Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * index.c
4 : * code to create and destroy POSTGRES index relations
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/index.c
12 : *
13 : *
14 : * INTERFACE ROUTINES
15 : * index_create() - Create a cataloged index relation
16 : * index_drop() - Removes index relation from catalogs
17 : * BuildIndexInfo() - Prepare to insert index tuples
18 : * FormIndexDatum() - Construct datum vector for one index tuple
19 : *
20 : *-------------------------------------------------------------------------
21 : */
22 : #include "postgres.h"
23 :
24 : #include <unistd.h>
25 :
26 : #include "access/amapi.h"
27 : #include "access/heapam.h"
28 : #include "access/multixact.h"
29 : #include "access/relscan.h"
30 : #include "access/tableam.h"
31 : #include "access/toast_compression.h"
32 : #include "access/transam.h"
33 : #include "access/visibilitymap.h"
34 : #include "access/xact.h"
35 : #include "bootstrap/bootstrap.h"
36 : #include "catalog/binary_upgrade.h"
37 : #include "catalog/catalog.h"
38 : #include "catalog/dependency.h"
39 : #include "catalog/heap.h"
40 : #include "catalog/index.h"
41 : #include "catalog/objectaccess.h"
42 : #include "catalog/partition.h"
43 : #include "catalog/pg_am.h"
44 : #include "catalog/pg_collation.h"
45 : #include "catalog/pg_constraint.h"
46 : #include "catalog/pg_description.h"
47 : #include "catalog/pg_inherits.h"
48 : #include "catalog/pg_opclass.h"
49 : #include "catalog/pg_operator.h"
50 : #include "catalog/pg_tablespace.h"
51 : #include "catalog/pg_trigger.h"
52 : #include "catalog/pg_type.h"
53 : #include "catalog/storage.h"
54 : #include "catalog/storage_xlog.h"
55 : #include "commands/event_trigger.h"
56 : #include "commands/progress.h"
57 : #include "commands/tablecmds.h"
58 : #include "commands/trigger.h"
59 : #include "executor/executor.h"
60 : #include "miscadmin.h"
61 : #include "nodes/makefuncs.h"
62 : #include "nodes/nodeFuncs.h"
63 : #include "optimizer/optimizer.h"
64 : #include "parser/parser.h"
65 : #include "pgstat.h"
66 : #include "rewrite/rewriteManip.h"
67 : #include "storage/bufmgr.h"
68 : #include "storage/lmgr.h"
69 : #include "storage/predicate.h"
70 : #include "storage/smgr.h"
71 : #include "utils/builtins.h"
72 : #include "utils/fmgroids.h"
73 : #include "utils/guc.h"
74 : #include "utils/inval.h"
75 : #include "utils/lsyscache.h"
76 : #include "utils/memutils.h"
77 : #include "utils/pg_rusage.h"
78 : #include "utils/rel.h"
79 : #include "utils/snapmgr.h"
80 : #include "utils/syscache.h"
81 : #include "utils/tuplesort.h"
82 :
83 : /* Potentially set by pg_upgrade_support functions */
84 : Oid binary_upgrade_next_index_pg_class_oid = InvalidOid;
85 : RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber =
86 : InvalidRelFileNumber;
87 :
88 : /*
89 : * Pointer-free representation of variables used when reindexing system
90 : * catalogs; we use this to propagate those values to parallel workers.
91 : */
92 : typedef struct
93 : {
94 : Oid currentlyReindexedHeap;
95 : Oid currentlyReindexedIndex;
96 : int numPendingReindexedIndexes;
97 : Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER];
98 : } SerializedReindexState;
99 :
100 : /* non-export function prototypes */
101 : static bool relationHasPrimaryKey(Relation rel);
102 : static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
103 : const IndexInfo *indexInfo,
104 : const List *indexColNames,
105 : Oid accessMethodId,
106 : const Oid *collationIds,
107 : const Oid *opclassIds);
108 : static void InitializeAttributeOids(Relation indexRelation,
109 : int numatts, Oid indexoid);
110 : static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets);
111 : static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112 : Oid parentIndexId,
113 : const IndexInfo *indexInfo,
114 : const Oid *collationOids,
115 : const Oid *opclassOids,
116 : const int16 *coloptions,
117 : bool primary,
118 : bool isexclusion,
119 : bool immediate,
120 : bool isvalid,
121 : bool isready);
122 : static void index_update_stats(Relation rel,
123 : bool hasindex,
124 : double reltuples);
125 : static void IndexCheckExclusion(Relation heapRelation,
126 : Relation indexRelation,
127 : IndexInfo *indexInfo);
128 : static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 : static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 : static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 : static void ResetReindexProcessing(void);
132 : static void SetReindexPending(List *indexes);
133 : static void RemoveReindexPending(Oid indexOid);
134 :
135 :
136 : /*
137 : * relationHasPrimaryKey
138 : * See whether an existing relation has a primary key.
139 : *
140 : * Caller must have suitable lock on the relation.
141 : *
142 : * Note: we intentionally do not check indisvalid here; that's because this
143 : * is used to enforce the rule that there can be only one indisprimary index,
144 : * and we want that to be true even if said index is invalid.
145 : */
146 : static bool
147 7522 : relationHasPrimaryKey(Relation rel)
148 : {
149 7522 : bool result = false;
150 : List *indexoidlist;
151 : ListCell *indexoidscan;
152 :
153 : /*
154 : * Get the list of index OIDs for the table from the relcache, and look up
155 : * each one in the pg_index syscache until we find one marked primary key
156 : * (hopefully there isn't more than one such).
157 : */
158 7522 : indexoidlist = RelationGetIndexList(rel);
159 :
160 18098 : foreach(indexoidscan, indexoidlist)
161 : {
162 10612 : Oid indexoid = lfirst_oid(indexoidscan);
163 : HeapTuple indexTuple;
164 :
165 10612 : indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166 10612 : if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167 0 : elog(ERROR, "cache lookup failed for index %u", indexoid);
168 10612 : result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169 10612 : ReleaseSysCache(indexTuple);
170 10612 : if (result)
171 36 : break;
172 : }
173 :
174 7522 : list_free(indexoidlist);
175 :
176 7522 : return result;
177 : }
178 :
179 : /*
180 : * index_check_primary_key
181 : * Apply special checks needed before creating a PRIMARY KEY index
182 : *
183 : * This processing used to be in DefineIndex(), but has been split out
184 : * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185 : *
186 : * We check for a pre-existing primary key, and that all columns of the index
187 : * are simple column references (not expressions), and that all those
188 : * columns are marked NOT NULL. If not, fail.
189 : *
190 : * We used to automatically change unmarked columns to NOT NULL here by doing
191 : * our own local ALTER TABLE command. But that doesn't work well if we're
192 : * executing one subcommand of an ALTER TABLE: the operations may not get
193 : * performed in the right order overall. Now we expect that the parser
194 : * inserted any required ALTER TABLE SET NOT NULL operations before trying
195 : * to create a primary-key index.
196 : *
197 : * Caller had better have at least ShareLock on the table, else the not-null
198 : * checking isn't trustworthy.
199 : */
200 : void
201 13826 : index_check_primary_key(Relation heapRel,
202 : const IndexInfo *indexInfo,
203 : bool is_alter_table,
204 : const IndexStmt *stmt)
205 : {
206 : int i;
207 :
208 : /*
209 : * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210 : * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211 : * have faith that the parser rejected multiple pkey clauses; and CREATE
212 : * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213 : */
214 21348 : if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215 7522 : relationHasPrimaryKey(heapRel))
216 : {
217 36 : ereport(ERROR,
218 : (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219 : errmsg("multiple primary keys for table \"%s\" are not allowed",
220 : RelationGetRelationName(heapRel))));
221 : }
222 :
223 : /*
224 : * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
225 : * constraints. While there is no direct syntax to reach here, it can be
226 : * done by creating a separate index and attaching it via ALTER TABLE ..
227 : * USING INDEX.
228 : */
229 13790 : if (indexInfo->ii_NullsNotDistinct)
230 : {
231 6 : ereport(ERROR,
232 : (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
233 : errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
234 : }
235 :
236 : /*
237 : * Check that all of the attributes in a primary key are marked as not
238 : * null. (We don't really expect to see that; it'd mean the parser messed
239 : * up. But it seems wise to check anyway.)
240 : */
241 30608 : for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
242 : {
243 16824 : AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
244 : HeapTuple atttuple;
245 : Form_pg_attribute attform;
246 :
247 16824 : if (attnum == 0)
248 0 : ereport(ERROR,
249 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
250 : errmsg("primary keys cannot be expressions")));
251 :
252 : /* System attributes are never null, so no need to check */
253 16824 : if (attnum < 0)
254 0 : continue;
255 :
256 16824 : atttuple = SearchSysCache2(ATTNUM,
257 : ObjectIdGetDatum(RelationGetRelid(heapRel)),
258 : Int16GetDatum(attnum));
259 16824 : if (!HeapTupleIsValid(atttuple))
260 0 : elog(ERROR, "cache lookup failed for attribute %d of relation %u",
261 : attnum, RelationGetRelid(heapRel));
262 16824 : attform = (Form_pg_attribute) GETSTRUCT(atttuple);
263 :
264 16824 : if (!attform->attnotnull)
265 0 : ereport(ERROR,
266 : (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
267 : errmsg("primary key column \"%s\" is not marked NOT NULL",
268 : NameStr(attform->attname))));
269 :
270 16824 : ReleaseSysCache(atttuple);
271 : }
272 13784 : }
273 :
274 : /*
275 : * ConstructTupleDescriptor
276 : *
277 : * Build an index tuple descriptor for a new index
278 : */
279 : static TupleDesc
280 45054 : ConstructTupleDescriptor(Relation heapRelation,
281 : const IndexInfo *indexInfo,
282 : const List *indexColNames,
283 : Oid accessMethodId,
284 : const Oid *collationIds,
285 : const Oid *opclassIds)
286 : {
287 45054 : int numatts = indexInfo->ii_NumIndexAttrs;
288 45054 : int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
289 45054 : ListCell *colnames_item = list_head(indexColNames);
290 45054 : ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
291 : IndexAmRoutine *amroutine;
292 : TupleDesc heapTupDesc;
293 : TupleDesc indexTupDesc;
294 : int natts; /* #atts in heap rel --- for error checks */
295 : int i;
296 :
297 : /* We need access to the index AM's API struct */
298 45054 : amroutine = GetIndexAmRoutineByAmId(accessMethodId, false);
299 :
300 : /* ... and to the table's tuple descriptor */
301 45054 : heapTupDesc = RelationGetDescr(heapRelation);
302 45054 : natts = RelationGetForm(heapRelation)->relnatts;
303 :
304 : /*
305 : * allocate the new tuple descriptor
306 : */
307 45054 : indexTupDesc = CreateTemplateTupleDesc(numatts);
308 :
309 : /*
310 : * Fill in the pg_attribute row.
311 : */
312 118636 : for (i = 0; i < numatts; i++)
313 : {
314 73588 : AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
315 73588 : Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
316 : HeapTuple tuple;
317 : Form_pg_type typeTup;
318 : Form_pg_opclass opclassTup;
319 : Oid keyType;
320 :
321 73588 : MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE);
322 73588 : to->attnum = i + 1;
323 73588 : to->attislocal = true;
324 73588 : to->attcollation = (i < numkeyatts) ? collationIds[i] : InvalidOid;
325 :
326 : /*
327 : * Set the attribute name as specified by caller.
328 : */
329 73588 : if (colnames_item == NULL) /* shouldn't happen */
330 0 : elog(ERROR, "too few entries in colnames list");
331 73588 : namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
332 73588 : colnames_item = lnext(indexColNames, colnames_item);
333 :
334 : /*
335 : * For simple index columns, we copy some pg_attribute fields from the
336 : * parent relation. For expressions we have to look at the expression
337 : * result.
338 : */
339 73588 : if (atnum != 0)
340 : {
341 : /* Simple index column */
342 : const FormData_pg_attribute *from;
343 :
344 : Assert(atnum > 0); /* should've been caught above */
345 :
346 72684 : if (atnum > natts) /* safety check */
347 0 : elog(ERROR, "invalid column number %d", atnum);
348 72684 : from = TupleDescAttr(heapTupDesc,
349 : AttrNumberGetAttrOffset(atnum));
350 :
351 72684 : to->atttypid = from->atttypid;
352 72684 : to->attlen = from->attlen;
353 72684 : to->attndims = from->attndims;
354 72684 : to->atttypmod = from->atttypmod;
355 72684 : to->attbyval = from->attbyval;
356 72684 : to->attalign = from->attalign;
357 72684 : to->attstorage = from->attstorage;
358 72684 : to->attcompression = from->attcompression;
359 : }
360 : else
361 : {
362 : /* Expressional index */
363 : Node *indexkey;
364 :
365 904 : if (indexpr_item == NULL) /* shouldn't happen */
366 0 : elog(ERROR, "too few entries in indexprs list");
367 904 : indexkey = (Node *) lfirst(indexpr_item);
368 904 : indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
369 :
370 : /*
371 : * Lookup the expression type in pg_type for the type length etc.
372 : */
373 904 : keyType = exprType(indexkey);
374 904 : tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
375 904 : if (!HeapTupleIsValid(tuple))
376 0 : elog(ERROR, "cache lookup failed for type %u", keyType);
377 904 : typeTup = (Form_pg_type) GETSTRUCT(tuple);
378 :
379 : /*
380 : * Assign some of the attributes values. Leave the rest.
381 : */
382 904 : to->atttypid = keyType;
383 904 : to->attlen = typeTup->typlen;
384 904 : to->atttypmod = exprTypmod(indexkey);
385 904 : to->attbyval = typeTup->typbyval;
386 904 : to->attalign = typeTup->typalign;
387 904 : to->attstorage = typeTup->typstorage;
388 :
389 : /*
390 : * For expression columns, set attcompression invalid, since
391 : * there's no table column from which to copy the value. Whenever
392 : * we actually need to compress a value, we'll use whatever the
393 : * current value of default_toast_compression is at that point in
394 : * time.
395 : */
396 904 : to->attcompression = InvalidCompressionMethod;
397 :
398 904 : ReleaseSysCache(tuple);
399 :
400 : /*
401 : * Make sure the expression yields a type that's safe to store in
402 : * an index. We need this defense because we have index opclasses
403 : * for pseudo-types such as "record", and the actually stored type
404 : * had better be safe; eg, a named composite type is okay, an
405 : * anonymous record type is not. The test is the same as for
406 : * whether a table column is of a safe type (which is why we
407 : * needn't check for the non-expression case).
408 : */
409 904 : CheckAttributeType(NameStr(to->attname),
410 : to->atttypid, to->attcollation,
411 : NIL, 0);
412 : }
413 :
414 : /*
415 : * We do not yet have the correct relation OID for the index, so just
416 : * set it invalid for now. InitializeAttributeOids() will fix it
417 : * later.
418 : */
419 73582 : to->attrelid = InvalidOid;
420 :
421 : /*
422 : * Check the opclass and index AM to see if either provides a keytype
423 : * (overriding the attribute type). Opclass (if exists) takes
424 : * precedence.
425 : */
426 73582 : keyType = amroutine->amkeytype;
427 :
428 73582 : if (i < indexInfo->ii_NumIndexKeyAttrs)
429 : {
430 72944 : tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclassIds[i]));
431 72944 : if (!HeapTupleIsValid(tuple))
432 0 : elog(ERROR, "cache lookup failed for opclass %u", opclassIds[i]);
433 72944 : opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
434 72944 : if (OidIsValid(opclassTup->opckeytype))
435 4962 : keyType = opclassTup->opckeytype;
436 :
437 : /*
438 : * If keytype is specified as ANYELEMENT, and opcintype is
439 : * ANYARRAY, then the attribute type must be an array (else it'd
440 : * not have matched this opclass); use its element type.
441 : *
442 : * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
443 : * there seems no need to do so; there's no reason to declare an
444 : * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
445 : */
446 72944 : if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
447 : {
448 220 : keyType = get_base_element_type(to->atttypid);
449 220 : if (!OidIsValid(keyType))
450 0 : elog(ERROR, "could not get element type of array type %u",
451 : to->atttypid);
452 : }
453 :
454 72944 : ReleaseSysCache(tuple);
455 : }
456 :
457 : /*
458 : * If a key type different from the heap value is specified, update
459 : * the type-related fields in the index tupdesc.
460 : */
461 73582 : if (OidIsValid(keyType) && keyType != to->atttypid)
462 : {
463 4046 : tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
464 4046 : if (!HeapTupleIsValid(tuple))
465 0 : elog(ERROR, "cache lookup failed for type %u", keyType);
466 4046 : typeTup = (Form_pg_type) GETSTRUCT(tuple);
467 :
468 4046 : to->atttypid = keyType;
469 4046 : to->atttypmod = -1;
470 4046 : to->attlen = typeTup->typlen;
471 4046 : to->attbyval = typeTup->typbyval;
472 4046 : to->attalign = typeTup->typalign;
473 4046 : to->attstorage = typeTup->typstorage;
474 : /* As above, use the default compression method in this case */
475 4046 : to->attcompression = InvalidCompressionMethod;
476 :
477 4046 : ReleaseSysCache(tuple);
478 : }
479 :
480 73582 : populate_compact_attribute(indexTupDesc, i);
481 : }
482 :
483 45048 : pfree(amroutine);
484 :
485 45048 : return indexTupDesc;
486 : }
487 :
488 : /* ----------------------------------------------------------------
489 : * InitializeAttributeOids
490 : * ----------------------------------------------------------------
491 : */
492 : static void
493 45048 : InitializeAttributeOids(Relation indexRelation,
494 : int numatts,
495 : Oid indexoid)
496 : {
497 : TupleDesc tupleDescriptor;
498 : int i;
499 :
500 45048 : tupleDescriptor = RelationGetDescr(indexRelation);
501 :
502 118624 : for (i = 0; i < numatts; i += 1)
503 73576 : TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
504 45048 : }
505 :
506 : /* ----------------------------------------------------------------
507 : * AppendAttributeTuples
508 : * ----------------------------------------------------------------
509 : */
510 : static void
511 45048 : AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
512 : {
513 : Relation pg_attribute;
514 : CatalogIndexState indstate;
515 : TupleDesc indexTupDesc;
516 45048 : FormExtraData_pg_attribute *attrs_extra = NULL;
517 :
518 45048 : if (attopts)
519 : {
520 28330 : attrs_extra = palloc0_array(FormExtraData_pg_attribute, indexRelation->rd_att->natts);
521 :
522 68470 : for (int i = 0; i < indexRelation->rd_att->natts; i++)
523 : {
524 40140 : if (attopts[i])
525 160 : attrs_extra[i].attoptions.value = attopts[i];
526 : else
527 39980 : attrs_extra[i].attoptions.isnull = true;
528 :
529 40140 : if (stattargets)
530 722 : attrs_extra[i].attstattarget = stattargets[i];
531 : else
532 39418 : attrs_extra[i].attstattarget.isnull = true;
533 : }
534 : }
535 :
536 : /*
537 : * open the attribute relation and its indexes
538 : */
539 45048 : pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
540 :
541 45048 : indstate = CatalogOpenIndexes(pg_attribute);
542 :
543 : /*
544 : * insert data from new index's tupdesc into pg_attribute
545 : */
546 45048 : indexTupDesc = RelationGetDescr(indexRelation);
547 :
548 45048 : InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attrs_extra, indstate);
549 :
550 45048 : CatalogCloseIndexes(indstate);
551 :
552 45048 : table_close(pg_attribute, RowExclusiveLock);
553 45048 : }
554 :
555 : /* ----------------------------------------------------------------
556 : * UpdateIndexRelation
557 : *
558 : * Construct and insert a new entry in the pg_index catalog
559 : * ----------------------------------------------------------------
560 : */
561 : static void
562 45048 : UpdateIndexRelation(Oid indexoid,
563 : Oid heapoid,
564 : Oid parentIndexId,
565 : const IndexInfo *indexInfo,
566 : const Oid *collationOids,
567 : const Oid *opclassOids,
568 : const int16 *coloptions,
569 : bool primary,
570 : bool isexclusion,
571 : bool immediate,
572 : bool isvalid,
573 : bool isready)
574 : {
575 : int2vector *indkey;
576 : oidvector *indcollation;
577 : oidvector *indclass;
578 : int2vector *indoption;
579 : Datum exprsDatum;
580 : Datum predDatum;
581 : Datum values[Natts_pg_index];
582 45048 : bool nulls[Natts_pg_index] = {0};
583 : Relation pg_index;
584 : HeapTuple tuple;
585 : int i;
586 :
587 : /*
588 : * Copy the index key, opclass, and indoption info into arrays (should we
589 : * make the caller pass them like this to start with?)
590 : */
591 45048 : indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
592 118624 : for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
593 73576 : indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
594 45048 : indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
595 45048 : indclass = buildoidvector(opclassOids, indexInfo->ii_NumIndexKeyAttrs);
596 45048 : indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
597 :
598 : /*
599 : * Convert the index expressions (if any) to a text datum
600 : */
601 45048 : if (indexInfo->ii_Expressions != NIL)
602 : {
603 : char *exprsString;
604 :
605 872 : exprsString = nodeToString(indexInfo->ii_Expressions);
606 872 : exprsDatum = CStringGetTextDatum(exprsString);
607 872 : pfree(exprsString);
608 : }
609 : else
610 44176 : exprsDatum = (Datum) 0;
611 :
612 : /*
613 : * Convert the index predicate (if any) to a text datum. Note we convert
614 : * implicit-AND format to normal explicit-AND for storage.
615 : */
616 45048 : if (indexInfo->ii_Predicate != NIL)
617 : {
618 : char *predString;
619 :
620 442 : predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
621 442 : predDatum = CStringGetTextDatum(predString);
622 442 : pfree(predString);
623 : }
624 : else
625 44606 : predDatum = (Datum) 0;
626 :
627 :
628 : /*
629 : * open the system catalog index relation
630 : */
631 45048 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
632 :
633 : /*
634 : * Build a pg_index tuple
635 : */
636 45048 : values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
637 45048 : values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
638 45048 : values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
639 45048 : values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
640 45048 : values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
641 45048 : values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
642 45048 : values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
643 45048 : values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
644 45048 : values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
645 45048 : values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
646 45048 : values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
647 45048 : values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
648 45048 : values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
649 45048 : values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
650 45048 : values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
651 45048 : values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
652 45048 : values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
653 45048 : values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
654 45048 : values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
655 45048 : values[Anum_pg_index_indexprs - 1] = exprsDatum;
656 45048 : if (exprsDatum == (Datum) 0)
657 44176 : nulls[Anum_pg_index_indexprs - 1] = true;
658 45048 : values[Anum_pg_index_indpred - 1] = predDatum;
659 45048 : if (predDatum == (Datum) 0)
660 44606 : nulls[Anum_pg_index_indpred - 1] = true;
661 :
662 45048 : tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
663 :
664 : /*
665 : * insert the tuple into the pg_index catalog
666 : */
667 45048 : CatalogTupleInsert(pg_index, tuple);
668 :
669 : /*
670 : * close the relation and free the tuple
671 : */
672 45048 : table_close(pg_index, RowExclusiveLock);
673 45048 : heap_freetuple(tuple);
674 45048 : }
675 :
676 :
677 : /*
678 : * index_create
679 : *
680 : * heapRelation: table to build index on (suitably locked by caller)
681 : * indexRelationName: what it say
682 : * indexRelationId: normally, pass InvalidOid to let this routine
683 : * generate an OID for the index. During bootstrap this may be
684 : * nonzero to specify a preselected OID.
685 : * parentIndexRelid: if creating an index partition, the OID of the
686 : * parent index; otherwise InvalidOid.
687 : * parentConstraintId: if creating a constraint on a partition, the OID
688 : * of the constraint in the parent; otherwise InvalidOid.
689 : * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
690 : * May be nonzero to attach an existing valid build.
691 : * indexInfo: same info executor uses to insert into the index
692 : * indexColNames: column names to use for index (List of char *)
693 : * accessMethodId: OID of index AM to use
694 : * tableSpaceId: OID of tablespace to use
695 : * collationIds: array of collation OIDs, one per index column
696 : * opclassIds: array of index opclass OIDs, one per index column
697 : * coloptions: array of per-index-column indoption settings
698 : * reloptions: AM-specific options
699 : * flags: bitmask that can include any combination of these bits:
700 : * INDEX_CREATE_IS_PRIMARY
701 : * the index is a primary key
702 : * INDEX_CREATE_ADD_CONSTRAINT:
703 : * invoke index_constraint_create also
704 : * INDEX_CREATE_SKIP_BUILD:
705 : * skip the index_build() step for the moment; caller must do it
706 : * later (typically via reindex_index())
707 : * INDEX_CREATE_CONCURRENT:
708 : * do not lock the table against writers. The index will be
709 : * marked "invalid" and the caller must take additional steps
710 : * to fix it up.
711 : * INDEX_CREATE_IF_NOT_EXISTS:
712 : * do not throw an error if a relation with the same name
713 : * already exists.
714 : * INDEX_CREATE_PARTITIONED:
715 : * create a partitioned index (table must be partitioned)
716 : * constr_flags: flags passed to index_constraint_create
717 : * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
718 : * allow_system_table_mods: allow table to be a system catalog
719 : * is_internal: if true, post creation hook for new index
720 : * constraintId: if not NULL, receives OID of created constraint
721 : *
722 : * Returns the OID of the created index.
723 : */
724 : Oid
725 45096 : index_create(Relation heapRelation,
726 : const char *indexRelationName,
727 : Oid indexRelationId,
728 : Oid parentIndexRelid,
729 : Oid parentConstraintId,
730 : RelFileNumber relFileNumber,
731 : IndexInfo *indexInfo,
732 : const List *indexColNames,
733 : Oid accessMethodId,
734 : Oid tableSpaceId,
735 : const Oid *collationIds,
736 : const Oid *opclassIds,
737 : const Datum *opclassOptions,
738 : const int16 *coloptions,
739 : const NullableDatum *stattargets,
740 : Datum reloptions,
741 : bits16 flags,
742 : bits16 constr_flags,
743 : bool allow_system_table_mods,
744 : bool is_internal,
745 : Oid *constraintId)
746 : {
747 45096 : Oid heapRelationId = RelationGetRelid(heapRelation);
748 : Relation pg_class;
749 : Relation indexRelation;
750 : TupleDesc indexTupDesc;
751 : bool shared_relation;
752 : bool mapped_relation;
753 : bool is_exclusion;
754 : Oid namespaceId;
755 : int i;
756 : char relpersistence;
757 45096 : bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
758 45096 : bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
759 45096 : bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
760 45096 : bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
761 : char relkind;
762 : TransactionId relfrozenxid;
763 : MultiXactId relminmxid;
764 45096 : bool create_storage = !RelFileNumberIsValid(relFileNumber);
765 :
766 : /* constraint flags can only be set when a constraint is requested */
767 : Assert((constr_flags == 0) ||
768 : ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
769 : /* partitioned indexes must never be "built" by themselves */
770 : Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
771 :
772 45096 : relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
773 45096 : is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
774 :
775 45096 : pg_class = table_open(RelationRelationId, RowExclusiveLock);
776 :
777 : /*
778 : * The index will be in the same namespace as its parent table, and is
779 : * shared across databases if and only if the parent is. Likewise, it
780 : * will use the relfilenumber map if and only if the parent does; and it
781 : * inherits the parent's relpersistence.
782 : */
783 45096 : namespaceId = RelationGetNamespace(heapRelation);
784 45096 : shared_relation = heapRelation->rd_rel->relisshared;
785 45096 : mapped_relation = RelationIsMapped(heapRelation);
786 45096 : relpersistence = heapRelation->rd_rel->relpersistence;
787 :
788 : /*
789 : * check parameters
790 : */
791 45096 : if (indexInfo->ii_NumIndexAttrs < 1)
792 0 : elog(ERROR, "must index at least one column");
793 :
794 72846 : if (!allow_system_table_mods &&
795 27750 : IsSystemRelation(heapRelation) &&
796 11160 : IsNormalProcessingMode())
797 0 : ereport(ERROR,
798 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
799 : errmsg("user-defined indexes on system catalog tables are not supported")));
800 :
801 : /*
802 : * Btree text_pattern_ops uses text_eq as the equality operator, which is
803 : * fine as long as the collation is deterministic; text_eq then reduces to
804 : * bitwise equality and so it is semantically compatible with the other
805 : * operators and functions in that opclass. But with a nondeterministic
806 : * collation, text_eq could yield results that are incompatible with the
807 : * actual behavior of the index (which is determined by the opclass's
808 : * comparison function). We prevent such problems by refusing creation of
809 : * an index with that opclass and a nondeterministic collation.
810 : *
811 : * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
812 : * find more cases, we might decide to create a real mechanism for marking
813 : * opclasses as incompatible with nondeterminism; but for now, this small
814 : * hack suffices.
815 : *
816 : * Another solution is to use a special operator, not text_eq, as the
817 : * equality opclass member; but that is undesirable because it would
818 : * prevent index usage in many queries that work fine today.
819 : */
820 118082 : for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
821 : {
822 72998 : Oid collation = collationIds[i];
823 72998 : Oid opclass = opclassIds[i];
824 :
825 72998 : if (collation)
826 : {
827 6032 : if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
828 5958 : opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
829 86 : opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
830 86 : !get_collation_isdeterministic(collation))
831 : {
832 : HeapTuple classtup;
833 :
834 12 : classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
835 12 : if (!HeapTupleIsValid(classtup))
836 0 : elog(ERROR, "cache lookup failed for operator class %u", opclass);
837 12 : ereport(ERROR,
838 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
839 : errmsg("nondeterministic collations are not supported for operator class \"%s\"",
840 : NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
841 : ReleaseSysCache(classtup);
842 : }
843 : }
844 : }
845 :
846 : /*
847 : * Concurrent index build on a system catalog is unsafe because we tend to
848 : * release locks before committing in catalogs.
849 : */
850 45754 : if (concurrent &&
851 670 : IsCatalogRelation(heapRelation))
852 0 : ereport(ERROR,
853 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
854 : errmsg("concurrent index creation on system catalog tables is not supported")));
855 :
856 : /*
857 : * This case is currently not supported. There's no way to ask for it in
858 : * the grammar with CREATE INDEX, but it can happen with REINDEX.
859 : */
860 45084 : if (concurrent && is_exclusion)
861 0 : ereport(ERROR,
862 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
863 : errmsg("concurrent index creation for exclusion constraints is not supported")));
864 :
865 : /*
866 : * We cannot allow indexing a shared relation after initdb (because
867 : * there's no way to make the entry in other databases' pg_class).
868 : */
869 45084 : if (shared_relation && !IsBootstrapProcessingMode())
870 0 : ereport(ERROR,
871 : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
872 : errmsg("shared indexes cannot be created after initdb")));
873 :
874 : /*
875 : * Shared relations must be in pg_global, too (last-ditch check)
876 : */
877 45084 : if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
878 0 : elog(ERROR, "shared relations must be placed in pg_global tablespace");
879 :
880 : /*
881 : * Check for duplicate name (both as to the index, and as to the
882 : * associated constraint if any). Such cases would fail on the relevant
883 : * catalogs' unique indexes anyway, but we prefer to give a friendlier
884 : * error message.
885 : */
886 45084 : if (get_relname_relid(indexRelationName, namespaceId))
887 : {
888 24 : if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
889 : {
890 18 : ereport(NOTICE,
891 : (errcode(ERRCODE_DUPLICATE_TABLE),
892 : errmsg("relation \"%s\" already exists, skipping",
893 : indexRelationName)));
894 18 : table_close(pg_class, RowExclusiveLock);
895 18 : return InvalidOid;
896 : }
897 :
898 6 : ereport(ERROR,
899 : (errcode(ERRCODE_DUPLICATE_TABLE),
900 : errmsg("relation \"%s\" already exists",
901 : indexRelationName)));
902 : }
903 :
904 54622 : if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
905 9562 : ConstraintNameIsUsed(CONSTRAINT_RELATION, heapRelationId,
906 : indexRelationName))
907 : {
908 : /*
909 : * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
910 : * conflicting constraint is not an index.
911 : */
912 6 : ereport(ERROR,
913 : (errcode(ERRCODE_DUPLICATE_OBJECT),
914 : errmsg("constraint \"%s\" for relation \"%s\" already exists",
915 : indexRelationName, RelationGetRelationName(heapRelation))));
916 : }
917 :
918 : /*
919 : * construct tuple descriptor for index tuples
920 : */
921 45054 : indexTupDesc = ConstructTupleDescriptor(heapRelation,
922 : indexInfo,
923 : indexColNames,
924 : accessMethodId,
925 : collationIds,
926 : opclassIds);
927 :
928 : /*
929 : * Allocate an OID for the index, unless we were told what to use.
930 : *
931 : * The OID will be the relfilenumber as well, so make sure it doesn't
932 : * collide with either pg_class OIDs or existing physical files.
933 : */
934 45048 : if (!OidIsValid(indexRelationId))
935 : {
936 : /* Use binary-upgrade override for pg_class.oid and relfilenumber */
937 30648 : if (IsBinaryUpgrade)
938 : {
939 1038 : if (!OidIsValid(binary_upgrade_next_index_pg_class_oid))
940 0 : ereport(ERROR,
941 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
942 : errmsg("pg_class index OID value not set when in binary upgrade mode")));
943 :
944 1038 : indexRelationId = binary_upgrade_next_index_pg_class_oid;
945 1038 : binary_upgrade_next_index_pg_class_oid = InvalidOid;
946 :
947 : /* Override the index relfilenumber */
948 1038 : if ((relkind == RELKIND_INDEX) &&
949 992 : (!RelFileNumberIsValid(binary_upgrade_next_index_pg_class_relfilenumber)))
950 0 : ereport(ERROR,
951 : (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
952 : errmsg("index relfilenumber value not set when in binary upgrade mode")));
953 1038 : relFileNumber = binary_upgrade_next_index_pg_class_relfilenumber;
954 1038 : binary_upgrade_next_index_pg_class_relfilenumber = InvalidRelFileNumber;
955 :
956 : /*
957 : * Note that we want create_storage = true for binary upgrade. The
958 : * storage we create here will be replaced later, but we need to
959 : * have something on disk in the meanwhile.
960 : */
961 : Assert(create_storage);
962 : }
963 : else
964 : {
965 : indexRelationId =
966 29610 : GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
967 : }
968 : }
969 :
970 : /*
971 : * create the index relation's relcache entry and, if necessary, the
972 : * physical disk file. (If we fail further down, it's the smgr's
973 : * responsibility to remove the disk file again, if any.)
974 : */
975 45048 : indexRelation = heap_create(indexRelationName,
976 : namespaceId,
977 : tableSpaceId,
978 : indexRelationId,
979 : relFileNumber,
980 : accessMethodId,
981 : indexTupDesc,
982 : relkind,
983 : relpersistence,
984 : shared_relation,
985 : mapped_relation,
986 : allow_system_table_mods,
987 : &relfrozenxid,
988 : &relminmxid,
989 : create_storage);
990 :
991 : Assert(relfrozenxid == InvalidTransactionId);
992 : Assert(relminmxid == InvalidMultiXactId);
993 : Assert(indexRelationId == RelationGetRelid(indexRelation));
994 :
995 : /*
996 : * Obtain exclusive lock on it. Although no other transactions can see it
997 : * until we commit, this prevents deadlock-risk complaints from lock
998 : * manager in cases such as CLUSTER.
999 : */
1000 45048 : LockRelation(indexRelation, AccessExclusiveLock);
1001 :
1002 : /*
1003 : * Fill in fields of the index's pg_class entry that are not set correctly
1004 : * by heap_create.
1005 : *
1006 : * XXX should have a cleaner way to create cataloged indexes
1007 : */
1008 45048 : indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
1009 45048 : indexRelation->rd_rel->relam = accessMethodId;
1010 45048 : indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
1011 :
1012 : /*
1013 : * store index's pg_class entry
1014 : */
1015 45048 : InsertPgClassTuple(pg_class, indexRelation,
1016 : RelationGetRelid(indexRelation),
1017 : (Datum) 0,
1018 : reloptions);
1019 :
1020 : /* done with pg_class */
1021 45048 : table_close(pg_class, RowExclusiveLock);
1022 :
1023 : /*
1024 : * now update the object id's of all the attribute tuple forms in the
1025 : * index relation's tuple descriptor
1026 : */
1027 45048 : InitializeAttributeOids(indexRelation,
1028 : indexInfo->ii_NumIndexAttrs,
1029 : indexRelationId);
1030 :
1031 : /*
1032 : * append ATTRIBUTE tuples for the index
1033 : */
1034 45048 : AppendAttributeTuples(indexRelation, opclassOptions, stattargets);
1035 :
1036 : /* ----------------
1037 : * update pg_index
1038 : * (append INDEX tuple)
1039 : *
1040 : * Note that this stows away a representation of "predicate".
1041 : * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1042 : * ----------------
1043 : */
1044 90096 : UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1045 : indexInfo,
1046 : collationIds, opclassIds, coloptions,
1047 : isprimary, is_exclusion,
1048 45048 : (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1049 45048 : !concurrent && !invalid,
1050 45048 : !concurrent);
1051 :
1052 : /*
1053 : * Register relcache invalidation on the indexes' heap relation, to
1054 : * maintain consistency of its index list
1055 : */
1056 45048 : CacheInvalidateRelcache(heapRelation);
1057 :
1058 : /* update pg_inherits and the parent's relhassubclass, if needed */
1059 45048 : if (OidIsValid(parentIndexRelid))
1060 : {
1061 2334 : StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1062 2334 : LockRelationOid(parentIndexRelid, ShareUpdateExclusiveLock);
1063 2334 : SetRelationHasSubclass(parentIndexRelid, true);
1064 : }
1065 :
1066 : /*
1067 : * Register constraint and dependencies for the index.
1068 : *
1069 : * If the index is from a CONSTRAINT clause, construct a pg_constraint
1070 : * entry. The index will be linked to the constraint, which in turn is
1071 : * linked to the table. If it's not a CONSTRAINT, we need to make a
1072 : * dependency directly on the table.
1073 : *
1074 : * We don't need a dependency on the namespace, because there'll be an
1075 : * indirect dependency via our parent table.
1076 : *
1077 : * During bootstrap we can't register any dependencies, and we don't try
1078 : * to make a constraint either.
1079 : */
1080 45048 : if (!IsBootstrapProcessingMode())
1081 : {
1082 : ObjectAddress myself,
1083 : referenced;
1084 : ObjectAddresses *addrs;
1085 :
1086 30648 : ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1087 :
1088 30648 : if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1089 : {
1090 : char constraintType;
1091 : ObjectAddress localaddr;
1092 :
1093 9556 : if (isprimary)
1094 8374 : constraintType = CONSTRAINT_PRIMARY;
1095 1182 : else if (indexInfo->ii_Unique)
1096 982 : constraintType = CONSTRAINT_UNIQUE;
1097 200 : else if (is_exclusion)
1098 200 : constraintType = CONSTRAINT_EXCLUSION;
1099 : else
1100 : {
1101 0 : elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1102 : constraintType = 0; /* keep compiler quiet */
1103 : }
1104 :
1105 9556 : localaddr = index_constraint_create(heapRelation,
1106 : indexRelationId,
1107 : parentConstraintId,
1108 : indexInfo,
1109 : indexRelationName,
1110 : constraintType,
1111 : constr_flags,
1112 : allow_system_table_mods,
1113 : is_internal);
1114 9556 : if (constraintId)
1115 9556 : *constraintId = localaddr.objectId;
1116 : }
1117 : else
1118 : {
1119 21092 : bool have_simple_col = false;
1120 :
1121 21092 : addrs = new_object_addresses();
1122 :
1123 : /* Create auto dependencies on simply-referenced columns */
1124 58106 : for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1125 : {
1126 37014 : if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1127 : {
1128 36150 : ObjectAddressSubSet(referenced, RelationRelationId,
1129 : heapRelationId,
1130 : indexInfo->ii_IndexAttrNumbers[i]);
1131 36150 : add_exact_object_address(&referenced, addrs);
1132 36150 : have_simple_col = true;
1133 : }
1134 : }
1135 :
1136 : /*
1137 : * If there are no simply-referenced columns, give the index an
1138 : * auto dependency on the whole table. In most cases, this will
1139 : * be redundant, but it might not be if the index expressions and
1140 : * predicate contain no Vars or only whole-row Vars.
1141 : */
1142 21092 : if (!have_simple_col)
1143 : {
1144 680 : ObjectAddressSet(referenced, RelationRelationId,
1145 : heapRelationId);
1146 680 : add_exact_object_address(&referenced, addrs);
1147 : }
1148 :
1149 21092 : record_object_address_dependencies(&myself, addrs, DEPENDENCY_AUTO);
1150 21092 : free_object_addresses(addrs);
1151 : }
1152 :
1153 : /*
1154 : * If this is an index partition, create partition dependencies on
1155 : * both the parent index and the table. (Note: these must be *in
1156 : * addition to*, not instead of, all other dependencies. Otherwise
1157 : * we'll be short some dependencies after DETACH PARTITION.)
1158 : */
1159 30648 : if (OidIsValid(parentIndexRelid))
1160 : {
1161 2334 : ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1162 2334 : recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1163 :
1164 2334 : ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1165 2334 : recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1166 : }
1167 :
1168 : /* placeholder for normal dependencies */
1169 30648 : addrs = new_object_addresses();
1170 :
1171 : /* Store dependency on collations */
1172 :
1173 : /* The default collation is pinned, so don't bother recording it */
1174 78656 : for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1175 : {
1176 48008 : if (OidIsValid(collationIds[i]) && collationIds[i] != DEFAULT_COLLATION_OID)
1177 : {
1178 376 : ObjectAddressSet(referenced, CollationRelationId, collationIds[i]);
1179 376 : add_exact_object_address(&referenced, addrs);
1180 : }
1181 : }
1182 :
1183 : /* Store dependency on operator classes */
1184 78656 : for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1185 : {
1186 48008 : ObjectAddressSet(referenced, OperatorClassRelationId, opclassIds[i]);
1187 48008 : add_exact_object_address(&referenced, addrs);
1188 : }
1189 :
1190 30648 : record_object_address_dependencies(&myself, addrs, DEPENDENCY_NORMAL);
1191 30648 : free_object_addresses(addrs);
1192 :
1193 : /* Store dependencies on anything mentioned in index expressions */
1194 30648 : if (indexInfo->ii_Expressions)
1195 : {
1196 872 : recordDependencyOnSingleRelExpr(&myself,
1197 872 : (Node *) indexInfo->ii_Expressions,
1198 : heapRelationId,
1199 : DEPENDENCY_NORMAL,
1200 : DEPENDENCY_AUTO, false);
1201 : }
1202 :
1203 : /* Store dependencies on anything mentioned in predicate */
1204 30648 : if (indexInfo->ii_Predicate)
1205 : {
1206 442 : recordDependencyOnSingleRelExpr(&myself,
1207 442 : (Node *) indexInfo->ii_Predicate,
1208 : heapRelationId,
1209 : DEPENDENCY_NORMAL,
1210 : DEPENDENCY_AUTO, false);
1211 : }
1212 : }
1213 : else
1214 : {
1215 : /* Bootstrap mode - assert we weren't asked for constraint support */
1216 : Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1217 : }
1218 :
1219 : /* Post creation hook for new index */
1220 45048 : InvokeObjectPostCreateHookArg(RelationRelationId,
1221 : indexRelationId, 0, is_internal);
1222 :
1223 : /*
1224 : * Advance the command counter so that we can see the newly-entered
1225 : * catalog tuples for the index.
1226 : */
1227 45048 : CommandCounterIncrement();
1228 :
1229 : /*
1230 : * In bootstrap mode, we have to fill in the index strategy structure with
1231 : * information from the catalogs. If we aren't bootstrapping, then the
1232 : * relcache entry has already been rebuilt thanks to sinval update during
1233 : * CommandCounterIncrement.
1234 : */
1235 45042 : if (IsBootstrapProcessingMode())
1236 14400 : RelationInitIndexAccessInfo(indexRelation);
1237 : else
1238 : Assert(indexRelation->rd_indexcxt != NULL);
1239 :
1240 45042 : indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1241 :
1242 : /* Validate opclass-specific options */
1243 45042 : if (opclassOptions)
1244 67732 : for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1245 39496 : (void) index_opclass_options(indexRelation, i + 1,
1246 39496 : opclassOptions[i],
1247 : true);
1248 :
1249 : /*
1250 : * If this is bootstrap (initdb) time, then we don't actually fill in the
1251 : * index yet. We'll be creating more indexes and classes later, so we
1252 : * delay filling them in until just before we're done with bootstrapping.
1253 : * Similarly, if the caller specified to skip the build then filling the
1254 : * index is delayed till later (ALTER TABLE can save work in some cases
1255 : * with this). Otherwise, we call the AM routine that constructs the
1256 : * index.
1257 : */
1258 44954 : if (IsBootstrapProcessingMode())
1259 : {
1260 14400 : index_register(heapRelationId, indexRelationId, indexInfo);
1261 : }
1262 30554 : else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1263 : {
1264 : /*
1265 : * Caller is responsible for filling the index later on. However,
1266 : * we'd better make sure that the heap relation is correctly marked as
1267 : * having an index.
1268 : */
1269 2996 : index_update_stats(heapRelation,
1270 : true,
1271 : -1.0);
1272 : /* Make the above update visible */
1273 2996 : CommandCounterIncrement();
1274 : }
1275 : else
1276 : {
1277 27558 : index_build(heapRelation, indexRelation, indexInfo, false, true);
1278 : }
1279 :
1280 : /*
1281 : * Close the index; but we keep the lock that we acquired above until end
1282 : * of transaction. Closing the heap is caller's responsibility.
1283 : */
1284 44846 : index_close(indexRelation, NoLock);
1285 :
1286 44846 : return indexRelationId;
1287 : }
1288 :
1289 : /*
1290 : * index_concurrently_create_copy
1291 : *
1292 : * Create concurrently an index based on the definition of the one provided by
1293 : * caller. The index is inserted into catalogs and needs to be built later
1294 : * on. This is called during concurrent reindex processing.
1295 : *
1296 : * "tablespaceOid" is the tablespace to use for this index.
1297 : */
1298 : Oid
1299 514 : index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId,
1300 : Oid tablespaceOid, const char *newName)
1301 : {
1302 : Relation indexRelation;
1303 : IndexInfo *oldInfo,
1304 : *newInfo;
1305 514 : Oid newIndexId = InvalidOid;
1306 : HeapTuple indexTuple,
1307 : classTuple;
1308 : Datum indclassDatum,
1309 : colOptionDatum,
1310 : reloptionsDatum;
1311 : Datum *opclassOptions;
1312 : oidvector *indclass;
1313 : int2vector *indcoloptions;
1314 : NullableDatum *stattargets;
1315 : bool isnull;
1316 514 : List *indexColNames = NIL;
1317 514 : List *indexExprs = NIL;
1318 514 : List *indexPreds = NIL;
1319 :
1320 514 : indexRelation = index_open(oldIndexId, RowExclusiveLock);
1321 :
1322 : /* The new index needs some information from the old index */
1323 514 : oldInfo = BuildIndexInfo(indexRelation);
1324 :
1325 : /*
1326 : * Concurrent build of an index with exclusion constraints is not
1327 : * supported.
1328 : */
1329 514 : if (oldInfo->ii_ExclusionOps != NULL)
1330 6 : ereport(ERROR,
1331 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1332 : errmsg("concurrent index creation for exclusion constraints is not supported")));
1333 :
1334 : /* Get the array of class and column options IDs from index info */
1335 508 : indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1336 508 : if (!HeapTupleIsValid(indexTuple))
1337 0 : elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1338 508 : indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1339 : Anum_pg_index_indclass);
1340 508 : indclass = (oidvector *) DatumGetPointer(indclassDatum);
1341 :
1342 508 : colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1343 : Anum_pg_index_indoption);
1344 508 : indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1345 :
1346 : /* Fetch reloptions of index if any */
1347 508 : classTuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldIndexId));
1348 508 : if (!HeapTupleIsValid(classTuple))
1349 0 : elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1350 508 : reloptionsDatum = SysCacheGetAttr(RELOID, classTuple,
1351 : Anum_pg_class_reloptions, &isnull);
1352 :
1353 : /*
1354 : * Fetch the list of expressions and predicates directly from the
1355 : * catalogs. This cannot rely on the information from IndexInfo of the
1356 : * old index as these have been flattened for the planner.
1357 : */
1358 508 : if (oldInfo->ii_Expressions != NIL)
1359 : {
1360 : Datum exprDatum;
1361 : char *exprString;
1362 :
1363 40 : exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1364 : Anum_pg_index_indexprs);
1365 40 : exprString = TextDatumGetCString(exprDatum);
1366 40 : indexExprs = (List *) stringToNode(exprString);
1367 40 : pfree(exprString);
1368 : }
1369 508 : if (oldInfo->ii_Predicate != NIL)
1370 : {
1371 : Datum predDatum;
1372 : char *predString;
1373 :
1374 28 : predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1375 : Anum_pg_index_indpred);
1376 28 : predString = TextDatumGetCString(predDatum);
1377 28 : indexPreds = (List *) stringToNode(predString);
1378 :
1379 : /* Also convert to implicit-AND format */
1380 28 : indexPreds = make_ands_implicit((Expr *) indexPreds);
1381 28 : pfree(predString);
1382 : }
1383 :
1384 : /*
1385 : * Build the index information for the new index. Note that rebuild of
1386 : * indexes with exclusion constraints is not supported, hence there is no
1387 : * need to fill all the ii_Exclusion* fields.
1388 : */
1389 508 : newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1390 : oldInfo->ii_NumIndexKeyAttrs,
1391 : oldInfo->ii_Am,
1392 : indexExprs,
1393 : indexPreds,
1394 508 : oldInfo->ii_Unique,
1395 508 : oldInfo->ii_NullsNotDistinct,
1396 : false, /* not ready for inserts */
1397 : true,
1398 508 : indexRelation->rd_indam->amsummarizing,
1399 508 : oldInfo->ii_WithoutOverlaps);
1400 :
1401 : /*
1402 : * Extract the list of column names and the column numbers for the new
1403 : * index information. All this information will be used for the index
1404 : * creation.
1405 : */
1406 1230 : for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1407 : {
1408 722 : TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1409 722 : Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1410 :
1411 722 : indexColNames = lappend(indexColNames, NameStr(att->attname));
1412 722 : newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1413 : }
1414 :
1415 : /* Extract opclass options for each attribute */
1416 508 : opclassOptions = palloc0(sizeof(Datum) * newInfo->ii_NumIndexAttrs);
1417 1230 : for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1418 722 : opclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1419 :
1420 : /* Extract statistic targets for each attribute */
1421 508 : stattargets = palloc0_array(NullableDatum, newInfo->ii_NumIndexAttrs);
1422 1230 : for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1423 : {
1424 : HeapTuple tp;
1425 : Datum dat;
1426 :
1427 722 : tp = SearchSysCache2(ATTNUM, ObjectIdGetDatum(oldIndexId), Int16GetDatum(i + 1));
1428 722 : if (!HeapTupleIsValid(tp))
1429 0 : elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1430 : i + 1, oldIndexId);
1431 722 : dat = SysCacheGetAttr(ATTNUM, tp, Anum_pg_attribute_attstattarget, &isnull);
1432 722 : ReleaseSysCache(tp);
1433 722 : stattargets[i].value = dat;
1434 722 : stattargets[i].isnull = isnull;
1435 : }
1436 :
1437 : /*
1438 : * Now create the new index.
1439 : *
1440 : * For a partition index, we adjust the partition dependency later, to
1441 : * ensure a consistent state at all times. That is why parentIndexRelid
1442 : * is not set here.
1443 : */
1444 508 : newIndexId = index_create(heapRelation,
1445 : newName,
1446 : InvalidOid, /* indexRelationId */
1447 : InvalidOid, /* parentIndexRelid */
1448 : InvalidOid, /* parentConstraintId */
1449 : InvalidRelFileNumber, /* relFileNumber */
1450 : newInfo,
1451 : indexColNames,
1452 508 : indexRelation->rd_rel->relam,
1453 : tablespaceOid,
1454 508 : indexRelation->rd_indcollation,
1455 508 : indclass->values,
1456 : opclassOptions,
1457 508 : indcoloptions->values,
1458 : stattargets,
1459 : reloptionsDatum,
1460 : INDEX_CREATE_SKIP_BUILD | INDEX_CREATE_CONCURRENT,
1461 : 0,
1462 : true, /* allow table to be a system catalog? */
1463 : false, /* is_internal? */
1464 : NULL);
1465 :
1466 : /* Close the relations used and clean up */
1467 508 : index_close(indexRelation, NoLock);
1468 508 : ReleaseSysCache(indexTuple);
1469 508 : ReleaseSysCache(classTuple);
1470 :
1471 508 : return newIndexId;
1472 : }
1473 :
1474 : /*
1475 : * index_concurrently_build
1476 : *
1477 : * Build index for a concurrent operation. Low-level locks are taken when
1478 : * this operation is performed to prevent only schema changes, but they need
1479 : * to be kept until the end of the transaction performing this operation.
1480 : * 'indexOid' refers to an index relation OID already created as part of
1481 : * previous processing, and 'heapOid' refers to its parent heap relation.
1482 : */
1483 : void
1484 658 : index_concurrently_build(Oid heapRelationId,
1485 : Oid indexRelationId)
1486 : {
1487 : Relation heapRel;
1488 : Oid save_userid;
1489 : int save_sec_context;
1490 : int save_nestlevel;
1491 : Relation indexRelation;
1492 : IndexInfo *indexInfo;
1493 :
1494 : /* This had better make sure that a snapshot is active */
1495 : Assert(ActiveSnapshotSet());
1496 :
1497 : /* Open and lock the parent heap relation */
1498 658 : heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1499 :
1500 : /*
1501 : * Switch to the table owner's userid, so that any index functions are run
1502 : * as that user. Also lock down security-restricted operations and
1503 : * arrange to make GUC variable changes local to this command.
1504 : */
1505 658 : GetUserIdAndSecContext(&save_userid, &save_sec_context);
1506 658 : SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1507 : save_sec_context | SECURITY_RESTRICTED_OPERATION);
1508 658 : save_nestlevel = NewGUCNestLevel();
1509 658 : RestrictSearchPath();
1510 :
1511 658 : indexRelation = index_open(indexRelationId, RowExclusiveLock);
1512 :
1513 : /*
1514 : * We have to re-build the IndexInfo struct, since it was lost in the
1515 : * commit of the transaction where this concurrent index was created at
1516 : * the catalog level.
1517 : */
1518 658 : indexInfo = BuildIndexInfo(indexRelation);
1519 : Assert(!indexInfo->ii_ReadyForInserts);
1520 658 : indexInfo->ii_Concurrent = true;
1521 658 : indexInfo->ii_BrokenHotChain = false;
1522 :
1523 : /* Now build the index */
1524 658 : index_build(heapRel, indexRelation, indexInfo, false, true);
1525 :
1526 : /* Roll back any GUC changes executed by index functions */
1527 634 : AtEOXact_GUC(false, save_nestlevel);
1528 :
1529 : /* Restore userid and security context */
1530 634 : SetUserIdAndSecContext(save_userid, save_sec_context);
1531 :
1532 : /* Close both the relations, but keep the locks */
1533 634 : table_close(heapRel, NoLock);
1534 634 : index_close(indexRelation, NoLock);
1535 :
1536 : /*
1537 : * Update the pg_index row to mark the index as ready for inserts. Once we
1538 : * commit this transaction, any new transactions that open the table must
1539 : * insert new entries into the index for insertions and non-HOT updates.
1540 : */
1541 634 : index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY);
1542 634 : }
1543 :
1544 : /*
1545 : * index_concurrently_swap
1546 : *
1547 : * Swap name, dependencies, and constraints of the old index over to the new
1548 : * index, while marking the old index as invalid and the new as valid.
1549 : */
1550 : void
1551 502 : index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1552 : {
1553 : Relation pg_class,
1554 : pg_index,
1555 : pg_constraint,
1556 : pg_trigger;
1557 : Relation oldClassRel,
1558 : newClassRel;
1559 : HeapTuple oldClassTuple,
1560 : newClassTuple;
1561 : Form_pg_class oldClassForm,
1562 : newClassForm;
1563 : HeapTuple oldIndexTuple,
1564 : newIndexTuple;
1565 : Form_pg_index oldIndexForm,
1566 : newIndexForm;
1567 : bool isPartition;
1568 : Oid indexConstraintOid;
1569 502 : List *constraintOids = NIL;
1570 : ListCell *lc;
1571 :
1572 : /*
1573 : * Take a necessary lock on the old and new index before swapping them.
1574 : */
1575 502 : oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1576 502 : newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1577 :
1578 : /* Now swap names and dependencies of those indexes */
1579 502 : pg_class = table_open(RelationRelationId, RowExclusiveLock);
1580 :
1581 502 : oldClassTuple = SearchSysCacheCopy1(RELOID,
1582 : ObjectIdGetDatum(oldIndexId));
1583 502 : if (!HeapTupleIsValid(oldClassTuple))
1584 0 : elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1585 502 : newClassTuple = SearchSysCacheCopy1(RELOID,
1586 : ObjectIdGetDatum(newIndexId));
1587 502 : if (!HeapTupleIsValid(newClassTuple))
1588 0 : elog(ERROR, "could not find tuple for relation %u", newIndexId);
1589 :
1590 502 : oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1591 502 : newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1592 :
1593 : /* Swap the names */
1594 502 : namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1595 502 : namestrcpy(&oldClassForm->relname, oldName);
1596 :
1597 : /* Swap the partition flags to track inheritance properly */
1598 502 : isPartition = newClassForm->relispartition;
1599 502 : newClassForm->relispartition = oldClassForm->relispartition;
1600 502 : oldClassForm->relispartition = isPartition;
1601 :
1602 502 : CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1603 502 : CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1604 :
1605 502 : heap_freetuple(oldClassTuple);
1606 502 : heap_freetuple(newClassTuple);
1607 :
1608 : /* Now swap index info */
1609 502 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
1610 :
1611 502 : oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1612 : ObjectIdGetDatum(oldIndexId));
1613 502 : if (!HeapTupleIsValid(oldIndexTuple))
1614 0 : elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1615 502 : newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1616 : ObjectIdGetDatum(newIndexId));
1617 502 : if (!HeapTupleIsValid(newIndexTuple))
1618 0 : elog(ERROR, "could not find tuple for relation %u", newIndexId);
1619 :
1620 502 : oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1621 502 : newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1622 :
1623 : /*
1624 : * Copy constraint flags from the old index. This is safe because the old
1625 : * index guaranteed uniqueness.
1626 : */
1627 502 : newIndexForm->indisprimary = oldIndexForm->indisprimary;
1628 502 : oldIndexForm->indisprimary = false;
1629 502 : newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1630 502 : oldIndexForm->indisexclusion = false;
1631 502 : newIndexForm->indimmediate = oldIndexForm->indimmediate;
1632 502 : oldIndexForm->indimmediate = true;
1633 :
1634 : /* Preserve indisreplident in the new index */
1635 502 : newIndexForm->indisreplident = oldIndexForm->indisreplident;
1636 :
1637 : /* Preserve indisclustered in the new index */
1638 502 : newIndexForm->indisclustered = oldIndexForm->indisclustered;
1639 :
1640 : /*
1641 : * Mark the new index as valid, and the old index as invalid similarly to
1642 : * what index_set_state_flags() does.
1643 : */
1644 502 : newIndexForm->indisvalid = true;
1645 502 : oldIndexForm->indisvalid = false;
1646 502 : oldIndexForm->indisclustered = false;
1647 502 : oldIndexForm->indisreplident = false;
1648 :
1649 502 : CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1650 502 : CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1651 :
1652 502 : heap_freetuple(oldIndexTuple);
1653 502 : heap_freetuple(newIndexTuple);
1654 :
1655 : /*
1656 : * Move constraints and triggers over to the new index
1657 : */
1658 :
1659 502 : constraintOids = get_index_ref_constraints(oldIndexId);
1660 :
1661 502 : indexConstraintOid = get_index_constraint(oldIndexId);
1662 :
1663 502 : if (OidIsValid(indexConstraintOid))
1664 44 : constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1665 :
1666 502 : pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1667 502 : pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1668 :
1669 564 : foreach(lc, constraintOids)
1670 : {
1671 : HeapTuple constraintTuple,
1672 : triggerTuple;
1673 : Form_pg_constraint conForm;
1674 : ScanKeyData key[1];
1675 : SysScanDesc scan;
1676 62 : Oid constraintOid = lfirst_oid(lc);
1677 :
1678 : /* Move the constraint from the old to the new index */
1679 62 : constraintTuple = SearchSysCacheCopy1(CONSTROID,
1680 : ObjectIdGetDatum(constraintOid));
1681 62 : if (!HeapTupleIsValid(constraintTuple))
1682 0 : elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1683 :
1684 62 : conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1685 :
1686 62 : if (conForm->conindid == oldIndexId)
1687 : {
1688 62 : conForm->conindid = newIndexId;
1689 :
1690 62 : CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1691 : }
1692 :
1693 62 : heap_freetuple(constraintTuple);
1694 :
1695 : /* Search for trigger records */
1696 62 : ScanKeyInit(&key[0],
1697 : Anum_pg_trigger_tgconstraint,
1698 : BTEqualStrategyNumber, F_OIDEQ,
1699 : ObjectIdGetDatum(constraintOid));
1700 :
1701 62 : scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1702 : NULL, 1, key);
1703 :
1704 122 : while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1705 : {
1706 60 : Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1707 :
1708 60 : if (tgForm->tgconstrindid != oldIndexId)
1709 0 : continue;
1710 :
1711 : /* Make a modifiable copy */
1712 60 : triggerTuple = heap_copytuple(triggerTuple);
1713 60 : tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1714 :
1715 60 : tgForm->tgconstrindid = newIndexId;
1716 :
1717 60 : CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1718 :
1719 60 : heap_freetuple(triggerTuple);
1720 : }
1721 :
1722 62 : systable_endscan(scan);
1723 : }
1724 :
1725 : /*
1726 : * Move comment if any
1727 : */
1728 : {
1729 : Relation description;
1730 : ScanKeyData skey[3];
1731 : SysScanDesc sd;
1732 : HeapTuple tuple;
1733 502 : Datum values[Natts_pg_description] = {0};
1734 502 : bool nulls[Natts_pg_description] = {0};
1735 502 : bool replaces[Natts_pg_description] = {0};
1736 :
1737 502 : values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1738 502 : replaces[Anum_pg_description_objoid - 1] = true;
1739 :
1740 502 : ScanKeyInit(&skey[0],
1741 : Anum_pg_description_objoid,
1742 : BTEqualStrategyNumber, F_OIDEQ,
1743 : ObjectIdGetDatum(oldIndexId));
1744 502 : ScanKeyInit(&skey[1],
1745 : Anum_pg_description_classoid,
1746 : BTEqualStrategyNumber, F_OIDEQ,
1747 : ObjectIdGetDatum(RelationRelationId));
1748 502 : ScanKeyInit(&skey[2],
1749 : Anum_pg_description_objsubid,
1750 : BTEqualStrategyNumber, F_INT4EQ,
1751 : Int32GetDatum(0));
1752 :
1753 502 : description = table_open(DescriptionRelationId, RowExclusiveLock);
1754 :
1755 502 : sd = systable_beginscan(description, DescriptionObjIndexId, true,
1756 : NULL, 3, skey);
1757 :
1758 502 : while ((tuple = systable_getnext(sd)) != NULL)
1759 : {
1760 6 : tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1761 : values, nulls, replaces);
1762 6 : CatalogTupleUpdate(description, &tuple->t_self, tuple);
1763 :
1764 6 : break; /* Assume there can be only one match */
1765 : }
1766 :
1767 502 : systable_endscan(sd);
1768 502 : table_close(description, NoLock);
1769 : }
1770 :
1771 : /*
1772 : * Swap inheritance relationship with parent index
1773 : */
1774 502 : if (get_rel_relispartition(oldIndexId))
1775 : {
1776 84 : List *ancestors = get_partition_ancestors(oldIndexId);
1777 84 : Oid parentIndexRelid = linitial_oid(ancestors);
1778 :
1779 84 : DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1780 84 : StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1781 :
1782 84 : list_free(ancestors);
1783 : }
1784 :
1785 : /*
1786 : * Swap all dependencies of and on the old index to the new one, and
1787 : * vice-versa. Note that a call to CommandCounterIncrement() would cause
1788 : * duplicate entries in pg_depend, so this should not be done.
1789 : */
1790 502 : changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1791 502 : changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1792 :
1793 502 : changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1794 502 : changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1795 :
1796 : /* copy over statistics from old to new index */
1797 502 : pgstat_copy_relation_stats(newClassRel, oldClassRel);
1798 :
1799 : /* Copy data of pg_statistic from the old index to the new one */
1800 502 : CopyStatistics(oldIndexId, newIndexId);
1801 :
1802 : /* Close relations */
1803 502 : table_close(pg_class, RowExclusiveLock);
1804 502 : table_close(pg_index, RowExclusiveLock);
1805 502 : table_close(pg_constraint, RowExclusiveLock);
1806 502 : table_close(pg_trigger, RowExclusiveLock);
1807 :
1808 : /* The lock taken previously is not released until the end of transaction */
1809 502 : relation_close(oldClassRel, NoLock);
1810 502 : relation_close(newClassRel, NoLock);
1811 502 : }
1812 :
1813 : /*
1814 : * index_concurrently_set_dead
1815 : *
1816 : * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1817 : * CONCURRENTLY before actually dropping the index. After calling this
1818 : * function, the index is seen by all the backends as dead. Low-level locks
1819 : * taken here are kept until the end of the transaction calling this function.
1820 : */
1821 : void
1822 608 : index_concurrently_set_dead(Oid heapId, Oid indexId)
1823 : {
1824 : Relation userHeapRelation;
1825 : Relation userIndexRelation;
1826 :
1827 : /*
1828 : * No more predicate locks will be acquired on this index, and we're about
1829 : * to stop doing inserts into the index which could show conflicts with
1830 : * existing predicate locks, so now is the time to move them to the heap
1831 : * relation.
1832 : */
1833 608 : userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1834 608 : userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1835 608 : TransferPredicateLocksToHeapRelation(userIndexRelation);
1836 :
1837 : /*
1838 : * Now we are sure that nobody uses the index for queries; they just might
1839 : * have it open for updating it. So now we can unset indisready and
1840 : * indislive, then wait till nobody could be using it at all anymore.
1841 : */
1842 608 : index_set_state_flags(indexId, INDEX_DROP_SET_DEAD);
1843 :
1844 : /*
1845 : * Invalidate the relcache for the table, so that after this commit all
1846 : * sessions will refresh the table's index list. Forgetting just the
1847 : * index's relcache entry is not enough.
1848 : */
1849 608 : CacheInvalidateRelcache(userHeapRelation);
1850 :
1851 : /*
1852 : * Close the relations again, though still holding session lock.
1853 : */
1854 608 : table_close(userHeapRelation, NoLock);
1855 608 : index_close(userIndexRelation, NoLock);
1856 608 : }
1857 :
1858 : /*
1859 : * index_constraint_create
1860 : *
1861 : * Set up a constraint associated with an index. Return the new constraint's
1862 : * address.
1863 : *
1864 : * heapRelation: table owning the index (must be suitably locked by caller)
1865 : * indexRelationId: OID of the index
1866 : * parentConstraintId: if constraint is on a partition, the OID of the
1867 : * constraint in the parent.
1868 : * indexInfo: same info executor uses to insert into the index
1869 : * constraintName: what it say (generally, should match name of index)
1870 : * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1871 : * CONSTRAINT_EXCLUSION
1872 : * flags: bitmask that can include any combination of these bits:
1873 : * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1874 : * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1875 : * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1876 : * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1877 : * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1878 : * of index on table's columns
1879 : * INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS: constraint uses WITHOUT OVERLAPS
1880 : * allow_system_table_mods: allow table to be a system catalog
1881 : * is_internal: index is constructed due to internal process
1882 : */
1883 : ObjectAddress
1884 19084 : index_constraint_create(Relation heapRelation,
1885 : Oid indexRelationId,
1886 : Oid parentConstraintId,
1887 : const IndexInfo *indexInfo,
1888 : const char *constraintName,
1889 : char constraintType,
1890 : bits16 constr_flags,
1891 : bool allow_system_table_mods,
1892 : bool is_internal)
1893 : {
1894 19084 : Oid namespaceId = RelationGetNamespace(heapRelation);
1895 : ObjectAddress myself,
1896 : idxaddr;
1897 : Oid conOid;
1898 : bool deferrable;
1899 : bool initdeferred;
1900 : bool mark_as_primary;
1901 : bool islocal;
1902 : bool noinherit;
1903 : bool is_without_overlaps;
1904 : int16 inhcount;
1905 :
1906 19084 : deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1907 19084 : initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1908 19084 : mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1909 19084 : is_without_overlaps = (constr_flags & INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS) != 0;
1910 :
1911 : /* constraint creation support doesn't work while bootstrapping */
1912 : Assert(!IsBootstrapProcessingMode());
1913 :
1914 : /* enforce system-table restriction */
1915 28588 : if (!allow_system_table_mods &&
1916 9504 : IsSystemRelation(heapRelation) &&
1917 0 : IsNormalProcessingMode())
1918 0 : ereport(ERROR,
1919 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1920 : errmsg("user-defined indexes on system catalog tables are not supported")));
1921 :
1922 : /* primary/unique constraints shouldn't have any expressions */
1923 19084 : if (indexInfo->ii_Expressions &&
1924 : constraintType != CONSTRAINT_EXCLUSION)
1925 0 : elog(ERROR, "constraints cannot have index expressions");
1926 :
1927 : /*
1928 : * If we're manufacturing a constraint for a pre-existing index, we need
1929 : * to get rid of the existing auto dependencies for the index (the ones
1930 : * that index_create() would have made instead of calling this function).
1931 : *
1932 : * Note: this code would not necessarily do the right thing if the index
1933 : * has any expressions or predicate, but we'd never be turning such an
1934 : * index into a UNIQUE or PRIMARY KEY constraint.
1935 : */
1936 19084 : if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1937 9528 : deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1938 : RelationRelationId, DEPENDENCY_AUTO);
1939 :
1940 19084 : if (OidIsValid(parentConstraintId))
1941 : {
1942 1302 : islocal = false;
1943 1302 : inhcount = 1;
1944 1302 : noinherit = false;
1945 : }
1946 : else
1947 : {
1948 17782 : islocal = true;
1949 17782 : inhcount = 0;
1950 17782 : noinherit = true;
1951 : }
1952 :
1953 : /*
1954 : * Construct a pg_constraint entry.
1955 : */
1956 19084 : conOid = CreateConstraintEntry(constraintName,
1957 : namespaceId,
1958 : constraintType,
1959 : deferrable,
1960 : initdeferred,
1961 : true, /* Is Enforced */
1962 : true,
1963 : parentConstraintId,
1964 : RelationGetRelid(heapRelation),
1965 19084 : indexInfo->ii_IndexAttrNumbers,
1966 : indexInfo->ii_NumIndexKeyAttrs,
1967 : indexInfo->ii_NumIndexAttrs,
1968 : InvalidOid, /* no domain */
1969 : indexRelationId, /* index OID */
1970 : InvalidOid, /* no foreign key */
1971 : NULL,
1972 : NULL,
1973 : NULL,
1974 : NULL,
1975 : 0,
1976 : ' ',
1977 : ' ',
1978 : NULL,
1979 : 0,
1980 : ' ',
1981 19084 : indexInfo->ii_ExclusionOps,
1982 : NULL, /* no check constraint */
1983 : NULL,
1984 : islocal,
1985 : inhcount,
1986 : noinherit,
1987 : is_without_overlaps,
1988 : is_internal);
1989 :
1990 : /*
1991 : * Register the index as internally dependent on the constraint.
1992 : *
1993 : * Note that the constraint has a dependency on the table, so we don't
1994 : * need (or want) any direct dependency from the index to the table.
1995 : */
1996 19084 : ObjectAddressSet(myself, ConstraintRelationId, conOid);
1997 19084 : ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1998 19084 : recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1999 :
2000 : /*
2001 : * Also, if this is a constraint on a partition, give it partition-type
2002 : * dependencies on the parent constraint as well as the table.
2003 : */
2004 19084 : if (OidIsValid(parentConstraintId))
2005 : {
2006 : ObjectAddress referenced;
2007 :
2008 1302 : ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2009 1302 : recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2010 1302 : ObjectAddressSet(referenced, RelationRelationId,
2011 : RelationGetRelid(heapRelation));
2012 1302 : recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2013 : }
2014 :
2015 : /*
2016 : * If the constraint is deferrable, create the deferred uniqueness
2017 : * checking trigger. (The trigger will be given an internal dependency on
2018 : * the constraint by CreateTrigger.)
2019 : */
2020 19084 : if (deferrable)
2021 : {
2022 132 : CreateTrigStmt *trigger = makeNode(CreateTrigStmt);
2023 :
2024 132 : trigger->replace = false;
2025 132 : trigger->isconstraint = true;
2026 132 : trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2027 132 : "PK_ConstraintTrigger" :
2028 : "Unique_ConstraintTrigger";
2029 132 : trigger->relation = NULL;
2030 132 : trigger->funcname = SystemFuncName("unique_key_recheck");
2031 132 : trigger->args = NIL;
2032 132 : trigger->row = true;
2033 132 : trigger->timing = TRIGGER_TYPE_AFTER;
2034 132 : trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2035 132 : trigger->columns = NIL;
2036 132 : trigger->whenClause = NULL;
2037 132 : trigger->transitionRels = NIL;
2038 132 : trigger->deferrable = true;
2039 132 : trigger->initdeferred = initdeferred;
2040 132 : trigger->constrrel = NULL;
2041 :
2042 132 : (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2043 : InvalidOid, conOid, indexRelationId, InvalidOid,
2044 : InvalidOid, NULL, true, false);
2045 : }
2046 :
2047 : /*
2048 : * If needed, mark the index as primary and/or deferred in pg_index.
2049 : *
2050 : * Note: When making an existing index into a constraint, caller must have
2051 : * a table lock that prevents concurrent table updates; otherwise, there
2052 : * is a risk that concurrent readers of the table will miss seeing this
2053 : * index at all.
2054 : */
2055 19084 : if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2056 4148 : (mark_as_primary || deferrable))
2057 : {
2058 : Relation pg_index;
2059 : HeapTuple indexTuple;
2060 : Form_pg_index indexForm;
2061 5380 : bool dirty = false;
2062 5380 : bool marked_as_primary = false;
2063 :
2064 5380 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
2065 :
2066 5380 : indexTuple = SearchSysCacheCopy1(INDEXRELID,
2067 : ObjectIdGetDatum(indexRelationId));
2068 5380 : if (!HeapTupleIsValid(indexTuple))
2069 0 : elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2070 5380 : indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2071 :
2072 5380 : if (mark_as_primary && !indexForm->indisprimary)
2073 : {
2074 5380 : indexForm->indisprimary = true;
2075 5380 : dirty = true;
2076 5380 : marked_as_primary = true;
2077 : }
2078 :
2079 5380 : if (deferrable && indexForm->indimmediate)
2080 : {
2081 0 : indexForm->indimmediate = false;
2082 0 : dirty = true;
2083 : }
2084 :
2085 5380 : if (dirty)
2086 : {
2087 5380 : CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2088 :
2089 : /*
2090 : * When we mark an existing index as primary, force a relcache
2091 : * flush on its parent table, so that all sessions will become
2092 : * aware that the table now has a primary key. This is important
2093 : * because it affects some replication behaviors.
2094 : */
2095 5380 : if (marked_as_primary)
2096 5380 : CacheInvalidateRelcache(heapRelation);
2097 :
2098 5380 : InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2099 : InvalidOid, is_internal);
2100 : }
2101 :
2102 5380 : heap_freetuple(indexTuple);
2103 5380 : table_close(pg_index, RowExclusiveLock);
2104 : }
2105 :
2106 19084 : return myself;
2107 : }
2108 :
2109 : /*
2110 : * index_drop
2111 : *
2112 : * NOTE: this routine should now only be called through performDeletion(),
2113 : * else associated dependencies won't be cleaned up.
2114 : *
2115 : * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2116 : * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2117 : * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2118 : * CONCURRENTLY.
2119 : */
2120 : void
2121 23050 : index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2122 : {
2123 : Oid heapId;
2124 : Relation userHeapRelation;
2125 : Relation userIndexRelation;
2126 : Relation indexRelation;
2127 : HeapTuple tuple;
2128 : bool hasexprs;
2129 : LockRelId heaprelid,
2130 : indexrelid;
2131 : LOCKTAG heaplocktag;
2132 : LOCKMODE lockmode;
2133 :
2134 : /*
2135 : * A temporary relation uses a non-concurrent DROP. Other backends can't
2136 : * access a temporary relation, so there's no harm in grabbing a stronger
2137 : * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2138 : * more efficient.
2139 : */
2140 : Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2141 : (!concurrent && !concurrent_lock_mode));
2142 :
2143 : /*
2144 : * To drop an index safely, we must grab exclusive lock on its parent
2145 : * table. Exclusive lock on the index alone is insufficient because
2146 : * another backend might be about to execute a query on the parent table.
2147 : * If it relies on a previously cached list of index OIDs, then it could
2148 : * attempt to access the just-dropped index. We must therefore take a
2149 : * table lock strong enough to prevent all queries on the table from
2150 : * proceeding until we commit and send out a shared-cache-inval notice
2151 : * that will make them update their index lists.
2152 : *
2153 : * In the concurrent case we avoid this requirement by disabling index use
2154 : * in multiple steps and waiting out any transactions that might be using
2155 : * the index, so we don't need exclusive lock on the parent table. Instead
2156 : * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2157 : * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2158 : * AccessExclusiveLock on the index below, once we're sure nobody else is
2159 : * using it.)
2160 : */
2161 23050 : heapId = IndexGetRelation(indexId, false);
2162 23050 : lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2163 23050 : userHeapRelation = table_open(heapId, lockmode);
2164 23050 : userIndexRelation = index_open(indexId, lockmode);
2165 :
2166 : /*
2167 : * We might still have open queries using it in our own session, which the
2168 : * above locking won't prevent, so test explicitly.
2169 : */
2170 23050 : CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2171 :
2172 : /*
2173 : * Drop Index Concurrently is more or less the reverse process of Create
2174 : * Index Concurrently.
2175 : *
2176 : * First we unset indisvalid so queries starting afterwards don't use the
2177 : * index to answer queries anymore. We have to keep indisready = true so
2178 : * transactions that are still scanning the index can continue to see
2179 : * valid index contents. For instance, if they are using READ COMMITTED
2180 : * mode, and another transaction makes changes and commits, they need to
2181 : * see those new tuples in the index.
2182 : *
2183 : * After all transactions that could possibly have used the index for
2184 : * queries end, we can unset indisready and indislive, then wait till
2185 : * nobody could be touching it anymore. (Note: we need indislive because
2186 : * this state must be distinct from the initial state during CREATE INDEX
2187 : * CONCURRENTLY, which has indislive true while indisready and indisvalid
2188 : * are false. That's because in that state, transactions must examine the
2189 : * index for HOT-safety decisions, while in this state we don't want them
2190 : * to open it at all.)
2191 : *
2192 : * Since all predicate locks on the index are about to be made invalid, we
2193 : * must promote them to predicate locks on the heap. In the
2194 : * non-concurrent case we can just do that now. In the concurrent case
2195 : * it's a bit trickier. The predicate locks must be moved when there are
2196 : * no index scans in progress on the index and no more can subsequently
2197 : * start, so that no new predicate locks can be made on the index. Also,
2198 : * they must be moved before heap inserts stop maintaining the index, else
2199 : * the conflict with the predicate lock on the index gap could be missed
2200 : * before the lock on the heap relation is in place to detect a conflict
2201 : * based on the heap tuple insert.
2202 : */
2203 23050 : if (concurrent)
2204 : {
2205 : /*
2206 : * We must commit our transaction in order to make the first pg_index
2207 : * state update visible to other sessions. If the DROP machinery has
2208 : * already performed any other actions (removal of other objects,
2209 : * pg_depend entries, etc), the commit would make those actions
2210 : * permanent, which would leave us with inconsistent catalog state if
2211 : * we fail partway through the following sequence. Since DROP INDEX
2212 : * CONCURRENTLY is restricted to dropping just one index that has no
2213 : * dependencies, we should get here before anything's been done ---
2214 : * but let's check that to be sure. We can verify that the current
2215 : * transaction has not executed any transactional updates by checking
2216 : * that no XID has been assigned.
2217 : */
2218 106 : if (GetTopTransactionIdIfAny() != InvalidTransactionId)
2219 0 : ereport(ERROR,
2220 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2221 : errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2222 :
2223 : /*
2224 : * Mark index invalid by updating its pg_index entry
2225 : */
2226 106 : index_set_state_flags(indexId, INDEX_DROP_CLEAR_VALID);
2227 :
2228 : /*
2229 : * Invalidate the relcache for the table, so that after this commit
2230 : * all sessions will refresh any cached plans that might reference the
2231 : * index.
2232 : */
2233 106 : CacheInvalidateRelcache(userHeapRelation);
2234 :
2235 : /* save lockrelid and locktag for below, then close but keep locks */
2236 106 : heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2237 106 : SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2238 106 : indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2239 :
2240 106 : table_close(userHeapRelation, NoLock);
2241 106 : index_close(userIndexRelation, NoLock);
2242 :
2243 : /*
2244 : * We must commit our current transaction so that the indisvalid
2245 : * update becomes visible to other transactions; then start another.
2246 : * Note that any previously-built data structures are lost in the
2247 : * commit. The only data we keep past here are the relation IDs.
2248 : *
2249 : * Before committing, get a session-level lock on the table, to ensure
2250 : * that neither it nor the index can be dropped before we finish. This
2251 : * cannot block, even if someone else is waiting for access, because
2252 : * we already have the same lock within our transaction.
2253 : */
2254 106 : LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2255 106 : LockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2256 :
2257 106 : PopActiveSnapshot();
2258 106 : CommitTransactionCommand();
2259 106 : StartTransactionCommand();
2260 :
2261 : /*
2262 : * Now we must wait until no running transaction could be using the
2263 : * index for a query. Use AccessExclusiveLock here to check for
2264 : * running transactions that hold locks of any kind on the table. Note
2265 : * we do not need to worry about xacts that open the table for reading
2266 : * after this point; they will see the index as invalid when they open
2267 : * the relation.
2268 : *
2269 : * Note: the reason we use actual lock acquisition here, rather than
2270 : * just checking the ProcArray and sleeping, is that deadlock is
2271 : * possible if one of the transactions in question is blocked trying
2272 : * to acquire an exclusive lock on our table. The lock code will
2273 : * detect deadlock and error out properly.
2274 : *
2275 : * Note: we report progress through WaitForLockers() unconditionally
2276 : * here, even though it will only be used when we're called by REINDEX
2277 : * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2278 : */
2279 106 : WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2280 :
2281 : /*
2282 : * Updating pg_index might involve TOAST table access, so ensure we
2283 : * have a valid snapshot.
2284 : */
2285 106 : PushActiveSnapshot(GetTransactionSnapshot());
2286 :
2287 : /* Finish invalidation of index and mark it as dead */
2288 106 : index_concurrently_set_dead(heapId, indexId);
2289 :
2290 106 : PopActiveSnapshot();
2291 :
2292 : /*
2293 : * Again, commit the transaction to make the pg_index update visible
2294 : * to other sessions.
2295 : */
2296 106 : CommitTransactionCommand();
2297 106 : StartTransactionCommand();
2298 :
2299 : /*
2300 : * Wait till every transaction that saw the old index state has
2301 : * finished. See above about progress reporting.
2302 : */
2303 106 : WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2304 :
2305 : /*
2306 : * Re-open relations to allow us to complete our actions.
2307 : *
2308 : * At this point, nothing should be accessing the index, but lets
2309 : * leave nothing to chance and grab AccessExclusiveLock on the index
2310 : * before the physical deletion.
2311 : */
2312 106 : userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2313 106 : userIndexRelation = index_open(indexId, AccessExclusiveLock);
2314 : }
2315 : else
2316 : {
2317 : /* Not concurrent, so just transfer predicate locks and we're good */
2318 22944 : TransferPredicateLocksToHeapRelation(userIndexRelation);
2319 : }
2320 :
2321 : /*
2322 : * Schedule physical removal of the files (if any)
2323 : */
2324 23050 : if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2325 21438 : RelationDropStorage(userIndexRelation);
2326 :
2327 : /* ensure that stats are dropped if transaction commits */
2328 23050 : pgstat_drop_relation(userIndexRelation);
2329 :
2330 : /*
2331 : * Close and flush the index's relcache entry, to ensure relcache doesn't
2332 : * try to rebuild it while we're deleting catalog entries. We keep the
2333 : * lock though.
2334 : */
2335 23050 : index_close(userIndexRelation, NoLock);
2336 :
2337 23050 : RelationForgetRelation(indexId);
2338 :
2339 : /*
2340 : * Updating pg_index might involve TOAST table access, so ensure we have a
2341 : * valid snapshot.
2342 : */
2343 23050 : PushActiveSnapshot(GetTransactionSnapshot());
2344 :
2345 : /*
2346 : * fix INDEX relation, and check for expressional index
2347 : */
2348 23050 : indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2349 :
2350 23050 : tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2351 23050 : if (!HeapTupleIsValid(tuple))
2352 0 : elog(ERROR, "cache lookup failed for index %u", indexId);
2353 :
2354 23050 : hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2355 23050 : RelationGetDescr(indexRelation));
2356 :
2357 23050 : CatalogTupleDelete(indexRelation, &tuple->t_self);
2358 :
2359 23050 : ReleaseSysCache(tuple);
2360 23050 : table_close(indexRelation, RowExclusiveLock);
2361 :
2362 23050 : PopActiveSnapshot();
2363 :
2364 : /*
2365 : * if it has any expression columns, we might have stored statistics about
2366 : * them.
2367 : */
2368 23050 : if (hasexprs)
2369 742 : RemoveStatistics(indexId, 0);
2370 :
2371 : /*
2372 : * fix ATTRIBUTE relation
2373 : */
2374 23050 : DeleteAttributeTuples(indexId);
2375 :
2376 : /*
2377 : * fix RELATION relation
2378 : */
2379 23050 : DeleteRelationTuple(indexId);
2380 :
2381 : /*
2382 : * fix INHERITS relation
2383 : */
2384 23050 : DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2385 :
2386 : /*
2387 : * We are presently too lazy to attempt to compute the new correct value
2388 : * of relhasindex (the next VACUUM will fix it if necessary). So there is
2389 : * no need to update the pg_class tuple for the owning relation. But we
2390 : * must send out a shared-cache-inval notice on the owning relation to
2391 : * ensure other backends update their relcache lists of indexes. (In the
2392 : * concurrent case, this is redundant but harmless.)
2393 : */
2394 23050 : CacheInvalidateRelcache(userHeapRelation);
2395 :
2396 : /*
2397 : * Close owning rel, but keep lock
2398 : */
2399 23050 : table_close(userHeapRelation, NoLock);
2400 :
2401 : /*
2402 : * Release the session locks before we go.
2403 : */
2404 23050 : if (concurrent)
2405 : {
2406 106 : UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2407 106 : UnlockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2408 : }
2409 23050 : }
2410 :
2411 : /* ----------------------------------------------------------------
2412 : * index_build support
2413 : * ----------------------------------------------------------------
2414 : */
2415 :
2416 : /* ----------------
2417 : * BuildIndexInfo
2418 : * Construct an IndexInfo record for an open index
2419 : *
2420 : * IndexInfo stores the information about the index that's needed by
2421 : * FormIndexDatum, which is used for both index_build() and later insertion
2422 : * of individual index tuples. Normally we build an IndexInfo for an index
2423 : * just once per command, and then use it for (potentially) many tuples.
2424 : * ----------------
2425 : */
2426 : IndexInfo *
2427 3204144 : BuildIndexInfo(Relation index)
2428 : {
2429 : IndexInfo *ii;
2430 3204144 : Form_pg_index indexStruct = index->rd_index;
2431 : int i;
2432 : int numAtts;
2433 :
2434 : /* check the number of keys, and copy attr numbers into the IndexInfo */
2435 3204144 : numAtts = indexStruct->indnatts;
2436 3204144 : if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2437 0 : elog(ERROR, "invalid indnatts %d for index %u",
2438 : numAtts, RelationGetRelid(index));
2439 :
2440 : /*
2441 : * Create the node, fetching any expressions needed for expressional
2442 : * indexes and index predicate if any.
2443 : */
2444 3204144 : ii = makeIndexInfo(indexStruct->indnatts,
2445 3204144 : indexStruct->indnkeyatts,
2446 3204144 : index->rd_rel->relam,
2447 : RelationGetIndexExpressions(index),
2448 : RelationGetIndexPredicate(index),
2449 3204144 : indexStruct->indisunique,
2450 3204144 : indexStruct->indnullsnotdistinct,
2451 3204144 : indexStruct->indisready,
2452 : false,
2453 3204144 : index->rd_indam->amsummarizing,
2454 3204144 : indexStruct->indisexclusion && indexStruct->indisunique);
2455 :
2456 : /* fill in attribute numbers */
2457 9712558 : for (i = 0; i < numAtts; i++)
2458 6508414 : ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2459 :
2460 : /* fetch exclusion constraint info if any */
2461 3204144 : if (indexStruct->indisexclusion)
2462 : {
2463 2454 : RelationGetExclusionInfo(index,
2464 : &ii->ii_ExclusionOps,
2465 : &ii->ii_ExclusionProcs,
2466 : &ii->ii_ExclusionStrats);
2467 : }
2468 :
2469 3204144 : return ii;
2470 : }
2471 :
2472 : /* ----------------
2473 : * BuildDummyIndexInfo
2474 : * Construct a dummy IndexInfo record for an open index
2475 : *
2476 : * This differs from the real BuildIndexInfo in that it will never run any
2477 : * user-defined code that might exist in index expressions or predicates.
2478 : * Instead of the real index expressions, we return null constants that have
2479 : * the right types/typmods/collations. Predicates and exclusion clauses are
2480 : * just ignored. This is sufficient for the purpose of truncating an index,
2481 : * since we will not need to actually evaluate the expressions or predicates;
2482 : * the only thing that's likely to be done with the data is construction of
2483 : * a tupdesc describing the index's rowtype.
2484 : * ----------------
2485 : */
2486 : IndexInfo *
2487 204 : BuildDummyIndexInfo(Relation index)
2488 : {
2489 : IndexInfo *ii;
2490 204 : Form_pg_index indexStruct = index->rd_index;
2491 : int i;
2492 : int numAtts;
2493 :
2494 : /* check the number of keys, and copy attr numbers into the IndexInfo */
2495 204 : numAtts = indexStruct->indnatts;
2496 204 : if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2497 0 : elog(ERROR, "invalid indnatts %d for index %u",
2498 : numAtts, RelationGetRelid(index));
2499 :
2500 : /*
2501 : * Create the node, using dummy index expressions, and pretending there is
2502 : * no predicate.
2503 : */
2504 408 : ii = makeIndexInfo(indexStruct->indnatts,
2505 204 : indexStruct->indnkeyatts,
2506 204 : index->rd_rel->relam,
2507 : RelationGetDummyIndexExpressions(index),
2508 : NIL,
2509 204 : indexStruct->indisunique,
2510 204 : indexStruct->indnullsnotdistinct,
2511 204 : indexStruct->indisready,
2512 : false,
2513 204 : index->rd_indam->amsummarizing,
2514 204 : indexStruct->indisexclusion && indexStruct->indisunique);
2515 :
2516 : /* fill in attribute numbers */
2517 530 : for (i = 0; i < numAtts; i++)
2518 326 : ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2519 :
2520 : /* We ignore the exclusion constraint if any */
2521 :
2522 204 : return ii;
2523 : }
2524 :
2525 : /*
2526 : * CompareIndexInfo
2527 : * Return whether the properties of two indexes (in different tables)
2528 : * indicate that they have the "same" definitions.
2529 : *
2530 : * Note: passing collations and opfamilies separately is a kludge. Adding
2531 : * them to IndexInfo may result in better coding here and elsewhere.
2532 : *
2533 : * Use build_attrmap_by_name(index2, index1) to build the attmap.
2534 : */
2535 : bool
2536 690 : CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2,
2537 : const Oid *collations1, const Oid *collations2,
2538 : const Oid *opfamilies1, const Oid *opfamilies2,
2539 : const AttrMap *attmap)
2540 : {
2541 : int i;
2542 :
2543 690 : if (info1->ii_Unique != info2->ii_Unique)
2544 0 : return false;
2545 :
2546 690 : if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2547 0 : return false;
2548 :
2549 : /* indexes are only equivalent if they have the same access method */
2550 690 : if (info1->ii_Am != info2->ii_Am)
2551 12 : return false;
2552 :
2553 : /* and same number of attributes */
2554 678 : if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2555 24 : return false;
2556 :
2557 : /* and same number of key attributes */
2558 654 : if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2559 0 : return false;
2560 :
2561 : /*
2562 : * and columns match through the attribute map (actual attribute numbers
2563 : * might differ!) Note that this checks that index columns that are
2564 : * expressions appear in the same positions. We will next compare the
2565 : * expressions themselves.
2566 : */
2567 1354 : for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2568 : {
2569 742 : if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2570 0 : elog(ERROR, "incorrect attribute map");
2571 :
2572 : /* ignore expressions for now (but check their collation/opfamily) */
2573 742 : if (!(info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber &&
2574 48 : info2->ii_IndexAttrNumbers[i] == InvalidAttrNumber))
2575 : {
2576 : /* fail if just one index has an expression in this column */
2577 700 : if (info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber ||
2578 694 : info2->ii_IndexAttrNumbers[i] == InvalidAttrNumber)
2579 6 : return false;
2580 :
2581 : /* both are columns, so check for match after mapping */
2582 694 : if (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2583 694 : info1->ii_IndexAttrNumbers[i])
2584 12 : return false;
2585 : }
2586 :
2587 : /* collation and opfamily are not valid for included columns */
2588 724 : if (i >= info1->ii_NumIndexKeyAttrs)
2589 14 : continue;
2590 :
2591 710 : if (collations1[i] != collations2[i])
2592 12 : return false;
2593 698 : if (opfamilies1[i] != opfamilies2[i])
2594 12 : return false;
2595 : }
2596 :
2597 : /*
2598 : * For expression indexes: either both are expression indexes, or neither
2599 : * is; if they are, make sure the expressions match.
2600 : */
2601 612 : if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2602 0 : return false;
2603 612 : if (info1->ii_Expressions != NIL)
2604 : {
2605 : bool found_whole_row;
2606 : Node *mapped;
2607 :
2608 42 : mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2609 : 1, 0, attmap,
2610 : InvalidOid, &found_whole_row);
2611 42 : if (found_whole_row)
2612 : {
2613 : /*
2614 : * we could throw an error here, but seems out of scope for this
2615 : * routine.
2616 : */
2617 6 : return false;
2618 : }
2619 :
2620 42 : if (!equal(info1->ii_Expressions, mapped))
2621 6 : return false;
2622 : }
2623 :
2624 : /* Partial index predicates must be identical, if they exist */
2625 606 : if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2626 12 : return false;
2627 594 : if (info1->ii_Predicate != NULL)
2628 : {
2629 : bool found_whole_row;
2630 : Node *mapped;
2631 :
2632 24 : mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2633 : 1, 0, attmap,
2634 : InvalidOid, &found_whole_row);
2635 24 : if (found_whole_row)
2636 : {
2637 : /*
2638 : * we could throw an error here, but seems out of scope for this
2639 : * routine.
2640 : */
2641 6 : return false;
2642 : }
2643 24 : if (!equal(info1->ii_Predicate, mapped))
2644 6 : return false;
2645 : }
2646 :
2647 : /* No support currently for comparing exclusion indexes. */
2648 588 : if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2649 0 : return false;
2650 :
2651 588 : return true;
2652 : }
2653 :
2654 : /* ----------------
2655 : * BuildSpeculativeIndexInfo
2656 : * Add extra state to IndexInfo record
2657 : *
2658 : * For unique indexes, we usually don't want to add info to the IndexInfo for
2659 : * checking uniqueness, since the B-Tree AM handles that directly. However, in
2660 : * the case of speculative insertion and conflict detection in logical
2661 : * replication, additional support is required.
2662 : *
2663 : * Do this processing here rather than in BuildIndexInfo() to not incur the
2664 : * overhead in the common non-speculative cases.
2665 : * ----------------
2666 : */
2667 : void
2668 176800 : BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
2669 : {
2670 : int indnkeyatts;
2671 : int i;
2672 :
2673 176800 : indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2674 :
2675 : /*
2676 : * fetch info for checking unique indexes
2677 : */
2678 : Assert(ii->ii_Unique);
2679 :
2680 176800 : if (index->rd_rel->relam != BTREE_AM_OID)
2681 0 : elog(ERROR, "unexpected non-btree speculative unique index");
2682 :
2683 176800 : ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2684 176800 : ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2685 176800 : ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2686 :
2687 : /*
2688 : * We have to look up the operator's strategy number. This provides a
2689 : * cross-check that the operator does match the index.
2690 : */
2691 : /* We need the func OIDs and strategy numbers too */
2692 353688 : for (i = 0; i < indnkeyatts; i++)
2693 : {
2694 176888 : ii->ii_UniqueStrats[i] = BTEqualStrategyNumber;
2695 353776 : ii->ii_UniqueOps[i] =
2696 176888 : get_opfamily_member(index->rd_opfamily[i],
2697 176888 : index->rd_opcintype[i],
2698 176888 : index->rd_opcintype[i],
2699 176888 : ii->ii_UniqueStrats[i]);
2700 176888 : if (!OidIsValid(ii->ii_UniqueOps[i]))
2701 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2702 : ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2703 : index->rd_opcintype[i], index->rd_opfamily[i]);
2704 176888 : ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2705 : }
2706 176800 : }
2707 :
2708 : /* ----------------
2709 : * FormIndexDatum
2710 : * Construct values[] and isnull[] arrays for a new index tuple.
2711 : *
2712 : * indexInfo Info about the index
2713 : * slot Heap tuple for which we must prepare an index entry
2714 : * estate executor state for evaluating any index expressions
2715 : * values Array of index Datums (output area)
2716 : * isnull Array of is-null indicators (output area)
2717 : *
2718 : * When there are no index expressions, estate may be NULL. Otherwise it
2719 : * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2720 : * context must point to the heap tuple passed in.
2721 : *
2722 : * Notice we don't actually call index_form_tuple() here; we just prepare
2723 : * its input arrays values[] and isnull[]. This is because the index AM
2724 : * may wish to alter the data before storage.
2725 : * ----------------
2726 : */
2727 : void
2728 25344264 : FormIndexDatum(IndexInfo *indexInfo,
2729 : TupleTableSlot *slot,
2730 : EState *estate,
2731 : Datum *values,
2732 : bool *isnull)
2733 : {
2734 : ListCell *indexpr_item;
2735 : int i;
2736 :
2737 25344264 : if (indexInfo->ii_Expressions != NIL &&
2738 491602 : indexInfo->ii_ExpressionsState == NIL)
2739 : {
2740 : /* First time through, set up expression evaluation state */
2741 760 : indexInfo->ii_ExpressionsState =
2742 760 : ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2743 : /* Check caller has set up context correctly */
2744 : Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2745 : }
2746 25344264 : indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2747 :
2748 64580860 : for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2749 : {
2750 39236614 : int keycol = indexInfo->ii_IndexAttrNumbers[i];
2751 : Datum iDatum;
2752 : bool isNull;
2753 :
2754 39236614 : if (keycol < 0)
2755 0 : iDatum = slot_getsysattr(slot, keycol, &isNull);
2756 39236614 : else if (keycol != 0)
2757 : {
2758 : /*
2759 : * Plain index column; get the value we need directly from the
2760 : * heap tuple.
2761 : */
2762 38744958 : iDatum = slot_getattr(slot, keycol, &isNull);
2763 : }
2764 : else
2765 : {
2766 : /*
2767 : * Index expression --- need to evaluate it.
2768 : */
2769 491656 : if (indexpr_item == NULL)
2770 0 : elog(ERROR, "wrong number of index expressions");
2771 491656 : iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2772 491656 : GetPerTupleExprContext(estate),
2773 : &isNull);
2774 491638 : indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2775 : }
2776 39236596 : values[i] = iDatum;
2777 39236596 : isnull[i] = isNull;
2778 : }
2779 :
2780 25344246 : if (indexpr_item != NULL)
2781 0 : elog(ERROR, "wrong number of index expressions");
2782 25344246 : }
2783 :
2784 :
2785 : /*
2786 : * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2787 : *
2788 : * This routine updates the pg_class row of either an index or its parent
2789 : * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2790 : * to ensure we can do all the necessary work in just one update.
2791 : *
2792 : * hasindex: set relhasindex to this value
2793 : * reltuples: if >= 0, set reltuples to this value; else no change
2794 : *
2795 : * If reltuples >= 0, relpages and relallvisible are also updated (using
2796 : * RelationGetNumberOfBlocks() and visibilitymap_count()).
2797 : *
2798 : * NOTE: an important side-effect of this operation is that an SI invalidation
2799 : * message is sent out to all backends --- including me --- causing relcache
2800 : * entries to be flushed or updated with the new data. This must happen even
2801 : * if we find that no change is needed in the pg_class row. When updating
2802 : * a heap entry, this ensures that other backends find out about the new
2803 : * index. When updating an index, it's important because some index AMs
2804 : * expect a relcache flush to occur after REINDEX.
2805 : */
2806 : static void
2807 103928 : index_update_stats(Relation rel,
2808 : bool hasindex,
2809 : double reltuples)
2810 : {
2811 : bool update_stats;
2812 103928 : BlockNumber relpages = 0; /* keep compiler quiet */
2813 103928 : BlockNumber relallvisible = 0;
2814 103928 : Oid relid = RelationGetRelid(rel);
2815 : Relation pg_class;
2816 : ScanKeyData key[1];
2817 : HeapTuple tuple;
2818 : void *state;
2819 : Form_pg_class rd_rel;
2820 : bool dirty;
2821 :
2822 : /*
2823 : * As a special hack, if we are dealing with an empty table and the
2824 : * existing reltuples is -1, we leave that alone. This ensures that
2825 : * creating an index as part of CREATE TABLE doesn't cause the table to
2826 : * prematurely look like it's been vacuumed. The rd_rel we modify may
2827 : * differ from rel->rd_rel due to e.g. commit of concurrent GRANT, but the
2828 : * commands that change reltuples take locks conflicting with ours. (Even
2829 : * if a command changed reltuples under a weaker lock, this affects only
2830 : * statistics for an empty table.)
2831 : */
2832 103928 : if (reltuples == 0 && rel->rd_rel->reltuples < 0)
2833 42876 : reltuples = -1;
2834 :
2835 : /*
2836 : * Don't update statistics during binary upgrade, because the indexes are
2837 : * created before the data is moved into place.
2838 : */
2839 103928 : update_stats = reltuples >= 0 && !IsBinaryUpgrade;
2840 :
2841 : /*
2842 : * Finish I/O and visibility map buffer locks before
2843 : * systable_inplace_update_begin() locks the pg_class buffer. The rd_rel
2844 : * we modify may differ from rel->rd_rel due to e.g. commit of concurrent
2845 : * GRANT, but no command changes a relkind from non-index to index. (Even
2846 : * if one did, relallvisible doesn't break functionality.)
2847 : */
2848 103928 : if (update_stats)
2849 : {
2850 57064 : relpages = RelationGetNumberOfBlocks(rel);
2851 :
2852 57064 : if (rel->rd_rel->relkind != RELKIND_INDEX)
2853 12568 : visibilitymap_count(rel, &relallvisible, NULL);
2854 : }
2855 :
2856 : /*
2857 : * We always update the pg_class row using a non-transactional,
2858 : * overwrite-in-place update. There are several reasons for this:
2859 : *
2860 : * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2861 : *
2862 : * 2. We could be reindexing pg_class itself, in which case we can't move
2863 : * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2864 : * not know about all the indexes yet (see reindex_relation).
2865 : *
2866 : * 3. Because we execute CREATE INDEX with just share lock on the parent
2867 : * rel (to allow concurrent index creations), an ordinary update could
2868 : * suffer a tuple-concurrently-updated failure against another CREATE
2869 : * INDEX committing at about the same time. We can avoid that by having
2870 : * them both do nontransactional updates (we assume they will both be
2871 : * trying to change the pg_class row to the same thing, so it doesn't
2872 : * matter which goes first).
2873 : *
2874 : * It is safe to use a non-transactional update even though our
2875 : * transaction could still fail before committing. Setting relhasindex
2876 : * true is safe even if there are no indexes (VACUUM will eventually fix
2877 : * it). And of course the new relpages and reltuples counts are correct
2878 : * regardless. However, we don't want to change relpages (or
2879 : * relallvisible) if the caller isn't providing an updated reltuples
2880 : * count, because that would bollix the reltuples/relpages ratio which is
2881 : * what's really important.
2882 : */
2883 :
2884 103928 : pg_class = table_open(RelationRelationId, RowExclusiveLock);
2885 :
2886 103928 : ScanKeyInit(&key[0],
2887 : Anum_pg_class_oid,
2888 : BTEqualStrategyNumber, F_OIDEQ,
2889 : ObjectIdGetDatum(relid));
2890 103928 : systable_inplace_update_begin(pg_class, ClassOidIndexId, true, NULL,
2891 : 1, key, &tuple, &state);
2892 :
2893 103928 : if (!HeapTupleIsValid(tuple))
2894 0 : elog(ERROR, "could not find tuple for relation %u", relid);
2895 103928 : rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2896 :
2897 : /* Should this be a more comprehensive test? */
2898 : Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2899 :
2900 : /* Apply required updates, if any, to copied tuple */
2901 :
2902 103928 : dirty = false;
2903 103928 : if (rd_rel->relhasindex != hasindex)
2904 : {
2905 35644 : rd_rel->relhasindex = hasindex;
2906 35644 : dirty = true;
2907 : }
2908 :
2909 103928 : if (update_stats)
2910 : {
2911 57064 : if (rd_rel->relpages != (int32) relpages)
2912 : {
2913 48154 : rd_rel->relpages = (int32) relpages;
2914 48154 : dirty = true;
2915 : }
2916 57064 : if (rd_rel->reltuples != (float4) reltuples)
2917 : {
2918 15434 : rd_rel->reltuples = (float4) reltuples;
2919 15434 : dirty = true;
2920 : }
2921 57064 : if (rd_rel->relallvisible != (int32) relallvisible)
2922 : {
2923 120 : rd_rel->relallvisible = (int32) relallvisible;
2924 120 : dirty = true;
2925 : }
2926 : }
2927 :
2928 : /*
2929 : * If anything changed, write out the tuple
2930 : */
2931 103928 : if (dirty)
2932 : {
2933 80268 : systable_inplace_update_finish(state, tuple);
2934 : /* the above sends transactional and immediate cache inval messages */
2935 : }
2936 : else
2937 : {
2938 23660 : systable_inplace_update_cancel(state);
2939 :
2940 : /*
2941 : * While we didn't change relhasindex, CREATE INDEX needs a
2942 : * transactional inval for when the new index's catalog rows become
2943 : * visible. Other CREATE INDEX and REINDEX code happens to also queue
2944 : * this inval, but keep this in case rare callers rely on this part of
2945 : * our API contract.
2946 : */
2947 23660 : CacheInvalidateRelcacheByTuple(tuple);
2948 : }
2949 :
2950 103928 : heap_freetuple(tuple);
2951 :
2952 103928 : table_close(pg_class, RowExclusiveLock);
2953 103928 : }
2954 :
2955 :
2956 : /*
2957 : * index_build - invoke access-method-specific index build procedure
2958 : *
2959 : * On entry, the index's catalog entries are valid, and its physical disk
2960 : * file has been created but is empty. We call the AM-specific build
2961 : * procedure to fill in the index contents. We then update the pg_class
2962 : * entries of the index and heap relation as needed, using statistics
2963 : * returned by ambuild as well as data passed by the caller.
2964 : *
2965 : * isreindex indicates we are recreating a previously-existing index.
2966 : * parallel indicates if parallelism may be useful.
2967 : *
2968 : * Note: before Postgres 8.2, the passed-in heap and index Relations
2969 : * were automatically closed by this routine. This is no longer the case.
2970 : * The caller opened 'em, and the caller should close 'em.
2971 : */
2972 : void
2973 50562 : index_build(Relation heapRelation,
2974 : Relation indexRelation,
2975 : IndexInfo *indexInfo,
2976 : bool isreindex,
2977 : bool parallel)
2978 : {
2979 : IndexBuildResult *stats;
2980 : Oid save_userid;
2981 : int save_sec_context;
2982 : int save_nestlevel;
2983 :
2984 : /*
2985 : * sanity checks
2986 : */
2987 : Assert(RelationIsValid(indexRelation));
2988 : Assert(PointerIsValid(indexRelation->rd_indam));
2989 : Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2990 : Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2991 :
2992 : /*
2993 : * Determine worker process details for parallel CREATE INDEX. Currently,
2994 : * only btree and BRIN have support for parallel builds.
2995 : *
2996 : * Note that planner considers parallel safety for us.
2997 : */
2998 50562 : if (parallel && IsNormalProcessingMode() &&
2999 35958 : indexRelation->rd_indam->amcanbuildparallel)
3000 33506 : indexInfo->ii_ParallelWorkers =
3001 33506 : plan_create_index_workers(RelationGetRelid(heapRelation),
3002 : RelationGetRelid(indexRelation));
3003 :
3004 50562 : if (indexInfo->ii_ParallelWorkers == 0)
3005 50404 : ereport(DEBUG1,
3006 : (errmsg_internal("building index \"%s\" on table \"%s\" serially",
3007 : RelationGetRelationName(indexRelation),
3008 : RelationGetRelationName(heapRelation))));
3009 : else
3010 158 : ereport(DEBUG1,
3011 : (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
3012 : RelationGetRelationName(indexRelation),
3013 : RelationGetRelationName(heapRelation),
3014 : indexInfo->ii_ParallelWorkers)));
3015 :
3016 : /*
3017 : * Switch to the table owner's userid, so that any index functions are run
3018 : * as that user. Also lock down security-restricted operations and
3019 : * arrange to make GUC variable changes local to this command.
3020 : */
3021 50562 : GetUserIdAndSecContext(&save_userid, &save_sec_context);
3022 50562 : SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3023 : save_sec_context | SECURITY_RESTRICTED_OPERATION);
3024 50562 : save_nestlevel = NewGUCNestLevel();
3025 50562 : RestrictSearchPath();
3026 :
3027 : /* Set up initial progress report status */
3028 : {
3029 50562 : const int progress_index[] = {
3030 : PROGRESS_CREATEIDX_PHASE,
3031 : PROGRESS_CREATEIDX_SUBPHASE,
3032 : PROGRESS_CREATEIDX_TUPLES_DONE,
3033 : PROGRESS_CREATEIDX_TUPLES_TOTAL,
3034 : PROGRESS_SCAN_BLOCKS_DONE,
3035 : PROGRESS_SCAN_BLOCKS_TOTAL
3036 : };
3037 50562 : const int64 progress_vals[] = {
3038 : PROGRESS_CREATEIDX_PHASE_BUILD,
3039 : PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE,
3040 : 0, 0, 0, 0
3041 : };
3042 :
3043 50562 : pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3044 : }
3045 :
3046 : /*
3047 : * Call the access method's build procedure
3048 : */
3049 50562 : stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3050 : indexInfo);
3051 : Assert(PointerIsValid(stats));
3052 :
3053 : /*
3054 : * If this is an unlogged index, we may need to write out an init fork for
3055 : * it -- but we must first check whether one already exists. If, for
3056 : * example, an unlogged relation is truncated in the transaction that
3057 : * created it, or truncated twice in a subsequent transaction, the
3058 : * relfilenumber won't change, and nothing needs to be done here.
3059 : */
3060 50466 : if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3061 186 : !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3062 : {
3063 186 : smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3064 186 : log_smgrcreate(&indexRelation->rd_locator, INIT_FORKNUM);
3065 186 : indexRelation->rd_indam->ambuildempty(indexRelation);
3066 : }
3067 :
3068 : /*
3069 : * If we found any potentially broken HOT chains, mark the index as not
3070 : * being usable until the current transaction is below the event horizon.
3071 : * See src/backend/access/heap/README.HOT for discussion. While it might
3072 : * become safe to use the index earlier based on actual cleanup activity
3073 : * and other active transactions, the test for that would be much more
3074 : * complex and would require some form of blocking, so keep it simple and
3075 : * fast by just using the current transaction.
3076 : *
3077 : * However, when reindexing an existing index, we should do nothing here.
3078 : * Any HOT chains that are broken with respect to the index must predate
3079 : * the index's original creation, so there is no need to change the
3080 : * index's usability horizon. Moreover, we *must not* try to change the
3081 : * index's pg_index entry while reindexing pg_index itself, and this
3082 : * optimization nicely prevents that. The more complex rules needed for a
3083 : * reindex are handled separately after this function returns.
3084 : *
3085 : * We also need not set indcheckxmin during a concurrent index build,
3086 : * because we won't set indisvalid true until all transactions that care
3087 : * about the broken HOT chains are gone.
3088 : *
3089 : * Therefore, this code path can only be taken during non-concurrent
3090 : * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3091 : * tuple's xmin doesn't matter, because that tuple was created in the
3092 : * current transaction anyway. That also means we don't need to worry
3093 : * about any concurrent readers of the tuple; no other transaction can see
3094 : * it yet.
3095 : */
3096 50466 : if (indexInfo->ii_BrokenHotChain &&
3097 30 : !isreindex &&
3098 20 : !indexInfo->ii_Concurrent)
3099 : {
3100 20 : Oid indexId = RelationGetRelid(indexRelation);
3101 : Relation pg_index;
3102 : HeapTuple indexTuple;
3103 : Form_pg_index indexForm;
3104 :
3105 20 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
3106 :
3107 20 : indexTuple = SearchSysCacheCopy1(INDEXRELID,
3108 : ObjectIdGetDatum(indexId));
3109 20 : if (!HeapTupleIsValid(indexTuple))
3110 0 : elog(ERROR, "cache lookup failed for index %u", indexId);
3111 20 : indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3112 :
3113 : /* If it's a new index, indcheckxmin shouldn't be set ... */
3114 : Assert(!indexForm->indcheckxmin);
3115 :
3116 20 : indexForm->indcheckxmin = true;
3117 20 : CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3118 :
3119 20 : heap_freetuple(indexTuple);
3120 20 : table_close(pg_index, RowExclusiveLock);
3121 : }
3122 :
3123 : /*
3124 : * Update heap and index pg_class rows
3125 : */
3126 50466 : index_update_stats(heapRelation,
3127 : true,
3128 : stats->heap_tuples);
3129 :
3130 50466 : index_update_stats(indexRelation,
3131 : false,
3132 : stats->index_tuples);
3133 :
3134 : /* Make the updated catalog row versions visible */
3135 50466 : CommandCounterIncrement();
3136 :
3137 : /*
3138 : * If it's for an exclusion constraint, make a second pass over the heap
3139 : * to verify that the constraint is satisfied. We must not do this until
3140 : * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3141 : * see comments for IndexCheckExclusion.)
3142 : */
3143 50466 : if (indexInfo->ii_ExclusionOps != NULL)
3144 734 : IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3145 :
3146 : /* Roll back any GUC changes executed by index functions */
3147 50406 : AtEOXact_GUC(false, save_nestlevel);
3148 :
3149 : /* Restore userid and security context */
3150 50406 : SetUserIdAndSecContext(save_userid, save_sec_context);
3151 50406 : }
3152 :
3153 : /*
3154 : * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3155 : *
3156 : * When creating an exclusion constraint, we first build the index normally
3157 : * and then rescan the heap to check for conflicts. We assume that we only
3158 : * need to validate tuples that are live according to an up-to-date snapshot,
3159 : * and that these were correctly indexed even in the presence of broken HOT
3160 : * chains. This should be OK since we are holding at least ShareLock on the
3161 : * table, meaning there can be no uncommitted updates from other transactions.
3162 : * (Note: that wouldn't necessarily work for system catalogs, since many
3163 : * operations release write lock early on the system catalogs.)
3164 : */
3165 : static void
3166 734 : IndexCheckExclusion(Relation heapRelation,
3167 : Relation indexRelation,
3168 : IndexInfo *indexInfo)
3169 : {
3170 : TableScanDesc scan;
3171 : Datum values[INDEX_MAX_KEYS];
3172 : bool isnull[INDEX_MAX_KEYS];
3173 : ExprState *predicate;
3174 : TupleTableSlot *slot;
3175 : EState *estate;
3176 : ExprContext *econtext;
3177 : Snapshot snapshot;
3178 :
3179 : /*
3180 : * If we are reindexing the target index, mark it as no longer being
3181 : * reindexed, to forestall an Assert in index_beginscan when we try to use
3182 : * the index for probes. This is OK because the index is now fully valid.
3183 : */
3184 734 : if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation)))
3185 78 : ResetReindexProcessing();
3186 :
3187 : /*
3188 : * Need an EState for evaluation of index expressions and partial-index
3189 : * predicates. Also a slot to hold the current tuple.
3190 : */
3191 734 : estate = CreateExecutorState();
3192 734 : econtext = GetPerTupleExprContext(estate);
3193 734 : slot = table_slot_create(heapRelation, NULL);
3194 :
3195 : /* Arrange for econtext's scan tuple to be the tuple under test */
3196 734 : econtext->ecxt_scantuple = slot;
3197 :
3198 : /* Set up execution state for predicate, if any. */
3199 734 : predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3200 :
3201 : /*
3202 : * Scan all live tuples in the base relation.
3203 : */
3204 734 : snapshot = RegisterSnapshot(GetLatestSnapshot());
3205 734 : scan = table_beginscan_strat(heapRelation, /* relation */
3206 : snapshot, /* snapshot */
3207 : 0, /* number of keys */
3208 : NULL, /* scan key */
3209 : true, /* buffer access strategy OK */
3210 : true); /* syncscan OK */
3211 :
3212 1140 : while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3213 : {
3214 466 : CHECK_FOR_INTERRUPTS();
3215 :
3216 : /*
3217 : * In a partial index, ignore tuples that don't satisfy the predicate.
3218 : */
3219 466 : if (predicate != NULL)
3220 : {
3221 34 : if (!ExecQual(predicate, econtext))
3222 12 : continue;
3223 : }
3224 :
3225 : /*
3226 : * Extract index column values, including computing expressions.
3227 : */
3228 454 : FormIndexDatum(indexInfo,
3229 : slot,
3230 : estate,
3231 : values,
3232 : isnull);
3233 :
3234 : /*
3235 : * Check that this tuple has no conflicts.
3236 : */
3237 454 : check_exclusion_constraint(heapRelation,
3238 : indexRelation, indexInfo,
3239 : &(slot->tts_tid), values, isnull,
3240 : estate, true);
3241 :
3242 394 : MemoryContextReset(econtext->ecxt_per_tuple_memory);
3243 : }
3244 :
3245 674 : table_endscan(scan);
3246 674 : UnregisterSnapshot(snapshot);
3247 :
3248 674 : ExecDropSingleTupleTableSlot(slot);
3249 :
3250 674 : FreeExecutorState(estate);
3251 :
3252 : /* These may have been pointing to the now-gone estate */
3253 674 : indexInfo->ii_ExpressionsState = NIL;
3254 674 : indexInfo->ii_PredicateState = NULL;
3255 674 : }
3256 :
3257 : /*
3258 : * validate_index - support code for concurrent index builds
3259 : *
3260 : * We do a concurrent index build by first inserting the catalog entry for the
3261 : * index via index_create(), marking it not indisready and not indisvalid.
3262 : * Then we commit our transaction and start a new one, then we wait for all
3263 : * transactions that could have been modifying the table to terminate. Now
3264 : * we know that any subsequently-started transactions will see the index and
3265 : * honor its constraints on HOT updates; so while existing HOT-chains might
3266 : * be broken with respect to the index, no currently live tuple will have an
3267 : * incompatible HOT update done to it. We now build the index normally via
3268 : * index_build(), while holding a weak lock that allows concurrent
3269 : * insert/update/delete. Also, we index only tuples that are valid
3270 : * as of the start of the scan (see table_index_build_scan), whereas a normal
3271 : * build takes care to include recently-dead tuples. This is OK because
3272 : * we won't mark the index valid until all transactions that might be able
3273 : * to see those tuples are gone. The reason for doing that is to avoid
3274 : * bogus unique-index failures due to concurrent UPDATEs (we might see
3275 : * different versions of the same row as being valid when we pass over them,
3276 : * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3277 : * does not contain any tuples added to the table while we built the index.
3278 : *
3279 : * Next, we mark the index "indisready" (but still not "indisvalid") and
3280 : * commit the second transaction and start a third. Again we wait for all
3281 : * transactions that could have been modifying the table to terminate. Now
3282 : * we know that any subsequently-started transactions will see the index and
3283 : * insert their new tuples into it. We then take a new reference snapshot
3284 : * which is passed to validate_index(). Any tuples that are valid according
3285 : * to this snap, but are not in the index, must be added to the index.
3286 : * (Any tuples committed live after the snap will be inserted into the
3287 : * index by their originating transaction. Any tuples committed dead before
3288 : * the snap need not be indexed, because we will wait out all transactions
3289 : * that might care about them before we mark the index valid.)
3290 : *
3291 : * validate_index() works by first gathering all the TIDs currently in the
3292 : * index, using a bulkdelete callback that just stores the TIDs and doesn't
3293 : * ever say "delete it". (This should be faster than a plain indexscan;
3294 : * also, not all index AMs support full-index indexscan.) Then we sort the
3295 : * TIDs, and finally scan the table doing a "merge join" against the TID list
3296 : * to see which tuples are missing from the index. Thus we will ensure that
3297 : * all tuples valid according to the reference snapshot are in the index.
3298 : *
3299 : * Building a unique index this way is tricky: we might try to insert a
3300 : * tuple that is already dead or is in process of being deleted, and we
3301 : * mustn't have a uniqueness failure against an updated version of the same
3302 : * row. We could try to check the tuple to see if it's already dead and tell
3303 : * index_insert() not to do the uniqueness check, but that still leaves us
3304 : * with a race condition against an in-progress update. To handle that,
3305 : * we expect the index AM to recheck liveness of the to-be-inserted tuple
3306 : * before it declares a uniqueness error.
3307 : *
3308 : * After completing validate_index(), we wait until all transactions that
3309 : * were alive at the time of the reference snapshot are gone; this is
3310 : * necessary to be sure there are none left with a transaction snapshot
3311 : * older than the reference (and hence possibly able to see tuples we did
3312 : * not index). Then we mark the index "indisvalid" and commit. Subsequent
3313 : * transactions will be able to use it for queries.
3314 : *
3315 : * Doing two full table scans is a brute-force strategy. We could try to be
3316 : * cleverer, eg storing new tuples in a special area of the table (perhaps
3317 : * making the table append-only by setting use_fsm). However that would
3318 : * add yet more locking issues.
3319 : */
3320 : void
3321 634 : validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3322 : {
3323 : Relation heapRelation,
3324 : indexRelation;
3325 : IndexInfo *indexInfo;
3326 : IndexVacuumInfo ivinfo;
3327 : ValidateIndexState state;
3328 : Oid save_userid;
3329 : int save_sec_context;
3330 : int save_nestlevel;
3331 :
3332 : {
3333 634 : const int progress_index[] = {
3334 : PROGRESS_CREATEIDX_PHASE,
3335 : PROGRESS_CREATEIDX_TUPLES_DONE,
3336 : PROGRESS_CREATEIDX_TUPLES_TOTAL,
3337 : PROGRESS_SCAN_BLOCKS_DONE,
3338 : PROGRESS_SCAN_BLOCKS_TOTAL
3339 : };
3340 634 : const int64 progress_vals[] = {
3341 : PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN,
3342 : 0, 0, 0, 0
3343 : };
3344 :
3345 634 : pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3346 : }
3347 :
3348 : /* Open and lock the parent heap relation */
3349 634 : heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3350 :
3351 : /*
3352 : * Switch to the table owner's userid, so that any index functions are run
3353 : * as that user. Also lock down security-restricted operations and
3354 : * arrange to make GUC variable changes local to this command.
3355 : */
3356 634 : GetUserIdAndSecContext(&save_userid, &save_sec_context);
3357 634 : SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3358 : save_sec_context | SECURITY_RESTRICTED_OPERATION);
3359 634 : save_nestlevel = NewGUCNestLevel();
3360 634 : RestrictSearchPath();
3361 :
3362 634 : indexRelation = index_open(indexId, RowExclusiveLock);
3363 :
3364 : /*
3365 : * Fetch info needed for index_insert. (You might think this should be
3366 : * passed in from DefineIndex, but its copy is long gone due to having
3367 : * been built in a previous transaction.)
3368 : */
3369 634 : indexInfo = BuildIndexInfo(indexRelation);
3370 :
3371 : /* mark build is concurrent just for consistency */
3372 634 : indexInfo->ii_Concurrent = true;
3373 :
3374 : /*
3375 : * Scan the index and gather up all the TIDs into a tuplesort object.
3376 : */
3377 634 : ivinfo.index = indexRelation;
3378 634 : ivinfo.heaprel = heapRelation;
3379 634 : ivinfo.analyze_only = false;
3380 634 : ivinfo.report_progress = true;
3381 634 : ivinfo.estimated_count = true;
3382 634 : ivinfo.message_level = DEBUG2;
3383 634 : ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3384 634 : ivinfo.strategy = NULL;
3385 :
3386 : /*
3387 : * Encode TIDs as int8 values for the sort, rather than directly sorting
3388 : * item pointers. This can be significantly faster, primarily because TID
3389 : * is a pass-by-reference type on all platforms, whereas int8 is
3390 : * pass-by-value on most platforms.
3391 : */
3392 634 : state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3393 : InvalidOid, false,
3394 : maintenance_work_mem,
3395 : NULL, TUPLESORT_NONE);
3396 634 : state.htups = state.itups = state.tups_inserted = 0;
3397 :
3398 : /* ambulkdelete updates progress metrics */
3399 634 : (void) index_bulk_delete(&ivinfo, NULL,
3400 : validate_index_callback, &state);
3401 :
3402 : /* Execute the sort */
3403 : {
3404 634 : const int progress_index[] = {
3405 : PROGRESS_CREATEIDX_PHASE,
3406 : PROGRESS_SCAN_BLOCKS_DONE,
3407 : PROGRESS_SCAN_BLOCKS_TOTAL
3408 : };
3409 634 : const int64 progress_vals[] = {
3410 : PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT,
3411 : 0, 0
3412 : };
3413 :
3414 634 : pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3415 : }
3416 634 : tuplesort_performsort(state.tuplesort);
3417 :
3418 : /*
3419 : * Now scan the heap and "merge" it with the index
3420 : */
3421 634 : pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
3422 : PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN);
3423 634 : table_index_validate_scan(heapRelation,
3424 : indexRelation,
3425 : indexInfo,
3426 : snapshot,
3427 : &state);
3428 :
3429 : /* Done with tuplesort object */
3430 634 : tuplesort_end(state.tuplesort);
3431 :
3432 : /* Make sure to release resources cached in indexInfo (if needed). */
3433 634 : index_insert_cleanup(indexRelation, indexInfo);
3434 :
3435 634 : elog(DEBUG2,
3436 : "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3437 : state.htups, state.itups, state.tups_inserted);
3438 :
3439 : /* Roll back any GUC changes executed by index functions */
3440 634 : AtEOXact_GUC(false, save_nestlevel);
3441 :
3442 : /* Restore userid and security context */
3443 634 : SetUserIdAndSecContext(save_userid, save_sec_context);
3444 :
3445 : /* Close rels, but keep locks */
3446 634 : index_close(indexRelation, NoLock);
3447 634 : table_close(heapRelation, NoLock);
3448 634 : }
3449 :
3450 : /*
3451 : * validate_index_callback - bulkdelete callback to collect the index TIDs
3452 : */
3453 : static bool
3454 234226 : validate_index_callback(ItemPointer itemptr, void *opaque)
3455 : {
3456 234226 : ValidateIndexState *state = (ValidateIndexState *) opaque;
3457 234226 : int64 encoded = itemptr_encode(itemptr);
3458 :
3459 234226 : tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3460 234226 : state->itups += 1;
3461 234226 : return false; /* never actually delete anything */
3462 : }
3463 :
3464 : /*
3465 : * index_set_state_flags - adjust pg_index state flags
3466 : *
3467 : * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3468 : * flags that denote the index's state.
3469 : *
3470 : * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3471 : * tuple, so other sessions will hear about the update as soon as we commit.
3472 : */
3473 : void
3474 1480 : index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
3475 : {
3476 : Relation pg_index;
3477 : HeapTuple indexTuple;
3478 : Form_pg_index indexForm;
3479 :
3480 : /* Open pg_index and fetch a writable copy of the index's tuple */
3481 1480 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
3482 :
3483 1480 : indexTuple = SearchSysCacheCopy1(INDEXRELID,
3484 : ObjectIdGetDatum(indexId));
3485 1480 : if (!HeapTupleIsValid(indexTuple))
3486 0 : elog(ERROR, "cache lookup failed for index %u", indexId);
3487 1480 : indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3488 :
3489 : /* Perform the requested state change on the copy */
3490 1480 : switch (action)
3491 : {
3492 634 : case INDEX_CREATE_SET_READY:
3493 : /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3494 : Assert(indexForm->indislive);
3495 : Assert(!indexForm->indisready);
3496 : Assert(!indexForm->indisvalid);
3497 634 : indexForm->indisready = true;
3498 634 : break;
3499 132 : case INDEX_CREATE_SET_VALID:
3500 : /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3501 : Assert(indexForm->indislive);
3502 : Assert(indexForm->indisready);
3503 : Assert(!indexForm->indisvalid);
3504 132 : indexForm->indisvalid = true;
3505 132 : break;
3506 106 : case INDEX_DROP_CLEAR_VALID:
3507 :
3508 : /*
3509 : * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3510 : *
3511 : * If indisready == true we leave it set so the index still gets
3512 : * maintained by active transactions. We only need to ensure that
3513 : * indisvalid is false. (We don't assert that either is initially
3514 : * true, though, since we want to be able to retry a DROP INDEX
3515 : * CONCURRENTLY that failed partway through.)
3516 : *
3517 : * Note: the CLUSTER logic assumes that indisclustered cannot be
3518 : * set on any invalid index, so clear that flag too. For
3519 : * cleanliness, also clear indisreplident.
3520 : */
3521 106 : indexForm->indisvalid = false;
3522 106 : indexForm->indisclustered = false;
3523 106 : indexForm->indisreplident = false;
3524 106 : break;
3525 608 : case INDEX_DROP_SET_DEAD:
3526 :
3527 : /*
3528 : * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3529 : *
3530 : * We clear both indisready and indislive, because we not only
3531 : * want to stop updates, we want to prevent sessions from touching
3532 : * the index at all.
3533 : */
3534 : Assert(!indexForm->indisvalid);
3535 : Assert(!indexForm->indisclustered);
3536 : Assert(!indexForm->indisreplident);
3537 608 : indexForm->indisready = false;
3538 608 : indexForm->indislive = false;
3539 608 : break;
3540 : }
3541 :
3542 : /* ... and update it */
3543 1480 : CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3544 :
3545 1480 : table_close(pg_index, RowExclusiveLock);
3546 1480 : }
3547 :
3548 :
3549 : /*
3550 : * IndexGetRelation: given an index's relation OID, get the OID of the
3551 : * relation it is an index on. Uses the system cache.
3552 : */
3553 : Oid
3554 52594 : IndexGetRelation(Oid indexId, bool missing_ok)
3555 : {
3556 : HeapTuple tuple;
3557 : Form_pg_index index;
3558 : Oid result;
3559 :
3560 52594 : tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3561 52594 : if (!HeapTupleIsValid(tuple))
3562 : {
3563 26 : if (missing_ok)
3564 26 : return InvalidOid;
3565 0 : elog(ERROR, "cache lookup failed for index %u", indexId);
3566 : }
3567 52568 : index = (Form_pg_index) GETSTRUCT(tuple);
3568 : Assert(index->indexrelid == indexId);
3569 :
3570 52568 : result = index->indrelid;
3571 52568 : ReleaseSysCache(tuple);
3572 52568 : return result;
3573 : }
3574 :
3575 : /*
3576 : * reindex_index - This routine is used to recreate a single index
3577 : */
3578 : void
3579 7782 : reindex_index(const ReindexStmt *stmt, Oid indexId,
3580 : bool skip_constraint_checks, char persistence,
3581 : const ReindexParams *params)
3582 : {
3583 : Relation iRel,
3584 : heapRelation;
3585 : Oid heapId;
3586 : Oid save_userid;
3587 : int save_sec_context;
3588 : int save_nestlevel;
3589 : IndexInfo *indexInfo;
3590 7782 : volatile bool skipped_constraint = false;
3591 : PGRUsage ru0;
3592 7782 : bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3593 7782 : bool set_tablespace = false;
3594 :
3595 7782 : pg_rusage_init(&ru0);
3596 :
3597 : /*
3598 : * Open and lock the parent heap relation. ShareLock is sufficient since
3599 : * we only need to be sure no schema or data changes are going on.
3600 : */
3601 7782 : heapId = IndexGetRelation(indexId,
3602 7782 : (params->options & REINDEXOPT_MISSING_OK) != 0);
3603 : /* if relation is missing, leave */
3604 7782 : if (!OidIsValid(heapId))
3605 0 : return;
3606 :
3607 7782 : if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3608 2132 : heapRelation = try_table_open(heapId, ShareLock);
3609 : else
3610 5650 : heapRelation = table_open(heapId, ShareLock);
3611 :
3612 : /* if relation is gone, leave */
3613 7782 : if (!heapRelation)
3614 0 : return;
3615 :
3616 : /*
3617 : * Switch to the table owner's userid, so that any index functions are run
3618 : * as that user. Also lock down security-restricted operations and
3619 : * arrange to make GUC variable changes local to this command.
3620 : */
3621 7782 : GetUserIdAndSecContext(&save_userid, &save_sec_context);
3622 7782 : SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3623 : save_sec_context | SECURITY_RESTRICTED_OPERATION);
3624 7782 : save_nestlevel = NewGUCNestLevel();
3625 7782 : RestrictSearchPath();
3626 :
3627 7782 : if (progress)
3628 : {
3629 3252 : const int progress_cols[] = {
3630 : PROGRESS_CREATEIDX_COMMAND,
3631 : PROGRESS_CREATEIDX_INDEX_OID
3632 : };
3633 3252 : const int64 progress_vals[] = {
3634 : PROGRESS_CREATEIDX_COMMAND_REINDEX,
3635 : indexId
3636 : };
3637 :
3638 3252 : pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
3639 : heapId);
3640 3252 : pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3641 : }
3642 :
3643 : /*
3644 : * Open the target index relation and get an exclusive lock on it, to
3645 : * ensure that no one else is touching this particular index.
3646 : */
3647 7782 : if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3648 2132 : iRel = try_index_open(indexId, AccessExclusiveLock);
3649 : else
3650 5650 : iRel = index_open(indexId, AccessExclusiveLock);
3651 :
3652 : /* if index relation is gone, leave */
3653 7782 : if (!iRel)
3654 : {
3655 : /* Roll back any GUC changes */
3656 0 : AtEOXact_GUC(false, save_nestlevel);
3657 :
3658 : /* Restore userid and security context */
3659 0 : SetUserIdAndSecContext(save_userid, save_sec_context);
3660 :
3661 : /* Close parent heap relation, but keep locks */
3662 0 : table_close(heapRelation, NoLock);
3663 0 : return;
3664 : }
3665 :
3666 7782 : if (progress)
3667 3252 : pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
3668 3252 : iRel->rd_rel->relam);
3669 :
3670 : /*
3671 : * If a statement is available, telling that this comes from a REINDEX
3672 : * command, collect the index for event triggers.
3673 : */
3674 7782 : if (stmt)
3675 : {
3676 : ObjectAddress address;
3677 :
3678 3252 : ObjectAddressSet(address, RelationRelationId, indexId);
3679 3252 : EventTriggerCollectSimpleCommand(address,
3680 : InvalidObjectAddress,
3681 : (Node *) stmt);
3682 : }
3683 :
3684 : /*
3685 : * Partitioned indexes should never get processed here, as they have no
3686 : * physical storage.
3687 : */
3688 7782 : if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3689 0 : elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3690 : get_namespace_name(RelationGetNamespace(iRel)),
3691 : RelationGetRelationName(iRel));
3692 :
3693 : /*
3694 : * Don't allow reindex on temp tables of other backends ... their local
3695 : * buffer manager is not going to cope.
3696 : */
3697 7782 : if (RELATION_IS_OTHER_TEMP(iRel))
3698 0 : ereport(ERROR,
3699 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3700 : errmsg("cannot reindex temporary tables of other sessions")));
3701 :
3702 : /*
3703 : * Don't allow reindex of an invalid index on TOAST table. This is a
3704 : * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3705 : * not be possible to drop it anymore.
3706 : */
3707 7782 : if (IsToastNamespace(RelationGetNamespace(iRel)) &&
3708 2632 : !get_index_isvalid(indexId))
3709 0 : ereport(ERROR,
3710 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3711 : errmsg("cannot reindex invalid index on TOAST table")));
3712 :
3713 : /*
3714 : * System relations cannot be moved even if allow_system_table_mods is
3715 : * enabled to keep things consistent with the concurrent case where all
3716 : * the indexes of a relation are processed in series, including indexes of
3717 : * toast relations.
3718 : *
3719 : * Note that this check is not part of CheckRelationTableSpaceMove() as it
3720 : * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3721 : * toast relations.
3722 : */
3723 7844 : if (OidIsValid(params->tablespaceOid) &&
3724 62 : IsSystemRelation(iRel))
3725 34 : ereport(ERROR,
3726 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3727 : errmsg("cannot move system relation \"%s\"",
3728 : RelationGetRelationName(iRel))));
3729 :
3730 : /* Check if the tablespace of this index needs to be changed */
3731 7770 : if (OidIsValid(params->tablespaceOid) &&
3732 28 : CheckRelationTableSpaceMove(iRel, params->tablespaceOid))
3733 14 : set_tablespace = true;
3734 :
3735 : /*
3736 : * Also check for active uses of the index in the current transaction; we
3737 : * don't want to reindex underneath an open indexscan.
3738 : */
3739 7742 : CheckTableNotInUse(iRel, "REINDEX INDEX");
3740 :
3741 : /* Set new tablespace, if requested */
3742 7742 : if (set_tablespace)
3743 : {
3744 : /* Update its pg_class row */
3745 14 : SetRelationTableSpace(iRel, params->tablespaceOid, InvalidOid);
3746 :
3747 : /*
3748 : * Schedule unlinking of the old index storage at transaction commit.
3749 : */
3750 14 : RelationDropStorage(iRel);
3751 14 : RelationAssumeNewRelfilelocator(iRel);
3752 :
3753 : /* Make sure the reltablespace change is visible */
3754 14 : CommandCounterIncrement();
3755 : }
3756 :
3757 : /*
3758 : * All predicate locks on the index are about to be made invalid. Promote
3759 : * them to relation locks on the heap.
3760 : */
3761 7742 : TransferPredicateLocksToHeapRelation(iRel);
3762 :
3763 : /* Fetch info needed for index_build */
3764 7742 : indexInfo = BuildIndexInfo(iRel);
3765 :
3766 : /* If requested, skip checking uniqueness/exclusion constraints */
3767 7742 : if (skip_constraint_checks)
3768 : {
3769 3826 : if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3770 3292 : skipped_constraint = true;
3771 3826 : indexInfo->ii_Unique = false;
3772 3826 : indexInfo->ii_ExclusionOps = NULL;
3773 3826 : indexInfo->ii_ExclusionProcs = NULL;
3774 3826 : indexInfo->ii_ExclusionStrats = NULL;
3775 : }
3776 :
3777 : /* Suppress use of the target index while rebuilding it */
3778 7742 : SetReindexProcessing(heapId, indexId);
3779 :
3780 : /* Create a new physical relation for the index */
3781 7742 : RelationSetNewRelfilenumber(iRel, persistence);
3782 :
3783 : /* Initialize the index and rebuild */
3784 : /* Note: we do not need to re-establish pkey setting */
3785 7742 : index_build(heapRelation, iRel, indexInfo, true, true);
3786 :
3787 : /* Re-allow use of target index */
3788 7718 : ResetReindexProcessing();
3789 :
3790 : /*
3791 : * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3792 : * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3793 : * and we didn't skip a uniqueness check, we can now mark it valid. This
3794 : * allows REINDEX to be used to clean up in such cases.
3795 : *
3796 : * We can also reset indcheckxmin, because we have now done a
3797 : * non-concurrent index build, *except* in the case where index_build
3798 : * found some still-broken HOT chains. If it did, and we don't have to
3799 : * change any of the other flags, we just leave indcheckxmin alone (note
3800 : * that index_build won't have changed it, because this is a reindex).
3801 : * This is okay and desirable because not updating the tuple leaves the
3802 : * index's usability horizon (recorded as the tuple's xmin value) the same
3803 : * as it was.
3804 : *
3805 : * But, if the index was invalid/not-ready/dead and there were broken HOT
3806 : * chains, we had better force indcheckxmin true, because the normal
3807 : * argument that the HOT chains couldn't conflict with the index is
3808 : * suspect for an invalid index. (A conflict is definitely possible if
3809 : * the index was dead. It probably shouldn't happen otherwise, but let's
3810 : * be conservative.) In this case advancing the usability horizon is
3811 : * appropriate.
3812 : *
3813 : * Another reason for avoiding unnecessary updates here is that while
3814 : * reindexing pg_index itself, we must not try to update tuples in it.
3815 : * pg_index's indexes should always have these flags in their clean state,
3816 : * so that won't happen.
3817 : */
3818 7718 : if (!skipped_constraint)
3819 : {
3820 : Relation pg_index;
3821 : HeapTuple indexTuple;
3822 : Form_pg_index indexForm;
3823 : bool index_bad;
3824 :
3825 4426 : pg_index = table_open(IndexRelationId, RowExclusiveLock);
3826 :
3827 4426 : indexTuple = SearchSysCacheCopy1(INDEXRELID,
3828 : ObjectIdGetDatum(indexId));
3829 4426 : if (!HeapTupleIsValid(indexTuple))
3830 0 : elog(ERROR, "cache lookup failed for index %u", indexId);
3831 4426 : indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3832 :
3833 13272 : index_bad = (!indexForm->indisvalid ||
3834 8846 : !indexForm->indisready ||
3835 4420 : !indexForm->indislive);
3836 4426 : if (index_bad ||
3837 4420 : (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
3838 : {
3839 6 : if (!indexInfo->ii_BrokenHotChain)
3840 6 : indexForm->indcheckxmin = false;
3841 0 : else if (index_bad)
3842 0 : indexForm->indcheckxmin = true;
3843 6 : indexForm->indisvalid = true;
3844 6 : indexForm->indisready = true;
3845 6 : indexForm->indislive = true;
3846 6 : CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3847 :
3848 : /*
3849 : * Invalidate the relcache for the table, so that after we commit
3850 : * all sessions will refresh the table's index list. This ensures
3851 : * that if anyone misses seeing the pg_index row during this
3852 : * update, they'll refresh their list before attempting any update
3853 : * on the table.
3854 : */
3855 6 : CacheInvalidateRelcache(heapRelation);
3856 : }
3857 :
3858 4426 : table_close(pg_index, RowExclusiveLock);
3859 : }
3860 :
3861 : /* Log what we did */
3862 7718 : if ((params->options & REINDEXOPT_VERBOSE) != 0)
3863 14 : ereport(INFO,
3864 : (errmsg("index \"%s\" was reindexed",
3865 : get_rel_name(indexId)),
3866 : errdetail_internal("%s",
3867 : pg_rusage_show(&ru0))));
3868 :
3869 : /* Roll back any GUC changes executed by index functions */
3870 7718 : AtEOXact_GUC(false, save_nestlevel);
3871 :
3872 : /* Restore userid and security context */
3873 7718 : SetUserIdAndSecContext(save_userid, save_sec_context);
3874 :
3875 : /* Close rels, but keep locks */
3876 7718 : index_close(iRel, NoLock);
3877 7718 : table_close(heapRelation, NoLock);
3878 :
3879 7718 : if (progress)
3880 3206 : pgstat_progress_end_command();
3881 : }
3882 :
3883 : /*
3884 : * reindex_relation - This routine is used to recreate all indexes
3885 : * of a relation (and optionally its toast relation too, if any).
3886 : *
3887 : * "flags" is a bitmask that can include any combination of these bits:
3888 : *
3889 : * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3890 : *
3891 : * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3892 : * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3893 : * indexes are inconsistent with it. This makes things tricky if the relation
3894 : * is a system catalog that we might consult during the reindexing. To deal
3895 : * with that case, we mark all of the indexes as pending rebuild so that they
3896 : * won't be trusted until rebuilt. The caller is required to call us *without*
3897 : * having made the rebuilt table visible by doing CommandCounterIncrement;
3898 : * we'll do CCI after having collected the index list. (This way we can still
3899 : * use catalog indexes while collecting the list.)
3900 : *
3901 : * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3902 : * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3903 : * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3904 : * rebuild an index if constraint inconsistency is suspected. For optimal
3905 : * performance, other callers should include the flag only after transforming
3906 : * the data in a manner that risks a change in constraint validity.
3907 : *
3908 : * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3909 : * rebuilt indexes to unlogged.
3910 : *
3911 : * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3912 : * rebuilt indexes to permanent.
3913 : *
3914 : * Returns true if any indexes were rebuilt (including toast table's index
3915 : * when relevant). Note that a CommandCounterIncrement will occur after each
3916 : * index rebuild.
3917 : */
3918 : bool
3919 8776 : reindex_relation(const ReindexStmt *stmt, Oid relid, int flags,
3920 : const ReindexParams *params)
3921 : {
3922 : Relation rel;
3923 : Oid toast_relid;
3924 : List *indexIds;
3925 : char persistence;
3926 8776 : bool result = false;
3927 : ListCell *indexId;
3928 : int i;
3929 :
3930 : /*
3931 : * Open and lock the relation. ShareLock is sufficient since we only need
3932 : * to prevent schema and data changes in it. The lock level used here
3933 : * should match ReindexTable().
3934 : */
3935 8776 : if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3936 1280 : rel = try_table_open(relid, ShareLock);
3937 : else
3938 7496 : rel = table_open(relid, ShareLock);
3939 :
3940 : /* if relation is gone, leave */
3941 8776 : if (!rel)
3942 0 : return false;
3943 :
3944 : /*
3945 : * Partitioned tables should never get processed here, as they have no
3946 : * physical storage.
3947 : */
3948 8776 : if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3949 0 : elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3950 : get_namespace_name(RelationGetNamespace(rel)),
3951 : RelationGetRelationName(rel));
3952 :
3953 8776 : toast_relid = rel->rd_rel->reltoastrelid;
3954 :
3955 : /*
3956 : * Get the list of index OIDs for this relation. (We trust the relcache
3957 : * to get this with a sequential scan if ignoring system indexes.)
3958 : */
3959 8776 : indexIds = RelationGetIndexList(rel);
3960 :
3961 8776 : if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3962 : {
3963 : /* Suppress use of all the indexes until they are rebuilt */
3964 1898 : SetReindexPending(indexIds);
3965 :
3966 : /*
3967 : * Make the new heap contents visible --- now things might be
3968 : * inconsistent!
3969 : */
3970 1898 : CommandCounterIncrement();
3971 : }
3972 :
3973 : /*
3974 : * Reindex the toast table, if any, before the main table.
3975 : *
3976 : * This helps in cases where a corruption in the toast table's index would
3977 : * otherwise error and stop REINDEX TABLE command when it tries to fetch a
3978 : * toasted datum. This way. the toast table's index is rebuilt and fixed
3979 : * before it is used for reindexing the main table.
3980 : *
3981 : * It is critical to call reindex_relation() *after* the call to
3982 : * RelationGetIndexList() returning the list of indexes on the relation,
3983 : * because reindex_relation() will call CommandCounterIncrement() after
3984 : * every reindex_index(). See REINDEX_REL_SUPPRESS_INDEX_USE for more
3985 : * details.
3986 : */
3987 8776 : if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3988 : {
3989 : /*
3990 : * Note that this should fail if the toast relation is missing, so
3991 : * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3992 : * the parent relation, the indexes on its toast table are not moved.
3993 : * This rule is enforced by setting tablespaceOid to InvalidOid.
3994 : */
3995 2604 : ReindexParams newparams = *params;
3996 :
3997 2604 : newparams.options &= ~(REINDEXOPT_MISSING_OK);
3998 2604 : newparams.tablespaceOid = InvalidOid;
3999 2604 : result |= reindex_relation(stmt, toast_relid, flags, &newparams);
4000 : }
4001 :
4002 : /*
4003 : * Compute persistence of indexes: same as that of owning rel, unless
4004 : * caller specified otherwise.
4005 : */
4006 8776 : if (flags & REINDEX_REL_FORCE_INDEXES_UNLOGGED)
4007 38 : persistence = RELPERSISTENCE_UNLOGGED;
4008 8738 : else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
4009 1780 : persistence = RELPERSISTENCE_PERMANENT;
4010 : else
4011 6958 : persistence = rel->rd_rel->relpersistence;
4012 :
4013 : /* Reindex all the indexes. */
4014 8776 : i = 1;
4015 16364 : foreach(indexId, indexIds)
4016 : {
4017 7638 : Oid indexOid = lfirst_oid(indexId);
4018 7638 : Oid indexNamespaceId = get_rel_namespace(indexOid);
4019 :
4020 : /*
4021 : * Skip any invalid indexes on a TOAST table. These can only be
4022 : * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
4023 : * rebuilt it would not be possible to drop them anymore.
4024 : */
4025 7638 : if (IsToastNamespace(indexNamespaceId) &&
4026 2624 : !get_index_isvalid(indexOid))
4027 : {
4028 0 : ereport(WARNING,
4029 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4030 : errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
4031 : get_namespace_name(indexNamespaceId),
4032 : get_rel_name(indexOid))));
4033 :
4034 : /*
4035 : * Remove this invalid toast index from the reindex pending list,
4036 : * as it is skipped here due to the hard failure that would happen
4037 : * in reindex_index(), should we try to process it.
4038 : */
4039 0 : if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
4040 0 : RemoveReindexPending(indexOid);
4041 0 : continue;
4042 : }
4043 :
4044 7638 : reindex_index(stmt, indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
4045 : persistence, params);
4046 :
4047 7588 : CommandCounterIncrement();
4048 :
4049 : /* Index should no longer be in the pending list */
4050 : Assert(!ReindexIsProcessingIndex(indexOid));
4051 :
4052 : /* Set index rebuild count */
4053 7588 : pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT,
4054 : i);
4055 7588 : i++;
4056 : }
4057 :
4058 : /*
4059 : * Close rel, but continue to hold the lock.
4060 : */
4061 8726 : table_close(rel, NoLock);
4062 :
4063 8726 : result |= (indexIds != NIL);
4064 :
4065 8726 : return result;
4066 : }
4067 :
4068 :
4069 : /* ----------------------------------------------------------------
4070 : * System index reindexing support
4071 : *
4072 : * When we are busy reindexing a system index, this code provides support
4073 : * for preventing catalog lookups from using that index. We also make use
4074 : * of this to catch attempted uses of user indexes during reindexing of
4075 : * those indexes. This information is propagated to parallel workers;
4076 : * attempting to change it during a parallel operation is not permitted.
4077 : * ----------------------------------------------------------------
4078 : */
4079 :
4080 : static Oid currentlyReindexedHeap = InvalidOid;
4081 : static Oid currentlyReindexedIndex = InvalidOid;
4082 : static List *pendingReindexedIndexes = NIL;
4083 : static int reindexingNestLevel = 0;
4084 :
4085 : /*
4086 : * ReindexIsProcessingHeap
4087 : * True if heap specified by OID is currently being reindexed.
4088 : */
4089 : bool
4090 0 : ReindexIsProcessingHeap(Oid heapOid)
4091 : {
4092 0 : return heapOid == currentlyReindexedHeap;
4093 : }
4094 :
4095 : /*
4096 : * ReindexIsCurrentlyProcessingIndex
4097 : * True if index specified by OID is currently being reindexed.
4098 : */
4099 : static bool
4100 734 : ReindexIsCurrentlyProcessingIndex(Oid indexOid)
4101 : {
4102 734 : return indexOid == currentlyReindexedIndex;
4103 : }
4104 :
4105 : /*
4106 : * ReindexIsProcessingIndex
4107 : * True if index specified by OID is currently being reindexed,
4108 : * or should be treated as invalid because it is awaiting reindex.
4109 : */
4110 : bool
4111 38217542 : ReindexIsProcessingIndex(Oid indexOid)
4112 : {
4113 76425180 : return indexOid == currentlyReindexedIndex ||
4114 38207638 : list_member_oid(pendingReindexedIndexes, indexOid);
4115 : }
4116 :
4117 : /*
4118 : * SetReindexProcessing
4119 : * Set flag that specified heap/index are being reindexed.
4120 : */
4121 : static void
4122 7742 : SetReindexProcessing(Oid heapOid, Oid indexOid)
4123 : {
4124 : Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4125 : /* Reindexing is not re-entrant. */
4126 7742 : if (OidIsValid(currentlyReindexedHeap))
4127 0 : elog(ERROR, "cannot reindex while reindexing");
4128 7742 : currentlyReindexedHeap = heapOid;
4129 7742 : currentlyReindexedIndex = indexOid;
4130 : /* Index is no longer "pending" reindex. */
4131 7742 : RemoveReindexPending(indexOid);
4132 : /* This may have been set already, but in case it isn't, do so now. */
4133 7742 : reindexingNestLevel = GetCurrentTransactionNestLevel();
4134 7742 : }
4135 :
4136 : /*
4137 : * ResetReindexProcessing
4138 : * Unset reindexing status.
4139 : */
4140 : static void
4141 7796 : ResetReindexProcessing(void)
4142 : {
4143 7796 : currentlyReindexedHeap = InvalidOid;
4144 7796 : currentlyReindexedIndex = InvalidOid;
4145 : /* reindexingNestLevel remains set till end of (sub)transaction */
4146 7796 : }
4147 :
4148 : /*
4149 : * SetReindexPending
4150 : * Mark the given indexes as pending reindex.
4151 : *
4152 : * NB: we assume that the current memory context stays valid throughout.
4153 : */
4154 : static void
4155 1898 : SetReindexPending(List *indexes)
4156 : {
4157 : /* Reindexing is not re-entrant. */
4158 1898 : if (pendingReindexedIndexes)
4159 0 : elog(ERROR, "cannot reindex while reindexing");
4160 1898 : if (IsInParallelMode())
4161 0 : elog(ERROR, "cannot modify reindex state during a parallel operation");
4162 1898 : pendingReindexedIndexes = list_copy(indexes);
4163 1898 : reindexingNestLevel = GetCurrentTransactionNestLevel();
4164 1898 : }
4165 :
4166 : /*
4167 : * RemoveReindexPending
4168 : * Remove the given index from the pending list.
4169 : */
4170 : static void
4171 7742 : RemoveReindexPending(Oid indexOid)
4172 : {
4173 7742 : if (IsInParallelMode())
4174 0 : elog(ERROR, "cannot modify reindex state during a parallel operation");
4175 7742 : pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
4176 : indexOid);
4177 7742 : }
4178 :
4179 : /*
4180 : * ResetReindexState
4181 : * Clear all reindexing state during (sub)transaction abort.
4182 : */
4183 : void
4184 56374 : ResetReindexState(int nestLevel)
4185 : {
4186 : /*
4187 : * Because reindexing is not re-entrant, we don't need to cope with nested
4188 : * reindexing states. We just need to avoid messing up the outer-level
4189 : * state in case a subtransaction fails within a REINDEX. So checking the
4190 : * current nest level against that of the reindex operation is sufficient.
4191 : */
4192 56374 : if (reindexingNestLevel >= nestLevel)
4193 : {
4194 1236 : currentlyReindexedHeap = InvalidOid;
4195 1236 : currentlyReindexedIndex = InvalidOid;
4196 :
4197 : /*
4198 : * We needn't try to release the contents of pendingReindexedIndexes;
4199 : * that list should be in a transaction-lifespan context, so it will
4200 : * go away automatically.
4201 : */
4202 1236 : pendingReindexedIndexes = NIL;
4203 :
4204 1236 : reindexingNestLevel = 0;
4205 : }
4206 56374 : }
4207 :
4208 : /*
4209 : * EstimateReindexStateSpace
4210 : * Estimate space needed to pass reindex state to parallel workers.
4211 : */
4212 : Size
4213 892 : EstimateReindexStateSpace(void)
4214 : {
4215 : return offsetof(SerializedReindexState, pendingReindexedIndexes)
4216 892 : + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
4217 : }
4218 :
4219 : /*
4220 : * SerializeReindexState
4221 : * Serialize reindex state for parallel workers.
4222 : */
4223 : void
4224 892 : SerializeReindexState(Size maxsize, char *start_address)
4225 : {
4226 892 : SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4227 892 : int c = 0;
4228 : ListCell *lc;
4229 :
4230 892 : sistate->currentlyReindexedHeap = currentlyReindexedHeap;
4231 892 : sistate->currentlyReindexedIndex = currentlyReindexedIndex;
4232 892 : sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
4233 892 : foreach(lc, pendingReindexedIndexes)
4234 0 : sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4235 892 : }
4236 :
4237 : /*
4238 : * RestoreReindexState
4239 : * Restore reindex state in a parallel worker.
4240 : */
4241 : void
4242 2714 : RestoreReindexState(const void *reindexstate)
4243 : {
4244 2714 : const SerializedReindexState *sistate = (const SerializedReindexState *) reindexstate;
4245 2714 : int c = 0;
4246 : MemoryContext oldcontext;
4247 :
4248 2714 : currentlyReindexedHeap = sistate->currentlyReindexedHeap;
4249 2714 : currentlyReindexedIndex = sistate->currentlyReindexedIndex;
4250 :
4251 : Assert(pendingReindexedIndexes == NIL);
4252 2714 : oldcontext = MemoryContextSwitchTo(TopMemoryContext);
4253 2714 : for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4254 0 : pendingReindexedIndexes =
4255 0 : lappend_oid(pendingReindexedIndexes,
4256 : sistate->pendingReindexedIndexes[c]);
4257 2714 : MemoryContextSwitchTo(oldcontext);
4258 :
4259 : /* Note the worker has its own transaction nesting level */
4260 2714 : reindexingNestLevel = GetCurrentTransactionNestLevel();
4261 2714 : }
|