Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * dependency.c
4 : * Routines to support inter-object dependencies.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/dependency.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/genam.h"
18 : #include "access/htup_details.h"
19 : #include "access/table.h"
20 : #include "access/xact.h"
21 : #include "catalog/catalog.h"
22 : #include "catalog/dependency.h"
23 : #include "catalog/heap.h"
24 : #include "catalog/index.h"
25 : #include "catalog/objectaccess.h"
26 : #include "catalog/pg_am.h"
27 : #include "catalog/pg_amop.h"
28 : #include "catalog/pg_amproc.h"
29 : #include "catalog/pg_attrdef.h"
30 : #include "catalog/pg_authid.h"
31 : #include "catalog/pg_auth_members.h"
32 : #include "catalog/pg_cast.h"
33 : #include "catalog/pg_collation.h"
34 : #include "catalog/pg_constraint.h"
35 : #include "catalog/pg_conversion.h"
36 : #include "catalog/pg_database.h"
37 : #include "catalog/pg_default_acl.h"
38 : #include "catalog/pg_depend.h"
39 : #include "catalog/pg_event_trigger.h"
40 : #include "catalog/pg_extension.h"
41 : #include "catalog/pg_foreign_data_wrapper.h"
42 : #include "catalog/pg_foreign_server.h"
43 : #include "catalog/pg_init_privs.h"
44 : #include "catalog/pg_language.h"
45 : #include "catalog/pg_largeobject.h"
46 : #include "catalog/pg_namespace.h"
47 : #include "catalog/pg_opclass.h"
48 : #include "catalog/pg_operator.h"
49 : #include "catalog/pg_opfamily.h"
50 : #include "catalog/pg_parameter_acl.h"
51 : #include "catalog/pg_policy.h"
52 : #include "catalog/pg_proc.h"
53 : #include "catalog/pg_publication.h"
54 : #include "catalog/pg_publication_namespace.h"
55 : #include "catalog/pg_publication_rel.h"
56 : #include "catalog/pg_rewrite.h"
57 : #include "catalog/pg_statistic_ext.h"
58 : #include "catalog/pg_subscription.h"
59 : #include "catalog/pg_tablespace.h"
60 : #include "catalog/pg_transform.h"
61 : #include "catalog/pg_trigger.h"
62 : #include "catalog/pg_ts_config.h"
63 : #include "catalog/pg_ts_dict.h"
64 : #include "catalog/pg_ts_parser.h"
65 : #include "catalog/pg_ts_template.h"
66 : #include "catalog/pg_type.h"
67 : #include "catalog/pg_user_mapping.h"
68 : #include "commands/comment.h"
69 : #include "commands/defrem.h"
70 : #include "commands/event_trigger.h"
71 : #include "commands/extension.h"
72 : #include "commands/policy.h"
73 : #include "commands/publicationcmds.h"
74 : #include "commands/seclabel.h"
75 : #include "commands/sequence.h"
76 : #include "commands/trigger.h"
77 : #include "commands/typecmds.h"
78 : #include "funcapi.h"
79 : #include "miscadmin.h"
80 : #include "nodes/nodeFuncs.h"
81 : #include "parser/parsetree.h"
82 : #include "rewrite/rewriteRemove.h"
83 : #include "storage/lmgr.h"
84 : #include "utils/fmgroids.h"
85 : #include "utils/lsyscache.h"
86 : #include "utils/syscache.h"
87 :
88 :
89 : /*
90 : * Deletion processing requires additional state for each ObjectAddress that
91 : * it's planning to delete. For simplicity and code-sharing we make the
92 : * ObjectAddresses code support arrays with or without this extra state.
93 : */
94 : typedef struct
95 : {
96 : int flags; /* bitmask, see bit definitions below */
97 : ObjectAddress dependee; /* object whose deletion forced this one */
98 : } ObjectAddressExtra;
99 :
100 : /* ObjectAddressExtra flag bits */
101 : #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
102 : #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
103 : #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
104 : #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
105 : #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
106 : #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
107 : #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
108 : #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
109 : #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
110 :
111 :
112 : /* expansible list of ObjectAddresses */
113 : struct ObjectAddresses
114 : {
115 : ObjectAddress *refs; /* => palloc'd array */
116 : ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
117 : int numrefs; /* current number of references */
118 : int maxrefs; /* current size of palloc'd array(s) */
119 : };
120 :
121 : /* typedef ObjectAddresses appears in dependency.h */
122 :
123 : /* threaded list of ObjectAddresses, for recursion detection */
124 : typedef struct ObjectAddressStack
125 : {
126 : const ObjectAddress *object; /* object being visited */
127 : int flags; /* its current flag bits */
128 : struct ObjectAddressStack *next; /* next outer stack level */
129 : } ObjectAddressStack;
130 :
131 : /* temporary storage in findDependentObjects */
132 : typedef struct
133 : {
134 : ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
135 : int subflags; /* flags to pass down when recursing to obj */
136 : } ObjectAddressAndFlags;
137 :
138 : /* for find_expr_references_walker */
139 : typedef struct
140 : {
141 : ObjectAddresses *addrs; /* addresses being accumulated */
142 : List *rtables; /* list of rangetables to resolve Vars */
143 : } find_expr_references_context;
144 :
145 :
146 : static void findDependentObjects(const ObjectAddress *object,
147 : int objflags,
148 : int flags,
149 : ObjectAddressStack *stack,
150 : ObjectAddresses *targetObjects,
151 : const ObjectAddresses *pendingObjects,
152 : Relation *depRel);
153 : static void reportDependentObjects(const ObjectAddresses *targetObjects,
154 : DropBehavior behavior,
155 : int flags,
156 : const ObjectAddress *origObject);
157 : static void deleteOneObject(const ObjectAddress *object,
158 : Relation *depRel, int32 flags);
159 : static void doDeletion(const ObjectAddress *object, int flags);
160 : static bool find_expr_references_walker(Node *node,
161 : find_expr_references_context *context);
162 : static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
163 : find_expr_references_context *context);
164 : static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
165 : static int object_address_comparator(const void *a, const void *b);
166 : static void add_object_address(Oid classId, Oid objectId, int32 subId,
167 : ObjectAddresses *addrs);
168 : static void add_exact_object_address_extra(const ObjectAddress *object,
169 : const ObjectAddressExtra *extra,
170 : ObjectAddresses *addrs);
171 : static bool object_address_present_add_flags(const ObjectAddress *object,
172 : int flags,
173 : ObjectAddresses *addrs);
174 : static bool stack_address_present_add_flags(const ObjectAddress *object,
175 : int flags,
176 : ObjectAddressStack *stack);
177 : static void DeleteInitPrivs(const ObjectAddress *object);
178 :
179 :
180 : /*
181 : * Go through the objects given running the final actions on them, and execute
182 : * the actual deletion.
183 : */
184 : static void
185 32026 : deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
186 : int flags)
187 : {
188 : int i;
189 :
190 : /*
191 : * Keep track of objects for event triggers, if necessary.
192 : */
193 32026 : if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
194 : {
195 4426 : for (i = 0; i < targetObjects->numrefs; i++)
196 : {
197 3728 : const ObjectAddress *thisobj = &targetObjects->refs[i];
198 3728 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
199 3728 : bool original = false;
200 3728 : bool normal = false;
201 :
202 3728 : if (extra->flags & DEPFLAG_ORIGINAL)
203 782 : original = true;
204 3728 : if (extra->flags & DEPFLAG_NORMAL)
205 342 : normal = true;
206 3728 : if (extra->flags & DEPFLAG_REVERSE)
207 0 : normal = true;
208 :
209 3728 : if (EventTriggerSupportsObject(thisobj))
210 : {
211 3616 : EventTriggerSQLDropAddObject(thisobj, original, normal);
212 : }
213 : }
214 : }
215 :
216 : /*
217 : * Delete all the objects in the proper order, except that if told to, we
218 : * should skip the original object(s).
219 : */
220 244122 : for (i = 0; i < targetObjects->numrefs; i++)
221 : {
222 212106 : ObjectAddress *thisobj = targetObjects->refs + i;
223 212106 : ObjectAddressExtra *thisextra = targetObjects->extras + i;
224 :
225 212106 : if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
226 9300 : (thisextra->flags & DEPFLAG_ORIGINAL))
227 850 : continue;
228 :
229 211256 : deleteOneObject(thisobj, depRel, flags);
230 : }
231 32016 : }
232 :
233 : /*
234 : * performDeletion: attempt to drop the specified object. If CASCADE
235 : * behavior is specified, also drop any dependent objects (recursively).
236 : * If RESTRICT behavior is specified, error out if there are any dependent
237 : * objects, except for those that should be implicitly dropped anyway
238 : * according to the dependency type.
239 : *
240 : * This is the outer control routine for all forms of DROP that drop objects
241 : * that can participate in dependencies. Note that performMultipleDeletions
242 : * is a variant on the same theme; if you change anything here you'll likely
243 : * need to fix that too.
244 : *
245 : * Bits in the flags argument can include:
246 : *
247 : * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
248 : * direct result of a user-initiated action. For example, when a temporary
249 : * schema is cleaned out so that a new backend can use it, or when a column
250 : * default is dropped as an intermediate step while adding a new one, that's
251 : * an internal operation. On the other hand, when we drop something because
252 : * the user issued a DROP statement against it, that's not internal. Currently
253 : * this suppresses calling event triggers and making some permissions checks.
254 : *
255 : * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
256 : * not currently work for anything except dropping indexes; don't set it for
257 : * other object types or you may get strange results.
258 : *
259 : * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
260 : *
261 : * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
262 : * but only what depends on it/them.
263 : *
264 : * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
265 : * deleting objects that are part of an extension. This should generally
266 : * be used only when dropping temporary objects.
267 : *
268 : * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
269 : * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
270 : *
271 : */
272 : void
273 5894 : performDeletion(const ObjectAddress *object,
274 : DropBehavior behavior, int flags)
275 : {
276 : Relation depRel;
277 : ObjectAddresses *targetObjects;
278 :
279 : /*
280 : * We save some cycles by opening pg_depend just once and passing the
281 : * Relation pointer down to all the recursive deletion steps.
282 : */
283 5894 : depRel = table_open(DependRelationId, RowExclusiveLock);
284 :
285 : /*
286 : * Acquire deletion lock on the target object. (Ideally the caller has
287 : * done this already, but many places are sloppy about it.)
288 : */
289 5894 : AcquireDeletionLock(object, 0);
290 :
291 : /*
292 : * Construct a list of objects to delete (ie, the given object plus
293 : * everything directly or indirectly dependent on it).
294 : */
295 5894 : targetObjects = new_object_addresses();
296 :
297 5894 : findDependentObjects(object,
298 : DEPFLAG_ORIGINAL,
299 : flags,
300 : NULL, /* empty stack */
301 : targetObjects,
302 : NULL, /* no pendingObjects */
303 : &depRel);
304 :
305 : /*
306 : * Check if deletion is allowed, and report about cascaded deletes.
307 : */
308 5894 : reportDependentObjects(targetObjects,
309 : behavior,
310 : flags,
311 : object);
312 :
313 : /* do the deed */
314 5858 : deleteObjectsInList(targetObjects, &depRel, flags);
315 :
316 : /* And clean up */
317 5856 : free_object_addresses(targetObjects);
318 :
319 5856 : table_close(depRel, RowExclusiveLock);
320 5856 : }
321 :
322 : /*
323 : * performMultipleDeletions: Similar to performDeletion, but act on multiple
324 : * objects at once.
325 : *
326 : * The main difference from issuing multiple performDeletion calls is that the
327 : * list of objects that would be implicitly dropped, for each object to be
328 : * dropped, is the union of the implicit-object list for all objects. This
329 : * makes each check be more relaxed.
330 : */
331 : void
332 28774 : performMultipleDeletions(const ObjectAddresses *objects,
333 : DropBehavior behavior, int flags)
334 : {
335 : Relation depRel;
336 : ObjectAddresses *targetObjects;
337 : int i;
338 :
339 : /* No work if no objects... */
340 28774 : if (objects->numrefs <= 0)
341 2262 : return;
342 :
343 : /*
344 : * We save some cycles by opening pg_depend just once and passing the
345 : * Relation pointer down to all the recursive deletion steps.
346 : */
347 26512 : depRel = table_open(DependRelationId, RowExclusiveLock);
348 :
349 : /*
350 : * Construct a list of objects to delete (ie, the given objects plus
351 : * everything directly or indirectly dependent on them). Note that
352 : * because we pass the whole objects list as pendingObjects context, we
353 : * won't get a failure from trying to delete an object that is internally
354 : * dependent on another one in the list; we'll just skip that object and
355 : * delete it when we reach its owner.
356 : */
357 26512 : targetObjects = new_object_addresses();
358 :
359 58682 : for (i = 0; i < objects->numrefs; i++)
360 : {
361 32212 : const ObjectAddress *thisobj = objects->refs + i;
362 :
363 : /*
364 : * Acquire deletion lock on each target object. (Ideally the caller
365 : * has done this already, but many places are sloppy about it.)
366 : */
367 32212 : AcquireDeletionLock(thisobj, flags);
368 :
369 32212 : findDependentObjects(thisobj,
370 : DEPFLAG_ORIGINAL,
371 : flags,
372 : NULL, /* empty stack */
373 : targetObjects,
374 : objects,
375 : &depRel);
376 : }
377 :
378 : /*
379 : * Check if deletion is allowed, and report about cascaded deletes.
380 : *
381 : * If there's exactly one object being deleted, report it the same way as
382 : * in performDeletion(), else we have to be vaguer.
383 : */
384 26470 : reportDependentObjects(targetObjects,
385 : behavior,
386 : flags,
387 26470 : (objects->numrefs == 1 ? objects->refs : NULL));
388 :
389 : /* do the deed */
390 26168 : deleteObjectsInList(targetObjects, &depRel, flags);
391 :
392 : /* And clean up */
393 26160 : free_object_addresses(targetObjects);
394 :
395 26160 : table_close(depRel, RowExclusiveLock);
396 : }
397 :
398 : /*
399 : * findDependentObjects - find all objects that depend on 'object'
400 : *
401 : * For every object that depends on the starting object, acquire a deletion
402 : * lock on the object, add it to targetObjects (if not already there),
403 : * and recursively find objects that depend on it. An object's dependencies
404 : * will be placed into targetObjects before the object itself; this means
405 : * that the finished list's order represents a safe deletion order.
406 : *
407 : * The caller must already have a deletion lock on 'object' itself,
408 : * but must not have added it to targetObjects. (Note: there are corner
409 : * cases where we won't add the object either, and will also release the
410 : * caller-taken lock. This is a bit ugly, but the API is set up this way
411 : * to allow easy rechecking of an object's liveness after we lock it. See
412 : * notes within the function.)
413 : *
414 : * When dropping a whole object (subId = 0), we find dependencies for
415 : * its sub-objects too.
416 : *
417 : * object: the object to add to targetObjects and find dependencies on
418 : * objflags: flags to be ORed into the object's targetObjects entry
419 : * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
420 : * stack: list of objects being visited in current recursion; topmost item
421 : * is the object that we recursed from (NULL for external callers)
422 : * targetObjects: list of objects that are scheduled to be deleted
423 : * pendingObjects: list of other objects slated for destruction, but
424 : * not necessarily in targetObjects yet (can be NULL if none)
425 : * *depRel: already opened pg_depend relation
426 : *
427 : * Note: objflags describes the reason for visiting this particular object
428 : * at this time, and is not passed down when recursing. The flags argument
429 : * is passed down, since it describes what we're doing overall.
430 : */
431 : static void
432 262842 : findDependentObjects(const ObjectAddress *object,
433 : int objflags,
434 : int flags,
435 : ObjectAddressStack *stack,
436 : ObjectAddresses *targetObjects,
437 : const ObjectAddresses *pendingObjects,
438 : Relation *depRel)
439 : {
440 : ScanKeyData key[3];
441 : int nkeys;
442 : SysScanDesc scan;
443 : HeapTuple tup;
444 : ObjectAddress otherObject;
445 : ObjectAddress owningObject;
446 : ObjectAddress partitionObject;
447 : ObjectAddressAndFlags *dependentObjects;
448 : int numDependentObjects;
449 : int maxDependentObjects;
450 : ObjectAddressStack mystack;
451 : ObjectAddressExtra extra;
452 :
453 : /*
454 : * If the target object is already being visited in an outer recursion
455 : * level, just report the current objflags back to that level and exit.
456 : * This is needed to avoid infinite recursion in the face of circular
457 : * dependencies.
458 : *
459 : * The stack check alone would result in dependency loops being broken at
460 : * an arbitrary point, ie, the first member object of the loop to be
461 : * visited is the last one to be deleted. This is obviously unworkable.
462 : * However, the check for internal dependency below guarantees that we
463 : * will not break a loop at an internal dependency: if we enter the loop
464 : * at an "owned" object we will switch and start at the "owning" object
465 : * instead. We could probably hack something up to avoid breaking at an
466 : * auto dependency, too, if we had to. However there are no known cases
467 : * where that would be necessary.
468 : */
469 262842 : if (stack_address_present_add_flags(object, objflags, stack))
470 46496 : return;
471 :
472 : /*
473 : * since this function recurses, it could be driven to stack overflow,
474 : * because of the deep dependency tree, not only due to dependency loops.
475 : */
476 262572 : check_stack_depth();
477 :
478 : /*
479 : * It's also possible that the target object has already been completely
480 : * processed and put into targetObjects. If so, again we just add the
481 : * specified objflags to its entry and return.
482 : *
483 : * (Note: in these early-exit cases we could release the caller-taken
484 : * lock, since the object is presumably now locked multiple times; but it
485 : * seems not worth the cycles.)
486 : */
487 262572 : if (object_address_present_add_flags(object, objflags, targetObjects))
488 44542 : return;
489 :
490 : /*
491 : * If the target object is pinned, we can just error out immediately; it
492 : * won't have any objects recorded as depending on it.
493 : */
494 218030 : if (IsPinnedObject(object->classId, object->objectId))
495 2 : ereport(ERROR,
496 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
497 : errmsg("cannot drop %s because it is required by the database system",
498 : getObjectDescription(object, false))));
499 :
500 : /*
501 : * The target object might be internally dependent on some other object
502 : * (its "owner"), and/or be a member of an extension (also considered its
503 : * owner). If so, and if we aren't recursing from the owning object, we
504 : * have to transform this deletion request into a deletion request of the
505 : * owning object. (We'll eventually recurse back to this object, but the
506 : * owning object has to be visited first so it will be deleted after.) The
507 : * way to find out about this is to scan the pg_depend entries that show
508 : * what this object depends on.
509 : */
510 218028 : ScanKeyInit(&key[0],
511 : Anum_pg_depend_classid,
512 : BTEqualStrategyNumber, F_OIDEQ,
513 218028 : ObjectIdGetDatum(object->classId));
514 218028 : ScanKeyInit(&key[1],
515 : Anum_pg_depend_objid,
516 : BTEqualStrategyNumber, F_OIDEQ,
517 218028 : ObjectIdGetDatum(object->objectId));
518 218028 : if (object->objectSubId != 0)
519 : {
520 : /* Consider only dependencies of this sub-object */
521 2194 : ScanKeyInit(&key[2],
522 : Anum_pg_depend_objsubid,
523 : BTEqualStrategyNumber, F_INT4EQ,
524 2194 : Int32GetDatum(object->objectSubId));
525 2194 : nkeys = 3;
526 : }
527 : else
528 : {
529 : /* Consider dependencies of this object and any sub-objects it has */
530 215834 : nkeys = 2;
531 : }
532 :
533 218028 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
534 : NULL, nkeys, key);
535 :
536 : /* initialize variables that loop may fill */
537 218028 : memset(&owningObject, 0, sizeof(owningObject));
538 218028 : memset(&partitionObject, 0, sizeof(partitionObject));
539 :
540 515958 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
541 : {
542 299614 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
543 :
544 299614 : otherObject.classId = foundDep->refclassid;
545 299614 : otherObject.objectId = foundDep->refobjid;
546 299614 : otherObject.objectSubId = foundDep->refobjsubid;
547 :
548 : /*
549 : * When scanning dependencies of a whole object, we may find rows
550 : * linking sub-objects of the object to the object itself. (Normally,
551 : * such a dependency is implicit, but we must make explicit ones in
552 : * some cases involving partitioning.) We must ignore such rows to
553 : * avoid infinite recursion.
554 : */
555 299614 : if (otherObject.classId == object->classId &&
556 100668 : otherObject.objectId == object->objectId &&
557 4288 : object->objectSubId == 0)
558 4264 : continue;
559 :
560 295350 : switch (foundDep->deptype)
561 : {
562 168598 : case DEPENDENCY_NORMAL:
563 : case DEPENDENCY_AUTO:
564 : case DEPENDENCY_AUTO_EXTENSION:
565 : /* no problem */
566 168598 : break;
567 :
568 3640 : case DEPENDENCY_EXTENSION:
569 :
570 : /*
571 : * If told to, ignore EXTENSION dependencies altogether. This
572 : * flag is normally used to prevent dropping extensions during
573 : * temporary-object cleanup, even if a temp object was created
574 : * during an extension script.
575 : */
576 3640 : if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
577 8 : break;
578 :
579 : /*
580 : * If the other object is the extension currently being
581 : * created/altered, ignore this dependency and continue with
582 : * the deletion. This allows dropping of an extension's
583 : * objects within the extension's scripts, as well as corner
584 : * cases such as dropping a transient object created within
585 : * such a script.
586 : */
587 3632 : if (creating_extension &&
588 338 : otherObject.classId == ExtensionRelationId &&
589 338 : otherObject.objectId == CurrentExtensionObject)
590 338 : break;
591 :
592 : /* Otherwise, treat this like an internal dependency */
593 : /* FALL THRU */
594 :
595 : case DEPENDENCY_INTERNAL:
596 :
597 : /*
598 : * This object is part of the internal implementation of
599 : * another object, or is part of the extension that is the
600 : * other object. We have three cases:
601 : *
602 : * 1. At the outermost recursion level, we must disallow the
603 : * DROP. However, if the owning object is listed in
604 : * pendingObjects, just release the caller's lock and return;
605 : * we'll eventually complete the DROP when we reach that entry
606 : * in the pending list.
607 : *
608 : * Note: the above statement is true only if this pg_depend
609 : * entry still exists by then; in principle, therefore, we
610 : * could miss deleting an item the user told us to delete.
611 : * However, no inconsistency can result: since we're at outer
612 : * level, there is no object depending on this one.
613 : */
614 116514 : if (stack == NULL)
615 : {
616 80 : if (pendingObjects &&
617 40 : object_address_present(&otherObject, pendingObjects))
618 : {
619 0 : systable_endscan(scan);
620 : /* need to release caller's lock; see notes below */
621 0 : ReleaseDeletionLock(object);
622 0 : return;
623 : }
624 :
625 : /*
626 : * We postpone actually issuing the error message until
627 : * after this loop, so that we can make the behavior
628 : * independent of the ordering of pg_depend entries, at
629 : * least if there's not more than one INTERNAL and one
630 : * EXTENSION dependency. (If there's more, we'll complain
631 : * about a random one of them.) Prefer to complain about
632 : * EXTENSION, since that's generally a more important
633 : * dependency.
634 : */
635 40 : if (!OidIsValid(owningObject.classId) ||
636 0 : foundDep->deptype == DEPENDENCY_EXTENSION)
637 40 : owningObject = otherObject;
638 40 : break;
639 : }
640 :
641 : /*
642 : * 2. When recursing from the other end of this dependency,
643 : * it's okay to continue with the deletion. This holds when
644 : * recursing from a whole object that includes the nominal
645 : * other end as a component, too. Since there can be more
646 : * than one "owning" object, we have to allow matches that are
647 : * more than one level down in the stack.
648 : */
649 116474 : if (stack_address_present_add_flags(&otherObject, 0, stack))
650 114790 : break;
651 :
652 : /*
653 : * 3. Not all the owning objects have been visited, so
654 : * transform this deletion request into a delete of this
655 : * owning object.
656 : *
657 : * First, release caller's lock on this object and get
658 : * deletion lock on the owning object. (We must release
659 : * caller's lock to avoid deadlock against a concurrent
660 : * deletion of the owning object.)
661 : */
662 1684 : ReleaseDeletionLock(object);
663 1684 : AcquireDeletionLock(&otherObject, 0);
664 :
665 : /*
666 : * The owning object might have been deleted while we waited
667 : * to lock it; if so, neither it nor the current object are
668 : * interesting anymore. We test this by checking the
669 : * pg_depend entry (see notes below).
670 : */
671 1684 : if (!systable_recheck_tuple(scan, tup))
672 : {
673 0 : systable_endscan(scan);
674 0 : ReleaseDeletionLock(&otherObject);
675 0 : return;
676 : }
677 :
678 : /*
679 : * One way or the other, we're done with the scan; might as
680 : * well close it down before recursing, to reduce peak
681 : * resource consumption.
682 : */
683 1684 : systable_endscan(scan);
684 :
685 : /*
686 : * Okay, recurse to the owning object instead of proceeding.
687 : *
688 : * We do not need to stack the current object; we want the
689 : * traversal order to be as if the original reference had
690 : * linked to the owning object instead of this one.
691 : *
692 : * The dependency type is a "reverse" dependency: we need to
693 : * delete the owning object if this one is to be deleted, but
694 : * this linkage is never a reason for an automatic deletion.
695 : */
696 1684 : findDependentObjects(&otherObject,
697 : DEPFLAG_REVERSE,
698 : flags,
699 : stack,
700 : targetObjects,
701 : pendingObjects,
702 : depRel);
703 :
704 : /*
705 : * The current target object should have been added to
706 : * targetObjects while processing the owning object; but it
707 : * probably got only the flag bits associated with the
708 : * dependency we're looking at. We need to add the objflags
709 : * that were passed to this recursion level, too, else we may
710 : * get a bogus failure in reportDependentObjects (if, for
711 : * example, we were called due to a partition dependency).
712 : *
713 : * If somehow the current object didn't get scheduled for
714 : * deletion, bleat. (That would imply that somebody deleted
715 : * this dependency record before the recursion got to it.)
716 : * Another idea would be to reacquire lock on the current
717 : * object and resume trying to delete it, but it seems not
718 : * worth dealing with the race conditions inherent in that.
719 : */
720 1684 : if (!object_address_present_add_flags(object, objflags,
721 : targetObjects))
722 0 : elog(ERROR, "deletion of owning object %s failed to delete %s",
723 : getObjectDescription(&otherObject, false),
724 : getObjectDescription(object, false));
725 :
726 : /* And we're done here. */
727 1684 : return;
728 :
729 4946 : case DEPENDENCY_PARTITION_PRI:
730 :
731 : /*
732 : * Remember that this object has a partition-type dependency.
733 : * After the dependency scan, we'll complain if we didn't find
734 : * a reason to delete one of its partition dependencies.
735 : */
736 4946 : objflags |= DEPFLAG_IS_PART;
737 :
738 : /*
739 : * Also remember the primary partition owner, for error
740 : * messages. If there are multiple primary owners (which
741 : * there should not be), we'll report a random one of them.
742 : */
743 4946 : partitionObject = otherObject;
744 4946 : break;
745 :
746 4946 : case DEPENDENCY_PARTITION_SEC:
747 :
748 : /*
749 : * Only use secondary partition owners in error messages if we
750 : * find no primary owner (which probably shouldn't happen).
751 : */
752 4946 : if (!(objflags & DEPFLAG_IS_PART))
753 2 : partitionObject = otherObject;
754 :
755 : /*
756 : * Remember that this object has a partition-type dependency.
757 : * After the dependency scan, we'll complain if we didn't find
758 : * a reason to delete one of its partition dependencies.
759 : */
760 4946 : objflags |= DEPFLAG_IS_PART;
761 4946 : break;
762 :
763 0 : default:
764 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
765 : foundDep->deptype, getObjectDescription(object, false));
766 : break;
767 : }
768 : }
769 :
770 216344 : systable_endscan(scan);
771 :
772 : /*
773 : * If we found an INTERNAL or EXTENSION dependency when we're at outer
774 : * level, complain about it now. If we also found a PARTITION dependency,
775 : * we prefer to report the PARTITION dependency. This is arbitrary but
776 : * seems to be more useful in practice.
777 : */
778 216344 : if (OidIsValid(owningObject.classId))
779 : {
780 : char *otherObjDesc;
781 :
782 40 : if (OidIsValid(partitionObject.classId))
783 12 : otherObjDesc = getObjectDescription(&partitionObject, false);
784 : else
785 28 : otherObjDesc = getObjectDescription(&owningObject, false);
786 :
787 40 : ereport(ERROR,
788 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
789 : errmsg("cannot drop %s because %s requires it",
790 : getObjectDescription(object, false), otherObjDesc),
791 : errhint("You can drop %s instead.", otherObjDesc)));
792 : }
793 :
794 : /*
795 : * Next, identify all objects that directly depend on the current object.
796 : * To ensure predictable deletion order, we collect them up in
797 : * dependentObjects and sort the list before actually recursing. (The
798 : * deletion order would be valid in any case, but doing this ensures
799 : * consistent output from DROP CASCADE commands, which is helpful for
800 : * regression testing.)
801 : */
802 216304 : maxDependentObjects = 128; /* arbitrary initial allocation */
803 : dependentObjects = (ObjectAddressAndFlags *)
804 216304 : palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
805 216304 : numDependentObjects = 0;
806 :
807 216304 : ScanKeyInit(&key[0],
808 : Anum_pg_depend_refclassid,
809 : BTEqualStrategyNumber, F_OIDEQ,
810 216304 : ObjectIdGetDatum(object->classId));
811 216304 : ScanKeyInit(&key[1],
812 : Anum_pg_depend_refobjid,
813 : BTEqualStrategyNumber, F_OIDEQ,
814 216304 : ObjectIdGetDatum(object->objectId));
815 216304 : if (object->objectSubId != 0)
816 : {
817 2170 : ScanKeyInit(&key[2],
818 : Anum_pg_depend_refobjsubid,
819 : BTEqualStrategyNumber, F_INT4EQ,
820 2170 : Int32GetDatum(object->objectSubId));
821 2170 : nkeys = 3;
822 : }
823 : else
824 214134 : nkeys = 2;
825 :
826 216304 : scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827 : NULL, nkeys, key);
828 :
829 443620 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
830 : {
831 227316 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832 : int subflags;
833 :
834 227316 : otherObject.classId = foundDep->classid;
835 227316 : otherObject.objectId = foundDep->objid;
836 227316 : otherObject.objectSubId = foundDep->objsubid;
837 :
838 : /*
839 : * If what we found is a sub-object of the current object, just ignore
840 : * it. (Normally, such a dependency is implicit, but we must make
841 : * explicit ones in some cases involving partitioning.)
842 : */
843 227316 : if (otherObject.classId == object->classId &&
844 96266 : otherObject.objectId == object->objectId &&
845 4264 : object->objectSubId == 0)
846 4264 : continue;
847 :
848 : /*
849 : * Must lock the dependent object before recursing to it.
850 : */
851 223052 : AcquireDeletionLock(&otherObject, 0);
852 :
853 : /*
854 : * The dependent object might have been deleted while we waited to
855 : * lock it; if so, we don't need to do anything more with it. We can
856 : * test this cheaply and independently of the object's type by seeing
857 : * if the pg_depend tuple we are looking at is still live. (If the
858 : * object got deleted, the tuple would have been deleted too.)
859 : */
860 223052 : if (!systable_recheck_tuple(scan, tup))
861 : {
862 : /* release the now-useless lock */
863 0 : ReleaseDeletionLock(&otherObject);
864 : /* and continue scanning for dependencies */
865 0 : continue;
866 : }
867 :
868 : /*
869 : * We do need to delete it, so identify objflags to be passed down,
870 : * which depend on the dependency type.
871 : */
872 223052 : switch (foundDep->deptype)
873 : {
874 31006 : case DEPENDENCY_NORMAL:
875 31006 : subflags = DEPFLAG_NORMAL;
876 31006 : break;
877 68282 : case DEPENDENCY_AUTO:
878 : case DEPENDENCY_AUTO_EXTENSION:
879 68282 : subflags = DEPFLAG_AUTO;
880 68282 : break;
881 111506 : case DEPENDENCY_INTERNAL:
882 111506 : subflags = DEPFLAG_INTERNAL;
883 111506 : break;
884 9026 : case DEPENDENCY_PARTITION_PRI:
885 : case DEPENDENCY_PARTITION_SEC:
886 9026 : subflags = DEPFLAG_PARTITION;
887 9026 : break;
888 3232 : case DEPENDENCY_EXTENSION:
889 3232 : subflags = DEPFLAG_EXTENSION;
890 3232 : break;
891 0 : default:
892 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
893 : foundDep->deptype, getObjectDescription(object, false));
894 : subflags = 0; /* keep compiler quiet */
895 : break;
896 : }
897 :
898 : /* And add it to the pending-objects list */
899 223052 : if (numDependentObjects >= maxDependentObjects)
900 : {
901 : /* enlarge array if needed */
902 26 : maxDependentObjects *= 2;
903 : dependentObjects = (ObjectAddressAndFlags *)
904 26 : repalloc(dependentObjects,
905 : maxDependentObjects * sizeof(ObjectAddressAndFlags));
906 : }
907 :
908 223052 : dependentObjects[numDependentObjects].obj = otherObject;
909 223052 : dependentObjects[numDependentObjects].subflags = subflags;
910 223052 : numDependentObjects++;
911 : }
912 :
913 216304 : systable_endscan(scan);
914 :
915 : /*
916 : * Now we can sort the dependent objects into a stable visitation order.
917 : * It's safe to use object_address_comparator here since the obj field is
918 : * first within ObjectAddressAndFlags.
919 : */
920 216304 : if (numDependentObjects > 1)
921 48098 : qsort(dependentObjects, numDependentObjects,
922 : sizeof(ObjectAddressAndFlags),
923 : object_address_comparator);
924 :
925 : /*
926 : * Now recurse to the dependent objects. We must visit them first since
927 : * they have to be deleted before the current object.
928 : */
929 216304 : mystack.object = object; /* set up a new stack level */
930 216304 : mystack.flags = objflags;
931 216304 : mystack.next = stack;
932 :
933 439356 : for (int i = 0; i < numDependentObjects; i++)
934 : {
935 223052 : ObjectAddressAndFlags *depObj = dependentObjects + i;
936 :
937 223052 : findDependentObjects(&depObj->obj,
938 : depObj->subflags,
939 : flags,
940 : &mystack,
941 : targetObjects,
942 : pendingObjects,
943 : depRel);
944 : }
945 :
946 216304 : pfree(dependentObjects);
947 :
948 : /*
949 : * Finally, we can add the target object to targetObjects. Be careful to
950 : * include any flags that were passed back down to us from inner recursion
951 : * levels. Record the "dependee" as being either the most important
952 : * partition owner if there is one, else the object we recursed from, if
953 : * any. (The logic in reportDependentObjects() is such that it can only
954 : * need one of those objects.)
955 : */
956 216304 : extra.flags = mystack.flags;
957 216304 : if (extra.flags & DEPFLAG_IS_PART)
958 4934 : extra.dependee = partitionObject;
959 211370 : else if (stack)
960 174128 : extra.dependee = *stack->object;
961 : else
962 37242 : memset(&extra.dependee, 0, sizeof(extra.dependee));
963 216304 : add_exact_object_address_extra(object, &extra, targetObjects);
964 : }
965 :
966 : /*
967 : * reportDependentObjects - report about dependencies, and fail if RESTRICT
968 : *
969 : * Tell the user about dependent objects that we are going to delete
970 : * (or would need to delete, but are prevented by RESTRICT mode);
971 : * then error out if there are any and it's not CASCADE mode.
972 : *
973 : * targetObjects: list of objects that are scheduled to be deleted
974 : * behavior: RESTRICT or CASCADE
975 : * flags: other flags for the deletion operation
976 : * origObject: base object of deletion, or NULL if not available
977 : * (the latter case occurs in DROP OWNED)
978 : */
979 : static void
980 32364 : reportDependentObjects(const ObjectAddresses *targetObjects,
981 : DropBehavior behavior,
982 : int flags,
983 : const ObjectAddress *origObject)
984 : {
985 32364 : int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986 32364 : bool ok = true;
987 : StringInfoData clientdetail;
988 : StringInfoData logdetail;
989 32364 : int numReportedClient = 0;
990 32364 : int numNotReportedClient = 0;
991 : int i;
992 :
993 : /*
994 : * If we need to delete any partition-dependent objects, make sure that
995 : * we're deleting at least one of their partition dependencies, too. That
996 : * can be detected by checking that we reached them by a PARTITION
997 : * dependency at some point.
998 : *
999 : * We just report the first such object, as in most cases the only way to
1000 : * trigger this complaint is to explicitly try to delete one partition of
1001 : * a partitioned object.
1002 : */
1003 248638 : for (i = 0; i < targetObjects->numrefs; i++)
1004 : {
1005 216304 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1006 :
1007 216304 : if ((extra->flags & DEPFLAG_IS_PART) &&
1008 4934 : !(extra->flags & DEPFLAG_PARTITION))
1009 : {
1010 30 : const ObjectAddress *object = &targetObjects->refs[i];
1011 30 : char *otherObjDesc = getObjectDescription(&extra->dependee,
1012 : false);
1013 :
1014 30 : ereport(ERROR,
1015 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016 : errmsg("cannot drop %s because %s requires it",
1017 : getObjectDescription(object, false), otherObjDesc),
1018 : errhint("You can drop %s instead.", otherObjDesc)));
1019 : }
1020 : }
1021 :
1022 : /*
1023 : * If no error is to be thrown, and the msglevel is too low to be shown to
1024 : * either client or server log, there's no need to do any of the rest of
1025 : * the work.
1026 : */
1027 32334 : if (behavior == DROP_CASCADE &&
1028 3358 : !message_level_is_interesting(msglevel))
1029 916 : return;
1030 :
1031 : /*
1032 : * We limit the number of dependencies reported to the client to
1033 : * MAX_REPORTED_DEPS, since client software may not deal well with
1034 : * enormous error strings. The server log always gets a full report.
1035 : */
1036 : #define MAX_REPORTED_DEPS 100
1037 :
1038 31418 : initStringInfo(&clientdetail);
1039 31418 : initStringInfo(&logdetail);
1040 :
1041 : /*
1042 : * We process the list back to front (ie, in dependency order not deletion
1043 : * order), since this makes for a more understandable display.
1044 : */
1045 235424 : for (i = targetObjects->numrefs - 1; i >= 0; i--)
1046 : {
1047 204006 : const ObjectAddress *obj = &targetObjects->refs[i];
1048 204006 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049 : char *objDesc;
1050 :
1051 : /* Ignore the original deletion target(s) */
1052 204006 : if (extra->flags & DEPFLAG_ORIGINAL)
1053 37134 : continue;
1054 :
1055 : /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 166872 : if (extra->flags & DEPFLAG_SUBOBJECT)
1057 0 : continue;
1058 :
1059 166872 : objDesc = getObjectDescription(obj, false);
1060 :
1061 : /* An object being dropped concurrently doesn't need to be reported */
1062 166872 : if (objDesc == NULL)
1063 0 : continue;
1064 :
1065 : /*
1066 : * If, at any stage of the recursive search, we reached the object via
1067 : * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 : * okay to delete it even in RESTRICT mode.
1069 : */
1070 166872 : if (extra->flags & (DEPFLAG_AUTO |
1071 : DEPFLAG_INTERNAL |
1072 : DEPFLAG_PARTITION |
1073 : DEPFLAG_EXTENSION))
1074 : {
1075 : /*
1076 : * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 : * try to combine them with the regular message because the
1078 : * results are too confusing when client_min_messages and
1079 : * log_min_messages are different.
1080 : */
1081 158094 : ereport(DEBUG2,
1082 : (errmsg_internal("drop auto-cascades to %s",
1083 : objDesc)));
1084 : }
1085 8778 : else if (behavior == DROP_RESTRICT)
1086 : {
1087 514 : char *otherDesc = getObjectDescription(&extra->dependee,
1088 : false);
1089 :
1090 514 : if (otherDesc)
1091 : {
1092 514 : if (numReportedClient < MAX_REPORTED_DEPS)
1093 : {
1094 : /* separate entries with a newline */
1095 514 : if (clientdetail.len != 0)
1096 206 : appendStringInfoChar(&clientdetail, '\n');
1097 514 : appendStringInfo(&clientdetail, _("%s depends on %s"),
1098 : objDesc, otherDesc);
1099 514 : numReportedClient++;
1100 : }
1101 : else
1102 0 : numNotReportedClient++;
1103 : /* separate entries with a newline */
1104 514 : if (logdetail.len != 0)
1105 206 : appendStringInfoChar(&logdetail, '\n');
1106 514 : appendStringInfo(&logdetail, _("%s depends on %s"),
1107 : objDesc, otherDesc);
1108 514 : pfree(otherDesc);
1109 : }
1110 : else
1111 0 : numNotReportedClient++;
1112 514 : ok = false;
1113 : }
1114 : else
1115 : {
1116 8264 : if (numReportedClient < MAX_REPORTED_DEPS)
1117 : {
1118 : /* separate entries with a newline */
1119 6426 : if (clientdetail.len != 0)
1120 4978 : appendStringInfoChar(&clientdetail, '\n');
1121 6426 : appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122 : objDesc);
1123 6426 : numReportedClient++;
1124 : }
1125 : else
1126 1838 : numNotReportedClient++;
1127 : /* separate entries with a newline */
1128 8264 : if (logdetail.len != 0)
1129 6816 : appendStringInfoChar(&logdetail, '\n');
1130 8264 : appendStringInfo(&logdetail, _("drop cascades to %s"),
1131 : objDesc);
1132 : }
1133 :
1134 166872 : pfree(objDesc);
1135 : }
1136 :
1137 31418 : if (numNotReportedClient > 0)
1138 20 : appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139 : "(see server log for list)",
1140 : "\nand %d other objects "
1141 : "(see server log for list)",
1142 : numNotReportedClient),
1143 : numNotReportedClient);
1144 :
1145 31418 : if (!ok)
1146 : {
1147 308 : if (origObject)
1148 302 : ereport(ERROR,
1149 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150 : errmsg("cannot drop %s because other objects depend on it",
1151 : getObjectDescription(origObject, false)),
1152 : errdetail_internal("%s", clientdetail.data),
1153 : errdetail_log("%s", logdetail.data),
1154 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155 : else
1156 6 : ereport(ERROR,
1157 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158 : errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 : errdetail_internal("%s", clientdetail.data),
1160 : errdetail_log("%s", logdetail.data),
1161 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1162 : }
1163 31110 : else if (numReportedClient > 1)
1164 : {
1165 682 : ereport(msglevel,
1166 : (errmsg_plural("drop cascades to %d other object",
1167 : "drop cascades to %d other objects",
1168 : numReportedClient + numNotReportedClient,
1169 : numReportedClient + numNotReportedClient),
1170 : errdetail_internal("%s", clientdetail.data),
1171 : errdetail_log("%s", logdetail.data)));
1172 : }
1173 30428 : else if (numReportedClient == 1)
1174 : {
1175 : /* we just use the single item as-is */
1176 766 : ereport(msglevel,
1177 : (errmsg_internal("%s", clientdetail.data)));
1178 : }
1179 :
1180 31110 : pfree(clientdetail.data);
1181 31110 : pfree(logdetail.data);
1182 : }
1183 :
1184 : /*
1185 : * Drop an object by OID. Works for most catalogs, if no special processing
1186 : * is needed.
1187 : */
1188 : static void
1189 3292 : DropObjectById(const ObjectAddress *object)
1190 : {
1191 : int cacheId;
1192 : Relation rel;
1193 : HeapTuple tup;
1194 :
1195 3292 : cacheId = get_object_catcache_oid(object->classId);
1196 :
1197 3292 : rel = table_open(object->classId, RowExclusiveLock);
1198 :
1199 : /*
1200 : * Use the system cache for the oid column, if one exists.
1201 : */
1202 3292 : if (cacheId >= 0)
1203 : {
1204 1778 : tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1205 1778 : if (!HeapTupleIsValid(tup))
1206 0 : elog(ERROR, "cache lookup failed for %s %u",
1207 : get_object_class_descr(object->classId), object->objectId);
1208 :
1209 1778 : CatalogTupleDelete(rel, &tup->t_self);
1210 :
1211 1778 : ReleaseSysCache(tup);
1212 : }
1213 : else
1214 : {
1215 : ScanKeyData skey[1];
1216 : SysScanDesc scan;
1217 :
1218 1514 : ScanKeyInit(&skey[0],
1219 1514 : get_object_attnum_oid(object->classId),
1220 : BTEqualStrategyNumber, F_OIDEQ,
1221 1514 : ObjectIdGetDatum(object->objectId));
1222 :
1223 1514 : scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1224 : NULL, 1, skey);
1225 :
1226 : /* we expect exactly one match */
1227 1514 : tup = systable_getnext(scan);
1228 1514 : if (!HeapTupleIsValid(tup))
1229 0 : elog(ERROR, "could not find tuple for %s %u",
1230 : get_object_class_descr(object->classId), object->objectId);
1231 :
1232 1514 : CatalogTupleDelete(rel, &tup->t_self);
1233 :
1234 1514 : systable_endscan(scan);
1235 : }
1236 :
1237 3292 : table_close(rel, RowExclusiveLock);
1238 3292 : }
1239 :
1240 : /*
1241 : * deleteOneObject: delete a single object for performDeletion.
1242 : *
1243 : * *depRel is the already-open pg_depend relation.
1244 : */
1245 : static void
1246 211256 : deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1247 : {
1248 : ScanKeyData key[3];
1249 : int nkeys;
1250 : SysScanDesc scan;
1251 : HeapTuple tup;
1252 :
1253 : /* DROP hook of the objects being removed */
1254 211256 : InvokeObjectDropHookArg(object->classId, object->objectId,
1255 : object->objectSubId, flags);
1256 :
1257 : /*
1258 : * Close depRel if we are doing a drop concurrently. The object deletion
1259 : * subroutine will commit the current transaction, so we can't keep the
1260 : * relation open across doDeletion().
1261 : */
1262 211256 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1263 106 : table_close(*depRel, RowExclusiveLock);
1264 :
1265 : /*
1266 : * Delete the object itself, in an object-type-dependent way.
1267 : *
1268 : * We used to do this after removing the outgoing dependency links, but it
1269 : * seems just as reasonable to do it beforehand. In the concurrent case
1270 : * we *must* do it in this order, because we can't make any transactional
1271 : * updates before calling doDeletion() --- they'd get committed right
1272 : * away, which is not cool if the deletion then fails.
1273 : */
1274 211256 : doDeletion(object, flags);
1275 :
1276 : /*
1277 : * Reopen depRel if we closed it above
1278 : */
1279 211246 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1280 106 : *depRel = table_open(DependRelationId, RowExclusiveLock);
1281 :
1282 : /*
1283 : * Now remove any pg_depend records that link from this object to others.
1284 : * (Any records linking to this object should be gone already.)
1285 : *
1286 : * When dropping a whole object (subId = 0), remove all pg_depend records
1287 : * for its sub-objects too.
1288 : */
1289 211246 : ScanKeyInit(&key[0],
1290 : Anum_pg_depend_classid,
1291 : BTEqualStrategyNumber, F_OIDEQ,
1292 211246 : ObjectIdGetDatum(object->classId));
1293 211246 : ScanKeyInit(&key[1],
1294 : Anum_pg_depend_objid,
1295 : BTEqualStrategyNumber, F_OIDEQ,
1296 211246 : ObjectIdGetDatum(object->objectId));
1297 211246 : if (object->objectSubId != 0)
1298 : {
1299 2074 : ScanKeyInit(&key[2],
1300 : Anum_pg_depend_objsubid,
1301 : BTEqualStrategyNumber, F_INT4EQ,
1302 2074 : Int32GetDatum(object->objectSubId));
1303 2074 : nkeys = 3;
1304 : }
1305 : else
1306 209172 : nkeys = 2;
1307 :
1308 211246 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309 : NULL, nkeys, key);
1310 :
1311 499466 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
1312 : {
1313 288220 : CatalogTupleDelete(*depRel, &tup->t_self);
1314 : }
1315 :
1316 211246 : systable_endscan(scan);
1317 :
1318 : /*
1319 : * Delete shared dependency references related to this object. Again, if
1320 : * subId = 0, remove records for sub-objects too.
1321 : */
1322 211246 : deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1323 211246 : object->objectSubId);
1324 :
1325 :
1326 : /*
1327 : * Delete any comments, security labels, or initial privileges associated
1328 : * with this object. (This is a convenient place to do these things,
1329 : * rather than having every object type know to do it.) As above, all
1330 : * these functions must remove records for sub-objects too if the subid is
1331 : * zero.
1332 : */
1333 211246 : DeleteComments(object->objectId, object->classId, object->objectSubId);
1334 211246 : DeleteSecurityLabel(object);
1335 211246 : DeleteInitPrivs(object);
1336 :
1337 : /*
1338 : * CommandCounterIncrement here to ensure that preceding changes are all
1339 : * visible to the next deletion step.
1340 : */
1341 211246 : CommandCounterIncrement();
1342 :
1343 : /*
1344 : * And we're done!
1345 : */
1346 211246 : }
1347 :
1348 : /*
1349 : * doDeletion: actually delete a single object
1350 : */
1351 : static void
1352 211256 : doDeletion(const ObjectAddress *object, int flags)
1353 : {
1354 211256 : switch (object->classId)
1355 : {
1356 73644 : case RelationRelationId:
1357 : {
1358 73644 : char relKind = get_rel_relkind(object->objectId);
1359 :
1360 73644 : if (relKind == RELKIND_INDEX ||
1361 : relKind == RELKIND_PARTITIONED_INDEX)
1362 23684 : {
1363 23684 : bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364 23684 : bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1365 :
1366 : Assert(object->objectSubId == 0);
1367 23684 : index_drop(object->objectId, concurrent, concurrent_lock_mode);
1368 : }
1369 : else
1370 : {
1371 49960 : if (object->objectSubId != 0)
1372 2074 : RemoveAttributeById(object->objectId,
1373 2074 : object->objectSubId);
1374 : else
1375 47886 : heap_drop_with_catalog(object->objectId);
1376 : }
1377 :
1378 : /*
1379 : * for a sequence, in addition to dropping the heap, also
1380 : * delete pg_sequence tuple
1381 : */
1382 73638 : if (relKind == RELKIND_SEQUENCE)
1383 940 : DeleteSequenceTuple(object->objectId);
1384 73638 : break;
1385 : }
1386 :
1387 7052 : case ProcedureRelationId:
1388 7052 : RemoveFunctionById(object->objectId);
1389 7052 : break;
1390 :
1391 76066 : case TypeRelationId:
1392 76066 : RemoveTypeById(object->objectId);
1393 76066 : break;
1394 :
1395 27160 : case ConstraintRelationId:
1396 27160 : RemoveConstraintById(object->objectId);
1397 27158 : break;
1398 :
1399 3310 : case AttrDefaultRelationId:
1400 3310 : RemoveAttrDefaultById(object->objectId);
1401 3310 : break;
1402 :
1403 94 : case LargeObjectRelationId:
1404 94 : LargeObjectDrop(object->objectId);
1405 94 : break;
1406 :
1407 734 : case OperatorRelationId:
1408 734 : RemoveOperatorById(object->objectId);
1409 734 : break;
1410 :
1411 2892 : case RewriteRelationId:
1412 2892 : RemoveRewriteRuleById(object->objectId);
1413 2890 : break;
1414 :
1415 14194 : case TriggerRelationId:
1416 14194 : RemoveTriggerById(object->objectId);
1417 14194 : break;
1418 :
1419 544 : case StatisticExtRelationId:
1420 544 : RemoveStatisticsById(object->objectId);
1421 544 : break;
1422 :
1423 48 : case TSConfigRelationId:
1424 48 : RemoveTSConfigurationById(object->objectId);
1425 48 : break;
1426 :
1427 148 : case ExtensionRelationId:
1428 148 : RemoveExtensionById(object->objectId);
1429 148 : break;
1430 :
1431 568 : case PolicyRelationId:
1432 568 : RemovePolicyById(object->objectId);
1433 568 : break;
1434 :
1435 192 : case PublicationNamespaceRelationId:
1436 192 : RemovePublicationSchemaById(object->objectId);
1437 192 : break;
1438 :
1439 844 : case PublicationRelRelationId:
1440 844 : RemovePublicationRelById(object->objectId);
1441 844 : break;
1442 :
1443 474 : case PublicationRelationId:
1444 474 : RemovePublicationById(object->objectId);
1445 474 : break;
1446 :
1447 3292 : case CastRelationId:
1448 : case CollationRelationId:
1449 : case ConversionRelationId:
1450 : case LanguageRelationId:
1451 : case OperatorClassRelationId:
1452 : case OperatorFamilyRelationId:
1453 : case AccessMethodRelationId:
1454 : case AccessMethodOperatorRelationId:
1455 : case AccessMethodProcedureRelationId:
1456 : case NamespaceRelationId:
1457 : case TSParserRelationId:
1458 : case TSDictionaryRelationId:
1459 : case TSTemplateRelationId:
1460 : case ForeignDataWrapperRelationId:
1461 : case ForeignServerRelationId:
1462 : case UserMappingRelationId:
1463 : case DefaultAclRelationId:
1464 : case EventTriggerRelationId:
1465 : case TransformRelationId:
1466 : case AuthMemRelationId:
1467 3292 : DropObjectById(object);
1468 3292 : break;
1469 :
1470 : /*
1471 : * These global object types are not supported here.
1472 : */
1473 0 : case AuthIdRelationId:
1474 : case DatabaseRelationId:
1475 : case TableSpaceRelationId:
1476 : case SubscriptionRelationId:
1477 : case ParameterAclRelationId:
1478 0 : elog(ERROR, "global objects cannot be deleted by doDeletion");
1479 : break;
1480 :
1481 0 : default:
1482 0 : elog(ERROR, "unsupported object class: %u", object->classId);
1483 : }
1484 211246 : }
1485 :
1486 : /*
1487 : * AcquireDeletionLock - acquire a suitable lock for deleting an object
1488 : *
1489 : * Accepts the same flags as performDeletion (though currently only
1490 : * PERFORM_DELETION_CONCURRENTLY does anything).
1491 : *
1492 : * We use LockRelation for relations, and otherwise LockSharedObject or
1493 : * LockDatabaseObject as appropriate for the object type.
1494 : */
1495 : void
1496 263270 : AcquireDeletionLock(const ObjectAddress *object, int flags)
1497 : {
1498 263270 : if (object->classId == RelationRelationId)
1499 : {
1500 : /*
1501 : * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 : * the index for the moment. index_drop() will promote the lock once
1503 : * it's safe to do so. In all other cases we need full exclusive
1504 : * lock.
1505 : */
1506 92690 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1507 106 : LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1508 : else
1509 92584 : LockRelationOid(object->objectId, AccessExclusiveLock);
1510 : }
1511 170580 : else if (object->classId == AuthMemRelationId)
1512 84 : LockSharedObject(object->classId, object->objectId, 0,
1513 : AccessExclusiveLock);
1514 : else
1515 : {
1516 : /* assume we should lock the whole object not a sub-object */
1517 170496 : LockDatabaseObject(object->classId, object->objectId, 0,
1518 : AccessExclusiveLock);
1519 : }
1520 263270 : }
1521 :
1522 : /*
1523 : * ReleaseDeletionLock - release an object deletion lock
1524 : *
1525 : * Companion to AcquireDeletionLock.
1526 : */
1527 : void
1528 1684 : ReleaseDeletionLock(const ObjectAddress *object)
1529 : {
1530 1684 : if (object->classId == RelationRelationId)
1531 56 : UnlockRelationOid(object->objectId, AccessExclusiveLock);
1532 : else
1533 : /* assume we should lock the whole object not a sub-object */
1534 1628 : UnlockDatabaseObject(object->classId, object->objectId, 0,
1535 : AccessExclusiveLock);
1536 1684 : }
1537 :
1538 : /*
1539 : * recordDependencyOnExpr - find expression dependencies
1540 : *
1541 : * This is used to find the dependencies of rules, constraint expressions,
1542 : * etc.
1543 : *
1544 : * Given an expression or query in node-tree form, find all the objects
1545 : * it refers to (tables, columns, operators, functions, etc). Record
1546 : * a dependency of the specified type from the given depender object
1547 : * to each object mentioned in the expression.
1548 : *
1549 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 : * It can be NIL if no such variables are expected.
1551 : */
1552 : void
1553 30604 : recordDependencyOnExpr(const ObjectAddress *depender,
1554 : Node *expr, List *rtable,
1555 : DependencyType behavior)
1556 : {
1557 : find_expr_references_context context;
1558 :
1559 30604 : context.addrs = new_object_addresses();
1560 :
1561 : /* Set up interpretation for Vars at varlevelsup = 0 */
1562 30604 : context.rtables = list_make1(rtable);
1563 :
1564 : /* Scan the expression tree for referenceable objects */
1565 30604 : find_expr_references_walker(expr, &context);
1566 :
1567 : /* Remove any duplicates */
1568 30598 : eliminate_duplicate_dependencies(context.addrs);
1569 :
1570 : /* And record 'em */
1571 30598 : recordMultipleDependencies(depender,
1572 30598 : context.addrs->refs, context.addrs->numrefs,
1573 : behavior);
1574 :
1575 30598 : free_object_addresses(context.addrs);
1576 30598 : }
1577 :
1578 : /*
1579 : * recordDependencyOnSingleRelExpr - find expression dependencies
1580 : *
1581 : * As above, but only one relation is expected to be referenced (with
1582 : * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1583 : * range table. An additional frammish is that dependencies on that
1584 : * relation's component columns will be marked with 'self_behavior',
1585 : * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1586 : * is true, those dependencies are reversed so that the columns are made
1587 : * to depend on the table not vice versa.
1588 : *
1589 : * NOTE: the caller should ensure that a whole-table dependency on the
1590 : * specified relation is created separately, if one is needed. In particular,
1591 : * a whole-row Var "relation.*" will not cause this routine to emit any
1592 : * dependency item. This is appropriate behavior for subexpressions of an
1593 : * ordinary query, so other cases need to cope as necessary.
1594 : */
1595 : void
1596 10764 : recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1597 : Node *expr, Oid relId,
1598 : DependencyType behavior,
1599 : DependencyType self_behavior,
1600 : bool reverse_self)
1601 : {
1602 : find_expr_references_context context;
1603 10764 : RangeTblEntry rte = {0};
1604 :
1605 10764 : context.addrs = new_object_addresses();
1606 :
1607 : /* We gin up a rather bogus rangetable list to handle Vars */
1608 10764 : rte.type = T_RangeTblEntry;
1609 10764 : rte.rtekind = RTE_RELATION;
1610 10764 : rte.relid = relId;
1611 10764 : rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1612 10764 : rte.rellockmode = AccessShareLock;
1613 :
1614 10764 : context.rtables = list_make1(list_make1(&rte));
1615 :
1616 : /* Scan the expression tree for referenceable objects */
1617 10764 : find_expr_references_walker(expr, &context);
1618 :
1619 : /* Remove any duplicates */
1620 10752 : eliminate_duplicate_dependencies(context.addrs);
1621 :
1622 : /* Separate self-dependencies if necessary */
1623 10752 : if ((behavior != self_behavior || reverse_self) &&
1624 1880 : context.addrs->numrefs > 0)
1625 : {
1626 : ObjectAddresses *self_addrs;
1627 : ObjectAddress *outobj;
1628 : int oldref,
1629 : outrefs;
1630 :
1631 1874 : self_addrs = new_object_addresses();
1632 :
1633 1874 : outobj = context.addrs->refs;
1634 1874 : outrefs = 0;
1635 7748 : for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1636 : {
1637 5874 : ObjectAddress *thisobj = context.addrs->refs + oldref;
1638 :
1639 5874 : if (thisobj->classId == RelationRelationId &&
1640 2392 : thisobj->objectId == relId)
1641 : {
1642 : /* Move this ref into self_addrs */
1643 2320 : add_exact_object_address(thisobj, self_addrs);
1644 : }
1645 : else
1646 : {
1647 : /* Keep it in context.addrs */
1648 3554 : *outobj = *thisobj;
1649 3554 : outobj++;
1650 3554 : outrefs++;
1651 : }
1652 : }
1653 1874 : context.addrs->numrefs = outrefs;
1654 :
1655 : /* Record the self-dependencies with the appropriate direction */
1656 1874 : if (!reverse_self)
1657 1650 : recordMultipleDependencies(depender,
1658 1650 : self_addrs->refs, self_addrs->numrefs,
1659 : self_behavior);
1660 : else
1661 : {
1662 : /* Can't use recordMultipleDependencies, so do it the hard way */
1663 : int selfref;
1664 :
1665 540 : for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1666 : {
1667 316 : ObjectAddress *thisobj = self_addrs->refs + selfref;
1668 :
1669 316 : recordDependencyOn(thisobj, depender, self_behavior);
1670 : }
1671 : }
1672 :
1673 1874 : free_object_addresses(self_addrs);
1674 : }
1675 :
1676 : /* Record the external dependencies */
1677 10752 : recordMultipleDependencies(depender,
1678 10752 : context.addrs->refs, context.addrs->numrefs,
1679 : behavior);
1680 :
1681 10752 : free_object_addresses(context.addrs);
1682 10752 : }
1683 :
1684 : /*
1685 : * Recursively search an expression tree for object references.
1686 : *
1687 : * Note: in many cases we do not need to create dependencies on the datatypes
1688 : * involved in an expression, because we'll have an indirect dependency via
1689 : * some other object. For instance Var nodes depend on a column which depends
1690 : * on the datatype, and OpExpr nodes depend on the operator which depends on
1691 : * the datatype. However we do need a type dependency if there is no such
1692 : * indirect dependency, as for example in Const and CoerceToDomain nodes.
1693 : *
1694 : * Similarly, we don't need to create dependencies on collations except where
1695 : * the collation is being freshly introduced to the expression.
1696 : */
1697 : static bool
1698 2064664 : find_expr_references_walker(Node *node,
1699 : find_expr_references_context *context)
1700 : {
1701 2064664 : if (node == NULL)
1702 710896 : return false;
1703 1353768 : if (IsA(node, Var))
1704 : {
1705 332568 : Var *var = (Var *) node;
1706 : List *rtable;
1707 : RangeTblEntry *rte;
1708 :
1709 : /* Find matching rtable entry, or complain if not found */
1710 332568 : if (var->varlevelsup >= list_length(context->rtables))
1711 0 : elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1712 332568 : rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1713 332568 : if (var->varno <= 0 || var->varno > list_length(rtable))
1714 0 : elog(ERROR, "invalid varno %d", var->varno);
1715 332568 : rte = rt_fetch(var->varno, rtable);
1716 :
1717 : /*
1718 : * A whole-row Var references no specific columns, so adds no new
1719 : * dependency. (We assume that there is a whole-table dependency
1720 : * arising from each underlying rangetable entry. While we could
1721 : * record such a dependency when finding a whole-row Var that
1722 : * references a relation directly, it's quite unclear how to extend
1723 : * that to whole-row Vars for JOINs, so it seems better to leave the
1724 : * responsibility with the range table. Note that this poses some
1725 : * risks for identifying dependencies of stand-alone expressions:
1726 : * whole-table references may need to be created separately.)
1727 : */
1728 332568 : if (var->varattno == InvalidAttrNumber)
1729 5716 : return false;
1730 326852 : if (rte->rtekind == RTE_RELATION)
1731 : {
1732 : /* If it's a plain relation, reference this column */
1733 236734 : add_object_address(RelationRelationId, rte->relid, var->varattno,
1734 : context->addrs);
1735 : }
1736 90118 : else if (rte->rtekind == RTE_FUNCTION)
1737 : {
1738 : /* Might need to add a dependency on a composite type's column */
1739 : /* (done out of line, because it's a bit bulky) */
1740 45850 : process_function_rte_ref(rte, var->varattno, context);
1741 : }
1742 :
1743 : /*
1744 : * Vars referencing other RTE types require no additional work. In
1745 : * particular, a join alias Var can be ignored, because it must
1746 : * reference a merged USING column. The relevant join input columns
1747 : * will also be referenced in the join qual, and any type coercion
1748 : * functions involved in the alias expression will be dealt with when
1749 : * we scan the RTE itself.
1750 : */
1751 326852 : return false;
1752 : }
1753 1021200 : else if (IsA(node, Const))
1754 : {
1755 167352 : Const *con = (Const *) node;
1756 : Oid objoid;
1757 :
1758 : /* A constant must depend on the constant's datatype */
1759 167352 : add_object_address(TypeRelationId, con->consttype, 0,
1760 : context->addrs);
1761 :
1762 : /*
1763 : * We must also depend on the constant's collation: it could be
1764 : * different from the datatype's, if a CollateExpr was const-folded to
1765 : * a simple constant. However we can save work in the most common
1766 : * case where the collation is "default", since we know that's pinned.
1767 : */
1768 167352 : if (OidIsValid(con->constcollid) &&
1769 64992 : con->constcollid != DEFAULT_COLLATION_OID)
1770 16080 : add_object_address(CollationRelationId, con->constcollid, 0,
1771 : context->addrs);
1772 :
1773 : /*
1774 : * If it's a regclass or similar literal referring to an existing
1775 : * object, add a reference to that object. (Currently, only the
1776 : * regclass and regconfig cases have any likely use, but we may as
1777 : * well handle all the OID-alias datatypes consistently.)
1778 : */
1779 167352 : if (!con->constisnull)
1780 : {
1781 141846 : switch (con->consttype)
1782 : {
1783 0 : case REGPROCOID:
1784 : case REGPROCEDUREOID:
1785 0 : objoid = DatumGetObjectId(con->constvalue);
1786 0 : if (SearchSysCacheExists1(PROCOID,
1787 : ObjectIdGetDatum(objoid)))
1788 0 : add_object_address(ProcedureRelationId, objoid, 0,
1789 : context->addrs);
1790 0 : break;
1791 0 : case REGOPEROID:
1792 : case REGOPERATOROID:
1793 0 : objoid = DatumGetObjectId(con->constvalue);
1794 0 : if (SearchSysCacheExists1(OPEROID,
1795 : ObjectIdGetDatum(objoid)))
1796 0 : add_object_address(OperatorRelationId, objoid, 0,
1797 : context->addrs);
1798 0 : break;
1799 4522 : case REGCLASSOID:
1800 4522 : objoid = DatumGetObjectId(con->constvalue);
1801 4522 : if (SearchSysCacheExists1(RELOID,
1802 : ObjectIdGetDatum(objoid)))
1803 4522 : add_object_address(RelationRelationId, objoid, 0,
1804 : context->addrs);
1805 4522 : break;
1806 0 : case REGTYPEOID:
1807 0 : objoid = DatumGetObjectId(con->constvalue);
1808 0 : if (SearchSysCacheExists1(TYPEOID,
1809 : ObjectIdGetDatum(objoid)))
1810 0 : add_object_address(TypeRelationId, objoid, 0,
1811 : context->addrs);
1812 0 : break;
1813 0 : case REGCOLLATIONOID:
1814 0 : objoid = DatumGetObjectId(con->constvalue);
1815 0 : if (SearchSysCacheExists1(COLLOID,
1816 : ObjectIdGetDatum(objoid)))
1817 0 : add_object_address(CollationRelationId, objoid, 0,
1818 : context->addrs);
1819 0 : break;
1820 0 : case REGCONFIGOID:
1821 0 : objoid = DatumGetObjectId(con->constvalue);
1822 0 : if (SearchSysCacheExists1(TSCONFIGOID,
1823 : ObjectIdGetDatum(objoid)))
1824 0 : add_object_address(TSConfigRelationId, objoid, 0,
1825 : context->addrs);
1826 0 : break;
1827 0 : case REGDICTIONARYOID:
1828 0 : objoid = DatumGetObjectId(con->constvalue);
1829 0 : if (SearchSysCacheExists1(TSDICTOID,
1830 : ObjectIdGetDatum(objoid)))
1831 0 : add_object_address(TSDictionaryRelationId, objoid, 0,
1832 : context->addrs);
1833 0 : break;
1834 :
1835 196 : case REGNAMESPACEOID:
1836 196 : objoid = DatumGetObjectId(con->constvalue);
1837 196 : if (SearchSysCacheExists1(NAMESPACEOID,
1838 : ObjectIdGetDatum(objoid)))
1839 196 : add_object_address(NamespaceRelationId, objoid, 0,
1840 : context->addrs);
1841 196 : break;
1842 :
1843 : /*
1844 : * Dependencies for regrole should be shared among all
1845 : * databases, so explicitly inhibit to have dependencies.
1846 : */
1847 6 : case REGROLEOID:
1848 6 : ereport(ERROR,
1849 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1850 : errmsg("constant of the type %s cannot be used here",
1851 : "regrole")));
1852 : break;
1853 :
1854 : /*
1855 : * Dependencies for regdatabase should be shared among all
1856 : * databases, so explicitly inhibit to have dependencies.
1857 : */
1858 6 : case REGDATABASEOID:
1859 6 : ereport(ERROR,
1860 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1861 : errmsg("constant of the type %s cannot be used here",
1862 : "regdatabase")));
1863 : break;
1864 : }
1865 : }
1866 167340 : return false;
1867 : }
1868 853848 : else if (IsA(node, Param))
1869 : {
1870 16508 : Param *param = (Param *) node;
1871 :
1872 : /* A parameter must depend on the parameter's datatype */
1873 16508 : add_object_address(TypeRelationId, param->paramtype, 0,
1874 : context->addrs);
1875 : /* and its collation, just as for Consts */
1876 16508 : if (OidIsValid(param->paramcollid) &&
1877 2908 : param->paramcollid != DEFAULT_COLLATION_OID)
1878 1568 : add_object_address(CollationRelationId, param->paramcollid, 0,
1879 : context->addrs);
1880 : }
1881 837340 : else if (IsA(node, FuncExpr))
1882 : {
1883 82764 : FuncExpr *funcexpr = (FuncExpr *) node;
1884 :
1885 82764 : add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1886 : context->addrs);
1887 : /* fall through to examine arguments */
1888 : }
1889 754576 : else if (IsA(node, OpExpr))
1890 : {
1891 94898 : OpExpr *opexpr = (OpExpr *) node;
1892 :
1893 94898 : add_object_address(OperatorRelationId, opexpr->opno, 0,
1894 : context->addrs);
1895 : /* fall through to examine arguments */
1896 : }
1897 659678 : else if (IsA(node, DistinctExpr))
1898 : {
1899 12 : DistinctExpr *distinctexpr = (DistinctExpr *) node;
1900 :
1901 12 : add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1902 : context->addrs);
1903 : /* fall through to examine arguments */
1904 : }
1905 659666 : else if (IsA(node, NullIfExpr))
1906 : {
1907 396 : NullIfExpr *nullifexpr = (NullIfExpr *) node;
1908 :
1909 396 : add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1910 : context->addrs);
1911 : /* fall through to examine arguments */
1912 : }
1913 659270 : else if (IsA(node, ScalarArrayOpExpr))
1914 : {
1915 6848 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1916 :
1917 6848 : add_object_address(OperatorRelationId, opexpr->opno, 0,
1918 : context->addrs);
1919 : /* fall through to examine arguments */
1920 : }
1921 652422 : else if (IsA(node, Aggref))
1922 : {
1923 1856 : Aggref *aggref = (Aggref *) node;
1924 :
1925 1856 : add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1926 : context->addrs);
1927 : /* fall through to examine arguments */
1928 : }
1929 650566 : else if (IsA(node, WindowFunc))
1930 : {
1931 158 : WindowFunc *wfunc = (WindowFunc *) node;
1932 :
1933 158 : add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1934 : context->addrs);
1935 : /* fall through to examine arguments */
1936 : }
1937 650408 : else if (IsA(node, SubscriptingRef))
1938 : {
1939 2700 : SubscriptingRef *sbsref = (SubscriptingRef *) node;
1940 :
1941 : /*
1942 : * The refexpr should provide adequate dependency on refcontainertype,
1943 : * and that type in turn depends on refelemtype. However, a custom
1944 : * subscripting handler might set refrestype to something different
1945 : * from either of those, in which case we'd better record it.
1946 : */
1947 2700 : if (sbsref->refrestype != sbsref->refcontainertype &&
1948 2574 : sbsref->refrestype != sbsref->refelemtype)
1949 0 : add_object_address(TypeRelationId, sbsref->refrestype, 0,
1950 : context->addrs);
1951 : /* fall through to examine arguments */
1952 : }
1953 647708 : else if (IsA(node, SubPlan))
1954 : {
1955 : /* Extra work needed here if we ever need this case */
1956 0 : elog(ERROR, "already-planned subqueries not supported");
1957 : }
1958 647708 : else if (IsA(node, FieldSelect))
1959 : {
1960 14234 : FieldSelect *fselect = (FieldSelect *) node;
1961 14234 : Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1962 14234 : Oid reltype = get_typ_typrelid(argtype);
1963 :
1964 : /*
1965 : * We need a dependency on the specific column named in FieldSelect,
1966 : * assuming we can identify the pg_class OID for it. (Probably we
1967 : * always can at the moment, but in future it might be possible for
1968 : * argtype to be RECORDOID.) If we can make a column dependency then
1969 : * we shouldn't need a dependency on the column's type; but if we
1970 : * can't, make a dependency on the type, as it might not appear
1971 : * anywhere else in the expression.
1972 : */
1973 14234 : if (OidIsValid(reltype))
1974 8024 : add_object_address(RelationRelationId, reltype, fselect->fieldnum,
1975 : context->addrs);
1976 : else
1977 6210 : add_object_address(TypeRelationId, fselect->resulttype, 0,
1978 : context->addrs);
1979 : /* the collation might not be referenced anywhere else, either */
1980 14234 : if (OidIsValid(fselect->resultcollid) &&
1981 1742 : fselect->resultcollid != DEFAULT_COLLATION_OID)
1982 0 : add_object_address(CollationRelationId, fselect->resultcollid, 0,
1983 : context->addrs);
1984 : }
1985 633474 : else if (IsA(node, FieldStore))
1986 : {
1987 96 : FieldStore *fstore = (FieldStore *) node;
1988 96 : Oid reltype = get_typ_typrelid(fstore->resulttype);
1989 :
1990 : /* similar considerations to FieldSelect, but multiple column(s) */
1991 96 : if (OidIsValid(reltype))
1992 : {
1993 : ListCell *l;
1994 :
1995 192 : foreach(l, fstore->fieldnums)
1996 96 : add_object_address(RelationRelationId, reltype, lfirst_int(l),
1997 : context->addrs);
1998 : }
1999 : else
2000 0 : add_object_address(TypeRelationId, fstore->resulttype, 0,
2001 : context->addrs);
2002 : }
2003 633378 : else if (IsA(node, RelabelType))
2004 : {
2005 14366 : RelabelType *relab = (RelabelType *) node;
2006 :
2007 : /* since there is no function dependency, need to depend on type */
2008 14366 : add_object_address(TypeRelationId, relab->resulttype, 0,
2009 : context->addrs);
2010 : /* the collation might not be referenced anywhere else, either */
2011 14366 : if (OidIsValid(relab->resultcollid) &&
2012 3282 : relab->resultcollid != DEFAULT_COLLATION_OID)
2013 2842 : add_object_address(CollationRelationId, relab->resultcollid, 0,
2014 : context->addrs);
2015 : }
2016 619012 : else if (IsA(node, CoerceViaIO))
2017 : {
2018 2282 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2019 :
2020 : /* since there is no exposed function, need to depend on type */
2021 2282 : add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2022 : context->addrs);
2023 : /* the collation might not be referenced anywhere else, either */
2024 2282 : if (OidIsValid(iocoerce->resultcollid) &&
2025 1830 : iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2026 686 : add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2027 : context->addrs);
2028 : }
2029 616730 : else if (IsA(node, ArrayCoerceExpr))
2030 : {
2031 496 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2032 :
2033 : /* as above, depend on type */
2034 496 : add_object_address(TypeRelationId, acoerce->resulttype, 0,
2035 : context->addrs);
2036 : /* the collation might not be referenced anywhere else, either */
2037 496 : if (OidIsValid(acoerce->resultcollid) &&
2038 202 : acoerce->resultcollid != DEFAULT_COLLATION_OID)
2039 98 : add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2040 : context->addrs);
2041 : /* fall through to examine arguments */
2042 : }
2043 616234 : else if (IsA(node, ConvertRowtypeExpr))
2044 : {
2045 0 : ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2046 :
2047 : /* since there is no function dependency, need to depend on type */
2048 0 : add_object_address(TypeRelationId, cvt->resulttype, 0,
2049 : context->addrs);
2050 : }
2051 616234 : else if (IsA(node, CollateExpr))
2052 : {
2053 90 : CollateExpr *coll = (CollateExpr *) node;
2054 :
2055 90 : add_object_address(CollationRelationId, coll->collOid, 0,
2056 : context->addrs);
2057 : }
2058 616144 : else if (IsA(node, RowExpr))
2059 : {
2060 60 : RowExpr *rowexpr = (RowExpr *) node;
2061 :
2062 60 : add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2063 : context->addrs);
2064 : }
2065 616084 : else if (IsA(node, RowCompareExpr))
2066 : {
2067 18 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2068 : ListCell *l;
2069 :
2070 54 : foreach(l, rcexpr->opnos)
2071 : {
2072 36 : add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2073 : context->addrs);
2074 : }
2075 54 : foreach(l, rcexpr->opfamilies)
2076 : {
2077 36 : add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2078 : context->addrs);
2079 : }
2080 : /* fall through to examine arguments */
2081 : }
2082 616066 : else if (IsA(node, CoerceToDomain))
2083 : {
2084 61992 : CoerceToDomain *cd = (CoerceToDomain *) node;
2085 :
2086 61992 : add_object_address(TypeRelationId, cd->resulttype, 0,
2087 : context->addrs);
2088 : }
2089 554074 : else if (IsA(node, NextValueExpr))
2090 : {
2091 0 : NextValueExpr *nve = (NextValueExpr *) node;
2092 :
2093 0 : add_object_address(RelationRelationId, nve->seqid, 0,
2094 : context->addrs);
2095 : }
2096 554074 : else if (IsA(node, OnConflictExpr))
2097 : {
2098 18 : OnConflictExpr *onconflict = (OnConflictExpr *) node;
2099 :
2100 18 : if (OidIsValid(onconflict->constraint))
2101 0 : add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2102 : context->addrs);
2103 : /* fall through to examine arguments */
2104 : }
2105 554056 : else if (IsA(node, SortGroupClause))
2106 : {
2107 12672 : SortGroupClause *sgc = (SortGroupClause *) node;
2108 :
2109 12672 : add_object_address(OperatorRelationId, sgc->eqop, 0,
2110 : context->addrs);
2111 12672 : if (OidIsValid(sgc->sortop))
2112 12672 : add_object_address(OperatorRelationId, sgc->sortop, 0,
2113 : context->addrs);
2114 12672 : return false;
2115 : }
2116 541384 : else if (IsA(node, WindowClause))
2117 : {
2118 158 : WindowClause *wc = (WindowClause *) node;
2119 :
2120 158 : if (OidIsValid(wc->startInRangeFunc))
2121 6 : add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2122 : context->addrs);
2123 158 : if (OidIsValid(wc->endInRangeFunc))
2124 6 : add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2125 : context->addrs);
2126 158 : if (OidIsValid(wc->inRangeColl) &&
2127 0 : wc->inRangeColl != DEFAULT_COLLATION_OID)
2128 0 : add_object_address(CollationRelationId, wc->inRangeColl, 0,
2129 : context->addrs);
2130 : /* fall through to examine substructure */
2131 : }
2132 541226 : else if (IsA(node, CTECycleClause))
2133 : {
2134 12 : CTECycleClause *cc = (CTECycleClause *) node;
2135 :
2136 12 : if (OidIsValid(cc->cycle_mark_type))
2137 12 : add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2138 : context->addrs);
2139 12 : if (OidIsValid(cc->cycle_mark_collation))
2140 6 : add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2141 : context->addrs);
2142 12 : if (OidIsValid(cc->cycle_mark_neop))
2143 12 : add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2144 : context->addrs);
2145 : /* fall through to examine substructure */
2146 : }
2147 541214 : else if (IsA(node, Query))
2148 : {
2149 : /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2150 38246 : Query *query = (Query *) node;
2151 : ListCell *lc;
2152 : bool result;
2153 :
2154 : /*
2155 : * Add whole-relation refs for each plain relation mentioned in the
2156 : * subquery's rtable, and ensure we add refs for any type-coercion
2157 : * functions used in join alias lists.
2158 : *
2159 : * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2160 : * RTEs, subqueries, etc, so no need to do that here. But we must
2161 : * tell it not to visit join alias lists, or we'll add refs for join
2162 : * input columns whether or not they are actually used in our query.
2163 : *
2164 : * Note: we don't need to worry about collations mentioned in
2165 : * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2166 : * collations referenced in other parts of the Query. We do have to
2167 : * worry about collations mentioned in RTE_FUNCTION, but we take care
2168 : * of those when we recurse to the RangeTblFunction node(s).
2169 : */
2170 120432 : foreach(lc, query->rtable)
2171 : {
2172 82192 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2173 :
2174 82192 : switch (rte->rtekind)
2175 : {
2176 51532 : case RTE_RELATION:
2177 51532 : add_object_address(RelationRelationId, rte->relid, 0,
2178 : context->addrs);
2179 51532 : break;
2180 14850 : case RTE_JOIN:
2181 :
2182 : /*
2183 : * Examine joinaliasvars entries only for merged JOIN
2184 : * USING columns. Only those entries could contain
2185 : * type-coercion functions. Also, their join input
2186 : * columns must be referenced in the join quals, so this
2187 : * won't accidentally add refs to otherwise-unused join
2188 : * input columns. (We want to ref the type coercion
2189 : * functions even if the merged column isn't explicitly
2190 : * used anywhere, to protect possible expansion of the
2191 : * join RTE as a whole-row var, and because it seems like
2192 : * a bad idea to allow dropping a function that's present
2193 : * in our query tree, whether or not it could get called.)
2194 : */
2195 14850 : context->rtables = lcons(query->rtable, context->rtables);
2196 15058 : for (int i = 0; i < rte->joinmergedcols; i++)
2197 : {
2198 208 : Node *aliasvar = list_nth(rte->joinaliasvars, i);
2199 :
2200 208 : if (!IsA(aliasvar, Var))
2201 48 : find_expr_references_walker(aliasvar, context);
2202 : }
2203 14850 : context->rtables = list_delete_first(context->rtables);
2204 14850 : break;
2205 6 : case RTE_NAMEDTUPLESTORE:
2206 :
2207 : /*
2208 : * Cataloged objects cannot depend on tuplestores, because
2209 : * those have no cataloged representation. For now we can
2210 : * call the tuplestore a "transition table" because that's
2211 : * the only kind exposed to SQL, but someday we might have
2212 : * to work harder.
2213 : */
2214 6 : ereport(ERROR,
2215 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2216 : errmsg("transition table \"%s\" cannot be referenced in a persistent object",
2217 : rte->eref->aliasname)));
2218 : break;
2219 15804 : default:
2220 : /* Other RTE types can be ignored here */
2221 15804 : break;
2222 : }
2223 : }
2224 :
2225 : /*
2226 : * If the query is an INSERT or UPDATE, we should create a dependency
2227 : * on each target column, to prevent the specific target column from
2228 : * being dropped. Although we will visit the TargetEntry nodes again
2229 : * during query_tree_walker, we won't have enough context to do this
2230 : * conveniently, so do it here.
2231 : */
2232 38240 : if (query->commandType == CMD_INSERT ||
2233 37740 : query->commandType == CMD_UPDATE)
2234 : {
2235 : RangeTblEntry *rte;
2236 :
2237 1500 : if (query->resultRelation <= 0 ||
2238 750 : query->resultRelation > list_length(query->rtable))
2239 0 : elog(ERROR, "invalid resultRelation %d",
2240 : query->resultRelation);
2241 750 : rte = rt_fetch(query->resultRelation, query->rtable);
2242 750 : if (rte->rtekind == RTE_RELATION)
2243 : {
2244 2308 : foreach(lc, query->targetList)
2245 : {
2246 1558 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2247 :
2248 1558 : if (tle->resjunk)
2249 6 : continue; /* ignore junk tlist items */
2250 1552 : add_object_address(RelationRelationId, rte->relid, tle->resno,
2251 : context->addrs);
2252 : }
2253 : }
2254 : }
2255 :
2256 : /*
2257 : * Add dependencies on constraints listed in query's constraintDeps
2258 : */
2259 38300 : foreach(lc, query->constraintDeps)
2260 : {
2261 60 : add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2262 : context->addrs);
2263 : }
2264 :
2265 : /* Examine substructure of query */
2266 38240 : context->rtables = lcons(query->rtable, context->rtables);
2267 38240 : result = query_tree_walker(query,
2268 : find_expr_references_walker,
2269 : context,
2270 : QTW_IGNORE_JOINALIASES |
2271 : QTW_EXAMINE_SORTGROUP);
2272 38240 : context->rtables = list_delete_first(context->rtables);
2273 38240 : return result;
2274 : }
2275 502968 : else if (IsA(node, SetOperationStmt))
2276 : {
2277 3934 : SetOperationStmt *setop = (SetOperationStmt *) node;
2278 :
2279 : /* we need to look at the groupClauses for operator references */
2280 3934 : find_expr_references_walker((Node *) setop->groupClauses, context);
2281 : /* fall through to examine child nodes */
2282 : }
2283 499034 : else if (IsA(node, RangeTblFunction))
2284 : {
2285 5370 : RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2286 : ListCell *ct;
2287 :
2288 : /*
2289 : * Add refs for any datatypes and collations used in a column
2290 : * definition list for a RECORD function. (For other cases, it should
2291 : * be enough to depend on the function itself.)
2292 : */
2293 5484 : foreach(ct, rtfunc->funccoltypes)
2294 : {
2295 114 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2296 : context->addrs);
2297 : }
2298 5484 : foreach(ct, rtfunc->funccolcollations)
2299 : {
2300 114 : Oid collid = lfirst_oid(ct);
2301 :
2302 114 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2303 0 : add_object_address(CollationRelationId, collid, 0,
2304 : context->addrs);
2305 : }
2306 : }
2307 493664 : else if (IsA(node, TableFunc))
2308 : {
2309 86 : TableFunc *tf = (TableFunc *) node;
2310 : ListCell *ct;
2311 :
2312 : /*
2313 : * Add refs for the datatypes and collations used in the TableFunc.
2314 : */
2315 410 : foreach(ct, tf->coltypes)
2316 : {
2317 324 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2318 : context->addrs);
2319 : }
2320 410 : foreach(ct, tf->colcollations)
2321 : {
2322 324 : Oid collid = lfirst_oid(ct);
2323 :
2324 324 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2325 0 : add_object_address(CollationRelationId, collid, 0,
2326 : context->addrs);
2327 : }
2328 : }
2329 493578 : else if (IsA(node, TableSampleClause))
2330 : {
2331 24 : TableSampleClause *tsc = (TableSampleClause *) node;
2332 :
2333 24 : add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2334 : context->addrs);
2335 : /* fall through to examine arguments */
2336 : }
2337 :
2338 802930 : return expression_tree_walker(node, find_expr_references_walker,
2339 : context);
2340 : }
2341 :
2342 : /*
2343 : * find_expr_references_walker subroutine: handle a Var reference
2344 : * to an RTE_FUNCTION RTE
2345 : */
2346 : static void
2347 45850 : process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2348 : find_expr_references_context *context)
2349 : {
2350 45850 : int atts_done = 0;
2351 : ListCell *lc;
2352 :
2353 : /*
2354 : * Identify which RangeTblFunction produces this attnum, and see if it
2355 : * returns a composite type. If so, we'd better make a dependency on the
2356 : * referenced column of the composite type (or actually, of its associated
2357 : * relation).
2358 : */
2359 46072 : foreach(lc, rte->functions)
2360 : {
2361 45982 : RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2362 :
2363 45982 : if (attnum > atts_done &&
2364 45982 : attnum <= atts_done + rtfunc->funccolcount)
2365 : {
2366 : TupleDesc tupdesc;
2367 :
2368 : /* If it has a coldeflist, it certainly returns RECORD */
2369 45760 : if (rtfunc->funccolnames != NIL)
2370 114 : tupdesc = NULL; /* no need to work hard */
2371 : else
2372 45646 : tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2373 45760 : if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2374 : {
2375 : /*
2376 : * Named composite type, so individual columns could get
2377 : * dropped. Make a dependency on this specific column.
2378 : */
2379 222 : Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2380 :
2381 : Assert(attnum - atts_done <= tupdesc->natts);
2382 222 : if (OidIsValid(reltype)) /* can this fail? */
2383 222 : add_object_address(RelationRelationId, reltype,
2384 : attnum - atts_done,
2385 : context->addrs);
2386 45760 : return;
2387 : }
2388 : /* Nothing to do; function's result type is handled elsewhere */
2389 45538 : return;
2390 : }
2391 222 : atts_done += rtfunc->funccolcount;
2392 : }
2393 :
2394 : /* If we get here, must be looking for the ordinality column */
2395 90 : if (rte->funcordinality && attnum == atts_done + 1)
2396 90 : return;
2397 :
2398 : /* this probably can't happen ... */
2399 0 : ereport(ERROR,
2400 : (errcode(ERRCODE_UNDEFINED_COLUMN),
2401 : errmsg("column %d of relation \"%s\" does not exist",
2402 : attnum, rte->eref->aliasname)));
2403 : }
2404 :
2405 : /*
2406 : * Given an array of dependency references, eliminate any duplicates.
2407 : */
2408 : static void
2409 450246 : eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2410 : {
2411 : ObjectAddress *priorobj;
2412 : int oldref,
2413 : newrefs;
2414 :
2415 : /*
2416 : * We can't sort if the array has "extra" data, because there's no way to
2417 : * keep it in sync. Fortunately that combination of features is not
2418 : * needed.
2419 : */
2420 : Assert(!addrs->extras);
2421 :
2422 450246 : if (addrs->numrefs <= 1)
2423 156008 : return; /* nothing to do */
2424 :
2425 : /* Sort the refs so that duplicates are adjacent */
2426 294238 : qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2427 : object_address_comparator);
2428 :
2429 : /* Remove dups */
2430 294238 : priorobj = addrs->refs;
2431 294238 : newrefs = 1;
2432 1975788 : for (oldref = 1; oldref < addrs->numrefs; oldref++)
2433 : {
2434 1681550 : ObjectAddress *thisobj = addrs->refs + oldref;
2435 :
2436 1681550 : if (priorobj->classId == thisobj->classId &&
2437 1441382 : priorobj->objectId == thisobj->objectId)
2438 : {
2439 758018 : if (priorobj->objectSubId == thisobj->objectSubId)
2440 583904 : continue; /* identical, so drop thisobj */
2441 :
2442 : /*
2443 : * If we have a whole-object reference and a reference to a part
2444 : * of the same object, we don't need the whole-object reference
2445 : * (for example, we don't need to reference both table foo and
2446 : * column foo.bar). The whole-object reference will always appear
2447 : * first in the sorted list.
2448 : */
2449 174114 : if (priorobj->objectSubId == 0)
2450 : {
2451 : /* replace whole ref with partial */
2452 37820 : priorobj->objectSubId = thisobj->objectSubId;
2453 37820 : continue;
2454 : }
2455 : }
2456 : /* Not identical, so add thisobj to output set */
2457 1059826 : priorobj++;
2458 1059826 : *priorobj = *thisobj;
2459 1059826 : newrefs++;
2460 : }
2461 :
2462 294238 : addrs->numrefs = newrefs;
2463 : }
2464 :
2465 : /*
2466 : * qsort comparator for ObjectAddress items
2467 : */
2468 : static int
2469 5797774 : object_address_comparator(const void *a, const void *b)
2470 : {
2471 5797774 : const ObjectAddress *obja = (const ObjectAddress *) a;
2472 5797774 : const ObjectAddress *objb = (const ObjectAddress *) b;
2473 :
2474 : /*
2475 : * Primary sort key is OID descending. Most of the time, this will result
2476 : * in putting newer objects before older ones, which is likely to be the
2477 : * right order to delete in.
2478 : */
2479 5797774 : if (obja->objectId > objb->objectId)
2480 1398776 : return -1;
2481 4398998 : if (obja->objectId < objb->objectId)
2482 3073130 : return 1;
2483 :
2484 : /*
2485 : * Next sort on catalog ID, in case identical OIDs appear in different
2486 : * catalogs. Sort direction is pretty arbitrary here.
2487 : */
2488 1325868 : if (obja->classId < objb->classId)
2489 0 : return -1;
2490 1325868 : if (obja->classId > objb->classId)
2491 0 : return 1;
2492 :
2493 : /*
2494 : * Last, sort on object subId.
2495 : *
2496 : * We sort the subId as an unsigned int so that 0 (the whole object) will
2497 : * come first. This is essential for eliminate_duplicate_dependencies,
2498 : * and is also the best order for findDependentObjects.
2499 : */
2500 1325868 : if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2501 324984 : return -1;
2502 1000884 : if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2503 286732 : return 1;
2504 714152 : return 0;
2505 : }
2506 :
2507 : /*
2508 : * Routines for handling an expansible array of ObjectAddress items.
2509 : *
2510 : * new_object_addresses: create a new ObjectAddresses array.
2511 : */
2512 : ObjectAddresses *
2513 514250 : new_object_addresses(void)
2514 : {
2515 : ObjectAddresses *addrs;
2516 :
2517 514250 : addrs = palloc(sizeof(ObjectAddresses));
2518 :
2519 514250 : addrs->numrefs = 0;
2520 514250 : addrs->maxrefs = 32;
2521 514250 : addrs->refs = (ObjectAddress *)
2522 514250 : palloc(addrs->maxrefs * sizeof(ObjectAddress));
2523 514250 : addrs->extras = NULL; /* until/unless needed */
2524 :
2525 514250 : return addrs;
2526 : }
2527 :
2528 : /*
2529 : * Add an entry to an ObjectAddresses array.
2530 : */
2531 : static void
2532 806420 : add_object_address(Oid classId, Oid objectId, int32 subId,
2533 : ObjectAddresses *addrs)
2534 : {
2535 : ObjectAddress *item;
2536 :
2537 : /* enlarge array if needed */
2538 806420 : if (addrs->numrefs >= addrs->maxrefs)
2539 : {
2540 10718 : addrs->maxrefs *= 2;
2541 10718 : addrs->refs = (ObjectAddress *)
2542 10718 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2543 : Assert(!addrs->extras);
2544 : }
2545 : /* record this item */
2546 806420 : item = addrs->refs + addrs->numrefs;
2547 806420 : item->classId = classId;
2548 806420 : item->objectId = objectId;
2549 806420 : item->objectSubId = subId;
2550 806420 : addrs->numrefs++;
2551 806420 : }
2552 :
2553 : /*
2554 : * Add an entry to an ObjectAddresses array.
2555 : *
2556 : * As above, but specify entry exactly.
2557 : */
2558 : void
2559 1309278 : add_exact_object_address(const ObjectAddress *object,
2560 : ObjectAddresses *addrs)
2561 : {
2562 : ObjectAddress *item;
2563 :
2564 : /* enlarge array if needed */
2565 1309278 : if (addrs->numrefs >= addrs->maxrefs)
2566 : {
2567 62 : addrs->maxrefs *= 2;
2568 62 : addrs->refs = (ObjectAddress *)
2569 62 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2570 : Assert(!addrs->extras);
2571 : }
2572 : /* record this item */
2573 1309278 : item = addrs->refs + addrs->numrefs;
2574 1309278 : *item = *object;
2575 1309278 : addrs->numrefs++;
2576 1309278 : }
2577 :
2578 : /*
2579 : * Add an entry to an ObjectAddresses array.
2580 : *
2581 : * As above, but specify entry exactly and provide some "extra" data too.
2582 : */
2583 : static void
2584 216304 : add_exact_object_address_extra(const ObjectAddress *object,
2585 : const ObjectAddressExtra *extra,
2586 : ObjectAddresses *addrs)
2587 : {
2588 : ObjectAddress *item;
2589 : ObjectAddressExtra *itemextra;
2590 :
2591 : /* allocate extra space if first time */
2592 216304 : if (!addrs->extras)
2593 32364 : addrs->extras = (ObjectAddressExtra *)
2594 32364 : palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2595 :
2596 : /* enlarge array if needed */
2597 216304 : if (addrs->numrefs >= addrs->maxrefs)
2598 : {
2599 864 : addrs->maxrefs *= 2;
2600 864 : addrs->refs = (ObjectAddress *)
2601 864 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2602 864 : addrs->extras = (ObjectAddressExtra *)
2603 864 : repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2604 : }
2605 : /* record this item */
2606 216304 : item = addrs->refs + addrs->numrefs;
2607 216304 : *item = *object;
2608 216304 : itemextra = addrs->extras + addrs->numrefs;
2609 216304 : *itemextra = *extra;
2610 216304 : addrs->numrefs++;
2611 216304 : }
2612 :
2613 : /*
2614 : * Test whether an object is present in an ObjectAddresses array.
2615 : *
2616 : * We return "true" if object is a subobject of something in the array, too.
2617 : */
2618 : bool
2619 644 : object_address_present(const ObjectAddress *object,
2620 : const ObjectAddresses *addrs)
2621 : {
2622 : int i;
2623 :
2624 2538 : for (i = addrs->numrefs - 1; i >= 0; i--)
2625 : {
2626 1894 : const ObjectAddress *thisobj = addrs->refs + i;
2627 :
2628 1894 : if (object->classId == thisobj->classId &&
2629 524 : object->objectId == thisobj->objectId)
2630 : {
2631 0 : if (object->objectSubId == thisobj->objectSubId ||
2632 0 : thisobj->objectSubId == 0)
2633 0 : return true;
2634 : }
2635 : }
2636 :
2637 644 : return false;
2638 : }
2639 :
2640 : /*
2641 : * As above, except that if the object is present then also OR the given
2642 : * flags into its associated extra data (which must exist).
2643 : */
2644 : static bool
2645 264256 : object_address_present_add_flags(const ObjectAddress *object,
2646 : int flags,
2647 : ObjectAddresses *addrs)
2648 : {
2649 264256 : bool result = false;
2650 : int i;
2651 :
2652 9300258 : for (i = addrs->numrefs - 1; i >= 0; i--)
2653 : {
2654 9036002 : ObjectAddress *thisobj = addrs->refs + i;
2655 :
2656 9036002 : if (object->classId == thisobj->classId &&
2657 3723958 : object->objectId == thisobj->objectId)
2658 : {
2659 46274 : if (object->objectSubId == thisobj->objectSubId)
2660 : {
2661 45818 : ObjectAddressExtra *thisextra = addrs->extras + i;
2662 :
2663 45818 : thisextra->flags |= flags;
2664 45818 : result = true;
2665 : }
2666 456 : else if (thisobj->objectSubId == 0)
2667 : {
2668 : /*
2669 : * We get here if we find a need to delete a column after
2670 : * having already decided to drop its whole table. Obviously
2671 : * we no longer need to drop the subobject, so report that we
2672 : * found the subobject in the array. But don't plaster its
2673 : * flags on the whole object.
2674 : */
2675 408 : result = true;
2676 : }
2677 48 : else if (object->objectSubId == 0)
2678 : {
2679 : /*
2680 : * We get here if we find a need to delete a whole table after
2681 : * having already decided to drop one of its columns. We
2682 : * can't report that the whole object is in the array, but we
2683 : * should mark the subobject with the whole object's flags.
2684 : *
2685 : * It might seem attractive to physically delete the column's
2686 : * array entry, or at least mark it as no longer needing
2687 : * separate deletion. But that could lead to, e.g., dropping
2688 : * the column's datatype before we drop the table, which does
2689 : * not seem like a good idea. This is a very rare situation
2690 : * in practice, so we just take the hit of doing a separate
2691 : * DROP COLUMN action even though we know we're gonna delete
2692 : * the table later.
2693 : *
2694 : * What we can do, though, is mark this as a subobject so that
2695 : * we don't report it separately, which is confusing because
2696 : * it's unpredictable whether it happens or not. But do so
2697 : * only if flags != 0 (flags == 0 is a read-only probe).
2698 : *
2699 : * Because there could be other subobjects of this object in
2700 : * the array, this case means we always have to loop through
2701 : * the whole array; we cannot exit early on a match.
2702 : */
2703 36 : ObjectAddressExtra *thisextra = addrs->extras + i;
2704 :
2705 36 : if (flags)
2706 36 : thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2707 : }
2708 : }
2709 : }
2710 :
2711 264256 : return result;
2712 : }
2713 :
2714 : /*
2715 : * Similar to above, except we search an ObjectAddressStack.
2716 : */
2717 : static bool
2718 379316 : stack_address_present_add_flags(const ObjectAddress *object,
2719 : int flags,
2720 : ObjectAddressStack *stack)
2721 : {
2722 379316 : bool result = false;
2723 : ObjectAddressStack *stackptr;
2724 :
2725 1009168 : for (stackptr = stack; stackptr; stackptr = stackptr->next)
2726 : {
2727 629852 : const ObjectAddress *thisobj = stackptr->object;
2728 :
2729 629852 : if (object->classId == thisobj->classId &&
2730 278790 : object->objectId == thisobj->objectId)
2731 : {
2732 115132 : if (object->objectSubId == thisobj->objectSubId)
2733 : {
2734 114194 : stackptr->flags |= flags;
2735 114194 : result = true;
2736 : }
2737 938 : else if (thisobj->objectSubId == 0)
2738 : {
2739 : /*
2740 : * We're visiting a column with whole table already on stack.
2741 : * As in object_address_present_add_flags(), we can skip
2742 : * further processing of the subobject, but we don't want to
2743 : * propagate flags for the subobject to the whole object.
2744 : */
2745 866 : result = true;
2746 : }
2747 72 : else if (object->objectSubId == 0)
2748 : {
2749 : /*
2750 : * We're visiting a table with column already on stack. As in
2751 : * object_address_present_add_flags(), we should propagate
2752 : * flags for the whole object to each of its subobjects.
2753 : */
2754 0 : if (flags)
2755 0 : stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2756 : }
2757 : }
2758 : }
2759 :
2760 379316 : return result;
2761 : }
2762 :
2763 : /*
2764 : * Record multiple dependencies from an ObjectAddresses array, after first
2765 : * removing any duplicates.
2766 : */
2767 : void
2768 408896 : record_object_address_dependencies(const ObjectAddress *depender,
2769 : ObjectAddresses *referenced,
2770 : DependencyType behavior)
2771 : {
2772 408896 : eliminate_duplicate_dependencies(referenced);
2773 408896 : recordMultipleDependencies(depender,
2774 408896 : referenced->refs, referenced->numrefs,
2775 : behavior);
2776 408896 : }
2777 :
2778 : /*
2779 : * Sort the items in an ObjectAddresses array.
2780 : *
2781 : * The major sort key is OID-descending, so that newer objects will be listed
2782 : * first in most cases. This is primarily useful for ensuring stable outputs
2783 : * from regression tests; it's not recommended if the order of the objects is
2784 : * determined by user input, such as the order of targets in a DROP command.
2785 : */
2786 : void
2787 140 : sort_object_addresses(ObjectAddresses *addrs)
2788 : {
2789 140 : if (addrs->numrefs > 1)
2790 86 : qsort(addrs->refs, addrs->numrefs,
2791 : sizeof(ObjectAddress),
2792 : object_address_comparator);
2793 140 : }
2794 :
2795 : /*
2796 : * Clean up when done with an ObjectAddresses array.
2797 : */
2798 : void
2799 512160 : free_object_addresses(ObjectAddresses *addrs)
2800 : {
2801 512160 : pfree(addrs->refs);
2802 512160 : if (addrs->extras)
2803 32016 : pfree(addrs->extras);
2804 512160 : pfree(addrs);
2805 512160 : }
2806 :
2807 : /*
2808 : * delete initial ACL for extension objects
2809 : */
2810 : static void
2811 211246 : DeleteInitPrivs(const ObjectAddress *object)
2812 : {
2813 : Relation relation;
2814 : ScanKeyData key[3];
2815 : int nkeys;
2816 : SysScanDesc scan;
2817 : HeapTuple oldtuple;
2818 :
2819 211246 : relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2820 :
2821 211246 : ScanKeyInit(&key[0],
2822 : Anum_pg_init_privs_objoid,
2823 : BTEqualStrategyNumber, F_OIDEQ,
2824 211246 : ObjectIdGetDatum(object->objectId));
2825 211246 : ScanKeyInit(&key[1],
2826 : Anum_pg_init_privs_classoid,
2827 : BTEqualStrategyNumber, F_OIDEQ,
2828 211246 : ObjectIdGetDatum(object->classId));
2829 211246 : if (object->objectSubId != 0)
2830 : {
2831 2074 : ScanKeyInit(&key[2],
2832 : Anum_pg_init_privs_objsubid,
2833 : BTEqualStrategyNumber, F_INT4EQ,
2834 2074 : Int32GetDatum(object->objectSubId));
2835 2074 : nkeys = 3;
2836 : }
2837 : else
2838 209172 : nkeys = 2;
2839 :
2840 211246 : scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2841 : NULL, nkeys, key);
2842 :
2843 211374 : while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2844 128 : CatalogTupleDelete(relation, &oldtuple->t_self);
2845 :
2846 211246 : systable_endscan(scan);
2847 :
2848 211246 : table_close(relation, RowExclusiveLock);
2849 211246 : }
|