LCOV - code coverage report
Current view: top level - src/backend/commands - vacuum.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 659 742 88.8 %
Date: 2025-02-21 18:14:53 Functions: 21 22 95.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * vacuum.c
       4             :  *    The postgres vacuum cleaner.
       5             :  *
       6             :  * This file includes (a) control and dispatch code for VACUUM and ANALYZE
       7             :  * commands, (b) code to compute various vacuum thresholds, and (c) index
       8             :  * vacuum code.
       9             :  *
      10             :  * VACUUM for heap AM is implemented in vacuumlazy.c, parallel vacuum in
      11             :  * vacuumparallel.c, ANALYZE in analyze.c, and VACUUM FULL is a variant of
      12             :  * CLUSTER, handled in cluster.c.
      13             :  *
      14             :  *
      15             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      16             :  * Portions Copyright (c) 1994, Regents of the University of California
      17             :  *
      18             :  *
      19             :  * IDENTIFICATION
      20             :  *    src/backend/commands/vacuum.c
      21             :  *
      22             :  *-------------------------------------------------------------------------
      23             :  */
      24             : #include "postgres.h"
      25             : 
      26             : #include <math.h>
      27             : 
      28             : #include "access/clog.h"
      29             : #include "access/commit_ts.h"
      30             : #include "access/genam.h"
      31             : #include "access/heapam.h"
      32             : #include "access/htup_details.h"
      33             : #include "access/multixact.h"
      34             : #include "access/tableam.h"
      35             : #include "access/transam.h"
      36             : #include "access/xact.h"
      37             : #include "catalog/namespace.h"
      38             : #include "catalog/pg_database.h"
      39             : #include "catalog/pg_inherits.h"
      40             : #include "commands/cluster.h"
      41             : #include "commands/defrem.h"
      42             : #include "commands/progress.h"
      43             : #include "commands/vacuum.h"
      44             : #include "miscadmin.h"
      45             : #include "nodes/makefuncs.h"
      46             : #include "pgstat.h"
      47             : #include "postmaster/autovacuum.h"
      48             : #include "postmaster/bgworker_internals.h"
      49             : #include "postmaster/interrupt.h"
      50             : #include "storage/bufmgr.h"
      51             : #include "storage/lmgr.h"
      52             : #include "storage/pmsignal.h"
      53             : #include "storage/proc.h"
      54             : #include "storage/procarray.h"
      55             : #include "utils/acl.h"
      56             : #include "utils/fmgroids.h"
      57             : #include "utils/guc.h"
      58             : #include "utils/guc_hooks.h"
      59             : #include "utils/memutils.h"
      60             : #include "utils/snapmgr.h"
      61             : #include "utils/syscache.h"
      62             : 
      63             : /*
      64             :  * Minimum interval for cost-based vacuum delay reports from a parallel worker.
      65             :  * This aims to avoid sending too many messages and waking up the leader too
      66             :  * frequently.
      67             :  */
      68             : #define PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS    (NS_PER_S)
      69             : 
      70             : /*
      71             :  * GUC parameters
      72             :  */
      73             : int         vacuum_freeze_min_age;
      74             : int         vacuum_freeze_table_age;
      75             : int         vacuum_multixact_freeze_min_age;
      76             : int         vacuum_multixact_freeze_table_age;
      77             : int         vacuum_failsafe_age;
      78             : int         vacuum_multixact_failsafe_age;
      79             : double      vacuum_max_eager_freeze_failure_rate;
      80             : bool        track_cost_delay_timing;
      81             : 
      82             : /*
      83             :  * Variables for cost-based vacuum delay. The defaults differ between
      84             :  * autovacuum and vacuum. They should be set with the appropriate GUC value in
      85             :  * vacuum code. They are initialized here to the defaults for client backends
      86             :  * executing VACUUM or ANALYZE.
      87             :  */
      88             : double      vacuum_cost_delay = 0;
      89             : int         vacuum_cost_limit = 200;
      90             : 
      91             : /* Variable for reporting cost-based vacuum delay from parallel workers. */
      92             : int64       parallel_vacuum_worker_delay_ns = 0;
      93             : 
      94             : /*
      95             :  * VacuumFailsafeActive is a defined as a global so that we can determine
      96             :  * whether or not to re-enable cost-based vacuum delay when vacuuming a table.
      97             :  * If failsafe mode has been engaged, we will not re-enable cost-based delay
      98             :  * for the table until after vacuuming has completed, regardless of other
      99             :  * settings.
     100             :  *
     101             :  * Only VACUUM code should inspect this variable and only table access methods
     102             :  * should set it to true. In Table AM-agnostic VACUUM code, this variable is
     103             :  * inspected to determine whether or not to allow cost-based delays. Table AMs
     104             :  * are free to set it if they desire this behavior, but it is false by default
     105             :  * and reset to false in between vacuuming each relation.
     106             :  */
     107             : bool        VacuumFailsafeActive = false;
     108             : 
     109             : /*
     110             :  * Variables for cost-based parallel vacuum.  See comments atop
     111             :  * compute_parallel_delay to understand how it works.
     112             :  */
     113             : pg_atomic_uint32 *VacuumSharedCostBalance = NULL;
     114             : pg_atomic_uint32 *VacuumActiveNWorkers = NULL;
     115             : int         VacuumCostBalanceLocal = 0;
     116             : 
     117             : /* non-export function prototypes */
     118             : static List *expand_vacuum_rel(VacuumRelation *vrel,
     119             :                                MemoryContext vac_context, int options);
     120             : static List *get_all_vacuum_rels(MemoryContext vac_context, int options);
     121             : static void vac_truncate_clog(TransactionId frozenXID,
     122             :                               MultiXactId minMulti,
     123             :                               TransactionId lastSaneFrozenXid,
     124             :                               MultiXactId lastSaneMinMulti);
     125             : static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
     126             :                        BufferAccessStrategy bstrategy);
     127             : static double compute_parallel_delay(void);
     128             : static VacOptValue get_vacoptval_from_boolean(DefElem *def);
     129             : static bool vac_tid_reaped(ItemPointer itemptr, void *state);
     130             : 
     131             : /*
     132             :  * GUC check function to ensure GUC value specified is within the allowable
     133             :  * range.
     134             :  */
     135             : bool
     136        1996 : check_vacuum_buffer_usage_limit(int *newval, void **extra,
     137             :                                 GucSource source)
     138             : {
     139             :     /* Value upper and lower hard limits are inclusive */
     140        1996 :     if (*newval == 0 || (*newval >= MIN_BAS_VAC_RING_SIZE_KB &&
     141        1996 :                          *newval <= MAX_BAS_VAC_RING_SIZE_KB))
     142        1996 :         return true;
     143             : 
     144             :     /* Value does not fall within any allowable range */
     145           0 :     GUC_check_errdetail("\"%s\" must be 0 or between %d kB and %d kB.",
     146             :                         "vacuum_buffer_usage_limit",
     147             :                         MIN_BAS_VAC_RING_SIZE_KB, MAX_BAS_VAC_RING_SIZE_KB);
     148             : 
     149           0 :     return false;
     150             : }
     151             : 
     152             : /*
     153             :  * Primary entry point for manual VACUUM and ANALYZE commands
     154             :  *
     155             :  * This is mainly a preparation wrapper for the real operations that will
     156             :  * happen in vacuum().
     157             :  */
     158             : void
     159       10778 : ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel)
     160             : {
     161             :     VacuumParams params;
     162       10778 :     BufferAccessStrategy bstrategy = NULL;
     163       10778 :     bool        verbose = false;
     164       10778 :     bool        skip_locked = false;
     165       10778 :     bool        analyze = false;
     166       10778 :     bool        freeze = false;
     167       10778 :     bool        full = false;
     168       10778 :     bool        disable_page_skipping = false;
     169       10778 :     bool        process_main = true;
     170       10778 :     bool        process_toast = true;
     171             :     int         ring_size;
     172       10778 :     bool        skip_database_stats = false;
     173       10778 :     bool        only_database_stats = false;
     174             :     MemoryContext vac_context;
     175             :     ListCell   *lc;
     176             : 
     177             :     /* index_cleanup and truncate values unspecified for now */
     178       10778 :     params.index_cleanup = VACOPTVALUE_UNSPECIFIED;
     179       10778 :     params.truncate = VACOPTVALUE_UNSPECIFIED;
     180             : 
     181             :     /* By default parallel vacuum is enabled */
     182       10778 :     params.nworkers = 0;
     183             : 
     184             :     /* Will be set later if we recurse to a TOAST table. */
     185       10778 :     params.toast_parent = InvalidOid;
     186             : 
     187             :     /*
     188             :      * Set this to an invalid value so it is clear whether or not a
     189             :      * BUFFER_USAGE_LIMIT was specified when making the access strategy.
     190             :      */
     191       10778 :     ring_size = -1;
     192             : 
     193             :     /* Parse options list */
     194       19774 :     foreach(lc, vacstmt->options)
     195             :     {
     196        9032 :         DefElem    *opt = (DefElem *) lfirst(lc);
     197             : 
     198             :         /* Parse common options for VACUUM and ANALYZE */
     199        9032 :         if (strcmp(opt->defname, "verbose") == 0)
     200          38 :             verbose = defGetBoolean(opt);
     201        8994 :         else if (strcmp(opt->defname, "skip_locked") == 0)
     202         334 :             skip_locked = defGetBoolean(opt);
     203        8660 :         else if (strcmp(opt->defname, "buffer_usage_limit") == 0)
     204             :         {
     205             :             const char *hintmsg;
     206             :             int         result;
     207             :             char       *vac_buffer_size;
     208             : 
     209          54 :             vac_buffer_size = defGetString(opt);
     210             : 
     211             :             /*
     212             :              * Check that the specified value is valid and the size falls
     213             :              * within the hard upper and lower limits if it is not 0.
     214             :              */
     215          54 :             if (!parse_int(vac_buffer_size, &result, GUC_UNIT_KB, &hintmsg) ||
     216          48 :                 (result != 0 &&
     217          36 :                  (result < MIN_BAS_VAC_RING_SIZE_KB || result > MAX_BAS_VAC_RING_SIZE_KB)))
     218             :             {
     219          18 :                 ereport(ERROR,
     220             :                         (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     221             :                          errmsg("BUFFER_USAGE_LIMIT option must be 0 or between %d kB and %d kB",
     222             :                                 MIN_BAS_VAC_RING_SIZE_KB, MAX_BAS_VAC_RING_SIZE_KB),
     223             :                          hintmsg ? errhint("%s", _(hintmsg)) : 0));
     224             :             }
     225             : 
     226          36 :             ring_size = result;
     227             :         }
     228        8606 :         else if (!vacstmt->is_vacuumcmd)
     229           6 :             ereport(ERROR,
     230             :                     (errcode(ERRCODE_SYNTAX_ERROR),
     231             :                      errmsg("unrecognized ANALYZE option \"%s\"", opt->defname),
     232             :                      parser_errposition(pstate, opt->location)));
     233             : 
     234             :         /* Parse options available on VACUUM */
     235        8600 :         else if (strcmp(opt->defname, "analyze") == 0)
     236        1382 :             analyze = defGetBoolean(opt);
     237        7218 :         else if (strcmp(opt->defname, "freeze") == 0)
     238        1168 :             freeze = defGetBoolean(opt);
     239        6050 :         else if (strcmp(opt->defname, "full") == 0)
     240         376 :             full = defGetBoolean(opt);
     241        5674 :         else if (strcmp(opt->defname, "disable_page_skipping") == 0)
     242         184 :             disable_page_skipping = defGetBoolean(opt);
     243        5490 :         else if (strcmp(opt->defname, "index_cleanup") == 0)
     244             :         {
     245             :             /* Interpret no string as the default, which is 'auto' */
     246         174 :             if (!opt->arg)
     247           0 :                 params.index_cleanup = VACOPTVALUE_AUTO;
     248             :             else
     249             :             {
     250         174 :                 char       *sval = defGetString(opt);
     251             : 
     252             :                 /* Try matching on 'auto' string, or fall back on boolean */
     253         174 :                 if (pg_strcasecmp(sval, "auto") == 0)
     254           6 :                     params.index_cleanup = VACOPTVALUE_AUTO;
     255             :                 else
     256         168 :                     params.index_cleanup = get_vacoptval_from_boolean(opt);
     257             :             }
     258             :         }
     259        5316 :         else if (strcmp(opt->defname, "process_main") == 0)
     260         154 :             process_main = defGetBoolean(opt);
     261        5162 :         else if (strcmp(opt->defname, "process_toast") == 0)
     262         160 :             process_toast = defGetBoolean(opt);
     263        5002 :         else if (strcmp(opt->defname, "truncate") == 0)
     264         148 :             params.truncate = get_vacoptval_from_boolean(opt);
     265        4854 :         else if (strcmp(opt->defname, "parallel") == 0)
     266             :         {
     267         338 :             if (opt->arg == NULL)
     268             :             {
     269           6 :                 ereport(ERROR,
     270             :                         (errcode(ERRCODE_SYNTAX_ERROR),
     271             :                          errmsg("parallel option requires a value between 0 and %d",
     272             :                                 MAX_PARALLEL_WORKER_LIMIT),
     273             :                          parser_errposition(pstate, opt->location)));
     274             :             }
     275             :             else
     276             :             {
     277             :                 int         nworkers;
     278             : 
     279         332 :                 nworkers = defGetInt32(opt);
     280         332 :                 if (nworkers < 0 || nworkers > MAX_PARALLEL_WORKER_LIMIT)
     281           6 :                     ereport(ERROR,
     282             :                             (errcode(ERRCODE_SYNTAX_ERROR),
     283             :                              errmsg("parallel workers for vacuum must be between 0 and %d",
     284             :                                     MAX_PARALLEL_WORKER_LIMIT),
     285             :                              parser_errposition(pstate, opt->location)));
     286             : 
     287             :                 /*
     288             :                  * Disable parallel vacuum, if user has specified parallel
     289             :                  * degree as zero.
     290             :                  */
     291         326 :                 if (nworkers == 0)
     292         154 :                     params.nworkers = -1;
     293             :                 else
     294         172 :                     params.nworkers = nworkers;
     295             :             }
     296             :         }
     297        4516 :         else if (strcmp(opt->defname, "skip_database_stats") == 0)
     298        4398 :             skip_database_stats = defGetBoolean(opt);
     299         118 :         else if (strcmp(opt->defname, "only_database_stats") == 0)
     300         118 :             only_database_stats = defGetBoolean(opt);
     301             :         else
     302           0 :             ereport(ERROR,
     303             :                     (errcode(ERRCODE_SYNTAX_ERROR),
     304             :                      errmsg("unrecognized VACUUM option \"%s\"", opt->defname),
     305             :                      parser_errposition(pstate, opt->location)));
     306             :     }
     307             : 
     308             :     /* Set vacuum options */
     309       10742 :     params.options =
     310       10742 :         (vacstmt->is_vacuumcmd ? VACOPT_VACUUM : VACOPT_ANALYZE) |
     311       10742 :         (verbose ? VACOPT_VERBOSE : 0) |
     312       10742 :         (skip_locked ? VACOPT_SKIP_LOCKED : 0) |
     313       10742 :         (analyze ? VACOPT_ANALYZE : 0) |
     314       10742 :         (freeze ? VACOPT_FREEZE : 0) |
     315       10742 :         (full ? VACOPT_FULL : 0) |
     316       10742 :         (disable_page_skipping ? VACOPT_DISABLE_PAGE_SKIPPING : 0) |
     317       10742 :         (process_main ? VACOPT_PROCESS_MAIN : 0) |
     318       10742 :         (process_toast ? VACOPT_PROCESS_TOAST : 0) |
     319       10742 :         (skip_database_stats ? VACOPT_SKIP_DATABASE_STATS : 0) |
     320       10742 :         (only_database_stats ? VACOPT_ONLY_DATABASE_STATS : 0);
     321             : 
     322             :     /* sanity checks on options */
     323             :     Assert(params.options & (VACOPT_VACUUM | VACOPT_ANALYZE));
     324             :     Assert((params.options & VACOPT_VACUUM) ||
     325             :            !(params.options & (VACOPT_FULL | VACOPT_FREEZE)));
     326             : 
     327       10742 :     if ((params.options & VACOPT_FULL) && params.nworkers > 0)
     328           6 :         ereport(ERROR,
     329             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     330             :                  errmsg("VACUUM FULL cannot be performed in parallel")));
     331             : 
     332             :     /*
     333             :      * BUFFER_USAGE_LIMIT does nothing for VACUUM (FULL) so just raise an
     334             :      * ERROR for that case.  VACUUM (FULL, ANALYZE) does make use of it, so
     335             :      * we'll permit that.
     336             :      */
     337       10736 :     if (ring_size != -1 && (params.options & VACOPT_FULL) &&
     338           6 :         !(params.options & VACOPT_ANALYZE))
     339           6 :         ereport(ERROR,
     340             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     341             :                  errmsg("BUFFER_USAGE_LIMIT cannot be specified for VACUUM FULL")));
     342             : 
     343             :     /*
     344             :      * Make sure VACOPT_ANALYZE is specified if any column lists are present.
     345             :      */
     346       10730 :     if (!(params.options & VACOPT_ANALYZE))
     347             :     {
     348        9332 :         foreach(lc, vacstmt->rels)
     349             :         {
     350        4580 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, lc);
     351             : 
     352        4580 :             if (vrel->va_cols != NIL)
     353           6 :                 ereport(ERROR,
     354             :                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     355             :                          errmsg("ANALYZE option must be specified when a column list is provided")));
     356             :         }
     357             :     }
     358             : 
     359             : 
     360             :     /*
     361             :      * Sanity check DISABLE_PAGE_SKIPPING option.
     362             :      */
     363       10724 :     if ((params.options & VACOPT_FULL) != 0 &&
     364         352 :         (params.options & VACOPT_DISABLE_PAGE_SKIPPING) != 0)
     365           0 :         ereport(ERROR,
     366             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     367             :                  errmsg("VACUUM option DISABLE_PAGE_SKIPPING cannot be used with FULL")));
     368             : 
     369             :     /* sanity check for PROCESS_TOAST */
     370       10724 :     if ((params.options & VACOPT_FULL) != 0 &&
     371         352 :         (params.options & VACOPT_PROCESS_TOAST) == 0)
     372           6 :         ereport(ERROR,
     373             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     374             :                  errmsg("PROCESS_TOAST required with VACUUM FULL")));
     375             : 
     376             :     /* sanity check for ONLY_DATABASE_STATS */
     377       10718 :     if (params.options & VACOPT_ONLY_DATABASE_STATS)
     378             :     {
     379             :         Assert(params.options & VACOPT_VACUUM);
     380         118 :         if (vacstmt->rels != NIL)
     381           6 :             ereport(ERROR,
     382             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     383             :                      errmsg("ONLY_DATABASE_STATS cannot be specified with a list of tables")));
     384             :         /* don't require people to turn off PROCESS_TOAST/MAIN explicitly */
     385         112 :         if (params.options & ~(VACOPT_VACUUM |
     386             :                                VACOPT_VERBOSE |
     387             :                                VACOPT_PROCESS_MAIN |
     388             :                                VACOPT_PROCESS_TOAST |
     389             :                                VACOPT_ONLY_DATABASE_STATS))
     390           0 :             ereport(ERROR,
     391             :                     (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     392             :                      errmsg("ONLY_DATABASE_STATS cannot be specified with other VACUUM options")));
     393             :     }
     394             : 
     395             :     /*
     396             :      * All freeze ages are zero if the FREEZE option is given; otherwise pass
     397             :      * them as -1 which means to use the default values.
     398             :      */
     399       10712 :     if (params.options & VACOPT_FREEZE)
     400             :     {
     401        1168 :         params.freeze_min_age = 0;
     402        1168 :         params.freeze_table_age = 0;
     403        1168 :         params.multixact_freeze_min_age = 0;
     404        1168 :         params.multixact_freeze_table_age = 0;
     405             :     }
     406             :     else
     407             :     {
     408        9544 :         params.freeze_min_age = -1;
     409        9544 :         params.freeze_table_age = -1;
     410        9544 :         params.multixact_freeze_min_age = -1;
     411        9544 :         params.multixact_freeze_table_age = -1;
     412             :     }
     413             : 
     414             :     /* user-invoked vacuum is never "for wraparound" */
     415       10712 :     params.is_wraparound = false;
     416             : 
     417             :     /* user-invoked vacuum uses VACOPT_VERBOSE instead of log_min_duration */
     418       10712 :     params.log_min_duration = -1;
     419             : 
     420             :     /*
     421             :      * Later, in vacuum_rel(), we check if a reloption override was specified.
     422             :      */
     423       10712 :     params.max_eager_freeze_failure_rate = vacuum_max_eager_freeze_failure_rate;
     424             : 
     425             :     /*
     426             :      * Create special memory context for cross-transaction storage.
     427             :      *
     428             :      * Since it is a child of PortalContext, it will go away eventually even
     429             :      * if we suffer an error; there's no need for special abort cleanup logic.
     430             :      */
     431       10712 :     vac_context = AllocSetContextCreate(PortalContext,
     432             :                                         "Vacuum",
     433             :                                         ALLOCSET_DEFAULT_SIZES);
     434             : 
     435             :     /*
     436             :      * Make a buffer strategy object in the cross-transaction memory context.
     437             :      * We needn't bother making this for VACUUM (FULL) or VACUUM
     438             :      * (ONLY_DATABASE_STATS) as they'll not make use of it.  VACUUM (FULL,
     439             :      * ANALYZE) is possible, so we'd better ensure that we make a strategy
     440             :      * when we see ANALYZE.
     441             :      */
     442       10712 :     if ((params.options & (VACOPT_ONLY_DATABASE_STATS |
     443         458 :                            VACOPT_FULL)) == 0 ||
     444         458 :         (params.options & VACOPT_ANALYZE) != 0)
     445             :     {
     446             : 
     447       10260 :         MemoryContext old_context = MemoryContextSwitchTo(vac_context);
     448             : 
     449             :         Assert(ring_size >= -1);
     450             : 
     451             :         /*
     452             :          * If BUFFER_USAGE_LIMIT was specified by the VACUUM or ANALYZE
     453             :          * command, it overrides the value of VacuumBufferUsageLimit.  Either
     454             :          * value may be 0, in which case GetAccessStrategyWithSize() will
     455             :          * return NULL, effectively allowing full use of shared buffers.
     456             :          */
     457       10260 :         if (ring_size == -1)
     458       10230 :             ring_size = VacuumBufferUsageLimit;
     459             : 
     460       10260 :         bstrategy = GetAccessStrategyWithSize(BAS_VACUUM, ring_size);
     461             : 
     462       10260 :         MemoryContextSwitchTo(old_context);
     463             :     }
     464             : 
     465             :     /* Now go through the common routine */
     466       10712 :     vacuum(vacstmt->rels, &params, bstrategy, vac_context, isTopLevel);
     467             : 
     468             :     /* Finally, clean up the vacuum memory context */
     469       10586 :     MemoryContextDelete(vac_context);
     470       10586 : }
     471             : 
     472             : /*
     473             :  * Internal entry point for autovacuum and the VACUUM / ANALYZE commands.
     474             :  *
     475             :  * relations, if not NIL, is a list of VacuumRelation to process; otherwise,
     476             :  * we process all relevant tables in the database.  For each VacuumRelation,
     477             :  * if a valid OID is supplied, the table with that OID is what to process;
     478             :  * otherwise, the VacuumRelation's RangeVar indicates what to process.
     479             :  *
     480             :  * params contains a set of parameters that can be used to customize the
     481             :  * behavior.
     482             :  *
     483             :  * bstrategy may be passed in as NULL when the caller does not want to
     484             :  * restrict the number of shared_buffers that VACUUM / ANALYZE can use,
     485             :  * otherwise, the caller must build a BufferAccessStrategy with the number of
     486             :  * shared_buffers that VACUUM / ANALYZE should try to limit themselves to
     487             :  * using.
     488             :  *
     489             :  * isTopLevel should be passed down from ProcessUtility.
     490             :  *
     491             :  * It is the caller's responsibility that all parameters are allocated in a
     492             :  * memory context that will not disappear at transaction commit.
     493             :  */
     494             : void
     495      108046 : vacuum(List *relations, VacuumParams *params, BufferAccessStrategy bstrategy,
     496             :        MemoryContext vac_context, bool isTopLevel)
     497             : {
     498             :     static bool in_vacuum = false;
     499             : 
     500             :     const char *stmttype;
     501             :     volatile bool in_outer_xact,
     502             :                 use_own_xacts;
     503             : 
     504             :     Assert(params != NULL);
     505             : 
     506      108046 :     stmttype = (params->options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE";
     507             : 
     508             :     /*
     509             :      * We cannot run VACUUM inside a user transaction block; if we were inside
     510             :      * a transaction, then our commit- and start-transaction-command calls
     511             :      * would not have the intended effect!  There are numerous other subtle
     512             :      * dependencies on this, too.
     513             :      *
     514             :      * ANALYZE (without VACUUM) can run either way.
     515             :      */
     516      108046 :     if (params->options & VACOPT_VACUUM)
     517             :     {
     518      103314 :         PreventInTransactionBlock(isTopLevel, stmttype);
     519      103300 :         in_outer_xact = false;
     520             :     }
     521             :     else
     522        4732 :         in_outer_xact = IsInTransactionBlock(isTopLevel);
     523             : 
     524             :     /*
     525             :      * Check for and disallow recursive calls.  This could happen when VACUUM
     526             :      * FULL or ANALYZE calls a hostile index expression that itself calls
     527             :      * ANALYZE.
     528             :      */
     529      108032 :     if (in_vacuum)
     530          12 :         ereport(ERROR,
     531             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     532             :                  errmsg("%s cannot be executed from VACUUM or ANALYZE",
     533             :                         stmttype)));
     534             : 
     535             :     /*
     536             :      * Build list of relation(s) to process, putting any new data in
     537             :      * vac_context for safekeeping.
     538             :      */
     539      108020 :     if (params->options & VACOPT_ONLY_DATABASE_STATS)
     540             :     {
     541             :         /* We don't process any tables in this case */
     542             :         Assert(relations == NIL);
     543             :     }
     544      107908 :     else if (relations != NIL)
     545             :     {
     546      107708 :         List       *newrels = NIL;
     547             :         ListCell   *lc;
     548             : 
     549      215506 :         foreach(lc, relations)
     550             :         {
     551      107834 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, lc);
     552             :             List       *sublist;
     553             :             MemoryContext old_context;
     554             : 
     555      107834 :             sublist = expand_vacuum_rel(vrel, vac_context, params->options);
     556      107798 :             old_context = MemoryContextSwitchTo(vac_context);
     557      107798 :             newrels = list_concat(newrels, sublist);
     558      107798 :             MemoryContextSwitchTo(old_context);
     559             :         }
     560      107672 :         relations = newrels;
     561             :     }
     562             :     else
     563         200 :         relations = get_all_vacuum_rels(vac_context, params->options);
     564             : 
     565             :     /*
     566             :      * Decide whether we need to start/commit our own transactions.
     567             :      *
     568             :      * For VACUUM (with or without ANALYZE): always do so, so that we can
     569             :      * release locks as soon as possible.  (We could possibly use the outer
     570             :      * transaction for a one-table VACUUM, but handling TOAST tables would be
     571             :      * problematic.)
     572             :      *
     573             :      * For ANALYZE (no VACUUM): if inside a transaction block, we cannot
     574             :      * start/commit our own transactions.  Also, there's no need to do so if
     575             :      * only processing one relation.  For multiple relations when not within a
     576             :      * transaction block, and also in an autovacuum worker, use own
     577             :      * transactions so we can release locks sooner.
     578             :      */
     579      107984 :     if (params->options & VACOPT_VACUUM)
     580      103288 :         use_own_xacts = true;
     581             :     else
     582             :     {
     583             :         Assert(params->options & VACOPT_ANALYZE);
     584        4696 :         if (AmAutoVacuumWorkerProcess())
     585         142 :             use_own_xacts = true;
     586        4554 :         else if (in_outer_xact)
     587         246 :             use_own_xacts = false;
     588        4308 :         else if (list_length(relations) > 1)
     589         730 :             use_own_xacts = true;
     590             :         else
     591        3578 :             use_own_xacts = false;
     592             :     }
     593             : 
     594             :     /*
     595             :      * vacuum_rel expects to be entered with no transaction active; it will
     596             :      * start and commit its own transaction.  But we are called by an SQL
     597             :      * command, and so we are executing inside a transaction already. We
     598             :      * commit the transaction started in PostgresMain() here, and start
     599             :      * another one before exiting to match the commit waiting for us back in
     600             :      * PostgresMain().
     601             :      */
     602      107984 :     if (use_own_xacts)
     603             :     {
     604             :         Assert(!in_outer_xact);
     605             : 
     606             :         /* ActiveSnapshot is not set by autovacuum */
     607      104160 :         if (ActiveSnapshotSet())
     608        6826 :             PopActiveSnapshot();
     609             : 
     610             :         /* matches the StartTransaction in PostgresMain() */
     611      104160 :         CommitTransactionCommand();
     612             :     }
     613             : 
     614             :     /* Turn vacuum cost accounting on or off, and set/clear in_vacuum */
     615      107984 :     PG_TRY();
     616             :     {
     617             :         ListCell   *cur;
     618             : 
     619      107984 :         in_vacuum = true;
     620      107984 :         VacuumFailsafeActive = false;
     621      107984 :         VacuumUpdateCosts();
     622      107984 :         VacuumCostBalance = 0;
     623      107984 :         VacuumCostBalanceLocal = 0;
     624      107984 :         VacuumSharedCostBalance = NULL;
     625      107984 :         VacuumActiveNWorkers = NULL;
     626             : 
     627             :         /*
     628             :          * Loop to process each selected relation.
     629             :          */
     630      232064 :         foreach(cur, relations)
     631             :         {
     632      124144 :             VacuumRelation *vrel = lfirst_node(VacuumRelation, cur);
     633             : 
     634      124144 :             if (params->options & VACOPT_VACUUM)
     635             :             {
     636      111364 :                 if (!vacuum_rel(vrel->oid, vrel->relation, params, bstrategy))
     637         100 :                     continue;
     638             :             }
     639             : 
     640      124038 :             if (params->options & VACOPT_ANALYZE)
     641             :             {
     642             :                 /*
     643             :                  * If using separate xacts, start one for analyze. Otherwise,
     644             :                  * we can use the outer transaction.
     645             :                  */
     646       14318 :                 if (use_own_xacts)
     647             :                 {
     648        9944 :                     StartTransactionCommand();
     649             :                     /* functions in indexes may want a snapshot set */
     650        9944 :                     PushActiveSnapshot(GetTransactionSnapshot());
     651             :                 }
     652             : 
     653       14318 :                 analyze_rel(vrel->oid, vrel->relation, params,
     654             :                             vrel->va_cols, in_outer_xact, bstrategy);
     655             : 
     656       14260 :                 if (use_own_xacts)
     657             :                 {
     658        9906 :                     PopActiveSnapshot();
     659        9906 :                     CommitTransactionCommand();
     660             :                 }
     661             :                 else
     662             :                 {
     663             :                     /*
     664             :                      * If we're not using separate xacts, better separate the
     665             :                      * ANALYZE actions with CCIs.  This avoids trouble if user
     666             :                      * says "ANALYZE t, t".
     667             :                      */
     668        4354 :                     CommandCounterIncrement();
     669             :                 }
     670             :             }
     671             : 
     672             :             /*
     673             :              * Ensure VacuumFailsafeActive has been reset before vacuuming the
     674             :              * next relation.
     675             :              */
     676      123980 :             VacuumFailsafeActive = false;
     677             :         }
     678             :     }
     679          64 :     PG_FINALLY();
     680             :     {
     681      107984 :         in_vacuum = false;
     682      107984 :         VacuumCostActive = false;
     683      107984 :         VacuumFailsafeActive = false;
     684      107984 :         VacuumCostBalance = 0;
     685             :     }
     686      107984 :     PG_END_TRY();
     687             : 
     688             :     /*
     689             :      * Finish up processing.
     690             :      */
     691      107920 :     if (use_own_xacts)
     692             :     {
     693             :         /* here, we are not in a transaction */
     694             : 
     695             :         /*
     696             :          * This matches the CommitTransaction waiting for us in
     697             :          * PostgresMain().
     698             :          */
     699      104116 :         StartTransactionCommand();
     700             :     }
     701             : 
     702      107920 :     if ((params->options & VACOPT_VACUUM) &&
     703      103256 :         !(params->options & VACOPT_SKIP_DATABASE_STATS))
     704             :     {
     705             :         /*
     706             :          * Update pg_database.datfrozenxid, and truncate pg_xact if possible.
     707             :          */
     708        1668 :         vac_update_datfrozenxid();
     709             :     }
     710             : 
     711      107920 : }
     712             : 
     713             : /*
     714             :  * Check if the current user has privileges to vacuum or analyze the relation.
     715             :  * If not, issue a WARNING log message and return false to let the caller
     716             :  * decide what to do with this relation.  This routine is used to decide if a
     717             :  * relation can be processed for VACUUM or ANALYZE.
     718             :  */
     719             : bool
     720      158100 : vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple,
     721             :                                  bits32 options)
     722             : {
     723             :     char       *relname;
     724             : 
     725             :     Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0);
     726             : 
     727             :     /*----------
     728             :      * A role has privileges to vacuum or analyze the relation if any of the
     729             :      * following are true:
     730             :      *   - the role owns the current database and the relation is not shared
     731             :      *   - the role has the MAINTAIN privilege on the relation
     732             :      *----------
     733             :      */
     734      158100 :     if ((object_ownercheck(DatabaseRelationId, MyDatabaseId, GetUserId()) &&
     735      183236 :          !reltuple->relisshared) ||
     736       25910 :         pg_class_aclcheck(relid, GetUserId(), ACL_MAINTAIN) == ACLCHECK_OK)
     737      157760 :         return true;
     738             : 
     739         340 :     relname = NameStr(reltuple->relname);
     740             : 
     741         340 :     if ((options & VACOPT_VACUUM) != 0)
     742             :     {
     743         224 :         ereport(WARNING,
     744             :                 (errmsg("permission denied to vacuum \"%s\", skipping it",
     745             :                         relname)));
     746             : 
     747             :         /*
     748             :          * For VACUUM ANALYZE, both logs could show up, but just generate
     749             :          * information for VACUUM as that would be the first one to be
     750             :          * processed.
     751             :          */
     752         224 :         return false;
     753             :     }
     754             : 
     755         116 :     if ((options & VACOPT_ANALYZE) != 0)
     756         116 :         ereport(WARNING,
     757             :                 (errmsg("permission denied to analyze \"%s\", skipping it",
     758             :                         relname)));
     759             : 
     760         116 :     return false;
     761             : }
     762             : 
     763             : 
     764             : /*
     765             :  * vacuum_open_relation
     766             :  *
     767             :  * This routine is used for attempting to open and lock a relation which
     768             :  * is going to be vacuumed or analyzed.  If the relation cannot be opened
     769             :  * or locked, a log is emitted if possible.
     770             :  */
     771             : Relation
     772      133090 : vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options,
     773             :                      bool verbose, LOCKMODE lmode)
     774             : {
     775             :     Relation    rel;
     776      133090 :     bool        rel_lock = true;
     777             :     int         elevel;
     778             : 
     779             :     Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0);
     780             : 
     781             :     /*
     782             :      * Open the relation and get the appropriate lock on it.
     783             :      *
     784             :      * There's a race condition here: the relation may have gone away since
     785             :      * the last time we saw it.  If so, we don't need to vacuum or analyze it.
     786             :      *
     787             :      * If we've been asked not to wait for the relation lock, acquire it first
     788             :      * in non-blocking mode, before calling try_relation_open().
     789             :      */
     790      133090 :     if (!(options & VACOPT_SKIP_LOCKED))
     791      132366 :         rel = try_relation_open(relid, lmode);
     792         724 :     else if (ConditionalLockRelationOid(relid, lmode))
     793         704 :         rel = try_relation_open(relid, NoLock);
     794             :     else
     795             :     {
     796          20 :         rel = NULL;
     797          20 :         rel_lock = false;
     798             :     }
     799             : 
     800             :     /* if relation is opened, leave */
     801      133090 :     if (rel)
     802      133058 :         return rel;
     803             : 
     804             :     /*
     805             :      * Relation could not be opened, hence generate if possible a log
     806             :      * informing on the situation.
     807             :      *
     808             :      * If the RangeVar is not defined, we do not have enough information to
     809             :      * provide a meaningful log statement.  Chances are that the caller has
     810             :      * intentionally not provided this information so that this logging is
     811             :      * skipped, anyway.
     812             :      */
     813          32 :     if (relation == NULL)
     814          18 :         return NULL;
     815             : 
     816             :     /*
     817             :      * Determine the log level.
     818             :      *
     819             :      * For manual VACUUM or ANALYZE, we emit a WARNING to match the log
     820             :      * statements in the permission checks; otherwise, only log if the caller
     821             :      * so requested.
     822             :      */
     823          14 :     if (!AmAutoVacuumWorkerProcess())
     824          14 :         elevel = WARNING;
     825           0 :     else if (verbose)
     826           0 :         elevel = LOG;
     827             :     else
     828           0 :         return NULL;
     829             : 
     830          14 :     if ((options & VACOPT_VACUUM) != 0)
     831             :     {
     832          10 :         if (!rel_lock)
     833           6 :             ereport(elevel,
     834             :                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     835             :                      errmsg("skipping vacuum of \"%s\" --- lock not available",
     836             :                             relation->relname)));
     837             :         else
     838           4 :             ereport(elevel,
     839             :                     (errcode(ERRCODE_UNDEFINED_TABLE),
     840             :                      errmsg("skipping vacuum of \"%s\" --- relation no longer exists",
     841             :                             relation->relname)));
     842             : 
     843             :         /*
     844             :          * For VACUUM ANALYZE, both logs could show up, but just generate
     845             :          * information for VACUUM as that would be the first one to be
     846             :          * processed.
     847             :          */
     848          10 :         return NULL;
     849             :     }
     850             : 
     851           4 :     if ((options & VACOPT_ANALYZE) != 0)
     852             :     {
     853           4 :         if (!rel_lock)
     854           2 :             ereport(elevel,
     855             :                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     856             :                      errmsg("skipping analyze of \"%s\" --- lock not available",
     857             :                             relation->relname)));
     858             :         else
     859           2 :             ereport(elevel,
     860             :                     (errcode(ERRCODE_UNDEFINED_TABLE),
     861             :                      errmsg("skipping analyze of \"%s\" --- relation no longer exists",
     862             :                             relation->relname)));
     863             :     }
     864             : 
     865           4 :     return NULL;
     866             : }
     867             : 
     868             : 
     869             : /*
     870             :  * Given a VacuumRelation, fill in the table OID if it wasn't specified,
     871             :  * and optionally add VacuumRelations for partitions or inheritance children.
     872             :  *
     873             :  * If a VacuumRelation does not have an OID supplied and is a partitioned
     874             :  * table, an extra entry will be added to the output for each partition.
     875             :  * Presently, only autovacuum supplies OIDs when calling vacuum(), and
     876             :  * it does not want us to expand partitioned tables.
     877             :  *
     878             :  * We take care not to modify the input data structure, but instead build
     879             :  * new VacuumRelation(s) to return.  (But note that they will reference
     880             :  * unmodified parts of the input, eg column lists.)  New data structures
     881             :  * are made in vac_context.
     882             :  */
     883             : static List *
     884      107834 : expand_vacuum_rel(VacuumRelation *vrel, MemoryContext vac_context,
     885             :                   int options)
     886             : {
     887      107834 :     List       *vacrels = NIL;
     888             :     MemoryContext oldcontext;
     889             : 
     890             :     /* If caller supplied OID, there's nothing we need do here. */
     891      107834 :     if (OidIsValid(vrel->oid))
     892             :     {
     893       97334 :         oldcontext = MemoryContextSwitchTo(vac_context);
     894       97334 :         vacrels = lappend(vacrels, vrel);
     895       97334 :         MemoryContextSwitchTo(oldcontext);
     896             :     }
     897             :     else
     898             :     {
     899             :         /*
     900             :          * Process a specific relation, and possibly partitions or child
     901             :          * tables thereof.
     902             :          */
     903             :         Oid         relid;
     904             :         HeapTuple   tuple;
     905             :         Form_pg_class classForm;
     906             :         bool        include_children;
     907             :         bool        is_partitioned_table;
     908             :         int         rvr_opts;
     909             : 
     910             :         /*
     911             :          * Since autovacuum workers supply OIDs when calling vacuum(), no
     912             :          * autovacuum worker should reach this code.
     913             :          */
     914             :         Assert(!AmAutoVacuumWorkerProcess());
     915             : 
     916             :         /*
     917             :          * We transiently take AccessShareLock to protect the syscache lookup
     918             :          * below, as well as find_all_inheritors's expectation that the caller
     919             :          * holds some lock on the starting relation.
     920             :          */
     921       10500 :         rvr_opts = (options & VACOPT_SKIP_LOCKED) ? RVR_SKIP_LOCKED : 0;
     922       10500 :         relid = RangeVarGetRelidExtended(vrel->relation,
     923             :                                          AccessShareLock,
     924             :                                          rvr_opts,
     925             :                                          NULL, NULL);
     926             : 
     927             :         /*
     928             :          * If the lock is unavailable, emit the same log statement that
     929             :          * vacuum_rel() and analyze_rel() would.
     930             :          */
     931       10464 :         if (!OidIsValid(relid))
     932             :         {
     933           8 :             if (options & VACOPT_VACUUM)
     934           6 :                 ereport(WARNING,
     935             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     936             :                          errmsg("skipping vacuum of \"%s\" --- lock not available",
     937             :                                 vrel->relation->relname)));
     938             :             else
     939           2 :                 ereport(WARNING,
     940             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
     941             :                          errmsg("skipping analyze of \"%s\" --- lock not available",
     942             :                                 vrel->relation->relname)));
     943           8 :             return vacrels;
     944             :         }
     945             : 
     946             :         /*
     947             :          * To check whether the relation is a partitioned table and its
     948             :          * ownership, fetch its syscache entry.
     949             :          */
     950       10456 :         tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
     951       10456 :         if (!HeapTupleIsValid(tuple))
     952           0 :             elog(ERROR, "cache lookup failed for relation %u", relid);
     953       10456 :         classForm = (Form_pg_class) GETSTRUCT(tuple);
     954             : 
     955             :         /*
     956             :          * Make a returnable VacuumRelation for this rel if the user has the
     957             :          * required privileges.
     958             :          */
     959       10456 :         if (vacuum_is_permitted_for_relation(relid, classForm, options))
     960             :         {
     961       10224 :             oldcontext = MemoryContextSwitchTo(vac_context);
     962       10224 :             vacrels = lappend(vacrels, makeVacuumRelation(vrel->relation,
     963             :                                                           relid,
     964             :                                                           vrel->va_cols));
     965       10224 :             MemoryContextSwitchTo(oldcontext);
     966             :         }
     967             : 
     968             :         /*
     969             :          * Vacuuming a partitioned table with ONLY will not do anything since
     970             :          * the partitioned table itself is empty.  Issue a warning if the user
     971             :          * requests this.
     972             :          */
     973       10456 :         include_children = vrel->relation->inh;
     974       10456 :         is_partitioned_table = (classForm->relkind == RELKIND_PARTITIONED_TABLE);
     975       10456 :         if ((options & VACOPT_VACUUM) && is_partitioned_table && !include_children)
     976           6 :             ereport(WARNING,
     977             :                     (errmsg("VACUUM ONLY of partitioned table \"%s\" has no effect",
     978             :                             vrel->relation->relname)));
     979             : 
     980       10456 :         ReleaseSysCache(tuple);
     981             : 
     982             :         /*
     983             :          * Unless the user has specified ONLY, make relation list entries for
     984             :          * its partitions or inheritance child tables.  Note that the list
     985             :          * returned by find_all_inheritors() includes the passed-in OID, so we
     986             :          * have to skip that.  There's no point in taking locks on the
     987             :          * individual partitions or child tables yet, and doing so would just
     988             :          * add unnecessary deadlock risk.  For this last reason, we do not yet
     989             :          * check the ownership of the partitions/tables, which get added to
     990             :          * the list to process.  Ownership will be checked later on anyway.
     991             :          */
     992       10456 :         if (include_children)
     993             :         {
     994       10426 :             List       *part_oids = find_all_inheritors(relid, NoLock, NULL);
     995             :             ListCell   *part_lc;
     996             : 
     997       22900 :             foreach(part_lc, part_oids)
     998             :             {
     999       12474 :                 Oid         part_oid = lfirst_oid(part_lc);
    1000             : 
    1001       12474 :                 if (part_oid == relid)
    1002       10426 :                     continue;   /* ignore original table */
    1003             : 
    1004             :                 /*
    1005             :                  * We omit a RangeVar since it wouldn't be appropriate to
    1006             :                  * complain about failure to open one of these relations
    1007             :                  * later.
    1008             :                  */
    1009        2048 :                 oldcontext = MemoryContextSwitchTo(vac_context);
    1010        2048 :                 vacrels = lappend(vacrels, makeVacuumRelation(NULL,
    1011             :                                                               part_oid,
    1012             :                                                               vrel->va_cols));
    1013        2048 :                 MemoryContextSwitchTo(oldcontext);
    1014             :             }
    1015             :         }
    1016             : 
    1017             :         /*
    1018             :          * Release lock again.  This means that by the time we actually try to
    1019             :          * process the table, it might be gone or renamed.  In the former case
    1020             :          * we'll silently ignore it; in the latter case we'll process it
    1021             :          * anyway, but we must beware that the RangeVar doesn't necessarily
    1022             :          * identify it anymore.  This isn't ideal, perhaps, but there's little
    1023             :          * practical alternative, since we're typically going to commit this
    1024             :          * transaction and begin a new one between now and then.  Moreover,
    1025             :          * holding locks on multiple relations would create significant risk
    1026             :          * of deadlock.
    1027             :          */
    1028       10456 :         UnlockRelationOid(relid, AccessShareLock);
    1029             :     }
    1030             : 
    1031      107790 :     return vacrels;
    1032             : }
    1033             : 
    1034             : /*
    1035             :  * Construct a list of VacuumRelations for all vacuumable rels in
    1036             :  * the current database.  The list is built in vac_context.
    1037             :  */
    1038             : static List *
    1039         200 : get_all_vacuum_rels(MemoryContext vac_context, int options)
    1040             : {
    1041         200 :     List       *vacrels = NIL;
    1042             :     Relation    pgclass;
    1043             :     TableScanDesc scan;
    1044             :     HeapTuple   tuple;
    1045             : 
    1046         200 :     pgclass = table_open(RelationRelationId, AccessShareLock);
    1047             : 
    1048         200 :     scan = table_beginscan_catalog(pgclass, 0, NULL);
    1049             : 
    1050       85510 :     while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
    1051             :     {
    1052       85310 :         Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple);
    1053             :         MemoryContext oldcontext;
    1054       85310 :         Oid         relid = classForm->oid;
    1055             : 
    1056             :         /*
    1057             :          * We include partitioned tables here; depending on which operation is
    1058             :          * to be performed, caller will decide whether to process or ignore
    1059             :          * them.
    1060             :          */
    1061       85310 :         if (classForm->relkind != RELKIND_RELATION &&
    1062       70816 :             classForm->relkind != RELKIND_MATVIEW &&
    1063       70810 :             classForm->relkind != RELKIND_PARTITIONED_TABLE)
    1064       70724 :             continue;
    1065             : 
    1066             :         /* check permissions of relation */
    1067       14586 :         if (!vacuum_is_permitted_for_relation(relid, classForm, options))
    1068           0 :             continue;
    1069             : 
    1070             :         /*
    1071             :          * Build VacuumRelation(s) specifying the table OIDs to be processed.
    1072             :          * We omit a RangeVar since it wouldn't be appropriate to complain
    1073             :          * about failure to open one of these relations later.
    1074             :          */
    1075       14586 :         oldcontext = MemoryContextSwitchTo(vac_context);
    1076       14586 :         vacrels = lappend(vacrels, makeVacuumRelation(NULL,
    1077             :                                                       relid,
    1078             :                                                       NIL));
    1079       14586 :         MemoryContextSwitchTo(oldcontext);
    1080             :     }
    1081             : 
    1082         200 :     table_endscan(scan);
    1083         200 :     table_close(pgclass, AccessShareLock);
    1084             : 
    1085         200 :     return vacrels;
    1086             : }
    1087             : 
    1088             : /*
    1089             :  * vacuum_get_cutoffs() -- compute OldestXmin and freeze cutoff points
    1090             :  *
    1091             :  * The target relation and VACUUM parameters are our inputs.
    1092             :  *
    1093             :  * Output parameters are the cutoffs that VACUUM caller should use.
    1094             :  *
    1095             :  * Return value indicates if vacuumlazy.c caller should make its VACUUM
    1096             :  * operation aggressive.  An aggressive VACUUM must advance relfrozenxid up to
    1097             :  * FreezeLimit (at a minimum), and relminmxid up to MultiXactCutoff (at a
    1098             :  * minimum).
    1099             :  */
    1100             : bool
    1101      118528 : vacuum_get_cutoffs(Relation rel, const VacuumParams *params,
    1102             :                    struct VacuumCutoffs *cutoffs)
    1103             : {
    1104             :     int         freeze_min_age,
    1105             :                 multixact_freeze_min_age,
    1106             :                 freeze_table_age,
    1107             :                 multixact_freeze_table_age,
    1108             :                 effective_multixact_freeze_max_age;
    1109             :     TransactionId nextXID,
    1110             :                 safeOldestXmin,
    1111             :                 aggressiveXIDCutoff;
    1112             :     MultiXactId nextMXID,
    1113             :                 safeOldestMxact,
    1114             :                 aggressiveMXIDCutoff;
    1115             : 
    1116             :     /* Use mutable copies of freeze age parameters */
    1117      118528 :     freeze_min_age = params->freeze_min_age;
    1118      118528 :     multixact_freeze_min_age = params->multixact_freeze_min_age;
    1119      118528 :     freeze_table_age = params->freeze_table_age;
    1120      118528 :     multixact_freeze_table_age = params->multixact_freeze_table_age;
    1121             : 
    1122             :     /* Set pg_class fields in cutoffs */
    1123      118528 :     cutoffs->relfrozenxid = rel->rd_rel->relfrozenxid;
    1124      118528 :     cutoffs->relminmxid = rel->rd_rel->relminmxid;
    1125             : 
    1126             :     /*
    1127             :      * Acquire OldestXmin.
    1128             :      *
    1129             :      * We can always ignore processes running lazy vacuum.  This is because we
    1130             :      * use these values only for deciding which tuples we must keep in the
    1131             :      * tables.  Since lazy vacuum doesn't write its XID anywhere (usually no
    1132             :      * XID assigned), it's safe to ignore it.  In theory it could be
    1133             :      * problematic to ignore lazy vacuums in a full vacuum, but keep in mind
    1134             :      * that only one vacuum process can be working on a particular table at
    1135             :      * any time, and that each vacuum is always an independent transaction.
    1136             :      */
    1137      118528 :     cutoffs->OldestXmin = GetOldestNonRemovableTransactionId(rel);
    1138             : 
    1139             :     Assert(TransactionIdIsNormal(cutoffs->OldestXmin));
    1140             : 
    1141             :     /* Acquire OldestMxact */
    1142      118528 :     cutoffs->OldestMxact = GetOldestMultiXactId();
    1143             :     Assert(MultiXactIdIsValid(cutoffs->OldestMxact));
    1144             : 
    1145             :     /* Acquire next XID/next MXID values used to apply age-based settings */
    1146      118528 :     nextXID = ReadNextTransactionId();
    1147      118528 :     nextMXID = ReadNextMultiXactId();
    1148             : 
    1149             :     /*
    1150             :      * Also compute the multixact age for which freezing is urgent.  This is
    1151             :      * normally autovacuum_multixact_freeze_max_age, but may be less if we are
    1152             :      * short of multixact member space.
    1153             :      */
    1154      118528 :     effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();
    1155             : 
    1156             :     /*
    1157             :      * Almost ready to set freeze output parameters; check if OldestXmin or
    1158             :      * OldestMxact are held back to an unsafe degree before we start on that
    1159             :      */
    1160      118528 :     safeOldestXmin = nextXID - autovacuum_freeze_max_age;
    1161      118528 :     if (!TransactionIdIsNormal(safeOldestXmin))
    1162           0 :         safeOldestXmin = FirstNormalTransactionId;
    1163      118528 :     safeOldestMxact = nextMXID - effective_multixact_freeze_max_age;
    1164      118528 :     if (safeOldestMxact < FirstMultiXactId)
    1165           0 :         safeOldestMxact = FirstMultiXactId;
    1166      118528 :     if (TransactionIdPrecedes(cutoffs->OldestXmin, safeOldestXmin))
    1167       60952 :         ereport(WARNING,
    1168             :                 (errmsg("cutoff for removing and freezing tuples is far in the past"),
    1169             :                  errhint("Close open transactions soon to avoid wraparound problems.\n"
    1170             :                          "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
    1171      118528 :     if (MultiXactIdPrecedes(cutoffs->OldestMxact, safeOldestMxact))
    1172           0 :         ereport(WARNING,
    1173             :                 (errmsg("cutoff for freezing multixacts is far in the past"),
    1174             :                  errhint("Close open transactions soon to avoid wraparound problems.\n"
    1175             :                          "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
    1176             : 
    1177             :     /*
    1178             :      * Determine the minimum freeze age to use: as specified by the caller, or
    1179             :      * vacuum_freeze_min_age, but in any case not more than half
    1180             :      * autovacuum_freeze_max_age, so that autovacuums to prevent XID
    1181             :      * wraparound won't occur too frequently.
    1182             :      */
    1183      118528 :     if (freeze_min_age < 0)
    1184        8940 :         freeze_min_age = vacuum_freeze_min_age;
    1185      118528 :     freeze_min_age = Min(freeze_min_age, autovacuum_freeze_max_age / 2);
    1186             :     Assert(freeze_min_age >= 0);
    1187             : 
    1188             :     /* Compute FreezeLimit, being careful to generate a normal XID */
    1189      118528 :     cutoffs->FreezeLimit = nextXID - freeze_min_age;
    1190      118528 :     if (!TransactionIdIsNormal(cutoffs->FreezeLimit))
    1191           0 :         cutoffs->FreezeLimit = FirstNormalTransactionId;
    1192             :     /* FreezeLimit must always be <= OldestXmin */
    1193      118528 :     if (TransactionIdPrecedes(cutoffs->OldestXmin, cutoffs->FreezeLimit))
    1194       85998 :         cutoffs->FreezeLimit = cutoffs->OldestXmin;
    1195             : 
    1196             :     /*
    1197             :      * Determine the minimum multixact freeze age to use: as specified by
    1198             :      * caller, or vacuum_multixact_freeze_min_age, but in any case not more
    1199             :      * than half effective_multixact_freeze_max_age, so that autovacuums to
    1200             :      * prevent MultiXact wraparound won't occur too frequently.
    1201             :      */
    1202      118528 :     if (multixact_freeze_min_age < 0)
    1203        8940 :         multixact_freeze_min_age = vacuum_multixact_freeze_min_age;
    1204      118528 :     multixact_freeze_min_age = Min(multixact_freeze_min_age,
    1205             :                                    effective_multixact_freeze_max_age / 2);
    1206             :     Assert(multixact_freeze_min_age >= 0);
    1207             : 
    1208             :     /* Compute MultiXactCutoff, being careful to generate a valid value */
    1209      118528 :     cutoffs->MultiXactCutoff = nextMXID - multixact_freeze_min_age;
    1210      118528 :     if (cutoffs->MultiXactCutoff < FirstMultiXactId)
    1211           0 :         cutoffs->MultiXactCutoff = FirstMultiXactId;
    1212             :     /* MultiXactCutoff must always be <= OldestMxact */
    1213      118528 :     if (MultiXactIdPrecedes(cutoffs->OldestMxact, cutoffs->MultiXactCutoff))
    1214           4 :         cutoffs->MultiXactCutoff = cutoffs->OldestMxact;
    1215             : 
    1216             :     /*
    1217             :      * Finally, figure out if caller needs to do an aggressive VACUUM or not.
    1218             :      *
    1219             :      * Determine the table freeze age to use: as specified by the caller, or
    1220             :      * the value of the vacuum_freeze_table_age GUC, but in any case not more
    1221             :      * than autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly
    1222             :      * VACUUM schedule, the nightly VACUUM gets a chance to freeze XIDs before
    1223             :      * anti-wraparound autovacuum is launched.
    1224             :      */
    1225      118528 :     if (freeze_table_age < 0)
    1226        8940 :         freeze_table_age = vacuum_freeze_table_age;
    1227      118528 :     freeze_table_age = Min(freeze_table_age, autovacuum_freeze_max_age * 0.95);
    1228             :     Assert(freeze_table_age >= 0);
    1229      118528 :     aggressiveXIDCutoff = nextXID - freeze_table_age;
    1230      118528 :     if (!TransactionIdIsNormal(aggressiveXIDCutoff))
    1231           0 :         aggressiveXIDCutoff = FirstNormalTransactionId;
    1232      118528 :     if (TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid,
    1233             :                                       aggressiveXIDCutoff))
    1234      109756 :         return true;
    1235             : 
    1236             :     /*
    1237             :      * Similar to the above, determine the table freeze age to use for
    1238             :      * multixacts: as specified by the caller, or the value of the
    1239             :      * vacuum_multixact_freeze_table_age GUC, but in any case not more than
    1240             :      * effective_multixact_freeze_max_age * 0.95, so that if you have e.g.
    1241             :      * nightly VACUUM schedule, the nightly VACUUM gets a chance to freeze
    1242             :      * multixacts before anti-wraparound autovacuum is launched.
    1243             :      */
    1244        8772 :     if (multixact_freeze_table_age < 0)
    1245        8720 :         multixact_freeze_table_age = vacuum_multixact_freeze_table_age;
    1246        8772 :     multixact_freeze_table_age =
    1247        8772 :         Min(multixact_freeze_table_age,
    1248             :             effective_multixact_freeze_max_age * 0.95);
    1249             :     Assert(multixact_freeze_table_age >= 0);
    1250        8772 :     aggressiveMXIDCutoff = nextMXID - multixact_freeze_table_age;
    1251        8772 :     if (aggressiveMXIDCutoff < FirstMultiXactId)
    1252           0 :         aggressiveMXIDCutoff = FirstMultiXactId;
    1253        8772 :     if (MultiXactIdPrecedesOrEquals(cutoffs->relminmxid,
    1254             :                                     aggressiveMXIDCutoff))
    1255           0 :         return true;
    1256             : 
    1257             :     /* Non-aggressive VACUUM */
    1258        8772 :     return false;
    1259             : }
    1260             : 
    1261             : /*
    1262             :  * vacuum_xid_failsafe_check() -- Used by VACUUM's wraparound failsafe
    1263             :  * mechanism to determine if its table's relfrozenxid and relminmxid are now
    1264             :  * dangerously far in the past.
    1265             :  *
    1266             :  * When we return true, VACUUM caller triggers the failsafe.
    1267             :  */
    1268             : bool
    1269      120916 : vacuum_xid_failsafe_check(const struct VacuumCutoffs *cutoffs)
    1270             : {
    1271      120916 :     TransactionId relfrozenxid = cutoffs->relfrozenxid;
    1272      120916 :     MultiXactId relminmxid = cutoffs->relminmxid;
    1273             :     TransactionId xid_skip_limit;
    1274             :     MultiXactId multi_skip_limit;
    1275             :     int         skip_index_vacuum;
    1276             : 
    1277             :     Assert(TransactionIdIsNormal(relfrozenxid));
    1278             :     Assert(MultiXactIdIsValid(relminmxid));
    1279             : 
    1280             :     /*
    1281             :      * Determine the index skipping age to use. In any case no less than
    1282             :      * autovacuum_freeze_max_age * 1.05.
    1283             :      */
    1284      120916 :     skip_index_vacuum = Max(vacuum_failsafe_age, autovacuum_freeze_max_age * 1.05);
    1285             : 
    1286      120916 :     xid_skip_limit = ReadNextTransactionId() - skip_index_vacuum;
    1287      120916 :     if (!TransactionIdIsNormal(xid_skip_limit))
    1288           0 :         xid_skip_limit = FirstNormalTransactionId;
    1289             : 
    1290      120916 :     if (TransactionIdPrecedes(relfrozenxid, xid_skip_limit))
    1291             :     {
    1292             :         /* The table's relfrozenxid is too old */
    1293       18678 :         return true;
    1294             :     }
    1295             : 
    1296             :     /*
    1297             :      * Similar to above, determine the index skipping age to use for
    1298             :      * multixact. In any case no less than autovacuum_multixact_freeze_max_age *
    1299             :      * 1.05.
    1300             :      */
    1301      102238 :     skip_index_vacuum = Max(vacuum_multixact_failsafe_age,
    1302             :                             autovacuum_multixact_freeze_max_age * 1.05);
    1303             : 
    1304      102238 :     multi_skip_limit = ReadNextMultiXactId() - skip_index_vacuum;
    1305      102238 :     if (multi_skip_limit < FirstMultiXactId)
    1306           0 :         multi_skip_limit = FirstMultiXactId;
    1307             : 
    1308      102238 :     if (MultiXactIdPrecedes(relminmxid, multi_skip_limit))
    1309             :     {
    1310             :         /* The table's relminmxid is too old */
    1311           0 :         return true;
    1312             :     }
    1313             : 
    1314      102238 :     return false;
    1315             : }
    1316             : 
    1317             : /*
    1318             :  * vac_estimate_reltuples() -- estimate the new value for pg_class.reltuples
    1319             :  *
    1320             :  *      If we scanned the whole relation then we should just use the count of
    1321             :  *      live tuples seen; but if we did not, we should not blindly extrapolate
    1322             :  *      from that number, since VACUUM may have scanned a quite nonrandom
    1323             :  *      subset of the table.  When we have only partial information, we take
    1324             :  *      the old value of pg_class.reltuples/pg_class.relpages as a measurement
    1325             :  *      of the tuple density in the unscanned pages.
    1326             :  *
    1327             :  *      Note: scanned_tuples should count only *live* tuples, since
    1328             :  *      pg_class.reltuples is defined that way.
    1329             :  */
    1330             : double
    1331      117980 : vac_estimate_reltuples(Relation relation,
    1332             :                        BlockNumber total_pages,
    1333             :                        BlockNumber scanned_pages,
    1334             :                        double scanned_tuples)
    1335             : {
    1336      117980 :     BlockNumber old_rel_pages = relation->rd_rel->relpages;
    1337      117980 :     double      old_rel_tuples = relation->rd_rel->reltuples;
    1338             :     double      old_density;
    1339             :     double      unscanned_pages;
    1340             :     double      total_tuples;
    1341             : 
    1342             :     /* If we did scan the whole table, just use the count as-is */
    1343      117980 :     if (scanned_pages >= total_pages)
    1344      113930 :         return scanned_tuples;
    1345             : 
    1346             :     /*
    1347             :      * When successive VACUUM commands scan the same few pages again and
    1348             :      * again, without anything from the table really changing, there is a risk
    1349             :      * that our beliefs about tuple density will gradually become distorted.
    1350             :      * This might be caused by vacuumlazy.c implementation details, such as
    1351             :      * its tendency to always scan the last heap page.  Handle that here.
    1352             :      *
    1353             :      * If the relation is _exactly_ the same size according to the existing
    1354             :      * pg_class entry, and only a few of its pages (less than 2%) were
    1355             :      * scanned, keep the existing value of reltuples.  Also keep the existing
    1356             :      * value when only a subset of rel's pages <= a single page were scanned.
    1357             :      *
    1358             :      * (Note: we might be returning -1 here.)
    1359             :      */
    1360        4050 :     if (old_rel_pages == total_pages &&
    1361        4022 :         scanned_pages < (double) total_pages * 0.02)
    1362        2828 :         return old_rel_tuples;
    1363        1222 :     if (scanned_pages <= 1)
    1364         976 :         return old_rel_tuples;
    1365             : 
    1366             :     /*
    1367             :      * If old density is unknown, we can't do much except scale up
    1368             :      * scanned_tuples to match total_pages.
    1369             :      */
    1370         246 :     if (old_rel_tuples < 0 || old_rel_pages == 0)
    1371           2 :         return floor((scanned_tuples / scanned_pages) * total_pages + 0.5);
    1372             : 
    1373             :     /*
    1374             :      * Okay, we've covered the corner cases.  The normal calculation is to
    1375             :      * convert the old measurement to a density (tuples per page), then
    1376             :      * estimate the number of tuples in the unscanned pages using that figure,
    1377             :      * and finally add on the number of tuples in the scanned pages.
    1378             :      */
    1379         244 :     old_density = old_rel_tuples / old_rel_pages;
    1380         244 :     unscanned_pages = (double) total_pages - (double) scanned_pages;
    1381         244 :     total_tuples = old_density * unscanned_pages + scanned_tuples;
    1382         244 :     return floor(total_tuples + 0.5);
    1383             : }
    1384             : 
    1385             : 
    1386             : /*
    1387             :  *  vac_update_relstats() -- update statistics for one relation
    1388             :  *
    1389             :  *      Update the whole-relation statistics that are kept in its pg_class
    1390             :  *      row.  There are additional stats that will be updated if we are
    1391             :  *      doing ANALYZE, but we always update these stats.  This routine works
    1392             :  *      for both index and heap relation entries in pg_class.
    1393             :  *
    1394             :  *      We violate transaction semantics here by overwriting the rel's
    1395             :  *      existing pg_class tuple with the new values.  This is reasonably
    1396             :  *      safe as long as we're sure that the new values are correct whether or
    1397             :  *      not this transaction commits.  The reason for doing this is that if
    1398             :  *      we updated these tuples in the usual way, vacuuming pg_class itself
    1399             :  *      wouldn't work very well --- by the time we got done with a vacuum
    1400             :  *      cycle, most of the tuples in pg_class would've been obsoleted.  Of
    1401             :  *      course, this only works for fixed-size not-null columns, but these are.
    1402             :  *
    1403             :  *      Another reason for doing it this way is that when we are in a lazy
    1404             :  *      VACUUM and have PROC_IN_VACUUM set, we mustn't do any regular updates.
    1405             :  *      Somebody vacuuming pg_class might think they could delete a tuple
    1406             :  *      marked with xmin = our xid.
    1407             :  *
    1408             :  *      In addition to fundamentally nontransactional statistics such as
    1409             :  *      relpages and relallvisible, we try to maintain certain lazily-updated
    1410             :  *      DDL flags such as relhasindex, by clearing them if no longer correct.
    1411             :  *      It's safe to do this in VACUUM, which can't run in parallel with
    1412             :  *      CREATE INDEX/RULE/TRIGGER and can't be part of a transaction block.
    1413             :  *      However, it's *not* safe to do it in an ANALYZE that's within an
    1414             :  *      outer transaction, because for example the current transaction might
    1415             :  *      have dropped the last index; then we'd think relhasindex should be
    1416             :  *      cleared, but if the transaction later rolls back this would be wrong.
    1417             :  *      So we refrain from updating the DDL flags if we're inside an outer
    1418             :  *      transaction.  This is OK since postponing the flag maintenance is
    1419             :  *      always allowable.
    1420             :  *
    1421             :  *      Note: num_tuples should count only *live* tuples, since
    1422             :  *      pg_class.reltuples is defined that way.
    1423             :  *
    1424             :  *      This routine is shared by VACUUM and ANALYZE.
    1425             :  */
    1426             : void
    1427      153684 : vac_update_relstats(Relation relation,
    1428             :                     BlockNumber num_pages, double num_tuples,
    1429             :                     BlockNumber num_all_visible_pages,
    1430             :                     bool hasindex, TransactionId frozenxid,
    1431             :                     MultiXactId minmulti,
    1432             :                     bool *frozenxid_updated, bool *minmulti_updated,
    1433             :                     bool in_outer_xact)
    1434             : {
    1435      153684 :     Oid         relid = RelationGetRelid(relation);
    1436             :     Relation    rd;
    1437             :     ScanKeyData key[1];
    1438             :     HeapTuple   ctup;
    1439             :     void       *inplace_state;
    1440             :     Form_pg_class pgcform;
    1441             :     bool        dirty,
    1442             :                 futurexid,
    1443             :                 futuremxid;
    1444             :     TransactionId oldfrozenxid;
    1445             :     MultiXactId oldminmulti;
    1446             : 
    1447      153684 :     rd = table_open(RelationRelationId, RowExclusiveLock);
    1448             : 
    1449             :     /* Fetch a copy of the tuple to scribble on */
    1450      153684 :     ScanKeyInit(&key[0],
    1451             :                 Anum_pg_class_oid,
    1452             :                 BTEqualStrategyNumber, F_OIDEQ,
    1453             :                 ObjectIdGetDatum(relid));
    1454      153684 :     systable_inplace_update_begin(rd, ClassOidIndexId, true,
    1455             :                                   NULL, 1, key, &ctup, &inplace_state);
    1456      153684 :     if (!HeapTupleIsValid(ctup))
    1457           0 :         elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
    1458             :              relid);
    1459      153684 :     pgcform = (Form_pg_class) GETSTRUCT(ctup);
    1460             : 
    1461             :     /* Apply statistical updates, if any, to copied tuple */
    1462             : 
    1463      153684 :     dirty = false;
    1464      153684 :     if (pgcform->relpages != (int32) num_pages)
    1465             :     {
    1466        8406 :         pgcform->relpages = (int32) num_pages;
    1467        8406 :         dirty = true;
    1468             :     }
    1469      153684 :     if (pgcform->reltuples != (float4) num_tuples)
    1470             :     {
    1471       18044 :         pgcform->reltuples = (float4) num_tuples;
    1472       18044 :         dirty = true;
    1473             :     }
    1474      153684 :     if (pgcform->relallvisible != (int32) num_all_visible_pages)
    1475             :     {
    1476        5104 :         pgcform->relallvisible = (int32) num_all_visible_pages;
    1477        5104 :         dirty = true;
    1478             :     }
    1479             : 
    1480             :     /* Apply DDL updates, but not inside an outer transaction (see above) */
    1481             : 
    1482      153684 :     if (!in_outer_xact)
    1483             :     {
    1484             :         /*
    1485             :          * If we didn't find any indexes, reset relhasindex.
    1486             :          */
    1487      151770 :         if (pgcform->relhasindex && !hasindex)
    1488             :         {
    1489          18 :             pgcform->relhasindex = false;
    1490          18 :             dirty = true;
    1491             :         }
    1492             : 
    1493             :         /* We also clear relhasrules and relhastriggers if needed */
    1494      151770 :         if (pgcform->relhasrules && relation->rd_rules == NULL)
    1495             :         {
    1496           0 :             pgcform->relhasrules = false;
    1497           0 :             dirty = true;
    1498             :         }
    1499      151770 :         if (pgcform->relhastriggers && relation->trigdesc == NULL)
    1500             :         {
    1501           6 :             pgcform->relhastriggers = false;
    1502           6 :             dirty = true;
    1503             :         }
    1504             :     }
    1505             : 
    1506             :     /*
    1507             :      * Update relfrozenxid, unless caller passed InvalidTransactionId
    1508             :      * indicating it has no new data.
    1509             :      *
    1510             :      * Ordinarily, we don't let relfrozenxid go backwards.  However, if the
    1511             :      * stored relfrozenxid is "in the future" then it seems best to assume
    1512             :      * it's corrupt, and overwrite with the oldest remaining XID in the table.
    1513             :      * This should match vac_update_datfrozenxid() concerning what we consider
    1514             :      * to be "in the future".
    1515             :      */
    1516      153684 :     oldfrozenxid = pgcform->relfrozenxid;
    1517      153684 :     futurexid = false;
    1518      153684 :     if (frozenxid_updated)
    1519      117976 :         *frozenxid_updated = false;
    1520      153684 :     if (TransactionIdIsNormal(frozenxid) && oldfrozenxid != frozenxid)
    1521             :     {
    1522       55202 :         bool        update = false;
    1523             : 
    1524       55202 :         if (TransactionIdPrecedes(oldfrozenxid, frozenxid))
    1525       55114 :             update = true;
    1526          88 :         else if (TransactionIdPrecedes(ReadNextTransactionId(), oldfrozenxid))
    1527           0 :             futurexid = update = true;
    1528             : 
    1529       55202 :         if (update)
    1530             :         {
    1531       55114 :             pgcform->relfrozenxid = frozenxid;
    1532       55114 :             dirty = true;
    1533       55114 :             if (frozenxid_updated)
    1534       55114 :                 *frozenxid_updated = true;
    1535             :         }
    1536             :     }
    1537             : 
    1538             :     /* Similarly for relminmxid */
    1539      153684 :     oldminmulti = pgcform->relminmxid;
    1540      153684 :     futuremxid = false;
    1541      153684 :     if (minmulti_updated)
    1542      117976 :         *minmulti_updated = false;
    1543      153684 :     if (MultiXactIdIsValid(minmulti) && oldminmulti != minmulti)
    1544             :     {
    1545         274 :         bool        update = false;
    1546             : 
    1547         274 :         if (MultiXactIdPrecedes(oldminmulti, minmulti))
    1548         274 :             update = true;
    1549           0 :         else if (MultiXactIdPrecedes(ReadNextMultiXactId(), oldminmulti))
    1550           0 :             futuremxid = update = true;
    1551             : 
    1552         274 :         if (update)
    1553             :         {
    1554         274 :             pgcform->relminmxid = minmulti;
    1555         274 :             dirty = true;
    1556         274 :             if (minmulti_updated)
    1557         274 :                 *minmulti_updated = true;
    1558             :         }
    1559             :     }
    1560             : 
    1561             :     /* If anything changed, write out the tuple. */
    1562      153684 :     if (dirty)
    1563       67806 :         systable_inplace_update_finish(inplace_state, ctup);
    1564             :     else
    1565       85878 :         systable_inplace_update_cancel(inplace_state);
    1566             : 
    1567      153684 :     table_close(rd, RowExclusiveLock);
    1568             : 
    1569      153684 :     if (futurexid)
    1570           0 :         ereport(WARNING,
    1571             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    1572             :                  errmsg_internal("overwrote invalid relfrozenxid value %u with new value %u for table \"%s\"",
    1573             :                                  oldfrozenxid, frozenxid,
    1574             :                                  RelationGetRelationName(relation))));
    1575      153684 :     if (futuremxid)
    1576           0 :         ereport(WARNING,
    1577             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    1578             :                  errmsg_internal("overwrote invalid relminmxid value %u with new value %u for table \"%s\"",
    1579             :                                  oldminmulti, minmulti,
    1580             :                                  RelationGetRelationName(relation))));
    1581      153684 : }
    1582             : 
    1583             : 
    1584             : /*
    1585             :  *  vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB
    1586             :  *
    1587             :  *      Update pg_database's datfrozenxid entry for our database to be the
    1588             :  *      minimum of the pg_class.relfrozenxid values.
    1589             :  *
    1590             :  *      Similarly, update our datminmxid to be the minimum of the
    1591             :  *      pg_class.relminmxid values.
    1592             :  *
    1593             :  *      If we are able to advance either pg_database value, also try to
    1594             :  *      truncate pg_xact and pg_multixact.
    1595             :  *
    1596             :  *      We violate transaction semantics here by overwriting the database's
    1597             :  *      existing pg_database tuple with the new values.  This is reasonably
    1598             :  *      safe since the new values are correct whether or not this transaction
    1599             :  *      commits.  As with vac_update_relstats, this avoids leaving dead tuples
    1600             :  *      behind after a VACUUM.
    1601             :  */
    1602             : void
    1603        4028 : vac_update_datfrozenxid(void)
    1604             : {
    1605             :     HeapTuple   tuple;
    1606             :     Form_pg_database dbform;
    1607             :     Relation    relation;
    1608             :     SysScanDesc scan;
    1609             :     HeapTuple   classTup;
    1610             :     TransactionId newFrozenXid;
    1611             :     MultiXactId newMinMulti;
    1612             :     TransactionId lastSaneFrozenXid;
    1613             :     MultiXactId lastSaneMinMulti;
    1614        4028 :     bool        bogus = false;
    1615        4028 :     bool        dirty = false;
    1616             :     ScanKeyData key[1];
    1617             :     void       *inplace_state;
    1618             : 
    1619             :     /*
    1620             :      * Restrict this task to one backend per database.  This avoids race
    1621             :      * conditions that would move datfrozenxid or datminmxid backward.  It
    1622             :      * avoids calling vac_truncate_clog() with a datfrozenxid preceding a
    1623             :      * datfrozenxid passed to an earlier vac_truncate_clog() call.
    1624             :      */
    1625        4028 :     LockDatabaseFrozenIds(ExclusiveLock);
    1626             : 
    1627             :     /*
    1628             :      * Initialize the "min" calculation with
    1629             :      * GetOldestNonRemovableTransactionId(), which is a reasonable
    1630             :      * approximation to the minimum relfrozenxid for not-yet-committed
    1631             :      * pg_class entries for new tables; see AddNewRelationTuple().  So we
    1632             :      * cannot produce a wrong minimum by starting with this.
    1633             :      */
    1634        4028 :     newFrozenXid = GetOldestNonRemovableTransactionId(NULL);
    1635             : 
    1636             :     /*
    1637             :      * Similarly, initialize the MultiXact "min" with the value that would be
    1638             :      * used on pg_class for new tables.  See AddNewRelationTuple().
    1639             :      */
    1640        4028 :     newMinMulti = GetOldestMultiXactId();
    1641             : 
    1642             :     /*
    1643             :      * Identify the latest relfrozenxid and relminmxid values that we could
    1644             :      * validly see during the scan.  These are conservative values, but it's
    1645             :      * not really worth trying to be more exact.
    1646             :      */
    1647        4028 :     lastSaneFrozenXid = ReadNextTransactionId();
    1648        4028 :     lastSaneMinMulti = ReadNextMultiXactId();
    1649             : 
    1650             :     /*
    1651             :      * We must seqscan pg_class to find the minimum Xid, because there is no
    1652             :      * index that can help us here.
    1653             :      *
    1654             :      * See vac_truncate_clog() for the race condition to prevent.
    1655             :      */
    1656        4028 :     relation = table_open(RelationRelationId, AccessShareLock);
    1657             : 
    1658        4028 :     scan = systable_beginscan(relation, InvalidOid, false,
    1659             :                               NULL, 0, NULL);
    1660             : 
    1661     2073422 :     while ((classTup = systable_getnext(scan)) != NULL)
    1662             :     {
    1663     2069394 :         volatile FormData_pg_class *classForm = (Form_pg_class) GETSTRUCT(classTup);
    1664     2069394 :         TransactionId relfrozenxid = classForm->relfrozenxid;
    1665     2069394 :         TransactionId relminmxid = classForm->relminmxid;
    1666             : 
    1667             :         /*
    1668             :          * Only consider relations able to hold unfrozen XIDs (anything else
    1669             :          * should have InvalidTransactionId in relfrozenxid anyway).
    1670             :          */
    1671     2069394 :         if (classForm->relkind != RELKIND_RELATION &&
    1672     1639678 :             classForm->relkind != RELKIND_MATVIEW &&
    1673     1637530 :             classForm->relkind != RELKIND_TOASTVALUE)
    1674             :         {
    1675             :             Assert(!TransactionIdIsValid(relfrozenxid));
    1676             :             Assert(!MultiXactIdIsValid(relminmxid));
    1677     1411210 :             continue;
    1678             :         }
    1679             : 
    1680             :         /*
    1681             :          * Some table AMs might not need per-relation xid / multixid horizons.
    1682             :          * It therefore seems reasonable to allow relfrozenxid and relminmxid
    1683             :          * to not be set (i.e. set to their respective Invalid*Id)
    1684             :          * independently. Thus validate and compute horizon for each only if
    1685             :          * set.
    1686             :          *
    1687             :          * If things are working properly, no relation should have a
    1688             :          * relfrozenxid or relminmxid that is "in the future".  However, such
    1689             :          * cases have been known to arise due to bugs in pg_upgrade.  If we
    1690             :          * see any entries that are "in the future", chicken out and don't do
    1691             :          * anything.  This ensures we won't truncate clog & multixact SLRUs
    1692             :          * before those relations have been scanned and cleaned up.
    1693             :          */
    1694             : 
    1695      658184 :         if (TransactionIdIsValid(relfrozenxid))
    1696             :         {
    1697             :             Assert(TransactionIdIsNormal(relfrozenxid));
    1698             : 
    1699             :             /* check for values in the future */
    1700      658184 :             if (TransactionIdPrecedes(lastSaneFrozenXid, relfrozenxid))
    1701             :             {
    1702           0 :                 bogus = true;
    1703           0 :                 break;
    1704             :             }
    1705             : 
    1706             :             /* determine new horizon */
    1707      658184 :             if (TransactionIdPrecedes(relfrozenxid, newFrozenXid))
    1708        4146 :                 newFrozenXid = relfrozenxid;
    1709             :         }
    1710             : 
    1711      658184 :         if (MultiXactIdIsValid(relminmxid))
    1712             :         {
    1713             :             /* check for values in the future */
    1714      658184 :             if (MultiXactIdPrecedes(lastSaneMinMulti, relminmxid))
    1715             :             {
    1716           0 :                 bogus = true;
    1717           0 :                 break;
    1718             :             }
    1719             : 
    1720             :             /* determine new horizon */
    1721      658184 :             if (MultiXactIdPrecedes(relminmxid, newMinMulti))
    1722         200 :                 newMinMulti = relminmxid;
    1723             :         }
    1724             :     }
    1725             : 
    1726             :     /* we're done with pg_class */
    1727        4028 :     systable_endscan(scan);
    1728        4028 :     table_close(relation, AccessShareLock);
    1729             : 
    1730             :     /* chicken out if bogus data found */
    1731        4028 :     if (bogus)
    1732           0 :         return;
    1733             : 
    1734             :     Assert(TransactionIdIsNormal(newFrozenXid));
    1735             :     Assert(MultiXactIdIsValid(newMinMulti));
    1736             : 
    1737             :     /* Now fetch the pg_database tuple we need to update. */
    1738        4028 :     relation = table_open(DatabaseRelationId, RowExclusiveLock);
    1739             : 
    1740             :     /*
    1741             :      * Fetch a copy of the tuple to scribble on.  We could check the syscache
    1742             :      * tuple first.  If that concluded !dirty, we'd avoid waiting on
    1743             :      * concurrent heap_update() and would avoid exclusive-locking the buffer.
    1744             :      * For now, don't optimize that.
    1745             :      */
    1746        4028 :     ScanKeyInit(&key[0],
    1747             :                 Anum_pg_database_oid,
    1748             :                 BTEqualStrategyNumber, F_OIDEQ,
    1749             :                 ObjectIdGetDatum(MyDatabaseId));
    1750             : 
    1751        4028 :     systable_inplace_update_begin(relation, DatabaseOidIndexId, true,
    1752             :                                   NULL, 1, key, &tuple, &inplace_state);
    1753             : 
    1754        4028 :     if (!HeapTupleIsValid(tuple))
    1755           0 :         elog(ERROR, "could not find tuple for database %u", MyDatabaseId);
    1756             : 
    1757        4028 :     dbform = (Form_pg_database) GETSTRUCT(tuple);
    1758             : 
    1759             :     /*
    1760             :      * As in vac_update_relstats(), we ordinarily don't want to let
    1761             :      * datfrozenxid go backward; but if it's "in the future" then it must be
    1762             :      * corrupt and it seems best to overwrite it.
    1763             :      */
    1764        4580 :     if (dbform->datfrozenxid != newFrozenXid &&
    1765         552 :         (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid) ||
    1766           0 :          TransactionIdPrecedes(lastSaneFrozenXid, dbform->datfrozenxid)))
    1767             :     {
    1768         552 :         dbform->datfrozenxid = newFrozenXid;
    1769         552 :         dirty = true;
    1770             :     }
    1771             :     else
    1772        3476 :         newFrozenXid = dbform->datfrozenxid;
    1773             : 
    1774             :     /* Ditto for datminmxid */
    1775        4030 :     if (dbform->datminmxid != newMinMulti &&
    1776           2 :         (MultiXactIdPrecedes(dbform->datminmxid, newMinMulti) ||
    1777           0 :          MultiXactIdPrecedes(lastSaneMinMulti, dbform->datminmxid)))
    1778             :     {
    1779           2 :         dbform->datminmxid = newMinMulti;
    1780           2 :         dirty = true;
    1781             :     }
    1782             :     else
    1783        4026 :         newMinMulti = dbform->datminmxid;
    1784             : 
    1785        4028 :     if (dirty)
    1786         552 :         systable_inplace_update_finish(inplace_state, tuple);
    1787             :     else
    1788        3476 :         systable_inplace_update_cancel(inplace_state);
    1789             : 
    1790        4028 :     heap_freetuple(tuple);
    1791        4028 :     table_close(relation, RowExclusiveLock);
    1792             : 
    1793             :     /*
    1794             :      * If we were able to advance datfrozenxid or datminmxid, see if we can
    1795             :      * truncate pg_xact and/or pg_multixact.  Also do it if the shared
    1796             :      * XID-wrap-limit info is stale, since this action will update that too.
    1797             :      */
    1798        4028 :     if (dirty || ForceTransactionIdLimitUpdate())
    1799        1126 :         vac_truncate_clog(newFrozenXid, newMinMulti,
    1800             :                           lastSaneFrozenXid, lastSaneMinMulti);
    1801             : }
    1802             : 
    1803             : 
    1804             : /*
    1805             :  *  vac_truncate_clog() -- attempt to truncate the commit log
    1806             :  *
    1807             :  *      Scan pg_database to determine the system-wide oldest datfrozenxid,
    1808             :  *      and use it to truncate the transaction commit log (pg_xact).
    1809             :  *      Also update the XID wrap limit info maintained by varsup.c.
    1810             :  *      Likewise for datminmxid.
    1811             :  *
    1812             :  *      The passed frozenXID and minMulti are the updated values for my own
    1813             :  *      pg_database entry. They're used to initialize the "min" calculations.
    1814             :  *      The caller also passes the "last sane" XID and MXID, since it has
    1815             :  *      those at hand already.
    1816             :  *
    1817             :  *      This routine is only invoked when we've managed to change our
    1818             :  *      DB's datfrozenxid/datminmxid values, or we found that the shared
    1819             :  *      XID-wrap-limit info is stale.
    1820             :  */
    1821             : static void
    1822        1126 : vac_truncate_clog(TransactionId frozenXID,
    1823             :                   MultiXactId minMulti,
    1824             :                   TransactionId lastSaneFrozenXid,
    1825             :                   MultiXactId lastSaneMinMulti)
    1826             : {
    1827        1126 :     TransactionId nextXID = ReadNextTransactionId();
    1828             :     Relation    relation;
    1829             :     TableScanDesc scan;
    1830             :     HeapTuple   tuple;
    1831             :     Oid         oldestxid_datoid;
    1832             :     Oid         minmulti_datoid;
    1833        1126 :     bool        bogus = false;
    1834        1126 :     bool        frozenAlreadyWrapped = false;
    1835             : 
    1836             :     /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
    1837        1126 :     LWLockAcquire(WrapLimitsVacuumLock, LW_EXCLUSIVE);
    1838             : 
    1839             :     /* init oldest datoids to sync with my frozenXID/minMulti values */
    1840        1126 :     oldestxid_datoid = MyDatabaseId;
    1841        1126 :     minmulti_datoid = MyDatabaseId;
    1842             : 
    1843             :     /*
    1844             :      * Scan pg_database to compute the minimum datfrozenxid/datminmxid
    1845             :      *
    1846             :      * Since vac_update_datfrozenxid updates datfrozenxid/datminmxid in-place,
    1847             :      * the values could change while we look at them.  Fetch each one just
    1848             :      * once to ensure sane behavior of the comparison logic.  (Here, as in
    1849             :      * many other places, we assume that fetching or updating an XID in shared
    1850             :      * storage is atomic.)
    1851             :      *
    1852             :      * Note: we need not worry about a race condition with new entries being
    1853             :      * inserted by CREATE DATABASE.  Any such entry will have a copy of some
    1854             :      * existing DB's datfrozenxid, and that source DB cannot be ours because
    1855             :      * of the interlock against copying a DB containing an active backend.
    1856             :      * Hence the new entry will not reduce the minimum.  Also, if two VACUUMs
    1857             :      * concurrently modify the datfrozenxid's of different databases, the
    1858             :      * worst possible outcome is that pg_xact is not truncated as aggressively
    1859             :      * as it could be.
    1860             :      */
    1861        1126 :     relation = table_open(DatabaseRelationId, AccessShareLock);
    1862             : 
    1863        1126 :     scan = table_beginscan_catalog(relation, 0, NULL);
    1864             : 
    1865        4350 :     while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
    1866             :     {
    1867        3224 :         volatile FormData_pg_database *dbform = (Form_pg_database) GETSTRUCT(tuple);
    1868        3224 :         TransactionId datfrozenxid = dbform->datfrozenxid;
    1869        3224 :         TransactionId datminmxid = dbform->datminmxid;
    1870             : 
    1871             :         Assert(TransactionIdIsNormal(datfrozenxid));
    1872             :         Assert(MultiXactIdIsValid(datminmxid));
    1873             : 
    1874             :         /*
    1875             :          * If database is in the process of getting dropped, or has been
    1876             :          * interrupted while doing so, no connections to it are possible
    1877             :          * anymore. Therefore we don't need to take it into account here.
    1878             :          * Which is good, because it can't be processed by autovacuum either.
    1879             :          */
    1880        3224 :         if (database_is_invalid_form((Form_pg_database) dbform))
    1881             :         {
    1882           2 :             elog(DEBUG2,
    1883             :                  "skipping invalid database \"%s\" while computing relfrozenxid",
    1884             :                  NameStr(dbform->datname));
    1885           2 :             continue;
    1886             :         }
    1887             : 
    1888             :         /*
    1889             :          * If things are working properly, no database should have a
    1890             :          * datfrozenxid or datminmxid that is "in the future".  However, such
    1891             :          * cases have been known to arise due to bugs in pg_upgrade.  If we
    1892             :          * see any entries that are "in the future", chicken out and don't do
    1893             :          * anything.  This ensures we won't truncate clog before those
    1894             :          * databases have been scanned and cleaned up.  (We will issue the
    1895             :          * "already wrapped" warning if appropriate, though.)
    1896             :          */
    1897        6444 :         if (TransactionIdPrecedes(lastSaneFrozenXid, datfrozenxid) ||
    1898        3222 :             MultiXactIdPrecedes(lastSaneMinMulti, datminmxid))
    1899           0 :             bogus = true;
    1900             : 
    1901        3222 :         if (TransactionIdPrecedes(nextXID, datfrozenxid))
    1902           0 :             frozenAlreadyWrapped = true;
    1903        3222 :         else if (TransactionIdPrecedes(datfrozenxid, frozenXID))
    1904             :         {
    1905         450 :             frozenXID = datfrozenxid;
    1906         450 :             oldestxid_datoid = dbform->oid;
    1907             :         }
    1908             : 
    1909        3222 :         if (MultiXactIdPrecedes(datminmxid, minMulti))
    1910             :         {
    1911           4 :             minMulti = datminmxid;
    1912           4 :             minmulti_datoid = dbform->oid;
    1913             :         }
    1914             :     }
    1915             : 
    1916        1126 :     table_endscan(scan);
    1917             : 
    1918        1126 :     table_close(relation, AccessShareLock);
    1919             : 
    1920             :     /*
    1921             :      * Do not truncate CLOG if we seem to have suffered wraparound already;
    1922             :      * the computed minimum XID might be bogus.  This case should now be
    1923             :      * impossible due to the defenses in GetNewTransactionId, but we keep the
    1924             :      * test anyway.
    1925             :      */
    1926        1126 :     if (frozenAlreadyWrapped)
    1927             :     {
    1928           0 :         ereport(WARNING,
    1929             :                 (errmsg("some databases have not been vacuumed in over 2 billion transactions"),
    1930             :                  errdetail("You might have already suffered transaction-wraparound data loss.")));
    1931           0 :         LWLockRelease(WrapLimitsVacuumLock);
    1932           0 :         return;
    1933             :     }
    1934             : 
    1935             :     /* chicken out if data is bogus in any other way */
    1936        1126 :     if (bogus)
    1937             :     {
    1938           0 :         LWLockRelease(WrapLimitsVacuumLock);
    1939           0 :         return;
    1940             :     }
    1941             : 
    1942             :     /*
    1943             :      * Advance the oldest value for commit timestamps before truncating, so
    1944             :      * that if a user requests a timestamp for a transaction we're truncating
    1945             :      * away right after this point, they get NULL instead of an ugly "file not
    1946             :      * found" error from slru.c.  This doesn't matter for xact/multixact
    1947             :      * because they are not subject to arbitrary lookups from users.
    1948             :      */
    1949        1126 :     AdvanceOldestCommitTsXid(frozenXID);
    1950             : 
    1951             :     /*
    1952             :      * Truncate CLOG, multixact and CommitTs to the oldest computed value.
    1953             :      */
    1954        1126 :     TruncateCLOG(frozenXID, oldestxid_datoid);
    1955        1126 :     TruncateCommitTs(frozenXID);
    1956        1126 :     TruncateMultiXact(minMulti, minmulti_datoid);
    1957             : 
    1958             :     /*
    1959             :      * Update the wrap limit for GetNewTransactionId and creation of new
    1960             :      * MultiXactIds.  Note: these functions will also signal the postmaster
    1961             :      * for an(other) autovac cycle if needed.   XXX should we avoid possibly
    1962             :      * signaling twice?
    1963             :      */
    1964        1126 :     SetTransactionIdLimit(frozenXID, oldestxid_datoid);
    1965        1126 :     SetMultiXactIdLimit(minMulti, minmulti_datoid, false);
    1966             : 
    1967        1126 :     LWLockRelease(WrapLimitsVacuumLock);
    1968             : }
    1969             : 
    1970             : 
    1971             : /*
    1972             :  *  vacuum_rel() -- vacuum one heap relation
    1973             :  *
    1974             :  *      relid identifies the relation to vacuum.  If relation is supplied,
    1975             :  *      use the name therein for reporting any failure to open/lock the rel;
    1976             :  *      do not use it once we've successfully opened the rel, since it might
    1977             :  *      be stale.
    1978             :  *
    1979             :  *      Returns true if it's okay to proceed with a requested ANALYZE
    1980             :  *      operation on this table.
    1981             :  *
    1982             :  *      Doing one heap at a time incurs extra overhead, since we need to
    1983             :  *      check that the heap exists again just before we vacuum it.  The
    1984             :  *      reason that we do this is so that vacuuming can be spread across
    1985             :  *      many small transactions.  Otherwise, two-phase locking would require
    1986             :  *      us to lock the entire database during one pass of the vacuum cleaner.
    1987             :  *
    1988             :  *      At entry and exit, we are not inside a transaction.
    1989             :  */
    1990             : static bool
    1991      118772 : vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params,
    1992             :            BufferAccessStrategy bstrategy)
    1993             : {
    1994             :     LOCKMODE    lmode;
    1995             :     Relation    rel;
    1996             :     LockRelId   lockrelid;
    1997             :     Oid         priv_relid;
    1998             :     Oid         toast_relid;
    1999             :     Oid         save_userid;
    2000             :     int         save_sec_context;
    2001             :     int         save_nestlevel;
    2002             : 
    2003             :     Assert(params != NULL);
    2004             : 
    2005             :     /* Begin a transaction for vacuuming this relation */
    2006      118772 :     StartTransactionCommand();
    2007             : 
    2008      118772 :     if (!(params->options & VACOPT_FULL))
    2009             :     {
    2010             :         /*
    2011             :          * In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets
    2012             :          * other concurrent VACUUMs know that they can ignore this one while
    2013             :          * determining their OldestXmin.  (The reason we don't set it during a
    2014             :          * full VACUUM is exactly that we may have to run user-defined
    2015             :          * functions for functional indexes, and we want to make sure that if
    2016             :          * they use the snapshot set above, any tuples it requires can't get
    2017             :          * removed from other tables.  An index function that depends on the
    2018             :          * contents of other tables is arguably broken, but we won't break it
    2019             :          * here by violating transaction semantics.)
    2020             :          *
    2021             :          * We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by
    2022             :          * autovacuum; it's used to avoid canceling a vacuum that was invoked
    2023             :          * in an emergency.
    2024             :          *
    2025             :          * Note: these flags remain set until CommitTransaction or
    2026             :          * AbortTransaction.  We don't want to clear them until we reset
    2027             :          * MyProc->xid/xmin, otherwise GetOldestNonRemovableTransactionId()
    2028             :          * might appear to go backwards, which is probably Not Good.  (We also
    2029             :          * set PROC_IN_VACUUM *before* taking our own snapshot, so that our
    2030             :          * xmin doesn't become visible ahead of setting the flag.)
    2031             :          */
    2032      118374 :         LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
    2033      118374 :         MyProc->statusFlags |= PROC_IN_VACUUM;
    2034      118374 :         if (params->is_wraparound)
    2035       97126 :             MyProc->statusFlags |= PROC_VACUUM_FOR_WRAPAROUND;
    2036      118374 :         ProcGlobal->statusFlags[MyProc->pgxactoff] = MyProc->statusFlags;
    2037      118374 :         LWLockRelease(ProcArrayLock);
    2038             :     }
    2039             : 
    2040             :     /*
    2041             :      * Need to acquire a snapshot to prevent pg_subtrans from being truncated,
    2042             :      * cutoff xids in local memory wrapping around, and to have updated xmin
    2043             :      * horizons.
    2044             :      */
    2045      118772 :     PushActiveSnapshot(GetTransactionSnapshot());
    2046             : 
    2047             :     /*
    2048             :      * Check for user-requested abort.  Note we want this to be inside a
    2049             :      * transaction, so xact.c doesn't issue useless WARNING.
    2050             :      */
    2051      118772 :     CHECK_FOR_INTERRUPTS();
    2052             : 
    2053             :     /*
    2054             :      * Determine the type of lock we want --- hard exclusive lock for a FULL
    2055             :      * vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
    2056             :      * way, we can be sure that no other backend is vacuuming the same table.
    2057             :      */
    2058      237544 :     lmode = (params->options & VACOPT_FULL) ?
    2059      118772 :         AccessExclusiveLock : ShareUpdateExclusiveLock;
    2060             : 
    2061             :     /* open the relation and get the appropriate lock on it */
    2062      118772 :     rel = vacuum_open_relation(relid, relation, params->options,
    2063      118772 :                                params->log_min_duration >= 0, lmode);
    2064             : 
    2065             :     /* leave if relation could not be opened or locked */
    2066      118772 :     if (!rel)
    2067             :     {
    2068          24 :         PopActiveSnapshot();
    2069          24 :         CommitTransactionCommand();
    2070          24 :         return false;
    2071             :     }
    2072             : 
    2073             :     /*
    2074             :      * When recursing to a TOAST table, check privileges on the parent.  NB:
    2075             :      * This is only safe to do because we hold a session lock on the main
    2076             :      * relation that prevents concurrent deletion.
    2077             :      */
    2078      118748 :     if (OidIsValid(params->toast_parent))
    2079        7408 :         priv_relid = params->toast_parent;
    2080             :     else
    2081      111340 :         priv_relid = RelationGetRelid(rel);
    2082             : 
    2083             :     /*
    2084             :      * Check if relation needs to be skipped based on privileges.  This check
    2085             :      * happens also when building the relation list to vacuum for a manual
    2086             :      * operation, and needs to be done additionally here as VACUUM could
    2087             :      * happen across multiple transactions where privileges could have changed
    2088             :      * in-between.  Make sure to only generate logs for VACUUM in this case.
    2089             :      */
    2090      118748 :     if (!vacuum_is_permitted_for_relation(priv_relid,
    2091             :                                           rel->rd_rel,
    2092      118748 :                                           params->options & ~VACOPT_ANALYZE))
    2093             :     {
    2094          72 :         relation_close(rel, lmode);
    2095          72 :         PopActiveSnapshot();
    2096          72 :         CommitTransactionCommand();
    2097          72 :         return false;
    2098             :     }
    2099             : 
    2100             :     /*
    2101             :      * Check that it's of a vacuumable relkind.
    2102             :      */
    2103      118676 :     if (rel->rd_rel->relkind != RELKIND_RELATION &&
    2104       43862 :         rel->rd_rel->relkind != RELKIND_MATVIEW &&
    2105       43854 :         rel->rd_rel->relkind != RELKIND_TOASTVALUE &&
    2106         180 :         rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
    2107             :     {
    2108           2 :         ereport(WARNING,
    2109             :                 (errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables",
    2110             :                         RelationGetRelationName(rel))));
    2111           2 :         relation_close(rel, lmode);
    2112           2 :         PopActiveSnapshot();
    2113           2 :         CommitTransactionCommand();
    2114           2 :         return false;
    2115             :     }
    2116             : 
    2117             :     /*
    2118             :      * Silently ignore tables that are temp tables of other backends ---
    2119             :      * trying to vacuum these will lead to great unhappiness, since their
    2120             :      * contents are probably not up-to-date on disk.  (We don't throw a
    2121             :      * warning here; it would just lead to chatter during a database-wide
    2122             :      * VACUUM.)
    2123             :      */
    2124      118674 :     if (RELATION_IS_OTHER_TEMP(rel))
    2125             :     {
    2126           2 :         relation_close(rel, lmode);
    2127           2 :         PopActiveSnapshot();
    2128           2 :         CommitTransactionCommand();
    2129           2 :         return false;
    2130             :     }
    2131             : 
    2132             :     /*
    2133             :      * Silently ignore partitioned tables as there is no work to be done.  The
    2134             :      * useful work is on their child partitions, which have been queued up for
    2135             :      * us separately.
    2136             :      */
    2137      118672 :     if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
    2138             :     {
    2139         178 :         relation_close(rel, lmode);
    2140         178 :         PopActiveSnapshot();
    2141         178 :         CommitTransactionCommand();
    2142             :         /* It's OK to proceed with ANALYZE on this table */
    2143         178 :         return true;
    2144             :     }
    2145             : 
    2146             :     /*
    2147             :      * Get a session-level lock too. This will protect our access to the
    2148             :      * relation across multiple transactions, so that we can vacuum the
    2149             :      * relation's TOAST table (if any) secure in the knowledge that no one is
    2150             :      * deleting the parent relation.
    2151             :      *
    2152             :      * NOTE: this cannot block, even if someone else is waiting for access,
    2153             :      * because the lock manager knows that both lock requests are from the
    2154             :      * same process.
    2155             :      */
    2156      118494 :     lockrelid = rel->rd_lockInfo.lockRelId;
    2157      118494 :     LockRelationIdForSession(&lockrelid, lmode);
    2158             : 
    2159             :     /*
    2160             :      * Set index_cleanup option based on index_cleanup reloption if it wasn't
    2161             :      * specified in VACUUM command, or when running in an autovacuum worker
    2162             :      */
    2163      118494 :     if (params->index_cleanup == VACOPTVALUE_UNSPECIFIED)
    2164             :     {
    2165             :         StdRdOptIndexCleanup vacuum_index_cleanup;
    2166             : 
    2167      102836 :         if (rel->rd_options == NULL)
    2168      101308 :             vacuum_index_cleanup = STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO;
    2169             :         else
    2170        1528 :             vacuum_index_cleanup =
    2171        1528 :                 ((StdRdOptions *) rel->rd_options)->vacuum_index_cleanup;
    2172             : 
    2173      102836 :         if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_AUTO)
    2174      102812 :             params->index_cleanup = VACOPTVALUE_AUTO;
    2175          24 :         else if (vacuum_index_cleanup == STDRD_OPTION_VACUUM_INDEX_CLEANUP_ON)
    2176          12 :             params->index_cleanup = VACOPTVALUE_ENABLED;
    2177             :         else
    2178             :         {
    2179             :             Assert(vacuum_index_cleanup ==
    2180             :                    STDRD_OPTION_VACUUM_INDEX_CLEANUP_OFF);
    2181          12 :             params->index_cleanup = VACOPTVALUE_DISABLED;
    2182             :         }
    2183             :     }
    2184             : 
    2185             :     /*
    2186             :      * Check if the vacuum_max_eager_freeze_failure_rate table storage
    2187             :      * parameter was specified. This overrides the GUC value.
    2188             :      */
    2189      118494 :     if (rel->rd_options != NULL &&
    2190        1572 :         ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate >= 0)
    2191           0 :         params->max_eager_freeze_failure_rate =
    2192           0 :             ((StdRdOptions *) rel->rd_options)->vacuum_max_eager_freeze_failure_rate;
    2193             : 
    2194             :     /*
    2195             :      * Set truncate option based on truncate reloption if it wasn't specified
    2196             :      * in VACUUM command, or when running in an autovacuum worker
    2197             :      */
    2198      118494 :     if (params->truncate == VACOPTVALUE_UNSPECIFIED)
    2199             :     {
    2200      102862 :         if (rel->rd_options == NULL ||
    2201        1528 :             ((StdRdOptions *) rel->rd_options)->vacuum_truncate)
    2202      102856 :             params->truncate = VACOPTVALUE_ENABLED;
    2203             :         else
    2204           6 :             params->truncate = VACOPTVALUE_DISABLED;
    2205             :     }
    2206             : 
    2207             :     /*
    2208             :      * Remember the relation's TOAST relation for later, if the caller asked
    2209             :      * us to process it.  In VACUUM FULL, though, the toast table is
    2210             :      * automatically rebuilt by cluster_rel so we shouldn't recurse to it,
    2211             :      * unless PROCESS_MAIN is disabled.
    2212             :      */
    2213      118494 :     if ((params->options & VACOPT_PROCESS_TOAST) != 0 &&
    2214       21154 :         ((params->options & VACOPT_FULL) == 0 ||
    2215         370 :          (params->options & VACOPT_PROCESS_MAIN) == 0))
    2216       20790 :         toast_relid = rel->rd_rel->reltoastrelid;
    2217             :     else
    2218       97704 :         toast_relid = InvalidOid;
    2219             : 
    2220             :     /*
    2221             :      * Switch to the table owner's userid, so that any index functions are run
    2222             :      * as that user.  Also lock down security-restricted operations and
    2223             :      * arrange to make GUC variable changes local to this command. (This is
    2224             :      * unnecessary, but harmless, for lazy VACUUM.)
    2225             :      */
    2226      118494 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
    2227      118494 :     SetUserIdAndSecContext(rel->rd_rel->relowner,
    2228             :                            save_sec_context | SECURITY_RESTRICTED_OPERATION);
    2229      118494 :     save_nestlevel = NewGUCNestLevel();
    2230      118494 :     RestrictSearchPath();
    2231             : 
    2232             :     /*
    2233             :      * If PROCESS_MAIN is set (the default), it's time to vacuum the main
    2234             :      * relation.  Otherwise, we can skip this part.  If processing the TOAST
    2235             :      * table is required (e.g., PROCESS_TOAST is set), we force PROCESS_MAIN
    2236             :      * to be set when we recurse to the TOAST table.
    2237             :      */
    2238      118494 :     if (params->options & VACOPT_PROCESS_MAIN)
    2239             :     {
    2240             :         /*
    2241             :          * Do the actual work --- either FULL or "lazy" vacuum
    2242             :          */
    2243      118340 :         if (params->options & VACOPT_FULL)
    2244             :         {
    2245         364 :             ClusterParams cluster_params = {0};
    2246             : 
    2247         364 :             if ((params->options & VACOPT_VERBOSE) != 0)
    2248           2 :                 cluster_params.options |= CLUOPT_VERBOSE;
    2249             : 
    2250             :             /* VACUUM FULL is now a variant of CLUSTER; see cluster.c */
    2251         364 :             cluster_rel(rel, InvalidOid, &cluster_params);
    2252             :             /* cluster_rel closes the relation, but keeps lock */
    2253             : 
    2254         358 :             rel = NULL;
    2255             :         }
    2256             :         else
    2257      117976 :             table_relation_vacuum(rel, params, bstrategy);
    2258             :     }
    2259             : 
    2260             :     /* Roll back any GUC changes executed by index functions */
    2261      118488 :     AtEOXact_GUC(false, save_nestlevel);
    2262             : 
    2263             :     /* Restore userid and security context */
    2264      118488 :     SetUserIdAndSecContext(save_userid, save_sec_context);
    2265             : 
    2266             :     /* all done with this class, but hold lock until commit */
    2267      118488 :     if (rel)
    2268      118130 :         relation_close(rel, NoLock);
    2269             : 
    2270             :     /*
    2271             :      * Complete the transaction and free all temporary memory used.
    2272             :      */
    2273      118488 :     PopActiveSnapshot();
    2274      118488 :     CommitTransactionCommand();
    2275             : 
    2276             :     /*
    2277             :      * If the relation has a secondary toast rel, vacuum that too while we
    2278             :      * still hold the session lock on the main table.  Note however that
    2279             :      * "analyze" will not get done on the toast table.  This is good, because
    2280             :      * the toaster always uses hardcoded index access and statistics are
    2281             :      * totally unimportant for toast relations.
    2282             :      */
    2283      118488 :     if (toast_relid != InvalidOid)
    2284             :     {
    2285             :         VacuumParams toast_vacuum_params;
    2286             : 
    2287             :         /*
    2288             :          * Force VACOPT_PROCESS_MAIN so vacuum_rel() processes it.  Likewise,
    2289             :          * set toast_parent so that the privilege checks are done on the main
    2290             :          * relation.  NB: This is only safe to do because we hold a session
    2291             :          * lock on the main relation that prevents concurrent deletion.
    2292             :          */
    2293        7408 :         memcpy(&toast_vacuum_params, params, sizeof(VacuumParams));
    2294        7408 :         toast_vacuum_params.options |= VACOPT_PROCESS_MAIN;
    2295        7408 :         toast_vacuum_params.toast_parent = relid;
    2296             : 
    2297        7408 :         vacuum_rel(toast_relid, NULL, &toast_vacuum_params, bstrategy);
    2298             :     }
    2299             : 
    2300             :     /*
    2301             :      * Now release the session-level lock on the main table.
    2302             :      */
    2303      118488 :     UnlockRelationIdForSession(&lockrelid, lmode);
    2304             : 
    2305             :     /* Report that we really did it. */
    2306      118488 :     return true;
    2307             : }
    2308             : 
    2309             : 
    2310             : /*
    2311             :  * Open all the vacuumable indexes of the given relation, obtaining the
    2312             :  * specified kind of lock on each.  Return an array of Relation pointers for
    2313             :  * the indexes into *Irel, and the number of indexes into *nindexes.
    2314             :  *
    2315             :  * We consider an index vacuumable if it is marked insertable (indisready).
    2316             :  * If it isn't, probably a CREATE INDEX CONCURRENTLY command failed early in
    2317             :  * execution, and what we have is too corrupt to be processable.  We will
    2318             :  * vacuum even if the index isn't indisvalid; this is important because in a
    2319             :  * unique index, uniqueness checks will be performed anyway and had better not
    2320             :  * hit dangling index pointers.
    2321             :  */
    2322             : void
    2323      131376 : vac_open_indexes(Relation relation, LOCKMODE lockmode,
    2324             :                  int *nindexes, Relation **Irel)
    2325             : {
    2326             :     List       *indexoidlist;
    2327             :     ListCell   *indexoidscan;
    2328             :     int         i;
    2329             : 
    2330             :     Assert(lockmode != NoLock);
    2331             : 
    2332      131376 :     indexoidlist = RelationGetIndexList(relation);
    2333             : 
    2334             :     /* allocate enough memory for all indexes */
    2335      131376 :     i = list_length(indexoidlist);
    2336             : 
    2337      131376 :     if (i > 0)
    2338      122584 :         *Irel = (Relation *) palloc(i * sizeof(Relation));
    2339             :     else
    2340        8792 :         *Irel = NULL;
    2341             : 
    2342             :     /* collect just the ready indexes */
    2343      131376 :     i = 0;
    2344      326290 :     foreach(indexoidscan, indexoidlist)
    2345             :     {
    2346      194914 :         Oid         indexoid = lfirst_oid(indexoidscan);
    2347             :         Relation    indrel;
    2348             : 
    2349      194914 :         indrel = index_open(indexoid, lockmode);
    2350      194914 :         if (indrel->rd_index->indisready)
    2351      194914 :             (*Irel)[i++] = indrel;
    2352             :         else
    2353           0 :             index_close(indrel, lockmode);
    2354             :     }
    2355             : 
    2356      131376 :     *nindexes = i;
    2357             : 
    2358      131376 :     list_free(indexoidlist);
    2359      131376 : }
    2360             : 
    2361             : /*
    2362             :  * Release the resources acquired by vac_open_indexes.  Optionally release
    2363             :  * the locks (say NoLock to keep 'em).
    2364             :  */
    2365             : void
    2366      132192 : vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
    2367             : {
    2368      132192 :     if (Irel == NULL)
    2369        9614 :         return;
    2370             : 
    2371      317480 :     while (nindexes--)
    2372             :     {
    2373      194902 :         Relation    ind = Irel[nindexes];
    2374             : 
    2375      194902 :         index_close(ind, lockmode);
    2376             :     }
    2377      122578 :     pfree(Irel);
    2378             : }
    2379             : 
    2380             : /*
    2381             :  * vacuum_delay_point --- check for interrupts and cost-based delay.
    2382             :  *
    2383             :  * This should be called in each major loop of VACUUM processing,
    2384             :  * typically once per page processed.
    2385             :  */
    2386             : void
    2387    71855172 : vacuum_delay_point(bool is_analyze)
    2388             : {
    2389    71855172 :     double      msec = 0;
    2390             : 
    2391             :     /* Always check for interrupts */
    2392    71855172 :     CHECK_FOR_INTERRUPTS();
    2393             : 
    2394    71855172 :     if (InterruptPending ||
    2395    71855172 :         (!VacuumCostActive && !ConfigReloadPending))
    2396    66339984 :         return;
    2397             : 
    2398             :     /*
    2399             :      * Autovacuum workers should reload the configuration file if requested.
    2400             :      * This allows changes to [autovacuum_]vacuum_cost_limit and
    2401             :      * [autovacuum_]vacuum_cost_delay to take effect while a table is being
    2402             :      * vacuumed or analyzed.
    2403             :      */
    2404     5515188 :     if (ConfigReloadPending && AmAutoVacuumWorkerProcess())
    2405             :     {
    2406           0 :         ConfigReloadPending = false;
    2407           0 :         ProcessConfigFile(PGC_SIGHUP);
    2408           0 :         VacuumUpdateCosts();
    2409             :     }
    2410             : 
    2411             :     /*
    2412             :      * If we disabled cost-based delays after reloading the config file,
    2413             :      * return.
    2414             :      */
    2415     5515188 :     if (!VacuumCostActive)
    2416           0 :         return;
    2417             : 
    2418             :     /*
    2419             :      * For parallel vacuum, the delay is computed based on the shared cost
    2420             :      * balance.  See compute_parallel_delay.
    2421             :      */
    2422     5515188 :     if (VacuumSharedCostBalance != NULL)
    2423           0 :         msec = compute_parallel_delay();
    2424     5515188 :     else if (VacuumCostBalance >= vacuum_cost_limit)
    2425        3482 :         msec = vacuum_cost_delay * VacuumCostBalance / vacuum_cost_limit;
    2426             : 
    2427             :     /* Nap if appropriate */
    2428     5515188 :     if (msec > 0)
    2429             :     {
    2430             :         instr_time  delay_start;
    2431             : 
    2432        3482 :         if (msec > vacuum_cost_delay * 4)
    2433           6 :             msec = vacuum_cost_delay * 4;
    2434             : 
    2435        3482 :         if (track_cost_delay_timing)
    2436           0 :             INSTR_TIME_SET_CURRENT(delay_start);
    2437             : 
    2438        3482 :         pgstat_report_wait_start(WAIT_EVENT_VACUUM_DELAY);
    2439        3482 :         pg_usleep(msec * 1000);
    2440        3482 :         pgstat_report_wait_end();
    2441             : 
    2442        3482 :         if (track_cost_delay_timing)
    2443             :         {
    2444             :             instr_time  delay_end;
    2445             :             instr_time  delay;
    2446             : 
    2447           0 :             INSTR_TIME_SET_CURRENT(delay_end);
    2448           0 :             INSTR_TIME_SET_ZERO(delay);
    2449           0 :             INSTR_TIME_ACCUM_DIFF(delay, delay_end, delay_start);
    2450             : 
    2451             :             /*
    2452             :              * For parallel workers, we only report the delay time every once
    2453             :              * in a while to avoid overloading the leader with messages and
    2454             :              * interrupts.
    2455             :              */
    2456           0 :             if (IsParallelWorker())
    2457             :             {
    2458             :                 static instr_time last_report_time;
    2459             :                 instr_time  time_since_last_report;
    2460             : 
    2461             :                 Assert(!is_analyze);
    2462             : 
    2463             :                 /* Accumulate the delay time */
    2464           0 :                 parallel_vacuum_worker_delay_ns += INSTR_TIME_GET_NANOSEC(delay);
    2465             : 
    2466             :                 /* Calculate interval since last report */
    2467           0 :                 INSTR_TIME_SET_ZERO(time_since_last_report);
    2468           0 :                 INSTR_TIME_ACCUM_DIFF(time_since_last_report, delay_end, last_report_time);
    2469             : 
    2470             :                 /* If we haven't reported in a while, do so now */
    2471           0 :                 if (INSTR_TIME_GET_NANOSEC(time_since_last_report) >=
    2472             :                     PARALLEL_VACUUM_DELAY_REPORT_INTERVAL_NS)
    2473             :                 {
    2474           0 :                     pgstat_progress_parallel_incr_param(PROGRESS_VACUUM_DELAY_TIME,
    2475             :                                                         parallel_vacuum_worker_delay_ns);
    2476             : 
    2477             :                     /* Reset variables */
    2478           0 :                     last_report_time = delay_end;
    2479           0 :                     parallel_vacuum_worker_delay_ns = 0;
    2480             :                 }
    2481             :             }
    2482           0 :             else if (is_analyze)
    2483           0 :                 pgstat_progress_incr_param(PROGRESS_ANALYZE_DELAY_TIME,
    2484           0 :                                            INSTR_TIME_GET_NANOSEC(delay));
    2485             :             else
    2486           0 :                 pgstat_progress_incr_param(PROGRESS_VACUUM_DELAY_TIME,
    2487           0 :                                            INSTR_TIME_GET_NANOSEC(delay));
    2488             :         }
    2489             : 
    2490             :         /*
    2491             :          * We don't want to ignore postmaster death during very long vacuums
    2492             :          * with vacuum_cost_delay configured.  We can't use the usual
    2493             :          * WaitLatch() approach here because we want microsecond-based sleep
    2494             :          * durations above.
    2495             :          */
    2496        3482 :         if (IsUnderPostmaster && !PostmasterIsAlive())
    2497           0 :             exit(1);
    2498             : 
    2499        3482 :         VacuumCostBalance = 0;
    2500             : 
    2501             :         /*
    2502             :          * Balance and update limit values for autovacuum workers. We must do
    2503             :          * this periodically, as the number of workers across which we are
    2504             :          * balancing the limit may have changed.
    2505             :          *
    2506             :          * TODO: There may be better criteria for determining when to do this
    2507             :          * besides "check after napping".
    2508             :          */
    2509        3482 :         AutoVacuumUpdateCostLimit();
    2510             : 
    2511             :         /* Might have gotten an interrupt while sleeping */
    2512        3482 :         CHECK_FOR_INTERRUPTS();
    2513             :     }
    2514             : }
    2515             : 
    2516             : /*
    2517             :  * Computes the vacuum delay for parallel workers.
    2518             :  *
    2519             :  * The basic idea of a cost-based delay for parallel vacuum is to allow each
    2520             :  * worker to sleep in proportion to the share of work it's done.  We achieve this
    2521             :  * by allowing all parallel vacuum workers including the leader process to
    2522             :  * have a shared view of cost related parameters (mainly VacuumCostBalance).
    2523             :  * We allow each worker to update it as and when it has incurred any cost and
    2524             :  * then based on that decide whether it needs to sleep.  We compute the time
    2525             :  * to sleep for a worker based on the cost it has incurred
    2526             :  * (VacuumCostBalanceLocal) and then reduce the VacuumSharedCostBalance by
    2527             :  * that amount.  This avoids putting to sleep those workers which have done less
    2528             :  * I/O than other workers and therefore ensure that workers
    2529             :  * which are doing more I/O got throttled more.
    2530             :  *
    2531             :  * We allow a worker to sleep only if it has performed I/O above a certain
    2532             :  * threshold, which is calculated based on the number of active workers
    2533             :  * (VacuumActiveNWorkers), and the overall cost balance is more than
    2534             :  * VacuumCostLimit set by the system.  Testing reveals that we achieve
    2535             :  * the required throttling if we force a worker that has done more than 50%
    2536             :  * of its share of work to sleep.
    2537             :  */
    2538             : static double
    2539           0 : compute_parallel_delay(void)
    2540             : {
    2541           0 :     double      msec = 0;
    2542             :     uint32      shared_balance;
    2543             :     int         nworkers;
    2544             : 
    2545             :     /* Parallel vacuum must be active */
    2546             :     Assert(VacuumSharedCostBalance);
    2547             : 
    2548           0 :     nworkers = pg_atomic_read_u32(VacuumActiveNWorkers);
    2549             : 
    2550             :     /* At least count itself */
    2551             :     Assert(nworkers >= 1);
    2552             : 
    2553             :     /* Update the shared cost balance value atomically */
    2554           0 :     shared_balance = pg_atomic_add_fetch_u32(VacuumSharedCostBalance, VacuumCostBalance);
    2555             : 
    2556             :     /* Compute the total local balance for the current worker */
    2557           0 :     VacuumCostBalanceLocal += VacuumCostBalance;
    2558             : 
    2559           0 :     if ((shared_balance >= vacuum_cost_limit) &&
    2560           0 :         (VacuumCostBalanceLocal > 0.5 * ((double) vacuum_cost_limit / nworkers)))
    2561             :     {
    2562             :         /* Compute sleep time based on the local cost balance */
    2563           0 :         msec = vacuum_cost_delay * VacuumCostBalanceLocal / vacuum_cost_limit;
    2564           0 :         pg_atomic_sub_fetch_u32(VacuumSharedCostBalance, VacuumCostBalanceLocal);
    2565           0 :         VacuumCostBalanceLocal = 0;
    2566             :     }
    2567             : 
    2568             :     /*
    2569             :      * Reset the local balance as we accumulated it into the shared value.
    2570             :      */
    2571           0 :     VacuumCostBalance = 0;
    2572             : 
    2573           0 :     return msec;
    2574             : }
    2575             : 
    2576             : /*
    2577             :  * A wrapper function of defGetBoolean().
    2578             :  *
    2579             :  * This function returns VACOPTVALUE_ENABLED and VACOPTVALUE_DISABLED instead
    2580             :  * of true and false.
    2581             :  */
    2582             : static VacOptValue
    2583         316 : get_vacoptval_from_boolean(DefElem *def)
    2584             : {
    2585         316 :     return defGetBoolean(def) ? VACOPTVALUE_ENABLED : VACOPTVALUE_DISABLED;
    2586             : }
    2587             : 
    2588             : /*
    2589             :  *  vac_bulkdel_one_index() -- bulk-deletion for index relation.
    2590             :  *
    2591             :  * Returns bulk delete stats derived from input stats
    2592             :  */
    2593             : IndexBulkDeleteResult *
    2594        1976 : vac_bulkdel_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat,
    2595             :                       TidStore *dead_items, VacDeadItemsInfo *dead_items_info)
    2596             : {
    2597             :     /* Do bulk deletion */
    2598        1976 :     istat = index_bulk_delete(ivinfo, istat, vac_tid_reaped,
    2599             :                               dead_items);
    2600             : 
    2601        1976 :     ereport(ivinfo->message_level,
    2602             :             (errmsg("scanned index \"%s\" to remove %lld row versions",
    2603             :                     RelationGetRelationName(ivinfo->index),
    2604             :                     (long long) dead_items_info->num_items)));
    2605             : 
    2606        1976 :     return istat;
    2607             : }
    2608             : 
    2609             : /*
    2610             :  *  vac_cleanup_one_index() -- do post-vacuum cleanup for index relation.
    2611             :  *
    2612             :  * Returns bulk delete stats derived from input stats
    2613             :  */
    2614             : IndexBulkDeleteResult *
    2615      146996 : vac_cleanup_one_index(IndexVacuumInfo *ivinfo, IndexBulkDeleteResult *istat)
    2616             : {
    2617      146996 :     istat = index_vacuum_cleanup(ivinfo, istat);
    2618             : 
    2619      146996 :     if (istat)
    2620        2218 :         ereport(ivinfo->message_level,
    2621             :                 (errmsg("index \"%s\" now contains %.0f row versions in %u pages",
    2622             :                         RelationGetRelationName(ivinfo->index),
    2623             :                         istat->num_index_tuples,
    2624             :                         istat->num_pages),
    2625             :                  errdetail("%.0f index row versions were removed.\n"
    2626             :                            "%u index pages were newly deleted.\n"
    2627             :                            "%u index pages are currently deleted, of which %u are currently reusable.",
    2628             :                            istat->tuples_removed,
    2629             :                            istat->pages_newly_deleted,
    2630             :                            istat->pages_deleted, istat->pages_free)));
    2631             : 
    2632      146996 :     return istat;
    2633             : }
    2634             : 
    2635             : /*
    2636             :  *  vac_tid_reaped() -- is a particular tid deletable?
    2637             :  *
    2638             :  *      This has the right signature to be an IndexBulkDeleteCallback.
    2639             :  */
    2640             : static bool
    2641     5454606 : vac_tid_reaped(ItemPointer itemptr, void *state)
    2642             : {
    2643     5454606 :     TidStore   *dead_items = (TidStore *) state;
    2644             : 
    2645     5454606 :     return TidStoreIsMember(dead_items, itemptr);
    2646             : }

Generated by: LCOV version 1.14