of \"%s\" --- lock not available",
     924             :                                 vrel->relation->relname)));
     925           8 :             return vacrels;
     926             :         }
     927             : 
     928             :         /*
     929             :          * To check whether the relation is a partitioned table and its
     930             :          * ownership, fetch its syscache entry.
     931             :          */
     932       10360 :         tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
     933       10360 :         if (!HeapTupleIsValid(tuple))
     934           0 :             elog(ERROR, "cache lookup failed for relation %u", relid);
     935       10360 :         classForm = (Form_pg_class) GETSTRUCT(tuple);
     936             : 
     937             :         /*
     938             :          * Make a returnable VacuumRelation for this rel if the user has the
     939             :          * required privileges.
     940             :          */
     941       10360 :         if (vacuum_is_permitted_for_relation(relid, classForm, options))
     942             :         {
     943       10128 :             oldcontext = MemoryContextSwitchTo(vac_context);
     944       10128 :             vacrels = lappend(vacrels, makeVacuumRelation(vrel->relation,
     945             :                                                           relid,
     946             :                                                           vrel->va_cols));
     947       10128 :             MemoryContextSwitchTo(oldcontext);
     948             :         }
     949             : 
     950             :         /*
     951             :          * Vacuuming a partitioned table with ONLY will not do anything since
     952             :          * the partitioned table itself is empty.  Issue a warning if the user
     953             :          * requests this.
     954             :          */
     955       10360 :         include_children = vrel->relation->inh;
     956       10360 :         is_partitioned_table = (classForm->relkind == RELKIND_PARTITIONED_TABLE);
     957       10360 :         if ((options & VACOPT_VACUUM) && is_partitioned_table && !include_children)
     958           6 :             ereport(WARNING,
     959             :                     (errmsg("VACUUM ONLY of partitioned table \"%s\" has no effect",
     960             :                             vrel->relation->relname)));
     961             : 
     962       10360 :         ReleaseSysCache(tuple);
     963             : 
     964             :         /*
     965             :          * Unless the user has specified ONLY, make relation list entries for
     966             :          * its partitions or inheritance child tables.  Note that the list
     967             :          * returned by find_all_inheritors() includes the passed-in OID, so we
     968             :          * have to skip that.  There's no point in taking locks on the
     969             :          * individual partitions or child tables yet, and doing so would just
     970             :          * add unnecessary deadlock risk.  For this last reason, we do not yet
     971             :          * check the ownership of the partitions/tables, which get added to
     972             :          * the list to process.  Ownership will be checked later on anyway.
     973             :          */
     974       10360 :         if (include_children)
     975             :         {
     976       10330 :             List       *part_oids = find_all_inheritors(relid, NoLock, NULL);
     977             :             ListCell   *part_lc;
     978             : 
     979       22690 :             foreach(part_lc, part_oids)
     980             :             {
     981       12360 :                 Oid         part_oid = lfirst_oid(part_lc);
     982             : 
     983       12360 :                 if (part_oid == relid)
     984       10330 :                     continue;   /* ignore original table */
     985             : 
     986             :                 /*
     987             :                  * We omit a RangeVar since it wouldn't be appropriate to
     988             :                  * complain about failure to open one of these relations
     989             :                  * later.
     990             :                  */
     991        2030 :                 oldcontext = MemoryContextSwitchTo(vac_context);
     992        2030 :                 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
     993             :                                                               part_oid,
     994             :                                                               vrel->va_cols));
     995        2030 :                 MemoryContextSwitchTo(oldcontext);
     996             :             }
     997             :         }
     998             : 
     999             :         /*
    1000             :          * Release lock again.  This means that by the time we actually try to
    1001             :          * process the table, it might be gone or renamed.  In the former case
    1002             :          * we'll silently ignore it; in the latter case we'll process it
    1003             :          * anyway, but we must beware that the RangeVar doesn't necessarily
    1004             :          * identify it anymore.  This isn't ideal, perhaps, but there's little
    1005             :          * practical alternative, since we're typically going to commit this
    1006             :          * transaction and begin a new one between now and then.  Moreover,
    1007             :          * holding locks on multiple relations would create significant risk
    1008             :          * of deadlock.
    1009             :          */
    1010       10360 :         UnlockRelationOid(relid, AccessShareLock);
    1011             :     }
    1012             : 
    1013       86866 :     return vacrels;
    1014             : }
    1015             : 
    1016             : /*
    1017             :  * Construct a list of VacuumRelations for all vacuumable rels in
    1018             :  * the current database.  The list is built in vac_context.
    1019             :  */
    1020             : static List *
    1021         192 : get_all_vacuum_rels(MemoryContext vac_context, int options)
    1022             : {
    1023         192 :     List       *vacrels = NIL;
    1024             :     Relation    pgclass;
    1025             :     TableScanDesc scan;
    1026             :     HeapTuple   tuple;
    1027             : 
    1028         192 :     pgclass = table_open(RelationRelationId, AccessShareLock);
    1029             : 
    1030         192 :     scan = table_beginscan_catalog(pgclass, 0, NULL);
    1031             : 
    1032       82008 :     while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
    1033             :     {
    1034       81816 :         Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
    1035             :         MemoryContext oldcontext;
    1036       81816 :         Oid         relid = classForm->oid;
    1037             : 
    1038             :         /*
    1039             :          * We include partitioned tables here; depending on which operation is
    1040             :          * to be performed, caller will decide whether to process or ignore
    1041             :          * them.
    1042             :          */
    1043       81816 :         if (classForm->relkind != RELKIND_RELATION &&
    1044       67912 :             classForm->relkind != RELKIND_MATVIEW &&
    1045       67906 :             classForm->relkind != RELKIND_PARTITIONED_TABLE)
    1046       67844 :             continue;
    1047             : 
    1048             :         /* check permissions of relation */
    1049       13972 :         if (!vacuum_is_permitted_for_relation(relid, classForm, options))
    1050           0 :             continue;
    1051             : 
    1052             :         /*
    1053             :          * Build VacuumRelation(s) specifying the table OIDs to be processed.
    1054             :          * We omit a RangeVar since it wouldn't be appropriate to complain
    1055             :          * about failure to open one of these relations later.
    1056             :          */
    1057       13972 :         oldcontext = MemoryContextSwitchTo(vac_context);
    1058       13972 :         vacrels = lappend(vacrels, makeVacuumRelation(NULL,
    1059             :                                                       relid,
    1060             :                                                       NIL));
    1061       13972 :         MemoryContextSwitchTo(oldcontext);
    1062             :     }
    1063             : 
    1064         192 :     table_endscan(scan);
    1065         192 :     table_close(pgclass, AccessShareLock);
    1066             : 
    1067         192 :     return vacrels;
    1068             : }
    1069             : 
    1070             : /*
    1071             :  * vacuum_get_cutoffs() -- compute OldestXmin and freeze cutoff points
    1072             :  *
    1073             :  * The target relation and VACUUM parameters are our inputs.
    1074             :  *
    1075             :  * Output parameters are the cutoffs that VACUUM caller should use.
    1076             :  *
    1077             :  * Return value indicates if vacuumlazy.c caller should make its VACUUM
    1078             :  * operation aggressive.  An aggressive VACUUM must advance relfrozenxid up to
    1079             :  * FreezeLimit (at a minimum), and relminmxid up to MultiXactCutoff (at a
    1080             :  * minimum).
    1081             :  */
    1082             : bool
    1083       97676 : vacuum_get_cutoffs(Relation rel, const VacuumParams *params,
    1084             :                    struct VacuumCutoffs *cutoffs)
    1085             : {
    1086             :     int         freeze_min_age,
    1087             :                 multixact_freeze_min_age,
    1088             :                 freeze_table_age,
    1089             :                 multixact_freeze_table_age,
    1090             :                 effective_multixact_freeze_max_age;
    1091             :     TransactionId nextXID,
    1092             :                 safeOldestXmin,
    1093             :                 aggressiveXIDCutoff;
    1094             :     MultiXactId nextMXID,
    1095             :                 safeOldestMxact,
    1096             :                 aggressiveMXIDCutoff;
    1097             : 
    1098             :     /* Use mutable copies of freeze age parameters */
    1099       97676 :     freeze_min_age = params->freeze_min_age;
    1100       97676 :     multixact_freeze_min_age = params->multixact_freeze_min_age;
    1101       97676 :     freeze_table_age = params->freeze_table_age;
    1102       97676 :     multixact_freeze_table_age = params->multixact_freeze_table_age;
    1103             : 
    1104             :     /* Set pg_class fields in cutoffs */
    1105       97676 :     cutoffs->relfrozenxid = rel->rd_rel->relfrozenxid;
    1106       97676 :     cutoffs->relminmxid = rel->rd_rel->relminmxid;
    1107             : 
    1108             :     /*
    1109             :      * Acquire OldestXmin.
    1110             :      *
    1111             :      * We can always ignore processes running lazy vacuum.  This is because we
    1112             :      * use these values only for deciding which tuples we must keep in the
    1113             :      * tables.  Since lazy vacuum doesn't write its XID anywhere (usually no
    1114             :      * XID assigned), it's safe to ignore it.  In theory it could be
    1115             :      * problematic to ignore lazy vacuums in a full vacuum, but keep in mind
    1116             :      * that only one vacuum process can be working on a particular table at
    1117             :      * any time, and that each vacuum is always an independent transaction.
    1118             :      */
    1119       97676 :     cutoffs->OldestXmin = GetOldestNonRemovableTransactionId(rel);
    1120             : 
    1121             :     Assert(TransactionIdIsNormal(cutoffs->OldestXmin));
    1122             : 
    1123             :     /* Acquire OldestMxact */
    1124       97676 :     cutoffs->OldestMxact = GetOldestMultiXactId();
    1125             :     Assert(MultiXactIdIsValid(cutoffs->OldestMxact));
    1126             : 
    1127             :     /* Acquire next XID/next MXID values used to apply age-based settings */
    1128       97676 :     nextXID = ReadNextTransactionId();
    1129       97676 :     nextMXID = ReadNextMultiXactId();
    1130             : 
    1131             :     /*
    1132             :      * Also compute the multixact age for which freezing is urgent.  This is
    1133             :      * normally autovacuum_multixact_freeze_max_age, but may be less if we are
    1134             :      * short of multixact member space.
    1135             :      */
    1136       97676 :     effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();
    1137             : 
    1138             :     /*
    1139             :      * Almost ready to set freeze output parameters; check if OldestXmin or
    1140             :      * OldestMxact are held back to an unsafe degree before we start on that
    1141             :      */
    1142       97676 :     safeOldestXmin = nextXID - autovacuum_freeze_max_age;
    1143       97676 :     if (!TransactionIdIsNormal(safeOldestXmin))
    1144           0 :         safeOldestXmin = FirstNormalTransactionId;
    1145       97676 :     safeOldestMxact = nextMXID - effective_multixact_freeze_max_age;
    1146       97676 :     if (safeOldestMxact < FirstMultiXactId)
    1147           0 :         safeOldestMxact = FirstMultiXactId;
    1148       97676 :     if (TransactionIdPrecedes(cutoffs->OldestXmin, safeOldestXmin))
    1149       44196 :         ereport(WARNING,
    1150             :                 (errmsg("cutoff for removing and freezing tuples is far in the past"),
    1151             :                  errhint("Close open transactions soon to avoid wraparound problems.\n"
    1152             :                          "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
    1153       97676 :     if (MultiXactIdPrecedes(cutoffs->OldestMxact, safeOldestMxact))
    1154           0 :         ereport(WARNING,
    1155             :                 (errmsg("cutoff for freezing multixacts is far in the past"),
    1156             :                  errhint("Close open transactions soon to avoid wraparound problems.\n"
    1157             :                          "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
    1158             : 
    1159             :     /*
    1160             :      * Determine the minimum freeze age to use: as specified by the caller, or
    1161             :      * vacuum_freeze_min_age, but in any case not more than half
    1162             :      * autovacuum_freeze_max_age, so that autovacuums to prevent XID
    1163             :      * wraparound won't occur too frequently.
    1164             :      */
    1165       97676 :     if (freeze_min_age < 0)
    1166        8904 :         freeze_min_age = vacuum_freeze_min_age;
    1167       97676 :     freeze_min_age = Min(freeze_min_age, autovacuum_freeze_max_age / 2);
    1168             :     Assert(freeze_min_age >= 0);
    1169             : 
    1170             :     /* Compute FreezeLimit, being careful to generate a normal XID */
    1171       97676 :     cutoffs->FreezeLimit = nextXID - freeze_min_age;
    1172       97676 :     if (!TransactionIdIsNormal(cutoffs->FreezeLimit))
    1173           0 :         cutoffs->FreezeLimit = FirstNormalTransactionId;
    1174             :     /* FreezeLimit must always be <= OldestXmin */
    1175       97676 :     if (TransactionIdPrecedes(cutoffs->OldestXmin, cutoffs->FreezeLimit))
    1176       69724 :         cutoffs->FreezeLimit = cutoffs->OldestXmin;
    1177             : 
    1178             :     /*
    1179             :      * Determine the minimum multixact freeze age to use: as specified by
    1180             :      * caller, or vacuum_multixact_freeze_min_age, but in any case not more
    1181             :      * than half effective_multixact_freeze_max_age, so that autovacuums to
    1182             :      * prevent MultiXact wraparound won't occur too frequently.
    1183             :      */
    1184       97676 :     if (multixact_freeze_min_age < 0)
    1185        8904 :         multixact_freeze_min_age = vacuum_multixact_freeze_min_age;
    1186       97676 :     multixact_freeze_min_age = Min(multixact_freeze_min_age,
    1187             :                                    effective_multixact_freeze_max_age / 2);
    1188             :     Assert(multixact_freeze_min_age >= 0);
    1189             : 
    1190             :     /* Compute MultiXactCutoff, being careful to generate a valid value */
    1191       97676 :     cutoffs->MultiXactCutoff = nextMXID - multixact_freeze_min_age;
    1192       97676 :     if (cutoffs->MultiXactCutoff < FirstMultiXactId)
    1193           0 :         cutoffs->MultiXactCutoff = FirstMultiXactId;
    1194             :     /* MultiXactCutoff must always be <= OldestMxact */
    1195       97676 :     if (MultiXactIdPrecedes(cutoffs->OldestMxact, cutoffs->MultiXactCutoff))
    1196           6 :         cutoffs->MultiXactCutoff = cutoffs->OldestMxact;
    1197             : 
    1198             :     /*
    1199             :      * Finally, figure out if caller needs to do an aggressive VACUUM or not.
    1200             :      *
    1201             :      * Determine the table freeze age to use: as specified by the caller, or
    1202             :      * the value of the vacuum_freeze_table_age GUC, but in any case not more
    1203             :      * than autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly
    1204             :      * VACUUM schedule, the nightly VACUUM gets a chance to freeze XIDs before
    1205             :      * anti-wraparound autovacuum is launched.
    1206             :      */
    1207       97676 :     if (freeze_table_age < 0)
    1208        8904 :         freeze_table_age = vacuum_freeze_table_age;
    1209       97676 :     freeze_table_age = Min(freeze_table_age, autovacuum_freeze_max_age * 0.95);
    1210             :     Assert(freeze_table_age >= 0);
    1211       97676 :     aggressiveXIDCutoff = nextXID - freeze_table_age;
    1212       97676 :     if (!TransactionIdIsNormal(aggressiveXIDCutoff))
    1213           0 :         aggressiveXIDCutoff = FirstNormalTransactionId;
    1214       97676 :     if (TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid,
    1215             :                                       aggressiveXIDCutoff))
    1216       88942 :         return true;
    1217             : 
    1218             :     /*
    1219             :      * Similar to the above, determine the table freeze age to use for
    1220             :      * multixacts: as specified by the caller, or the value of the
    1221             :      * vacuum_multixact_freeze_table_age GUC, but in any case not more than
    1222             :      * effective_multixact_freeze_max_age * 0.95, so that if you have e.g.
    1223             :      * nightly VACUUM schedule, the nightly VACUUM gets a chance to freeze
    1224             :      * multixacts before anti-wraparound autovacuum is launched.
    1225             :      */
    1226        8734 :     if (multixact_freeze_table_age < 0)
    1227        8684 :         multixact_freeze_table_age = vacuum_multixact_freeze_table_age;
    1228        8734 :     multixact_freeze_table_age =
    1229        8734 :         Min(multixact_freeze_table_age,
    1230             :             effective_multixact_freeze_max_age * 0.95);
    1231             :     Assert(multixact_freeze_table_age >= 0);
    1232        8734 :     aggressiveMXIDCutoff = nextMXID - multixact_freeze_table_age;
    1233        8734 :     if (aggressiveMXIDCutoff < FirstMultiXactId)
    1234           0 :         aggressiveMXIDCutoff = FirstMultiXactId;
    1235        8734 :     if (MultiXactIdPrecedesOrEquals(cutoffs->relminmxid,
    1236             :                                     aggressiveMXIDCutoff))
    1237           0 :         return true;
    1238             : 
    1239             :     /* Non-aggressive VACUUM */
    1240        8734 :     return false;
    1241             : }
    1242             : 
    1243             : /*
    1244             :  * vacuum_xid_failsafe_check() -- Used by VACUUM's wraparound failsafe
    1245             :  * mechanism to determine if its table's relfrozenxid and relminmxid are now
    1246             :  * dangerously far in the past.
    1247             :  *
    1248             :  * When we return true, VACUUM caller triggers the failsafe.
    1249             :  */
    1250             : bool
    1251      100034 : vacuum_xid_failsafe_check(const struct VacuumCutoffs *cutoffs)
    1252             : {
    1253      100034 :     TransactionId relfrozenxid = cutoffs->relfrozenxid;
    1254      100034 :     MultiXactId relminmxid = cutoffs->relminmxid;
    1255             :     TransactionId xid_skip_limit;
    1256             :     MultiXactId multi_skip_limit;
    1257             :     int         skip_index_vacuum;
    1258             : 
    1259             :     Assert(TransactionIdIsNormal(relfrozenxid));
    1260             :     Assert(MultiXactIdIsValid(relminmxid));
    1261             : 
    1262             :     /*
    1263             :      * Determine the index skipping age to use. In any case no less than
    1264             :      * autovacuum_freeze_max_age * 1.05.
    1265             :      */
    1266      100034 :     skip_index_vacuum = Max(vacuum_failsafe_age, autovacuum_freeze_max_age * 1.05);
    1267             : 
    1268      100034 :     xid_skip_limit = ReadNextTransactionId() - skip_index_vacuum;
    1269      100034 :     if (!TransactionIdIsNormal(xid_skip_limit))
    1270           0 :         xid_skip_limit = FirstNormalTransactionId;
    1271             : 
    1272      100034 :     if (TransactionIdPrecedes(relfrozenxid, xid_skip_limit))
    1273             :     {
    1274             :         /* The table's relfrozenxid is too old */
    1275       14888 :         return true;
    1276             :     }
    1277             : 
    1278             :     /*
    1279             :      * Similar to above, determine the index skipping age to use for
    1280             :      * multixact. In any case no less than autovacuum_multixact_freeze_max_age *
    1281             :      * 1.05.
    1282             :      */
    1283       85146 :     skip_index_vacuum = Max(vacuum_multixact_failsafe_age,
    1284             :                             autovacuum_multixact_freeze_max_age * 1.05);
    1285             : 
    1286       85146 :     multi_skip_limit = ReadNextMultiXactId() - skip_index_vacuum;
    1287       85146 :     if (multi_skip_limit < FirstMultiXactId)
    1288           0 :         multi_skip_limit = FirstMultiXactId;
    1289             : 
    1290       85146 :     if (MultiXactIdPrecedes(relminmxid, multi_skip_limit))
    1291             :     {
    1292             :         /* The table's relminmxid is too old */
    1293           0 :         return true;
    1294             :     }
    1295             : 
    1296       85146 :     return false;
    1297             : }
    1298             : 
    1299             : /*
    1300             :  * vac_estimate_reltuples() -- estimate the new value for pg_class.reltuples
    1301             :  *
    1302             :  *      If we scanned the whole relation then we should just use the count of
    1303             :  *      live tuples seen; but if we did not, we should not blindly extrapolate
    1304             :  *      from that number, since VACUUM may have scanned a quite nonrandom
    1305             :  *      subset of the table.  When we have only partial information, we take
    1306             :  *      the old value of pg_class.reltuples/pg_class.relpages as a measurement
    1307             :  *      of the tuple density in the unscanned pages.
    1308             :  *
    1309             :  *      Note: scanned_tuples should count only *live* tuples, since
    1310             :  *      pg_class.reltuples is defined that way.
    1311             :  */
    1312             : double
    1313       97134 : vac_estimate_reltuples(Relation relation,
    1314             :                        BlockNumber total_pages,
    1315             :                        BlockNumber scanned_pages,
    1316             :                        double scanned_tuples)
    1317             : {
    1318       97134 :     BlockNumber old_rel_pages = relation->rd_rel->relpages;
    1319       97134 :     double      old_rel_tuples = relation->rd_rel->reltuples;
    1320             :     double      old_density;
    1321             :     double      unscanned_pages;
    1322             :     double      total_tuples;
    1323             : 
    1324             :     /* If we did scan the whole table, just use the count as-is */
    1325       97134 :     if (scanned_pages >= total_pages)
    1326       93938 :         return scanned_tuples;
    1327             : 
    1328             :     /*
    1329             :      * When successive VACUUM commands scan the same few pages again and
    1330             :      * again, without anything from the table really changing, there is a risk
    1331             :      * that our beliefs about tuple density will gradually become distorted.
    1332             :      * This might be caused by vacuumlazy.c implementation details, such as
    1333             :      * its tendency to always scan the last heap page.  Handle that here.
    1334             :      *
    1335             :      * If the relation is _exactly_ the same size according to the existing
    1336             :      * pg_class entry, and only a few of its pages (less than 2%) were
    1337             :      * scanned, keep the existing value of reltuples.  Also keep the existing
    1338             :      * value when only a subset of rel's pages <= a single page were scanned.
    1339             :      *
    1340             :      * (Note: we might be returning -1 here.)
    1341             :      */
    1342        3196 :     if (old_rel_pages == total_pages &&
    1343        3168 :         scanned_pages < (double) total_pages * 0.02)
    1344        2276 :         return old_rel_tuples;
    1345         920 :     if (scanned_pages <= 1)
    1346         794 :         return old_rel_tuples;
    1347             : 
    1348             :     /*
    1349             :      * If old density is unknown, we can't do much except scale up
    1350             :      * scanned_tuples to match total_pages.
    1351             :      */
    1352         126 :     if (old_rel_tuples < 0 || old_rel_pages == 0)
    1353           2 :         return floor((scanned_tuples / scanned_pages) * total_pages + 0.5);
    1354             : 
    1355             :     /*
    1356             :      * Okay, we've covered the corner cases.  The normal calculation is to
    1357             :      * convert the old measurement to a density (tuples per page), then
    1358             :      * estimate the number of tuples in the unscanned pages using that figure,
    1359             :      * and finally add on the number of tuples in the scanned pages.
    1360             :      */
    1361         124 :     old_density = old_rel_tuples / old_rel_pages;
    1362         124 :     unscanned_pages = (double) total_pages - (double) scanned_pages;
    1363         124 :     total_tuples = old_density * unscanned_pages + scanned_tuples;
    1364         124 :     return floor(total_tuples + 0.5);
    1365             : }
    1366             : 
    1367             : 
    1368             : /*
    1369             :  *  vac_update_relstats() -- update statistics for one relation
    1370             :  *
    1371             :  *      Update the whole-relation statistics that are kept in its pg_class
    1372             :  *      row.  There are additional stats that will be updated if we are
    1373             :  *      doing ANALYZE, but we always update these stats.  This routine works
    1374             :  *      for both index and heap relation entries in pg_class.
    1375             :  *
    1376             :  *      We violate transaction semantics here by overwriting the rel's
    1377             :  *      existing pg_class tuple with the new values.  This is reasonably
    1378             :  *      safe as long as we're sure that the new values are correct whether or
    1379             :  *      not this transaction commits.  The reason for doing this is that if
    1380             :  *      we updated these tuples in the usual way, vacuuming pg_class itself
    1381             :  *      wouldn't work very well --- by the time we got done with a vacuum
    1382             :  *      cycle, most of the tuples in pg_class would've been obsoleted.  Of
    1383             :  *      course, this only works for fixed-size not-null columns, but these are.
    1384             :  *
    1385             :  *      Another reason for doing it this way is that when we are in a lazy
    1386             :  *      VACUUM and have PROC_IN_VACUUM set, we mustn't do any regular updates.
    1387             :  *      Somebody vacuuming pg_class might think they could delete a tuple
    1388             :  *      marked with xmin = our xid.
    1389             :  *
    1390             :  *      In addition to fundamentally nontransactional statistics such as
    1391             :  *      relpages and relallvisible, we try to maintain certain lazily-updated
    1392             :  *      DDL flags such as relhasindex, by clearing them if no longer correct.
    1393             :  *      It's safe to do this in VACUUM, which can't run in parallel with
    1394             :  *      CREATE INDEX/RULE/TRIGGER and can't be part of a transaction block.
    1395             :  *      However, it's *not* safe to do it in an ANALYZE that's within an
    1396             :  *      outer transaction, because for example the current transaction might
    1397             :  *      have dropped the last index; then we'd think relhasindex should be
    1398             :  *      cleared, but if the transaction later rolls back this would be wrong.
    1399             :  *      So we refrain from updating the DDL flags if we're inside an outer
    1400             :  *      transaction.  This is OK since postponing the flag maintenance is
    1401             :  *      always allowable.
    1402             :  *
    1403             :  *      Note: num_tuples should count only *live* tuples, since
    1404             :  *      pg_class.reltuples is defined that way.
    1405             :  *
    1406             :  *      This routine is shared by VACUUM and ANALYZE.
    1407             :  */
    1408             : void
    1409      130978 : vac_update_relstats(Relation relation,
    1410             :                     BlockNumber num_pages, double num_tuples,
    1411             :                     BlockNumber num_all_visible_pages,
    1412             :                     bool hasindex, TransactionId frozenxid,
    1413             :                     MultiXactId minmulti,
    1414             :                     bool *frozenxid_updated, bool *minmulti_updated,
    1415             :                     bool in_outer_xact)
    1416             : {
    1417      130978 :     Oid         relid = RelationGetRelid(relation);
    1418             :     Relation    rd;
    1419             :     ScanKeyData key[1];
    1420             :     HeapTuple   ctup;
    1421             :     void       *inplace_state;
    1422             :     Form_pg_class pgcform;
    1423             :     bool        dirty,
    1424             :                 futurexid,
    1425             :                 futuremxid;
    1426             :     TransactionId oldfrozenxid;
    1427             :     MultiXactId oldminmulti;
    1428             : 
    1429      130978 :     rd = table_open(RelationRelationId, RowExclusiveLock);
    1430             : 
    1431             :     /* Fetch a copy of the tuple to scribble on */
    1432      130978 :     ScanKeyInit(&key[0],
    1433             :                 Anum_pg_class_oid,
    1434             :                 BTEqualStrategyNumber, F_OIDEQ,
    1435             :                 ObjectIdGetDatum(relid));
    1436      130978 :     systable_inplace_update_begin(rd, ClassOidIndexId, true,
    1437             :                                   NULL, 1, key, &ctup, &inplace_state);
    1438      130978 :     if (!HeapTupleIsValid(ctup))
    1439           0 :         elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
    1440             :              relid);
    1441      130978 :     pgcform = (Form_pg_class) GETSTRUCT(ctup);
    1442             : 
    1443             :     /* Apply statistical updates, if any, to copied tuple */
    1444             : 
    1445      130978 :     dirty = false;
    1446      130978 :     if (pgcform->relpages != (int32) num_pages)
    1447             :     {
    1448        8298 :         pgcform->relpages = (int32) num_pages;
    1449        8298 :         dirty = true;
    1450             :     }
    1451      130978 :     if (pgcform->reltuples != (float4) num_tuples)
    1452             :     {
    1453       17858 :         pgcform->reltuples = (float4) num_tuples;
    1454       17858 :         dirty = true;
    1455             :     }
    1456      130978 :     if (pgcform->relallvisible != (int32) num_all_visible_pages)
    1457             :     {
    1458        5046 :         pgcform->relallvisible = (int32) num_all_visible_pages;
    1459        5046 :         dirty = true;
    1460             :     }
    1461             : 
    1462             :     /* Apply DDL updates, but not inside an outer transaction (see above) */
    1463             : 
    1464      130978 :     if (!in_outer_xact)
    1465             :     {
    1466             :         /*
    1467             :          * If we didn't find any indexes, reset relhasindex.
    1468             :          */
    1469      130664 :         if (pgcform->relhasindex && !hasindex)
    1470             :         {
    1471          18 :             pgcform->relhasindex = false;
    1472          18 :             dirty = true;
    1473             :         }
    1474             : 
    1475             :         /* We also clear relhasrules and relhastriggers if needed */
    1476      130664 :         if (pgcform->relhasrules && relation->rd_rules == NULL)
    1477             :         {
    1478           0 :             pgcform->relhasrules = false;
    1479           0 :             dirty = true;
    1480             :         }
    1481      130664 :         if (pgcform->relhastriggers && relation->trigdesc == NULL)
    1482             :         {
    1483           6 :             pgcform->relhastriggers = false;
    1484           6 :             dirty = true;
    1485             :         }
    1486             :     }
    1487             : 
    1488             :     /*
    1489             :      * Update relfrozenxid, unless caller passed InvalidTransactionId
    1490             :      * indicating it has no new data.
    1491             :      *
    1492             :      * Ordinarily, we don't let relfrozenxid go backwards.  However, if the
    1493             :      * stored relfrozenxid is "in the future" then it seems best to assume
    1494             :      * it's corrupt, and overwrite with the oldest remaining XID in the table.
    1495             :      * This should match vac_update_datfrozenxid() concerning what we consider
    1496             :      * to be "in the future".
    1497             :      */
    1498      130978 :     oldfrozenxid = pgcform->relfrozenxid;
    1499      130978 :     futurexid = false;
    1500      130978 :     if (frozenxid_updated)
    1501       97130 :         *frozenxid_updated = false;
    1502      130978 :     if (TransactionIdIsNormal(frozenxid) && oldfrozenxid != frozenxid)
    1503             :     {
    1504       51158 :         bool        update = false;
    1505             : 
    1506       51158 :         if (TransactionIdPrecedes(oldfrozenxid, frozenxid))
    1507       51058 :             update = true;
    1508         100 :         else if (TransactionIdPrecedes(ReadNextTransactionId(), oldfrozenxid))
    1509           0 :             futurexid = update = true;
    1510             : 
    1511       51158 :         if (update)
    1512             :         {
    1513       51058 :             pgcform->relfrozenxid = frozenxid;
    1514       51058 :             dirty = true;
    1515       51058 :             if (frozenxid_updated)
    1516       51058 :                 *frozenxid_updated = true;
    1517             :         }
    1518             :     }
    1519             : 
    1520             :     /* Similarly for relminmxid */
    1521      130978 :     oldminmulti = pgcform->relminmxid;
    1522      130978 :     futuremxid = false;
    1523      130978 :     if (minmulti_updated)
    1524       97130 :         *minmulti_updated = false;
    1525      130978 :     if (MultiXactIdIsValid(minmulti) && oldminmulti != minmulti)
    1526             :     {
    1527         290 :         bool        update = false;
    1528             : 
    1529         290 :         if (MultiXactIdPrecedes(oldminmulti, minmulti))
    1530         290 :             update = true;
    1531           0 :         else if (MultiXactIdPrecedes(ReadNextMultiXactId(), oldminmulti))
    1532           0 :             futuremxid = update = true;
    1533             : 
    1534         290 :         if (update)
    1535             :         {
    1536         290 :             pgcform->relminmxid = minmulti;
    1537         290 :             dirty = true;
    1538         290 :             if (minmulti_updated)
    1539         290 :                 *minmulti_updated = true;
    1540             :         }
    1541             :     }
    1542             : 
    1543             :     /* If anything changed, write out the tuple. */
    1544      130978 :     if (dirty)
    1545       63490 :         systable_inplace_update_finish(inplace_state, ctup);
    1546             :     else
    1547       67488 :         systable_inplace_update_cancel(inplace_state);
    1548             : 
    1549      130978 :     table_close(rd, RowExclusiveLock);
    1550             : 
    1551      130978 :     if (futurexid)
    1552           0 :         ereport(WARNING,
    1553             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    1554             :                  errmsg_internal("overwrote invalid relfrozenxid value %u with new value %u for table \"%s\"",
    1555             :                                  oldfrozenxid, frozenxid,
    1556             :                                  RelationGetRelationName(relation))));
    1557      130978 :     if (futuremxid)
    1558           0 :         ereport(WARNING,
    1559             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    1560             :                  errmsg_internal("overwrote invalid relminmxid value %u with new value %u for table \"%s\"",
    1561             :                                  oldminmulti, minmulti,
    1562             :                                  RelationGetRelationName(relation))));
    1563      130978 : }
    1564             : 
    1565             : 
    1566             : /*
    1567             :  *  vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB
    1568             :  *
    1569             :  *      Update pg_database's datfrozenxid entry for our database to be the
    1570             :  *      minimum of the pg_class.relfrozenxid values.
    1571             :  *
    1572             :  *      Similarly, update our datminmxid to be the minimum of the
    1573             :  *      pg_class.relminmxid values.
    1574             :  *
    1575             :  *      If we are able to advance either pg_database value, also try to
    1576             :  *      truncate pg_xact and pg_multixact.
    1577             :  *
    1578             :  *      We violate transaction semantics here by overwriting the database's
    1579             :  *      existing pg_database tuple with the new values.  This is reasonably
    1580             :  *      safe since the new values are correct whether or not this transaction
    1581             :  *      commits.  As with vac_update_relstats, this avoids leaving dead tuples
    1582             :  *      behind after a VACUUM.
    1583             :  */
    1584             : void
    1585        2682 : vac_update_datfrozenxid(void)
    1586             : {
    1587             :     HeapTuple   tuple;
    1588             :     Form_pg_database dbform;
    1589             :     Relation    relation;
    1590             :     SysScanDesc scan;
    1591             :     HeapTuple   classTup;
    1592             :     TransactionId newFrozenXid;
    1593             :     MultiXactId newMinMulti;
    1594             :     TransactionId lastSaneFrozenXid;
    1595             :     MultiXactId lastSaneMinMulti;
    1596        2682 :     bool        bogus = false;
    1597        2682 :     bool        dirty = false;
    1598             :     ScanKeyData key[1];
    1599             :     void       *inplace_state;
    1600             : 
    1601             :     /*
    1602             :      * Restrict this task to one backend per database.  This avoids race
    1603             :      * conditions that would move datfrozenxid or datminmxid backward.  It
    1604             :      * avoids calling vac_truncate_clog() with a datfrozenxid preceding a
    1605             :      * datfrozenxid passed to an earlier vac_truncate_clog() call.
    1606             :      */
    1607        2682 :     LockDatabaseFrozenIds(ExclusiveLock);
    1608             : 
    1609             :     /*
    1610             :      * Initialize the "min" calculation with
    1611             :      * GetOldestNonRemovableTransactionId(), which is a reasonable
    1612             :      * approximation to the minimum relfrozenxid for not-yet-committed
    1613             :      * pg_class entries for new tables; see AddNewRelationTuple().  So we
    1614             :      * cannot produce a wrong minimum by starting with this.
    1615             :      */
    1616        2682 :     newFrozenXid = GetOldestNonRemovableTransactionId(NULL);
    1617             : 
    1618             :     /*
    1619             :      * Similarly, initialize the MultiXact "min" with the value that would be
    1620             :      * used on pg_class for new tables.  See AddNewRelationTuple().
    1621             :      */
    1622        2682 :     newMinMulti = GetOldestMultiXactId();
    1623             : 
    1624             :     /*
    1625             :      * Identify the latest relfrozenxid and relminmxid values that we could
    1626             :      * validly see during the scan.  These are conservative values, but it's
    1627             :      * not really worth trying to be more exact.
    1628             :      */
    1629        2682 :     lastSaneFrozenXid = ReadNextTransactionId();
    1630        2682 :     lastSaneMinMulti = ReadNextMultiXactId();
    1631             : 
    1632             :     /*
    1633             :      * We must seqscan pg_class to find the minimum Xid, because there is no
    1634             :      * index that can help us here.
    1635             :      *
    1636             :      * See vac_truncate_clog() for the race condition to prevent.
    1637             :      */
    1638        2682 :     relation = table_open(RelationRelationId, AccessShareLock);
    1639             : 
    1640        2682 :     scan = systable_beginscan(relation, InvalidOid, false,
    1641             :                               NULL, 0, NULL);
    1642             : 
    1643     1492814 :     while ((classTup = systable_getnext(scan)) != NULL)
    1644             :     {
    1645     1490132 :         volatile FormData_pg_class *classForm = (Form_pg_class) GETSTRUCT(classTup);
    1646     1490132 :         TransactionId relfrozenxid = classForm->relfrozenxid;
    1647     1490132 :         TransactionId relminmxid = classForm->relminmxid;
    1648             : 
    1649             :         /*
    1650             :          * Only consider relations able to hold unfrozen XIDs (anything else
    1651             :          * should have InvalidTransactionId in relfrozenxid anyway).
    1652             :          */
    1653     1490132 :         if (classForm->relkind != RELKIND_RELATION &&
    1654     1161292 :             classForm->relkind != RELKIND_MATVIEW &&
    1655     1159168 :             classForm->relkind != RELKIND_TOASTVALUE)
    1656             :         {
    1657             :             Assert(!TransactionIdIsValid(relfrozenxid));
    1658             :             Assert(!MultiXactIdIsValid(relminmxid));
    1659      988748 :             continue;
    1660             :         }
    1661             : 
    1662             :         /*
    1663             :          * Some table AMs might not need per-relation xid / multixid horizons.
    1664             :          * It therefore seems reasonable to allow relfrozenxid and relminmxid
    1665             :          * to not be set (i.e. set to their respective Invalid*Id)
    1666             :          * independently. Thus validate and compute horizon for each only if
    1667             :          * set.
    1668             :          *
    1669             :          * If things are working properly, no relation should have a
    1670             :          * relfrozenxid or relminmxid that is "in the future".  However, such
    1671             :          * cases have been known to arise due to bugs in pg_upgrade.  If we
    1672             :          * see any entries that are "in the future", chicken out and don't do
    1673             :          * anything.  This ensures we won't truncate clog & multixact SLRUs
    1674             :          * before those relations have been scanned and cleaned up.
    1675             :          */
    1676             : 
    1677      501384 :         if (TransactionIdIsValid(relfrozenxid))
    1678             :         {
    1679             :             Assert(TransactionIdIsNormal(relfrozenxid));
    1680             : 
    1681             :             /* check for values in the future */
    1682      501384 :             if (TransactionIdPrecedes(lastSaneFrozenXid, relfrozenxid))
    1683             :             {
    1684           0 :                 bogus = true;
    1685           0 :                 break;
    1686             :             }
    1687             : 
    1688             :             /* determine new horizon */
    1689      501384 :             if (TransactionIdPrecedes(relfrozenxid, newFrozenXid))
    1690        3274 :                 newFrozenXid = relfrozenxid;
    1691             :         }
    1692             : 
    1693      501384 :         if (MultiXactIdIsValid(relminmxid))
    1694             :         {
    1695             :             /* check for values in the future */
    1696      501384 :             if (MultiXactIdPrecedes(lastSaneMinMulti, relminmxid))
    1697             :             {
    1698           0 :                 bogus = true;
    1699           0 :                 break;
    1700             :             }
    1701             : 
    1702             :             /* determine new horizon */
    1703      501384 :             if (MultiXactIdPrecedes(relminmxid, newMinMulti))
    1704         198 :                 newMinMulti = relminmxid;
    1705             :         }
    1706             :     }
    1707             : 
    1708             :     /* we're done with pg_class */
    1709        2682 :     systable_endscan(scan);
    1710        2682 :     table_close(relation, AccessShareLock);
    1711             : 
    1712             :     /* chicken out if bogus data found */
    1713        2682 :     if (bogus)
    1714           0 :         return;
    1715             : 
    1716             :     Assert(TransactionIdIsNormal(newFrozenXid));
    1717             :     Assert(MultiXactIdIsValid(newMinMulti));
    1718             : 
    1719             :     /* Now fetch the pg_database tuple we need to update. */
    1720        2682 :     relation = table_open(DatabaseRelationId, RowExclusiveLock);
    1721             : 
    1722             :     /*
    1723             :      * Fetch a copy of the tuple to scribble on.  We could check the syscache
    1724             :      * tuple first.  If that concluded !dirty, we'd avoid waiting on
    1725             :      * concurrent heap_update() and would avoid exclusive-locking the buffer.
    1726             :      * For now, don't optimize that.
    1727             :      */
    1728        2682 :     ScanKeyInit(&key[0],
    1729             :                 Anum_pg_database_oid,
    1730             :                 BTEqualStrategyNumber, F_OIDEQ,
    1731             :                 ObjectIdGetDatum(MyDatabaseId));
    1732             : 
    1733        2682 :     systable_inplace_update_begin(relation, DatabaseOidIndexId, true,
    1734             :                                   NULL, 1, key, &tuple, &inplace_state);
    1735             : 
    1736        2682 :     if (!HeapTupleIsValid(tuple))
    1737           0 :         elog(ERROR, "could not find tuple for database %u", MyDatabaseId);
    1738             : 
    1739        2682 :     dbform = (Form_pg_database) GETSTRUCT(tuple);
    1740             : 
    1741             :     /*
    1742             :      * As in vac_update_relstats(), we ordinarily don't want to let
    1743             :      * datfrozenxid go backward; but if it's "in the future" then it must be
    1744             :      * corrupt and it seems best to overwrite it.
    1745             :      */
    1746        3160 :     if (dbform->datfrozenxid != newFrozenXid &&
    1747         478 :         (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid) ||
    1748           0 :          TransactionIdPrecedes(lastSaneFrozenXid, dbform->datfrozenxid)))
    1749             :     {
    1750         478 :         dbform->datfrozenxid = newFrozenXid;
    1751         478 :         dirty = true;
    1752             :     }
    1753             :     else
    1754        2204 :         newFrozenXid = dbform->datfrozenxid;
    1755             : 
    1756             :     /* Ditto for datminmxid */
    1757        2684 :     if (dbform->datminmxid != newMinMulti &&
    1758           2 :         (MultiXactIdPrecedes(dbform->datminmxid, newMinMulti) ||
    1759           0 :          MultiXactIdPrecedes(lastSaneMinMulti, dbform->datminmxid)))
    1760             :     {
    1761           2 :         dbform->datminmxid = newMinMulti;
    1762           2 :         dirty = true;
    1763             :     }
    1764             :     else
    1765        2680 :         newMinMulti = dbform->datminmxid;
    1766             : 
    1767        2682 :     if (dirty)
    1768         478 :         systable_inplace_update_finish(inplace_state, tuple);
    1769             :     else
    1770        2204 :         systable_inplace_update_cancel(inplace_state);
    1771             : 
    1772        2682 :     heap_freetuple(tuple);
    1773        2682 :     table_close(relation, RowExclusiveLock);
    1774             : 
    1775             :     /*
    1776             :      * If we were able to advance datfrozenxid or datminmxid, see if we can
    1777             :      * truncate pg_xact and/or pg_multixact.  Also do it if the shared
    1778             :      * XID-wrap-limit info is stale, since this action will update that too.
    1779             :      */
    1780        2682 :     if (dirty || ForceTransactionIdLimitUpdate())
    1781         918 :         vac_truncate_clog(newFrozenXid, newMinMulti,
    1782             :                           lastSaneFrozenXid, lastSaneMinMulti);
    1783             : }
    1784             : 
    1785             : 
    1786             : /*
    1787             :  *  vac_truncate_clog() -- attempt to truncate the commit log
    1788             :  *
    1789             :  *      Scan pg_database to determine the system-wide oldest datfrozenxid,
    1790             :  *      and use it to truncate the transaction commit log (pg_xact).
    1791             :  *      Also update the XID wrap limit info maintained by varsup.c.
    1792             :  *      Likewise for datminmxid.
    1793             :  *
    1794             :  *      The passed frozenXID and minMulti are the updated values for my own
    1795             :  *      pg_database entry. They're used to initialize the "min" calculations.
    1796             :  *      The caller also passes the "last sane" XID and MXID, since it has
    1797             :  *      those at hand already.
    1798             :  *
    1799             :  *      This routine is only invoked when we've managed to change our
    1800             :  *      DB's datfrozenxid/datminmxid values, or we found that the shared
    1801             :  *      XID-wrap-limit info is stale.
    1802             :  */
    1803             : static void
    1804         918 : vac_truncate_clog(TransactionId frozenXID,
    1805             :                   MultiXactId minMulti,
    1806             :                   TransactionId lastSaneFrozenXid,
    1807             :                   MultiXactId lastSaneMinMulti)
    1808             : {
    1809         918 :     TransactionId nextXID = ReadNextTransactionId();
    1810             :     Relation    relation;
    1811             :     TableScanDesc scan;
    1812             :     HeapTuple   tuple;
    1813             :     Oid         oldestxid_datoid;
    1814             :     Oid         minmulti_datoid;
    1815         918 :     bool        bogus = false;
    1816         918 :     bool        frozenAlreadyWrapped = false;
    1817             : 
    1818             :     /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
    1819         918 :     LWLockAcquire(WrapLimitsVacuumLock, LW_EXCLUSIVE);
    1820             : 
    1821             :     /* init oldest datoids to sync with my frozenXID/minMulti values */
    1822         918 :     oldestxid_datoid = MyDatabaseId;
    1823         918 :     minmulti_datoid = MyDatabaseId;
    1824             : 
    1825             :     /*
    1826             :      * Scan pg_database to compute the minimum datfrozenxid/datminmxid
    1827             :      *
    1828             :      * Since vac_update_datfrozenxid updates datfrozenxid/datminmxid in-place,
    1829             :      * the values could change while we look at them.  Fetch each one just
    1830             :      * once to ensure sane behavior of the comparison logic.  (Here, as in
    1831             :      * many other places, we assume that fetching or updating an XID in shared
    1832             :      * storage is atomic.)
    1833             :      *
    1834             :      * Note: we need not worry about a race condition with new entries being
    1835             :      * inserted by CREATE DATABASE.  Any such entry will have a copy of some
    1836             :      * existing DB's datfrozenxid, and that source DB cannot be ours because
    1837             :      * of the interlock against copying a DB containing an active backend.
    1838             :      * Hence the new entry will not reduce the minimum.  Also, if two VACUUMs
    1839             :      * concurrently modify the datfrozenxid's of different databases, the
    1840             :      * worst possible outcome is that pg_xact is not truncated as aggressively
    1841             :      * as it could be.
    1842             :      */
    1843         918 :     relation = table_open(DatabaseRelationId, AccessShareLock);
    1844             : 
    1845         918 :     scan = table_beginscan_catalog(relation, 0, NULL);
    1846             : 
    1847        3518 :     while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
    1848             :     {
    1849        2600 :         volatile FormData_pg_database *dbform = (Form_pg_database) GETSTRUCT(tuple);
    1850        2600 :         TransactionId datfrozenxid = dbform->datfrozenxid;
    1851        2600 :         TransactionId datminmxid = dbform->datminmxid;
    1852             : 
    1853             :         Assert(TransactionIdIsNormal(datfrozenxid));
    1854             :         Assert(MultiXactIdIsValid(datminmxid));
    1855             : 
    1856             :         /*
    1857             :          * If database is in the process of getting dropped, or has been
    1858             :          * interrupted while doing so, no connections to it are possible
    1859             :          * anymore. Therefore we don't need to take it into account here.
    1860             :          * Which is good, because it can't be processed by autovacuum either.
    1861             :          */
    1862        2600 :         if (database_is_invalid_form((Form_pg_database) dbform))
    1863             :         {
    1864           2 :             elog(DEBUG2,
    1865             :                  "skipping invalid database \"%s\" while computing relfrozenxid",
    1866             :                  NameStr(dbform->datname));
    1867           2 :             continue;
    1868             :         }
    1869             : 
    1870             :         /*
    1871             :          * If things are working properly, no database should have a
    1872             :          * datfrozenxid or datminmxid that is "in the future".  However, such
    1873             :          * cases have been known to arise due to bugs in pg_upgrade.  If we
    1874             :          * see any entries that are "in the future", chicken out and don't do
    1875             :          * anything.  This ensures we won't truncate clog before those
    1876             :          * databases have been scanned and cleaned up.  (We will issue the
    1877             :          * "already wrapped" warning if appropriate, though.)
    1878             :          */
    1879        5196 :         if (TransactionIdPrecedes(lastSaneFrozenXid, datfrozenxid) ||
    1880        2598 :             MultiXactIdPrecedes(lastSaneMinMulti, datminmxid))
    1881           0 :             bogus = true;
    1882             : 
    1883        2598 :         if (TransactionIdPrecedes(nextXID, datfrozenxid))
    1884           0 :             frozenAlreadyWrapped = true;
    1885        2598 :         else if (TransactionIdPrecedes(datfrozenxid, frozenXID))
    1886             :         {
    1887         452 :             frozenXID = datfrozenxid;
    1888         452 :             oldestxid_datoid = dbform->oid;
    1889             :         }
    1890             : 
    1891        2598 :         if (MultiXactIdPrecedes(datminmxid, minMulti))
    1892             :         {
    1893           4 :             minMulti = datminmxid;
    1894           4 :             minmulti_datoid = dbform->oid;
    1895             :         }
    1896             :     }
    1897             : 
    1898         918 :     table_endscan(scan);
    1899             : 
    1900         918 :     table_close(relation, AccessShareLock);
    1901             : 
    1902             :     /*
    1903             :      * Do not truncate CLOG if we seem to have suffered wraparound already;
    1904             :      * the computed minimum XID might be bogus.  This case should now be
    1905             :      * impossible due to the defenses in GetNewTransactionId, but we keep the
    1906             :      * test anyway.
    1907             :      */
    1908         918 :     if (frozenAlreadyWrapped)
    1909             :     {
    1910           0 :         ereport(WARNING,
    1911             :                 (errmsg("some databases have not been vacuumed in over 2 billion transactions"),
    1912             :                  errdetail("You might have already suffered transaction-wraparound data loss.")));
    1913           0 :         LWLockRelease(WrapLimitsVacuumLock);
    1914           0 :         return;
    1915             :     }
    1916             : 
    1917             :     /* chicken out if data is bogus in any other way */
    1918         918 :     if (bogus)
    1919             :     {
    1920           0 :         LWLockRelease(WrapLimitsVacuumLock);
    1921           0 :         return;
    1922             :     }
    1923             : 
    1924             :     /*
    1925             :      * Advance the oldest value for commit timestamps before truncating, so
    1926             :      * that if a user requests a timestamp for a transaction we're truncating
    1927             :      * away right after this point, they get NULL instead of an ugly "file not
    1928             :      * found" error from slru.c.  This doesn't matter for xact/multixact
    1929             :      * because they are not subject to arbitrary lookups from users.
    1930             :      */
    1931         918 :     AdvanceOldestCommitTsXid(frozenXID);
    1932             : 
    1933             :     /*
    1934             :      * Truncate CLOG, multixact and CommitTs to the oldest computed value.
    1935             :      */
    1936         918 :     TruncateCLOG(frozenXID, oldestxid_datoid);
    1937         918 :     TruncateCommitTs(frozenXID);
    1938         918 :     TruncateMultiXact(minMulti, minmulti_datoid);
    1939             : 
    1940             :     /*
    1941             :      * Update the wrap limit for GetNewTransactionId and creation of new
    1942             :      * MultiXactIds.  Note: these functions will also signal the postmaster
    1943             :      * for an(other) autovac cycle if needed.   XXX should we avoid possibly
    1944             :      * signaling twice?
    1945             :      */
    1946         918 :     SetTransactionIdLimit(frozenXID, oldestxid_datoid);
    1947         918 :     SetMultiXactIdLimit(minMulti, minmulti_datoid, false);
    1948             : 
    1949         918 :     LWLockRelease(WrapLimitsVacuumLock);
    1950             : }
    1951             : 
    1952             : 
    1953             : /*
    1954             :  *  vacuum_rel() -- vacuum one heap relation
    1955             :  *
    1956             :  *      relid identifies the relation to vacuum.  If relation is supplied,
    1957             :  *      use the name therein for reporting any failure to open/lock the rel;
    1958             :  *      do not use it once we've successfully opened the rel, since it might
    1959             :  *      be stale.
    1960             :  *
    1961             :  *      Returns true if it's okay to proceed with a requested ANALYZE
    1962             :  *      operation on this table.
    1963             :  *
    1964             :  *      Doing one heap at a time incurs extra overhead, since we need to
    1965             :  *      check that the heap exists again just before we vacuum it.  The
    1966             :  *      reason that we do this is so that vacuuming can be spread across
    1967             :  *      many small transactions.  Otherwise, two-phase locking would require
    1968             :  *      us to lock the entire database during one pass of the vacuum cleaner.
    1969             :  *
    1970             :  *      At entry and exit, we are not inside a transaction.
    1971             :  */
    1972             : static bool
    1973       97918 : vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
    1974             :            BufferAccessStrategy bstrategy)
    1975             : {
    1976             :     LOCKMODE    lmode;
    1977             :     Relation    rel;
    1978             :     LockRelId   lockrelid;
    1979             :     Oid         priv_relid;
    1980             :     Oid         toast_relid;
    1981             :     Oid         save_userid;
    1982             :     int         save_sec_context;
    1983             :     int         save_nestlevel;
    1984             : 
    1985             :     Assert(params != NULL);
    1986             : 
    1987             :     /* Begin a transaction for vacuuming this relation */
    1988       97918 :     StartTransactionCommand();
    1989             : 
    1990       97918 :     if (!(params->options & VACOPT_FULL))
    1991             :     {
    1992             :         /*
    1993             :          * In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets
    1994             :          * other concurrent VACUUMs know that they can ignore this one while
    1995             :          * determining their OldestXmin.  (The reason we don't set it during a
    1996             :          * full VACUUM is exactly that we may have to run user-defined
    1997             :          * functions for functional indexes, and we want to make sure that if
    1998             :          * they use the snapshot set above, any tuples it requires can't get
    1999             :          * removed from other tables.  An index function that depends on the
    2000             :          * contents of other tables is arguably broken, but we won't break it
    2001             :          * here by violating transaction semantics.)
    2002             :          *
    2003             :          * We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by
    2004             :          * autovacuum; it's used to avoid canceling a vacuum that was invoked
    2005             :          * in an emergency.
    2006             :          *
    2007             :          * Note: these flags remain set until CommitTransaction or
    2008             :          * AbortTransaction.  We don't want to clear them until we reset
    2009             :          * MyProc->xid/xmin, otherwise GetOldestNonRemovableTransactionId()
    2010             :          * might appear to go backwards, which is probably Not Good.  (We also
    2011             :          * set PROC_IN_VACUUM *before* taking our own snapshot, so that our
    2012             :          * xmin doesn't become visible ahead of setting the flag.)
    2013             :          */
    2014       97526 :         LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    2015       97526 :         MyProc->statusFlags |= PROC_IN_VACUUM;
    2016       97526 :         if (params->is_wraparound)
    2017       76306 :             MyProc->statusFlags |= PROC_VACUUM_FOR_WRAPAROUND;
    2018       97526 :         ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
    2019       97526 :         LWLockRelease(ProcArrayLock);
    2020             :     }
    2021             : 
    2022             :     /*
    2023             :      * Need to acquire a snapshot to prevent pg_subtrans from being truncated,
    2024             :      * cutoff xids in local memory wrapping around, and to have updated xmin
    2025             :      * horizons.
    2026             :      */
    2027       97918 :     PushActiveSnapshot(GetTransactionSnapshot());
    2028             : 
    2029             :     /*
    2030             :      * Check for user-requested abort.  Note we want this to be inside a
    2031             :      * transaction, so xact.c doesn't issue useless WARNING.
    2032             :      */
    2033       97918 :     CHECK_FOR_INTERRUPTS();
    2034             : 
    2035             :     /*
    2036             :      * Determine the type of lock we want --- hard exclusive lock for a FULL
    2037             :      * vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
    2038             :      * way, we can be sure that no other backend is vacuuming the same table.
    2039             :      */
    2040      195836 :     lmode = (params->options & VACOPT_FULL) ?
    2041       97918 :         AccessExclusiveLock : ShareUpdateExclusiveLock;
    2042             : 
    2043             :     /* open the relation and get the appropriate lock on it */
    2044       97918 :     rel = vacuum_open_relation(relid, relation, params->options,
    2045       97918 :                                params->log_min_duration >= 0, lmode);
    2046             : 
    2047             :     /* leave if relation could not be opened or locked */
    2048       97918 :     if (!rel)
    2049             :     {
    2050          24 :         PopActiveSnapshot();
    2051          24 :         CommitTransactionCommand();
    2052          24 :         return false;
    2053             :     }
    2054             : 
    2055             :     /*
    2056             :      * When recursing to a TOAST table, check privileges on the parent.  NB:
    2057             :      * This is only safe to do because we hold a session lock on the main
    2058             :      * relation that prevents concurrent deletion.
    2059             :      */
    2060       97894 :     if (OidIsValid(params->toast_parent))
    2061        7408 :         priv_relid = params->toast_parent;
    2062             :     else
    2063       90486 :         priv_relid = RelationGetRelid(rel);
    2064             : 
    2065             :     /*
    2066             :      * Check if relation needs to be skipped based on privileges.  This check
    2067             :      * happens also when building the relation list to vacuum for a manual
    2068             :      * operation, and needs to be done additionally here as VACUUM could
    2069             :      * happen across multiple transactions where privileges could have changed
    2070             :      * in-between.  Make sure to only generate logs for VACUUM in this case.
    2071             :      */
    2072       97894 :     if (!vacuum_is_permitted_for_relation(priv_relid,
    2073             :                                           rel->rd_rel,
    2074       97894 :                                           params->options & ~VACOPT_ANALYZE))
    2075             :     {
    2076          72 :         relation_close(rel, lmode);
    2077          72 :         PopActiveSnapshot();
    2078          72 :         CommitTransactionCommand();
    2079          72 :         return false;
    2080             :     }
    2081             : 
    2082             :     /*
    2083             :      * Check that it's of a vacuumable relkind.
    2084             :      */
    2085       97822 :     if (rel->rd_rel->relkind != RELKIND_RELATION &&
    2086       36016 :         rel->rd_rel->relkind != RELKIND_MATVIEW &&
    2087       36008 :         rel->rd_rel->relkind != RELKIND_TOASTVALUE &&
    2088         178 :         rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
    2089             :     {
    2090           2 :         ereport(WARNING,
    2091             :                 (errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables",
    2092             :                         RelationGetRelationName(rel))));
    2093           2 :         relation_close(rel, lmode);
    2094           2 :         PopActiveSnapshot();
    2095           2 :         CommitTransactionCommand();
    2096           2 :         return false;
    2097             :     }
    2098             : 
    2099             :     /*
    2100             :      * Silently ignore tables that are temp tables of other backends ---
    2101             :      * trying to vacuum these will lead to great unhappiness, since their
    2102             :      * contents are probably not up-to-date on disk.  (We don't throw a
    2103             :      * warning here; it would just lead to chatter during a database-wide
    2104             :      * VACUUM.)
    2105             :      */
    2106       97820 :     if (RELATION_IS_OTHER_TEMP(rel))
    2107             :     {
    2108           2 :         relation_close(rel, lmode);
    2109           2 :         PopActiveSnapshot();
    2110           2 :         CommitTransactionCommand();
    2111           2 :         return false;
    2112             :     }
    2113             : 
    2114             :     /*
    2115             :      * Silently ignore partitioned tables as there is no work to be done.  The
    2116             :      * useful work is on their child partitions, which have been queued up for
    2117             :      * us separately.
    2118             :      */
    2119       97818 :     if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
    2120             :     {
    2121         176 :         relation_close(rel, lmode);
    2122         176 :         PopActiveSnapshot();
    2123         176 :         CommitTransactionCommand();
    2124             :         /* It's OK to proceed with ANALYZE on this table */
    2125         176 :         return true;
    2126             :     }
    2127             : 
    2128             :     /*
    2129             :      * Get a session-level lock too. This will protect our access to the
    2130             :      * relation across multiple transactions, so that we can vacuum the
    2131             :      * relation's TOAST table (if any) secure in the knowledge that no one is
    2132             :      * deleting the parent relation.
    2133             :      *
    2134             :      * NOTE: this cannot block, even if someone else is waiting for access,
    2135             :      * because the lock manager knows that both lock requests are from the
    2136             :      * same process.
    2137             :      */
    2138       97642 :     lockrelid = rel->rd_lockInfo.lockRelId;
    2139       97642 :     LockRelationIdForSession(&lockrelid, lmode);
    2140             : 
    2141             :     /*
    2142             :      * Set index_cleanup option based on index_cleanup reloption if it wasn't
    2143             :      * specified in VACUUM command, or when running in an autovacuum worker
    2144             :      */
    2145       97642 :     if (params->index_cleanup == VACOPTVALUE_UNSPECIFIED)
    2146             :     {
    2147             :         StdRdOptIndexCleanup vacuum_index_cleanup;
    2148             : 
    2149       81994 :         if (rel->rd_options == NULL)
    2150       80982 :             vacuum_index_cleanup = STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO;
    2151             :         else
    2152        1012 :             vacuum_index_cleanup =
    2153        1012 :                 ((StdRdOptions *) rel->rd_options)->vacuum_index_cleanup;
    2154             : 
    2155       81994 :         if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO)
    2156       81970 :             params->index_cleanup = VACOPTVALUE_AUTO;
    2157          24 :         else if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON)
    2158          12 :             params->index_cleanup = VACOPTVALUE_ENABLED;
    2159             :         else
    2160             :         {
    2161             :             Assert(vacuum_index_cleanup ==
    2162             :                    STDRD_OPTION_VACUUM_INDEX_CLEANUP_OFF);
    2163          12 :             params->index_cleanup = VACOPTVALUE_DISABLED;
    2164             :         }
    2165             :     }
    2166             : 
    2167             :     /*
    2168             :      * Set truncate option based on truncate reloption if it wasn't specified
    2169             :      * in VACUUM command, or when running in an autovacuum worker
    2170             :      */
    2171       97642 :     if (params->truncate == VACOPTVALUE_UNSPECIFIED)
    2172             :     {
    2173       82020 :         if (rel->rd_options == NULL ||
    2174        1012 :             ((StdRdOptions *) rel->rd_options)->vacuum_truncate)
    2175       82014 :             params->truncate = VACOPTVALUE_ENABLED;
    2176             :         else
    2177           6 :             params->truncate = VACOPTVALUE_DISABLED;
    2178             :     }
    2179             : 
    2180             :     /*
    2181             :      * Remember the relation's TOAST relation for later, if the caller asked
    2182             :      * us to process it.  In VACUUM FULL, though, the toast table is
    2183             :      * automatically rebuilt by cluster_rel so we shouldn't recurse to it,
    2184             :      * unless PROCESS_MAIN is disabled.
    2185             :      */
    2186       97642 :     if ((params->options & VACOPT_PROCESS_TOAST) != 0 &&
    2187       21106 :         ((params->options & VACOPT_FULL) == 0 ||
    2188         364 :          (params->options & VACOPT_PROCESS_MAIN) == 0))
    2189       20748 :         toast_relid = rel->rd_rel->reltoastrelid;
    2190             :     else
    2191       76894 :         toast_relid = InvalidOid;
    2192             : 
    2193             :     /*
    2194             :      * Switch to the table owner's userid, so that any index functions are run
    2195             :      * as that user.  Also lock down security-restricted operations and
    2196             :      * arrange to make GUC variable changes local to this command. (This is
    2197             :      * unnecessary, but harmless, for lazy VACUUM.)
    2198             :      */
    2199       97642 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2200       97642 :     SetUserIdAndSecContext(rel->rd_rel->relowner,
    2201             :                            save_sec_context | SECURITY_RESTRICTED_OPERATION);
    2202       97642 :     save_nestlevel = NewGUCNestLevel();
    2203       97642 :     RestrictSearchPath();
    2204             : 
    2205             :     /*
    2206             :      * If PROCESS_MAIN is set (the default), it's time to vacuum the main
    2207             :      * relation.  Otherwise, we can skip this part.  If processing the TOAST
    2208             :      * table is required (e.g., PROCESS_TOAST is set), we force PROCESS_MAIN
    2209             :      * to be set when we recurse to the TOAST table.
    2210             :      */
    2211       97642 :     if (params->options & VACOPT_PROCESS_MAIN)
    2212             :     {
    2213             :         /*
    2214             :          * Do the actual work --- either FULL or "lazy" vacuum
    2215             :          */
    2216       97488 :         if (params->options & VACOPT_FULL)
    2217             :         {
    2218         358 :             ClusterParams cluster_params = {0};
    2219             : 
    2220             :             /* close relation before vacuuming, but hold lock until commit */
    2221         358 :             relation_close(rel, NoLock);
    2222         358 :             rel = NULL;
    2223             : 
    2224         358 :             if ((params->options & VACOPT_VERBOSE) != 0)
    2225           2 :                 cluster_params.options |= CLUOPT_VERBOSE;
    2226             : 
    2227             :             /* VACUUM FULL is now a variant of CLUSTER; see cluster.c */
    2228         358 :             cluster_rel(relid, InvalidOid, &cluster_params);
    2229             :         }
    2230             :         else
    2231       97130 :             table_relation_vacuum(rel, params, bstrategy);
    2232             :     }
    2233             : 
    2234             :     /* Roll back any GUC changes executed by index functions */
    2235       97636 :     AtEOXact_GUC(false, save_nestlevel);
    2236             : 
    2237             :     /* Restore userid and security context */
    2238       97636 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2239             : 
    2240             :     /* all done with this class, but hold lock until commit */
    2241       97636 :     if (rel)
    2242       97284 :         relation_close(rel, NoLock);
    2243             : 
    2244             :     /*
    2245             :      * Complete the transaction and free all temporary memory used.
    2246             :      */
    2247       97636 :     PopActiveSnapshot();
    2248       97636 :     CommitTransactionCommand();
    2249             : 
    2250             :     /*
    2251             :      * If the relation has a secondary toast rel, vacuum that too while we
    2252             :      * still hold the session lock on the main table.  Note however that
    2253             :      * "analyze" will not get done on the toast table.  This is good, because
    2254             :      * the toaster always uses hardcoded index access and statistics are
    2255             :      * totally unimportant for toast relations.
    2256             :      */
    2257       97636 :     if (toast_relid != InvalidOid)
    2258             :     {
    2259             :         VacuumParams toast_vacuum_params;
    2260             : 
    2261             :         /*
    2262             :          * Force VACOPT_PROCESS_MAIN so vacuum_rel() processes it.  Likewise,
    2263             :          * set toast_parent so that the privilege checks are done on the main
    2264             :          * relation.  NB: This is only safe to do because we hold a session
    2265             :          * lock on the main relation that prevents concurrent deletion.
    2266             :          */
    2267        7408 :         memcpy(&toast_vacuum_params, params, sizeof(VacuumParams));
    2268        7408 :         toast_vacuum_params.options |= VACOPT_PROCESS_MAIN;
    2269        7408 :         toast_vacuum_params.toast_parent = relid;
    2270             : 
    2271        7408 :         vacuum_rel(toast_relid, NULL, &toast_vacuum_params, bstrategy);
    2272             :     }
    2273             : 
    2274             :     /*
    2275             :      * Now release the session-level lock on the main table.
    2276             :      */
    2277       97636 :     UnlockRelationIdForSession(&lockrelid, lmode);
    2278             : 
    2279             :     /* Report that we really did it. */
    2280       97636 :     return true;
    2281             : }
    2282             : 
    2283             : 
    2284             : /*
    2285             :  * Open all the vacuumable indexes of the given relation, obtaining the
    2286             :  * specified kind of lock on each.  Return an array of Relation pointers for
    2287             :  * the indexes into *Irel, and the number of indexes into *nindexes.
    2288             :  *
    2289             :  * We consider an index vacuumable if it is marked insertable (indisready).
    2290             :  * If it isn't, probably a CREATE INDEX CONCURRENTLY command failed early in
    2291             :  * execution, and what we have is too corrupt to be processable.  We will
    2292             :  * vacuum even if the index isn't indisvalid; this is important because in a
    2293             :  * unique index, uniqueness checks will be performed anyway and had better not
    2294             :  * hit dangling index pointers.
    2295             :  */
    2296             : void
    2297      109862 : vac_open_indexes(Relation relation, LOCKMODE lockmode,
    2298             :                  int *nindexes, Relation **Irel)
    2299             : {
    2300             :     List       *indexoidlist;
    2301             :     ListCell   *indexoidscan;
    2302             :     int         i;
    2303             : 
    2304             :     Assert(lockmode != NoLock);
    2305             : 
    2306      109862 :     indexoidlist = RelationGetIndexList(relation);
    2307             : 
    2308             :     /* allocate enough memory for all indexes */
    2309      109862 :     i = list_length(indexoidlist);
    2310             : 
    2311      109862 :     if (i > 0)
    2312      101930 :         *Irel = (Relation *) palloc(i * sizeof(Relation));
    2313             :     else
    2314        7932 :         *Irel = NULL;
    2315             : 
    2316             :     /* collect just the ready indexes */
    2317      109862 :     i = 0;
    2318      272632 :     foreach(indexoidscan, indexoidlist)
    2319             :     {
    2320      162770 :         Oid         indexoid = lfirst_oid(indexoidscan);
    2321             :         Relation    indrel;
    2322             : 
    2323      162770 :         indrel = index_open(indexoid, lockmode);
    2324      162770 :         if (indrel->rd_index->indisready)
    2325      162770 :             (*Irel)[i++] = indrel;
    2326             :         else
    2327           0 :             index_close(indrel, lockmode);
    2328             :     }
    2329             : 
    2330      109862 :     *nindexes = i;
    2331             : 
    2332      109862 :     list_free(indexoidlist);
    2333      109862 : }
    2334             : 
    2335             : /*
    2336             :  * Release the resources acquired by vac_open_indexes.  Optionally release
    2337             :  * the locks (say NoLock to keep 'em).
    2338             :  */
    2339             : void
    2340      110646 : vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
    2341             : {
    2342      110646 :     if (Irel == NULL)
    2343        8722 :         return;
    2344             : 
    2345      264682 :     while (nindexes--)
    2346             :     {
    2347      162758 :         Relation    ind = Irel[nindexes];
    2348             : 
    2349      162758 :         index_close(ind, lockmode);
    2350             :     }
    2351      101924 :     pfree(Irel);
    2352             : }
    2353             : 
    2354             : /*
    2355             :  * vacuum_delay_point --- check for interrupts and cost-based delay.
    2356             :  *
    2357             :  * This should be called in each major loop of VACUUM processing,
    2358             :  * typically once per page processed.
    2359             :  */
    2360             : void
    2361    67758736 : vacuum_delay_point(void)
    2362             : {
    2363    67758736 :     double      msec = 0;
    2364             : 
    2365             :     /* Always check for interrupts */
    2366    67758736 :     CHECK_FOR_INTERRUPTS();
    2367             : 
    2368    67758736 :     if (InterruptPending ||
    2369    67758736 :         (!VacuumCostActive && !ConfigReloadPending))
    2370    63509048 :         return;
    2371             : 
    2372             :     /*
    2373             :      * Autovacuum workers should reload the configuration file if requested.
    2374             :      * This allows changes to [autovacuum_]vacuum_cost_limit and
    2375             :      * [autovacuum_]vacuum_cost_delay to take effect while a table is being
    2376             :      * vacuumed or analyzed.
    2377             :      */
    2378     4249688 :     if (ConfigReloadPending && AmAutoVacuumWorkerProcess())
    2379             :     {
    2380           0 :         ConfigReloadPending = false;
    2381           0 :         ProcessConfigFile(PGC_SIGHUP);
    2382           0 :         VacuumUpdateCosts();
    2383             :     }
    2384             : 
    2385             :     /*
    2386             :      * If we disabled cost-based delays after reloading the config file,
    2387             :      * return.
    2388             :      */
    2389     4249688 :     if (!VacuumCostActive)
    2390           0 :         return;
    2391             : 
    2392             :     /*
    2393             :      * For parallel vacuum, the delay is computed based on the shared cost
    2394             :      * balance.  See compute_parallel_delay.
    2395             :      */
    2396     4249688 :     if (VacuumSharedCostBalance != NULL)
    2397           0 :         msec = compute_parallel_delay();
    2398     4249688 :     else if (VacuumCostBalance >= vacuum_cost_limit)
    2399        1682 :         msec = vacuum_cost_delay * VacuumCostBalance / vacuum_cost_limit;
    2400             : 
    2401             :     /* Nap if appropriate */
    2402     4249688 :     if (msec > 0)
    2403             :     {
    2404        1682 :         if (msec > vacuum_cost_delay * 4)
    2405           6 :             msec = vacuum_cost_delay * 4;
    2406             : 
    2407        1682 :         pgstat_report_wait_start(WAIT_EVENT_VACUUM_DELAY);
    2408        1682 :         pg_usleep(msec * 1000);
    2409        1682 :         pgstat_report_wait_end();
    2410             : 
    2411             :         /*
    2412             :          * We don't want to ignore postmaster death during very long vacuums
    2413             :          * with vacuum_cost_delay configured.  We can't use the usual
    2414             :          * WaitLatch() approach here because we want microsecond-based sleep
    2415             :          * durations above.
    2416             :          */
    2417        1682 :         if (IsUnderPostmaster && !PostmasterIsAlive())
    2418           0 :             exit(1);
    2419             : 
    2420        1682 :         VacuumCostBalance = 0;
    2421             : 
    2422             :         /*
    2423             :          * Balance and update limit values for autovacuum workers. We must do
    2424             :          * this periodically, as the number of workers across which we are
    2425             :          * balancing the limit may have changed.
    2426             :          *
    2427             :          * TODO: There may be better criteria for determining when to do this
    2428             :          * besides "check after napping".
    2429             :          */
    2430        1682 :         AutoVacuumUpdateCostLimit();
    2431             : 
    2432             :         /* Might have gotten an interrupt while sleeping */
    2433        1682 :         CHECK_FOR_INTERRUPTS();
    2434             :     }
    2435             : }
    2436             : 
    2437             : /*
    2438             :  * Computes the vacuum delay for parallel workers.
    2439             :  *
    2440             :  * The basic idea of a cost-based delay for parallel vacuum is to allow each
    2441             :  * worker to sleep in proportion to the share of work it's done.  We achieve this
    2442             :  * by allowing all parallel vacuum workers including the leader process to
    2443             :  * have a shared view of cost related parameters (mainly VacuumCostBalance).
    2444             :  * We allow each worker to update it as and when it has incurred any cost and
    2445             :  * then based on that decide whether it needs to sleep.  We compute the time
    2446             :  * to sleep for a worker based on the cost it has incurred
    2447             :  * (VacuumCostBalanceLocal) and then reduce the VacuumSharedCostBalance by
    2448             :  * that amount.  This avoids putting to sleep those workers which have done less
    2449             :  * I/O than other workers and therefore ensure that workers
    2450             :  * which are doing more I/O got throttled more.
    2451             :  *
    2452             :  * We allow a worker to sleep only if it has performed I/O above a certain
    2453             :  * threshold, which is calculated based on the number of active workers
    2454             :  * (VacuumActiveNWorkers), and the overall cost balance is more than
    2455             :  * VacuumCostLimit set by the system.  Testing reveals that we achieve
    2456             :  * the required throttling if we force a worker that has done more than 50%
    2457             :  * of its share of work to sleep.
    2458             :  */
    2459             : static double
    2460           0 : compute_parallel_delay(void)
    2461             : {
    2462           0 :     double      msec = 0;
    2463             :     uint32      shared_balance;
    2464             :     int         nworkers;
    2465             : 
    2466             :     /* Parallel vacuum must be active */
    2467             :     Assert(VacuumSharedCostBalance);
    2468             : 
    2469           0 :     nworkers = pg_atomic_read_u32(VacuumActiveNWorkers);
    2470             : 
    2471             :     /* At least count itself */
    2472             :     Assert(nworkers >= 1);
    2473             : 
    2474             :     /* Update the shared cost balance value atomically */
    2475           0 :     shared_balance = pg_atomic_add_fetch_u32(VacuumSharedCostBalance, VacuumCostBalance);
    2476             : 
    2477             :     /* Compute the total local balance for the current worker */
    2478           0 :     VacuumCostBalanceLocal += VacuumCostBalance;
    2479             : 
    2480           0 :     if ((shared_balance >= vacuum_cost_limit) &&
    2481           0 :         (VacuumCostBalanceLocal > 0.5 * ((double) vacuum_cost_limit / nworkers)))
    2482             :     {
    2483             :         /* Compute sleep time based on the local cost balance */
    2484           0 :         msec = vacuum_cost_delay * VacuumCostBalanceLocal / vacuum_cost_limit;
    2485           0 :         pg_atomic_sub_fetch_u32(VacuumSharedCostBalance, VacuumCostBalanceLocal);
    2486           0 :         VacuumCostBalanceLocal = 0;
    2487             :     }
    2488             : 
    2489             :     /*
    2490             :      * Reset the local balance as we accumulated it into the shared value.
    2491             :      */
    2492           0 :     VacuumCostBalance = 0;
    2493             : 
    2494           0 :     return msec;
    2495             : }
    2496             : 
    2497             : /*
    2498             :  * A wrapper function of defGetBoolean().
    2499             :  *
    2500             :  * This function returns VACOPTVALUE_ENABLED and VACOPTVALUE_DISABLED instead
    2501             :  * of true and false.
    2502             :  */
    2503             : static VacOptValue
    2504         316 : get_vacoptval_from_boolean(DefElem *def)
    2505             : {
    2506         316 :     return defGetBoolean(def) ? VACOPTVALUE_ENABLED : VACOPTVALUE_DISABLED;
    2507             : }
    2508             : 
    2509             : /*
    2510             :  *  vac_bulkdel_one_index() -- bulk-deletion for index relation.
    2511             :  *
    2512             :  * Returns bulk delete stats derived from input stats
    2513             :  */
    2514             : IndexBulkDeleteResult *
    2515        1962 : vac_bulkdel_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat,
    2516             :                       TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
    2517             : {
    2518             :     /* Do bulk deletion */
    2519        1962 :     istat = index_bulk_delete(ivinfo, istat, vac_tid_reaped,
    2520             :                               (void *) dead_items);
    2521             : 
    2522        1962 :     ereport(ivinfo->message_level,
    2523             :             (errmsg("scanned index \"%s\" to remove %lld row versions",
    2524             :                     RelationGetRelationName(ivinfo->index),
    2525             :                     (long long) dead_items_info->num_items)));
    2526             : 
    2527        1962 :     return istat;
    2528             : }
    2529             : 
    2530             : /*
    2531             :  *  vac_cleanup_one_index() -- do post-vacuum cleanup for index relation.
    2532             :  *
    2533             :  * Returns bulk delete stats derived from input stats
    2534             :  */
    2535             : IndexBulkDeleteResult *
    2536      121654 : vac_cleanup_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat)
    2537             : {
    2538      121654 :     istat = index_vacuum_cleanup(ivinfo, istat);
    2539             : 
    2540      121654 :     if (istat)
    2541        2192 :         ereport(ivinfo->message_level,
    2542             :                 (errmsg("index \"%s\" now contains %.0f row versions in %u pages",
    2543             :                         RelationGetRelationName(ivinfo->index),
    2544             :                         istat->num_index_tuples,
    2545             :                         istat->num_pages),
    2546             :                  errdetail("%.0f index row versions were removed.\n"
    2547             :                            "%u index pages were newly deleted.\n"
    2548             :                            "%u index pages are currently deleted, of which %u are currently reusable.",
    2549             :                            istat->tuples_removed,
    2550             :                            istat->pages_newly_deleted,
    2551             :                            istat->pages_deleted, istat->pages_free)));
    2552             : 
    2553      121654 :     return istat;
    2554             : }
    2555             : 
    2556             : /*
    2557             :  *  vac_tid_reaped() -- is a particular tid deletable?
    2558             :  *
    2559             :  *      This has the right signature to be an IndexBulkDeleteCallback.
    2560             :  */
    2561             : static bool
    2562     5374622 : vac_tid_reaped(ItemPointer itemptr, void *state)
    2563             : {
    2564     5374622 :     TidStore   *dead_items = (TidStore *) state;
    2565             : 
    2566     5374622 :     return TidStoreIsMember(dead_items, itemptr);
    2567             : }

Generated by: LCOV version 1.14