LCOV - code coverage report
Current view: top level - src/backend/commands - analyze.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 939 984 95.4 %
Date: 2025-01-18 04:15:08 Functions: 18 18 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * analyze.c
       4             :  *    the Postgres statistics generator
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/commands/analyze.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include <math.h>
      18             : 
      19             : #include "access/detoast.h"
      20             : #include "access/genam.h"
      21             : #include "access/multixact.h"
      22             : #include "access/relation.h"
      23             : #include "access/table.h"
      24             : #include "access/tableam.h"
      25             : #include "access/transam.h"
      26             : #include "access/tupconvert.h"
      27             : #include "access/visibilitymap.h"
      28             : #include "access/xact.h"
      29             : #include "catalog/index.h"
      30             : #include "catalog/indexing.h"
      31             : #include "catalog/pg_inherits.h"
      32             : #include "commands/dbcommands.h"
      33             : #include "commands/progress.h"
      34             : #include "commands/tablecmds.h"
      35             : #include "commands/vacuum.h"
      36             : #include "common/pg_prng.h"
      37             : #include "executor/executor.h"
      38             : #include "foreign/fdwapi.h"
      39             : #include "miscadmin.h"
      40             : #include "nodes/nodeFuncs.h"
      41             : #include "parser/parse_oper.h"
      42             : #include "parser/parse_relation.h"
      43             : #include "pgstat.h"
      44             : #include "statistics/extended_stats_internal.h"
      45             : #include "statistics/statistics.h"
      46             : #include "storage/bufmgr.h"
      47             : #include "storage/procarray.h"
      48             : #include "utils/attoptcache.h"
      49             : #include "utils/datum.h"
      50             : #include "utils/guc.h"
      51             : #include "utils/lsyscache.h"
      52             : #include "utils/memutils.h"
      53             : #include "utils/pg_rusage.h"
      54             : #include "utils/sampling.h"
      55             : #include "utils/sortsupport.h"
      56             : #include "utils/syscache.h"
      57             : #include "utils/timestamp.h"
      58             : 
      59             : 
      60             : /* Per-index data for ANALYZE */
      61             : typedef struct AnlIndexData
      62             : {
      63             :     IndexInfo  *indexInfo;      /* BuildIndexInfo result */
      64             :     double      tupleFract;     /* fraction of rows for partial index */
      65             :     VacAttrStats **vacattrstats;    /* index attrs to analyze */
      66             :     int         attr_cnt;
      67             : } AnlIndexData;
      68             : 
      69             : 
      70             : /* Default statistics target (GUC parameter) */
      71             : int         default_statistics_target = 100;
      72             : 
      73             : /* A few variables that don't seem worth passing around as parameters */
      74             : static MemoryContext anl_context = NULL;
      75             : static BufferAccessStrategy vac_strategy;
      76             : 
      77             : 
      78             : static void do_analyze_rel(Relation onerel,
      79             :                            VacuumParams *params, List *va_cols,
      80             :                            AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
      81             :                            bool inh, bool in_outer_xact, int elevel);
      82             : static void compute_index_stats(Relation onerel, double totalrows,
      83             :                                 AnlIndexData *indexdata, int nindexes,
      84             :                                 HeapTuple *rows, int numrows,
      85             :                                 MemoryContext col_context);
      86             : static VacAttrStats *examine_attribute(Relation onerel, int attnum,
      87             :                                        Node *index_expr);
      88             : static int  acquire_sample_rows(Relation onerel, int elevel,
      89             :                                 HeapTuple *rows, int targrows,
      90             :                                 double *totalrows, double *totaldeadrows);
      91             : static int  compare_rows(const void *a, const void *b, void *arg);
      92             : static int  acquire_inherited_sample_rows(Relation onerel, int elevel,
      93             :                                           HeapTuple *rows, int targrows,
      94             :                                           double *totalrows, double *totaldeadrows);
      95             : static void update_attstats(Oid relid, bool inh,
      96             :                             int natts, VacAttrStats **vacattrstats);
      97             : static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
      98             : static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
      99             : 
     100             : 
     101             : /*
     102             :  *  analyze_rel() -- analyze one relation
     103             :  *
     104             :  * relid identifies the relation to analyze.  If relation is supplied, use
     105             :  * the name therein for reporting any failure to open/lock the rel; do not
     106             :  * use it once we've successfully opened the rel, since it might be stale.
     107             :  */
     108             : void
     109       13784 : analyze_rel(Oid relid, RangeVar *relation,
     110             :             VacuumParams *params, List *va_cols, bool in_outer_xact,
     111             :             BufferAccessStrategy bstrategy)
     112             : {
     113             :     Relation    onerel;
     114             :     int         elevel;
     115       13784 :     AcquireSampleRowsFunc acquirefunc = NULL;
     116       13784 :     BlockNumber relpages = 0;
     117             : 
     118             :     /* Select logging level */
     119       13784 :     if (params->options & VACOPT_VERBOSE)
     120           0 :         elevel = INFO;
     121             :     else
     122       13784 :         elevel = DEBUG2;
     123             : 
     124             :     /* Set up static variables */
     125       13784 :     vac_strategy = bstrategy;
     126             : 
     127             :     /*
     128             :      * Check for user-requested abort.
     129             :      */
     130       13784 :     CHECK_FOR_INTERRUPTS();
     131             : 
     132             :     /*
     133             :      * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
     134             :      * ANALYZEs don't run on it concurrently.  (This also locks out a
     135             :      * concurrent VACUUM, which doesn't matter much at the moment but might
     136             :      * matter if we ever try to accumulate stats on dead tuples.) If the rel
     137             :      * has been dropped since we last saw it, we don't need to process it.
     138             :      *
     139             :      * Make sure to generate only logs for ANALYZE in this case.
     140             :      */
     141       13784 :     onerel = vacuum_open_relation(relid, relation, params->options & ~(VACOPT_VACUUM),
     142       13784 :                                   params->log_min_duration >= 0,
     143             :                                   ShareUpdateExclusiveLock);
     144             : 
     145             :     /* leave if relation could not be opened or locked */
     146       13784 :     if (!onerel)
     147         180 :         return;
     148             : 
     149             :     /*
     150             :      * Check if relation needs to be skipped based on privileges.  This check
     151             :      * happens also when building the relation list to analyze for a manual
     152             :      * operation, and needs to be done additionally here as ANALYZE could
     153             :      * happen across multiple transactions where privileges could have changed
     154             :      * in-between.  Make sure to generate only logs for ANALYZE in this case.
     155             :      */
     156       13776 :     if (!vacuum_is_permitted_for_relation(RelationGetRelid(onerel),
     157             :                                           onerel->rd_rel,
     158       13776 :                                           params->options & ~VACOPT_VACUUM))
     159             :     {
     160          36 :         relation_close(onerel, ShareUpdateExclusiveLock);
     161          36 :         return;
     162             :     }
     163             : 
     164             :     /*
     165             :      * Silently ignore tables that are temp tables of other backends ---
     166             :      * trying to analyze these is rather pointless, since their contents are
     167             :      * probably not up-to-date on disk.  (We don't throw a warning here; it
     168             :      * would just lead to chatter during a database-wide ANALYZE.)
     169             :      */
     170       13740 :     if (RELATION_IS_OTHER_TEMP(onerel))
     171             :     {
     172           0 :         relation_close(onerel, ShareUpdateExclusiveLock);
     173           0 :         return;
     174             :     }
     175             : 
     176             :     /*
     177             :      * We can ANALYZE any table except pg_statistic. See update_attstats
     178             :      */
     179       13740 :     if (RelationGetRelid(onerel) == StatisticRelationId)
     180             :     {
     181         136 :         relation_close(onerel, ShareUpdateExclusiveLock);
     182         136 :         return;
     183             :     }
     184             : 
     185             :     /*
     186             :      * Check that it's of an analyzable relkind, and set up appropriately.
     187             :      */
     188       13604 :     if (onerel->rd_rel->relkind == RELKIND_RELATION ||
     189         760 :         onerel->rd_rel->relkind == RELKIND_MATVIEW)
     190             :     {
     191             :         /* Regular table, so we'll use the regular row acquisition function */
     192       12844 :         acquirefunc = acquire_sample_rows;
     193             :         /* Also get regular table's size */
     194       12844 :         relpages = RelationGetNumberOfBlocks(onerel);
     195             :     }
     196         760 :     else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
     197             :     {
     198             :         /*
     199             :          * For a foreign table, call the FDW's hook function to see whether it
     200             :          * supports analysis.
     201             :          */
     202             :         FdwRoutine *fdwroutine;
     203          56 :         bool        ok = false;
     204             : 
     205          56 :         fdwroutine = GetFdwRoutineForRelation(onerel, false);
     206             : 
     207          56 :         if (fdwroutine->AnalyzeForeignTable != NULL)
     208          56 :             ok = fdwroutine->AnalyzeForeignTable(onerel,
     209             :                                                  &acquirefunc,
     210             :                                                  &relpages);
     211             : 
     212          56 :         if (!ok)
     213             :         {
     214           0 :             ereport(WARNING,
     215             :                     (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
     216             :                             RelationGetRelationName(onerel))));
     217           0 :             relation_close(onerel, ShareUpdateExclusiveLock);
     218           0 :             return;
     219             :         }
     220             :     }
     221         704 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     222             :     {
     223             :         /*
     224             :          * For partitioned tables, we want to do the recursive ANALYZE below.
     225             :          */
     226             :     }
     227             :     else
     228             :     {
     229             :         /* No need for a WARNING if we already complained during VACUUM */
     230           0 :         if (!(params->options & VACOPT_VACUUM))
     231           0 :             ereport(WARNING,
     232             :                     (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
     233             :                             RelationGetRelationName(onerel))));
     234           0 :         relation_close(onerel, ShareUpdateExclusiveLock);
     235           0 :         return;
     236             :     }
     237             : 
     238             :     /*
     239             :      * OK, let's do it.  First, initialize progress reporting.
     240             :      */
     241       13604 :     pgstat_progress_start_command(PROGRESS_COMMAND_ANALYZE,
     242             :                                   RelationGetRelid(onerel));
     243             : 
     244             :     /*
     245             :      * Do the normal non-recursive ANALYZE.  We can skip this for partitioned
     246             :      * tables, which don't contain any rows.
     247             :      */
     248       13604 :     if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
     249       12900 :         do_analyze_rel(onerel, params, va_cols, acquirefunc,
     250             :                        relpages, false, in_outer_xact, elevel);
     251             : 
     252             :     /*
     253             :      * If there are child tables, do recursive ANALYZE.
     254             :      */
     255       13562 :     if (onerel->rd_rel->relhassubclass)
     256         812 :         do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
     257             :                        true, in_outer_xact, elevel);
     258             : 
     259             :     /*
     260             :      * Close source relation now, but keep lock so that no one deletes it
     261             :      * before we commit.  (If someone did, they'd fail to clean up the entries
     262             :      * we made in pg_statistic.  Also, releasing the lock before commit would
     263             :      * expose us to concurrent-update failures in update_attstats.)
     264             :      */
     265       13544 :     relation_close(onerel, NoLock);
     266             : 
     267       13544 :     pgstat_progress_end_command();
     268             : }
     269             : 
     270             : /*
     271             :  *  do_analyze_rel() -- analyze one relation, recursively or not
     272             :  *
     273             :  * Note that "acquirefunc" is only relevant for the non-inherited case.
     274             :  * For the inherited case, acquire_inherited_sample_rows() determines the
     275             :  * appropriate acquirefunc for each child table.
     276             :  */
     277             : static void
     278       13712 : do_analyze_rel(Relation onerel, VacuumParams *params,
     279             :                List *va_cols, AcquireSampleRowsFunc acquirefunc,
     280             :                BlockNumber relpages, bool inh, bool in_outer_xact,
     281             :                int elevel)
     282             : {
     283             :     int         attr_cnt,
     284             :                 tcnt,
     285             :                 i,
     286             :                 ind;
     287             :     Relation   *Irel;
     288             :     int         nindexes;
     289             :     bool        verbose,
     290             :                 instrument,
     291             :                 hasindex;
     292             :     VacAttrStats **vacattrstats;
     293             :     AnlIndexData *indexdata;
     294             :     int         targrows,
     295             :                 numrows,
     296             :                 minrows;
     297             :     double      totalrows,
     298             :                 totaldeadrows;
     299             :     HeapTuple  *rows;
     300             :     PGRUsage    ru0;
     301       13712 :     TimestampTz starttime = 0;
     302             :     MemoryContext caller_context;
     303             :     Oid         save_userid;
     304             :     int         save_sec_context;
     305             :     int         save_nestlevel;
     306       13712 :     WalUsage    startwalusage = pgWalUsage;
     307       13712 :     BufferUsage startbufferusage = pgBufferUsage;
     308             :     BufferUsage bufferusage;
     309       13712 :     PgStat_Counter startreadtime = 0;
     310       13712 :     PgStat_Counter startwritetime = 0;
     311             : 
     312       13712 :     verbose = (params->options & VACOPT_VERBOSE) != 0;
     313       14098 :     instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
     314         386 :                               params->log_min_duration >= 0));
     315       13712 :     if (inh)
     316         812 :         ereport(elevel,
     317             :                 (errmsg("analyzing \"%s.%s\" inheritance tree",
     318             :                         get_namespace_name(RelationGetNamespace(onerel)),
     319             :                         RelationGetRelationName(onerel))));
     320             :     else
     321       12900 :         ereport(elevel,
     322             :                 (errmsg("analyzing \"%s.%s\"",
     323             :                         get_namespace_name(RelationGetNamespace(onerel)),
     324             :                         RelationGetRelationName(onerel))));
     325             : 
     326             :     /*
     327             :      * Set up a working context so that we can easily free whatever junk gets
     328             :      * created.
     329             :      */
     330       13712 :     anl_context = AllocSetContextCreate(CurrentMemoryContext,
     331             :                                         "Analyze",
     332             :                                         ALLOCSET_DEFAULT_SIZES);
     333       13712 :     caller_context = MemoryContextSwitchTo(anl_context);
     334             : 
     335             :     /*
     336             :      * Switch to the table owner's userid, so that any index functions are run
     337             :      * as that user.  Also lock down security-restricted operations and
     338             :      * arrange to make GUC variable changes local to this command.
     339             :      */
     340       13712 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
     341       13712 :     SetUserIdAndSecContext(onerel->rd_rel->relowner,
     342             :                            save_sec_context | SECURITY_RESTRICTED_OPERATION);
     343       13712 :     save_nestlevel = NewGUCNestLevel();
     344       13712 :     RestrictSearchPath();
     345             : 
     346             :     /*
     347             :      * measure elapsed time if called with verbose or if autovacuum logging
     348             :      * requires it
     349             :      */
     350       13712 :     if (instrument)
     351             :     {
     352         386 :         if (track_io_timing)
     353             :         {
     354           0 :             startreadtime = pgStatBlockReadTime;
     355           0 :             startwritetime = pgStatBlockWriteTime;
     356             :         }
     357             : 
     358         386 :         pg_rusage_init(&ru0);
     359         386 :         starttime = GetCurrentTimestamp();
     360             :     }
     361             : 
     362             :     /*
     363             :      * Determine which columns to analyze
     364             :      *
     365             :      * Note that system attributes are never analyzed, so we just reject them
     366             :      * at the lookup stage.  We also reject duplicate column mentions.  (We
     367             :      * could alternatively ignore duplicates, but analyzing a column twice
     368             :      * won't work; we'd end up making a conflicting update in pg_statistic.)
     369             :      */
     370       13712 :     if (va_cols != NIL)
     371             :     {
     372         100 :         Bitmapset  *unique_cols = NULL;
     373             :         ListCell   *le;
     374             : 
     375         100 :         vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
     376             :                                                 sizeof(VacAttrStats *));
     377         100 :         tcnt = 0;
     378         182 :         foreach(le, va_cols)
     379             :         {
     380         132 :             char       *col = strVal(lfirst(le));
     381             : 
     382         132 :             i = attnameAttNum(onerel, col, false);
     383         132 :             if (i == InvalidAttrNumber)
     384          38 :                 ereport(ERROR,
     385             :                         (errcode(ERRCODE_UNDEFINED_COLUMN),
     386             :                          errmsg("column \"%s\" of relation \"%s\" does not exist",
     387             :                                 col, RelationGetRelationName(onerel))));
     388          94 :             if (bms_is_member(i, unique_cols))
     389          12 :                 ereport(ERROR,
     390             :                         (errcode(ERRCODE_DUPLICATE_COLUMN),
     391             :                          errmsg("column \"%s\" of relation \"%s\" appears more than once",
     392             :                                 col, RelationGetRelationName(onerel))));
     393          82 :             unique_cols = bms_add_member(unique_cols, i);
     394             : 
     395          82 :             vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
     396          82 :             if (vacattrstats[tcnt] != NULL)
     397          82 :                 tcnt++;
     398             :         }
     399          50 :         attr_cnt = tcnt;
     400             :     }
     401             :     else
     402             :     {
     403       13612 :         attr_cnt = onerel->rd_att->natts;
     404             :         vacattrstats = (VacAttrStats **)
     405       13612 :             palloc(attr_cnt * sizeof(VacAttrStats *));
     406       13612 :         tcnt = 0;
     407      109770 :         for (i = 1; i <= attr_cnt; i++)
     408             :         {
     409       96158 :             vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
     410       96158 :             if (vacattrstats[tcnt] != NULL)
     411       96146 :                 tcnt++;
     412             :         }
     413       13612 :         attr_cnt = tcnt;
     414             :     }
     415             : 
     416             :     /*
     417             :      * Open all indexes of the relation, and see if there are any analyzable
     418             :      * columns in the indexes.  We do not analyze index columns if there was
     419             :      * an explicit column list in the ANALYZE command, however.
     420             :      *
     421             :      * If we are doing a recursive scan, we don't want to touch the parent's
     422             :      * indexes at all.  If we're processing a partitioned table, we need to
     423             :      * know if there are any indexes, but we don't want to process them.
     424             :      */
     425       13662 :     if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     426             :     {
     427         686 :         List       *idxs = RelationGetIndexList(onerel);
     428             : 
     429         686 :         Irel = NULL;
     430         686 :         nindexes = 0;
     431         686 :         hasindex = idxs != NIL;
     432         686 :         list_free(idxs);
     433             :     }
     434       12976 :     else if (!inh)
     435             :     {
     436       12868 :         vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
     437       12868 :         hasindex = nindexes > 0;
     438             :     }
     439             :     else
     440             :     {
     441         108 :         Irel = NULL;
     442         108 :         nindexes = 0;
     443         108 :         hasindex = false;
     444             :     }
     445       13662 :     indexdata = NULL;
     446       13662 :     if (nindexes > 0)
     447             :     {
     448        9912 :         indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
     449       28478 :         for (ind = 0; ind < nindexes; ind++)
     450             :         {
     451       18566 :             AnlIndexData *thisdata = &indexdata[ind];
     452             :             IndexInfo  *indexInfo;
     453             : 
     454       18566 :             thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
     455       18566 :             thisdata->tupleFract = 1.0; /* fix later if partial */
     456       18566 :             if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
     457             :             {
     458          76 :                 ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);
     459             : 
     460          76 :                 thisdata->vacattrstats = (VacAttrStats **)
     461          76 :                     palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
     462          76 :                 tcnt = 0;
     463         154 :                 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
     464             :                 {
     465          78 :                     int         keycol = indexInfo->ii_IndexAttrNumbers[i];
     466             : 
     467          78 :                     if (keycol == 0)
     468             :                     {
     469             :                         /* Found an index expression */
     470             :                         Node       *indexkey;
     471             : 
     472          76 :                         if (indexpr_item == NULL)   /* shouldn't happen */
     473           0 :                             elog(ERROR, "too few entries in indexprs list");
     474          76 :                         indexkey = (Node *) lfirst(indexpr_item);
     475          76 :                         indexpr_item = lnext(indexInfo->ii_Expressions,
     476             :                                              indexpr_item);
     477         152 :                         thisdata->vacattrstats[tcnt] =
     478          76 :                             examine_attribute(Irel[ind], i + 1, indexkey);
     479          76 :                         if (thisdata->vacattrstats[tcnt] != NULL)
     480          76 :                             tcnt++;
     481             :                     }
     482             :                 }
     483          76 :                 thisdata->attr_cnt = tcnt;
     484             :             }
     485             :         }
     486             :     }
     487             : 
     488             :     /*
     489             :      * Determine how many rows we need to sample, using the worst case from
     490             :      * all analyzable columns.  We use a lower bound of 100 rows to avoid
     491             :      * possible overflow in Vitter's algorithm.  (Note: that will also be the
     492             :      * target in the corner case where there are no analyzable columns.)
     493             :      */
     494       13662 :     targrows = 100;
     495      109866 :     for (i = 0; i < attr_cnt; i++)
     496             :     {
     497       96204 :         if (targrows < vacattrstats[i]->minrows)
     498       13626 :             targrows = vacattrstats[i]->minrows;
     499             :     }
     500       32228 :     for (ind = 0; ind < nindexes; ind++)
     501             :     {
     502       18566 :         AnlIndexData *thisdata = &indexdata[ind];
     503             : 
     504       18642 :         for (i = 0; i < thisdata->attr_cnt; i++)
     505             :         {
     506          76 :             if (targrows < thisdata->vacattrstats[i]->minrows)
     507           0 :                 targrows = thisdata->vacattrstats[i]->minrows;
     508             :         }
     509             :     }
     510             : 
     511             :     /*
     512             :      * Look at extended statistics objects too, as those may define custom
     513             :      * statistics target. So we may need to sample more rows and then build
     514             :      * the statistics with enough detail.
     515             :      */
     516       13662 :     minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
     517             : 
     518       13662 :     if (targrows < minrows)
     519           0 :         targrows = minrows;
     520             : 
     521             :     /*
     522             :      * Acquire the sample rows
     523             :      */
     524       13662 :     rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
     525       13662 :     pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     526             :                                  inh ? PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH :
     527             :                                  PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS);
     528       13662 :     if (inh)
     529         794 :         numrows = acquire_inherited_sample_rows(onerel, elevel,
     530             :                                                 rows, targrows,
     531             :                                                 &totalrows, &totaldeadrows);
     532             :     else
     533       12868 :         numrows = (*acquirefunc) (onerel, elevel,
     534             :                                   rows, targrows,
     535             :                                   &totalrows, &totaldeadrows);
     536             : 
     537             :     /*
     538             :      * Compute the statistics.  Temporary results during the calculations for
     539             :      * each column are stored in a child context.  The calc routines are
     540             :      * responsible to make sure that whatever they store into the VacAttrStats
     541             :      * structure is allocated in anl_context.
     542             :      */
     543       13660 :     if (numrows > 0)
     544             :     {
     545             :         MemoryContext col_context,
     546             :                     old_context;
     547             : 
     548        9364 :         pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     549             :                                      PROGRESS_ANALYZE_PHASE_COMPUTE_STATS);
     550             : 
     551        9364 :         col_context = AllocSetContextCreate(anl_context,
     552             :                                             "Analyze Column",
     553             :                                             ALLOCSET_DEFAULT_SIZES);
     554        9364 :         old_context = MemoryContextSwitchTo(col_context);
     555             : 
     556       80380 :         for (i = 0; i < attr_cnt; i++)
     557             :         {
     558       71018 :             VacAttrStats *stats = vacattrstats[i];
     559             :             AttributeOpts *aopt;
     560             : 
     561       71018 :             stats->rows = rows;
     562       71018 :             stats->tupDesc = onerel->rd_att;
     563       71018 :             stats->compute_stats(stats,
     564             :                                  std_fetch_func,
     565             :                                  numrows,
     566             :                                  totalrows);
     567             : 
     568             :             /*
     569             :              * If the appropriate flavor of the n_distinct option is
     570             :              * specified, override with the corresponding value.
     571             :              */
     572       71016 :             aopt = get_attribute_options(onerel->rd_id, stats->tupattnum);
     573       71016 :             if (aopt != NULL)
     574             :             {
     575             :                 float8      n_distinct;
     576             : 
     577           6 :                 n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
     578           6 :                 if (n_distinct != 0.0)
     579           6 :                     stats->stadistinct = n_distinct;
     580             :             }
     581             : 
     582       71016 :             MemoryContextReset(col_context);
     583             :         }
     584             : 
     585        9362 :         if (nindexes > 0)
     586        5882 :             compute_index_stats(onerel, totalrows,
     587             :                                 indexdata, nindexes,
     588             :                                 rows, numrows,
     589             :                                 col_context);
     590             : 
     591        9356 :         MemoryContextSwitchTo(old_context);
     592        9356 :         MemoryContextDelete(col_context);
     593             : 
     594             :         /*
     595             :          * Emit the completed stats rows into pg_statistic, replacing any
     596             :          * previous statistics for the target columns.  (If there are stats in
     597             :          * pg_statistic for columns we didn't process, we leave them alone.)
     598             :          */
     599        9356 :         update_attstats(RelationGetRelid(onerel), inh,
     600             :                         attr_cnt, vacattrstats);
     601             : 
     602       20720 :         for (ind = 0; ind < nindexes; ind++)
     603             :         {
     604       11364 :             AnlIndexData *thisdata = &indexdata[ind];
     605             : 
     606       11364 :             update_attstats(RelationGetRelid(Irel[ind]), false,
     607             :                             thisdata->attr_cnt, thisdata->vacattrstats);
     608             :         }
     609             : 
     610             :         /* Build extended statistics (if there are any). */
     611        9356 :         BuildRelationExtStatistics(onerel, inh, totalrows, numrows, rows,
     612             :                                    attr_cnt, vacattrstats);
     613             :     }
     614             : 
     615       13652 :     pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     616             :                                  PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE);
     617             : 
     618             :     /*
     619             :      * Update pages/tuples stats in pg_class ... but not if we're doing
     620             :      * inherited stats.
     621             :      *
     622             :      * We assume that VACUUM hasn't set pg_class.reltuples already, even
     623             :      * during a VACUUM ANALYZE.  Although VACUUM often updates pg_class,
     624             :      * exceptions exist.  A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
     625             :      * never update pg_class entries for index relations.  It's also possible
     626             :      * that an individual index's pg_class entry won't be updated during
     627             :      * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
     628             :      */
     629       13652 :     if (!inh)
     630             :     {
     631             :         BlockNumber relallvisible;
     632             : 
     633       12858 :         if (RELKIND_HAS_STORAGE(onerel->rd_rel->relkind))
     634       12804 :             visibilitymap_count(onerel, &relallvisible, NULL);
     635             :         else
     636          54 :             relallvisible = 0;
     637             : 
     638             :         /*
     639             :          * Update pg_class for table relation.  CCI first, in case acquirefunc
     640             :          * updated pg_class.
     641             :          */
     642       12858 :         CommandCounterIncrement();
     643       12858 :         vac_update_relstats(onerel,
     644             :                             relpages,
     645             :                             totalrows,
     646             :                             relallvisible,
     647             :                             hasindex,
     648             :                             InvalidTransactionId,
     649             :                             InvalidMultiXactId,
     650             :                             NULL, NULL,
     651             :                             in_outer_xact);
     652             : 
     653             :         /* Same for indexes */
     654       31408 :         for (ind = 0; ind < nindexes; ind++)
     655             :         {
     656       18550 :             AnlIndexData *thisdata = &indexdata[ind];
     657             :             double      totalindexrows;
     658             : 
     659       18550 :             totalindexrows = ceil(thisdata->tupleFract * totalrows);
     660       18550 :             vac_update_relstats(Irel[ind],
     661       18550 :                                 RelationGetNumberOfBlocks(Irel[ind]),
     662             :                                 totalindexrows,
     663             :                                 0,
     664             :                                 false,
     665             :                                 InvalidTransactionId,
     666             :                                 InvalidMultiXactId,
     667             :                                 NULL, NULL,
     668             :                                 in_outer_xact);
     669             :         }
     670             :     }
     671         794 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     672             :     {
     673             :         /*
     674             :          * Partitioned tables don't have storage, so we don't set any fields
     675             :          * in their pg_class entries except for reltuples and relhasindex.
     676             :          */
     677         686 :         CommandCounterIncrement();
     678         686 :         vac_update_relstats(onerel, -1, totalrows,
     679             :                             0, hasindex, InvalidTransactionId,
     680             :                             InvalidMultiXactId,
     681             :                             NULL, NULL,
     682             :                             in_outer_xact);
     683             :     }
     684             : 
     685             :     /*
     686             :      * Now report ANALYZE to the cumulative stats system.  For regular tables,
     687             :      * we do it only if not doing inherited stats.  For partitioned tables, we
     688             :      * only do it for inherited stats. (We're never called for not-inherited
     689             :      * stats on partitioned tables anyway.)
     690             :      *
     691             :      * Reset the changes_since_analyze counter only if we analyzed all
     692             :      * columns; otherwise, there is still work for auto-analyze to do.
     693             :      */
     694       13652 :     if (!inh)
     695       12858 :         pgstat_report_analyze(onerel, totalrows, totaldeadrows,
     696             :                               (va_cols == NIL));
     697         794 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     698         686 :         pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL));
     699             : 
     700             :     /*
     701             :      * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
     702             :      *
     703             :      * Note that most index AMs perform a no-op as a matter of policy for
     704             :      * amvacuumcleanup() when called in ANALYZE-only mode.  The only exception
     705             :      * among core index AMs is GIN/ginvacuumcleanup().
     706             :      */
     707       13652 :     if (!(params->options & VACOPT_VACUUM))
     708             :     {
     709       28338 :         for (ind = 0; ind < nindexes; ind++)
     710             :         {
     711             :             IndexBulkDeleteResult *stats;
     712             :             IndexVacuumInfo ivinfo;
     713             : 
     714       16270 :             ivinfo.index = Irel[ind];
     715       16270 :             ivinfo.heaprel = onerel;
     716       16270 :             ivinfo.analyze_only = true;
     717       16270 :             ivinfo.estimated_count = true;
     718       16270 :             ivinfo.message_level = elevel;
     719       16270 :             ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
     720       16270 :             ivinfo.strategy = vac_strategy;
     721             : 
     722       16270 :             stats = index_vacuum_cleanup(&ivinfo, NULL);
     723             : 
     724       16270 :             if (stats)
     725           0 :                 pfree(stats);
     726             :         }
     727             :     }
     728             : 
     729             :     /* Done with indexes */
     730       13652 :     vac_close_indexes(nindexes, Irel, NoLock);
     731             : 
     732             :     /* Log the action if appropriate */
     733       13652 :     if (instrument)
     734             :     {
     735         384 :         TimestampTz endtime = GetCurrentTimestamp();
     736             : 
     737         452 :         if (verbose || params->log_min_duration == 0 ||
     738          68 :             TimestampDifferenceExceeds(starttime, endtime,
     739             :                                        params->log_min_duration))
     740             :         {
     741             :             long        delay_in_ms;
     742             :             WalUsage    walusage;
     743         316 :             double      read_rate = 0;
     744         316 :             double      write_rate = 0;
     745             :             char       *msgfmt;
     746             :             StringInfoData buf;
     747             :             int64       total_blks_hit;
     748             :             int64       total_blks_read;
     749             :             int64       total_blks_dirtied;
     750             : 
     751         316 :             memset(&bufferusage, 0, sizeof(BufferUsage));
     752         316 :             BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
     753         316 :             memset(&walusage, 0, sizeof(WalUsage));
     754         316 :             WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
     755             : 
     756         316 :             total_blks_hit = bufferusage.shared_blks_hit +
     757         316 :                 bufferusage.local_blks_hit;
     758         316 :             total_blks_read = bufferusage.shared_blks_read +
     759         316 :                 bufferusage.local_blks_read;
     760         316 :             total_blks_dirtied = bufferusage.shared_blks_dirtied +
     761         316 :                 bufferusage.local_blks_dirtied;
     762             : 
     763             :             /*
     764             :              * We do not expect an analyze to take > 25 days and it simplifies
     765             :              * things a bit to use TimestampDifferenceMilliseconds.
     766             :              */
     767         316 :             delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
     768             : 
     769             :             /*
     770             :              * Note that we are reporting these read/write rates in the same
     771             :              * manner as VACUUM does, which means that while the 'average read
     772             :              * rate' here actually corresponds to page misses and resulting
     773             :              * reads which are also picked up by track_io_timing, if enabled,
     774             :              * the 'average write rate' is actually talking about the rate of
     775             :              * pages being dirtied, not being written out, so it's typical to
     776             :              * have a non-zero 'avg write rate' while I/O timings only reports
     777             :              * reads.
     778             :              *
     779             :              * It's not clear that an ANALYZE will ever result in
     780             :              * FlushBuffer() being called, but we track and support reporting
     781             :              * on I/O write time in case that changes as it's practically free
     782             :              * to do so anyway.
     783             :              */
     784             : 
     785         316 :             if (delay_in_ms > 0)
     786             :             {
     787         316 :                 read_rate = (double) BLCKSZ * total_blks_read /
     788         316 :                     (1024 * 1024) / (delay_in_ms / 1000.0);
     789         316 :                 write_rate = (double) BLCKSZ * total_blks_dirtied /
     790         316 :                     (1024 * 1024) / (delay_in_ms / 1000.0);
     791             :             }
     792             : 
     793             :             /*
     794             :              * We split this up so we don't emit empty I/O timing values when
     795             :              * track_io_timing isn't enabled.
     796             :              */
     797             : 
     798         316 :             initStringInfo(&buf);
     799             : 
     800         316 :             if (AmAutoVacuumWorkerProcess())
     801         316 :                 msgfmt = _("automatic analyze of table \"%s.%s.%s\"\n");
     802             :             else
     803           0 :                 msgfmt = _("finished analyzing table \"%s.%s.%s\"\n");
     804             : 
     805         316 :             appendStringInfo(&buf, msgfmt,
     806             :                              get_database_name(MyDatabaseId),
     807         316 :                              get_namespace_name(RelationGetNamespace(onerel)),
     808         316 :                              RelationGetRelationName(onerel));
     809         316 :             if (track_io_timing)
     810             :             {
     811           0 :                 double      read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
     812           0 :                 double      write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
     813             : 
     814           0 :                 appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
     815             :                                  read_ms, write_ms);
     816             :             }
     817         316 :             appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
     818             :                              read_rate, write_rate);
     819         316 :             appendStringInfo(&buf, _("buffer usage: %lld hits, %lld reads, %lld dirtied\n"),
     820             :                              (long long) total_blks_hit,
     821             :                              (long long) total_blks_read,
     822             :                              (long long) total_blks_dirtied);
     823         316 :             appendStringInfo(&buf,
     824         316 :                              _("WAL usage: %lld records, %lld full page images, %llu bytes\n"),
     825         316 :                              (long long) walusage.wal_records,
     826         316 :                              (long long) walusage.wal_fpi,
     827         316 :                              (unsigned long long) walusage.wal_bytes);
     828         316 :             appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
     829             : 
     830         316 :             ereport(verbose ? INFO : LOG,
     831             :                     (errmsg_internal("%s", buf.data)));
     832             : 
     833         316 :             pfree(buf.data);
     834             :         }
     835             :     }
     836             : 
     837             :     /* Roll back any GUC changes executed by index functions */
     838       13652 :     AtEOXact_GUC(false, save_nestlevel);
     839             : 
     840             :     /* Restore userid and security context */
     841       13652 :     SetUserIdAndSecContext(save_userid, save_sec_context);
     842             : 
     843             :     /* Restore current context and release memory */
     844       13652 :     MemoryContextSwitchTo(caller_context);
     845       13652 :     MemoryContextDelete(anl_context);
     846       13652 :     anl_context = NULL;
     847       13652 : }
     848             : 
     849             : /*
     850             :  * Compute statistics about indexes of a relation
     851             :  */
     852             : static void
     853        5882 : compute_index_stats(Relation onerel, double totalrows,
     854             :                     AnlIndexData *indexdata, int nindexes,
     855             :                     HeapTuple *rows, int numrows,
     856             :                     MemoryContext col_context)
     857             : {
     858             :     MemoryContext ind_context,
     859             :                 old_context;
     860             :     Datum       values[INDEX_MAX_KEYS];
     861             :     bool        isnull[INDEX_MAX_KEYS];
     862             :     int         ind,
     863             :                 i;
     864             : 
     865        5882 :     ind_context = AllocSetContextCreate(anl_context,
     866             :                                         "Analyze Index",
     867             :                                         ALLOCSET_DEFAULT_SIZES);
     868        5882 :     old_context = MemoryContextSwitchTo(ind_context);
     869             : 
     870       17252 :     for (ind = 0; ind < nindexes; ind++)
     871             :     {
     872       11376 :         AnlIndexData *thisdata = &indexdata[ind];
     873       11376 :         IndexInfo  *indexInfo = thisdata->indexInfo;
     874       11376 :         int         attr_cnt = thisdata->attr_cnt;
     875             :         TupleTableSlot *slot;
     876             :         EState     *estate;
     877             :         ExprContext *econtext;
     878             :         ExprState  *predicate;
     879             :         Datum      *exprvals;
     880             :         bool       *exprnulls;
     881             :         int         numindexrows,
     882             :                     tcnt,
     883             :                     rowno;
     884             :         double      totalindexrows;
     885             : 
     886             :         /* Ignore index if no columns to analyze and not partial */
     887       11376 :         if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
     888       11260 :             continue;
     889             : 
     890             :         /*
     891             :          * Need an EState for evaluation of index expressions and
     892             :          * partial-index predicates.  Create it in the per-index context to be
     893             :          * sure it gets cleaned up at the bottom of the loop.
     894             :          */
     895         116 :         estate = CreateExecutorState();
     896         116 :         econtext = GetPerTupleExprContext(estate);
     897             :         /* Need a slot to hold the current heap tuple, too */
     898         116 :         slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
     899             :                                         &TTSOpsHeapTuple);
     900             : 
     901             :         /* Arrange for econtext's scan tuple to be the tuple under test */
     902         116 :         econtext->ecxt_scantuple = slot;
     903             : 
     904             :         /* Set up execution state for predicate. */
     905         116 :         predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
     906             : 
     907             :         /* Compute and save index expression values */
     908         116 :         exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
     909         116 :         exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
     910         116 :         numindexrows = 0;
     911         116 :         tcnt = 0;
     912      154666 :         for (rowno = 0; rowno < numrows; rowno++)
     913             :         {
     914      154556 :             HeapTuple   heapTuple = rows[rowno];
     915             : 
     916      154556 :             vacuum_delay_point();
     917             : 
     918             :             /*
     919             :              * Reset the per-tuple context each time, to reclaim any cruft
     920             :              * left behind by evaluating the predicate or index expressions.
     921             :              */
     922      154556 :             ResetExprContext(econtext);
     923             : 
     924             :             /* Set up for predicate or expression evaluation */
     925      154556 :             ExecStoreHeapTuple(heapTuple, slot, false);
     926             : 
     927             :             /* If index is partial, check predicate */
     928      154556 :             if (predicate != NULL)
     929             :             {
     930       40066 :                 if (!ExecQual(predicate, econtext))
     931       21330 :                     continue;
     932             :             }
     933      133226 :             numindexrows++;
     934             : 
     935      133226 :             if (attr_cnt > 0)
     936             :             {
     937             :                 /*
     938             :                  * Evaluate the index row to compute expression values. We
     939             :                  * could do this by hand, but FormIndexDatum is convenient.
     940             :                  */
     941      114490 :                 FormIndexDatum(indexInfo,
     942             :                                slot,
     943             :                                estate,
     944             :                                values,
     945             :                                isnull);
     946             : 
     947             :                 /*
     948             :                  * Save just the columns we care about.  We copy the values
     949             :                  * into ind_context from the estate's per-tuple context.
     950             :                  */
     951      228968 :                 for (i = 0; i < attr_cnt; i++)
     952             :                 {
     953      114484 :                     VacAttrStats *stats = thisdata->vacattrstats[i];
     954      114484 :                     int         attnum = stats->tupattnum;
     955             : 
     956      114484 :                     if (isnull[attnum - 1])
     957             :                     {
     958           6 :                         exprvals[tcnt] = (Datum) 0;
     959           6 :                         exprnulls[tcnt] = true;
     960             :                     }
     961             :                     else
     962             :                     {
     963      228956 :                         exprvals[tcnt] = datumCopy(values[attnum - 1],
     964      114478 :                                                    stats->attrtype->typbyval,
     965      114478 :                                                    stats->attrtype->typlen);
     966      114478 :                         exprnulls[tcnt] = false;
     967             :                     }
     968      114484 :                     tcnt++;
     969             :                 }
     970             :             }
     971             :         }
     972             : 
     973             :         /*
     974             :          * Having counted the number of rows that pass the predicate in the
     975             :          * sample, we can estimate the total number of rows in the index.
     976             :          */
     977         110 :         thisdata->tupleFract = (double) numindexrows / (double) numrows;
     978         110 :         totalindexrows = ceil(thisdata->tupleFract * totalrows);
     979             : 
     980             :         /*
     981             :          * Now we can compute the statistics for the expression columns.
     982             :          */
     983         110 :         if (numindexrows > 0)
     984             :         {
     985         102 :             MemoryContextSwitchTo(col_context);
     986         166 :             for (i = 0; i < attr_cnt; i++)
     987             :             {
     988          64 :                 VacAttrStats *stats = thisdata->vacattrstats[i];
     989             : 
     990          64 :                 stats->exprvals = exprvals + i;
     991          64 :                 stats->exprnulls = exprnulls + i;
     992          64 :                 stats->rowstride = attr_cnt;
     993          64 :                 stats->compute_stats(stats,
     994             :                                      ind_fetch_func,
     995             :                                      numindexrows,
     996             :                                      totalindexrows);
     997             : 
     998          64 :                 MemoryContextReset(col_context);
     999             :             }
    1000             :         }
    1001             : 
    1002             :         /* And clean up */
    1003         110 :         MemoryContextSwitchTo(ind_context);
    1004             : 
    1005         110 :         ExecDropSingleTupleTableSlot(slot);
    1006         110 :         FreeExecutorState(estate);
    1007         110 :         MemoryContextReset(ind_context);
    1008             :     }
    1009             : 
    1010        5876 :     MemoryContextSwitchTo(old_context);
    1011        5876 :     MemoryContextDelete(ind_context);
    1012        5876 : }
    1013             : 
    1014             : /*
    1015             :  * examine_attribute -- pre-analysis of a single column
    1016             :  *
    1017             :  * Determine whether the column is analyzable; if so, create and initialize
    1018             :  * a VacAttrStats struct for it.  If not, return NULL.
    1019             :  *
    1020             :  * If index_expr isn't NULL, then we're trying to analyze an expression index,
    1021             :  * and index_expr is the expression tree representing the column's data.
    1022             :  */
    1023             : static VacAttrStats *
    1024       96316 : examine_attribute(Relation onerel, int attnum, Node *index_expr)
    1025             : {
    1026       96316 :     Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
    1027             :     int         attstattarget;
    1028             :     HeapTuple   atttuple;
    1029             :     Datum       dat;
    1030             :     bool        isnull;
    1031             :     HeapTuple   typtuple;
    1032             :     VacAttrStats *stats;
    1033             :     int         i;
    1034             :     bool        ok;
    1035             : 
    1036             :     /* Never analyze dropped columns */
    1037       96316 :     if (attr->attisdropped)
    1038           6 :         return NULL;
    1039             : 
    1040             :     /*
    1041             :      * Get attstattarget value.  Set to -1 if null.  (Analyze functions expect
    1042             :      * -1 to mean use default_statistics_target; see for example
    1043             :      * std_typanalyze.)
    1044             :      */
    1045       96310 :     atttuple = SearchSysCache2(ATTNUM, ObjectIdGetDatum(RelationGetRelid(onerel)), Int16GetDatum(attnum));
    1046       96310 :     if (!HeapTupleIsValid(atttuple))
    1047           0 :         elog(ERROR, "cache lookup failed for attribute %d of relation %u",
    1048             :              attnum, RelationGetRelid(onerel));
    1049       96310 :     dat = SysCacheGetAttr(ATTNUM, atttuple, Anum_pg_attribute_attstattarget, &isnull);
    1050       96310 :     attstattarget = isnull ? -1 : DatumGetInt16(dat);
    1051       96310 :     ReleaseSysCache(atttuple);
    1052             : 
    1053             :     /* Don't analyze column if user has specified not to */
    1054       96310 :     if (attstattarget == 0)
    1055           6 :         return NULL;
    1056             : 
    1057             :     /*
    1058             :      * Create the VacAttrStats struct.
    1059             :      */
    1060       96304 :     stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
    1061       96304 :     stats->attstattarget = attstattarget;
    1062             : 
    1063             :     /*
    1064             :      * When analyzing an expression index, believe the expression tree's type
    1065             :      * not the column datatype --- the latter might be the opckeytype storage
    1066             :      * type of the opclass, which is not interesting for our purposes.  (Note:
    1067             :      * if we did anything with non-expression index columns, we'd need to
    1068             :      * figure out where to get the correct type info from, but for now that's
    1069             :      * not a problem.)  It's not clear whether anyone will care about the
    1070             :      * typmod, but we store that too just in case.
    1071             :      */
    1072       96304 :     if (index_expr)
    1073             :     {
    1074          76 :         stats->attrtypid = exprType(index_expr);
    1075          76 :         stats->attrtypmod = exprTypmod(index_expr);
    1076             : 
    1077             :         /*
    1078             :          * If a collation has been specified for the index column, use that in
    1079             :          * preference to anything else; but if not, fall back to whatever we
    1080             :          * can get from the expression.
    1081             :          */
    1082          76 :         if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
    1083          12 :             stats->attrcollid = onerel->rd_indcollation[attnum - 1];
    1084             :         else
    1085          64 :             stats->attrcollid = exprCollation(index_expr);
    1086             :     }
    1087             :     else
    1088             :     {
    1089       96228 :         stats->attrtypid = attr->atttypid;
    1090       96228 :         stats->attrtypmod = attr->atttypmod;
    1091       96228 :         stats->attrcollid = attr->attcollation;
    1092             :     }
    1093             : 
    1094       96304 :     typtuple = SearchSysCacheCopy1(TYPEOID,
    1095             :                                    ObjectIdGetDatum(stats->attrtypid));
    1096       96304 :     if (!HeapTupleIsValid(typtuple))
    1097           0 :         elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
    1098       96304 :     stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
    1099       96304 :     stats->anl_context = anl_context;
    1100       96304 :     stats->tupattnum = attnum;
    1101             : 
    1102             :     /*
    1103             :      * The fields describing the stats->stavalues[n] element types default to
    1104             :      * the type of the data being analyzed, but the type-specific typanalyze
    1105             :      * function can change them if it wants to store something else.
    1106             :      */
    1107      577824 :     for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
    1108             :     {
    1109      481520 :         stats->statypid[i] = stats->attrtypid;
    1110      481520 :         stats->statyplen[i] = stats->attrtype->typlen;
    1111      481520 :         stats->statypbyval[i] = stats->attrtype->typbyval;
    1112      481520 :         stats->statypalign[i] = stats->attrtype->typalign;
    1113             :     }
    1114             : 
    1115             :     /*
    1116             :      * Call the type-specific typanalyze function.  If none is specified, use
    1117             :      * std_typanalyze().
    1118             :      */
    1119       96304 :     if (OidIsValid(stats->attrtype->typanalyze))
    1120        6170 :         ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
    1121             :                                            PointerGetDatum(stats)));
    1122             :     else
    1123       90134 :         ok = std_typanalyze(stats);
    1124             : 
    1125       96304 :     if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
    1126             :     {
    1127           0 :         heap_freetuple(typtuple);
    1128           0 :         pfree(stats);
    1129           0 :         return NULL;
    1130             :     }
    1131             : 
    1132       96304 :     return stats;
    1133             : }
    1134             : 
    1135             : /*
    1136             :  * Read stream callback returning the next BlockNumber as chosen by the
    1137             :  * BlockSampling algorithm.
    1138             :  */
    1139             : static BlockNumber
    1140      137430 : block_sampling_read_stream_next(ReadStream *stream,
    1141             :                                 void *callback_private_data,
    1142             :                                 void *per_buffer_data)
    1143             : {
    1144      137430 :     BlockSamplerData *bs = callback_private_data;
    1145             : 
    1146      137430 :     return BlockSampler_HasMore(bs) ? BlockSampler_Next(bs) : InvalidBlockNumber;
    1147             : }
    1148             : 
    1149             : /*
    1150             :  * acquire_sample_rows -- acquire a random sample of rows from the table
    1151             :  *
    1152             :  * Selected rows are returned in the caller-allocated array rows[], which
    1153             :  * must have at least targrows entries.
    1154             :  * The actual number of rows selected is returned as the function result.
    1155             :  * We also estimate the total numbers of live and dead rows in the table,
    1156             :  * and return them into *totalrows and *totaldeadrows, respectively.
    1157             :  *
    1158             :  * The returned list of tuples is in order by physical position in the table.
    1159             :  * (We will rely on this later to derive correlation estimates.)
    1160             :  *
    1161             :  * As of May 2004 we use a new two-stage method:  Stage one selects up
    1162             :  * to targrows random blocks (or all blocks, if there aren't so many).
    1163             :  * Stage two scans these blocks and uses the Vitter algorithm to create
    1164             :  * a random sample of targrows rows (or less, if there are less in the
    1165             :  * sample of blocks).  The two stages are executed simultaneously: each
    1166             :  * block is processed as soon as stage one returns its number and while
    1167             :  * the rows are read stage two controls which ones are to be inserted
    1168             :  * into the sample.
    1169             :  *
    1170             :  * Although every row has an equal chance of ending up in the final
    1171             :  * sample, this sampling method is not perfect: not every possible
    1172             :  * sample has an equal chance of being selected.  For large relations
    1173             :  * the number of different blocks represented by the sample tends to be
    1174             :  * too small.  We can live with that for now.  Improvements are welcome.
    1175             :  *
    1176             :  * An important property of this sampling method is that because we do
    1177             :  * look at a statistically unbiased set of blocks, we should get
    1178             :  * unbiased estimates of the average numbers of live and dead rows per
    1179             :  * block.  The previous sampling method put too much credence in the row
    1180             :  * density near the start of the table.
    1181             :  */
    1182             : static int
    1183       14694 : acquire_sample_rows(Relation onerel, int elevel,
    1184             :                     HeapTuple *rows, int targrows,
    1185             :                     double *totalrows, double *totaldeadrows)
    1186             : {
    1187       14694 :     int         numrows = 0;    /* # rows now in reservoir */
    1188       14694 :     double      samplerows = 0; /* total # rows collected */
    1189       14694 :     double      liverows = 0;   /* # live rows seen */
    1190       14694 :     double      deadrows = 0;   /* # dead rows seen */
    1191       14694 :     double      rowstoskip = -1;    /* -1 means not set yet */
    1192             :     uint32      randseed;       /* Seed for block sampler(s) */
    1193             :     BlockNumber totalblocks;
    1194             :     TransactionId OldestXmin;
    1195             :     BlockSamplerData bs;
    1196             :     ReservoirStateData rstate;
    1197             :     TupleTableSlot *slot;
    1198             :     TableScanDesc scan;
    1199             :     BlockNumber nblocks;
    1200       14694 :     BlockNumber blksdone = 0;
    1201             :     ReadStream *stream;
    1202             : 
    1203             :     Assert(targrows > 0);
    1204             : 
    1205       14694 :     totalblocks = RelationGetNumberOfBlocks(onerel);
    1206             : 
    1207             :     /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
    1208       14694 :     OldestXmin = GetOldestNonRemovableTransactionId(onerel);
    1209             : 
    1210             :     /* Prepare for sampling block numbers */
    1211       14694 :     randseed = pg_prng_uint32(&pg_global_prng_state);
    1212       14694 :     nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
    1213             : 
    1214             :     /* Report sampling block numbers */
    1215       14694 :     pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_TOTAL,
    1216             :                                  nblocks);
    1217             : 
    1218             :     /* Prepare for sampling rows */
    1219       14694 :     reservoir_init_selection_state(&rstate, targrows);
    1220             : 
    1221       14694 :     scan = table_beginscan_analyze(onerel);
    1222       14694 :     slot = table_slot_create(onerel, NULL);
    1223             : 
    1224       14694 :     stream = read_stream_begin_relation(READ_STREAM_MAINTENANCE,
    1225             :                                         vac_strategy,
    1226             :                                         scan->rs_rd,
    1227             :                                         MAIN_FORKNUM,
    1228             :                                         block_sampling_read_stream_next,
    1229             :                                         &bs,
    1230             :                                         0);
    1231             : 
    1232             :     /* Outer loop over blocks to sample */
    1233      137430 :     while (table_scan_analyze_next_block(scan, stream))
    1234             :     {
    1235      122736 :         vacuum_delay_point();
    1236             : 
    1237     9709852 :         while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
    1238             :         {
    1239             :             /*
    1240             :              * The first targrows sample rows are simply copied into the
    1241             :              * reservoir. Then we start replacing tuples in the sample until
    1242             :              * we reach the end of the relation.  This algorithm is from Jeff
    1243             :              * Vitter's paper (see full citation in utils/misc/sampling.c). It
    1244             :              * works by repeatedly computing the number of tuples to skip
    1245             :              * before selecting a tuple, which replaces a randomly chosen
    1246             :              * element of the reservoir (current set of tuples).  At all times
    1247             :              * the reservoir is a true random sample of the tuples we've
    1248             :              * passed over so far, so when we fall off the end of the relation
    1249             :              * we're done.
    1250             :              */
    1251     9587116 :             if (numrows < targrows)
    1252     9336722 :                 rows[numrows++] = ExecCopySlotHeapTuple(slot);
    1253             :             else
    1254             :             {
    1255             :                 /*
    1256             :                  * t in Vitter's paper is the number of records already
    1257             :                  * processed.  If we need to compute a new S value, we must
    1258             :                  * use the not-yet-incremented value of samplerows as t.
    1259             :                  */
    1260      250394 :                 if (rowstoskip < 0)
    1261      115124 :                     rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
    1262             : 
    1263      250394 :                 if (rowstoskip <= 0)
    1264             :                 {
    1265             :                     /*
    1266             :                      * Found a suitable tuple, so save it, replacing one old
    1267             :                      * tuple at random
    1268             :                      */
    1269      115072 :                     int         k = (int) (targrows * sampler_random_fract(&rstate.randstate));
    1270             : 
    1271             :                     Assert(k >= 0 && k < targrows);
    1272      115072 :                     heap_freetuple(rows[k]);
    1273      115072 :                     rows[k] = ExecCopySlotHeapTuple(slot);
    1274             :                 }
    1275             : 
    1276      250394 :                 rowstoskip -= 1;
    1277             :             }
    1278             : 
    1279     9587116 :             samplerows += 1;
    1280             :         }
    1281             : 
    1282      122736 :         pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_DONE,
    1283             :                                      ++blksdone);
    1284             :     }
    1285             : 
    1286       14694 :     read_stream_end(stream);
    1287             : 
    1288       14694 :     ExecDropSingleTupleTableSlot(slot);
    1289       14694 :     table_endscan(scan);
    1290             : 
    1291             :     /*
    1292             :      * If we didn't find as many tuples as we wanted then we're done. No sort
    1293             :      * is needed, since they're already in order.
    1294             :      *
    1295             :      * Otherwise we need to sort the collected tuples by position
    1296             :      * (itempointer). It's not worth worrying about corner cases where the
    1297             :      * tuples are already sorted.
    1298             :      */
    1299       14694 :     if (numrows == targrows)
    1300         162 :         qsort_interruptible(rows, numrows, sizeof(HeapTuple),
    1301             :                             compare_rows, NULL);
    1302             : 
    1303             :     /*
    1304             :      * Estimate total numbers of live and dead rows in relation, extrapolating
    1305             :      * on the assumption that the average tuple density in pages we didn't
    1306             :      * scan is the same as in the pages we did scan.  Since what we scanned is
    1307             :      * a random sample of the pages in the relation, this should be a good
    1308             :      * assumption.
    1309             :      */
    1310       14694 :     if (bs.m > 0)
    1311             :     {
    1312       10478 :         *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
    1313       10478 :         *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
    1314             :     }
    1315             :     else
    1316             :     {
    1317        4216 :         *totalrows = 0.0;
    1318        4216 :         *totaldeadrows = 0.0;
    1319             :     }
    1320             : 
    1321             :     /*
    1322             :      * Emit some interesting relation info
    1323             :      */
    1324       14694 :     ereport(elevel,
    1325             :             (errmsg("\"%s\": scanned %d of %u pages, "
    1326             :                     "containing %.0f live rows and %.0f dead rows; "
    1327             :                     "%d rows in sample, %.0f estimated total rows",
    1328             :                     RelationGetRelationName(onerel),
    1329             :                     bs.m, totalblocks,
    1330             :                     liverows, deadrows,
    1331             :                     numrows, *totalrows)));
    1332             : 
    1333       14694 :     return numrows;
    1334             : }
    1335             : 
    1336             : /*
    1337             :  * Comparator for sorting rows[] array
    1338             :  */
    1339             : static int
    1340     4045062 : compare_rows(const void *a, const void *b, void *arg)
    1341             : {
    1342     4045062 :     HeapTuple   ha = *(const HeapTuple *) a;
    1343     4045062 :     HeapTuple   hb = *(const HeapTuple *) b;
    1344     4045062 :     BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
    1345     4045062 :     OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
    1346     4045062 :     BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
    1347     4045062 :     OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
    1348             : 
    1349     4045062 :     if (ba < bb)
    1350      902950 :         return -1;
    1351     3142112 :     if (ba > bb)
    1352      862712 :         return 1;
    1353     2279400 :     if (oa < ob)
    1354     1528296 :         return -1;
    1355      751104 :     if (oa > ob)
    1356      751104 :         return 1;
    1357           0 :     return 0;
    1358             : }
    1359             : 
    1360             : 
    1361             : /*
    1362             :  * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
    1363             :  *
    1364             :  * This has the same API as acquire_sample_rows, except that rows are
    1365             :  * collected from all inheritance children as well as the specified table.
    1366             :  * We fail and return zero if there are no inheritance children, or if all
    1367             :  * children are foreign tables that don't support ANALYZE.
    1368             :  */
    1369             : static int
    1370         794 : acquire_inherited_sample_rows(Relation onerel, int elevel,
    1371             :                               HeapTuple *rows, int targrows,
    1372             :                               double *totalrows, double *totaldeadrows)
    1373             : {
    1374             :     List       *tableOIDs;
    1375             :     Relation   *rels;
    1376             :     AcquireSampleRowsFunc *acquirefuncs;
    1377             :     double     *relblocks;
    1378             :     double      totalblocks;
    1379             :     int         numrows,
    1380             :                 nrels,
    1381             :                 i;
    1382             :     ListCell   *lc;
    1383             :     bool        has_child;
    1384             : 
    1385             :     /* Initialize output parameters to zero now, in case we exit early */
    1386         794 :     *totalrows = 0;
    1387         794 :     *totaldeadrows = 0;
    1388             : 
    1389             :     /*
    1390             :      * Find all members of inheritance set.  We only need AccessShareLock on
    1391             :      * the children.
    1392             :      */
    1393             :     tableOIDs =
    1394         794 :         find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);
    1395             : 
    1396             :     /*
    1397             :      * Check that there's at least one descendant, else fail.  This could
    1398             :      * happen despite analyze_rel's relhassubclass check, if table once had a
    1399             :      * child but no longer does.  In that case, we can clear the
    1400             :      * relhassubclass field so as not to make the same mistake again later.
    1401             :      * (This is safe because we hold ShareUpdateExclusiveLock.)
    1402             :      */
    1403         794 :     if (list_length(tableOIDs) < 2)
    1404             :     {
    1405             :         /* CCI because we already updated the pg_class row in this command */
    1406          14 :         CommandCounterIncrement();
    1407          14 :         SetRelationHasSubclass(RelationGetRelid(onerel), false);
    1408          14 :         ereport(elevel,
    1409             :                 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
    1410             :                         get_namespace_name(RelationGetNamespace(onerel)),
    1411             :                         RelationGetRelationName(onerel))));
    1412          14 :         return 0;
    1413             :     }
    1414             : 
    1415             :     /*
    1416             :      * Identify acquirefuncs to use, and count blocks in all the relations.
    1417             :      * The result could overflow BlockNumber, so we use double arithmetic.
    1418             :      */
    1419         780 :     rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
    1420             :     acquirefuncs = (AcquireSampleRowsFunc *)
    1421         780 :         palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
    1422         780 :     relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
    1423         780 :     totalblocks = 0;
    1424         780 :     nrels = 0;
    1425         780 :     has_child = false;
    1426        3592 :     foreach(lc, tableOIDs)
    1427             :     {
    1428        2812 :         Oid         childOID = lfirst_oid(lc);
    1429             :         Relation    childrel;
    1430        2812 :         AcquireSampleRowsFunc acquirefunc = NULL;
    1431        2812 :         BlockNumber relpages = 0;
    1432             : 
    1433             :         /* We already got the needed lock */
    1434        2812 :         childrel = table_open(childOID, NoLock);
    1435             : 
    1436             :         /* Ignore if temp table of another backend */
    1437        2812 :         if (RELATION_IS_OTHER_TEMP(childrel))
    1438             :         {
    1439             :             /* ... but release the lock on it */
    1440             :             Assert(childrel != onerel);
    1441           0 :             table_close(childrel, AccessShareLock);
    1442         746 :             continue;
    1443             :         }
    1444             : 
    1445             :         /* Check table type (MATVIEW can't happen, but might as well allow) */
    1446        2812 :         if (childrel->rd_rel->relkind == RELKIND_RELATION ||
    1447         776 :             childrel->rd_rel->relkind == RELKIND_MATVIEW)
    1448             :         {
    1449             :             /* Regular table, so use the regular row acquisition function */
    1450        2036 :             acquirefunc = acquire_sample_rows;
    1451        2036 :             relpages = RelationGetNumberOfBlocks(childrel);
    1452             :         }
    1453         776 :         else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
    1454             :         {
    1455             :             /*
    1456             :              * For a foreign table, call the FDW's hook function to see
    1457             :              * whether it supports analysis.
    1458             :              */
    1459             :             FdwRoutine *fdwroutine;
    1460          30 :             bool        ok = false;
    1461             : 
    1462          30 :             fdwroutine = GetFdwRoutineForRelation(childrel, false);
    1463             : 
    1464          30 :             if (fdwroutine->AnalyzeForeignTable != NULL)
    1465          30 :                 ok = fdwroutine->AnalyzeForeignTable(childrel,
    1466             :                                                      &acquirefunc,
    1467             :                                                      &relpages);
    1468             : 
    1469          30 :             if (!ok)
    1470             :             {
    1471             :                 /* ignore, but release the lock on it */
    1472             :                 Assert(childrel != onerel);
    1473           0 :                 table_close(childrel, AccessShareLock);
    1474           0 :                 continue;
    1475             :             }
    1476             :         }
    1477             :         else
    1478             :         {
    1479             :             /*
    1480             :              * ignore, but release the lock on it.  don't try to unlock the
    1481             :              * passed-in relation
    1482             :              */
    1483             :             Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
    1484         746 :             if (childrel != onerel)
    1485          66 :                 table_close(childrel, AccessShareLock);
    1486             :             else
    1487         680 :                 table_close(childrel, NoLock);
    1488         746 :             continue;
    1489             :         }
    1490             : 
    1491             :         /* OK, we'll process this child */
    1492        2066 :         has_child = true;
    1493        2066 :         rels[nrels] = childrel;
    1494        2066 :         acquirefuncs[nrels] = acquirefunc;
    1495        2066 :         relblocks[nrels] = (double) relpages;
    1496        2066 :         totalblocks += (double) relpages;
    1497        2066 :         nrels++;
    1498             :     }
    1499             : 
    1500             :     /*
    1501             :      * If we don't have at least one child table to consider, fail.  If the
    1502             :      * relation is a partitioned table, it's not counted as a child table.
    1503             :      */
    1504         780 :     if (!has_child)
    1505             :     {
    1506           0 :         ereport(elevel,
    1507             :                 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
    1508             :                         get_namespace_name(RelationGetNamespace(onerel)),
    1509             :                         RelationGetRelationName(onerel))));
    1510           0 :         return 0;
    1511             :     }
    1512             : 
    1513             :     /*
    1514             :      * Now sample rows from each relation, proportionally to its fraction of
    1515             :      * the total block count.  (This might be less than desirable if the child
    1516             :      * rels have radically different free-space percentages, but it's not
    1517             :      * clear that it's worth working harder.)
    1518             :      */
    1519         780 :     pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_TOTAL,
    1520             :                                  nrels);
    1521         780 :     numrows = 0;
    1522        2846 :     for (i = 0; i < nrels; i++)
    1523             :     {
    1524        2066 :         Relation    childrel = rels[i];
    1525        2066 :         AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
    1526        2066 :         double      childblocks = relblocks[i];
    1527             : 
    1528             :         /*
    1529             :          * Report progress.  The sampling function will normally report blocks
    1530             :          * done/total, but we need to reset them to 0 here, so that they don't
    1531             :          * show an old value until that.
    1532             :          */
    1533             :         {
    1534        2066 :             const int   progress_index[] = {
    1535             :                 PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID,
    1536             :                 PROGRESS_ANALYZE_BLOCKS_DONE,
    1537             :                 PROGRESS_ANALYZE_BLOCKS_TOTAL
    1538             :             };
    1539        2066 :             const int64 progress_vals[] = {
    1540        2066 :                 RelationGetRelid(childrel),
    1541             :                 0,
    1542             :                 0,
    1543             :             };
    1544             : 
    1545        2066 :             pgstat_progress_update_multi_param(3, progress_index, progress_vals);
    1546             :         }
    1547             : 
    1548        2066 :         if (childblocks > 0)
    1549             :         {
    1550             :             int         childtargrows;
    1551             : 
    1552        1912 :             childtargrows = (int) rint(targrows * childblocks / totalblocks);
    1553             :             /* Make sure we don't overrun due to roundoff error */
    1554        1912 :             childtargrows = Min(childtargrows, targrows - numrows);
    1555        1912 :             if (childtargrows > 0)
    1556             :             {
    1557             :                 int         childrows;
    1558             :                 double      trows,
    1559             :                             tdrows;
    1560             : 
    1561             :                 /* Fetch a random sample of the child's rows */
    1562        1912 :                 childrows = (*acquirefunc) (childrel, elevel,
    1563        1912 :                                             rows + numrows, childtargrows,
    1564             :                                             &trows, &tdrows);
    1565             : 
    1566             :                 /* We may need to convert from child's rowtype to parent's */
    1567        1912 :                 if (childrows > 0 &&
    1568        1912 :                     !equalRowTypes(RelationGetDescr(childrel),
    1569             :                                    RelationGetDescr(onerel)))
    1570             :                 {
    1571             :                     TupleConversionMap *map;
    1572             : 
    1573        1830 :                     map = convert_tuples_by_name(RelationGetDescr(childrel),
    1574             :                                                  RelationGetDescr(onerel));
    1575        1830 :                     if (map != NULL)
    1576             :                     {
    1577             :                         int         j;
    1578             : 
    1579      106604 :                         for (j = 0; j < childrows; j++)
    1580             :                         {
    1581             :                             HeapTuple   newtup;
    1582             : 
    1583      106472 :                             newtup = execute_attr_map_tuple(rows[numrows + j], map);
    1584      106472 :                             heap_freetuple(rows[numrows + j]);
    1585      106472 :                             rows[numrows + j] = newtup;
    1586             :                         }
    1587         132 :                         free_conversion_map(map);
    1588             :                     }
    1589             :                 }
    1590             : 
    1591             :                 /* And add to counts */
    1592        1912 :                 numrows += childrows;
    1593        1912 :                 *totalrows += trows;
    1594        1912 :                 *totaldeadrows += tdrows;
    1595             :             }
    1596             :         }
    1597             : 
    1598             :         /*
    1599             :          * Note: we cannot release the child-table locks, since we may have
    1600             :          * pointers to their TOAST tables in the sampled rows.
    1601             :          */
    1602        2066 :         table_close(childrel, NoLock);
    1603        2066 :         pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_DONE,
    1604        2066 :                                      i + 1);
    1605             :     }
    1606             : 
    1607         780 :     return numrows;
    1608             : }
    1609             : 
    1610             : 
    1611             : /*
    1612             :  *  update_attstats() -- update attribute statistics for one relation
    1613             :  *
    1614             :  *      Statistics are stored in several places: the pg_class row for the
    1615             :  *      relation has stats about the whole relation, and there is a
    1616             :  *      pg_statistic row for each (non-system) attribute that has ever
    1617             :  *      been analyzed.  The pg_class values are updated by VACUUM, not here.
    1618             :  *
    1619             :  *      pg_statistic rows are just added or updated normally.  This means
    1620             :  *      that pg_statistic will probably contain some deleted rows at the
    1621             :  *      completion of a vacuum cycle, unless it happens to get vacuumed last.
    1622             :  *
    1623             :  *      To keep things simple, we punt for pg_statistic, and don't try
    1624             :  *      to compute or store rows for pg_statistic itself in pg_statistic.
    1625             :  *      This could possibly be made to work, but it's not worth the trouble.
    1626             :  *      Note analyze_rel() has seen to it that we won't come here when
    1627             :  *      vacuuming pg_statistic itself.
    1628             :  *
    1629             :  *      Note: there would be a race condition here if two backends could
    1630             :  *      ANALYZE the same table concurrently.  Presently, we lock that out
    1631             :  *      by taking a self-exclusive lock on the relation in analyze_rel().
    1632             :  */
    1633             : static void
    1634       20720 : update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
    1635             : {
    1636             :     Relation    sd;
    1637             :     int         attno;
    1638       20720 :     CatalogIndexState indstate = NULL;
    1639             : 
    1640       20720 :     if (natts <= 0)
    1641       11312 :         return;                 /* nothing to do */
    1642             : 
    1643        9408 :     sd = table_open(StatisticRelationId, RowExclusiveLock);
    1644             : 
    1645       80478 :     for (attno = 0; attno < natts; attno++)
    1646             :     {
    1647       71070 :         VacAttrStats *stats = vacattrstats[attno];
    1648             :         HeapTuple   stup,
    1649             :                     oldtup;
    1650             :         int         i,
    1651             :                     k,
    1652             :                     n;
    1653             :         Datum       values[Natts_pg_statistic];
    1654             :         bool        nulls[Natts_pg_statistic];
    1655             :         bool        replaces[Natts_pg_statistic];
    1656             : 
    1657             :         /* Ignore attr if we weren't able to collect stats */
    1658       71070 :         if (!stats->stats_valid)
    1659           6 :             continue;
    1660             : 
    1661             :         /*
    1662             :          * Construct a new pg_statistic tuple
    1663             :          */
    1664     2274048 :         for (i = 0; i < Natts_pg_statistic; ++i)
    1665             :         {
    1666     2202984 :             nulls[i] = false;
    1667     2202984 :             replaces[i] = true;
    1668             :         }
    1669             : 
    1670       71064 :         values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
    1671       71064 :         values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->tupattnum);
    1672       71064 :         values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
    1673       71064 :         values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
    1674       71064 :         values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
    1675       71064 :         values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
    1676       71064 :         i = Anum_pg_statistic_stakind1 - 1;
    1677      426384 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1678             :         {
    1679      355320 :             values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
    1680             :         }
    1681       71064 :         i = Anum_pg_statistic_staop1 - 1;
    1682      426384 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1683             :         {
    1684      355320 :             values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
    1685             :         }
    1686       71064 :         i = Anum_pg_statistic_stacoll1 - 1;
    1687      426384 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1688             :         {
    1689      355320 :             values[i++] = ObjectIdGetDatum(stats->stacoll[k]);   /* stacollN */
    1690             :         }
    1691       71064 :         i = Anum_pg_statistic_stanumbers1 - 1;
    1692      426384 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1693             :         {
    1694      355320 :             int         nnum = stats->numnumbers[k];
    1695             : 
    1696      355320 :             if (nnum > 0)
    1697             :             {
    1698      110234 :                 Datum      *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
    1699             :                 ArrayType  *arry;
    1700             : 
    1701      907556 :                 for (n = 0; n < nnum; n++)
    1702      797322 :                     numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
    1703      110234 :                 arry = construct_array_builtin(numdatums, nnum, FLOAT4OID);
    1704      110234 :                 values[i++] = PointerGetDatum(arry);    /* stanumbersN */
    1705             :             }
    1706             :             else
    1707             :             {
    1708      245086 :                 nulls[i] = true;
    1709      245086 :                 values[i++] = (Datum) 0;
    1710             :             }
    1711             :         }
    1712       71064 :         i = Anum_pg_statistic_stavalues1 - 1;
    1713      426384 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1714             :         {
    1715      355320 :             if (stats->numvalues[k] > 0)
    1716             :             {
    1717             :                 ArrayType  *arry;
    1718             : 
    1719       77712 :                 arry = construct_array(stats->stavalues[k],
    1720             :                                        stats->numvalues[k],
    1721             :                                        stats->statypid[k],
    1722       77712 :                                        stats->statyplen[k],
    1723       77712 :                                        stats->statypbyval[k],
    1724       77712 :                                        stats->statypalign[k]);
    1725       77712 :                 values[i++] = PointerGetDatum(arry);    /* stavaluesN */
    1726             :             }
    1727             :             else
    1728             :             {
    1729      277608 :                 nulls[i] = true;
    1730      277608 :                 values[i++] = (Datum) 0;
    1731             :             }
    1732             :         }
    1733             : 
    1734             :         /* Is there already a pg_statistic tuple for this attribute? */
    1735      142128 :         oldtup = SearchSysCache3(STATRELATTINH,
    1736             :                                  ObjectIdGetDatum(relid),
    1737       71064 :                                  Int16GetDatum(stats->tupattnum),
    1738             :                                  BoolGetDatum(inh));
    1739             : 
    1740             :         /* Open index information when we know we need it */
    1741       71064 :         if (indstate == NULL)
    1742        9402 :             indstate = CatalogOpenIndexes(sd);
    1743             : 
    1744       71064 :         if (HeapTupleIsValid(oldtup))
    1745             :         {
    1746             :             /* Yes, replace it */
    1747       28342 :             stup = heap_modify_tuple(oldtup,
    1748             :                                      RelationGetDescr(sd),
    1749             :                                      values,
    1750             :                                      nulls,
    1751             :                                      replaces);
    1752       28342 :             ReleaseSysCache(oldtup);
    1753       28342 :             CatalogTupleUpdateWithInfo(sd, &stup->t_self, stup, indstate);
    1754             :         }
    1755             :         else
    1756             :         {
    1757             :             /* No, insert new tuple */
    1758       42722 :             stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
    1759       42722 :             CatalogTupleInsertWithInfo(sd, stup, indstate);
    1760             :         }
    1761             : 
    1762       71064 :         heap_freetuple(stup);
    1763             :     }
    1764             : 
    1765        9408 :     if (indstate != NULL)
    1766        9402 :         CatalogCloseIndexes(indstate);
    1767        9408 :     table_close(sd, RowExclusiveLock);
    1768             : }
    1769             : 
    1770             : /*
    1771             :  * Standard fetch function for use by compute_stats subroutines.
    1772             :  *
    1773             :  * This exists to provide some insulation between compute_stats routines
    1774             :  * and the actual storage of the sample data.
    1775             :  */
    1776             : static Datum
    1777    68286124 : std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
    1778             : {
    1779    68286124 :     int         attnum = stats->tupattnum;
    1780    68286124 :     HeapTuple   tuple = stats->rows[rownum];
    1781    68286124 :     TupleDesc   tupDesc = stats->tupDesc;
    1782             : 
    1783    68286124 :     return heap_getattr(tuple, attnum, tupDesc, isNull);
    1784             : }
    1785             : 
    1786             : /*
    1787             :  * Fetch function for analyzing index expressions.
    1788             :  *
    1789             :  * We have not bothered to construct index tuples, instead the data is
    1790             :  * just in Datum arrays.
    1791             :  */
    1792             : static Datum
    1793      114484 : ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
    1794             : {
    1795             :     int         i;
    1796             : 
    1797             :     /* exprvals and exprnulls are already offset for proper column */
    1798      114484 :     i = rownum * stats->rowstride;
    1799      114484 :     *isNull = stats->exprnulls[i];
    1800      114484 :     return stats->exprvals[i];
    1801             : }
    1802             : 
    1803             : 
    1804             : /*==========================================================================
    1805             :  *
    1806             :  * Code below this point represents the "standard" type-specific statistics
    1807             :  * analysis algorithms.  This code can be replaced on a per-data-type basis
    1808             :  * by setting a nonzero value in pg_type.typanalyze.
    1809             :  *
    1810             :  *==========================================================================
    1811             :  */
    1812             : 
    1813             : 
    1814             : /*
    1815             :  * To avoid consuming too much memory during analysis and/or too much space
    1816             :  * in the resulting pg_statistic rows, we ignore varlena datums that are wider
    1817             :  * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
    1818             :  * and distinct-value calculations since a wide value is unlikely to be
    1819             :  * duplicated at all, much less be a most-common value.  For the same reason,
    1820             :  * ignoring wide values will not affect our estimates of histogram bin
    1821             :  * boundaries very much.
    1822             :  */
    1823             : #define WIDTH_THRESHOLD  1024
    1824             : 
    1825             : #define swapInt(a,b)    do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
    1826             : #define swapDatum(a,b)  do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
    1827             : 
    1828             : /*
    1829             :  * Extra information used by the default analysis routines
    1830             :  */
    1831             : typedef struct
    1832             : {
    1833             :     int         count;          /* # of duplicates */
    1834             :     int         first;          /* values[] index of first occurrence */
    1835             : } ScalarMCVItem;
    1836             : 
    1837             : typedef struct
    1838             : {
    1839             :     SortSupport ssup;
    1840             :     int        *tupnoLink;
    1841             : } CompareScalarsContext;
    1842             : 
    1843             : 
    1844             : static void compute_trivial_stats(VacAttrStatsP stats,
    1845             :                                   AnalyzeAttrFetchFunc fetchfunc,
    1846             :                                   int samplerows,
    1847             :                                   double totalrows);
    1848             : static void compute_distinct_stats(VacAttrStatsP stats,
    1849             :                                    AnalyzeAttrFetchFunc fetchfunc,
    1850             :                                    int samplerows,
    1851             :                                    double totalrows);
    1852             : static void compute_scalar_stats(VacAttrStatsP stats,
    1853             :                                  AnalyzeAttrFetchFunc fetchfunc,
    1854             :                                  int samplerows,
    1855             :                                  double totalrows);
    1856             : static int  compare_scalars(const void *a, const void *b, void *arg);
    1857             : static int  compare_mcvs(const void *a, const void *b, void *arg);
    1858             : static int  analyze_mcv_list(int *mcv_counts,
    1859             :                              int num_mcv,
    1860             :                              double stadistinct,
    1861             :                              double stanullfrac,
    1862             :                              int samplerows,
    1863             :                              double totalrows);
    1864             : 
    1865             : 
    1866             : /*
    1867             :  * std_typanalyze -- the default type-specific typanalyze function
    1868             :  */
    1869             : bool
    1870       97462 : std_typanalyze(VacAttrStats *stats)
    1871             : {
    1872             :     Oid         ltopr;
    1873             :     Oid         eqopr;
    1874             :     StdAnalyzeData *mystats;
    1875             : 
    1876             :     /* If the attstattarget column is negative, use the default value */
    1877       97462 :     if (stats->attstattarget < 0)
    1878       96856 :         stats->attstattarget = default_statistics_target;
    1879             : 
    1880             :     /* Look for default "<" and "=" operators for column's type */
    1881       97462 :     get_sort_group_operators(stats->attrtypid,
    1882             :                              false, false, false,
    1883             :                              &ltopr, &eqopr, NULL,
    1884             :                              NULL);
    1885             : 
    1886             :     /* Save the operator info for compute_stats routines */
    1887       97462 :     mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
    1888       97462 :     mystats->eqopr = eqopr;
    1889       97462 :     mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
    1890       97462 :     mystats->ltopr = ltopr;
    1891       97462 :     stats->extra_data = mystats;
    1892             : 
    1893             :     /*
    1894             :      * Determine which standard statistics algorithm to use
    1895             :      */
    1896       97462 :     if (OidIsValid(eqopr) && OidIsValid(ltopr))
    1897             :     {
    1898             :         /* Seems to be a scalar datatype */
    1899       94472 :         stats->compute_stats = compute_scalar_stats;
    1900             :         /*--------------------
    1901             :          * The following choice of minrows is based on the paper
    1902             :          * "Random sampling for histogram construction: how much is enough?"
    1903             :          * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
    1904             :          * Proceedings of ACM SIGMOD International Conference on Management
    1905             :          * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
    1906             :          * says that for table size n, histogram size k, maximum relative
    1907             :          * error in bin size f, and error probability gamma, the minimum
    1908             :          * random sample size is
    1909             :          *      r = 4 * k * ln(2*n/gamma) / f^2
    1910             :          * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
    1911             :          *      r = 305.82 * k
    1912             :          * Note that because of the log function, the dependence on n is
    1913             :          * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
    1914             :          * bin size error with probability 0.99.  So there's no real need to
    1915             :          * scale for n, which is a good thing because we don't necessarily
    1916             :          * know it at this point.
    1917             :          *--------------------
    1918             :          */
    1919       94472 :         stats->minrows = 300 * stats->attstattarget;
    1920             :     }
    1921        2990 :     else if (OidIsValid(eqopr))
    1922             :     {
    1923             :         /* We can still recognize distinct values */
    1924        2550 :         stats->compute_stats = compute_distinct_stats;
    1925             :         /* Might as well use the same minrows as above */
    1926        2550 :         stats->minrows = 300 * stats->attstattarget;
    1927             :     }
    1928             :     else
    1929             :     {
    1930             :         /* Can't do much but the trivial stuff */
    1931         440 :         stats->compute_stats = compute_trivial_stats;
    1932             :         /* Might as well use the same minrows as above */
    1933         440 :         stats->minrows = 300 * stats->attstattarget;
    1934             :     }
    1935             : 
    1936       97462 :     return true;
    1937             : }
    1938             : 
    1939             : 
    1940             : /*
    1941             :  *  compute_trivial_stats() -- compute very basic column statistics
    1942             :  *
    1943             :  *  We use this when we cannot find a hash "=" operator for the datatype.
    1944             :  *
    1945             :  *  We determine the fraction of non-null rows and the average datum width.
    1946             :  */
    1947             : static void
    1948         302 : compute_trivial_stats(VacAttrStatsP stats,
    1949             :                       AnalyzeAttrFetchFunc fetchfunc,
    1950             :                       int samplerows,
    1951             :                       double totalrows)
    1952             : {
    1953             :     int         i;
    1954         302 :     int         null_cnt = 0;
    1955         302 :     int         nonnull_cnt = 0;
    1956         302 :     double      total_width = 0;
    1957         604 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    1958         302 :                               stats->attrtype->typlen == -1);
    1959         604 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    1960         302 :                                stats->attrtype->typlen < 0);
    1961             : 
    1962      895064 :     for (i = 0; i < samplerows; i++)
    1963             :     {
    1964             :         Datum       value;
    1965             :         bool        isnull;
    1966             : 
    1967      894762 :         vacuum_delay_point();
    1968             : 
    1969      894762 :         value = fetchfunc(stats, i, &isnull);
    1970             : 
    1971             :         /* Check for null/nonnull */
    1972      894762 :         if (isnull)
    1973             :         {
    1974      480886 :             null_cnt++;
    1975      480886 :             continue;
    1976             :         }
    1977      413876 :         nonnull_cnt++;
    1978             : 
    1979             :         /*
    1980             :          * If it's a variable-width field, add up widths for average width
    1981             :          * calculation.  Note that if the value is toasted, we use the toasted
    1982             :          * width.  We don't bother with this calculation if it's a fixed-width
    1983             :          * type.
    1984             :          */
    1985      413876 :         if (is_varlena)
    1986             :         {
    1987       79884 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    1988             :         }
    1989      333992 :         else if (is_varwidth)
    1990             :         {
    1991             :             /* must be cstring */
    1992           0 :             total_width += strlen(DatumGetCString(value)) + 1;
    1993             :         }
    1994             :     }
    1995             : 
    1996             :     /* We can only compute average width if we found some non-null values. */
    1997         302 :     if (nonnull_cnt > 0)
    1998             :     {
    1999         150 :         stats->stats_valid = true;
    2000             :         /* Do the simple null-frac and width stats */
    2001         150 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2002         150 :         if (is_varwidth)
    2003          68 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2004             :         else
    2005          82 :             stats->stawidth = stats->attrtype->typlen;
    2006         150 :         stats->stadistinct = 0.0;    /* "unknown" */
    2007             :     }
    2008         152 :     else if (null_cnt > 0)
    2009             :     {
    2010             :         /* We found only nulls; assume the column is entirely null */
    2011         152 :         stats->stats_valid = true;
    2012         152 :         stats->stanullfrac = 1.0;
    2013         152 :         if (is_varwidth)
    2014         152 :             stats->stawidth = 0; /* "unknown" */
    2015             :         else
    2016           0 :             stats->stawidth = stats->attrtype->typlen;
    2017         152 :         stats->stadistinct = 0.0;    /* "unknown" */
    2018             :     }
    2019         302 : }
    2020             : 
    2021             : 
    2022             : /*
    2023             :  *  compute_distinct_stats() -- compute column statistics including ndistinct
    2024             :  *
    2025             :  *  We use this when we can find only an "=" operator for the datatype.
    2026             :  *
    2027             :  *  We determine the fraction of non-null rows, the average width, the
    2028             :  *  most common values, and the (estimated) number of distinct values.
    2029             :  *
    2030             :  *  The most common values are determined by brute force: we keep a list
    2031             :  *  of previously seen values, ordered by number of times seen, as we scan
    2032             :  *  the samples.  A newly seen value is inserted just after the last
    2033             :  *  multiply-seen value, causing the bottommost (oldest) singly-seen value
    2034             :  *  to drop off the list.  The accuracy of this method, and also its cost,
    2035             :  *  depend mainly on the length of the list we are willing to keep.
    2036             :  */
    2037             : static void
    2038        1866 : compute_distinct_stats(VacAttrStatsP stats,
    2039             :                        AnalyzeAttrFetchFunc fetchfunc,
    2040             :                        int samplerows,
    2041             :                        double totalrows)
    2042             : {
    2043             :     int         i;
    2044        1866 :     int         null_cnt = 0;
    2045        1866 :     int         nonnull_cnt = 0;
    2046        1866 :     int         toowide_cnt = 0;
    2047        1866 :     double      total_width = 0;
    2048        3156 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    2049        1290 :                               stats->attrtype->typlen == -1);
    2050        3156 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    2051        1290 :                                stats->attrtype->typlen < 0);
    2052             :     FmgrInfo    f_cmpeq;
    2053             :     typedef struct
    2054             :     {
    2055             :         Datum       value;
    2056             :         int         count;
    2057             :     } TrackItem;
    2058             :     TrackItem  *track;
    2059             :     int         track_cnt,
    2060             :                 track_max;
    2061        1866 :     int         num_mcv = stats->attstattarget;
    2062        1866 :     StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
    2063             : 
    2064             :     /*
    2065             :      * We track up to 2*n values for an n-element MCV list; but at least 10
    2066             :      */
    2067        1866 :     track_max = 2 * num_mcv;
    2068        1866 :     if (track_max < 10)
    2069          78 :         track_max = 10;
    2070        1866 :     track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
    2071        1866 :     track_cnt = 0;
    2072             : 
    2073        1866 :     fmgr_info(mystats->eqfunc, &f_cmpeq);
    2074             : 
    2075     1252970 :     for (i = 0; i < samplerows; i++)
    2076             :     {
    2077             :         Datum       value;
    2078             :         bool        isnull;
    2079             :         bool        match;
    2080             :         int         firstcount1,
    2081             :                     j;
    2082             : 
    2083     1251104 :         vacuum_delay_point();
    2084             : 
    2085     1251104 :         value = fetchfunc(stats, i, &isnull);
    2086             : 
    2087             :         /* Check for null/nonnull */
    2088     1251104 :         if (isnull)
    2089             :         {
    2090     1045568 :             null_cnt++;
    2091     1045568 :             continue;
    2092             :         }
    2093      205536 :         nonnull_cnt++;
    2094             : 
    2095             :         /*
    2096             :          * If it's a variable-width field, add up widths for average width
    2097             :          * calculation.  Note that if the value is toasted, we use the toasted
    2098             :          * width.  We don't bother with this calculation if it's a fixed-width
    2099             :          * type.
    2100             :          */
    2101      205536 :         if (is_varlena)
    2102             :         {
    2103       75436 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    2104             : 
    2105             :             /*
    2106             :              * If the value is toasted, we want to detoast it just once to
    2107             :              * avoid repeated detoastings and resultant excess memory usage
    2108             :              * during the comparisons.  Also, check to see if the value is
    2109             :              * excessively wide, and if so don't detoast at all --- just
    2110             :              * ignore the value.
    2111             :              */
    2112       75436 :             if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
    2113             :             {
    2114           0 :                 toowide_cnt++;
    2115           0 :                 continue;
    2116             :             }
    2117       75436 :             value = PointerGetDatum(PG_DETOAST_DATUM(value));
    2118             :         }
    2119      130100 :         else if (is_varwidth)
    2120             :         {
    2121             :             /* must be cstring */
    2122           0 :             total_width += strlen(DatumGetCString(value)) + 1;
    2123             :         }
    2124             : 
    2125             :         /*
    2126             :          * See if the value matches anything we're already tracking.
    2127             :          */
    2128      205536 :         match = false;
    2129      205536 :         firstcount1 = track_cnt;
    2130      388530 :         for (j = 0; j < track_cnt; j++)
    2131             :         {
    2132      383420 :             if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
    2133             :                                                stats->attrcollid,
    2134      383420 :                                                value, track[j].value)))
    2135             :             {
    2136      200426 :                 match = true;
    2137      200426 :                 break;
    2138             :             }
    2139      182994 :             if (j < firstcount1 && track[j].count == 1)
    2140        3016 :                 firstcount1 = j;
    2141             :         }
    2142             : 
    2143      205536 :         if (match)
    2144             :         {
    2145             :             /* Found a match */
    2146      200426 :             track[j].count++;
    2147             :             /* This value may now need to "bubble up" in the track list */
    2148      204596 :             while (j > 0 && track[j].count > track[j - 1].count)
    2149             :             {
    2150        4170 :                 swapDatum(track[j].value, track[j - 1].value);
    2151        4170 :                 swapInt(track[j].count, track[j - 1].count);
    2152        4170 :                 j--;
    2153             :             }
    2154             :         }
    2155             :         else
    2156             :         {
    2157             :             /* No match.  Insert at head of count-1 list */
    2158        5110 :             if (track_cnt < track_max)
    2159        4856 :                 track_cnt++;
    2160       67294 :             for (j = track_cnt - 1; j > firstcount1; j--)
    2161             :             {
    2162       62184 :                 track[j].value = track[j - 1].value;
    2163       62184 :                 track[j].count = track[j - 1].count;
    2164             :             }
    2165        5110 :             if (firstcount1 < track_cnt)
    2166             :             {
    2167        5110 :                 track[firstcount1].value = value;
    2168        5110 :                 track[firstcount1].count = 1;
    2169             :             }
    2170             :         }
    2171             :     }
    2172             : 
    2173             :     /* We can only compute real stats if we found some non-null values. */
    2174        1866 :     if (nonnull_cnt > 0)
    2175             :     {
    2176             :         int         nmultiple,
    2177             :                     summultiple;
    2178             : 
    2179        1354 :         stats->stats_valid = true;
    2180             :         /* Do the simple null-frac and width stats */
    2181        1354 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2182        1354 :         if (is_varwidth)
    2183         778 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2184             :         else
    2185         576 :             stats->stawidth = stats->attrtype->typlen;
    2186             : 
    2187             :         /* Count the number of values we found multiple times */
    2188        1354 :         summultiple = 0;
    2189        4930 :         for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
    2190             :         {
    2191        4264 :             if (track[nmultiple].count == 1)
    2192         688 :                 break;
    2193        3576 :             summultiple += track[nmultiple].count;
    2194             :         }
    2195             : 
    2196        1354 :         if (nmultiple == 0)
    2197             :         {
    2198             :             /*
    2199             :              * If we found no repeated non-null values, assume it's a unique
    2200             :              * column; but be sure to discount for any nulls we found.
    2201             :              */
    2202         172 :             stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2203             :         }
    2204        1182 :         else if (track_cnt < track_max && toowide_cnt == 0 &&
    2205             :                  nmultiple == track_cnt)
    2206             :         {
    2207             :             /*
    2208             :              * Our track list includes every value in the sample, and every
    2209             :              * value appeared more than once.  Assume the column has just
    2210             :              * these values.  (This case is meant to address columns with
    2211             :              * small, fixed sets of possible values, such as boolean or enum
    2212             :              * columns.  If there are any values that appear just once in the
    2213             :              * sample, including too-wide values, we should assume that that's
    2214             :              * not what we're dealing with.)
    2215             :              */
    2216         666 :             stats->stadistinct = track_cnt;
    2217             :         }
    2218             :         else
    2219             :         {
    2220             :             /*----------
    2221             :              * Estimate the number of distinct values using the estimator
    2222             :              * proposed by Haas and Stokes in IBM Research Report RJ 10025:
    2223             :              *      n*d / (n - f1 + f1*n/N)
    2224             :              * where f1 is the number of distinct values that occurred
    2225             :              * exactly once in our sample of n rows (from a total of N),
    2226             :              * and d is the total number of distinct values in the sample.
    2227             :              * This is their Duj1 estimator; the other estimators they
    2228             :              * recommend are considerably more complex, and are numerically
    2229             :              * very unstable when n is much smaller than N.
    2230             :              *
    2231             :              * In this calculation, we consider only non-nulls.  We used to
    2232             :              * include rows with null values in the n and N counts, but that
    2233             :              * leads to inaccurate answers in columns with many nulls, and
    2234             :              * it's intuitively bogus anyway considering the desired result is
    2235             :              * the number of distinct non-null values.
    2236             :              *
    2237             :              * We assume (not very reliably!) that all the multiply-occurring
    2238             :              * values are reflected in the final track[] list, and the other
    2239             :              * nonnull values all appeared but once.  (XXX this usually
    2240             :              * results in a drastic overestimate of ndistinct.  Can we do
    2241             :              * any better?)
    2242             :              *----------
    2243             :              */
    2244         516 :             int         f1 = nonnull_cnt - summultiple;
    2245         516 :             int         d = f1 + nmultiple;
    2246         516 :             double      n = samplerows - null_cnt;
    2247         516 :             double      N = totalrows * (1.0 - stats->stanullfrac);
    2248             :             double      stadistinct;
    2249             : 
    2250             :             /* N == 0 shouldn't happen, but just in case ... */
    2251         516 :             if (N > 0)
    2252         516 :                 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
    2253             :             else
    2254           0 :                 stadistinct = 0;
    2255             : 
    2256             :             /* Clamp to sane range in case of roundoff error */
    2257         516 :             if (stadistinct < d)
    2258         144 :                 stadistinct = d;
    2259         516 :             if (stadistinct > N)
    2260           0 :                 stadistinct = N;
    2261             :             /* And round to integer */
    2262         516 :             stats->stadistinct = floor(stadistinct + 0.5);
    2263             :         }
    2264             : 
    2265             :         /*
    2266             :          * If we estimated the number of distinct values at more than 10% of
    2267             :          * the total row count (a very arbitrary limit), then assume that
    2268             :          * stadistinct should scale with the row count rather than be a fixed
    2269             :          * value.
    2270             :          */
    2271        1354 :         if (stats->stadistinct > 0.1 * totalrows)
    2272         288 :             stats->stadistinct = -(stats->stadistinct / totalrows);
    2273             : 
    2274             :         /*
    2275             :          * Decide how many values are worth storing as most-common values. If
    2276             :          * we are able to generate a complete MCV list (all the values in the
    2277             :          * sample will fit, and we think these are all the ones in the table),
    2278             :          * then do so.  Otherwise, store only those values that are
    2279             :          * significantly more common than the values not in the list.
    2280             :          *
    2281             :          * Note: the first of these cases is meant to address columns with
    2282             :          * small, fixed sets of possible values, such as boolean or enum
    2283             :          * columns.  If we can *completely* represent the column population by
    2284             :          * an MCV list that will fit into the stats target, then we should do
    2285             :          * so and thus provide the planner with complete information.  But if
    2286             :          * the MCV list is not complete, it's generally worth being more
    2287             :          * selective, and not just filling it all the way up to the stats
    2288             :          * target.
    2289             :          */
    2290        1354 :         if (track_cnt < track_max && toowide_cnt == 0 &&
    2291        1346 :             stats->stadistinct > 0 &&
    2292             :             track_cnt <= num_mcv)
    2293             :         {
    2294             :             /* Track list includes all values seen, and all will fit */
    2295         868 :             num_mcv = track_cnt;
    2296             :         }
    2297             :         else
    2298             :         {
    2299             :             int        *mcv_counts;
    2300             : 
    2301             :             /* Incomplete list; decide how many values are worth keeping */
    2302         486 :             if (num_mcv > track_cnt)
    2303         434 :                 num_mcv = track_cnt;
    2304             : 
    2305         486 :             if (num_mcv > 0)
    2306             :             {
    2307         486 :                 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
    2308        1312 :                 for (i = 0; i < num_mcv; i++)
    2309         826 :                     mcv_counts[i] = track[i].count;
    2310             : 
    2311         486 :                 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
    2312         486 :                                            stats->stadistinct,
    2313         486 :                                            stats->stanullfrac,
    2314             :                                            samplerows, totalrows);
    2315             :             }
    2316             :         }
    2317             : 
    2318             :         /* Generate MCV slot entry */
    2319        1354 :         if (num_mcv > 0)
    2320             :         {
    2321             :             MemoryContext old_context;
    2322             :             Datum      *mcv_values;
    2323             :             float4     *mcv_freqs;
    2324             : 
    2325             :             /* Must copy the target values into anl_context */
    2326        1352 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2327        1352 :             mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
    2328        1352 :             mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
    2329        5904 :             for (i = 0; i < num_mcv; i++)
    2330             :             {
    2331        9104 :                 mcv_values[i] = datumCopy(track[i].value,
    2332        4552 :                                           stats->attrtype->typbyval,
    2333        4552 :                                           stats->attrtype->typlen);
    2334        4552 :                 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
    2335             :             }
    2336        1352 :             MemoryContextSwitchTo(old_context);
    2337             : 
    2338        1352 :             stats->stakind[0] = STATISTIC_KIND_MCV;
    2339        1352 :             stats->staop[0] = mystats->eqopr;
    2340        1352 :             stats->stacoll[0] = stats->attrcollid;
    2341        1352 :             stats->stanumbers[0] = mcv_freqs;
    2342        1352 :             stats->numnumbers[0] = num_mcv;
    2343        1352 :             stats->stavalues[0] = mcv_values;
    2344        1352 :             stats->numvalues[0] = num_mcv;
    2345             : 
    2346             :             /*
    2347             :              * Accept the defaults for stats->statypid and others. They have
    2348             :              * been set before we were called (see vacuum.h)
    2349             :              */
    2350             :         }
    2351             :     }
    2352         512 :     else if (null_cnt > 0)
    2353             :     {
    2354             :         /* We found only nulls; assume the column is entirely null */
    2355         512 :         stats->stats_valid = true;
    2356         512 :         stats->stanullfrac = 1.0;
    2357         512 :         if (is_varwidth)
    2358         512 :             stats->stawidth = 0; /* "unknown" */
    2359             :         else
    2360           0 :             stats->stawidth = stats->attrtype->typlen;
    2361         512 :         stats->stadistinct = 0.0;    /* "unknown" */
    2362             :     }
    2363             : 
    2364             :     /* We don't need to bother cleaning up any of our temporary palloc's */
    2365        1866 : }
    2366             : 
    2367             : 
    2368             : /*
    2369             :  *  compute_scalar_stats() -- compute column statistics
    2370             :  *
    2371             :  *  We use this when we can find "=" and "<" operators for the datatype.
    2372             :  *
    2373             :  *  We determine the fraction of non-null rows, the average width, the
    2374             :  *  most common values, the (estimated) number of distinct values, the
    2375             :  *  distribution histogram, and the correlation of physical to logical order.
    2376             :  *
    2377             :  *  The desired stats can be determined fairly easily after sorting the
    2378             :  *  data values into order.
    2379             :  */
    2380             : static void
    2381       69172 : compute_scalar_stats(VacAttrStatsP stats,
    2382             :                      AnalyzeAttrFetchFunc fetchfunc,
    2383             :                      int samplerows,
    2384             :                      double totalrows)
    2385             : {
    2386             :     int         i;
    2387       69172 :     int         null_cnt = 0;
    2388       69172 :     int         nonnull_cnt = 0;
    2389       69172 :     int         toowide_cnt = 0;
    2390       69172 :     double      total_width = 0;
    2391       86306 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    2392       17134 :                               stats->attrtype->typlen == -1);
    2393       86306 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    2394       17134 :                                stats->attrtype->typlen < 0);
    2395             :     double      corr_xysum;
    2396             :     SortSupportData ssup;
    2397             :     ScalarItem *values;
    2398       69172 :     int         values_cnt = 0;
    2399             :     int        *tupnoLink;
    2400             :     ScalarMCVItem *track;
    2401       69172 :     int         track_cnt = 0;
    2402       69172 :     int         num_mcv = stats->attstattarget;
    2403       69172 :     int         num_bins = stats->attstattarget;
    2404       69172 :     StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
    2405             : 
    2406       69172 :     values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
    2407       69172 :     tupnoLink = (int *) palloc(samplerows * sizeof(int));
    2408       69172 :     track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
    2409             : 
    2410       69172 :     memset(&ssup, 0, sizeof(ssup));
    2411       69172 :     ssup.ssup_cxt = CurrentMemoryContext;
    2412       69172 :     ssup.ssup_collation = stats->attrcollid;
    2413       69172 :     ssup.ssup_nulls_first = false;
    2414             : 
    2415             :     /*
    2416             :      * For now, don't perform abbreviated key conversion, because full values
    2417             :      * are required for MCV slot generation.  Supporting that optimization
    2418             :      * would necessitate teaching compare_scalars() to call a tie-breaker.
    2419             :      */
    2420       69172 :     ssup.abbreviate = false;
    2421             : 
    2422       69172 :     PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
    2423             : 
    2424             :     /* Initial scan to find sortable values */
    2425    62521992 :     for (i = 0; i < samplerows; i++)
    2426             :     {
    2427             :         Datum       value;
    2428             :         bool        isnull;
    2429             : 
    2430    62452820 :         vacuum_delay_point();
    2431             : 
    2432    62452820 :         value = fetchfunc(stats, i, &isnull);
    2433             : 
    2434             :         /* Check for null/nonnull */
    2435    62452820 :         if (isnull)
    2436             :         {
    2437     8193702 :             null_cnt++;
    2438     8223408 :             continue;
    2439             :         }
    2440    54259118 :         nonnull_cnt++;
    2441             : 
    2442             :         /*
    2443             :          * If it's a variable-width field, add up widths for average width
    2444             :          * calculation.  Note that if the value is toasted, we use the toasted
    2445             :          * width.  We don't bother with this calculation if it's a fixed-width
    2446             :          * type.
    2447             :          */
    2448    54259118 :         if (is_varlena)
    2449             :         {
    2450     6435128 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    2451             : 
    2452             :             /*
    2453             :              * If the value is toasted, we want to detoast it just once to
    2454             :              * avoid repeated detoastings and resultant excess memory usage
    2455             :              * during the comparisons.  Also, check to see if the value is
    2456             :              * excessively wide, and if so don't detoast at all --- just
    2457             :              * ignore the value.
    2458             :              */
    2459     6435128 :             if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
    2460             :             {
    2461       29706 :                 toowide_cnt++;
    2462       29706 :                 continue;
    2463             :             }
    2464     6405422 :             value = PointerGetDatum(PG_DETOAST_DATUM(value));
    2465             :         }
    2466    47823990 :         else if (is_varwidth)
    2467             :         {
    2468             :             /* must be cstring */
    2469           0 :             total_width += strlen(DatumGetCString(value)) + 1;
    2470             :         }
    2471             : 
    2472             :         /* Add it to the list to be sorted */
    2473    54229412 :         values[values_cnt].value = value;
    2474    54229412 :         values[values_cnt].tupno = values_cnt;
    2475    54229412 :         tupnoLink[values_cnt] = values_cnt;
    2476    54229412 :         values_cnt++;
    2477             :     }
    2478             : 
    2479             :     /* We can only compute real stats if we found some sortable values. */
    2480       69172 :     if (values_cnt > 0)
    2481             :     {
    2482             :         int         ndistinct,  /* # distinct values in sample */
    2483             :                     nmultiple,  /* # that appear multiple times */
    2484             :                     num_hist,
    2485             :                     dups_cnt;
    2486       64524 :         int         slot_idx = 0;
    2487             :         CompareScalarsContext cxt;
    2488             : 
    2489             :         /* Sort the collected values */
    2490       64524 :         cxt.ssup = &ssup;
    2491       64524 :         cxt.tupnoLink = tupnoLink;
    2492       64524 :         qsort_interruptible(values, values_cnt, sizeof(ScalarItem),
    2493             :                             compare_scalars, &cxt);
    2494             : 
    2495             :         /*
    2496             :          * Now scan the values in order, find the most common ones, and also
    2497             :          * accumulate ordering-correlation statistics.
    2498             :          *
    2499             :          * To determine which are most common, we first have to count the
    2500             :          * number of duplicates of each value.  The duplicates are adjacent in
    2501             :          * the sorted list, so a brute-force approach is to compare successive
    2502             :          * datum values until we find two that are not equal. However, that
    2503             :          * requires N-1 invocations of the datum comparison routine, which are
    2504             :          * completely redundant with work that was done during the sort.  (The
    2505             :          * sort algorithm must at some point have compared each pair of items
    2506             :          * that are adjacent in the sorted order; otherwise it could not know
    2507             :          * that it's ordered the pair correctly.) We exploit this by having
    2508             :          * compare_scalars remember the highest tupno index that each
    2509             :          * ScalarItem has been found equal to.  At the end of the sort, a
    2510             :          * ScalarItem's tupnoLink will still point to itself if and only if it
    2511             :          * is the last item of its group of duplicates (since the group will
    2512             :          * be ordered by tupno).
    2513             :          */
    2514       64522 :         corr_xysum = 0;
    2515       64522 :         ndistinct = 0;
    2516       64522 :         nmultiple = 0;
    2517       64522 :         dups_cnt = 0;
    2518    54266180 :         for (i = 0; i < values_cnt; i++)
    2519             :         {
    2520    54201658 :             int         tupno = values[i].tupno;
    2521             : 
    2522    54201658 :             corr_xysum += ((double) i) * ((double) tupno);
    2523    54201658 :             dups_cnt++;
    2524    54201658 :             if (tupnoLink[tupno] == tupno)
    2525             :             {
    2526             :                 /* Reached end of duplicates of this value */
    2527    11909142 :                 ndistinct++;
    2528    11909142 :                 if (dups_cnt > 1)
    2529             :                 {
    2530      975396 :                     nmultiple++;
    2531      975396 :                     if (track_cnt < num_mcv ||
    2532      417260 :                         dups_cnt > track[track_cnt - 1].count)
    2533             :                     {
    2534             :                         /*
    2535             :                          * Found a new item for the mcv list; find its
    2536             :                          * position, bubbling down old items if needed. Loop
    2537             :                          * invariant is that j points at an empty/ replaceable
    2538             :                          * slot.
    2539             :                          */
    2540             :                         int         j;
    2541             : 
    2542      639836 :                         if (track_cnt < num_mcv)
    2543      558136 :                             track_cnt++;
    2544     8350022 :                         for (j = track_cnt - 1; j > 0; j--)
    2545             :                         {
    2546     8278894 :                             if (dups_cnt <= track[j - 1].count)
    2547      568708 :                                 break;
    2548     7710186 :                             track[j].count = track[j - 1].count;
    2549     7710186 :                             track[j].first = track[j - 1].first;
    2550             :                         }
    2551      639836 :                         track[j].count = dups_cnt;
    2552      639836 :                         track[j].first = i + 1 - dups_cnt;
    2553             :                     }
    2554             :                 }
    2555    11909142 :                 dups_cnt = 0;
    2556             :             }
    2557             :         }
    2558             : 
    2559       64522 :         stats->stats_valid = true;
    2560             :         /* Do the simple null-frac and width stats */
    2561       64522 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2562       64522 :         if (is_varwidth)
    2563        9574 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2564             :         else
    2565       54948 :             stats->stawidth = stats->attrtype->typlen;
    2566             : 
    2567       64522 :         if (nmultiple == 0)
    2568             :         {
    2569             :             /*
    2570             :              * If we found no repeated non-null values, assume it's a unique
    2571             :              * column; but be sure to discount for any nulls we found.
    2572             :              */
    2573       17300 :             stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2574             :         }
    2575       47222 :         else if (toowide_cnt == 0 && nmultiple == ndistinct)
    2576             :         {
    2577             :             /*
    2578             :              * Every value in the sample appeared more than once.  Assume the
    2579             :              * column has just these values.  (This case is meant to address
    2580             :              * columns with small, fixed sets of possible values, such as
    2581             :              * boolean or enum columns.  If there are any values that appear
    2582             :              * just once in the sample, including too-wide values, we should
    2583             :              * assume that that's not what we're dealing with.)
    2584             :              */
    2585       29024 :             stats->stadistinct = ndistinct;
    2586             :         }
    2587             :         else
    2588             :         {
    2589             :             /*----------
    2590             :              * Estimate the number of distinct values using the estimator
    2591             :              * proposed by Haas and Stokes in IBM Research Report RJ 10025:
    2592             :              *      n*d / (n - f1 + f1*n/N)
    2593             :              * where f1 is the number of distinct values that occurred
    2594             :              * exactly once in our sample of n rows (from a total of N),
    2595             :              * and d is the total number of distinct values in the sample.
    2596             :              * This is their Duj1 estimator; the other estimators they
    2597             :              * recommend are considerably more complex, and are numerically
    2598             :              * very unstable when n is much smaller than N.
    2599             :              *
    2600             :              * In this calculation, we consider only non-nulls.  We used to
    2601             :              * include rows with null values in the n and N counts, but that
    2602             :              * leads to inaccurate answers in columns with many nulls, and
    2603             :              * it's intuitively bogus anyway considering the desired result is
    2604             :              * the number of distinct non-null values.
    2605             :              *
    2606             :              * Overwidth values are assumed to have been distinct.
    2607             :              *----------
    2608             :              */
    2609       18198 :             int         f1 = ndistinct - nmultiple + toowide_cnt;
    2610       18198 :             int         d = f1 + nmultiple;
    2611       18198 :             double      n = samplerows - null_cnt;
    2612       18198 :             double      N = totalrows * (1.0 - stats->stanullfrac);
    2613             :             double      stadistinct;
    2614             : 
    2615             :             /* N == 0 shouldn't happen, but just in case ... */
    2616       18198 :             if (N > 0)
    2617       18198 :                 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
    2618             :             else
    2619           0 :                 stadistinct = 0;
    2620             : 
    2621             :             /* Clamp to sane range in case of roundoff error */
    2622       18198 :             if (stadistinct < d)
    2623         896 :                 stadistinct = d;
    2624       18198 :             if (stadistinct > N)
    2625           0 :                 stadistinct = N;
    2626             :             /* And round to integer */
    2627       18198 :             stats->stadistinct = floor(stadistinct + 0.5);
    2628             :         }
    2629             : 
    2630             :         /*
    2631             :          * If we estimated the number of distinct values at more than 10% of
    2632             :          * the total row count (a very arbitrary limit), then assume that
    2633             :          * stadistinct should scale with the row count rather than be a fixed
    2634             :          * value.
    2635             :          */
    2636       64522 :         if (stats->stadistinct > 0.1 * totalrows)
    2637       13482 :             stats->stadistinct = -(stats->stadistinct / totalrows);
    2638             : 
    2639             :         /*
    2640             :          * Decide how many values are worth storing as most-common values. If
    2641             :          * we are able to generate a complete MCV list (all the values in the
    2642             :          * sample will fit, and we think these are all the ones in the table),
    2643             :          * then do so.  Otherwise, store only those values that are
    2644             :          * significantly more common than the values not in the list.
    2645             :          *
    2646             :          * Note: the first of these cases is meant to address columns with
    2647             :          * small, fixed sets of possible values, such as boolean or enum
    2648             :          * columns.  If we can *completely* represent the column population by
    2649             :          * an MCV list that will fit into the stats target, then we should do
    2650             :          * so and thus provide the planner with complete information.  But if
    2651             :          * the MCV list is not complete, it's generally worth being more
    2652             :          * selective, and not just filling it all the way up to the stats
    2653             :          * target.
    2654             :          */
    2655       64522 :         if (track_cnt == ndistinct && toowide_cnt == 0 &&
    2656       28370 :             stats->stadistinct > 0 &&
    2657             :             track_cnt <= num_mcv)
    2658             :         {
    2659             :             /* Track list includes all values seen, and all will fit */
    2660       25402 :             num_mcv = track_cnt;
    2661             :         }
    2662             :         else
    2663             :         {
    2664             :             int        *mcv_counts;
    2665             : 
    2666             :             /* Incomplete list; decide how many values are worth keeping */
    2667       39120 :             if (num_mcv > track_cnt)
    2668       35592 :                 num_mcv = track_cnt;
    2669             : 
    2670       39120 :             if (num_mcv > 0)
    2671             :             {
    2672       21820 :                 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
    2673      439554 :                 for (i = 0; i < num_mcv; i++)
    2674      417734 :                     mcv_counts[i] = track[i].count;
    2675             : 
    2676       21820 :                 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
    2677       21820 :                                            stats->stadistinct,
    2678       21820 :                                            stats->stanullfrac,
    2679             :                                            samplerows, totalrows);
    2680             :             }
    2681             :         }
    2682             : 
    2683             :         /* Generate MCV slot entry */
    2684       64522 :         if (num_mcv > 0)
    2685             :         {
    2686             :             MemoryContext old_context;
    2687             :             Datum      *mcv_values;
    2688             :             float4     *mcv_freqs;
    2689             : 
    2690             :             /* Must copy the target values into anl_context */
    2691       47168 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2692       47168 :             mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
    2693       47168 :             mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
    2694      605086 :             for (i = 0; i < num_mcv; i++)
    2695             :             {
    2696     1115836 :                 mcv_values[i] = datumCopy(values[track[i].first].value,
    2697      557918 :                                           stats->attrtype->typbyval,
    2698      557918 :                                           stats->attrtype->typlen);
    2699      557918 :                 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
    2700             :             }
    2701       47168 :             MemoryContextSwitchTo(old_context);
    2702             : 
    2703       47168 :             stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
    2704       47168 :             stats->staop[slot_idx] = mystats->eqopr;
    2705       47168 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2706       47168 :             stats->stanumbers[slot_idx] = mcv_freqs;
    2707       47168 :             stats->numnumbers[slot_idx] = num_mcv;
    2708       47168 :             stats->stavalues[slot_idx] = mcv_values;
    2709       47168 :             stats->numvalues[slot_idx] = num_mcv;
    2710             : 
    2711             :             /*
    2712             :              * Accept the defaults for stats->statypid and others. They have
    2713             :              * been set before we were called (see vacuum.h)
    2714             :              */
    2715       47168 :             slot_idx++;
    2716             :         }
    2717             : 
    2718             :         /*
    2719             :          * Generate a histogram slot entry if there are at least two distinct
    2720             :          * values not accounted for in the MCV list.  (This ensures the
    2721             :          * histogram won't collapse to empty or a singleton.)
    2722             :          */
    2723       64522 :         num_hist = ndistinct - num_mcv;
    2724       64522 :         if (num_hist > num_bins)
    2725       10902 :             num_hist = num_bins + 1;
    2726       64522 :         if (num_hist >= 2)
    2727             :         {
    2728             :             MemoryContext old_context;
    2729             :             Datum      *hist_values;
    2730             :             int         nvals;
    2731             :             int         pos,
    2732             :                         posfrac,
    2733             :                         delta,
    2734             :                         deltafrac;
    2735             : 
    2736             :             /* Sort the MCV items into position order to speed next loop */
    2737       28626 :             qsort_interruptible(track, num_mcv, sizeof(ScalarMCVItem),
    2738             :                                 compare_mcvs, NULL);
    2739             : 
    2740             :             /*
    2741             :              * Collapse out the MCV items from the values[] array.
    2742             :              *
    2743             :              * Note we destroy the values[] array here... but we don't need it
    2744             :              * for anything more.  We do, however, still need values_cnt.
    2745             :              * nvals will be the number of remaining entries in values[].
    2746             :              */
    2747       28626 :             if (num_mcv > 0)
    2748             :             {
    2749             :                 int         src,
    2750             :                             dest;
    2751             :                 int         j;
    2752             : 
    2753       15172 :                 src = dest = 0;
    2754       15172 :                 j = 0;          /* index of next interesting MCV item */
    2755      539408 :                 while (src < values_cnt)
    2756             :                 {
    2757             :                     int         ncopy;
    2758             : 
    2759      524236 :                     if (j < num_mcv)
    2760             :                     {
    2761      512412 :                         int         first = track[j].first;
    2762             : 
    2763      512412 :                         if (src >= first)
    2764             :                         {
    2765             :                             /* advance past this MCV item */
    2766      373718 :                             src = first + track[j].count;
    2767      373718 :                             j++;
    2768      373718 :                             continue;
    2769             :                         }
    2770      138694 :                         ncopy = first - src;
    2771             :                     }
    2772             :                     else
    2773       11824 :                         ncopy = values_cnt - src;
    2774      150518 :                     memmove(&values[dest], &values[src],
    2775             :                             ncopy * sizeof(ScalarItem));
    2776      150518 :                     src += ncopy;
    2777      150518 :                     dest += ncopy;
    2778             :                 }
    2779       15172 :                 nvals = dest;
    2780             :             }
    2781             :             else
    2782       13454 :                 nvals = values_cnt;
    2783             :             Assert(nvals >= num_hist);
    2784             : 
    2785             :             /* Must copy the target values into anl_context */
    2786       28626 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2787       28626 :             hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
    2788             : 
    2789             :             /*
    2790             :              * The object of this loop is to copy the first and last values[]
    2791             :              * entries along with evenly-spaced values in between.  So the
    2792             :              * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)].  But
    2793             :              * computing that subscript directly risks integer overflow when
    2794             :              * the stats target is more than a couple thousand.  Instead we
    2795             :              * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
    2796             :              * the integral and fractional parts of the sum separately.
    2797             :              */
    2798       28626 :             delta = (nvals - 1) / (num_hist - 1);
    2799       28626 :             deltafrac = (nvals - 1) % (num_hist - 1);
    2800       28626 :             pos = posfrac = 0;
    2801             : 
    2802     1532978 :             for (i = 0; i < num_hist; i++)
    2803             :             {
    2804     3008704 :                 hist_values[i] = datumCopy(values[pos].value,
    2805     1504352 :                                            stats->attrtype->typbyval,
    2806     1504352 :                                            stats->attrtype->typlen);
    2807     1504352 :                 pos += delta;
    2808     1504352 :                 posfrac += deltafrac;
    2809     1504352 :                 if (posfrac >= (num_hist - 1))
    2810             :                 {
    2811             :                     /* fractional part exceeds 1, carry to integer part */
    2812      508962 :                     pos++;
    2813      508962 :                     posfrac -= (num_hist - 1);
    2814             :                 }
    2815             :             }
    2816             : 
    2817       28626 :             MemoryContextSwitchTo(old_context);
    2818             : 
    2819       28626 :             stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
    2820       28626 :             stats->staop[slot_idx] = mystats->ltopr;
    2821       28626 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2822       28626 :             stats->stavalues[slot_idx] = hist_values;
    2823       28626 :             stats->numvalues[slot_idx] = num_hist;
    2824             : 
    2825             :             /*
    2826             :              * Accept the defaults for stats->statypid and others. They have
    2827             :              * been set before we were called (see vacuum.h)
    2828             :              */
    2829       28626 :             slot_idx++;
    2830             :         }
    2831             : 
    2832             :         /* Generate a correlation entry if there are multiple values */
    2833       64522 :         if (values_cnt > 1)
    2834             :         {
    2835             :             MemoryContext old_context;
    2836             :             float4     *corrs;
    2837             :             double      corr_xsum,
    2838             :                         corr_x2sum;
    2839             : 
    2840             :             /* Must copy the target values into anl_context */
    2841       60622 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2842       60622 :             corrs = (float4 *) palloc(sizeof(float4));
    2843       60622 :             MemoryContextSwitchTo(old_context);
    2844             : 
    2845             :             /*----------
    2846             :              * Since we know the x and y value sets are both
    2847             :              *      0, 1, ..., values_cnt-1
    2848             :              * we have sum(x) = sum(y) =
    2849             :              *      (values_cnt-1)*values_cnt / 2
    2850             :              * and sum(x^2) = sum(y^2) =
    2851             :              *      (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
    2852             :              *----------
    2853             :              */
    2854       60622 :             corr_xsum = ((double) (values_cnt - 1)) *
    2855       60622 :                 ((double) values_cnt) / 2.0;
    2856       60622 :             corr_x2sum = ((double) (values_cnt - 1)) *
    2857       60622 :                 ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
    2858             : 
    2859             :             /* And the correlation coefficient reduces to */
    2860       60622 :             corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
    2861       60622 :                 (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
    2862             : 
    2863       60622 :             stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
    2864       60622 :             stats->staop[slot_idx] = mystats->ltopr;
    2865       60622 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2866       60622 :             stats->stanumbers[slot_idx] = corrs;
    2867       60622 :             stats->numnumbers[slot_idx] = 1;
    2868       60622 :             slot_idx++;
    2869             :         }
    2870             :     }
    2871        4648 :     else if (nonnull_cnt > 0)
    2872             :     {
    2873             :         /* We found some non-null values, but they were all too wide */
    2874             :         Assert(nonnull_cnt == toowide_cnt);
    2875         286 :         stats->stats_valid = true;
    2876             :         /* Do the simple null-frac and width stats */
    2877         286 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2878         286 :         if (is_varwidth)
    2879         286 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2880             :         else
    2881           0 :             stats->stawidth = stats->attrtype->typlen;
    2882             :         /* Assume all too-wide values are distinct, so it's a unique column */
    2883         286 :         stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2884             :     }
    2885        4362 :     else if (null_cnt > 0)
    2886             :     {
    2887             :         /* We found only nulls; assume the column is entirely null */
    2888        4362 :         stats->stats_valid = true;
    2889        4362 :         stats->stanullfrac = 1.0;
    2890        4362 :         if (is_varwidth)
    2891        3772 :             stats->stawidth = 0; /* "unknown" */
    2892             :         else
    2893         590 :             stats->stawidth = stats->attrtype->typlen;
    2894        4362 :         stats->stadistinct = 0.0;    /* "unknown" */
    2895             :     }
    2896             : 
    2897             :     /* We don't need to bother cleaning up any of our temporary palloc's */
    2898       69170 : }
    2899             : 
    2900             : /*
    2901             :  * Comparator for sorting ScalarItems
    2902             :  *
    2903             :  * Aside from sorting the items, we update the tupnoLink[] array
    2904             :  * whenever two ScalarItems are found to contain equal datums.  The array
    2905             :  * is indexed by tupno; for each ScalarItem, it contains the highest
    2906             :  * tupno that that item's datum has been found to be equal to.  This allows
    2907             :  * us to avoid additional comparisons in compute_scalar_stats().
    2908             :  */
    2909             : static int
    2910   503047716 : compare_scalars(const void *a, const void *b, void *arg)
    2911             : {
    2912   503047716 :     Datum       da = ((const ScalarItem *) a)->value;
    2913   503047716 :     int         ta = ((const ScalarItem *) a)->tupno;
    2914   503047716 :     Datum       db = ((const ScalarItem *) b)->value;
    2915   503047716 :     int         tb = ((const ScalarItem *) b)->tupno;
    2916   503047716 :     CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
    2917             :     int         compare;
    2918             : 
    2919   503047716 :     compare = ApplySortComparator(da, false, db, false, cxt->ssup);
    2920   503047716 :     if (compare != 0)
    2921   198560946 :         return compare;
    2922             : 
    2923             :     /*
    2924             :      * The two datums are equal, so update cxt->tupnoLink[].
    2925             :      */
    2926   304486770 :     if (cxt->tupnoLink[ta] < tb)
    2927    44114882 :         cxt->tupnoLink[ta] = tb;
    2928   304486770 :     if (cxt->tupnoLink[tb] < ta)
    2929     3179552 :         cxt->tupnoLink[tb] = ta;
    2930             : 
    2931             :     /*
    2932             :      * For equal datums, sort by tupno
    2933             :      */
    2934   304486770 :     return ta - tb;
    2935             : }
    2936             : 
    2937             : /*
    2938             :  * Comparator for sorting ScalarMCVItems by position
    2939             :  */
    2940             : static int
    2941     1907216 : compare_mcvs(const void *a, const void *b, void *arg)
    2942             : {
    2943     1907216 :     int         da = ((const ScalarMCVItem *) a)->first;
    2944     1907216 :     int         db = ((const ScalarMCVItem *) b)->first;
    2945             : 
    2946     1907216 :     return da - db;
    2947             : }
    2948             : 
    2949             : /*
    2950             :  * Analyze the list of common values in the sample and decide how many are
    2951             :  * worth storing in the table's MCV list.
    2952             :  *
    2953             :  * mcv_counts is assumed to be a list of the counts of the most common values
    2954             :  * seen in the sample, starting with the most common.  The return value is the
    2955             :  * number that are significantly more common than the values not in the list,
    2956             :  * and which are therefore deemed worth storing in the table's MCV list.
    2957             :  */
    2958             : static int
    2959       22306 : analyze_mcv_list(int *mcv_counts,
    2960             :                  int num_mcv,
    2961             :                  double stadistinct,
    2962             :                  double stanullfrac,
    2963             :                  int samplerows,
    2964             :                  double totalrows)
    2965             : {
    2966             :     double      ndistinct_table;
    2967             :     double      sumcount;
    2968             :     int         i;
    2969             : 
    2970             :     /*
    2971             :      * If the entire table was sampled, keep the whole list.  This also
    2972             :      * protects us against division by zero in the code below.
    2973             :      */
    2974       22306 :     if (samplerows == totalrows || totalrows <= 1.0)
    2975       21464 :         return num_mcv;
    2976             : 
    2977             :     /* Re-extract the estimated number of distinct nonnull values in table */
    2978         842 :     ndistinct_table = stadistinct;
    2979         842 :     if (ndistinct_table < 0)
    2980         154 :         ndistinct_table = -ndistinct_table * totalrows;
    2981             : 
    2982             :     /*
    2983             :      * Exclude the least common values from the MCV list, if they are not
    2984             :      * significantly more common than the estimated selectivity they would
    2985             :      * have if they weren't in the list.  All non-MCV values are assumed to be
    2986             :      * equally common, after taking into account the frequencies of all the
    2987             :      * values in the MCV list and the number of nulls (c.f. eqsel()).
    2988             :      *
    2989             :      * Here sumcount tracks the total count of all but the last (least common)
    2990             :      * value in the MCV list, allowing us to determine the effect of excluding
    2991             :      * that value from the list.
    2992             :      *
    2993             :      * Note that we deliberately do this by removing values from the full
    2994             :      * list, rather than starting with an empty list and adding values,
    2995             :      * because the latter approach can fail to add any values if all the most
    2996             :      * common values have around the same frequency and make up the majority
    2997             :      * of the table, so that the overall average frequency of all values is
    2998             :      * roughly the same as that of the common values.  This would lead to any
    2999             :      * uncommon values being significantly overestimated.
    3000             :      */
    3001         842 :     sumcount = 0.0;
    3002        1782 :     for (i = 0; i < num_mcv - 1; i++)
    3003         940 :         sumcount += mcv_counts[i];
    3004             : 
    3005        1006 :     while (num_mcv > 0)
    3006             :     {
    3007             :         double      selec,
    3008             :                     otherdistinct,
    3009             :                     N,
    3010             :                     n,
    3011             :                     K,
    3012             :                     variance,
    3013             :                     stddev;
    3014             : 
    3015             :         /*
    3016             :          * Estimated selectivity the least common value would have if it
    3017             :          * wasn't in the MCV list (c.f. eqsel()).
    3018             :          */
    3019        1006 :         selec = 1.0 - sumcount / samplerows - stanullfrac;
    3020        1006 :         if (selec < 0.0)
    3021           0 :             selec = 0.0;
    3022        1006 :         if (selec > 1.0)
    3023           0 :             selec = 1.0;
    3024        1006 :         otherdistinct = ndistinct_table - (num_mcv - 1);
    3025        1006 :         if (otherdistinct > 1)
    3026        1006 :             selec /= otherdistinct;
    3027             : 
    3028             :         /*
    3029             :          * If the value is kept in the MCV list, its population frequency is
    3030             :          * assumed to equal its sample frequency.  We use the lower end of a
    3031             :          * textbook continuity-corrected Wald-type confidence interval to
    3032             :          * determine if that is significantly more common than the non-MCV
    3033             :          * frequency --- specifically we assume the population frequency is
    3034             :          * highly likely to be within around 2 standard errors of the sample
    3035             :          * frequency, which equates to an interval of 2 standard deviations
    3036             :          * either side of the sample count, plus an additional 0.5 for the
    3037             :          * continuity correction.  Since we are sampling without replacement,
    3038             :          * this is a hypergeometric distribution.
    3039             :          *
    3040             :          * XXX: Empirically, this approach seems to work quite well, but it
    3041             :          * may be worth considering more advanced techniques for estimating
    3042             :          * the confidence interval of the hypergeometric distribution.
    3043             :          */
    3044        1006 :         N = totalrows;
    3045        1006 :         n = samplerows;
    3046        1006 :         K = N * mcv_counts[num_mcv - 1] / n;
    3047        1006 :         variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
    3048        1006 :         stddev = sqrt(variance);
    3049             : 
    3050        1006 :         if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
    3051             :         {
    3052             :             /*
    3053             :              * The value is significantly more common than the non-MCV
    3054             :              * selectivity would suggest.  Keep it, and all the other more
    3055             :              * common values in the list.
    3056             :              */
    3057         786 :             break;
    3058             :         }
    3059             :         else
    3060             :         {
    3061             :             /* Discard this value and consider the next least common value */
    3062         220 :             num_mcv--;
    3063         220 :             if (num_mcv == 0)
    3064          56 :                 break;
    3065         164 :             sumcount -= mcv_counts[num_mcv - 1];
    3066             :         }
    3067             :     }
    3068         842 :     return num_mcv;
    3069             : }

Generated by: LCOV version 1.14