Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * dependency.c
4 : * Routines to support inter-object dependencies.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/dependency.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/genam.h"
18 : #include "access/htup_details.h"
19 : #include "access/table.h"
20 : #include "access/xact.h"
21 : #include "catalog/catalog.h"
22 : #include "catalog/dependency.h"
23 : #include "catalog/heap.h"
24 : #include "catalog/index.h"
25 : #include "catalog/namespace.h"
26 : #include "catalog/objectaccess.h"
27 : #include "catalog/pg_am.h"
28 : #include "catalog/pg_amop.h"
29 : #include "catalog/pg_amproc.h"
30 : #include "catalog/pg_attrdef.h"
31 : #include "catalog/pg_authid.h"
32 : #include "catalog/pg_auth_members.h"
33 : #include "catalog/pg_cast.h"
34 : #include "catalog/pg_collation.h"
35 : #include "catalog/pg_constraint.h"
36 : #include "catalog/pg_conversion.h"
37 : #include "catalog/pg_database.h"
38 : #include "catalog/pg_default_acl.h"
39 : #include "catalog/pg_depend.h"
40 : #include "catalog/pg_event_trigger.h"
41 : #include "catalog/pg_extension.h"
42 : #include "catalog/pg_foreign_data_wrapper.h"
43 : #include "catalog/pg_foreign_server.h"
44 : #include "catalog/pg_init_privs.h"
45 : #include "catalog/pg_language.h"
46 : #include "catalog/pg_largeobject.h"
47 : #include "catalog/pg_namespace.h"
48 : #include "catalog/pg_opclass.h"
49 : #include "catalog/pg_operator.h"
50 : #include "catalog/pg_opfamily.h"
51 : #include "catalog/pg_parameter_acl.h"
52 : #include "catalog/pg_policy.h"
53 : #include "catalog/pg_proc.h"
54 : #include "catalog/pg_publication.h"
55 : #include "catalog/pg_publication_namespace.h"
56 : #include "catalog/pg_publication_rel.h"
57 : #include "catalog/pg_rewrite.h"
58 : #include "catalog/pg_statistic_ext.h"
59 : #include "catalog/pg_subscription.h"
60 : #include "catalog/pg_tablespace.h"
61 : #include "catalog/pg_transform.h"
62 : #include "catalog/pg_trigger.h"
63 : #include "catalog/pg_ts_config.h"
64 : #include "catalog/pg_ts_dict.h"
65 : #include "catalog/pg_ts_parser.h"
66 : #include "catalog/pg_ts_template.h"
67 : #include "catalog/pg_type.h"
68 : #include "catalog/pg_user_mapping.h"
69 : #include "commands/comment.h"
70 : #include "commands/defrem.h"
71 : #include "commands/event_trigger.h"
72 : #include "commands/extension.h"
73 : #include "commands/policy.h"
74 : #include "commands/publicationcmds.h"
75 : #include "commands/seclabel.h"
76 : #include "commands/sequence.h"
77 : #include "commands/trigger.h"
78 : #include "commands/typecmds.h"
79 : #include "funcapi.h"
80 : #include "miscadmin.h"
81 : #include "nodes/nodeFuncs.h"
82 : #include "parser/parsetree.h"
83 : #include "rewrite/rewriteRemove.h"
84 : #include "storage/lmgr.h"
85 : #include "utils/fmgroids.h"
86 : #include "utils/lsyscache.h"
87 : #include "utils/syscache.h"
88 :
89 :
90 : /*
91 : * Deletion processing requires additional state for each ObjectAddress that
92 : * it's planning to delete. For simplicity and code-sharing we make the
93 : * ObjectAddresses code support arrays with or without this extra state.
94 : */
95 : typedef struct
96 : {
97 : int flags; /* bitmask, see bit definitions below */
98 : ObjectAddress dependee; /* object whose deletion forced this one */
99 : } ObjectAddressExtra;
100 :
101 : /* ObjectAddressExtra flag bits */
102 : #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
103 : #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
104 : #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
105 : #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
106 : #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
107 : #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
108 : #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
109 : #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
110 : #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
111 :
112 :
113 : /* expansible list of ObjectAddresses */
114 : struct ObjectAddresses
115 : {
116 : ObjectAddress *refs; /* => palloc'd array */
117 : ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
118 : int numrefs; /* current number of references */
119 : int maxrefs; /* current size of palloc'd array(s) */
120 : };
121 :
122 : /* typedef ObjectAddresses appears in dependency.h */
123 :
124 : /* threaded list of ObjectAddresses, for recursion detection */
125 : typedef struct ObjectAddressStack
126 : {
127 : const ObjectAddress *object; /* object being visited */
128 : int flags; /* its current flag bits */
129 : struct ObjectAddressStack *next; /* next outer stack level */
130 : } ObjectAddressStack;
131 :
132 : /* temporary storage in findDependentObjects */
133 : typedef struct
134 : {
135 : ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
136 : int subflags; /* flags to pass down when recursing to obj */
137 : } ObjectAddressAndFlags;
138 :
139 : /* for find_expr_references_walker */
140 : typedef struct
141 : {
142 : ObjectAddresses *addrs; /* addresses being accumulated */
143 : List *rtables; /* list of rangetables to resolve Vars */
144 : } find_expr_references_context;
145 :
146 :
147 : static void findDependentObjects(const ObjectAddress *object,
148 : int objflags,
149 : int flags,
150 : ObjectAddressStack *stack,
151 : ObjectAddresses *targetObjects,
152 : const ObjectAddresses *pendingObjects,
153 : Relation *depRel);
154 : static void reportDependentObjects(const ObjectAddresses *targetObjects,
155 : DropBehavior behavior,
156 : int flags,
157 : const ObjectAddress *origObject);
158 : static void deleteOneObject(const ObjectAddress *object,
159 : Relation *depRel, int32 flags);
160 : static void doDeletion(const ObjectAddress *object, int flags);
161 : static bool find_expr_references_walker(Node *node,
162 : find_expr_references_context *context);
163 : static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
164 : find_expr_references_context *context);
165 : static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
166 : static int object_address_comparator(const void *a, const void *b);
167 : static void add_object_address(Oid classId, Oid objectId, int32 subId,
168 : ObjectAddresses *addrs);
169 : static void add_exact_object_address_extra(const ObjectAddress *object,
170 : const ObjectAddressExtra *extra,
171 : ObjectAddresses *addrs);
172 : static bool object_address_present_add_flags(const ObjectAddress *object,
173 : int flags,
174 : ObjectAddresses *addrs);
175 : static bool stack_address_present_add_flags(const ObjectAddress *object,
176 : int flags,
177 : ObjectAddressStack *stack);
178 : static void DeleteInitPrivs(const ObjectAddress *object);
179 :
180 :
181 : /*
182 : * Go through the objects given running the final actions on them, and execute
183 : * the actual deletion.
184 : */
185 : static void
186 33058 : deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
187 : int flags)
188 : {
189 : int i;
190 :
191 : /*
192 : * Keep track of objects for event triggers, if necessary.
193 : */
194 33058 : if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
195 : {
196 4596 : for (i = 0; i < targetObjects->numrefs; i++)
197 : {
198 3866 : const ObjectAddress *thisobj = &targetObjects->refs[i];
199 3866 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
200 3866 : bool original = false;
201 3866 : bool normal = false;
202 :
203 3866 : if (extra->flags & DEPFLAG_ORIGINAL)
204 814 : original = true;
205 3866 : if (extra->flags & DEPFLAG_NORMAL)
206 354 : normal = true;
207 3866 : if (extra->flags & DEPFLAG_REVERSE)
208 0 : normal = true;
209 :
210 3866 : if (EventTriggerSupportsObject(thisobj))
211 : {
212 3750 : EventTriggerSQLDropAddObject(thisobj, original, normal);
213 : }
214 : }
215 : }
216 :
217 : /*
218 : * Delete all the objects in the proper order, except that if told to, we
219 : * should skip the original object(s).
220 : */
221 255468 : for (i = 0; i < targetObjects->numrefs; i++)
222 : {
223 222420 : ObjectAddress *thisobj = targetObjects->refs + i;
224 222420 : ObjectAddressExtra *thisextra = targetObjects->extras + i;
225 :
226 222420 : if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
227 9564 : (thisextra->flags & DEPFLAG_ORIGINAL))
228 880 : continue;
229 :
230 221540 : deleteOneObject(thisobj, depRel, flags);
231 : }
232 33048 : }
233 :
234 : /*
235 : * performDeletion: attempt to drop the specified object. If CASCADE
236 : * behavior is specified, also drop any dependent objects (recursively).
237 : * If RESTRICT behavior is specified, error out if there are any dependent
238 : * objects, except for those that should be implicitly dropped anyway
239 : * according to the dependency type.
240 : *
241 : * This is the outer control routine for all forms of DROP that drop objects
242 : * that can participate in dependencies. Note that performMultipleDeletions
243 : * is a variant on the same theme; if you change anything here you'll likely
244 : * need to fix that too.
245 : *
246 : * Bits in the flags argument can include:
247 : *
248 : * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
249 : * direct result of a user-initiated action. For example, when a temporary
250 : * schema is cleaned out so that a new backend can use it, or when a column
251 : * default is dropped as an intermediate step while adding a new one, that's
252 : * an internal operation. On the other hand, when we drop something because
253 : * the user issued a DROP statement against it, that's not internal. Currently
254 : * this suppresses calling event triggers and making some permissions checks.
255 : *
256 : * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
257 : * not currently work for anything except dropping indexes; don't set it for
258 : * other object types or you may get strange results.
259 : *
260 : * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
261 : *
262 : * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
263 : * but only what depends on it/them.
264 : *
265 : * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
266 : * deleting objects that are part of an extension. This should generally
267 : * be used only when dropping temporary objects.
268 : *
269 : * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
270 : * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
271 : *
272 : */
273 : void
274 6050 : performDeletion(const ObjectAddress *object,
275 : DropBehavior behavior, int flags)
276 : {
277 : Relation depRel;
278 : ObjectAddresses *targetObjects;
279 :
280 : /*
281 : * We save some cycles by opening pg_depend just once and passing the
282 : * Relation pointer down to all the recursive deletion steps.
283 : */
284 6050 : depRel = table_open(DependRelationId, RowExclusiveLock);
285 :
286 : /*
287 : * Acquire deletion lock on the target object. (Ideally the caller has
288 : * done this already, but many places are sloppy about it.)
289 : */
290 6050 : AcquireDeletionLock(object, 0);
291 :
292 : /*
293 : * Construct a list of objects to delete (ie, the given object plus
294 : * everything directly or indirectly dependent on it).
295 : */
296 6050 : targetObjects = new_object_addresses();
297 :
298 6050 : findDependentObjects(object,
299 : DEPFLAG_ORIGINAL,
300 : flags,
301 : NULL, /* empty stack */
302 : targetObjects,
303 : NULL, /* no pendingObjects */
304 : &depRel);
305 :
306 : /*
307 : * Check if deletion is allowed, and report about cascaded deletes.
308 : */
309 6050 : reportDependentObjects(targetObjects,
310 : behavior,
311 : flags,
312 : object);
313 :
314 : /* do the deed */
315 6014 : deleteObjectsInList(targetObjects, &depRel, flags);
316 :
317 : /* And clean up */
318 6012 : free_object_addresses(targetObjects);
319 :
320 6012 : table_close(depRel, RowExclusiveLock);
321 6012 : }
322 :
323 : /*
324 : * performMultipleDeletions: Similar to performDeletion, but act on multiple
325 : * objects at once.
326 : *
327 : * The main difference from issuing multiple performDeletion calls is that the
328 : * list of objects that would be implicitly dropped, for each object to be
329 : * dropped, is the union of the implicit-object list for all objects. This
330 : * makes each check be more relaxed.
331 : */
332 : void
333 29780 : performMultipleDeletions(const ObjectAddresses *objects,
334 : DropBehavior behavior, int flags)
335 : {
336 : Relation depRel;
337 : ObjectAddresses *targetObjects;
338 : int i;
339 :
340 : /* No work if no objects... */
341 29780 : if (objects->numrefs <= 0)
342 2392 : return;
343 :
344 : /*
345 : * We save some cycles by opening pg_depend just once and passing the
346 : * Relation pointer down to all the recursive deletion steps.
347 : */
348 27388 : depRel = table_open(DependRelationId, RowExclusiveLock);
349 :
350 : /*
351 : * Construct a list of objects to delete (ie, the given objects plus
352 : * everything directly or indirectly dependent on them). Note that
353 : * because we pass the whole objects list as pendingObjects context, we
354 : * won't get a failure from trying to delete an object that is internally
355 : * dependent on another one in the list; we'll just skip that object and
356 : * delete it when we reach its owner.
357 : */
358 27388 : targetObjects = new_object_addresses();
359 :
360 60542 : for (i = 0; i < objects->numrefs; i++)
361 : {
362 33196 : const ObjectAddress *thisobj = objects->refs + i;
363 :
364 : /*
365 : * Acquire deletion lock on each target object. (Ideally the caller
366 : * has done this already, but many places are sloppy about it.)
367 : */
368 33196 : AcquireDeletionLock(thisobj, flags);
369 :
370 33196 : findDependentObjects(thisobj,
371 : DEPFLAG_ORIGINAL,
372 : flags,
373 : NULL, /* empty stack */
374 : targetObjects,
375 : objects,
376 : &depRel);
377 : }
378 :
379 : /*
380 : * Check if deletion is allowed, and report about cascaded deletes.
381 : *
382 : * If there's exactly one object being deleted, report it the same way as
383 : * in performDeletion(), else we have to be vaguer.
384 : */
385 27346 : reportDependentObjects(targetObjects,
386 : behavior,
387 : flags,
388 27346 : (objects->numrefs == 1 ? objects->refs : NULL));
389 :
390 : /* do the deed */
391 27044 : deleteObjectsInList(targetObjects, &depRel, flags);
392 :
393 : /* And clean up */
394 27036 : free_object_addresses(targetObjects);
395 :
396 27036 : table_close(depRel, RowExclusiveLock);
397 : }
398 :
399 : /*
400 : * findDependentObjects - find all objects that depend on 'object'
401 : *
402 : * For every object that depends on the starting object, acquire a deletion
403 : * lock on the object, add it to targetObjects (if not already there),
404 : * and recursively find objects that depend on it. An object's dependencies
405 : * will be placed into targetObjects before the object itself; this means
406 : * that the finished list's order represents a safe deletion order.
407 : *
408 : * The caller must already have a deletion lock on 'object' itself,
409 : * but must not have added it to targetObjects. (Note: there are corner
410 : * cases where we won't add the object either, and will also release the
411 : * caller-taken lock. This is a bit ugly, but the API is set up this way
412 : * to allow easy rechecking of an object's liveness after we lock it. See
413 : * notes within the function.)
414 : *
415 : * When dropping a whole object (subId = 0), we find dependencies for
416 : * its sub-objects too.
417 : *
418 : * object: the object to add to targetObjects and find dependencies on
419 : * objflags: flags to be ORed into the object's targetObjects entry
420 : * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
421 : * stack: list of objects being visited in current recursion; topmost item
422 : * is the object that we recursed from (NULL for external callers)
423 : * targetObjects: list of objects that are scheduled to be deleted
424 : * pendingObjects: list of other objects slated for destruction, but
425 : * not necessarily in targetObjects yet (can be NULL if none)
426 : * *depRel: already opened pg_depend relation
427 : *
428 : * Note: objflags describes the reason for visiting this particular object
429 : * at this time, and is not passed down when recursing. The flags argument
430 : * is passed down, since it describes what we're doing overall.
431 : */
432 : static void
433 276164 : findDependentObjects(const ObjectAddress *object,
434 : int objflags,
435 : int flags,
436 : ObjectAddressStack *stack,
437 : ObjectAddresses *targetObjects,
438 : const ObjectAddresses *pendingObjects,
439 : Relation *depRel)
440 : {
441 : ScanKeyData key[3];
442 : int nkeys;
443 : SysScanDesc scan;
444 : HeapTuple tup;
445 : ObjectAddress otherObject;
446 : ObjectAddress owningObject;
447 : ObjectAddress partitionObject;
448 : ObjectAddressAndFlags *dependentObjects;
449 : int numDependentObjects;
450 : int maxDependentObjects;
451 : ObjectAddressStack mystack;
452 : ObjectAddressExtra extra;
453 :
454 : /*
455 : * If the target object is already being visited in an outer recursion
456 : * level, just report the current objflags back to that level and exit.
457 : * This is needed to avoid infinite recursion in the face of circular
458 : * dependencies.
459 : *
460 : * The stack check alone would result in dependency loops being broken at
461 : * an arbitrary point, ie, the first member object of the loop to be
462 : * visited is the last one to be deleted. This is obviously unworkable.
463 : * However, the check for internal dependency below guarantees that we
464 : * will not break a loop at an internal dependency: if we enter the loop
465 : * at an "owned" object we will switch and start at the "owning" object
466 : * instead. We could probably hack something up to avoid breaking at an
467 : * auto dependency, too, if we had to. However there are no known cases
468 : * where that would be necessary.
469 : */
470 276164 : if (stack_address_present_add_flags(object, objflags, stack))
471 49510 : return;
472 :
473 : /*
474 : * since this function recurses, it could be driven to stack overflow,
475 : * because of the deep dependency tree, not only due to dependency loops.
476 : */
477 275846 : check_stack_depth();
478 :
479 : /*
480 : * It's also possible that the target object has already been completely
481 : * processed and put into targetObjects. If so, again we just add the
482 : * specified objflags to its entry and return.
483 : *
484 : * (Note: in these early-exit cases we could release the caller-taken
485 : * lock, since the object is presumably now locked multiple times; but it
486 : * seems not worth the cycles.)
487 : */
488 275846 : if (object_address_present_add_flags(object, objflags, targetObjects))
489 47460 : return;
490 :
491 : /*
492 : * If the target object is pinned, we can just error out immediately; it
493 : * won't have any objects recorded as depending on it.
494 : */
495 228386 : if (IsPinnedObject(object->classId, object->objectId))
496 2 : ereport(ERROR,
497 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
498 : errmsg("cannot drop %s because it is required by the database system",
499 : getObjectDescription(object, false))));
500 :
501 : /*
502 : * The target object might be internally dependent on some other object
503 : * (its "owner"), and/or be a member of an extension (also considered its
504 : * owner). If so, and if we aren't recursing from the owning object, we
505 : * have to transform this deletion request into a deletion request of the
506 : * owning object. (We'll eventually recurse back to this object, but the
507 : * owning object has to be visited first so it will be deleted after.) The
508 : * way to find out about this is to scan the pg_depend entries that show
509 : * what this object depends on.
510 : */
511 228384 : ScanKeyInit(&key[0],
512 : Anum_pg_depend_classid,
513 : BTEqualStrategyNumber, F_OIDEQ,
514 228384 : ObjectIdGetDatum(object->classId));
515 228384 : ScanKeyInit(&key[1],
516 : Anum_pg_depend_objid,
517 : BTEqualStrategyNumber, F_OIDEQ,
518 228384 : ObjectIdGetDatum(object->objectId));
519 228384 : if (object->objectSubId != 0)
520 : {
521 : /* Consider only dependencies of this sub-object */
522 2206 : ScanKeyInit(&key[2],
523 : Anum_pg_depend_objsubid,
524 : BTEqualStrategyNumber, F_INT4EQ,
525 2206 : Int32GetDatum(object->objectSubId));
526 2206 : nkeys = 3;
527 : }
528 : else
529 : {
530 : /* Consider dependencies of this object and any sub-objects it has */
531 226178 : nkeys = 2;
532 : }
533 :
534 228384 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
535 : NULL, nkeys, key);
536 :
537 : /* initialize variables that loop may fill */
538 228384 : memset(&owningObject, 0, sizeof(owningObject));
539 228384 : memset(&partitionObject, 0, sizeof(partitionObject));
540 :
541 542140 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
542 : {
543 315488 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
544 :
545 315488 : otherObject.classId = foundDep->refclassid;
546 315488 : otherObject.objectId = foundDep->refobjid;
547 315488 : otherObject.objectSubId = foundDep->refobjsubid;
548 :
549 : /*
550 : * When scanning dependencies of a whole object, we may find rows
551 : * linking sub-objects of the object to the object itself. (Normally,
552 : * such a dependency is implicit, but we must make explicit ones in
553 : * some cases involving partitioning.) We must ignore such rows to
554 : * avoid infinite recursion.
555 : */
556 315488 : if (otherObject.classId == object->classId &&
557 103484 : otherObject.objectId == object->objectId &&
558 4428 : object->objectSubId == 0)
559 4404 : continue;
560 :
561 311084 : switch (foundDep->deptype)
562 : {
563 178482 : case DEPENDENCY_NORMAL:
564 : case DEPENDENCY_AUTO:
565 : case DEPENDENCY_AUTO_EXTENSION:
566 : /* no problem */
567 178482 : break;
568 :
569 5404 : case DEPENDENCY_EXTENSION:
570 :
571 : /*
572 : * If told to, ignore EXTENSION dependencies altogether. This
573 : * flag is normally used to prevent dropping extensions during
574 : * temporary-object cleanup, even if a temp object was created
575 : * during an extension script.
576 : */
577 5404 : if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
578 8 : break;
579 :
580 : /*
581 : * If the other object is the extension currently being
582 : * created/altered, ignore this dependency and continue with
583 : * the deletion. This allows dropping of an extension's
584 : * objects within the extension's scripts, as well as corner
585 : * cases such as dropping a transient object created within
586 : * such a script.
587 : */
588 5396 : if (creating_extension &&
589 344 : otherObject.classId == ExtensionRelationId &&
590 344 : otherObject.objectId == CurrentExtensionObject)
591 344 : break;
592 :
593 : /* Otherwise, treat this like an internal dependency */
594 : /* FALL THRU */
595 :
596 : case DEPENDENCY_INTERNAL:
597 :
598 : /*
599 : * This object is part of the internal implementation of
600 : * another object, or is part of the extension that is the
601 : * other object. We have three cases:
602 : *
603 : * 1. At the outermost recursion level, we must disallow the
604 : * DROP. However, if the owning object is listed in
605 : * pendingObjects, just release the caller's lock and return;
606 : * we'll eventually complete the DROP when we reach that entry
607 : * in the pending list.
608 : *
609 : * Note: the above statement is true only if this pg_depend
610 : * entry still exists by then; in principle, therefore, we
611 : * could miss deleting an item the user told us to delete.
612 : * However, no inconsistency can result: since we're at outer
613 : * level, there is no object depending on this one.
614 : */
615 122230 : if (stack == NULL)
616 : {
617 80 : if (pendingObjects &&
618 40 : object_address_present(&otherObject, pendingObjects))
619 : {
620 0 : systable_endscan(scan);
621 : /* need to release caller's lock; see notes below */
622 0 : ReleaseDeletionLock(object);
623 0 : return;
624 : }
625 :
626 : /*
627 : * We postpone actually issuing the error message until
628 : * after this loop, so that we can make the behavior
629 : * independent of the ordering of pg_depend entries, at
630 : * least if there's not more than one INTERNAL and one
631 : * EXTENSION dependency. (If there's more, we'll complain
632 : * about a random one of them.) Prefer to complain about
633 : * EXTENSION, since that's generally a more important
634 : * dependency.
635 : */
636 40 : if (!OidIsValid(owningObject.classId) ||
637 0 : foundDep->deptype == DEPENDENCY_EXTENSION)
638 40 : owningObject = otherObject;
639 40 : break;
640 : }
641 :
642 : /*
643 : * 2. When recursing from the other end of this dependency,
644 : * it's okay to continue with the deletion. This holds when
645 : * recursing from a whole object that includes the nominal
646 : * other end as a component, too. Since there can be more
647 : * than one "owning" object, we have to allow matches that are
648 : * more than one level down in the stack.
649 : */
650 122190 : if (stack_address_present_add_flags(&otherObject, 0, stack))
651 120458 : break;
652 :
653 : /*
654 : * 3. Not all the owning objects have been visited, so
655 : * transform this deletion request into a delete of this
656 : * owning object.
657 : *
658 : * First, release caller's lock on this object and get
659 : * deletion lock on the owning object. (We must release
660 : * caller's lock to avoid deadlock against a concurrent
661 : * deletion of the owning object.)
662 : */
663 1732 : ReleaseDeletionLock(object);
664 1732 : AcquireDeletionLock(&otherObject, 0);
665 :
666 : /*
667 : * The owning object might have been deleted while we waited
668 : * to lock it; if so, neither it nor the current object are
669 : * interesting anymore. We test this by checking the
670 : * pg_depend entry (see notes below).
671 : */
672 1732 : if (!systable_recheck_tuple(scan, tup))
673 : {
674 0 : systable_endscan(scan);
675 0 : ReleaseDeletionLock(&otherObject);
676 0 : return;
677 : }
678 :
679 : /*
680 : * One way or the other, we're done with the scan; might as
681 : * well close it down before recursing, to reduce peak
682 : * resource consumption.
683 : */
684 1732 : systable_endscan(scan);
685 :
686 : /*
687 : * Okay, recurse to the owning object instead of proceeding.
688 : *
689 : * We do not need to stack the current object; we want the
690 : * traversal order to be as if the original reference had
691 : * linked to the owning object instead of this one.
692 : *
693 : * The dependency type is a "reverse" dependency: we need to
694 : * delete the owning object if this one is to be deleted, but
695 : * this linkage is never a reason for an automatic deletion.
696 : */
697 1732 : findDependentObjects(&otherObject,
698 : DEPFLAG_REVERSE,
699 : flags,
700 : stack,
701 : targetObjects,
702 : pendingObjects,
703 : depRel);
704 :
705 : /*
706 : * The current target object should have been added to
707 : * targetObjects while processing the owning object; but it
708 : * probably got only the flag bits associated with the
709 : * dependency we're looking at. We need to add the objflags
710 : * that were passed to this recursion level, too, else we may
711 : * get a bogus failure in reportDependentObjects (if, for
712 : * example, we were called due to a partition dependency).
713 : *
714 : * If somehow the current object didn't get scheduled for
715 : * deletion, bleat. (That would imply that somebody deleted
716 : * this dependency record before the recursion got to it.)
717 : * Another idea would be to reacquire lock on the current
718 : * object and resume trying to delete it, but it seems not
719 : * worth dealing with the race conditions inherent in that.
720 : */
721 1732 : if (!object_address_present_add_flags(object, objflags,
722 : targetObjects))
723 0 : elog(ERROR, "deletion of owning object %s failed to delete %s",
724 : getObjectDescription(&otherObject, false),
725 : getObjectDescription(object, false));
726 :
727 : /* And we're done here. */
728 1732 : return;
729 :
730 5010 : case DEPENDENCY_PARTITION_PRI:
731 :
732 : /*
733 : * Remember that this object has a partition-type dependency.
734 : * After the dependency scan, we'll complain if we didn't find
735 : * a reason to delete one of its partition dependencies.
736 : */
737 5010 : objflags |= DEPFLAG_IS_PART;
738 :
739 : /*
740 : * Also remember the primary partition owner, for error
741 : * messages. If there are multiple primary owners (which
742 : * there should not be), we'll report a random one of them.
743 : */
744 5010 : partitionObject = otherObject;
745 5010 : break;
746 :
747 5010 : case DEPENDENCY_PARTITION_SEC:
748 :
749 : /*
750 : * Only use secondary partition owners in error messages if we
751 : * find no primary owner (which probably shouldn't happen).
752 : */
753 5010 : if (!(objflags & DEPFLAG_IS_PART))
754 6 : partitionObject = otherObject;
755 :
756 : /*
757 : * Remember that this object has a partition-type dependency.
758 : * After the dependency scan, we'll complain if we didn't find
759 : * a reason to delete one of its partition dependencies.
760 : */
761 5010 : objflags |= DEPFLAG_IS_PART;
762 5010 : break;
763 :
764 0 : default:
765 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
766 : foundDep->deptype, getObjectDescription(object, false));
767 : break;
768 : }
769 : }
770 :
771 226652 : systable_endscan(scan);
772 :
773 : /*
774 : * If we found an INTERNAL or EXTENSION dependency when we're at outer
775 : * level, complain about it now. If we also found a PARTITION dependency,
776 : * we prefer to report the PARTITION dependency. This is arbitrary but
777 : * seems to be more useful in practice.
778 : */
779 226652 : if (OidIsValid(owningObject.classId))
780 : {
781 : char *otherObjDesc;
782 :
783 40 : if (OidIsValid(partitionObject.classId))
784 12 : otherObjDesc = getObjectDescription(&partitionObject, false);
785 : else
786 28 : otherObjDesc = getObjectDescription(&owningObject, false);
787 :
788 40 : ereport(ERROR,
789 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
790 : errmsg("cannot drop %s because %s requires it",
791 : getObjectDescription(object, false), otherObjDesc),
792 : errhint("You can drop %s instead.", otherObjDesc)));
793 : }
794 :
795 : /*
796 : * Next, identify all objects that directly depend on the current object.
797 : * To ensure predictable deletion order, we collect them up in
798 : * dependentObjects and sort the list before actually recursing. (The
799 : * deletion order would be valid in any case, but doing this ensures
800 : * consistent output from DROP CASCADE commands, which is helpful for
801 : * regression testing.)
802 : */
803 226612 : maxDependentObjects = 128; /* arbitrary initial allocation */
804 226612 : dependentObjects = palloc_array(ObjectAddressAndFlags, maxDependentObjects);
805 226612 : numDependentObjects = 0;
806 :
807 226612 : ScanKeyInit(&key[0],
808 : Anum_pg_depend_refclassid,
809 : BTEqualStrategyNumber, F_OIDEQ,
810 226612 : ObjectIdGetDatum(object->classId));
811 226612 : ScanKeyInit(&key[1],
812 : Anum_pg_depend_refobjid,
813 : BTEqualStrategyNumber, F_OIDEQ,
814 226612 : ObjectIdGetDatum(object->objectId));
815 226612 : if (object->objectSubId != 0)
816 : {
817 2182 : ScanKeyInit(&key[2],
818 : Anum_pg_depend_refobjsubid,
819 : BTEqualStrategyNumber, F_INT4EQ,
820 2182 : Int32GetDatum(object->objectSubId));
821 2182 : nkeys = 3;
822 : }
823 : else
824 224430 : nkeys = 2;
825 :
826 226612 : scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827 : NULL, nkeys, key);
828 :
829 466202 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
830 : {
831 239590 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832 : int subflags;
833 :
834 239590 : otherObject.classId = foundDep->classid;
835 239590 : otherObject.objectId = foundDep->objid;
836 239590 : otherObject.objectSubId = foundDep->objsubid;
837 :
838 : /*
839 : * If what we found is a sub-object of the current object, just ignore
840 : * it. (Normally, such a dependency is implicit, but we must make
841 : * explicit ones in some cases involving partitioning.)
842 : */
843 239590 : if (otherObject.classId == object->classId &&
844 98994 : otherObject.objectId == object->objectId &&
845 4404 : object->objectSubId == 0)
846 4404 : continue;
847 :
848 : /*
849 : * Must lock the dependent object before recursing to it.
850 : */
851 235186 : AcquireDeletionLock(&otherObject, 0);
852 :
853 : /*
854 : * The dependent object might have been deleted while we waited to
855 : * lock it; if so, we don't need to do anything more with it. We can
856 : * test this cheaply and independently of the object's type by seeing
857 : * if the pg_depend tuple we are looking at is still live. (If the
858 : * object got deleted, the tuple would have been deleted too.)
859 : */
860 235186 : if (!systable_recheck_tuple(scan, tup))
861 : {
862 : /* release the now-useless lock */
863 0 : ReleaseDeletionLock(&otherObject);
864 : /* and continue scanning for dependencies */
865 0 : continue;
866 : }
867 :
868 : /*
869 : * We do need to delete it, so identify objflags to be passed down,
870 : * which depend on the dependency type.
871 : */
872 235186 : switch (foundDep->deptype)
873 : {
874 32670 : case DEPENDENCY_NORMAL:
875 32670 : subflags = DEPFLAG_NORMAL;
876 32670 : break;
877 72988 : case DEPENDENCY_AUTO:
878 : case DEPENDENCY_AUTO_EXTENSION:
879 72988 : subflags = DEPFLAG_AUTO;
880 72988 : break;
881 115416 : case DEPENDENCY_INTERNAL:
882 115416 : subflags = DEPFLAG_INTERNAL;
883 115416 : break;
884 9146 : case DEPENDENCY_PARTITION_PRI:
885 : case DEPENDENCY_PARTITION_SEC:
886 9146 : subflags = DEPFLAG_PARTITION;
887 9146 : break;
888 4966 : case DEPENDENCY_EXTENSION:
889 4966 : subflags = DEPFLAG_EXTENSION;
890 4966 : break;
891 0 : default:
892 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
893 : foundDep->deptype, getObjectDescription(object, false));
894 : subflags = 0; /* keep compiler quiet */
895 : break;
896 : }
897 :
898 : /* And add it to the pending-objects list */
899 235186 : if (numDependentObjects >= maxDependentObjects)
900 : {
901 : /* enlarge array if needed */
902 36 : maxDependentObjects *= 2;
903 : dependentObjects = (ObjectAddressAndFlags *)
904 36 : repalloc(dependentObjects,
905 : maxDependentObjects * sizeof(ObjectAddressAndFlags));
906 : }
907 :
908 235186 : dependentObjects[numDependentObjects].obj = otherObject;
909 235186 : dependentObjects[numDependentObjects].subflags = subflags;
910 235186 : numDependentObjects++;
911 : }
912 :
913 226612 : systable_endscan(scan);
914 :
915 : /*
916 : * Now we can sort the dependent objects into a stable visitation order.
917 : * It's safe to use object_address_comparator here since the obj field is
918 : * first within ObjectAddressAndFlags.
919 : */
920 226612 : if (numDependentObjects > 1)
921 49678 : qsort(dependentObjects, numDependentObjects,
922 : sizeof(ObjectAddressAndFlags),
923 : object_address_comparator);
924 :
925 : /*
926 : * Now recurse to the dependent objects. We must visit them first since
927 : * they have to be deleted before the current object.
928 : */
929 226612 : mystack.object = object; /* set up a new stack level */
930 226612 : mystack.flags = objflags;
931 226612 : mystack.next = stack;
932 :
933 461798 : for (int i = 0; i < numDependentObjects; i++)
934 : {
935 235186 : ObjectAddressAndFlags *depObj = dependentObjects + i;
936 :
937 235186 : findDependentObjects(&depObj->obj,
938 : depObj->subflags,
939 : flags,
940 : &mystack,
941 : targetObjects,
942 : pendingObjects,
943 : depRel);
944 : }
945 :
946 226612 : pfree(dependentObjects);
947 :
948 : /*
949 : * Finally, we can add the target object to targetObjects. Be careful to
950 : * include any flags that were passed back down to us from inner recursion
951 : * levels. Record the "dependee" as being either the most important
952 : * partition owner if there is one, else the object we recursed from, if
953 : * any. (The logic in reportDependentObjects() is such that it can only
954 : * need one of those objects.)
955 : */
956 226612 : extra.flags = mystack.flags;
957 226612 : if (extra.flags & DEPFLAG_IS_PART)
958 4994 : extra.dependee = partitionObject;
959 221618 : else if (stack)
960 183234 : extra.dependee = *stack->object;
961 : else
962 38384 : memset(&extra.dependee, 0, sizeof(extra.dependee));
963 226612 : add_exact_object_address_extra(object, &extra, targetObjects);
964 : }
965 :
966 : /*
967 : * reportDependentObjects - report about dependencies, and fail if RESTRICT
968 : *
969 : * Tell the user about dependent objects that we are going to delete
970 : * (or would need to delete, but are prevented by RESTRICT mode);
971 : * then error out if there are any and it's not CASCADE mode.
972 : *
973 : * targetObjects: list of objects that are scheduled to be deleted
974 : * behavior: RESTRICT or CASCADE
975 : * flags: other flags for the deletion operation
976 : * origObject: base object of deletion, or NULL if not available
977 : * (the latter case occurs in DROP OWNED)
978 : */
979 : static void
980 33396 : reportDependentObjects(const ObjectAddresses *targetObjects,
981 : DropBehavior behavior,
982 : int flags,
983 : const ObjectAddress *origObject)
984 : {
985 33396 : int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986 33396 : bool ok = true;
987 : StringInfoData clientdetail;
988 : StringInfoData logdetail;
989 33396 : int numReportedClient = 0;
990 33396 : int numNotReportedClient = 0;
991 : int i;
992 :
993 : /*
994 : * If we need to delete any partition-dependent objects, make sure that
995 : * we're deleting at least one of their partition dependencies, too. That
996 : * can be detected by checking that we reached them by a PARTITION
997 : * dependency at some point.
998 : *
999 : * We just report the first such object, as in most cases the only way to
1000 : * trigger this complaint is to explicitly try to delete one partition of
1001 : * a partitioned object.
1002 : */
1003 259978 : for (i = 0; i < targetObjects->numrefs; i++)
1004 : {
1005 226612 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1006 :
1007 226612 : if ((extra->flags & DEPFLAG_IS_PART) &&
1008 4994 : !(extra->flags & DEPFLAG_PARTITION))
1009 : {
1010 30 : const ObjectAddress *object = &targetObjects->refs[i];
1011 30 : char *otherObjDesc = getObjectDescription(&extra->dependee,
1012 : false);
1013 :
1014 30 : ereport(ERROR,
1015 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016 : errmsg("cannot drop %s because %s requires it",
1017 : getObjectDescription(object, false), otherObjDesc),
1018 : errhint("You can drop %s instead.", otherObjDesc)));
1019 : }
1020 : }
1021 :
1022 : /*
1023 : * If no error is to be thrown, and the msglevel is too low to be shown to
1024 : * either client or server log, there's no need to do any of the rest of
1025 : * the work.
1026 : */
1027 33366 : if (behavior == DROP_CASCADE &&
1028 3456 : !message_level_is_interesting(msglevel))
1029 946 : return;
1030 :
1031 : /*
1032 : * We limit the number of dependencies reported to the client to
1033 : * MAX_REPORTED_DEPS, since client software may not deal well with
1034 : * enormous error strings. The server log always gets a full report.
1035 : */
1036 : #define MAX_REPORTED_DEPS 100
1037 :
1038 32420 : initStringInfo(&clientdetail);
1039 32420 : initStringInfo(&logdetail);
1040 :
1041 : /*
1042 : * We process the list back to front (ie, in dependency order not deletion
1043 : * order), since this makes for a more understandable display.
1044 : */
1045 246468 : for (i = targetObjects->numrefs - 1; i >= 0; i--)
1046 : {
1047 214048 : const ObjectAddress *obj = &targetObjects->refs[i];
1048 214048 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049 : char *objDesc;
1050 :
1051 : /* Ignore the original deletion target(s) */
1052 214048 : if (extra->flags & DEPFLAG_ORIGINAL)
1053 38246 : continue;
1054 :
1055 : /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 175802 : if (extra->flags & DEPFLAG_SUBOBJECT)
1057 0 : continue;
1058 :
1059 175802 : objDesc = getObjectDescription(obj, false);
1060 :
1061 : /* An object being dropped concurrently doesn't need to be reported */
1062 175802 : if (objDesc == NULL)
1063 0 : continue;
1064 :
1065 : /*
1066 : * If, at any stage of the recursive search, we reached the object via
1067 : * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 : * okay to delete it even in RESTRICT mode.
1069 : */
1070 175802 : if (extra->flags & (DEPFLAG_AUTO |
1071 : DEPFLAG_INTERNAL |
1072 : DEPFLAG_PARTITION |
1073 : DEPFLAG_EXTENSION))
1074 : {
1075 : /*
1076 : * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 : * try to combine them with the regular message because the
1078 : * results are too confusing when client_min_messages and
1079 : * log_min_messages are different.
1080 : */
1081 166880 : ereport(DEBUG2,
1082 : (errmsg_internal("drop auto-cascades to %s",
1083 : objDesc)));
1084 : }
1085 8922 : else if (behavior == DROP_RESTRICT)
1086 : {
1087 514 : char *otherDesc = getObjectDescription(&extra->dependee,
1088 : false);
1089 :
1090 514 : if (otherDesc)
1091 : {
1092 514 : if (numReportedClient < MAX_REPORTED_DEPS)
1093 : {
1094 : /* separate entries with a newline */
1095 514 : if (clientdetail.len != 0)
1096 206 : appendStringInfoChar(&clientdetail, '\n');
1097 514 : appendStringInfo(&clientdetail, _("%s depends on %s"),
1098 : objDesc, otherDesc);
1099 514 : numReportedClient++;
1100 : }
1101 : else
1102 0 : numNotReportedClient++;
1103 : /* separate entries with a newline */
1104 514 : if (logdetail.len != 0)
1105 206 : appendStringInfoChar(&logdetail, '\n');
1106 514 : appendStringInfo(&logdetail, _("%s depends on %s"),
1107 : objDesc, otherDesc);
1108 514 : pfree(otherDesc);
1109 : }
1110 : else
1111 0 : numNotReportedClient++;
1112 514 : ok = false;
1113 : }
1114 : else
1115 : {
1116 8408 : if (numReportedClient < MAX_REPORTED_DEPS)
1117 : {
1118 : /* separate entries with a newline */
1119 6570 : if (clientdetail.len != 0)
1120 5062 : appendStringInfoChar(&clientdetail, '\n');
1121 6570 : appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122 : objDesc);
1123 6570 : numReportedClient++;
1124 : }
1125 : else
1126 1838 : numNotReportedClient++;
1127 : /* separate entries with a newline */
1128 8408 : if (logdetail.len != 0)
1129 6900 : appendStringInfoChar(&logdetail, '\n');
1130 8408 : appendStringInfo(&logdetail, _("drop cascades to %s"),
1131 : objDesc);
1132 : }
1133 :
1134 175802 : pfree(objDesc);
1135 : }
1136 :
1137 32420 : if (numNotReportedClient > 0)
1138 20 : appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139 : "(see server log for list)",
1140 : "\nand %d other objects "
1141 : "(see server log for list)",
1142 : numNotReportedClient),
1143 : numNotReportedClient);
1144 :
1145 32420 : if (!ok)
1146 : {
1147 308 : if (origObject)
1148 302 : ereport(ERROR,
1149 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150 : errmsg("cannot drop %s because other objects depend on it",
1151 : getObjectDescription(origObject, false)),
1152 : errdetail_internal("%s", clientdetail.data),
1153 : errdetail_log("%s", logdetail.data),
1154 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155 : else
1156 6 : ereport(ERROR,
1157 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158 : errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 : errdetail_internal("%s", clientdetail.data),
1160 : errdetail_log("%s", logdetail.data),
1161 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1162 : }
1163 32112 : else if (numReportedClient > 1)
1164 : {
1165 708 : ereport(msglevel,
1166 : (errmsg_plural("drop cascades to %d other object",
1167 : "drop cascades to %d other objects",
1168 : numReportedClient + numNotReportedClient,
1169 : numReportedClient + numNotReportedClient),
1170 : errdetail_internal("%s", clientdetail.data),
1171 : errdetail_log("%s", logdetail.data)));
1172 : }
1173 31404 : else if (numReportedClient == 1)
1174 : {
1175 : /* we just use the single item as-is */
1176 800 : ereport(msglevel,
1177 : (errmsg_internal("%s", clientdetail.data)));
1178 : }
1179 :
1180 32112 : pfree(clientdetail.data);
1181 32112 : pfree(logdetail.data);
1182 : }
1183 :
1184 : /*
1185 : * Drop an object by OID. Works for most catalogs, if no special processing
1186 : * is needed.
1187 : */
1188 : static void
1189 6152 : DropObjectById(const ObjectAddress *object)
1190 : {
1191 : int cacheId;
1192 : Relation rel;
1193 : HeapTuple tup;
1194 :
1195 6152 : cacheId = get_object_catcache_oid(object->classId);
1196 :
1197 6152 : rel = table_open(object->classId, RowExclusiveLock);
1198 :
1199 : /*
1200 : * Use the system cache for the oid column, if one exists.
1201 : */
1202 6152 : if (cacheId >= 0)
1203 : {
1204 2172 : tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1205 2172 : if (!HeapTupleIsValid(tup))
1206 0 : elog(ERROR, "cache lookup failed for %s %u",
1207 : get_object_class_descr(object->classId), object->objectId);
1208 :
1209 2172 : CatalogTupleDelete(rel, &tup->t_self);
1210 :
1211 2172 : ReleaseSysCache(tup);
1212 : }
1213 : else
1214 : {
1215 : ScanKeyData skey[1];
1216 : SysScanDesc scan;
1217 :
1218 3980 : ScanKeyInit(&skey[0],
1219 3980 : get_object_attnum_oid(object->classId),
1220 : BTEqualStrategyNumber, F_OIDEQ,
1221 3980 : ObjectIdGetDatum(object->objectId));
1222 :
1223 3980 : scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1224 : NULL, 1, skey);
1225 :
1226 : /* we expect exactly one match */
1227 3980 : tup = systable_getnext(scan);
1228 3980 : if (!HeapTupleIsValid(tup))
1229 0 : elog(ERROR, "could not find tuple for %s %u",
1230 : get_object_class_descr(object->classId), object->objectId);
1231 :
1232 3980 : CatalogTupleDelete(rel, &tup->t_self);
1233 :
1234 3980 : systable_endscan(scan);
1235 : }
1236 :
1237 6152 : table_close(rel, RowExclusiveLock);
1238 6152 : }
1239 :
1240 : /*
1241 : * deleteOneObject: delete a single object for performDeletion.
1242 : *
1243 : * *depRel is the already-open pg_depend relation.
1244 : */
1245 : static void
1246 221540 : deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1247 : {
1248 : ScanKeyData key[3];
1249 : int nkeys;
1250 : SysScanDesc scan;
1251 : HeapTuple tup;
1252 :
1253 : /* DROP hook of the objects being removed */
1254 221540 : InvokeObjectDropHookArg(object->classId, object->objectId,
1255 : object->objectSubId, flags);
1256 :
1257 : /*
1258 : * Close depRel if we are doing a drop concurrently. The object deletion
1259 : * subroutine will commit the current transaction, so we can't keep the
1260 : * relation open across doDeletion().
1261 : */
1262 221540 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1263 120 : table_close(*depRel, RowExclusiveLock);
1264 :
1265 : /*
1266 : * Delete the object itself, in an object-type-dependent way.
1267 : *
1268 : * We used to do this after removing the outgoing dependency links, but it
1269 : * seems just as reasonable to do it beforehand. In the concurrent case
1270 : * we *must* do it in this order, because we can't make any transactional
1271 : * updates before calling doDeletion() --- they'd get committed right
1272 : * away, which is not cool if the deletion then fails.
1273 : */
1274 221540 : doDeletion(object, flags);
1275 :
1276 : /*
1277 : * Reopen depRel if we closed it above
1278 : */
1279 221530 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1280 120 : *depRel = table_open(DependRelationId, RowExclusiveLock);
1281 :
1282 : /*
1283 : * Now remove any pg_depend records that link from this object to others.
1284 : * (Any records linking to this object should be gone already.)
1285 : *
1286 : * When dropping a whole object (subId = 0), remove all pg_depend records
1287 : * for its sub-objects too.
1288 : */
1289 221530 : ScanKeyInit(&key[0],
1290 : Anum_pg_depend_classid,
1291 : BTEqualStrategyNumber, F_OIDEQ,
1292 221530 : ObjectIdGetDatum(object->classId));
1293 221530 : ScanKeyInit(&key[1],
1294 : Anum_pg_depend_objid,
1295 : BTEqualStrategyNumber, F_OIDEQ,
1296 221530 : ObjectIdGetDatum(object->objectId));
1297 221530 : if (object->objectSubId != 0)
1298 : {
1299 2086 : ScanKeyInit(&key[2],
1300 : Anum_pg_depend_objsubid,
1301 : BTEqualStrategyNumber, F_INT4EQ,
1302 2086 : Int32GetDatum(object->objectSubId));
1303 2086 : nkeys = 3;
1304 : }
1305 : else
1306 219444 : nkeys = 2;
1307 :
1308 221530 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309 : NULL, nkeys, key);
1310 :
1311 525538 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
1312 : {
1313 304008 : CatalogTupleDelete(*depRel, &tup->t_self);
1314 : }
1315 :
1316 221530 : systable_endscan(scan);
1317 :
1318 : /*
1319 : * Delete shared dependency references related to this object. Again, if
1320 : * subId = 0, remove records for sub-objects too.
1321 : */
1322 221530 : deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1323 221530 : object->objectSubId);
1324 :
1325 :
1326 : /*
1327 : * Delete any comments, security labels, or initial privileges associated
1328 : * with this object. (This is a convenient place to do these things,
1329 : * rather than having every object type know to do it.) As above, all
1330 : * these functions must remove records for sub-objects too if the subid is
1331 : * zero.
1332 : */
1333 221530 : DeleteComments(object->objectId, object->classId, object->objectSubId);
1334 221530 : DeleteSecurityLabel(object);
1335 221530 : DeleteInitPrivs(object);
1336 :
1337 : /*
1338 : * CommandCounterIncrement here to ensure that preceding changes are all
1339 : * visible to the next deletion step.
1340 : */
1341 221530 : CommandCounterIncrement();
1342 :
1343 : /*
1344 : * And we're done!
1345 : */
1346 221530 : }
1347 :
1348 : /*
1349 : * doDeletion: actually delete a single object
1350 : */
1351 : static void
1352 221540 : doDeletion(const ObjectAddress *object, int flags)
1353 : {
1354 221540 : switch (object->classId)
1355 : {
1356 75764 : case RelationRelationId:
1357 : {
1358 75764 : char relKind = get_rel_relkind(object->objectId);
1359 :
1360 75764 : if (relKind == RELKIND_INDEX ||
1361 : relKind == RELKIND_PARTITIONED_INDEX)
1362 24292 : {
1363 24292 : bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364 24292 : bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1365 :
1366 : Assert(object->objectSubId == 0);
1367 24292 : index_drop(object->objectId, concurrent, concurrent_lock_mode);
1368 : }
1369 : else
1370 : {
1371 51472 : if (object->objectSubId != 0)
1372 2086 : RemoveAttributeById(object->objectId,
1373 2086 : object->objectSubId);
1374 : else
1375 49386 : heap_drop_with_catalog(object->objectId);
1376 : }
1377 :
1378 : /*
1379 : * for a sequence, in addition to dropping the heap, also
1380 : * delete pg_sequence tuple
1381 : */
1382 75758 : if (relKind == RELKIND_SEQUENCE)
1383 1010 : DeleteSequenceTuple(object->objectId);
1384 75758 : break;
1385 : }
1386 :
1387 8518 : case ProcedureRelationId:
1388 8518 : RemoveFunctionById(object->objectId);
1389 8518 : break;
1390 :
1391 78462 : case TypeRelationId:
1392 78462 : RemoveTypeById(object->objectId);
1393 78462 : break;
1394 :
1395 27810 : case ConstraintRelationId:
1396 27810 : RemoveConstraintById(object->objectId);
1397 27808 : break;
1398 :
1399 3428 : case AttrDefaultRelationId:
1400 3428 : RemoveAttrDefaultById(object->objectId);
1401 3428 : break;
1402 :
1403 94 : case LargeObjectRelationId:
1404 94 : LargeObjectDrop(object->objectId);
1405 94 : break;
1406 :
1407 788 : case OperatorRelationId:
1408 788 : RemoveOperatorById(object->objectId);
1409 788 : break;
1410 :
1411 2942 : case RewriteRelationId:
1412 2942 : RemoveRewriteRuleById(object->objectId);
1413 2940 : break;
1414 :
1415 14522 : case TriggerRelationId:
1416 14522 : RemoveTriggerById(object->objectId);
1417 14522 : break;
1418 :
1419 628 : case StatisticExtRelationId:
1420 628 : RemoveStatisticsById(object->objectId);
1421 628 : break;
1422 :
1423 48 : case TSConfigRelationId:
1424 48 : RemoveTSConfigurationById(object->objectId);
1425 48 : break;
1426 :
1427 182 : case ExtensionRelationId:
1428 182 : RemoveExtensionById(object->objectId);
1429 182 : break;
1430 :
1431 652 : case PolicyRelationId:
1432 652 : RemovePolicyById(object->objectId);
1433 652 : break;
1434 :
1435 192 : case PublicationNamespaceRelationId:
1436 192 : RemovePublicationSchemaById(object->objectId);
1437 192 : break;
1438 :
1439 846 : case PublicationRelRelationId:
1440 846 : RemovePublicationRelById(object->objectId);
1441 846 : break;
1442 :
1443 512 : case PublicationRelationId:
1444 512 : RemovePublicationById(object->objectId);
1445 512 : break;
1446 :
1447 6152 : case CastRelationId:
1448 : case CollationRelationId:
1449 : case ConversionRelationId:
1450 : case LanguageRelationId:
1451 : case OperatorClassRelationId:
1452 : case OperatorFamilyRelationId:
1453 : case AccessMethodRelationId:
1454 : case AccessMethodOperatorRelationId:
1455 : case AccessMethodProcedureRelationId:
1456 : case NamespaceRelationId:
1457 : case TSParserRelationId:
1458 : case TSDictionaryRelationId:
1459 : case TSTemplateRelationId:
1460 : case ForeignDataWrapperRelationId:
1461 : case ForeignServerRelationId:
1462 : case UserMappingRelationId:
1463 : case DefaultAclRelationId:
1464 : case EventTriggerRelationId:
1465 : case TransformRelationId:
1466 : case AuthMemRelationId:
1467 6152 : DropObjectById(object);
1468 6152 : break;
1469 :
1470 : /*
1471 : * These global object types are not supported here.
1472 : */
1473 0 : case AuthIdRelationId:
1474 : case DatabaseRelationId:
1475 : case TableSpaceRelationId:
1476 : case SubscriptionRelationId:
1477 : case ParameterAclRelationId:
1478 0 : elog(ERROR, "global objects cannot be deleted by doDeletion");
1479 : break;
1480 :
1481 0 : default:
1482 0 : elog(ERROR, "unsupported object class: %u", object->classId);
1483 : }
1484 221530 : }
1485 :
1486 : /*
1487 : * AcquireDeletionLock - acquire a suitable lock for deleting an object
1488 : *
1489 : * Accepts the same flags as performDeletion (though currently only
1490 : * PERFORM_DELETION_CONCURRENTLY does anything).
1491 : *
1492 : * We use LockRelation for relations, and otherwise LockSharedObject or
1493 : * LockDatabaseObject as appropriate for the object type.
1494 : */
1495 : void
1496 276556 : AcquireDeletionLock(const ObjectAddress *object, int flags)
1497 : {
1498 276556 : if (object->classId == RelationRelationId)
1499 : {
1500 : /*
1501 : * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 : * the index for the moment. index_drop() will promote the lock once
1503 : * it's safe to do so. In all other cases we need full exclusive
1504 : * lock.
1505 : */
1506 95248 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1507 120 : LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1508 : else
1509 95128 : LockRelationOid(object->objectId, AccessExclusiveLock);
1510 : }
1511 181308 : else if (object->classId == AuthMemRelationId)
1512 12 : LockSharedObject(object->classId, object->objectId, 0,
1513 : AccessExclusiveLock);
1514 : else
1515 : {
1516 : /* assume we should lock the whole object not a sub-object */
1517 181296 : LockDatabaseObject(object->classId, object->objectId, 0,
1518 : AccessExclusiveLock);
1519 : }
1520 276556 : }
1521 :
1522 : /*
1523 : * ReleaseDeletionLock - release an object deletion lock
1524 : *
1525 : * Companion to AcquireDeletionLock.
1526 : */
1527 : void
1528 1732 : ReleaseDeletionLock(const ObjectAddress *object)
1529 : {
1530 1732 : if (object->classId == RelationRelationId)
1531 62 : UnlockRelationOid(object->objectId, AccessExclusiveLock);
1532 : else
1533 : /* assume we should lock the whole object not a sub-object */
1534 1670 : UnlockDatabaseObject(object->classId, object->objectId, 0,
1535 : AccessExclusiveLock);
1536 1732 : }
1537 :
1538 : /*
1539 : * recordDependencyOnExpr - find expression dependencies
1540 : *
1541 : * This is used to find the dependencies of rules, constraint expressions,
1542 : * etc.
1543 : *
1544 : * Given an expression or query in node-tree form, find all the objects
1545 : * it refers to (tables, columns, operators, functions, etc). Record
1546 : * a dependency of the specified type from the given depender object
1547 : * to each object mentioned in the expression.
1548 : *
1549 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 : * It can be NIL if no such variables are expected.
1551 : */
1552 : void
1553 21026 : recordDependencyOnExpr(const ObjectAddress *depender,
1554 : Node *expr, List *rtable,
1555 : DependencyType behavior)
1556 : {
1557 : ObjectAddresses *addrs;
1558 :
1559 21026 : addrs = new_object_addresses();
1560 :
1561 : /* Collect all dependencies from the expression */
1562 21026 : collectDependenciesOfExpr(addrs, expr, rtable);
1563 :
1564 : /* Remove duplicates */
1565 21026 : eliminate_duplicate_dependencies(addrs);
1566 :
1567 : /* And record 'em */
1568 21026 : recordMultipleDependencies(depender,
1569 21026 : addrs->refs, addrs->numrefs,
1570 : behavior);
1571 :
1572 21026 : free_object_addresses(addrs);
1573 21026 : }
1574 :
1575 : /*
1576 : * collectDependenciesOfExpr - collect expression dependencies
1577 : *
1578 : * This function analyzes an expression or query in node-tree form to
1579 : * find all the objects it refers to (tables, columns, operators,
1580 : * functions, etc.) and adds them to the provided ObjectAddresses
1581 : * structure. Unlike recordDependencyOnExpr, this function does not
1582 : * immediately record the dependencies, allowing the caller to add to,
1583 : * filter, or modify the collected dependencies before recording them.
1584 : *
1585 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1586 : * It can be NIL if no such variables are expected.
1587 : *
1588 : * Note: the returned list may well contain duplicates. The caller should
1589 : * de-duplicate before recording the dependencies. Within this file, callers
1590 : * must call eliminate_duplicate_dependencies(). External callers typically
1591 : * go through record_object_address_dependencies() which will see to that.
1592 : * This choice allows collecting dependencies from multiple sources without
1593 : * redundant de-duplication work.
1594 : */
1595 : void
1596 48520 : collectDependenciesOfExpr(ObjectAddresses *addrs,
1597 : Node *expr, List *rtable)
1598 : {
1599 : find_expr_references_context context;
1600 :
1601 48520 : context.addrs = addrs;
1602 :
1603 : /* Set up interpretation for Vars at varlevelsup = 0 */
1604 48520 : context.rtables = list_make1(rtable);
1605 :
1606 : /* Scan the expression tree for referenceable objects */
1607 48520 : find_expr_references_walker(expr, &context);
1608 48514 : }
1609 :
1610 : /*
1611 : * recordDependencyOnSingleRelExpr - find expression dependencies
1612 : *
1613 : * As above, but only one relation is expected to be referenced (with
1614 : * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1615 : * range table. An additional frammish is that dependencies on that
1616 : * relation's component columns will be marked with 'self_behavior',
1617 : * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1618 : * is true, those dependencies are reversed so that the columns are made
1619 : * to depend on the table not vice versa.
1620 : *
1621 : * NOTE: the caller should ensure that a whole-table dependency on the
1622 : * specified relation is created separately, if one is needed. In particular,
1623 : * a whole-row Var "relation.*" will not cause this routine to emit any
1624 : * dependency item. This is appropriate behavior for subexpressions of an
1625 : * ordinary query, so other cases need to cope as necessary.
1626 : */
1627 : void
1628 10466 : recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1629 : Node *expr, Oid relId,
1630 : DependencyType behavior,
1631 : DependencyType self_behavior,
1632 : bool reverse_self)
1633 : {
1634 : find_expr_references_context context;
1635 10466 : RangeTblEntry rte = {0};
1636 :
1637 10466 : context.addrs = new_object_addresses();
1638 :
1639 : /* We gin up a rather bogus rangetable list to handle Vars */
1640 10466 : rte.type = T_RangeTblEntry;
1641 10466 : rte.rtekind = RTE_RELATION;
1642 10466 : rte.relid = relId;
1643 10466 : rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1644 10466 : rte.rellockmode = AccessShareLock;
1645 :
1646 10466 : context.rtables = list_make1(list_make1(&rte));
1647 :
1648 : /* Scan the expression tree for referenceable objects */
1649 10466 : find_expr_references_walker(expr, &context);
1650 :
1651 : /* Remove any duplicates */
1652 10454 : eliminate_duplicate_dependencies(context.addrs);
1653 :
1654 : /* Separate self-dependencies if necessary */
1655 10454 : if ((behavior != self_behavior || reverse_self) &&
1656 1858 : context.addrs->numrefs > 0)
1657 : {
1658 : ObjectAddresses *self_addrs;
1659 : ObjectAddress *outobj;
1660 : int oldref,
1661 : outrefs;
1662 :
1663 1852 : self_addrs = new_object_addresses();
1664 :
1665 1852 : outobj = context.addrs->refs;
1666 1852 : outrefs = 0;
1667 7626 : for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1668 : {
1669 5774 : ObjectAddress *thisobj = context.addrs->refs + oldref;
1670 :
1671 5774 : if (thisobj->classId == RelationRelationId &&
1672 2366 : thisobj->objectId == relId)
1673 : {
1674 : /* Move this ref into self_addrs */
1675 2294 : add_exact_object_address(thisobj, self_addrs);
1676 : }
1677 : else
1678 : {
1679 : /* Keep it in context.addrs */
1680 3480 : *outobj = *thisobj;
1681 3480 : outobj++;
1682 3480 : outrefs++;
1683 : }
1684 : }
1685 1852 : context.addrs->numrefs = outrefs;
1686 :
1687 : /* Record the self-dependencies with the appropriate direction */
1688 1852 : if (!reverse_self)
1689 1644 : recordMultipleDependencies(depender,
1690 1644 : self_addrs->refs, self_addrs->numrefs,
1691 : self_behavior);
1692 : else
1693 : {
1694 : /* Can't use recordMultipleDependencies, so do it the hard way */
1695 : int selfref;
1696 :
1697 498 : for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1698 : {
1699 290 : ObjectAddress *thisobj = self_addrs->refs + selfref;
1700 :
1701 290 : recordDependencyOn(thisobj, depender, self_behavior);
1702 : }
1703 : }
1704 :
1705 1852 : free_object_addresses(self_addrs);
1706 : }
1707 :
1708 : /* Record the external dependencies */
1709 10454 : recordMultipleDependencies(depender,
1710 10454 : context.addrs->refs, context.addrs->numrefs,
1711 : behavior);
1712 :
1713 10454 : free_object_addresses(context.addrs);
1714 10454 : }
1715 :
1716 : /*
1717 : * Recursively search an expression tree for object references.
1718 : *
1719 : * Note: in many cases we do not need to create dependencies on the datatypes
1720 : * involved in an expression, because we'll have an indirect dependency via
1721 : * some other object. For instance Var nodes depend on a column which depends
1722 : * on the datatype, and OpExpr nodes depend on the operator which depends on
1723 : * the datatype. However we do need a type dependency if there is no such
1724 : * indirect dependency, as for example in Const and CoerceToDomain nodes.
1725 : *
1726 : * Similarly, we don't need to create dependencies on collations except where
1727 : * the collation is being freshly introduced to the expression.
1728 : */
1729 : static bool
1730 3836514 : find_expr_references_walker(Node *node,
1731 : find_expr_references_context *context)
1732 : {
1733 3836514 : if (node == NULL)
1734 1286404 : return false;
1735 2550110 : if (IsA(node, Var))
1736 : {
1737 650740 : Var *var = (Var *) node;
1738 : List *rtable;
1739 : RangeTblEntry *rte;
1740 :
1741 : /* Find matching rtable entry, or complain if not found */
1742 650740 : if (var->varlevelsup >= list_length(context->rtables))
1743 0 : elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1744 650740 : rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1745 650740 : if (var->varno <= 0 || var->varno > list_length(rtable))
1746 0 : elog(ERROR, "invalid varno %d", var->varno);
1747 650740 : rte = rt_fetch(var->varno, rtable);
1748 :
1749 : /*
1750 : * A whole-row Var references no specific columns, so adds no new
1751 : * dependency. (We assume that there is a whole-table dependency
1752 : * arising from each underlying rangetable entry. While we could
1753 : * record such a dependency when finding a whole-row Var that
1754 : * references a relation directly, it's quite unclear how to extend
1755 : * that to whole-row Vars for JOINs, so it seems better to leave the
1756 : * responsibility with the range table. Note that this poses some
1757 : * risks for identifying dependencies of stand-alone expressions:
1758 : * whole-table references may need to be created separately.)
1759 : */
1760 650740 : if (var->varattno == InvalidAttrNumber)
1761 11312 : return false;
1762 639428 : if (rte->rtekind == RTE_RELATION)
1763 : {
1764 : /* If it's a plain relation, reference this column */
1765 457886 : add_object_address(RelationRelationId, rte->relid, var->varattno,
1766 : context->addrs);
1767 : }
1768 181542 : else if (rte->rtekind == RTE_FUNCTION)
1769 : {
1770 : /* Might need to add a dependency on a composite type's column */
1771 : /* (done out of line, because it's a bit bulky) */
1772 93688 : process_function_rte_ref(rte, var->varattno, context);
1773 : }
1774 :
1775 : /*
1776 : * Vars referencing other RTE types require no additional work. In
1777 : * particular, a join alias Var can be ignored, because it must
1778 : * reference a merged USING column. The relevant join input columns
1779 : * will also be referenced in the join qual, and any type coercion
1780 : * functions involved in the alias expression will be dealt with when
1781 : * we scan the RTE itself.
1782 : */
1783 639428 : return false;
1784 : }
1785 1899370 : else if (IsA(node, Const))
1786 : {
1787 308970 : Const *con = (Const *) node;
1788 : Oid objoid;
1789 :
1790 : /* A constant must depend on the constant's datatype */
1791 308970 : add_object_address(TypeRelationId, con->consttype, 0,
1792 : context->addrs);
1793 :
1794 : /*
1795 : * We must also depend on the constant's collation: it could be
1796 : * different from the datatype's, if a CollateExpr was const-folded to
1797 : * a simple constant. However we can save work in the most common
1798 : * case where the collation is "default", since we know that's pinned.
1799 : */
1800 308970 : if (OidIsValid(con->constcollid) &&
1801 128514 : con->constcollid != DEFAULT_COLLATION_OID)
1802 32100 : add_object_address(CollationRelationId, con->constcollid, 0,
1803 : context->addrs);
1804 :
1805 : /*
1806 : * If it's a regclass or similar literal referring to an existing
1807 : * object, add a reference to that object. (Currently, only the
1808 : * regclass and regconfig cases have any likely use, but we may as
1809 : * well handle all the OID-alias datatypes consistently.)
1810 : */
1811 308970 : if (!con->constisnull)
1812 : {
1813 258868 : switch (con->consttype)
1814 : {
1815 0 : case REGPROCOID:
1816 : case REGPROCEDUREOID:
1817 0 : objoid = DatumGetObjectId(con->constvalue);
1818 0 : if (SearchSysCacheExists1(PROCOID,
1819 : ObjectIdGetDatum(objoid)))
1820 0 : add_object_address(ProcedureRelationId, objoid, 0,
1821 : context->addrs);
1822 0 : break;
1823 0 : case REGOPEROID:
1824 : case REGOPERATOROID:
1825 0 : objoid = DatumGetObjectId(con->constvalue);
1826 0 : if (SearchSysCacheExists1(OPEROID,
1827 : ObjectIdGetDatum(objoid)))
1828 0 : add_object_address(OperatorRelationId, objoid, 0,
1829 : context->addrs);
1830 0 : break;
1831 7864 : case REGCLASSOID:
1832 7864 : objoid = DatumGetObjectId(con->constvalue);
1833 7864 : if (SearchSysCacheExists1(RELOID,
1834 : ObjectIdGetDatum(objoid)))
1835 7864 : add_object_address(RelationRelationId, objoid, 0,
1836 : context->addrs);
1837 7864 : break;
1838 0 : case REGTYPEOID:
1839 0 : objoid = DatumGetObjectId(con->constvalue);
1840 0 : if (SearchSysCacheExists1(TYPEOID,
1841 : ObjectIdGetDatum(objoid)))
1842 0 : add_object_address(TypeRelationId, objoid, 0,
1843 : context->addrs);
1844 0 : break;
1845 0 : case REGCOLLATIONOID:
1846 0 : objoid = DatumGetObjectId(con->constvalue);
1847 0 : if (SearchSysCacheExists1(COLLOID,
1848 : ObjectIdGetDatum(objoid)))
1849 0 : add_object_address(CollationRelationId, objoid, 0,
1850 : context->addrs);
1851 0 : break;
1852 0 : case REGCONFIGOID:
1853 0 : objoid = DatumGetObjectId(con->constvalue);
1854 0 : if (SearchSysCacheExists1(TSCONFIGOID,
1855 : ObjectIdGetDatum(objoid)))
1856 0 : add_object_address(TSConfigRelationId, objoid, 0,
1857 : context->addrs);
1858 0 : break;
1859 0 : case REGDICTIONARYOID:
1860 0 : objoid = DatumGetObjectId(con->constvalue);
1861 0 : if (SearchSysCacheExists1(TSDICTOID,
1862 : ObjectIdGetDatum(objoid)))
1863 0 : add_object_address(TSDictionaryRelationId, objoid, 0,
1864 : context->addrs);
1865 0 : break;
1866 :
1867 196 : case REGNAMESPACEOID:
1868 196 : objoid = DatumGetObjectId(con->constvalue);
1869 196 : if (SearchSysCacheExists1(NAMESPACEOID,
1870 : ObjectIdGetDatum(objoid)))
1871 196 : add_object_address(NamespaceRelationId, objoid, 0,
1872 : context->addrs);
1873 196 : break;
1874 :
1875 : /*
1876 : * Dependencies for regrole should be shared among all
1877 : * databases, so explicitly inhibit to have dependencies.
1878 : */
1879 6 : case REGROLEOID:
1880 6 : ereport(ERROR,
1881 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1882 : errmsg("constant of the type %s cannot be used here",
1883 : "regrole")));
1884 : break;
1885 :
1886 : /*
1887 : * Dependencies for regdatabase should be shared among all
1888 : * databases, so explicitly inhibit to have dependencies.
1889 : */
1890 6 : case REGDATABASEOID:
1891 6 : ereport(ERROR,
1892 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1893 : errmsg("constant of the type %s cannot be used here",
1894 : "regdatabase")));
1895 : break;
1896 : }
1897 : }
1898 308958 : return false;
1899 : }
1900 1590400 : else if (IsA(node, Param))
1901 : {
1902 17930 : Param *param = (Param *) node;
1903 :
1904 : /* A parameter must depend on the parameter's datatype */
1905 17930 : add_object_address(TypeRelationId, param->paramtype, 0,
1906 : context->addrs);
1907 : /* and its collation, just as for Consts */
1908 17930 : if (OidIsValid(param->paramcollid) &&
1909 4278 : param->paramcollid != DEFAULT_COLLATION_OID)
1910 2940 : add_object_address(CollationRelationId, param->paramcollid, 0,
1911 : context->addrs);
1912 : }
1913 1572470 : else if (IsA(node, FuncExpr))
1914 : {
1915 154972 : FuncExpr *funcexpr = (FuncExpr *) node;
1916 :
1917 154972 : add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1918 : context->addrs);
1919 : /* fall through to examine arguments */
1920 : }
1921 1417498 : else if (IsA(node, OpExpr))
1922 : {
1923 173728 : OpExpr *opexpr = (OpExpr *) node;
1924 :
1925 173728 : add_object_address(OperatorRelationId, opexpr->opno, 0,
1926 : context->addrs);
1927 : /* fall through to examine arguments */
1928 : }
1929 1243770 : else if (IsA(node, DistinctExpr))
1930 : {
1931 12 : DistinctExpr *distinctexpr = (DistinctExpr *) node;
1932 :
1933 12 : add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1934 : context->addrs);
1935 : /* fall through to examine arguments */
1936 : }
1937 1243758 : else if (IsA(node, NullIfExpr))
1938 : {
1939 462 : NullIfExpr *nullifexpr = (NullIfExpr *) node;
1940 :
1941 462 : add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1942 : context->addrs);
1943 : /* fall through to examine arguments */
1944 : }
1945 1243296 : else if (IsA(node, ScalarArrayOpExpr))
1946 : {
1947 12940 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1948 :
1949 12940 : add_object_address(OperatorRelationId, opexpr->opno, 0,
1950 : context->addrs);
1951 : /* fall through to examine arguments */
1952 : }
1953 1230356 : else if (IsA(node, Aggref))
1954 : {
1955 3628 : Aggref *aggref = (Aggref *) node;
1956 :
1957 3628 : add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1958 : context->addrs);
1959 : /* fall through to examine arguments */
1960 : }
1961 1226728 : else if (IsA(node, WindowFunc))
1962 : {
1963 298 : WindowFunc *wfunc = (WindowFunc *) node;
1964 :
1965 298 : add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1966 : context->addrs);
1967 : /* fall through to examine arguments */
1968 : }
1969 1226430 : else if (IsA(node, SubscriptingRef))
1970 : {
1971 5142 : SubscriptingRef *sbsref = (SubscriptingRef *) node;
1972 :
1973 : /*
1974 : * The refexpr should provide adequate dependency on refcontainertype,
1975 : * and that type in turn depends on refelemtype. However, a custom
1976 : * subscripting handler might set refrestype to something different
1977 : * from either of those, in which case we'd better record it.
1978 : */
1979 5142 : if (sbsref->refrestype != sbsref->refcontainertype &&
1980 5016 : sbsref->refrestype != sbsref->refelemtype)
1981 0 : add_object_address(TypeRelationId, sbsref->refrestype, 0,
1982 : context->addrs);
1983 : /* fall through to examine arguments */
1984 : }
1985 1221288 : else if (IsA(node, SubPlan))
1986 : {
1987 : /* Extra work needed here if we ever need this case */
1988 0 : elog(ERROR, "already-planned subqueries not supported");
1989 : }
1990 1221288 : else if (IsA(node, FieldSelect))
1991 : {
1992 27402 : FieldSelect *fselect = (FieldSelect *) node;
1993 27402 : Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1994 27402 : Oid reltype = get_typ_typrelid(argtype);
1995 :
1996 : /*
1997 : * We need a dependency on the specific column named in FieldSelect,
1998 : * assuming we can identify the pg_class OID for it. (Probably we
1999 : * always can at the moment, but in future it might be possible for
2000 : * argtype to be RECORDOID.) If we can make a column dependency then
2001 : * we shouldn't need a dependency on the column's type; but if we
2002 : * can't, make a dependency on the type, as it might not appear
2003 : * anywhere else in the expression.
2004 : */
2005 27402 : if (OidIsValid(reltype))
2006 15178 : add_object_address(RelationRelationId, reltype, fselect->fieldnum,
2007 : context->addrs);
2008 : else
2009 12224 : add_object_address(TypeRelationId, fselect->resulttype, 0,
2010 : context->addrs);
2011 : /* the collation might not be referenced anywhere else, either */
2012 27402 : if (OidIsValid(fselect->resultcollid) &&
2013 3414 : fselect->resultcollid != DEFAULT_COLLATION_OID)
2014 0 : add_object_address(CollationRelationId, fselect->resultcollid, 0,
2015 : context->addrs);
2016 : }
2017 1193886 : else if (IsA(node, FieldStore))
2018 : {
2019 96 : FieldStore *fstore = (FieldStore *) node;
2020 96 : Oid reltype = get_typ_typrelid(fstore->resulttype);
2021 :
2022 : /* similar considerations to FieldSelect, but multiple column(s) */
2023 96 : if (OidIsValid(reltype))
2024 : {
2025 : ListCell *l;
2026 :
2027 192 : foreach(l, fstore->fieldnums)
2028 96 : add_object_address(RelationRelationId, reltype, lfirst_int(l),
2029 : context->addrs);
2030 : }
2031 : else
2032 0 : add_object_address(TypeRelationId, fstore->resulttype, 0,
2033 : context->addrs);
2034 : }
2035 1193790 : else if (IsA(node, RelabelType))
2036 : {
2037 23892 : RelabelType *relab = (RelabelType *) node;
2038 :
2039 : /* since there is no function dependency, need to depend on type */
2040 23892 : add_object_address(TypeRelationId, relab->resulttype, 0,
2041 : context->addrs);
2042 : /* the collation might not be referenced anywhere else, either */
2043 23892 : if (OidIsValid(relab->resultcollid) &&
2044 6148 : relab->resultcollid != DEFAULT_COLLATION_OID)
2045 5684 : add_object_address(CollationRelationId, relab->resultcollid, 0,
2046 : context->addrs);
2047 : }
2048 1169898 : else if (IsA(node, CoerceViaIO))
2049 : {
2050 4324 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2051 :
2052 : /* since there is no exposed function, need to depend on type */
2053 4324 : add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2054 : context->addrs);
2055 : /* the collation might not be referenced anywhere else, either */
2056 4324 : if (OidIsValid(iocoerce->resultcollid) &&
2057 3532 : iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2058 1372 : add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2059 : context->addrs);
2060 : }
2061 1165574 : else if (IsA(node, ArrayCoerceExpr))
2062 : {
2063 888 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2064 :
2065 : /* as above, depend on type */
2066 888 : add_object_address(TypeRelationId, acoerce->resulttype, 0,
2067 : context->addrs);
2068 : /* the collation might not be referenced anywhere else, either */
2069 888 : if (OidIsValid(acoerce->resultcollid) &&
2070 300 : acoerce->resultcollid != DEFAULT_COLLATION_OID)
2071 196 : add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2072 : context->addrs);
2073 : /* fall through to examine arguments */
2074 : }
2075 1164686 : else if (IsA(node, ConvertRowtypeExpr))
2076 : {
2077 0 : ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2078 :
2079 : /* since there is no function dependency, need to depend on type */
2080 0 : add_object_address(TypeRelationId, cvt->resulttype, 0,
2081 : context->addrs);
2082 : }
2083 1164686 : else if (IsA(node, CollateExpr))
2084 : {
2085 138 : CollateExpr *coll = (CollateExpr *) node;
2086 :
2087 138 : add_object_address(CollationRelationId, coll->collOid, 0,
2088 : context->addrs);
2089 : }
2090 1164548 : else if (IsA(node, RowExpr))
2091 : {
2092 72 : RowExpr *rowexpr = (RowExpr *) node;
2093 :
2094 72 : add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2095 : context->addrs);
2096 : }
2097 1164476 : else if (IsA(node, RowCompareExpr))
2098 : {
2099 24 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2100 : ListCell *l;
2101 :
2102 72 : foreach(l, rcexpr->opnos)
2103 : {
2104 48 : add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2105 : context->addrs);
2106 : }
2107 72 : foreach(l, rcexpr->opfamilies)
2108 : {
2109 48 : add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2110 : context->addrs);
2111 : }
2112 : /* fall through to examine arguments */
2113 : }
2114 1164452 : else if (IsA(node, CoerceToDomain))
2115 : {
2116 123828 : CoerceToDomain *cd = (CoerceToDomain *) node;
2117 :
2118 123828 : add_object_address(TypeRelationId, cd->resulttype, 0,
2119 : context->addrs);
2120 : }
2121 1040624 : else if (IsA(node, NextValueExpr))
2122 : {
2123 0 : NextValueExpr *nve = (NextValueExpr *) node;
2124 :
2125 0 : add_object_address(RelationRelationId, nve->seqid, 0,
2126 : context->addrs);
2127 : }
2128 1040624 : else if (IsA(node, OnConflictExpr))
2129 : {
2130 18 : OnConflictExpr *onconflict = (OnConflictExpr *) node;
2131 :
2132 18 : if (OidIsValid(onconflict->constraint))
2133 0 : add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2134 : context->addrs);
2135 : /* fall through to examine arguments */
2136 : }
2137 1040606 : else if (IsA(node, SortGroupClause))
2138 : {
2139 24720 : SortGroupClause *sgc = (SortGroupClause *) node;
2140 :
2141 24720 : add_object_address(OperatorRelationId, sgc->eqop, 0,
2142 : context->addrs);
2143 24720 : if (OidIsValid(sgc->sortop))
2144 24720 : add_object_address(OperatorRelationId, sgc->sortop, 0,
2145 : context->addrs);
2146 24720 : return false;
2147 : }
2148 1015886 : else if (IsA(node, WindowClause))
2149 : {
2150 274 : WindowClause *wc = (WindowClause *) node;
2151 :
2152 274 : if (OidIsValid(wc->startInRangeFunc))
2153 6 : add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2154 : context->addrs);
2155 274 : if (OidIsValid(wc->endInRangeFunc))
2156 6 : add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2157 : context->addrs);
2158 274 : if (OidIsValid(wc->inRangeColl) &&
2159 0 : wc->inRangeColl != DEFAULT_COLLATION_OID)
2160 0 : add_object_address(CollationRelationId, wc->inRangeColl, 0,
2161 : context->addrs);
2162 : /* fall through to examine substructure */
2163 : }
2164 1015612 : else if (IsA(node, CTECycleClause))
2165 : {
2166 12 : CTECycleClause *cc = (CTECycleClause *) node;
2167 :
2168 12 : if (OidIsValid(cc->cycle_mark_type))
2169 12 : add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2170 : context->addrs);
2171 12 : if (OidIsValid(cc->cycle_mark_collation))
2172 6 : add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2173 : context->addrs);
2174 12 : if (OidIsValid(cc->cycle_mark_neop))
2175 12 : add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2176 : context->addrs);
2177 : /* fall through to examine substructure */
2178 : }
2179 1015600 : else if (IsA(node, Query))
2180 : {
2181 : /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2182 68192 : Query *query = (Query *) node;
2183 : ListCell *lc;
2184 : bool result;
2185 :
2186 : /*
2187 : * Add whole-relation refs for each plain relation mentioned in the
2188 : * subquery's rtable, and ensure we add refs for any type-coercion
2189 : * functions used in join alias lists.
2190 : *
2191 : * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2192 : * RTEs, subqueries, etc, so no need to do that here. But we must
2193 : * tell it not to visit join alias lists, or we'll add refs for join
2194 : * input columns whether or not they are actually used in our query.
2195 : *
2196 : * Note: we don't need to worry about collations mentioned in
2197 : * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2198 : * collations referenced in other parts of the Query. We do have to
2199 : * worry about collations mentioned in RTE_FUNCTION, but we take care
2200 : * of those when we recurse to the RangeTblFunction node(s).
2201 : */
2202 227542 : foreach(lc, query->rtable)
2203 : {
2204 159356 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2205 :
2206 159356 : switch (rte->rtekind)
2207 : {
2208 98352 : case RTE_RELATION:
2209 98352 : add_object_address(RelationRelationId, rte->relid, 0,
2210 : context->addrs);
2211 98352 : break;
2212 29856 : case RTE_JOIN:
2213 :
2214 : /*
2215 : * Examine joinaliasvars entries only for merged JOIN
2216 : * USING columns. Only those entries could contain
2217 : * type-coercion functions. Also, their join input
2218 : * columns must be referenced in the join quals, so this
2219 : * won't accidentally add refs to otherwise-unused join
2220 : * input columns. (We want to ref the type coercion
2221 : * functions even if the merged column isn't explicitly
2222 : * used anywhere, to protect possible expansion of the
2223 : * join RTE as a whole-row var, and because it seems like
2224 : * a bad idea to allow dropping a function that's present
2225 : * in our query tree, whether or not it could get called.)
2226 : */
2227 29856 : context->rtables = lcons(query->rtable, context->rtables);
2228 30256 : for (int i = 0; i < rte->joinmergedcols; i++)
2229 : {
2230 400 : Node *aliasvar = list_nth(rte->joinaliasvars, i);
2231 :
2232 400 : if (!IsA(aliasvar, Var))
2233 96 : find_expr_references_walker(aliasvar, context);
2234 : }
2235 29856 : context->rtables = list_delete_first(context->rtables);
2236 29856 : break;
2237 6 : case RTE_NAMEDTUPLESTORE:
2238 :
2239 : /*
2240 : * Cataloged objects cannot depend on tuplestores, because
2241 : * those have no cataloged representation. For now we can
2242 : * call the tuplestore a "transition table" because that's
2243 : * the only kind exposed to SQL, but someday we might have
2244 : * to work harder.
2245 : */
2246 6 : ereport(ERROR,
2247 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2248 : errmsg("transition table \"%s\" cannot be referenced in a persistent object",
2249 : rte->eref->aliasname)));
2250 : break;
2251 31142 : default:
2252 : /* Other RTE types can be ignored here */
2253 31142 : break;
2254 : }
2255 : }
2256 :
2257 : /*
2258 : * If the query is an INSERT or UPDATE, we should create a dependency
2259 : * on each target column, to prevent the specific target column from
2260 : * being dropped. Although we will visit the TargetEntry nodes again
2261 : * during query_tree_walker, we won't have enough context to do this
2262 : * conveniently, so do it here.
2263 : */
2264 68186 : if (query->commandType == CMD_INSERT ||
2265 67718 : query->commandType == CMD_UPDATE)
2266 : {
2267 : RangeTblEntry *rte;
2268 :
2269 1396 : if (query->resultRelation <= 0 ||
2270 698 : query->resultRelation > list_length(query->rtable))
2271 0 : elog(ERROR, "invalid resultRelation %d",
2272 : query->resultRelation);
2273 698 : rte = rt_fetch(query->resultRelation, query->rtable);
2274 698 : if (rte->rtekind == RTE_RELATION)
2275 : {
2276 2094 : foreach(lc, query->targetList)
2277 : {
2278 1396 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2279 :
2280 1396 : if (tle->resjunk)
2281 6 : continue; /* ignore junk tlist items */
2282 1390 : add_object_address(RelationRelationId, rte->relid, tle->resno,
2283 : context->addrs);
2284 : }
2285 : }
2286 : }
2287 :
2288 : /*
2289 : * Add dependencies on constraints listed in query's constraintDeps
2290 : */
2291 68260 : foreach(lc, query->constraintDeps)
2292 : {
2293 74 : add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2294 : context->addrs);
2295 : }
2296 :
2297 : /* Examine substructure of query */
2298 68186 : context->rtables = lcons(query->rtable, context->rtables);
2299 68186 : result = query_tree_walker(query,
2300 : find_expr_references_walker,
2301 : context,
2302 : QTW_IGNORE_JOINALIASES |
2303 : QTW_EXAMINE_SORTGROUP);
2304 68186 : context->rtables = list_delete_first(context->rtables);
2305 68186 : return result;
2306 : }
2307 947408 : else if (IsA(node, SetOperationStmt))
2308 : {
2309 7830 : SetOperationStmt *setop = (SetOperationStmt *) node;
2310 :
2311 : /* we need to look at the groupClauses for operator references */
2312 7830 : find_expr_references_walker((Node *) setop->groupClauses, context);
2313 : /* fall through to examine child nodes */
2314 : }
2315 939578 : else if (IsA(node, RangeTblFunction))
2316 : {
2317 10704 : RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2318 : ListCell *ct;
2319 :
2320 : /*
2321 : * Add refs for any datatypes and collations used in a column
2322 : * definition list for a RECORD function. (For other cases, it should
2323 : * be enough to depend on the function itself.)
2324 : */
2325 10914 : foreach(ct, rtfunc->funccoltypes)
2326 : {
2327 210 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2328 : context->addrs);
2329 : }
2330 10914 : foreach(ct, rtfunc->funccolcollations)
2331 : {
2332 210 : Oid collid = lfirst_oid(ct);
2333 :
2334 210 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2335 0 : add_object_address(CollationRelationId, collid, 0,
2336 : context->addrs);
2337 : }
2338 : }
2339 928874 : else if (IsA(node, TableFunc))
2340 : {
2341 164 : TableFunc *tf = (TableFunc *) node;
2342 : ListCell *ct;
2343 :
2344 : /*
2345 : * Add refs for the datatypes and collations used in the TableFunc.
2346 : */
2347 776 : foreach(ct, tf->coltypes)
2348 : {
2349 612 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2350 : context->addrs);
2351 : }
2352 776 : foreach(ct, tf->colcollations)
2353 : {
2354 612 : Oid collid = lfirst_oid(ct);
2355 :
2356 612 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2357 0 : add_object_address(CollationRelationId, collid, 0,
2358 : context->addrs);
2359 : }
2360 : }
2361 928710 : else if (IsA(node, TableSampleClause))
2362 : {
2363 40 : TableSampleClause *tsc = (TableSampleClause *) node;
2364 :
2365 40 : add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2366 : context->addrs);
2367 : /* fall through to examine arguments */
2368 : }
2369 :
2370 1497488 : return expression_tree_walker(node, find_expr_references_walker,
2371 : context);
2372 : }
2373 :
2374 : /*
2375 : * find_expr_references_walker subroutine: handle a Var reference
2376 : * to an RTE_FUNCTION RTE
2377 : */
2378 : static void
2379 93688 : process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2380 : find_expr_references_context *context)
2381 : {
2382 93688 : int atts_done = 0;
2383 : ListCell *lc;
2384 :
2385 : /*
2386 : * Identify which RangeTblFunction produces this attnum, and see if it
2387 : * returns a composite type. If so, we'd better make a dependency on the
2388 : * referenced column of the composite type (or actually, of its associated
2389 : * relation).
2390 : */
2391 93964 : foreach(lc, rte->functions)
2392 : {
2393 93820 : RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2394 :
2395 93820 : if (attnum > atts_done &&
2396 93820 : attnum <= atts_done + rtfunc->funccolcount)
2397 : {
2398 : TupleDesc tupdesc;
2399 :
2400 : /* If it has a coldeflist, it certainly returns RECORD */
2401 93544 : if (rtfunc->funccolnames != NIL)
2402 210 : tupdesc = NULL; /* no need to work hard */
2403 : else
2404 93334 : tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2405 93544 : if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2406 : {
2407 : /*
2408 : * Named composite type, so individual columns could get
2409 : * dropped. Make a dependency on this specific column.
2410 : */
2411 360 : Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2412 :
2413 : Assert(attnum - atts_done <= tupdesc->natts);
2414 360 : if (OidIsValid(reltype)) /* can this fail? */
2415 360 : add_object_address(RelationRelationId, reltype,
2416 : attnum - atts_done,
2417 : context->addrs);
2418 93544 : return;
2419 : }
2420 : /* Nothing to do; function's result type is handled elsewhere */
2421 93184 : return;
2422 : }
2423 276 : atts_done += rtfunc->funccolcount;
2424 : }
2425 :
2426 : /* If we get here, must be looking for the ordinality column */
2427 144 : if (rte->funcordinality && attnum == atts_done + 1)
2428 144 : return;
2429 :
2430 : /* this probably can't happen ... */
2431 0 : ereport(ERROR,
2432 : (errcode(ERRCODE_UNDEFINED_COLUMN),
2433 : errmsg("column %d of relation \"%s\" does not exist",
2434 : attnum, rte->eref->aliasname)));
2435 : }
2436 :
2437 : /*
2438 : * find_temp_object - search an array of dependency references for temp objects
2439 : *
2440 : * Scan an ObjectAddresses array for references to temporary objects (objects
2441 : * in temporary namespaces), ignoring those in our own temp namespace if
2442 : * local_temp_okay is true. If one is found, return true after storing its
2443 : * address in *foundobj.
2444 : *
2445 : * Current callers only use this to deliver helpful notices, so reporting
2446 : * one such object seems sufficient. We return the first one, which should
2447 : * be a stable result for a given query since it depends only on the order
2448 : * in which this module searches query trees. (However, it's important to
2449 : * call this before de-duplicating the objects, else OID order would affect
2450 : * the result.)
2451 : */
2452 : bool
2453 44736 : find_temp_object(const ObjectAddresses *addrs, bool local_temp_okay,
2454 : ObjectAddress *foundobj)
2455 : {
2456 947372 : for (int i = 0; i < addrs->numrefs; i++)
2457 : {
2458 902820 : const ObjectAddress *thisobj = addrs->refs + i;
2459 : Oid objnamespace;
2460 :
2461 : /*
2462 : * Use get_object_namespace() to see if this object belongs to a
2463 : * schema. If not, we can skip it.
2464 : */
2465 902820 : objnamespace = get_object_namespace(thisobj);
2466 :
2467 : /*
2468 : * If the object is in a temporary namespace, complain, except if
2469 : * local_temp_okay and it's our own temp namespace.
2470 : */
2471 902820 : if (OidIsValid(objnamespace) && isAnyTempNamespace(objnamespace) &&
2472 184 : !(local_temp_okay && isTempNamespace(objnamespace)))
2473 : {
2474 184 : *foundobj = *thisobj;
2475 184 : return true;
2476 : }
2477 : }
2478 44552 : return false;
2479 : }
2480 :
2481 : /*
2482 : * query_uses_temp_object - convenience wrapper for find_temp_object
2483 : *
2484 : * If the Query includes any use of a temporary object, fill *temp_object
2485 : * with the address of one such object and return true.
2486 : */
2487 : bool
2488 17624 : query_uses_temp_object(Query *query, ObjectAddress *temp_object)
2489 : {
2490 : bool result;
2491 : ObjectAddresses *addrs;
2492 :
2493 17624 : addrs = new_object_addresses();
2494 :
2495 : /* Collect all dependencies from the Query */
2496 17624 : collectDependenciesOfExpr(addrs, (Node *) query, NIL);
2497 :
2498 : /* Look for one that is temp */
2499 17618 : result = find_temp_object(addrs, false, temp_object);
2500 :
2501 17618 : free_object_addresses(addrs);
2502 :
2503 17618 : return result;
2504 : }
2505 :
2506 : /*
2507 : * Given an array of dependency references, eliminate any duplicates.
2508 : */
2509 : static void
2510 439536 : eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2511 : {
2512 : ObjectAddress *priorobj;
2513 : int oldref,
2514 : newrefs;
2515 :
2516 : /*
2517 : * We can't sort if the array has "extra" data, because there's no way to
2518 : * keep it in sync. Fortunately that combination of features is not
2519 : * needed.
2520 : */
2521 : Assert(!addrs->extras);
2522 :
2523 439536 : if (addrs->numrefs <= 1)
2524 153366 : return; /* nothing to do */
2525 :
2526 : /* Sort the refs so that duplicates are adjacent */
2527 286170 : qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2528 : object_address_comparator);
2529 :
2530 : /* Remove dups */
2531 286170 : priorobj = addrs->refs;
2532 286170 : newrefs = 1;
2533 1982872 : for (oldref = 1; oldref < addrs->numrefs; oldref++)
2534 : {
2535 1696702 : ObjectAddress *thisobj = addrs->refs + oldref;
2536 :
2537 1696702 : if (priorobj->classId == thisobj->classId &&
2538 1454372 : priorobj->objectId == thisobj->objectId)
2539 : {
2540 777652 : if (priorobj->objectSubId == thisobj->objectSubId)
2541 603278 : continue; /* identical, so drop thisobj */
2542 :
2543 : /*
2544 : * If we have a whole-object reference and a reference to a part
2545 : * of the same object, we don't need the whole-object reference
2546 : * (for example, we don't need to reference both table foo and
2547 : * column foo.bar). The whole-object reference will always appear
2548 : * first in the sorted list.
2549 : */
2550 174374 : if (priorobj->objectSubId == 0)
2551 : {
2552 : /* replace whole ref with partial */
2553 37876 : priorobj->objectSubId = thisobj->objectSubId;
2554 37876 : continue;
2555 : }
2556 : }
2557 : /* Not identical, so add thisobj to output set */
2558 1055548 : priorobj++;
2559 1055548 : *priorobj = *thisobj;
2560 1055548 : newrefs++;
2561 : }
2562 :
2563 286170 : addrs->numrefs = newrefs;
2564 : }
2565 :
2566 : /*
2567 : * qsort comparator for ObjectAddress items
2568 : */
2569 : static int
2570 5913676 : object_address_comparator(const void *a, const void *b)
2571 : {
2572 5913676 : const ObjectAddress *obja = (const ObjectAddress *) a;
2573 5913676 : const ObjectAddress *objb = (const ObjectAddress *) b;
2574 :
2575 : /*
2576 : * Primary sort key is OID descending. Most of the time, this will result
2577 : * in putting newer objects before older ones, which is likely to be the
2578 : * right order to delete in.
2579 : */
2580 5913676 : if (obja->objectId > objb->objectId)
2581 1451590 : return -1;
2582 4462086 : if (obja->objectId < objb->objectId)
2583 3103526 : return 1;
2584 :
2585 : /*
2586 : * Next sort on catalog ID, in case identical OIDs appear in different
2587 : * catalogs. Sort direction is pretty arbitrary here.
2588 : */
2589 1358560 : if (obja->classId < objb->classId)
2590 0 : return -1;
2591 1358560 : if (obja->classId > objb->classId)
2592 0 : return 1;
2593 :
2594 : /*
2595 : * Last, sort on object subId.
2596 : *
2597 : * We sort the subId as an unsigned int so that 0 (the whole object) will
2598 : * come first. This is essential for eliminate_duplicate_dependencies,
2599 : * and is also the best order for findDependentObjects.
2600 : */
2601 1358560 : if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2602 324314 : return -1;
2603 1034246 : if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2604 292992 : return 1;
2605 741254 : return 0;
2606 : }
2607 :
2608 : /*
2609 : * Routines for handling an expansible array of ObjectAddress items.
2610 : *
2611 : * new_object_addresses: create a new ObjectAddresses array.
2612 : */
2613 : ObjectAddresses *
2614 523180 : new_object_addresses(void)
2615 : {
2616 : ObjectAddresses *addrs;
2617 :
2618 523180 : addrs = palloc_object(ObjectAddresses);
2619 :
2620 523180 : addrs->numrefs = 0;
2621 523180 : addrs->maxrefs = 32;
2622 523180 : addrs->refs = palloc_array(ObjectAddress, addrs->maxrefs);
2623 523180 : addrs->extras = NULL; /* until/unless needed */
2624 :
2625 523180 : return addrs;
2626 : }
2627 :
2628 : /*
2629 : * Add an entry to an ObjectAddresses array.
2630 : */
2631 : static void
2632 1512434 : add_object_address(Oid classId, Oid objectId, int32 subId,
2633 : ObjectAddresses *addrs)
2634 : {
2635 : ObjectAddress *item;
2636 :
2637 : /* enlarge array if needed */
2638 1512434 : if (addrs->numrefs >= addrs->maxrefs)
2639 : {
2640 21910 : addrs->maxrefs *= 2;
2641 21910 : addrs->refs = (ObjectAddress *)
2642 21910 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2643 : Assert(!addrs->extras);
2644 : }
2645 : /* record this item */
2646 1512434 : item = addrs->refs + addrs->numrefs;
2647 1512434 : item->classId = classId;
2648 1512434 : item->objectId = objectId;
2649 1512434 : item->objectSubId = subId;
2650 1512434 : addrs->numrefs++;
2651 1512434 : }
2652 :
2653 : /*
2654 : * Add an entry to an ObjectAddresses array.
2655 : *
2656 : * As above, but specify entry exactly.
2657 : */
2658 : void
2659 1310936 : add_exact_object_address(const ObjectAddress *object,
2660 : ObjectAddresses *addrs)
2661 : {
2662 : ObjectAddress *item;
2663 :
2664 : /* enlarge array if needed */
2665 1310936 : if (addrs->numrefs >= addrs->maxrefs)
2666 : {
2667 74 : addrs->maxrefs *= 2;
2668 74 : addrs->refs = (ObjectAddress *)
2669 74 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2670 : Assert(!addrs->extras);
2671 : }
2672 : /* record this item */
2673 1310936 : item = addrs->refs + addrs->numrefs;
2674 1310936 : *item = *object;
2675 1310936 : addrs->numrefs++;
2676 1310936 : }
2677 :
2678 : /*
2679 : * Add an entry to an ObjectAddresses array.
2680 : *
2681 : * As above, but specify entry exactly and provide some "extra" data too.
2682 : */
2683 : static void
2684 226612 : add_exact_object_address_extra(const ObjectAddress *object,
2685 : const ObjectAddressExtra *extra,
2686 : ObjectAddresses *addrs)
2687 : {
2688 : ObjectAddress *item;
2689 : ObjectAddressExtra *itemextra;
2690 :
2691 : /* allocate extra space if first time */
2692 226612 : if (!addrs->extras)
2693 33396 : addrs->extras = (ObjectAddressExtra *)
2694 33396 : palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2695 :
2696 : /* enlarge array if needed */
2697 226612 : if (addrs->numrefs >= addrs->maxrefs)
2698 : {
2699 880 : addrs->maxrefs *= 2;
2700 880 : addrs->refs = (ObjectAddress *)
2701 880 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2702 880 : addrs->extras = (ObjectAddressExtra *)
2703 880 : repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2704 : }
2705 : /* record this item */
2706 226612 : item = addrs->refs + addrs->numrefs;
2707 226612 : *item = *object;
2708 226612 : itemextra = addrs->extras + addrs->numrefs;
2709 226612 : *itemextra = *extra;
2710 226612 : addrs->numrefs++;
2711 226612 : }
2712 :
2713 : /*
2714 : * Test whether an object is present in an ObjectAddresses array.
2715 : *
2716 : * We return "true" if object is a subobject of something in the array, too.
2717 : */
2718 : bool
2719 644 : object_address_present(const ObjectAddress *object,
2720 : const ObjectAddresses *addrs)
2721 : {
2722 : int i;
2723 :
2724 2538 : for (i = addrs->numrefs - 1; i >= 0; i--)
2725 : {
2726 1894 : const ObjectAddress *thisobj = addrs->refs + i;
2727 :
2728 1894 : if (object->classId == thisobj->classId &&
2729 524 : object->objectId == thisobj->objectId)
2730 : {
2731 0 : if (object->objectSubId == thisobj->objectSubId ||
2732 0 : thisobj->objectSubId == 0)
2733 0 : return true;
2734 : }
2735 : }
2736 :
2737 644 : return false;
2738 : }
2739 :
2740 : /*
2741 : * As above, except that if the object is present then also OR the given
2742 : * flags into its associated extra data (which must exist).
2743 : */
2744 : static bool
2745 277578 : object_address_present_add_flags(const ObjectAddress *object,
2746 : int flags,
2747 : ObjectAddresses *addrs)
2748 : {
2749 277578 : bool result = false;
2750 : int i;
2751 :
2752 11594934 : for (i = addrs->numrefs - 1; i >= 0; i--)
2753 : {
2754 11317356 : ObjectAddress *thisobj = addrs->refs + i;
2755 :
2756 11317356 : if (object->classId == thisobj->classId &&
2757 4386392 : object->objectId == thisobj->objectId)
2758 : {
2759 49240 : if (object->objectSubId == thisobj->objectSubId)
2760 : {
2761 48784 : ObjectAddressExtra *thisextra = addrs->extras + i;
2762 :
2763 48784 : thisextra->flags |= flags;
2764 48784 : result = true;
2765 : }
2766 456 : else if (thisobj->objectSubId == 0)
2767 : {
2768 : /*
2769 : * We get here if we find a need to delete a column after
2770 : * having already decided to drop its whole table. Obviously
2771 : * we no longer need to drop the subobject, so report that we
2772 : * found the subobject in the array. But don't plaster its
2773 : * flags on the whole object.
2774 : */
2775 408 : result = true;
2776 : }
2777 48 : else if (object->objectSubId == 0)
2778 : {
2779 : /*
2780 : * We get here if we find a need to delete a whole table after
2781 : * having already decided to drop one of its columns. We
2782 : * can't report that the whole object is in the array, but we
2783 : * should mark the subobject with the whole object's flags.
2784 : *
2785 : * It might seem attractive to physically delete the column's
2786 : * array entry, or at least mark it as no longer needing
2787 : * separate deletion. But that could lead to, e.g., dropping
2788 : * the column's datatype before we drop the table, which does
2789 : * not seem like a good idea. This is a very rare situation
2790 : * in practice, so we just take the hit of doing a separate
2791 : * DROP COLUMN action even though we know we're gonna delete
2792 : * the table later.
2793 : *
2794 : * What we can do, though, is mark this as a subobject so that
2795 : * we don't report it separately, which is confusing because
2796 : * it's unpredictable whether it happens or not. But do so
2797 : * only if flags != 0 (flags == 0 is a read-only probe).
2798 : *
2799 : * Because there could be other subobjects of this object in
2800 : * the array, this case means we always have to loop through
2801 : * the whole array; we cannot exit early on a match.
2802 : */
2803 36 : ObjectAddressExtra *thisextra = addrs->extras + i;
2804 :
2805 36 : if (flags)
2806 36 : thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2807 : }
2808 : }
2809 : }
2810 :
2811 277578 : return result;
2812 : }
2813 :
2814 : /*
2815 : * Similar to above, except we search an ObjectAddressStack.
2816 : */
2817 : static bool
2818 398354 : stack_address_present_add_flags(const ObjectAddress *object,
2819 : int flags,
2820 : ObjectAddressStack *stack)
2821 : {
2822 398354 : bool result = false;
2823 : ObjectAddressStack *stackptr;
2824 :
2825 1058854 : for (stackptr = stack; stackptr; stackptr = stackptr->next)
2826 : {
2827 660500 : const ObjectAddress *thisobj = stackptr->object;
2828 :
2829 660500 : if (object->classId == thisobj->classId &&
2830 288630 : object->objectId == thisobj->objectId)
2831 : {
2832 120848 : if (object->objectSubId == thisobj->objectSubId)
2833 : {
2834 119826 : stackptr->flags |= flags;
2835 119826 : result = true;
2836 : }
2837 1022 : else if (thisobj->objectSubId == 0)
2838 : {
2839 : /*
2840 : * We're visiting a column with whole table already on stack.
2841 : * As in object_address_present_add_flags(), we can skip
2842 : * further processing of the subobject, but we don't want to
2843 : * propagate flags for the subobject to the whole object.
2844 : */
2845 950 : result = true;
2846 : }
2847 72 : else if (object->objectSubId == 0)
2848 : {
2849 : /*
2850 : * We're visiting a table with column already on stack. As in
2851 : * object_address_present_add_flags(), we should propagate
2852 : * flags for the whole object to each of its subobjects.
2853 : */
2854 0 : if (flags)
2855 0 : stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2856 : }
2857 : }
2858 : }
2859 :
2860 398354 : return result;
2861 : }
2862 :
2863 : /*
2864 : * Record multiple dependencies from an ObjectAddresses array, after first
2865 : * removing any duplicates.
2866 : */
2867 : void
2868 408056 : record_object_address_dependencies(const ObjectAddress *depender,
2869 : ObjectAddresses *referenced,
2870 : DependencyType behavior)
2871 : {
2872 408056 : eliminate_duplicate_dependencies(referenced);
2873 408056 : recordMultipleDependencies(depender,
2874 408056 : referenced->refs, referenced->numrefs,
2875 : behavior);
2876 408056 : }
2877 :
2878 : /*
2879 : * Sort the items in an ObjectAddresses array.
2880 : *
2881 : * The major sort key is OID-descending, so that newer objects will be listed
2882 : * first in most cases. This is primarily useful for ensuring stable outputs
2883 : * from regression tests; it's not recommended if the order of the objects is
2884 : * determined by user input, such as the order of targets in a DROP command.
2885 : */
2886 : void
2887 134 : sort_object_addresses(ObjectAddresses *addrs)
2888 : {
2889 134 : if (addrs->numrefs > 1)
2890 74 : qsort(addrs->refs, addrs->numrefs,
2891 : sizeof(ObjectAddress),
2892 : object_address_comparator);
2893 134 : }
2894 :
2895 : /*
2896 : * Clean up when done with an ObjectAddresses array.
2897 : */
2898 : void
2899 521066 : free_object_addresses(ObjectAddresses *addrs)
2900 : {
2901 521066 : pfree(addrs->refs);
2902 521066 : if (addrs->extras)
2903 33048 : pfree(addrs->extras);
2904 521066 : pfree(addrs);
2905 521066 : }
2906 :
2907 : /*
2908 : * delete initial ACL for extension objects
2909 : */
2910 : static void
2911 221530 : DeleteInitPrivs(const ObjectAddress *object)
2912 : {
2913 : Relation relation;
2914 : ScanKeyData key[3];
2915 : int nkeys;
2916 : SysScanDesc scan;
2917 : HeapTuple oldtuple;
2918 :
2919 221530 : relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2920 :
2921 221530 : ScanKeyInit(&key[0],
2922 : Anum_pg_init_privs_objoid,
2923 : BTEqualStrategyNumber, F_OIDEQ,
2924 221530 : ObjectIdGetDatum(object->objectId));
2925 221530 : ScanKeyInit(&key[1],
2926 : Anum_pg_init_privs_classoid,
2927 : BTEqualStrategyNumber, F_OIDEQ,
2928 221530 : ObjectIdGetDatum(object->classId));
2929 221530 : if (object->objectSubId != 0)
2930 : {
2931 2086 : ScanKeyInit(&key[2],
2932 : Anum_pg_init_privs_objsubid,
2933 : BTEqualStrategyNumber, F_INT4EQ,
2934 2086 : Int32GetDatum(object->objectSubId));
2935 2086 : nkeys = 3;
2936 : }
2937 : else
2938 219444 : nkeys = 2;
2939 :
2940 221530 : scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2941 : NULL, nkeys, key);
2942 :
2943 221660 : while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2944 130 : CatalogTupleDelete(relation, &oldtuple->t_self);
2945 :
2946 221530 : systable_endscan(scan);
2947 :
2948 221530 : table_close(relation, RowExclusiveLock);
2949 221530 : }
|