Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * dependency.c
4 : * Routines to support inter-object dependencies.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/dependency.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/genam.h"
18 : #include "access/htup_details.h"
19 : #include "access/table.h"
20 : #include "access/xact.h"
21 : #include "catalog/catalog.h"
22 : #include "catalog/dependency.h"
23 : #include "catalog/heap.h"
24 : #include "catalog/index.h"
25 : #include "catalog/objectaccess.h"
26 : #include "catalog/pg_am.h"
27 : #include "catalog/pg_amop.h"
28 : #include "catalog/pg_amproc.h"
29 : #include "catalog/pg_attrdef.h"
30 : #include "catalog/pg_authid.h"
31 : #include "catalog/pg_auth_members.h"
32 : #include "catalog/pg_cast.h"
33 : #include "catalog/pg_collation.h"
34 : #include "catalog/pg_constraint.h"
35 : #include "catalog/pg_conversion.h"
36 : #include "catalog/pg_database.h"
37 : #include "catalog/pg_default_acl.h"
38 : #include "catalog/pg_depend.h"
39 : #include "catalog/pg_event_trigger.h"
40 : #include "catalog/pg_extension.h"
41 : #include "catalog/pg_foreign_data_wrapper.h"
42 : #include "catalog/pg_foreign_server.h"
43 : #include "catalog/pg_init_privs.h"
44 : #include "catalog/pg_language.h"
45 : #include "catalog/pg_largeobject.h"
46 : #include "catalog/pg_namespace.h"
47 : #include "catalog/pg_opclass.h"
48 : #include "catalog/pg_operator.h"
49 : #include "catalog/pg_opfamily.h"
50 : #include "catalog/pg_parameter_acl.h"
51 : #include "catalog/pg_policy.h"
52 : #include "catalog/pg_proc.h"
53 : #include "catalog/pg_publication.h"
54 : #include "catalog/pg_publication_namespace.h"
55 : #include "catalog/pg_publication_rel.h"
56 : #include "catalog/pg_rewrite.h"
57 : #include "catalog/pg_statistic_ext.h"
58 : #include "catalog/pg_subscription.h"
59 : #include "catalog/pg_tablespace.h"
60 : #include "catalog/pg_transform.h"
61 : #include "catalog/pg_trigger.h"
62 : #include "catalog/pg_ts_config.h"
63 : #include "catalog/pg_ts_dict.h"
64 : #include "catalog/pg_ts_parser.h"
65 : #include "catalog/pg_ts_template.h"
66 : #include "catalog/pg_type.h"
67 : #include "catalog/pg_user_mapping.h"
68 : #include "commands/comment.h"
69 : #include "commands/defrem.h"
70 : #include "commands/event_trigger.h"
71 : #include "commands/extension.h"
72 : #include "commands/policy.h"
73 : #include "commands/publicationcmds.h"
74 : #include "commands/seclabel.h"
75 : #include "commands/sequence.h"
76 : #include "commands/trigger.h"
77 : #include "commands/typecmds.h"
78 : #include "funcapi.h"
79 : #include "nodes/nodeFuncs.h"
80 : #include "parser/parsetree.h"
81 : #include "rewrite/rewriteRemove.h"
82 : #include "storage/lmgr.h"
83 : #include "utils/acl.h"
84 : #include "utils/fmgroids.h"
85 : #include "utils/guc.h"
86 : #include "utils/lsyscache.h"
87 : #include "utils/syscache.h"
88 :
89 :
90 : /*
91 : * Deletion processing requires additional state for each ObjectAddress that
92 : * it's planning to delete. For simplicity and code-sharing we make the
93 : * ObjectAddresses code support arrays with or without this extra state.
94 : */
95 : typedef struct
96 : {
97 : int flags; /* bitmask, see bit definitions below */
98 : ObjectAddress dependee; /* object whose deletion forced this one */
99 : } ObjectAddressExtra;
100 :
101 : /* ObjectAddressExtra flag bits */
102 : #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
103 : #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
104 : #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
105 : #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
106 : #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
107 : #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
108 : #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
109 : #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
110 : #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
111 :
112 :
113 : /* expansible list of ObjectAddresses */
114 : struct ObjectAddresses
115 : {
116 : ObjectAddress *refs; /* => palloc'd array */
117 : ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
118 : int numrefs; /* current number of references */
119 : int maxrefs; /* current size of palloc'd array(s) */
120 : };
121 :
122 : /* typedef ObjectAddresses appears in dependency.h */
123 :
124 : /* threaded list of ObjectAddresses, for recursion detection */
125 : typedef struct ObjectAddressStack
126 : {
127 : const ObjectAddress *object; /* object being visited */
128 : int flags; /* its current flag bits */
129 : struct ObjectAddressStack *next; /* next outer stack level */
130 : } ObjectAddressStack;
131 :
132 : /* temporary storage in findDependentObjects */
133 : typedef struct
134 : {
135 : ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
136 : int subflags; /* flags to pass down when recursing to obj */
137 : } ObjectAddressAndFlags;
138 :
139 : /* for find_expr_references_walker */
140 : typedef struct
141 : {
142 : ObjectAddresses *addrs; /* addresses being accumulated */
143 : List *rtables; /* list of rangetables to resolve Vars */
144 : } find_expr_references_context;
145 :
146 : /*
147 : * This constant table maps ObjectClasses to the corresponding catalog OIDs.
148 : * See also getObjectClass().
149 : */
150 : static const Oid object_classes[] = {
151 : RelationRelationId, /* OCLASS_CLASS */
152 : ProcedureRelationId, /* OCLASS_PROC */
153 : TypeRelationId, /* OCLASS_TYPE */
154 : CastRelationId, /* OCLASS_CAST */
155 : CollationRelationId, /* OCLASS_COLLATION */
156 : ConstraintRelationId, /* OCLASS_CONSTRAINT */
157 : ConversionRelationId, /* OCLASS_CONVERSION */
158 : AttrDefaultRelationId, /* OCLASS_DEFAULT */
159 : LanguageRelationId, /* OCLASS_LANGUAGE */
160 : LargeObjectRelationId, /* OCLASS_LARGEOBJECT */
161 : OperatorRelationId, /* OCLASS_OPERATOR */
162 : OperatorClassRelationId, /* OCLASS_OPCLASS */
163 : OperatorFamilyRelationId, /* OCLASS_OPFAMILY */
164 : AccessMethodRelationId, /* OCLASS_AM */
165 : AccessMethodOperatorRelationId, /* OCLASS_AMOP */
166 : AccessMethodProcedureRelationId, /* OCLASS_AMPROC */
167 : RewriteRelationId, /* OCLASS_REWRITE */
168 : TriggerRelationId, /* OCLASS_TRIGGER */
169 : NamespaceRelationId, /* OCLASS_SCHEMA */
170 : StatisticExtRelationId, /* OCLASS_STATISTIC_EXT */
171 : TSParserRelationId, /* OCLASS_TSPARSER */
172 : TSDictionaryRelationId, /* OCLASS_TSDICT */
173 : TSTemplateRelationId, /* OCLASS_TSTEMPLATE */
174 : TSConfigRelationId, /* OCLASS_TSCONFIG */
175 : AuthIdRelationId, /* OCLASS_ROLE */
176 : AuthMemRelationId, /* OCLASS_ROLE_MEMBERSHIP */
177 : DatabaseRelationId, /* OCLASS_DATABASE */
178 : TableSpaceRelationId, /* OCLASS_TBLSPACE */
179 : ForeignDataWrapperRelationId, /* OCLASS_FDW */
180 : ForeignServerRelationId, /* OCLASS_FOREIGN_SERVER */
181 : UserMappingRelationId, /* OCLASS_USER_MAPPING */
182 : DefaultAclRelationId, /* OCLASS_DEFACL */
183 : ExtensionRelationId, /* OCLASS_EXTENSION */
184 : EventTriggerRelationId, /* OCLASS_EVENT_TRIGGER */
185 : ParameterAclRelationId, /* OCLASS_PARAMETER_ACL */
186 : PolicyRelationId, /* OCLASS_POLICY */
187 : PublicationNamespaceRelationId, /* OCLASS_PUBLICATION_NAMESPACE */
188 : PublicationRelationId, /* OCLASS_PUBLICATION */
189 : PublicationRelRelationId, /* OCLASS_PUBLICATION_REL */
190 : SubscriptionRelationId, /* OCLASS_SUBSCRIPTION */
191 : TransformRelationId /* OCLASS_TRANSFORM */
192 : };
193 :
194 : /*
195 : * Make sure object_classes is kept up to date with the ObjectClass enum.
196 : */
197 : StaticAssertDecl(lengthof(object_classes) == LAST_OCLASS + 1,
198 : "object_classes[] must cover all ObjectClasses");
199 :
200 :
201 : static void findDependentObjects(const ObjectAddress *object,
202 : int objflags,
203 : int flags,
204 : ObjectAddressStack *stack,
205 : ObjectAddresses *targetObjects,
206 : const ObjectAddresses *pendingObjects,
207 : Relation *depRel);
208 : static void reportDependentObjects(const ObjectAddresses *targetObjects,
209 : DropBehavior behavior,
210 : int flags,
211 : const ObjectAddress *origObject);
212 : static void deleteOneObject(const ObjectAddress *object,
213 : Relation *depRel, int32 flags);
214 : static void doDeletion(const ObjectAddress *object, int flags);
215 : static bool find_expr_references_walker(Node *node,
216 : find_expr_references_context *context);
217 : static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
218 : find_expr_references_context *context);
219 : static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
220 : static int object_address_comparator(const void *a, const void *b);
221 : static void add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
222 : ObjectAddresses *addrs);
223 : static void add_exact_object_address_extra(const ObjectAddress *object,
224 : const ObjectAddressExtra *extra,
225 : ObjectAddresses *addrs);
226 : static bool object_address_present_add_flags(const ObjectAddress *object,
227 : int flags,
228 : ObjectAddresses *addrs);
229 : static bool stack_address_present_add_flags(const ObjectAddress *object,
230 : int flags,
231 : ObjectAddressStack *stack);
232 : static void DeleteInitPrivs(const ObjectAddress *object);
233 :
234 :
235 : /*
236 : * Go through the objects given running the final actions on them, and execute
237 : * the actual deletion.
238 : */
239 : static void
240 28208 : deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
241 : int flags)
242 : {
243 : int i;
244 :
245 : /*
246 : * Keep track of objects for event triggers, if necessary.
247 : */
248 28208 : if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
249 : {
250 4202 : for (i = 0; i < targetObjects->numrefs; i++)
251 : {
252 3538 : const ObjectAddress *thisobj = &targetObjects->refs[i];
253 3538 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
254 3538 : bool original = false;
255 3538 : bool normal = false;
256 :
257 3538 : if (extra->flags & DEPFLAG_ORIGINAL)
258 748 : original = true;
259 3538 : if (extra->flags & DEPFLAG_NORMAL)
260 330 : normal = true;
261 3538 : if (extra->flags & DEPFLAG_REVERSE)
262 0 : normal = true;
263 :
264 3538 : if (EventTriggerSupportsObjectClass(getObjectClass(thisobj)))
265 : {
266 3426 : EventTriggerSQLDropAddObject(thisobj, original, normal);
267 : }
268 : }
269 : }
270 :
271 : /*
272 : * Delete all the objects in the proper order, except that if told to, we
273 : * should skip the original object(s).
274 : */
275 198962 : for (i = 0; i < targetObjects->numrefs; i++)
276 : {
277 170758 : ObjectAddress *thisobj = targetObjects->refs + i;
278 170758 : ObjectAddressExtra *thisextra = targetObjects->extras + i;
279 :
280 170758 : if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
281 8744 : (thisextra->flags & DEPFLAG_ORIGINAL))
282 998 : continue;
283 :
284 169760 : deleteOneObject(thisobj, depRel, flags);
285 : }
286 28204 : }
287 :
288 : /*
289 : * performDeletion: attempt to drop the specified object. If CASCADE
290 : * behavior is specified, also drop any dependent objects (recursively).
291 : * If RESTRICT behavior is specified, error out if there are any dependent
292 : * objects, except for those that should be implicitly dropped anyway
293 : * according to the dependency type.
294 : *
295 : * This is the outer control routine for all forms of DROP that drop objects
296 : * that can participate in dependencies. Note that performMultipleDeletions
297 : * is a variant on the same theme; if you change anything here you'll likely
298 : * need to fix that too.
299 : *
300 : * Bits in the flags argument can include:
301 : *
302 : * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
303 : * direct result of a user-initiated action. For example, when a temporary
304 : * schema is cleaned out so that a new backend can use it, or when a column
305 : * default is dropped as an intermediate step while adding a new one, that's
306 : * an internal operation. On the other hand, when we drop something because
307 : * the user issued a DROP statement against it, that's not internal. Currently
308 : * this suppresses calling event triggers and making some permissions checks.
309 : *
310 : * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
311 : * not currently work for anything except dropping indexes; don't set it for
312 : * other object types or you may get strange results.
313 : *
314 : * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
315 : *
316 : * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
317 : * but only what depends on it/them.
318 : *
319 : * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
320 : * deleting objects that are part of an extension. This should generally
321 : * be used only when dropping temporary objects.
322 : *
323 : * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
324 : * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
325 : *
326 : */
327 : void
328 4698 : performDeletion(const ObjectAddress *object,
329 : DropBehavior behavior, int flags)
330 : {
331 : Relation depRel;
332 : ObjectAddresses *targetObjects;
333 :
334 : /*
335 : * We save some cycles by opening pg_depend just once and passing the
336 : * Relation pointer down to all the recursive deletion steps.
337 : */
338 4698 : depRel = table_open(DependRelationId, RowExclusiveLock);
339 :
340 : /*
341 : * Acquire deletion lock on the target object. (Ideally the caller has
342 : * done this already, but many places are sloppy about it.)
343 : */
344 4698 : AcquireDeletionLock(object, 0);
345 :
346 : /*
347 : * Construct a list of objects to delete (ie, the given object plus
348 : * everything directly or indirectly dependent on it).
349 : */
350 4698 : targetObjects = new_object_addresses();
351 :
352 4698 : findDependentObjects(object,
353 : DEPFLAG_ORIGINAL,
354 : flags,
355 : NULL, /* empty stack */
356 : targetObjects,
357 : NULL, /* no pendingObjects */
358 : &depRel);
359 :
360 : /*
361 : * Check if deletion is allowed, and report about cascaded deletes.
362 : */
363 4698 : reportDependentObjects(targetObjects,
364 : behavior,
365 : flags,
366 : object);
367 :
368 : /* do the deed */
369 4662 : deleteObjectsInList(targetObjects, &depRel, flags);
370 :
371 : /* And clean up */
372 4660 : free_object_addresses(targetObjects);
373 :
374 4660 : table_close(depRel, RowExclusiveLock);
375 4660 : }
376 :
377 : /*
378 : * performMultipleDeletions: Similar to performDeletion, but act on multiple
379 : * objects at once.
380 : *
381 : * The main difference from issuing multiple performDeletion calls is that the
382 : * list of objects that would be implicitly dropped, for each object to be
383 : * dropped, is the union of the implicit-object list for all objects. This
384 : * makes each check be more relaxed.
385 : */
386 : void
387 25834 : performMultipleDeletions(const ObjectAddresses *objects,
388 : DropBehavior behavior, int flags)
389 : {
390 : Relation depRel;
391 : ObjectAddresses *targetObjects;
392 : int i;
393 :
394 : /* No work if no objects... */
395 25834 : if (objects->numrefs <= 0)
396 1960 : return;
397 :
398 : /*
399 : * We save some cycles by opening pg_depend just once and passing the
400 : * Relation pointer down to all the recursive deletion steps.
401 : */
402 23874 : depRel = table_open(DependRelationId, RowExclusiveLock);
403 :
404 : /*
405 : * Construct a list of objects to delete (ie, the given objects plus
406 : * everything directly or indirectly dependent on them). Note that
407 : * because we pass the whole objects list as pendingObjects context, we
408 : * won't get a failure from trying to delete an object that is internally
409 : * dependent on another one in the list; we'll just skip that object and
410 : * delete it when we reach its owner.
411 : */
412 23874 : targetObjects = new_object_addresses();
413 :
414 52478 : for (i = 0; i < objects->numrefs; i++)
415 : {
416 28646 : const ObjectAddress *thisobj = objects->refs + i;
417 :
418 : /*
419 : * Acquire deletion lock on each target object. (Ideally the caller
420 : * has done this already, but many places are sloppy about it.)
421 : */
422 28646 : AcquireDeletionLock(thisobj, flags);
423 :
424 28646 : findDependentObjects(thisobj,
425 : DEPFLAG_ORIGINAL,
426 : flags,
427 : NULL, /* empty stack */
428 : targetObjects,
429 : objects,
430 : &depRel);
431 : }
432 :
433 : /*
434 : * Check if deletion is allowed, and report about cascaded deletes.
435 : *
436 : * If there's exactly one object being deleted, report it the same way as
437 : * in performDeletion(), else we have to be vaguer.
438 : */
439 23832 : reportDependentObjects(targetObjects,
440 : behavior,
441 : flags,
442 23832 : (objects->numrefs == 1 ? objects->refs : NULL));
443 :
444 : /* do the deed */
445 23546 : deleteObjectsInList(targetObjects, &depRel, flags);
446 :
447 : /* And clean up */
448 23544 : free_object_addresses(targetObjects);
449 :
450 23544 : table_close(depRel, RowExclusiveLock);
451 : }
452 :
453 : /*
454 : * findDependentObjects - find all objects that depend on 'object'
455 : *
456 : * For every object that depends on the starting object, acquire a deletion
457 : * lock on the object, add it to targetObjects (if not already there),
458 : * and recursively find objects that depend on it. An object's dependencies
459 : * will be placed into targetObjects before the object itself; this means
460 : * that the finished list's order represents a safe deletion order.
461 : *
462 : * The caller must already have a deletion lock on 'object' itself,
463 : * but must not have added it to targetObjects. (Note: there are corner
464 : * cases where we won't add the object either, and will also release the
465 : * caller-taken lock. This is a bit ugly, but the API is set up this way
466 : * to allow easy rechecking of an object's liveness after we lock it. See
467 : * notes within the function.)
468 : *
469 : * When dropping a whole object (subId = 0), we find dependencies for
470 : * its sub-objects too.
471 : *
472 : * object: the object to add to targetObjects and find dependencies on
473 : * objflags: flags to be ORed into the object's targetObjects entry
474 : * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
475 : * stack: list of objects being visited in current recursion; topmost item
476 : * is the object that we recursed from (NULL for external callers)
477 : * targetObjects: list of objects that are scheduled to be deleted
478 : * pendingObjects: list of other objects slated for destruction, but
479 : * not necessarily in targetObjects yet (can be NULL if none)
480 : * *depRel: already opened pg_depend relation
481 : *
482 : * Note: objflags describes the reason for visiting this particular object
483 : * at this time, and is not passed down when recursing. The flags argument
484 : * is passed down, since it describes what we're doing overall.
485 : */
486 : static void
487 214020 : findDependentObjects(const ObjectAddress *object,
488 : int objflags,
489 : int flags,
490 : ObjectAddressStack *stack,
491 : ObjectAddresses *targetObjects,
492 : const ObjectAddresses *pendingObjects,
493 : Relation *depRel)
494 : {
495 : ScanKeyData key[3];
496 : int nkeys;
497 : SysScanDesc scan;
498 : HeapTuple tup;
499 : ObjectAddress otherObject;
500 : ObjectAddress owningObject;
501 : ObjectAddress partitionObject;
502 : ObjectAddressAndFlags *dependentObjects;
503 : int numDependentObjects;
504 : int maxDependentObjects;
505 : ObjectAddressStack mystack;
506 : ObjectAddressExtra extra;
507 :
508 : /*
509 : * If the target object is already being visited in an outer recursion
510 : * level, just report the current objflags back to that level and exit.
511 : * This is needed to avoid infinite recursion in the face of circular
512 : * dependencies.
513 : *
514 : * The stack check alone would result in dependency loops being broken at
515 : * an arbitrary point, ie, the first member object of the loop to be
516 : * visited is the last one to be deleted. This is obviously unworkable.
517 : * However, the check for internal dependency below guarantees that we
518 : * will not break a loop at an internal dependency: if we enter the loop
519 : * at an "owned" object we will switch and start at the "owning" object
520 : * instead. We could probably hack something up to avoid breaking at an
521 : * auto dependency, too, if we had to. However there are no known cases
522 : * where that would be necessary.
523 : */
524 214020 : if (stack_address_present_add_flags(object, objflags, stack))
525 39236 : return;
526 :
527 : /*
528 : * It's also possible that the target object has already been completely
529 : * processed and put into targetObjects. If so, again we just add the
530 : * specified objflags to its entry and return.
531 : *
532 : * (Note: in these early-exit cases we could release the caller-taken
533 : * lock, since the object is presumably now locked multiple times; but it
534 : * seems not worth the cycles.)
535 : */
536 213750 : if (object_address_present_add_flags(object, objflags, targetObjects))
537 37654 : return;
538 :
539 : /*
540 : * If the target object is pinned, we can just error out immediately; it
541 : * won't have any objects recorded as depending on it.
542 : */
543 176096 : if (IsPinnedObject(object->classId, object->objectId))
544 2 : ereport(ERROR,
545 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
546 : errmsg("cannot drop %s because it is required by the database system",
547 : getObjectDescription(object, false))));
548 :
549 : /*
550 : * The target object might be internally dependent on some other object
551 : * (its "owner"), and/or be a member of an extension (also considered its
552 : * owner). If so, and if we aren't recursing from the owning object, we
553 : * have to transform this deletion request into a deletion request of the
554 : * owning object. (We'll eventually recurse back to this object, but the
555 : * owning object has to be visited first so it will be deleted after.) The
556 : * way to find out about this is to scan the pg_depend entries that show
557 : * what this object depends on.
558 : */
559 176094 : ScanKeyInit(&key[0],
560 : Anum_pg_depend_classid,
561 : BTEqualStrategyNumber, F_OIDEQ,
562 : ObjectIdGetDatum(object->classId));
563 176094 : ScanKeyInit(&key[1],
564 : Anum_pg_depend_objid,
565 : BTEqualStrategyNumber, F_OIDEQ,
566 : ObjectIdGetDatum(object->objectId));
567 176094 : if (object->objectSubId != 0)
568 : {
569 : /* Consider only dependencies of this sub-object */
570 2020 : ScanKeyInit(&key[2],
571 : Anum_pg_depend_objsubid,
572 : BTEqualStrategyNumber, F_INT4EQ,
573 : Int32GetDatum(object->objectSubId));
574 2020 : nkeys = 3;
575 : }
576 : else
577 : {
578 : /* Consider dependencies of this object and any sub-objects it has */
579 174074 : nkeys = 2;
580 : }
581 :
582 176094 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
583 : NULL, nkeys, key);
584 :
585 : /* initialize variables that loop may fill */
586 176094 : memset(&owningObject, 0, sizeof(owningObject));
587 176094 : memset(&partitionObject, 0, sizeof(partitionObject));
588 :
589 420066 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
590 : {
591 245284 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
592 :
593 245284 : otherObject.classId = foundDep->refclassid;
594 245284 : otherObject.objectId = foundDep->refobjid;
595 245284 : otherObject.objectSubId = foundDep->refobjsubid;
596 :
597 : /*
598 : * When scanning dependencies of a whole object, we may find rows
599 : * linking sub-objects of the object to the object itself. (Normally,
600 : * such a dependency is implicit, but we must make explicit ones in
601 : * some cases involving partitioning.) We must ignore such rows to
602 : * avoid infinite recursion.
603 : */
604 245284 : if (otherObject.classId == object->classId &&
605 84772 : otherObject.objectId == object->objectId &&
606 3912 : object->objectSubId == 0)
607 3888 : continue;
608 :
609 241396 : switch (foundDep->deptype)
610 : {
611 138332 : case DEPENDENCY_NORMAL:
612 : case DEPENDENCY_AUTO:
613 : case DEPENDENCY_AUTO_EXTENSION:
614 : /* no problem */
615 138332 : break;
616 :
617 2950 : case DEPENDENCY_EXTENSION:
618 :
619 : /*
620 : * If told to, ignore EXTENSION dependencies altogether. This
621 : * flag is normally used to prevent dropping extensions during
622 : * temporary-object cleanup, even if a temp object was created
623 : * during an extension script.
624 : */
625 2950 : if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
626 4 : break;
627 :
628 : /*
629 : * If the other object is the extension currently being
630 : * created/altered, ignore this dependency and continue with
631 : * the deletion. This allows dropping of an extension's
632 : * objects within the extension's scripts, as well as corner
633 : * cases such as dropping a transient object created within
634 : * such a script.
635 : */
636 2946 : if (creating_extension &&
637 258 : otherObject.classId == ExtensionRelationId &&
638 258 : otherObject.objectId == CurrentExtensionObject)
639 258 : break;
640 :
641 : /* Otherwise, treat this like an internal dependency */
642 : /* FALL THRU */
643 :
644 : case DEPENDENCY_INTERNAL:
645 :
646 : /*
647 : * This object is part of the internal implementation of
648 : * another object, or is part of the extension that is the
649 : * other object. We have three cases:
650 : *
651 : * 1. At the outermost recursion level, we must disallow the
652 : * DROP. However, if the owning object is listed in
653 : * pendingObjects, just release the caller's lock and return;
654 : * we'll eventually complete the DROP when we reach that entry
655 : * in the pending list.
656 : *
657 : * Note: the above statement is true only if this pg_depend
658 : * entry still exists by then; in principle, therefore, we
659 : * could miss deleting an item the user told us to delete.
660 : * However, no inconsistency can result: since we're at outer
661 : * level, there is no object depending on this one.
662 : */
663 94282 : if (stack == NULL)
664 : {
665 80 : if (pendingObjects &&
666 40 : object_address_present(&otherObject, pendingObjects))
667 : {
668 0 : systable_endscan(scan);
669 : /* need to release caller's lock; see notes below */
670 0 : ReleaseDeletionLock(object);
671 0 : return;
672 : }
673 :
674 : /*
675 : * We postpone actually issuing the error message until
676 : * after this loop, so that we can make the behavior
677 : * independent of the ordering of pg_depend entries, at
678 : * least if there's not more than one INTERNAL and one
679 : * EXTENSION dependency. (If there's more, we'll complain
680 : * about a random one of them.) Prefer to complain about
681 : * EXTENSION, since that's generally a more important
682 : * dependency.
683 : */
684 40 : if (!OidIsValid(owningObject.classId) ||
685 0 : foundDep->deptype == DEPENDENCY_EXTENSION)
686 40 : owningObject = otherObject;
687 40 : break;
688 : }
689 :
690 : /*
691 : * 2. When recursing from the other end of this dependency,
692 : * it's okay to continue with the deletion. This holds when
693 : * recursing from a whole object that includes the nominal
694 : * other end as a component, too. Since there can be more
695 : * than one "owning" object, we have to allow matches that are
696 : * more than one level down in the stack.
697 : */
698 94242 : if (stack_address_present_add_flags(&otherObject, 0, stack))
699 92930 : break;
700 :
701 : /*
702 : * 3. Not all the owning objects have been visited, so
703 : * transform this deletion request into a delete of this
704 : * owning object.
705 : *
706 : * First, release caller's lock on this object and get
707 : * deletion lock on the owning object. (We must release
708 : * caller's lock to avoid deadlock against a concurrent
709 : * deletion of the owning object.)
710 : */
711 1312 : ReleaseDeletionLock(object);
712 1312 : AcquireDeletionLock(&otherObject, 0);
713 :
714 : /*
715 : * The owning object might have been deleted while we waited
716 : * to lock it; if so, neither it nor the current object are
717 : * interesting anymore. We test this by checking the
718 : * pg_depend entry (see notes below).
719 : */
720 1312 : if (!systable_recheck_tuple(scan, tup))
721 : {
722 0 : systable_endscan(scan);
723 0 : ReleaseDeletionLock(&otherObject);
724 0 : return;
725 : }
726 :
727 : /*
728 : * One way or the other, we're done with the scan; might as
729 : * well close it down before recursing, to reduce peak
730 : * resource consumption.
731 : */
732 1312 : systable_endscan(scan);
733 :
734 : /*
735 : * Okay, recurse to the owning object instead of proceeding.
736 : *
737 : * We do not need to stack the current object; we want the
738 : * traversal order to be as if the original reference had
739 : * linked to the owning object instead of this one.
740 : *
741 : * The dependency type is a "reverse" dependency: we need to
742 : * delete the owning object if this one is to be deleted, but
743 : * this linkage is never a reason for an automatic deletion.
744 : */
745 1312 : findDependentObjects(&otherObject,
746 : DEPFLAG_REVERSE,
747 : flags,
748 : stack,
749 : targetObjects,
750 : pendingObjects,
751 : depRel);
752 :
753 : /*
754 : * The current target object should have been added to
755 : * targetObjects while processing the owning object; but it
756 : * probably got only the flag bits associated with the
757 : * dependency we're looking at. We need to add the objflags
758 : * that were passed to this recursion level, too, else we may
759 : * get a bogus failure in reportDependentObjects (if, for
760 : * example, we were called due to a partition dependency).
761 : *
762 : * If somehow the current object didn't get scheduled for
763 : * deletion, bleat. (That would imply that somebody deleted
764 : * this dependency record before the recursion got to it.)
765 : * Another idea would be to reacquire lock on the current
766 : * object and resume trying to delete it, but it seems not
767 : * worth dealing with the race conditions inherent in that.
768 : */
769 1312 : if (!object_address_present_add_flags(object, objflags,
770 : targetObjects))
771 0 : elog(ERROR, "deletion of owning object %s failed to delete %s",
772 : getObjectDescription(&otherObject, false),
773 : getObjectDescription(object, false));
774 :
775 : /* And we're done here. */
776 1312 : return;
777 :
778 4260 : case DEPENDENCY_PARTITION_PRI:
779 :
780 : /*
781 : * Remember that this object has a partition-type dependency.
782 : * After the dependency scan, we'll complain if we didn't find
783 : * a reason to delete one of its partition dependencies.
784 : */
785 4260 : objflags |= DEPFLAG_IS_PART;
786 :
787 : /*
788 : * Also remember the primary partition owner, for error
789 : * messages. If there are multiple primary owners (which
790 : * there should not be), we'll report a random one of them.
791 : */
792 4260 : partitionObject = otherObject;
793 4260 : break;
794 :
795 4260 : case DEPENDENCY_PARTITION_SEC:
796 :
797 : /*
798 : * Only use secondary partition owners in error messages if we
799 : * find no primary owner (which probably shouldn't happen).
800 : */
801 4260 : if (!(objflags & DEPFLAG_IS_PART))
802 2 : partitionObject = otherObject;
803 :
804 : /*
805 : * Remember that this object has a partition-type dependency.
806 : * After the dependency scan, we'll complain if we didn't find
807 : * a reason to delete one of its partition dependencies.
808 : */
809 4260 : objflags |= DEPFLAG_IS_PART;
810 4260 : break;
811 :
812 0 : default:
813 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
814 : foundDep->deptype, getObjectDescription(object, false));
815 : break;
816 : }
817 : }
818 :
819 174782 : systable_endscan(scan);
820 :
821 : /*
822 : * If we found an INTERNAL or EXTENSION dependency when we're at outer
823 : * level, complain about it now. If we also found a PARTITION dependency,
824 : * we prefer to report the PARTITION dependency. This is arbitrary but
825 : * seems to be more useful in practice.
826 : */
827 174782 : if (OidIsValid(owningObject.classId))
828 : {
829 : char *otherObjDesc;
830 :
831 40 : if (OidIsValid(partitionObject.classId))
832 12 : otherObjDesc = getObjectDescription(&partitionObject, false);
833 : else
834 28 : otherObjDesc = getObjectDescription(&owningObject, false);
835 :
836 40 : ereport(ERROR,
837 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
838 : errmsg("cannot drop %s because %s requires it",
839 : getObjectDescription(object, false), otherObjDesc),
840 : errhint("You can drop %s instead.", otherObjDesc)));
841 : }
842 :
843 : /*
844 : * Next, identify all objects that directly depend on the current object.
845 : * To ensure predictable deletion order, we collect them up in
846 : * dependentObjects and sort the list before actually recursing. (The
847 : * deletion order would be valid in any case, but doing this ensures
848 : * consistent output from DROP CASCADE commands, which is helpful for
849 : * regression testing.)
850 : */
851 174742 : maxDependentObjects = 128; /* arbitrary initial allocation */
852 : dependentObjects = (ObjectAddressAndFlags *)
853 174742 : palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
854 174742 : numDependentObjects = 0;
855 :
856 174742 : ScanKeyInit(&key[0],
857 : Anum_pg_depend_refclassid,
858 : BTEqualStrategyNumber, F_OIDEQ,
859 : ObjectIdGetDatum(object->classId));
860 174742 : ScanKeyInit(&key[1],
861 : Anum_pg_depend_refobjid,
862 : BTEqualStrategyNumber, F_OIDEQ,
863 : ObjectIdGetDatum(object->objectId));
864 174742 : if (object->objectSubId != 0)
865 : {
866 1996 : ScanKeyInit(&key[2],
867 : Anum_pg_depend_refobjsubid,
868 : BTEqualStrategyNumber, F_INT4EQ,
869 : Int32GetDatum(object->objectSubId));
870 1996 : nkeys = 3;
871 : }
872 : else
873 172746 : nkeys = 2;
874 :
875 174742 : scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
876 : NULL, nkeys, key);
877 :
878 357994 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
879 : {
880 183252 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
881 : int subflags;
882 :
883 183252 : otherObject.classId = foundDep->classid;
884 183252 : otherObject.objectId = foundDep->objid;
885 183252 : otherObject.objectSubId = foundDep->objsubid;
886 :
887 : /*
888 : * If what we found is a sub-object of the current object, just ignore
889 : * it. (Normally, such a dependency is implicit, but we must make
890 : * explicit ones in some cases involving partitioning.)
891 : */
892 183252 : if (otherObject.classId == object->classId &&
893 80876 : otherObject.objectId == object->objectId &&
894 3888 : object->objectSubId == 0)
895 3888 : continue;
896 :
897 : /*
898 : * Must lock the dependent object before recursing to it.
899 : */
900 179364 : AcquireDeletionLock(&otherObject, 0);
901 :
902 : /*
903 : * The dependent object might have been deleted while we waited to
904 : * lock it; if so, we don't need to do anything more with it. We can
905 : * test this cheaply and independently of the object's type by seeing
906 : * if the pg_depend tuple we are looking at is still live. (If the
907 : * object got deleted, the tuple would have been deleted too.)
908 : */
909 179364 : if (!systable_recheck_tuple(scan, tup))
910 : {
911 : /* release the now-useless lock */
912 0 : ReleaseDeletionLock(&otherObject);
913 : /* and continue scanning for dependencies */
914 0 : continue;
915 : }
916 :
917 : /*
918 : * We do need to delete it, so identify objflags to be passed down,
919 : * which depend on the dependency type.
920 : */
921 179364 : switch (foundDep->deptype)
922 : {
923 23892 : case DEPENDENCY_NORMAL:
924 23892 : subflags = DEPFLAG_NORMAL;
925 23892 : break;
926 54780 : case DEPENDENCY_AUTO:
927 : case DEPENDENCY_AUTO_EXTENSION:
928 54780 : subflags = DEPFLAG_AUTO;
929 54780 : break;
930 90252 : case DEPENDENCY_INTERNAL:
931 90252 : subflags = DEPFLAG_INTERNAL;
932 90252 : break;
933 7762 : case DEPENDENCY_PARTITION_PRI:
934 : case DEPENDENCY_PARTITION_SEC:
935 7762 : subflags = DEPFLAG_PARTITION;
936 7762 : break;
937 2678 : case DEPENDENCY_EXTENSION:
938 2678 : subflags = DEPFLAG_EXTENSION;
939 2678 : break;
940 0 : default:
941 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
942 : foundDep->deptype, getObjectDescription(object, false));
943 : subflags = 0; /* keep compiler quiet */
944 : break;
945 : }
946 :
947 : /* And add it to the pending-objects list */
948 179364 : if (numDependentObjects >= maxDependentObjects)
949 : {
950 : /* enlarge array if needed */
951 8 : maxDependentObjects *= 2;
952 : dependentObjects = (ObjectAddressAndFlags *)
953 8 : repalloc(dependentObjects,
954 : maxDependentObjects * sizeof(ObjectAddressAndFlags));
955 : }
956 :
957 179364 : dependentObjects[numDependentObjects].obj = otherObject;
958 179364 : dependentObjects[numDependentObjects].subflags = subflags;
959 179364 : numDependentObjects++;
960 : }
961 :
962 174742 : systable_endscan(scan);
963 :
964 : /*
965 : * Now we can sort the dependent objects into a stable visitation order.
966 : * It's safe to use object_address_comparator here since the obj field is
967 : * first within ObjectAddressAndFlags.
968 : */
969 174742 : if (numDependentObjects > 1)
970 38316 : qsort(dependentObjects, numDependentObjects,
971 : sizeof(ObjectAddressAndFlags),
972 : object_address_comparator);
973 :
974 : /*
975 : * Now recurse to the dependent objects. We must visit them first since
976 : * they have to be deleted before the current object.
977 : */
978 174742 : mystack.object = object; /* set up a new stack level */
979 174742 : mystack.flags = objflags;
980 174742 : mystack.next = stack;
981 :
982 354106 : for (int i = 0; i < numDependentObjects; i++)
983 : {
984 179364 : ObjectAddressAndFlags *depObj = dependentObjects + i;
985 :
986 179364 : findDependentObjects(&depObj->obj,
987 : depObj->subflags,
988 : flags,
989 : &mystack,
990 : targetObjects,
991 : pendingObjects,
992 : depRel);
993 : }
994 :
995 174742 : pfree(dependentObjects);
996 :
997 : /*
998 : * Finally, we can add the target object to targetObjects. Be careful to
999 : * include any flags that were passed back down to us from inner recursion
1000 : * levels. Record the "dependee" as being either the most important
1001 : * partition owner if there is one, else the object we recursed from, if
1002 : * any. (The logic in reportDependentObjects() is such that it can only
1003 : * need one of those objects.)
1004 : */
1005 174742 : extra.flags = mystack.flags;
1006 174742 : if (extra.flags & DEPFLAG_IS_PART)
1007 4248 : extra.dependee = partitionObject;
1008 170494 : else if (stack)
1009 137652 : extra.dependee = *stack->object;
1010 : else
1011 32842 : memset(&extra.dependee, 0, sizeof(extra.dependee));
1012 174742 : add_exact_object_address_extra(object, &extra, targetObjects);
1013 : }
1014 :
1015 : /*
1016 : * reportDependentObjects - report about dependencies, and fail if RESTRICT
1017 : *
1018 : * Tell the user about dependent objects that we are going to delete
1019 : * (or would need to delete, but are prevented by RESTRICT mode);
1020 : * then error out if there are any and it's not CASCADE mode.
1021 : *
1022 : * targetObjects: list of objects that are scheduled to be deleted
1023 : * behavior: RESTRICT or CASCADE
1024 : * flags: other flags for the deletion operation
1025 : * origObject: base object of deletion, or NULL if not available
1026 : * (the latter case occurs in DROP OWNED)
1027 : */
1028 : static void
1029 28530 : reportDependentObjects(const ObjectAddresses *targetObjects,
1030 : DropBehavior behavior,
1031 : int flags,
1032 : const ObjectAddress *origObject)
1033 : {
1034 28530 : int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
1035 28530 : bool ok = true;
1036 : StringInfoData clientdetail;
1037 : StringInfoData logdetail;
1038 28530 : int numReportedClient = 0;
1039 28530 : int numNotReportedClient = 0;
1040 : int i;
1041 :
1042 : /*
1043 : * If we need to delete any partition-dependent objects, make sure that
1044 : * we're deleting at least one of their partition dependencies, too. That
1045 : * can be detected by checking that we reached them by a PARTITION
1046 : * dependency at some point.
1047 : *
1048 : * We just report the first such object, as in most cases the only way to
1049 : * trigger this complaint is to explicitly try to delete one partition of
1050 : * a partitioned object.
1051 : */
1052 203242 : for (i = 0; i < targetObjects->numrefs; i++)
1053 : {
1054 174742 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1055 :
1056 174742 : if ((extra->flags & DEPFLAG_IS_PART) &&
1057 4248 : !(extra->flags & DEPFLAG_PARTITION))
1058 : {
1059 30 : const ObjectAddress *object = &targetObjects->refs[i];
1060 30 : char *otherObjDesc = getObjectDescription(&extra->dependee,
1061 : false);
1062 :
1063 30 : ereport(ERROR,
1064 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1065 : errmsg("cannot drop %s because %s requires it",
1066 : getObjectDescription(object, false), otherObjDesc),
1067 : errhint("You can drop %s instead.", otherObjDesc)));
1068 : }
1069 : }
1070 :
1071 : /*
1072 : * If no error is to be thrown, and the msglevel is too low to be shown to
1073 : * either client or server log, there's no need to do any of the rest of
1074 : * the work.
1075 : */
1076 28500 : if (behavior == DROP_CASCADE &&
1077 3302 : !message_level_is_interesting(msglevel))
1078 1058 : return;
1079 :
1080 : /*
1081 : * We limit the number of dependencies reported to the client to
1082 : * MAX_REPORTED_DEPS, since client software may not deal well with
1083 : * enormous error strings. The server log always gets a full report.
1084 : */
1085 : #define MAX_REPORTED_DEPS 100
1086 :
1087 27442 : initStringInfo(&clientdetail);
1088 27442 : initStringInfo(&logdetail);
1089 :
1090 : /*
1091 : * We process the list back to front (ie, in dependency order not deletion
1092 : * order), since this makes for a more understandable display.
1093 : */
1094 192178 : for (i = targetObjects->numrefs - 1; i >= 0; i--)
1095 : {
1096 164736 : const ObjectAddress *obj = &targetObjects->refs[i];
1097 164736 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1098 : char *objDesc;
1099 :
1100 : /* Ignore the original deletion target(s) */
1101 164736 : if (extra->flags & DEPFLAG_ORIGINAL)
1102 32202 : continue;
1103 :
1104 : /* Also ignore sub-objects; we'll report the whole object elsewhere */
1105 132534 : if (extra->flags & DEPFLAG_SUBOBJECT)
1106 0 : continue;
1107 :
1108 132534 : objDesc = getObjectDescription(obj, false);
1109 :
1110 : /* An object being dropped concurrently doesn't need to be reported */
1111 132534 : if (objDesc == NULL)
1112 0 : continue;
1113 :
1114 : /*
1115 : * If, at any stage of the recursive search, we reached the object via
1116 : * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1117 : * okay to delete it even in RESTRICT mode.
1118 : */
1119 132534 : if (extra->flags & (DEPFLAG_AUTO |
1120 : DEPFLAG_INTERNAL |
1121 : DEPFLAG_PARTITION |
1122 : DEPFLAG_EXTENSION))
1123 : {
1124 : /*
1125 : * auto-cascades are reported at DEBUG2, not msglevel. We don't
1126 : * try to combine them with the regular message because the
1127 : * results are too confusing when client_min_messages and
1128 : * log_min_messages are different.
1129 : */
1130 127880 : ereport(DEBUG2,
1131 : (errmsg_internal("drop auto-cascades to %s",
1132 : objDesc)));
1133 : }
1134 4654 : else if (behavior == DROP_RESTRICT)
1135 : {
1136 482 : char *otherDesc = getObjectDescription(&extra->dependee,
1137 : false);
1138 :
1139 482 : if (otherDesc)
1140 : {
1141 482 : if (numReportedClient < MAX_REPORTED_DEPS)
1142 : {
1143 : /* separate entries with a newline */
1144 482 : if (clientdetail.len != 0)
1145 190 : appendStringInfoChar(&clientdetail, '\n');
1146 482 : appendStringInfo(&clientdetail, _("%s depends on %s"),
1147 : objDesc, otherDesc);
1148 482 : numReportedClient++;
1149 : }
1150 : else
1151 0 : numNotReportedClient++;
1152 : /* separate entries with a newline */
1153 482 : if (logdetail.len != 0)
1154 190 : appendStringInfoChar(&logdetail, '\n');
1155 482 : appendStringInfo(&logdetail, _("%s depends on %s"),
1156 : objDesc, otherDesc);
1157 482 : pfree(otherDesc);
1158 : }
1159 : else
1160 0 : numNotReportedClient++;
1161 482 : ok = false;
1162 : }
1163 : else
1164 : {
1165 4172 : if (numReportedClient < MAX_REPORTED_DEPS)
1166 : {
1167 : /* separate entries with a newline */
1168 4172 : if (clientdetail.len != 0)
1169 2866 : appendStringInfoChar(&clientdetail, '\n');
1170 4172 : appendStringInfo(&clientdetail, _("drop cascades to %s"),
1171 : objDesc);
1172 4172 : numReportedClient++;
1173 : }
1174 : else
1175 0 : numNotReportedClient++;
1176 : /* separate entries with a newline */
1177 4172 : if (logdetail.len != 0)
1178 2866 : appendStringInfoChar(&logdetail, '\n');
1179 4172 : appendStringInfo(&logdetail, _("drop cascades to %s"),
1180 : objDesc);
1181 : }
1182 :
1183 132534 : pfree(objDesc);
1184 : }
1185 :
1186 27442 : if (numNotReportedClient > 0)
1187 0 : appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1188 : "(see server log for list)",
1189 : "\nand %d other objects "
1190 : "(see server log for list)",
1191 : numNotReportedClient),
1192 : numNotReportedClient);
1193 :
1194 27442 : if (!ok)
1195 : {
1196 292 : if (origObject)
1197 286 : ereport(ERROR,
1198 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1199 : errmsg("cannot drop %s because other objects depend on it",
1200 : getObjectDescription(origObject, false)),
1201 : errdetail_internal("%s", clientdetail.data),
1202 : errdetail_log("%s", logdetail.data),
1203 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1204 : else
1205 6 : ereport(ERROR,
1206 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1207 : errmsg("cannot drop desired object(s) because other objects depend on them"),
1208 : errdetail_internal("%s", clientdetail.data),
1209 : errdetail_log("%s", logdetail.data),
1210 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1211 : }
1212 27150 : else if (numReportedClient > 1)
1213 : {
1214 630 : ereport(msglevel,
1215 : (errmsg_plural("drop cascades to %d other object",
1216 : "drop cascades to %d other objects",
1217 : numReportedClient + numNotReportedClient,
1218 : numReportedClient + numNotReportedClient),
1219 : errdetail_internal("%s", clientdetail.data),
1220 : errdetail_log("%s", logdetail.data)));
1221 : }
1222 26520 : else if (numReportedClient == 1)
1223 : {
1224 : /* we just use the single item as-is */
1225 676 : ereport(msglevel,
1226 : (errmsg_internal("%s", clientdetail.data)));
1227 : }
1228 :
1229 27150 : pfree(clientdetail.data);
1230 27150 : pfree(logdetail.data);
1231 : }
1232 :
1233 : /*
1234 : * Drop an object by OID. Works for most catalogs, if no special processing
1235 : * is needed.
1236 : */
1237 : static void
1238 3042 : DropObjectById(const ObjectAddress *object)
1239 : {
1240 : int cacheId;
1241 : Relation rel;
1242 : HeapTuple tup;
1243 :
1244 3042 : cacheId = get_object_catcache_oid(object->classId);
1245 :
1246 3042 : rel = table_open(object->classId, RowExclusiveLock);
1247 :
1248 : /*
1249 : * Use the system cache for the oid column, if one exists.
1250 : */
1251 3042 : if (cacheId >= 0)
1252 : {
1253 1602 : tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1254 1602 : if (!HeapTupleIsValid(tup))
1255 0 : elog(ERROR, "cache lookup failed for %s %u",
1256 : get_object_class_descr(object->classId), object->objectId);
1257 :
1258 1602 : CatalogTupleDelete(rel, &tup->t_self);
1259 :
1260 1602 : ReleaseSysCache(tup);
1261 : }
1262 : else
1263 : {
1264 : ScanKeyData skey[1];
1265 : SysScanDesc scan;
1266 :
1267 2880 : ScanKeyInit(&skey[0],
1268 1440 : get_object_attnum_oid(object->classId),
1269 : BTEqualStrategyNumber, F_OIDEQ,
1270 : ObjectIdGetDatum(object->objectId));
1271 :
1272 1440 : scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1273 : NULL, 1, skey);
1274 :
1275 : /* we expect exactly one match */
1276 1440 : tup = systable_getnext(scan);
1277 1440 : if (!HeapTupleIsValid(tup))
1278 0 : elog(ERROR, "could not find tuple for %s %u",
1279 : get_object_class_descr(object->classId), object->objectId);
1280 :
1281 1440 : CatalogTupleDelete(rel, &tup->t_self);
1282 :
1283 1440 : systable_endscan(scan);
1284 : }
1285 :
1286 3042 : table_close(rel, RowExclusiveLock);
1287 3042 : }
1288 :
1289 : /*
1290 : * deleteOneObject: delete a single object for performDeletion.
1291 : *
1292 : * *depRel is the already-open pg_depend relation.
1293 : */
1294 : static void
1295 169760 : deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1296 : {
1297 : ScanKeyData key[3];
1298 : int nkeys;
1299 : SysScanDesc scan;
1300 : HeapTuple tup;
1301 :
1302 : /* DROP hook of the objects being removed */
1303 169760 : InvokeObjectDropHookArg(object->classId, object->objectId,
1304 : object->objectSubId, flags);
1305 :
1306 : /*
1307 : * Close depRel if we are doing a drop concurrently. The object deletion
1308 : * subroutine will commit the current transaction, so we can't keep the
1309 : * relation open across doDeletion().
1310 : */
1311 169760 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1312 106 : table_close(*depRel, RowExclusiveLock);
1313 :
1314 : /*
1315 : * Delete the object itself, in an object-type-dependent way.
1316 : *
1317 : * We used to do this after removing the outgoing dependency links, but it
1318 : * seems just as reasonable to do it beforehand. In the concurrent case
1319 : * we *must* do it in this order, because we can't make any transactional
1320 : * updates before calling doDeletion() --- they'd get committed right
1321 : * away, which is not cool if the deletion then fails.
1322 : */
1323 169760 : doDeletion(object, flags);
1324 :
1325 : /*
1326 : * Reopen depRel if we closed it above
1327 : */
1328 169756 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1329 106 : *depRel = table_open(DependRelationId, RowExclusiveLock);
1330 :
1331 : /*
1332 : * Now remove any pg_depend records that link from this object to others.
1333 : * (Any records linking to this object should be gone already.)
1334 : *
1335 : * When dropping a whole object (subId = 0), remove all pg_depend records
1336 : * for its sub-objects too.
1337 : */
1338 169756 : ScanKeyInit(&key[0],
1339 : Anum_pg_depend_classid,
1340 : BTEqualStrategyNumber, F_OIDEQ,
1341 : ObjectIdGetDatum(object->classId));
1342 169756 : ScanKeyInit(&key[1],
1343 : Anum_pg_depend_objid,
1344 : BTEqualStrategyNumber, F_OIDEQ,
1345 : ObjectIdGetDatum(object->objectId));
1346 169756 : if (object->objectSubId != 0)
1347 : {
1348 1926 : ScanKeyInit(&key[2],
1349 : Anum_pg_depend_objsubid,
1350 : BTEqualStrategyNumber, F_INT4EQ,
1351 : Int32GetDatum(object->objectSubId));
1352 1926 : nkeys = 3;
1353 : }
1354 : else
1355 167830 : nkeys = 2;
1356 :
1357 169756 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1358 : NULL, nkeys, key);
1359 :
1360 405002 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
1361 : {
1362 235246 : CatalogTupleDelete(*depRel, &tup->t_self);
1363 : }
1364 :
1365 169756 : systable_endscan(scan);
1366 :
1367 : /*
1368 : * Delete shared dependency references related to this object. Again, if
1369 : * subId = 0, remove records for sub-objects too.
1370 : */
1371 169756 : deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1372 : object->objectSubId);
1373 :
1374 :
1375 : /*
1376 : * Delete any comments, security labels, or initial privileges associated
1377 : * with this object. (This is a convenient place to do these things,
1378 : * rather than having every object type know to do it.)
1379 : */
1380 169756 : DeleteComments(object->objectId, object->classId, object->objectSubId);
1381 169756 : DeleteSecurityLabel(object);
1382 169756 : DeleteInitPrivs(object);
1383 :
1384 : /*
1385 : * CommandCounterIncrement here to ensure that preceding changes are all
1386 : * visible to the next deletion step.
1387 : */
1388 169756 : CommandCounterIncrement();
1389 :
1390 : /*
1391 : * And we're done!
1392 : */
1393 169756 : }
1394 :
1395 : /*
1396 : * doDeletion: actually delete a single object
1397 : */
1398 : static void
1399 169760 : doDeletion(const ObjectAddress *object, int flags)
1400 : {
1401 169760 : switch (getObjectClass(object))
1402 : {
1403 61650 : case OCLASS_CLASS:
1404 : {
1405 61650 : char relKind = get_rel_relkind(object->objectId);
1406 :
1407 61650 : if (relKind == RELKIND_INDEX ||
1408 : relKind == RELKIND_PARTITIONED_INDEX)
1409 20862 : {
1410 20862 : bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1411 20862 : bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1412 :
1413 : Assert(object->objectSubId == 0);
1414 20862 : index_drop(object->objectId, concurrent, concurrent_lock_mode);
1415 : }
1416 : else
1417 : {
1418 40788 : if (object->objectSubId != 0)
1419 1926 : RemoveAttributeById(object->objectId,
1420 1926 : object->objectSubId);
1421 : else
1422 38862 : heap_drop_with_catalog(object->objectId);
1423 : }
1424 :
1425 : /*
1426 : * for a sequence, in addition to dropping the heap, also
1427 : * delete pg_sequence tuple
1428 : */
1429 61650 : if (relKind == RELKIND_SEQUENCE)
1430 862 : DeleteSequenceTuple(object->objectId);
1431 61650 : break;
1432 : }
1433 :
1434 6184 : case OCLASS_PROC:
1435 6184 : RemoveFunctionById(object->objectId);
1436 6184 : break;
1437 :
1438 60534 : case OCLASS_TYPE:
1439 60534 : RemoveTypeById(object->objectId);
1440 60534 : break;
1441 :
1442 18362 : case OCLASS_CONSTRAINT:
1443 18362 : RemoveConstraintById(object->objectId);
1444 18360 : break;
1445 :
1446 2678 : case OCLASS_DEFAULT:
1447 2678 : RemoveAttrDefaultById(object->objectId);
1448 2678 : break;
1449 :
1450 88 : case OCLASS_LARGEOBJECT:
1451 88 : LargeObjectDrop(object->objectId);
1452 88 : break;
1453 :
1454 734 : case OCLASS_OPERATOR:
1455 734 : RemoveOperatorById(object->objectId);
1456 734 : break;
1457 :
1458 2668 : case OCLASS_REWRITE:
1459 2668 : RemoveRewriteRuleById(object->objectId);
1460 2666 : break;
1461 :
1462 11376 : case OCLASS_TRIGGER:
1463 11376 : RemoveTriggerById(object->objectId);
1464 11376 : break;
1465 :
1466 454 : case OCLASS_STATISTIC_EXT:
1467 454 : RemoveStatisticsById(object->objectId);
1468 454 : break;
1469 :
1470 42 : case OCLASS_TSCONFIG:
1471 42 : RemoveTSConfigurationById(object->objectId);
1472 42 : break;
1473 :
1474 104 : case OCLASS_EXTENSION:
1475 104 : RemoveExtensionById(object->objectId);
1476 104 : break;
1477 :
1478 540 : case OCLASS_POLICY:
1479 540 : RemovePolicyById(object->objectId);
1480 540 : break;
1481 :
1482 192 : case OCLASS_PUBLICATION_NAMESPACE:
1483 192 : RemovePublicationSchemaById(object->objectId);
1484 192 : break;
1485 :
1486 752 : case OCLASS_PUBLICATION_REL:
1487 752 : RemovePublicationRelById(object->objectId);
1488 752 : break;
1489 :
1490 360 : case OCLASS_PUBLICATION:
1491 360 : RemovePublicationById(object->objectId);
1492 360 : break;
1493 :
1494 3042 : case OCLASS_CAST:
1495 : case OCLASS_COLLATION:
1496 : case OCLASS_CONVERSION:
1497 : case OCLASS_LANGUAGE:
1498 : case OCLASS_OPCLASS:
1499 : case OCLASS_OPFAMILY:
1500 : case OCLASS_AM:
1501 : case OCLASS_AMOP:
1502 : case OCLASS_AMPROC:
1503 : case OCLASS_SCHEMA:
1504 : case OCLASS_TSPARSER:
1505 : case OCLASS_TSDICT:
1506 : case OCLASS_TSTEMPLATE:
1507 : case OCLASS_FDW:
1508 : case OCLASS_FOREIGN_SERVER:
1509 : case OCLASS_USER_MAPPING:
1510 : case OCLASS_DEFACL:
1511 : case OCLASS_EVENT_TRIGGER:
1512 : case OCLASS_TRANSFORM:
1513 : case OCLASS_ROLE_MEMBERSHIP:
1514 3042 : DropObjectById(object);
1515 3042 : break;
1516 :
1517 : /*
1518 : * These global object types are not supported here.
1519 : */
1520 0 : case OCLASS_ROLE:
1521 : case OCLASS_DATABASE:
1522 : case OCLASS_TBLSPACE:
1523 : case OCLASS_SUBSCRIPTION:
1524 : case OCLASS_PARAMETER_ACL:
1525 0 : elog(ERROR, "global objects cannot be deleted by doDeletion");
1526 : break;
1527 :
1528 : /*
1529 : * There's intentionally no default: case here; we want the
1530 : * compiler to warn if a new OCLASS hasn't been handled above.
1531 : */
1532 : }
1533 169756 : }
1534 :
1535 : /*
1536 : * AcquireDeletionLock - acquire a suitable lock for deleting an object
1537 : *
1538 : * Accepts the same flags as performDeletion (though currently only
1539 : * PERFORM_DELETION_CONCURRENTLY does anything).
1540 : *
1541 : * We use LockRelation for relations, and otherwise LockSharedObject or
1542 : * LockDatabaseObject as appropriate for the object type.
1543 : */
1544 : void
1545 214422 : AcquireDeletionLock(const ObjectAddress *object, int flags)
1546 : {
1547 214422 : if (object->classId == RelationRelationId)
1548 : {
1549 : /*
1550 : * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1551 : * the index for the moment. index_drop() will promote the lock once
1552 : * it's safe to do so. In all other cases we need full exclusive
1553 : * lock.
1554 : */
1555 77886 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1556 106 : LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1557 : else
1558 77780 : LockRelationOid(object->objectId, AccessExclusiveLock);
1559 : }
1560 136536 : else if (object->classId == AuthMemRelationId)
1561 12 : LockSharedObject(object->classId, object->objectId, 0,
1562 : AccessExclusiveLock);
1563 : else
1564 : {
1565 : /* assume we should lock the whole object not a sub-object */
1566 136524 : LockDatabaseObject(object->classId, object->objectId, 0,
1567 : AccessExclusiveLock);
1568 : }
1569 214422 : }
1570 :
1571 : /*
1572 : * ReleaseDeletionLock - release an object deletion lock
1573 : *
1574 : * Companion to AcquireDeletionLock.
1575 : */
1576 : void
1577 1312 : ReleaseDeletionLock(const ObjectAddress *object)
1578 : {
1579 1312 : if (object->classId == RelationRelationId)
1580 44 : UnlockRelationOid(object->objectId, AccessExclusiveLock);
1581 : else
1582 : /* assume we should lock the whole object not a sub-object */
1583 1268 : UnlockDatabaseObject(object->classId, object->objectId, 0,
1584 : AccessExclusiveLock);
1585 1312 : }
1586 :
1587 : /*
1588 : * recordDependencyOnExpr - find expression dependencies
1589 : *
1590 : * This is used to find the dependencies of rules, constraint expressions,
1591 : * etc.
1592 : *
1593 : * Given an expression or query in node-tree form, find all the objects
1594 : * it refers to (tables, columns, operators, functions, etc). Record
1595 : * a dependency of the specified type from the given depender object
1596 : * to each object mentioned in the expression.
1597 : *
1598 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1599 : * It can be NIL if no such variables are expected.
1600 : */
1601 : void
1602 20230 : recordDependencyOnExpr(const ObjectAddress *depender,
1603 : Node *expr, List *rtable,
1604 : DependencyType behavior)
1605 : {
1606 : find_expr_references_context context;
1607 :
1608 20230 : context.addrs = new_object_addresses();
1609 :
1610 : /* Set up interpretation for Vars at varlevelsup = 0 */
1611 20230 : context.rtables = list_make1(rtable);
1612 :
1613 : /* Scan the expression tree for referenceable objects */
1614 20230 : find_expr_references_walker(expr, &context);
1615 :
1616 : /* Remove any duplicates */
1617 20230 : eliminate_duplicate_dependencies(context.addrs);
1618 :
1619 : /* And record 'em */
1620 20230 : recordMultipleDependencies(depender,
1621 20230 : context.addrs->refs, context.addrs->numrefs,
1622 : behavior);
1623 :
1624 20230 : free_object_addresses(context.addrs);
1625 20230 : }
1626 :
1627 : /*
1628 : * recordDependencyOnSingleRelExpr - find expression dependencies
1629 : *
1630 : * As above, but only one relation is expected to be referenced (with
1631 : * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1632 : * range table. An additional frammish is that dependencies on that
1633 : * relation's component columns will be marked with 'self_behavior',
1634 : * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1635 : * is true, those dependencies are reversed so that the columns are made
1636 : * to depend on the table not vice versa.
1637 : *
1638 : * NOTE: the caller should ensure that a whole-table dependency on the
1639 : * specified relation is created separately, if one is needed. In particular,
1640 : * a whole-row Var "relation.*" will not cause this routine to emit any
1641 : * dependency item. This is appropriate behavior for subexpressions of an
1642 : * ordinary query, so other cases need to cope as necessary.
1643 : */
1644 : void
1645 7994 : recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1646 : Node *expr, Oid relId,
1647 : DependencyType behavior,
1648 : DependencyType self_behavior,
1649 : bool reverse_self)
1650 : {
1651 : find_expr_references_context context;
1652 7994 : RangeTblEntry rte = {0};
1653 :
1654 7994 : context.addrs = new_object_addresses();
1655 :
1656 : /* We gin up a rather bogus rangetable list to handle Vars */
1657 7994 : rte.type = T_RangeTblEntry;
1658 7994 : rte.rtekind = RTE_RELATION;
1659 7994 : rte.relid = relId;
1660 7994 : rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1661 7994 : rte.rellockmode = AccessShareLock;
1662 :
1663 7994 : context.rtables = list_make1(list_make1(&rte));
1664 :
1665 : /* Scan the expression tree for referenceable objects */
1666 7994 : find_expr_references_walker(expr, &context);
1667 :
1668 : /* Remove any duplicates */
1669 7994 : eliminate_duplicate_dependencies(context.addrs);
1670 :
1671 : /* Separate self-dependencies if necessary */
1672 7994 : if ((behavior != self_behavior || reverse_self) &&
1673 1560 : context.addrs->numrefs > 0)
1674 : {
1675 : ObjectAddresses *self_addrs;
1676 : ObjectAddress *outobj;
1677 : int oldref,
1678 : outrefs;
1679 :
1680 1554 : self_addrs = new_object_addresses();
1681 :
1682 1554 : outobj = context.addrs->refs;
1683 1554 : outrefs = 0;
1684 6450 : for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1685 : {
1686 4896 : ObjectAddress *thisobj = context.addrs->refs + oldref;
1687 :
1688 4896 : if (thisobj->classId == RelationRelationId &&
1689 1978 : thisobj->objectId == relId)
1690 : {
1691 : /* Move this ref into self_addrs */
1692 1978 : add_exact_object_address(thisobj, self_addrs);
1693 : }
1694 : else
1695 : {
1696 : /* Keep it in context.addrs */
1697 2918 : *outobj = *thisobj;
1698 2918 : outobj++;
1699 2918 : outrefs++;
1700 : }
1701 : }
1702 1554 : context.addrs->numrefs = outrefs;
1703 :
1704 : /* Record the self-dependencies with the appropriate direction */
1705 1554 : if (!reverse_self)
1706 1346 : recordMultipleDependencies(depender,
1707 1346 : self_addrs->refs, self_addrs->numrefs,
1708 : self_behavior);
1709 : else
1710 : {
1711 : /* Can't use recordMultipleDependencies, so do it the hard way */
1712 : int selfref;
1713 :
1714 498 : for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1715 : {
1716 290 : ObjectAddress *thisobj = self_addrs->refs + selfref;
1717 :
1718 290 : recordDependencyOn(thisobj, depender, self_behavior);
1719 : }
1720 : }
1721 :
1722 1554 : free_object_addresses(self_addrs);
1723 : }
1724 :
1725 : /* Record the external dependencies */
1726 7994 : recordMultipleDependencies(depender,
1727 7994 : context.addrs->refs, context.addrs->numrefs,
1728 : behavior);
1729 :
1730 7994 : free_object_addresses(context.addrs);
1731 7994 : }
1732 :
1733 : /*
1734 : * Recursively search an expression tree for object references.
1735 : *
1736 : * Note: in many cases we do not need to create dependencies on the datatypes
1737 : * involved in an expression, because we'll have an indirect dependency via
1738 : * some other object. For instance Var nodes depend on a column which depends
1739 : * on the datatype, and OpExpr nodes depend on the operator which depends on
1740 : * the datatype. However we do need a type dependency if there is no such
1741 : * indirect dependency, as for example in Const and CoerceToDomain nodes.
1742 : *
1743 : * Similarly, we don't need to create dependencies on collations except where
1744 : * the collation is being freshly introduced to the expression.
1745 : */
1746 : static bool
1747 1274282 : find_expr_references_walker(Node *node,
1748 : find_expr_references_context *context)
1749 : {
1750 1274282 : if (node == NULL)
1751 434482 : return false;
1752 839800 : if (IsA(node, Var))
1753 : {
1754 205018 : Var *var = (Var *) node;
1755 : List *rtable;
1756 : RangeTblEntry *rte;
1757 :
1758 : /* Find matching rtable entry, or complain if not found */
1759 205018 : if (var->varlevelsup >= list_length(context->rtables))
1760 0 : elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1761 205018 : rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1762 205018 : if (var->varno <= 0 || var->varno > list_length(rtable))
1763 0 : elog(ERROR, "invalid varno %d", var->varno);
1764 205018 : rte = rt_fetch(var->varno, rtable);
1765 :
1766 : /*
1767 : * A whole-row Var references no specific columns, so adds no new
1768 : * dependency. (We assume that there is a whole-table dependency
1769 : * arising from each underlying rangetable entry. While we could
1770 : * record such a dependency when finding a whole-row Var that
1771 : * references a relation directly, it's quite unclear how to extend
1772 : * that to whole-row Vars for JOINs, so it seems better to leave the
1773 : * responsibility with the range table. Note that this poses some
1774 : * risks for identifying dependencies of stand-alone expressions:
1775 : * whole-table references may need to be created separately.)
1776 : */
1777 205018 : if (var->varattno == InvalidAttrNumber)
1778 3518 : return false;
1779 201500 : if (rte->rtekind == RTE_RELATION)
1780 : {
1781 : /* If it's a plain relation, reference this column */
1782 150870 : add_object_address(OCLASS_CLASS, rte->relid, var->varattno,
1783 : context->addrs);
1784 : }
1785 50630 : else if (rte->rtekind == RTE_FUNCTION)
1786 : {
1787 : /* Might need to add a dependency on a composite type's column */
1788 : /* (done out of line, because it's a bit bulky) */
1789 25686 : process_function_rte_ref(rte, var->varattno, context);
1790 : }
1791 :
1792 : /*
1793 : * Vars referencing other RTE types require no additional work. In
1794 : * particular, a join alias Var can be ignored, because it must
1795 : * reference a merged USING column. The relevant join input columns
1796 : * will also be referenced in the join qual, and any type coercion
1797 : * functions involved in the alias expression will be dealt with when
1798 : * we scan the RTE itself.
1799 : */
1800 201500 : return false;
1801 : }
1802 634782 : else if (IsA(node, Const))
1803 : {
1804 103960 : Const *con = (Const *) node;
1805 : Oid objoid;
1806 :
1807 : /* A constant must depend on the constant's datatype */
1808 103960 : add_object_address(OCLASS_TYPE, con->consttype, 0,
1809 : context->addrs);
1810 :
1811 : /*
1812 : * We must also depend on the constant's collation: it could be
1813 : * different from the datatype's, if a CollateExpr was const-folded to
1814 : * a simple constant. However we can save work in the most common
1815 : * case where the collation is "default", since we know that's pinned.
1816 : */
1817 103960 : if (OidIsValid(con->constcollid) &&
1818 40196 : con->constcollid != DEFAULT_COLLATION_OID)
1819 9818 : add_object_address(OCLASS_COLLATION, con->constcollid, 0,
1820 : context->addrs);
1821 :
1822 : /*
1823 : * If it's a regclass or similar literal referring to an existing
1824 : * object, add a reference to that object. (Currently, only the
1825 : * regclass and regconfig cases have any likely use, but we may as
1826 : * well handle all the OID-alias datatypes consistently.)
1827 : */
1828 103960 : if (!con->constisnull)
1829 : {
1830 88622 : switch (con->consttype)
1831 : {
1832 0 : case REGPROCOID:
1833 : case REGPROCEDUREOID:
1834 0 : objoid = DatumGetObjectId(con->constvalue);
1835 0 : if (SearchSysCacheExists1(PROCOID,
1836 : ObjectIdGetDatum(objoid)))
1837 0 : add_object_address(OCLASS_PROC, objoid, 0,
1838 : context->addrs);
1839 0 : break;
1840 0 : case REGOPEROID:
1841 : case REGOPERATOROID:
1842 0 : objoid = DatumGetObjectId(con->constvalue);
1843 0 : if (SearchSysCacheExists1(OPEROID,
1844 : ObjectIdGetDatum(objoid)))
1845 0 : add_object_address(OCLASS_OPERATOR, objoid, 0,
1846 : context->addrs);
1847 0 : break;
1848 3072 : case REGCLASSOID:
1849 3072 : objoid = DatumGetObjectId(con->constvalue);
1850 3072 : if (SearchSysCacheExists1(RELOID,
1851 : ObjectIdGetDatum(objoid)))
1852 3072 : add_object_address(OCLASS_CLASS, objoid, 0,
1853 : context->addrs);
1854 3072 : break;
1855 0 : case REGTYPEOID:
1856 0 : objoid = DatumGetObjectId(con->constvalue);
1857 0 : if (SearchSysCacheExists1(TYPEOID,
1858 : ObjectIdGetDatum(objoid)))
1859 0 : add_object_address(OCLASS_TYPE, objoid, 0,
1860 : context->addrs);
1861 0 : break;
1862 0 : case REGCOLLATIONOID:
1863 0 : objoid = DatumGetObjectId(con->constvalue);
1864 0 : if (SearchSysCacheExists1(COLLOID,
1865 : ObjectIdGetDatum(objoid)))
1866 0 : add_object_address(OCLASS_COLLATION, objoid, 0,
1867 : context->addrs);
1868 0 : break;
1869 0 : case REGCONFIGOID:
1870 0 : objoid = DatumGetObjectId(con->constvalue);
1871 0 : if (SearchSysCacheExists1(TSCONFIGOID,
1872 : ObjectIdGetDatum(objoid)))
1873 0 : add_object_address(OCLASS_TSCONFIG, objoid, 0,
1874 : context->addrs);
1875 0 : break;
1876 0 : case REGDICTIONARYOID:
1877 0 : objoid = DatumGetObjectId(con->constvalue);
1878 0 : if (SearchSysCacheExists1(TSDICTOID,
1879 : ObjectIdGetDatum(objoid)))
1880 0 : add_object_address(OCLASS_TSDICT, objoid, 0,
1881 : context->addrs);
1882 0 : break;
1883 :
1884 120 : case REGNAMESPACEOID:
1885 120 : objoid = DatumGetObjectId(con->constvalue);
1886 120 : if (SearchSysCacheExists1(NAMESPACEOID,
1887 : ObjectIdGetDatum(objoid)))
1888 120 : add_object_address(OCLASS_SCHEMA, objoid, 0,
1889 : context->addrs);
1890 120 : break;
1891 :
1892 : /*
1893 : * Dependencies for regrole should be shared among all
1894 : * databases, so explicitly inhibit to have dependencies.
1895 : */
1896 0 : case REGROLEOID:
1897 0 : ereport(ERROR,
1898 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1899 : errmsg("constant of the type %s cannot be used here",
1900 : "regrole")));
1901 : break;
1902 : }
1903 15338 : }
1904 103960 : return false;
1905 : }
1906 530822 : else if (IsA(node, Param))
1907 : {
1908 9988 : Param *param = (Param *) node;
1909 :
1910 : /* A parameter must depend on the parameter's datatype */
1911 9988 : add_object_address(OCLASS_TYPE, param->paramtype, 0,
1912 : context->addrs);
1913 : /* and its collation, just as for Consts */
1914 9988 : if (OidIsValid(param->paramcollid) &&
1915 1664 : param->paramcollid != DEFAULT_COLLATION_OID)
1916 960 : add_object_address(OCLASS_COLLATION, param->paramcollid, 0,
1917 : context->addrs);
1918 : }
1919 520834 : else if (IsA(node, FuncExpr))
1920 : {
1921 50910 : FuncExpr *funcexpr = (FuncExpr *) node;
1922 :
1923 50910 : add_object_address(OCLASS_PROC, funcexpr->funcid, 0,
1924 : context->addrs);
1925 : /* fall through to examine arguments */
1926 : }
1927 469924 : else if (IsA(node, OpExpr))
1928 : {
1929 59670 : OpExpr *opexpr = (OpExpr *) node;
1930 :
1931 59670 : add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1932 : context->addrs);
1933 : /* fall through to examine arguments */
1934 : }
1935 410254 : else if (IsA(node, DistinctExpr))
1936 : {
1937 12 : DistinctExpr *distinctexpr = (DistinctExpr *) node;
1938 :
1939 12 : add_object_address(OCLASS_OPERATOR, distinctexpr->opno, 0,
1940 : context->addrs);
1941 : /* fall through to examine arguments */
1942 : }
1943 410242 : else if (IsA(node, NullIfExpr))
1944 : {
1945 88 : NullIfExpr *nullifexpr = (NullIfExpr *) node;
1946 :
1947 88 : add_object_address(OCLASS_OPERATOR, nullifexpr->opno, 0,
1948 : context->addrs);
1949 : /* fall through to examine arguments */
1950 : }
1951 410154 : else if (IsA(node, ScalarArrayOpExpr))
1952 : {
1953 4210 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1954 :
1955 4210 : add_object_address(OCLASS_OPERATOR, opexpr->opno, 0,
1956 : context->addrs);
1957 : /* fall through to examine arguments */
1958 : }
1959 405944 : else if (IsA(node, Aggref))
1960 : {
1961 1238 : Aggref *aggref = (Aggref *) node;
1962 :
1963 1238 : add_object_address(OCLASS_PROC, aggref->aggfnoid, 0,
1964 : context->addrs);
1965 : /* fall through to examine arguments */
1966 : }
1967 404706 : else if (IsA(node, WindowFunc))
1968 : {
1969 120 : WindowFunc *wfunc = (WindowFunc *) node;
1970 :
1971 120 : add_object_address(OCLASS_PROC, wfunc->winfnoid, 0,
1972 : context->addrs);
1973 : /* fall through to examine arguments */
1974 : }
1975 404586 : else if (IsA(node, SubscriptingRef))
1976 : {
1977 1666 : SubscriptingRef *sbsref = (SubscriptingRef *) node;
1978 :
1979 : /*
1980 : * The refexpr should provide adequate dependency on refcontainertype,
1981 : * and that type in turn depends on refelemtype. However, a custom
1982 : * subscripting handler might set refrestype to something different
1983 : * from either of those, in which case we'd better record it.
1984 : */
1985 1666 : if (sbsref->refrestype != sbsref->refcontainertype &&
1986 1588 : sbsref->refrestype != sbsref->refelemtype)
1987 0 : add_object_address(OCLASS_TYPE, sbsref->refrestype, 0,
1988 : context->addrs);
1989 : /* fall through to examine arguments */
1990 : }
1991 402920 : else if (IsA(node, SubPlan))
1992 : {
1993 : /* Extra work needed here if we ever need this case */
1994 0 : elog(ERROR, "already-planned subqueries not supported");
1995 : }
1996 402920 : else if (IsA(node, FieldSelect))
1997 : {
1998 8718 : FieldSelect *fselect = (FieldSelect *) node;
1999 8718 : Oid argtype = getBaseType(exprType((Node *) fselect->arg));
2000 8718 : Oid reltype = get_typ_typrelid(argtype);
2001 :
2002 : /*
2003 : * We need a dependency on the specific column named in FieldSelect,
2004 : * assuming we can identify the pg_class OID for it. (Probably we
2005 : * always can at the moment, but in future it might be possible for
2006 : * argtype to be RECORDOID.) If we can make a column dependency then
2007 : * we shouldn't need a dependency on the column's type; but if we
2008 : * can't, make a dependency on the type, as it might not appear
2009 : * anywhere else in the expression.
2010 : */
2011 8718 : if (OidIsValid(reltype))
2012 4902 : add_object_address(OCLASS_CLASS, reltype, fselect->fieldnum,
2013 : context->addrs);
2014 : else
2015 3816 : add_object_address(OCLASS_TYPE, fselect->resulttype, 0,
2016 : context->addrs);
2017 : /* the collation might not be referenced anywhere else, either */
2018 8718 : if (OidIsValid(fselect->resultcollid) &&
2019 1030 : fselect->resultcollid != DEFAULT_COLLATION_OID)
2020 0 : add_object_address(OCLASS_COLLATION, fselect->resultcollid, 0,
2021 : context->addrs);
2022 : }
2023 394202 : else if (IsA(node, FieldStore))
2024 : {
2025 60 : FieldStore *fstore = (FieldStore *) node;
2026 60 : Oid reltype = get_typ_typrelid(fstore->resulttype);
2027 :
2028 : /* similar considerations to FieldSelect, but multiple column(s) */
2029 60 : if (OidIsValid(reltype))
2030 : {
2031 : ListCell *l;
2032 :
2033 120 : foreach(l, fstore->fieldnums)
2034 60 : add_object_address(OCLASS_CLASS, reltype, lfirst_int(l),
2035 : context->addrs);
2036 : }
2037 : else
2038 0 : add_object_address(OCLASS_TYPE, fstore->resulttype, 0,
2039 : context->addrs);
2040 : }
2041 394142 : else if (IsA(node, RelabelType))
2042 : {
2043 8712 : RelabelType *relab = (RelabelType *) node;
2044 :
2045 : /* since there is no function dependency, need to depend on type */
2046 8712 : add_object_address(OCLASS_TYPE, relab->resulttype, 0,
2047 : context->addrs);
2048 : /* the collation might not be referenced anywhere else, either */
2049 8712 : if (OidIsValid(relab->resultcollid) &&
2050 1958 : relab->resultcollid != DEFAULT_COLLATION_OID)
2051 1740 : add_object_address(OCLASS_COLLATION, relab->resultcollid, 0,
2052 : context->addrs);
2053 : }
2054 385430 : else if (IsA(node, CoerceViaIO))
2055 : {
2056 1298 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2057 :
2058 : /* since there is no exposed function, need to depend on type */
2059 1298 : add_object_address(OCLASS_TYPE, iocoerce->resulttype, 0,
2060 : context->addrs);
2061 : /* the collation might not be referenced anywhere else, either */
2062 1298 : if (OidIsValid(iocoerce->resultcollid) &&
2063 1146 : iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2064 420 : add_object_address(OCLASS_COLLATION, iocoerce->resultcollid, 0,
2065 : context->addrs);
2066 : }
2067 384132 : else if (IsA(node, ArrayCoerceExpr))
2068 : {
2069 306 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2070 :
2071 : /* as above, depend on type */
2072 306 : add_object_address(OCLASS_TYPE, acoerce->resulttype, 0,
2073 : context->addrs);
2074 : /* the collation might not be referenced anywhere else, either */
2075 306 : if (OidIsValid(acoerce->resultcollid) &&
2076 126 : acoerce->resultcollid != DEFAULT_COLLATION_OID)
2077 60 : add_object_address(OCLASS_COLLATION, acoerce->resultcollid, 0,
2078 : context->addrs);
2079 : /* fall through to examine arguments */
2080 : }
2081 383826 : else if (IsA(node, ConvertRowtypeExpr))
2082 : {
2083 0 : ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2084 :
2085 : /* since there is no function dependency, need to depend on type */
2086 0 : add_object_address(OCLASS_TYPE, cvt->resulttype, 0,
2087 : context->addrs);
2088 : }
2089 383826 : else if (IsA(node, CollateExpr))
2090 : {
2091 62 : CollateExpr *coll = (CollateExpr *) node;
2092 :
2093 62 : add_object_address(OCLASS_COLLATION, coll->collOid, 0,
2094 : context->addrs);
2095 : }
2096 383764 : else if (IsA(node, RowExpr))
2097 : {
2098 60 : RowExpr *rowexpr = (RowExpr *) node;
2099 :
2100 60 : add_object_address(OCLASS_TYPE, rowexpr->row_typeid, 0,
2101 : context->addrs);
2102 : }
2103 383704 : else if (IsA(node, RowCompareExpr))
2104 : {
2105 18 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2106 : ListCell *l;
2107 :
2108 54 : foreach(l, rcexpr->opnos)
2109 : {
2110 36 : add_object_address(OCLASS_OPERATOR, lfirst_oid(l), 0,
2111 : context->addrs);
2112 : }
2113 54 : foreach(l, rcexpr->opfamilies)
2114 : {
2115 36 : add_object_address(OCLASS_OPFAMILY, lfirst_oid(l), 0,
2116 : context->addrs);
2117 : }
2118 : /* fall through to examine arguments */
2119 : }
2120 383686 : else if (IsA(node, CoerceToDomain))
2121 : {
2122 37930 : CoerceToDomain *cd = (CoerceToDomain *) node;
2123 :
2124 37930 : add_object_address(OCLASS_TYPE, cd->resulttype, 0,
2125 : context->addrs);
2126 : }
2127 345756 : else if (IsA(node, NextValueExpr))
2128 : {
2129 0 : NextValueExpr *nve = (NextValueExpr *) node;
2130 :
2131 0 : add_object_address(OCLASS_CLASS, nve->seqid, 0,
2132 : context->addrs);
2133 : }
2134 345756 : else if (IsA(node, OnConflictExpr))
2135 : {
2136 18 : OnConflictExpr *onconflict = (OnConflictExpr *) node;
2137 :
2138 18 : if (OidIsValid(onconflict->constraint))
2139 0 : add_object_address(OCLASS_CONSTRAINT, onconflict->constraint, 0,
2140 : context->addrs);
2141 : /* fall through to examine arguments */
2142 : }
2143 345738 : else if (IsA(node, SortGroupClause))
2144 : {
2145 7890 : SortGroupClause *sgc = (SortGroupClause *) node;
2146 :
2147 7890 : add_object_address(OCLASS_OPERATOR, sgc->eqop, 0,
2148 : context->addrs);
2149 7890 : if (OidIsValid(sgc->sortop))
2150 7890 : add_object_address(OCLASS_OPERATOR, sgc->sortop, 0,
2151 : context->addrs);
2152 7890 : return false;
2153 : }
2154 337848 : else if (IsA(node, WindowClause))
2155 : {
2156 120 : WindowClause *wc = (WindowClause *) node;
2157 :
2158 120 : if (OidIsValid(wc->startInRangeFunc))
2159 6 : add_object_address(OCLASS_PROC, wc->startInRangeFunc, 0,
2160 : context->addrs);
2161 120 : if (OidIsValid(wc->endInRangeFunc))
2162 6 : add_object_address(OCLASS_PROC, wc->endInRangeFunc, 0,
2163 : context->addrs);
2164 120 : if (OidIsValid(wc->inRangeColl) &&
2165 0 : wc->inRangeColl != DEFAULT_COLLATION_OID)
2166 0 : add_object_address(OCLASS_COLLATION, wc->inRangeColl, 0,
2167 : context->addrs);
2168 : /* fall through to examine substructure */
2169 : }
2170 337728 : else if (IsA(node, CTECycleClause))
2171 : {
2172 12 : CTECycleClause *cc = (CTECycleClause *) node;
2173 :
2174 12 : if (OidIsValid(cc->cycle_mark_type))
2175 12 : add_object_address(OCLASS_TYPE, cc->cycle_mark_type, 0,
2176 : context->addrs);
2177 12 : if (OidIsValid(cc->cycle_mark_collation))
2178 6 : add_object_address(OCLASS_COLLATION, cc->cycle_mark_collation, 0,
2179 : context->addrs);
2180 12 : if (OidIsValid(cc->cycle_mark_neop))
2181 12 : add_object_address(OCLASS_OPERATOR, cc->cycle_mark_neop, 0,
2182 : context->addrs);
2183 : /* fall through to examine substructure */
2184 : }
2185 337716 : else if (IsA(node, Query))
2186 : {
2187 : /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2188 24760 : Query *query = (Query *) node;
2189 : ListCell *lc;
2190 : bool result;
2191 :
2192 : /*
2193 : * Add whole-relation refs for each plain relation mentioned in the
2194 : * subquery's rtable, and ensure we add refs for any type-coercion
2195 : * functions used in join alias lists.
2196 : *
2197 : * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2198 : * RTEs, subqueries, etc, so no need to do that here. But we must
2199 : * tell it not to visit join alias lists, or we'll add refs for join
2200 : * input columns whether or not they are actually used in our query.
2201 : *
2202 : * Note: we don't need to worry about collations mentioned in
2203 : * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2204 : * collations referenced in other parts of the Query. We do have to
2205 : * worry about collations mentioned in RTE_FUNCTION, but we take care
2206 : * of those when we recurse to the RangeTblFunction node(s).
2207 : */
2208 77054 : foreach(lc, query->rtable)
2209 : {
2210 52294 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2211 :
2212 52294 : switch (rte->rtekind)
2213 : {
2214 33454 : case RTE_RELATION:
2215 33454 : add_object_address(OCLASS_CLASS, rte->relid, 0,
2216 : context->addrs);
2217 33454 : break;
2218 9278 : case RTE_JOIN:
2219 :
2220 : /*
2221 : * Examine joinaliasvars entries only for merged JOIN
2222 : * USING columns. Only those entries could contain
2223 : * type-coercion functions. Also, their join input
2224 : * columns must be referenced in the join quals, so this
2225 : * won't accidentally add refs to otherwise-unused join
2226 : * input columns. (We want to ref the type coercion
2227 : * functions even if the merged column isn't explicitly
2228 : * used anywhere, to protect possible expansion of the
2229 : * join RTE as a whole-row var, and because it seems like
2230 : * a bad idea to allow dropping a function that's present
2231 : * in our query tree, whether or not it could get called.)
2232 : */
2233 9278 : context->rtables = lcons(query->rtable, context->rtables);
2234 9478 : for (int i = 0; i < rte->joinmergedcols; i++)
2235 : {
2236 200 : Node *aliasvar = list_nth(rte->joinaliasvars, i);
2237 :
2238 200 : if (!IsA(aliasvar, Var))
2239 48 : find_expr_references_walker(aliasvar, context);
2240 : }
2241 9278 : context->rtables = list_delete_first(context->rtables);
2242 9278 : break;
2243 9562 : default:
2244 9562 : break;
2245 : }
2246 : }
2247 :
2248 : /*
2249 : * If the query is an INSERT or UPDATE, we should create a dependency
2250 : * on each target column, to prevent the specific target column from
2251 : * being dropped. Although we will visit the TargetEntry nodes again
2252 : * during query_tree_walker, we won't have enough context to do this
2253 : * conveniently, so do it here.
2254 : */
2255 24760 : if (query->commandType == CMD_INSERT ||
2256 24322 : query->commandType == CMD_UPDATE)
2257 : {
2258 : RangeTblEntry *rte;
2259 :
2260 1264 : if (query->resultRelation <= 0 ||
2261 632 : query->resultRelation > list_length(query->rtable))
2262 0 : elog(ERROR, "invalid resultRelation %d",
2263 : query->resultRelation);
2264 632 : rte = rt_fetch(query->resultRelation, query->rtable);
2265 632 : if (rte->rtekind == RTE_RELATION)
2266 : {
2267 1944 : foreach(lc, query->targetList)
2268 : {
2269 1312 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2270 :
2271 1312 : if (tle->resjunk)
2272 6 : continue; /* ignore junk tlist items */
2273 1306 : add_object_address(OCLASS_CLASS, rte->relid, tle->resno,
2274 : context->addrs);
2275 : }
2276 : }
2277 : }
2278 :
2279 : /*
2280 : * Add dependencies on constraints listed in query's constraintDeps
2281 : */
2282 24816 : foreach(lc, query->constraintDeps)
2283 : {
2284 56 : add_object_address(OCLASS_CONSTRAINT, lfirst_oid(lc), 0,
2285 : context->addrs);
2286 : }
2287 :
2288 : /* Examine substructure of query */
2289 24760 : context->rtables = lcons(query->rtable, context->rtables);
2290 24760 : result = query_tree_walker(query,
2291 : find_expr_references_walker,
2292 : (void *) context,
2293 : QTW_IGNORE_JOINALIASES |
2294 : QTW_EXAMINE_SORTGROUP);
2295 24760 : context->rtables = list_delete_first(context->rtables);
2296 24760 : return result;
2297 : }
2298 312956 : else if (IsA(node, SetOperationStmt))
2299 : {
2300 2388 : SetOperationStmt *setop = (SetOperationStmt *) node;
2301 :
2302 : /* we need to look at the groupClauses for operator references */
2303 2388 : find_expr_references_walker((Node *) setop->groupClauses, context);
2304 : /* fall through to examine child nodes */
2305 : }
2306 310568 : else if (IsA(node, RangeTblFunction))
2307 : {
2308 3258 : RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2309 : ListCell *ct;
2310 :
2311 : /*
2312 : * Add refs for any datatypes and collations used in a column
2313 : * definition list for a RECORD function. (For other cases, it should
2314 : * be enough to depend on the function itself.)
2315 : */
2316 3366 : foreach(ct, rtfunc->funccoltypes)
2317 : {
2318 108 : add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2319 : context->addrs);
2320 : }
2321 3366 : foreach(ct, rtfunc->funccolcollations)
2322 : {
2323 108 : Oid collid = lfirst_oid(ct);
2324 :
2325 108 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2326 0 : add_object_address(OCLASS_COLLATION, collid, 0,
2327 : context->addrs);
2328 : }
2329 : }
2330 307310 : else if (IsA(node, TableFunc))
2331 : {
2332 16 : TableFunc *tf = (TableFunc *) node;
2333 : ListCell *ct;
2334 :
2335 : /*
2336 : * Add refs for the datatypes and collations used in the TableFunc.
2337 : */
2338 88 : foreach(ct, tf->coltypes)
2339 : {
2340 72 : add_object_address(OCLASS_TYPE, lfirst_oid(ct), 0,
2341 : context->addrs);
2342 : }
2343 88 : foreach(ct, tf->colcollations)
2344 : {
2345 72 : Oid collid = lfirst_oid(ct);
2346 :
2347 72 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2348 0 : add_object_address(OCLASS_COLLATION, collid, 0,
2349 : context->addrs);
2350 : }
2351 : }
2352 307294 : else if (IsA(node, TableSampleClause))
2353 : {
2354 20 : TableSampleClause *tsc = (TableSampleClause *) node;
2355 :
2356 20 : add_object_address(OCLASS_PROC, tsc->tsmhandler, 0,
2357 : context->addrs);
2358 : /* fall through to examine arguments */
2359 : }
2360 :
2361 498172 : return expression_tree_walker(node, find_expr_references_walker,
2362 : (void *) context);
2363 : }
2364 :
2365 : /*
2366 : * find_expr_references_walker subroutine: handle a Var reference
2367 : * to an RTE_FUNCTION RTE
2368 : */
2369 : static void
2370 25686 : process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2371 : find_expr_references_context *context)
2372 : {
2373 25686 : int atts_done = 0;
2374 : ListCell *lc;
2375 :
2376 : /*
2377 : * Identify which RangeTblFunction produces this attnum, and see if it
2378 : * returns a composite type. If so, we'd better make a dependency on the
2379 : * referenced column of the composite type (or actually, of its associated
2380 : * relation).
2381 : */
2382 25908 : foreach(lc, rte->functions)
2383 : {
2384 25818 : RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2385 :
2386 25818 : if (attnum > atts_done &&
2387 25818 : attnum <= atts_done + rtfunc->funccolcount)
2388 : {
2389 : TupleDesc tupdesc;
2390 :
2391 25596 : tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2392 25596 : if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2393 : {
2394 : /*
2395 : * Named composite type, so individual columns could get
2396 : * dropped. Make a dependency on this specific column.
2397 : */
2398 222 : Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2399 :
2400 : Assert(attnum - atts_done <= tupdesc->natts);
2401 222 : if (OidIsValid(reltype)) /* can this fail? */
2402 222 : add_object_address(OCLASS_CLASS, reltype,
2403 : attnum - atts_done,
2404 : context->addrs);
2405 25596 : return;
2406 : }
2407 : /* Nothing to do; function's result type is handled elsewhere */
2408 25374 : return;
2409 : }
2410 222 : atts_done += rtfunc->funccolcount;
2411 : }
2412 :
2413 : /* If we get here, must be looking for the ordinality column */
2414 90 : if (rte->funcordinality && attnum == atts_done + 1)
2415 90 : return;
2416 :
2417 : /* this probably can't happen ... */
2418 0 : ereport(ERROR,
2419 : (errcode(ERRCODE_UNDEFINED_COLUMN),
2420 : errmsg("column %d of relation \"%s\" does not exist",
2421 : attnum, rte->eref->aliasname)));
2422 : }
2423 :
2424 : /*
2425 : * Given an array of dependency references, eliminate any duplicates.
2426 : */
2427 : static void
2428 317058 : eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2429 : {
2430 : ObjectAddress *priorobj;
2431 : int oldref,
2432 : newrefs;
2433 :
2434 : /*
2435 : * We can't sort if the array has "extra" data, because there's no way to
2436 : * keep it in sync. Fortunately that combination of features is not
2437 : * needed.
2438 : */
2439 : Assert(!addrs->extras);
2440 :
2441 317058 : if (addrs->numrefs <= 1)
2442 96962 : return; /* nothing to do */
2443 :
2444 : /* Sort the refs so that duplicates are adjacent */
2445 220096 : qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2446 : object_address_comparator);
2447 :
2448 : /* Remove dups */
2449 220096 : priorobj = addrs->refs;
2450 220096 : newrefs = 1;
2451 1355598 : for (oldref = 1; oldref < addrs->numrefs; oldref++)
2452 : {
2453 1135502 : ObjectAddress *thisobj = addrs->refs + oldref;
2454 :
2455 1135502 : if (priorobj->classId == thisobj->classId &&
2456 970120 : priorobj->objectId == thisobj->objectId)
2457 : {
2458 474792 : if (priorobj->objectSubId == thisobj->objectSubId)
2459 362024 : continue; /* identical, so drop thisobj */
2460 :
2461 : /*
2462 : * If we have a whole-object reference and a reference to a part
2463 : * of the same object, we don't need the whole-object reference
2464 : * (for example, we don't need to reference both table foo and
2465 : * column foo.bar). The whole-object reference will always appear
2466 : * first in the sorted list.
2467 : */
2468 112768 : if (priorobj->objectSubId == 0)
2469 : {
2470 : /* replace whole ref with partial */
2471 24564 : priorobj->objectSubId = thisobj->objectSubId;
2472 24564 : continue;
2473 : }
2474 : }
2475 : /* Not identical, so add thisobj to output set */
2476 748914 : priorobj++;
2477 748914 : *priorobj = *thisobj;
2478 748914 : newrefs++;
2479 : }
2480 :
2481 220096 : addrs->numrefs = newrefs;
2482 : }
2483 :
2484 : /*
2485 : * qsort comparator for ObjectAddress items
2486 : */
2487 : static int
2488 3801424 : object_address_comparator(const void *a, const void *b)
2489 : {
2490 3801424 : const ObjectAddress *obja = (const ObjectAddress *) a;
2491 3801424 : const ObjectAddress *objb = (const ObjectAddress *) b;
2492 :
2493 : /*
2494 : * Primary sort key is OID descending. Most of the time, this will result
2495 : * in putting newer objects before older ones, which is likely to be the
2496 : * right order to delete in.
2497 : */
2498 3801424 : if (obja->objectId > objb->objectId)
2499 870270 : return -1;
2500 2931154 : if (obja->objectId < objb->objectId)
2501 2107316 : return 1;
2502 :
2503 : /*
2504 : * Next sort on catalog ID, in case identical OIDs appear in different
2505 : * catalogs. Sort direction is pretty arbitrary here.
2506 : */
2507 823838 : if (obja->classId < objb->classId)
2508 0 : return -1;
2509 823838 : if (obja->classId > objb->classId)
2510 0 : return 1;
2511 :
2512 : /*
2513 : * Last, sort on object subId.
2514 : *
2515 : * We sort the subId as an unsigned int so that 0 (the whole object) will
2516 : * come first. This is essential for eliminate_duplicate_dependencies,
2517 : * and is also the best order for findDependentObjects.
2518 : */
2519 823838 : if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2520 198572 : return -1;
2521 625266 : if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2522 178914 : return 1;
2523 446352 : return 0;
2524 : }
2525 :
2526 : /*
2527 : * Routines for handling an expansible array of ObjectAddress items.
2528 : *
2529 : * new_object_addresses: create a new ObjectAddresses array.
2530 : */
2531 : ObjectAddresses *
2532 373938 : new_object_addresses(void)
2533 : {
2534 : ObjectAddresses *addrs;
2535 :
2536 373938 : addrs = palloc(sizeof(ObjectAddresses));
2537 :
2538 373938 : addrs->numrefs = 0;
2539 373938 : addrs->maxrefs = 32;
2540 373938 : addrs->refs = (ObjectAddress *)
2541 373938 : palloc(addrs->maxrefs * sizeof(ObjectAddress));
2542 373938 : addrs->extras = NULL; /* until/unless needed */
2543 :
2544 373938 : return addrs;
2545 : }
2546 :
2547 : /*
2548 : * Add an entry to an ObjectAddresses array.
2549 : *
2550 : * It is convenient to specify the class by ObjectClass rather than directly
2551 : * by catalog OID.
2552 : */
2553 : static void
2554 505534 : add_object_address(ObjectClass oclass, Oid objectId, int32 subId,
2555 : ObjectAddresses *addrs)
2556 : {
2557 : ObjectAddress *item;
2558 :
2559 : /* enlarge array if needed */
2560 505534 : if (addrs->numrefs >= addrs->maxrefs)
2561 : {
2562 6712 : addrs->maxrefs *= 2;
2563 6712 : addrs->refs = (ObjectAddress *)
2564 6712 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2565 : Assert(!addrs->extras);
2566 : }
2567 : /* record this item */
2568 505534 : item = addrs->refs + addrs->numrefs;
2569 505534 : item->classId = object_classes[oclass];
2570 505534 : item->objectId = objectId;
2571 505534 : item->objectSubId = subId;
2572 505534 : addrs->numrefs++;
2573 505534 : }
2574 :
2575 : /*
2576 : * Add an entry to an ObjectAddresses array.
2577 : *
2578 : * As above, but specify entry exactly.
2579 : */
2580 : void
2581 951448 : add_exact_object_address(const ObjectAddress *object,
2582 : ObjectAddresses *addrs)
2583 : {
2584 : ObjectAddress *item;
2585 :
2586 : /* enlarge array if needed */
2587 951448 : if (addrs->numrefs >= addrs->maxrefs)
2588 : {
2589 34 : addrs->maxrefs *= 2;
2590 34 : addrs->refs = (ObjectAddress *)
2591 34 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2592 : Assert(!addrs->extras);
2593 : }
2594 : /* record this item */
2595 951448 : item = addrs->refs + addrs->numrefs;
2596 951448 : *item = *object;
2597 951448 : addrs->numrefs++;
2598 951448 : }
2599 :
2600 : /*
2601 : * Add an entry to an ObjectAddresses array.
2602 : *
2603 : * As above, but specify entry exactly and provide some "extra" data too.
2604 : */
2605 : static void
2606 174742 : add_exact_object_address_extra(const ObjectAddress *object,
2607 : const ObjectAddressExtra *extra,
2608 : ObjectAddresses *addrs)
2609 : {
2610 : ObjectAddress *item;
2611 : ObjectAddressExtra *itemextra;
2612 :
2613 : /* allocate extra space if first time */
2614 174742 : if (!addrs->extras)
2615 28530 : addrs->extras = (ObjectAddressExtra *)
2616 28530 : palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2617 :
2618 : /* enlarge array if needed */
2619 174742 : if (addrs->numrefs >= addrs->maxrefs)
2620 : {
2621 612 : addrs->maxrefs *= 2;
2622 612 : addrs->refs = (ObjectAddress *)
2623 612 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2624 612 : addrs->extras = (ObjectAddressExtra *)
2625 612 : repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2626 : }
2627 : /* record this item */
2628 174742 : item = addrs->refs + addrs->numrefs;
2629 174742 : *item = *object;
2630 174742 : itemextra = addrs->extras + addrs->numrefs;
2631 174742 : *itemextra = *extra;
2632 174742 : addrs->numrefs++;
2633 174742 : }
2634 :
2635 : /*
2636 : * Test whether an object is present in an ObjectAddresses array.
2637 : *
2638 : * We return "true" if object is a subobject of something in the array, too.
2639 : */
2640 : bool
2641 564 : object_address_present(const ObjectAddress *object,
2642 : const ObjectAddresses *addrs)
2643 : {
2644 : int i;
2645 :
2646 1970 : for (i = addrs->numrefs - 1; i >= 0; i--)
2647 : {
2648 1406 : const ObjectAddress *thisobj = addrs->refs + i;
2649 :
2650 1406 : if (object->classId == thisobj->classId &&
2651 362 : object->objectId == thisobj->objectId)
2652 : {
2653 0 : if (object->objectSubId == thisobj->objectSubId ||
2654 0 : thisobj->objectSubId == 0)
2655 0 : return true;
2656 : }
2657 : }
2658 :
2659 564 : return false;
2660 : }
2661 :
2662 : /*
2663 : * As above, except that if the object is present then also OR the given
2664 : * flags into its associated extra data (which must exist).
2665 : */
2666 : static bool
2667 215062 : object_address_present_add_flags(const ObjectAddress *object,
2668 : int flags,
2669 : ObjectAddresses *addrs)
2670 : {
2671 215062 : bool result = false;
2672 : int i;
2673 :
2674 5100584 : for (i = addrs->numrefs - 1; i >= 0; i--)
2675 : {
2676 4885522 : ObjectAddress *thisobj = addrs->refs + i;
2677 :
2678 4885522 : if (object->classId == thisobj->classId &&
2679 1595690 : object->objectId == thisobj->objectId)
2680 : {
2681 38978 : if (object->objectSubId == thisobj->objectSubId)
2682 : {
2683 38742 : ObjectAddressExtra *thisextra = addrs->extras + i;
2684 :
2685 38742 : thisextra->flags |= flags;
2686 38742 : result = true;
2687 : }
2688 236 : else if (thisobj->objectSubId == 0)
2689 : {
2690 : /*
2691 : * We get here if we find a need to delete a column after
2692 : * having already decided to drop its whole table. Obviously
2693 : * we no longer need to drop the subobject, so report that we
2694 : * found the subobject in the array. But don't plaster its
2695 : * flags on the whole object.
2696 : */
2697 224 : result = true;
2698 : }
2699 12 : else if (object->objectSubId == 0)
2700 : {
2701 : /*
2702 : * We get here if we find a need to delete a whole table after
2703 : * having already decided to drop one of its columns. We
2704 : * can't report that the whole object is in the array, but we
2705 : * should mark the subobject with the whole object's flags.
2706 : *
2707 : * It might seem attractive to physically delete the column's
2708 : * array entry, or at least mark it as no longer needing
2709 : * separate deletion. But that could lead to, e.g., dropping
2710 : * the column's datatype before we drop the table, which does
2711 : * not seem like a good idea. This is a very rare situation
2712 : * in practice, so we just take the hit of doing a separate
2713 : * DROP COLUMN action even though we know we're gonna delete
2714 : * the table later.
2715 : *
2716 : * What we can do, though, is mark this as a subobject so that
2717 : * we don't report it separately, which is confusing because
2718 : * it's unpredictable whether it happens or not. But do so
2719 : * only if flags != 0 (flags == 0 is a read-only probe).
2720 : *
2721 : * Because there could be other subobjects of this object in
2722 : * the array, this case means we always have to loop through
2723 : * the whole array; we cannot exit early on a match.
2724 : */
2725 6 : ObjectAddressExtra *thisextra = addrs->extras + i;
2726 :
2727 6 : if (flags)
2728 6 : thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2729 : }
2730 : }
2731 : }
2732 :
2733 215062 : return result;
2734 : }
2735 :
2736 : /*
2737 : * Similar to above, except we search an ObjectAddressStack.
2738 : */
2739 : static bool
2740 308262 : stack_address_present_add_flags(const ObjectAddress *object,
2741 : int flags,
2742 : ObjectAddressStack *stack)
2743 : {
2744 308262 : bool result = false;
2745 : ObjectAddressStack *stackptr;
2746 :
2747 823598 : for (stackptr = stack; stackptr; stackptr = stackptr->next)
2748 : {
2749 515336 : const ObjectAddress *thisobj = stackptr->object;
2750 :
2751 515336 : if (object->classId == thisobj->classId &&
2752 234026 : object->objectId == thisobj->objectId)
2753 : {
2754 93236 : if (object->objectSubId == thisobj->objectSubId)
2755 : {
2756 92626 : stackptr->flags |= flags;
2757 92626 : result = true;
2758 : }
2759 610 : else if (thisobj->objectSubId == 0)
2760 : {
2761 : /*
2762 : * We're visiting a column with whole table already on stack.
2763 : * As in object_address_present_add_flags(), we can skip
2764 : * further processing of the subobject, but we don't want to
2765 : * propagate flags for the subobject to the whole object.
2766 : */
2767 574 : result = true;
2768 : }
2769 36 : else if (object->objectSubId == 0)
2770 : {
2771 : /*
2772 : * We're visiting a table with column already on stack. As in
2773 : * object_address_present_add_flags(), we should propagate
2774 : * flags for the whole object to each of its subobjects.
2775 : */
2776 0 : if (flags)
2777 0 : stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2778 : }
2779 : }
2780 : }
2781 :
2782 308262 : return result;
2783 : }
2784 :
2785 : /*
2786 : * Record multiple dependencies from an ObjectAddresses array, after first
2787 : * removing any duplicates.
2788 : */
2789 : void
2790 288834 : record_object_address_dependencies(const ObjectAddress *depender,
2791 : ObjectAddresses *referenced,
2792 : DependencyType behavior)
2793 : {
2794 288834 : eliminate_duplicate_dependencies(referenced);
2795 288834 : recordMultipleDependencies(depender,
2796 288834 : referenced->refs, referenced->numrefs,
2797 : behavior);
2798 288834 : }
2799 :
2800 : /*
2801 : * Sort the items in an ObjectAddresses array.
2802 : *
2803 : * The major sort key is OID-descending, so that newer objects will be listed
2804 : * first in most cases. This is primarily useful for ensuring stable outputs
2805 : * from regression tests; it's not recommended if the order of the objects is
2806 : * determined by user input, such as the order of targets in a DROP command.
2807 : */
2808 : void
2809 132 : sort_object_addresses(ObjectAddresses *addrs)
2810 : {
2811 132 : if (addrs->numrefs > 1)
2812 76 : qsort(addrs->refs, addrs->numrefs,
2813 : sizeof(ObjectAddress),
2814 : object_address_comparator);
2815 132 : }
2816 :
2817 : /*
2818 : * Clean up when done with an ObjectAddresses array.
2819 : */
2820 : void
2821 372006 : free_object_addresses(ObjectAddresses *addrs)
2822 : {
2823 372006 : pfree(addrs->refs);
2824 372006 : if (addrs->extras)
2825 28204 : pfree(addrs->extras);
2826 372006 : pfree(addrs);
2827 372006 : }
2828 :
2829 : /*
2830 : * Determine the class of a given object identified by objectAddress.
2831 : *
2832 : * This function is essentially the reverse mapping for the object_classes[]
2833 : * table. We implement it as a function because the OIDs aren't consecutive.
2834 : */
2835 : ObjectClass
2836 325748 : getObjectClass(const ObjectAddress *object)
2837 : {
2838 : /* only pg_class entries can have nonzero objectSubId */
2839 325748 : if (object->classId != RelationRelationId &&
2840 217608 : object->objectSubId != 0)
2841 0 : elog(ERROR, "invalid non-zero objectSubId for object class %u",
2842 : object->classId);
2843 :
2844 325748 : switch (object->classId)
2845 : {
2846 108140 : case RelationRelationId:
2847 : /* caller must check objectSubId */
2848 108140 : return OCLASS_CLASS;
2849 :
2850 9764 : case ProcedureRelationId:
2851 9764 : return OCLASS_PROC;
2852 :
2853 121306 : case TypeRelationId:
2854 121306 : return OCLASS_TYPE;
2855 :
2856 554 : case CastRelationId:
2857 554 : return OCLASS_CAST;
2858 :
2859 214 : case CollationRelationId:
2860 214 : return OCLASS_COLLATION;
2861 :
2862 37354 : case ConstraintRelationId:
2863 37354 : return OCLASS_CONSTRAINT;
2864 :
2865 196 : case ConversionRelationId:
2866 196 : return OCLASS_CONVERSION;
2867 :
2868 6110 : case AttrDefaultRelationId:
2869 6110 : return OCLASS_DEFAULT;
2870 :
2871 162 : case LanguageRelationId:
2872 162 : return OCLASS_LANGUAGE;
2873 :
2874 118 : case LargeObjectRelationId:
2875 118 : return OCLASS_LARGEOBJECT;
2876 :
2877 1574 : case OperatorRelationId:
2878 1574 : return OCLASS_OPERATOR;
2879 :
2880 392 : case OperatorClassRelationId:
2881 392 : return OCLASS_OPCLASS;
2882 :
2883 424 : case OperatorFamilyRelationId:
2884 424 : return OCLASS_OPFAMILY;
2885 :
2886 174 : case AccessMethodRelationId:
2887 174 : return OCLASS_AM;
2888 :
2889 1894 : case AccessMethodOperatorRelationId:
2890 1894 : return OCLASS_AMOP;
2891 :
2892 760 : case AccessMethodProcedureRelationId:
2893 760 : return OCLASS_AMPROC;
2894 :
2895 5326 : case RewriteRelationId:
2896 5326 : return OCLASS_REWRITE;
2897 :
2898 22678 : case TriggerRelationId:
2899 22678 : return OCLASS_TRIGGER;
2900 :
2901 994 : case NamespaceRelationId:
2902 994 : return OCLASS_SCHEMA;
2903 :
2904 866 : case StatisticExtRelationId:
2905 866 : return OCLASS_STATISTIC_EXT;
2906 :
2907 174 : case TSParserRelationId:
2908 174 : return OCLASS_TSPARSER;
2909 :
2910 192 : case TSDictionaryRelationId:
2911 192 : return OCLASS_TSDICT;
2912 :
2913 174 : case TSTemplateRelationId:
2914 174 : return OCLASS_TSTEMPLATE;
2915 :
2916 200 : case TSConfigRelationId:
2917 200 : return OCLASS_TSCONFIG;
2918 :
2919 118 : case AuthIdRelationId:
2920 118 : return OCLASS_ROLE;
2921 :
2922 84 : case AuthMemRelationId:
2923 84 : return OCLASS_ROLE_MEMBERSHIP;
2924 :
2925 42 : case DatabaseRelationId:
2926 42 : return OCLASS_DATABASE;
2927 :
2928 30 : case TableSpaceRelationId:
2929 30 : return OCLASS_TBLSPACE;
2930 :
2931 292 : case ForeignDataWrapperRelationId:
2932 292 : return OCLASS_FDW;
2933 :
2934 416 : case ForeignServerRelationId:
2935 416 : return OCLASS_FOREIGN_SERVER;
2936 :
2937 418 : case UserMappingRelationId:
2938 418 : return OCLASS_USER_MAPPING;
2939 :
2940 366 : case DefaultAclRelationId:
2941 366 : return OCLASS_DEFACL;
2942 :
2943 216 : case ExtensionRelationId:
2944 216 : return OCLASS_EXTENSION;
2945 :
2946 362 : case EventTriggerRelationId:
2947 362 : return OCLASS_EVENT_TRIGGER;
2948 :
2949 160 : case ParameterAclRelationId:
2950 160 : return OCLASS_PARAMETER_ACL;
2951 :
2952 1126 : case PolicyRelationId:
2953 1126 : return OCLASS_POLICY;
2954 :
2955 448 : case PublicationNamespaceRelationId:
2956 448 : return OCLASS_PUBLICATION_NAMESPACE;
2957 :
2958 474 : case PublicationRelationId:
2959 474 : return OCLASS_PUBLICATION;
2960 :
2961 1182 : case PublicationRelRelationId:
2962 1182 : return OCLASS_PUBLICATION_REL;
2963 :
2964 114 : case SubscriptionRelationId:
2965 114 : return OCLASS_SUBSCRIPTION;
2966 :
2967 160 : case TransformRelationId:
2968 160 : return OCLASS_TRANSFORM;
2969 : }
2970 :
2971 : /* shouldn't get here */
2972 0 : elog(ERROR, "unrecognized object class: %u", object->classId);
2973 : return OCLASS_CLASS; /* keep compiler quiet */
2974 : }
2975 :
2976 : /*
2977 : * delete initial ACL for extension objects
2978 : */
2979 : static void
2980 169756 : DeleteInitPrivs(const ObjectAddress *object)
2981 : {
2982 : Relation relation;
2983 : ScanKeyData key[3];
2984 : SysScanDesc scan;
2985 : HeapTuple oldtuple;
2986 :
2987 169756 : relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2988 :
2989 169756 : ScanKeyInit(&key[0],
2990 : Anum_pg_init_privs_objoid,
2991 : BTEqualStrategyNumber, F_OIDEQ,
2992 : ObjectIdGetDatum(object->objectId));
2993 169756 : ScanKeyInit(&key[1],
2994 : Anum_pg_init_privs_classoid,
2995 : BTEqualStrategyNumber, F_OIDEQ,
2996 : ObjectIdGetDatum(object->classId));
2997 169756 : ScanKeyInit(&key[2],
2998 : Anum_pg_init_privs_objsubid,
2999 : BTEqualStrategyNumber, F_INT4EQ,
3000 : Int32GetDatum(object->objectSubId));
3001 :
3002 169756 : scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
3003 : NULL, 3, key);
3004 :
3005 169844 : while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
3006 88 : CatalogTupleDelete(relation, &oldtuple->t_self);
3007 :
3008 169756 : systable_endscan(scan);
3009 :
3010 169756 : table_close(relation, RowExclusiveLock);
3011 169756 : }
|