Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * dependency.c
4 : * Routines to support inter-object dependencies.
5 : *
6 : *
7 : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : * IDENTIFICATION
11 : * src/backend/catalog/dependency.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/genam.h"
18 : #include "access/htup_details.h"
19 : #include "access/table.h"
20 : #include "access/xact.h"
21 : #include "catalog/catalog.h"
22 : #include "catalog/dependency.h"
23 : #include "catalog/heap.h"
24 : #include "catalog/index.h"
25 : #include "catalog/namespace.h"
26 : #include "catalog/objectaccess.h"
27 : #include "catalog/pg_am.h"
28 : #include "catalog/pg_amop.h"
29 : #include "catalog/pg_amproc.h"
30 : #include "catalog/pg_attrdef.h"
31 : #include "catalog/pg_authid.h"
32 : #include "catalog/pg_auth_members.h"
33 : #include "catalog/pg_cast.h"
34 : #include "catalog/pg_collation.h"
35 : #include "catalog/pg_constraint.h"
36 : #include "catalog/pg_conversion.h"
37 : #include "catalog/pg_database.h"
38 : #include "catalog/pg_default_acl.h"
39 : #include "catalog/pg_depend.h"
40 : #include "catalog/pg_event_trigger.h"
41 : #include "catalog/pg_extension.h"
42 : #include "catalog/pg_foreign_data_wrapper.h"
43 : #include "catalog/pg_foreign_server.h"
44 : #include "catalog/pg_init_privs.h"
45 : #include "catalog/pg_language.h"
46 : #include "catalog/pg_largeobject.h"
47 : #include "catalog/pg_namespace.h"
48 : #include "catalog/pg_opclass.h"
49 : #include "catalog/pg_operator.h"
50 : #include "catalog/pg_opfamily.h"
51 : #include "catalog/pg_parameter_acl.h"
52 : #include "catalog/pg_policy.h"
53 : #include "catalog/pg_proc.h"
54 : #include "catalog/pg_publication.h"
55 : #include "catalog/pg_publication_namespace.h"
56 : #include "catalog/pg_publication_rel.h"
57 : #include "catalog/pg_rewrite.h"
58 : #include "catalog/pg_statistic_ext.h"
59 : #include "catalog/pg_subscription.h"
60 : #include "catalog/pg_tablespace.h"
61 : #include "catalog/pg_transform.h"
62 : #include "catalog/pg_trigger.h"
63 : #include "catalog/pg_ts_config.h"
64 : #include "catalog/pg_ts_dict.h"
65 : #include "catalog/pg_ts_parser.h"
66 : #include "catalog/pg_ts_template.h"
67 : #include "catalog/pg_type.h"
68 : #include "catalog/pg_user_mapping.h"
69 : #include "commands/comment.h"
70 : #include "commands/defrem.h"
71 : #include "commands/event_trigger.h"
72 : #include "commands/extension.h"
73 : #include "commands/policy.h"
74 : #include "commands/publicationcmds.h"
75 : #include "commands/seclabel.h"
76 : #include "commands/sequence.h"
77 : #include "commands/trigger.h"
78 : #include "commands/typecmds.h"
79 : #include "funcapi.h"
80 : #include "miscadmin.h"
81 : #include "nodes/nodeFuncs.h"
82 : #include "parser/parsetree.h"
83 : #include "rewrite/rewriteRemove.h"
84 : #include "storage/lmgr.h"
85 : #include "utils/fmgroids.h"
86 : #include "utils/lsyscache.h"
87 : #include "utils/syscache.h"
88 :
89 :
90 : /*
91 : * Deletion processing requires additional state for each ObjectAddress that
92 : * it's planning to delete. For simplicity and code-sharing we make the
93 : * ObjectAddresses code support arrays with or without this extra state.
94 : */
95 : typedef struct
96 : {
97 : int flags; /* bitmask, see bit definitions below */
98 : ObjectAddress dependee; /* object whose deletion forced this one */
99 : } ObjectAddressExtra;
100 :
101 : /* ObjectAddressExtra flag bits */
102 : #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
103 : #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
104 : #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
105 : #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
106 : #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
107 : #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
108 : #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
109 : #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
110 : #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
111 :
112 :
113 : /* expansible list of ObjectAddresses */
114 : struct ObjectAddresses
115 : {
116 : ObjectAddress *refs; /* => palloc'd array */
117 : ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
118 : int numrefs; /* current number of references */
119 : int maxrefs; /* current size of palloc'd array(s) */
120 : };
121 :
122 : /* typedef ObjectAddresses appears in dependency.h */
123 :
124 : /* threaded list of ObjectAddresses, for recursion detection */
125 : typedef struct ObjectAddressStack
126 : {
127 : const ObjectAddress *object; /* object being visited */
128 : int flags; /* its current flag bits */
129 : struct ObjectAddressStack *next; /* next outer stack level */
130 : } ObjectAddressStack;
131 :
132 : /* temporary storage in findDependentObjects */
133 : typedef struct
134 : {
135 : ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
136 : int subflags; /* flags to pass down when recursing to obj */
137 : } ObjectAddressAndFlags;
138 :
139 : /* for find_expr_references_walker */
140 : typedef struct
141 : {
142 : ObjectAddresses *addrs; /* addresses being accumulated */
143 : List *rtables; /* list of rangetables to resolve Vars */
144 : } find_expr_references_context;
145 :
146 :
147 : static void findDependentObjects(const ObjectAddress *object,
148 : int objflags,
149 : int flags,
150 : ObjectAddressStack *stack,
151 : ObjectAddresses *targetObjects,
152 : const ObjectAddresses *pendingObjects,
153 : Relation *depRel);
154 : static void reportDependentObjects(const ObjectAddresses *targetObjects,
155 : DropBehavior behavior,
156 : int flags,
157 : const ObjectAddress *origObject);
158 : static void deleteOneObject(const ObjectAddress *object,
159 : Relation *depRel, int32 flags);
160 : static void doDeletion(const ObjectAddress *object, int flags);
161 : static bool find_expr_references_walker(Node *node,
162 : find_expr_references_context *context);
163 : static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
164 : find_expr_references_context *context);
165 : static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
166 : static int object_address_comparator(const void *a, const void *b);
167 : static void add_object_address(Oid classId, Oid objectId, int32 subId,
168 : ObjectAddresses *addrs);
169 : static void add_exact_object_address_extra(const ObjectAddress *object,
170 : const ObjectAddressExtra *extra,
171 : ObjectAddresses *addrs);
172 : static bool object_address_present_add_flags(const ObjectAddress *object,
173 : int flags,
174 : ObjectAddresses *addrs);
175 : static bool stack_address_present_add_flags(const ObjectAddress *object,
176 : int flags,
177 : ObjectAddressStack *stack);
178 : static void DeleteInitPrivs(const ObjectAddress *object);
179 :
180 :
181 : /*
182 : * Go through the objects given running the final actions on them, and execute
183 : * the actual deletion.
184 : */
185 : static void
186 34136 : deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
187 : int flags)
188 : {
189 : int i;
190 :
191 : /*
192 : * Keep track of objects for event triggers, if necessary.
193 : */
194 34136 : if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
195 : {
196 4620 : for (i = 0; i < targetObjects->numrefs; i++)
197 : {
198 3884 : const ObjectAddress *thisobj = &targetObjects->refs[i];
199 3884 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
200 3884 : bool original = false;
201 3884 : bool normal = false;
202 :
203 3884 : if (extra->flags & DEPFLAG_ORIGINAL)
204 820 : original = true;
205 3884 : if (extra->flags & DEPFLAG_NORMAL)
206 354 : normal = true;
207 3884 : if (extra->flags & DEPFLAG_REVERSE)
208 0 : normal = true;
209 :
210 3884 : if (EventTriggerSupportsObject(thisobj))
211 : {
212 3768 : EventTriggerSQLDropAddObject(thisobj, original, normal);
213 : }
214 : }
215 : }
216 :
217 : /*
218 : * Delete all the objects in the proper order, except that if told to, we
219 : * should skip the original object(s).
220 : */
221 266052 : for (i = 0; i < targetObjects->numrefs; i++)
222 : {
223 231926 : ObjectAddress *thisobj = targetObjects->refs + i;
224 231926 : ObjectAddressExtra *thisextra = targetObjects->extras + i;
225 :
226 231926 : if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
227 9600 : (thisextra->flags & DEPFLAG_ORIGINAL))
228 898 : continue;
229 :
230 231028 : deleteOneObject(thisobj, depRel, flags);
231 : }
232 34126 : }
233 :
234 : /*
235 : * performDeletion: attempt to drop the specified object. If CASCADE
236 : * behavior is specified, also drop any dependent objects (recursively).
237 : * If RESTRICT behavior is specified, error out if there are any dependent
238 : * objects, except for those that should be implicitly dropped anyway
239 : * according to the dependency type.
240 : *
241 : * This is the outer control routine for all forms of DROP that drop objects
242 : * that can participate in dependencies. Note that performMultipleDeletions
243 : * is a variant on the same theme; if you change anything here you'll likely
244 : * need to fix that too.
245 : *
246 : * Bits in the flags argument can include:
247 : *
248 : * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
249 : * direct result of a user-initiated action. For example, when a temporary
250 : * schema is cleaned out so that a new backend can use it, or when a column
251 : * default is dropped as an intermediate step while adding a new one, that's
252 : * an internal operation. On the other hand, when we drop something because
253 : * the user issued a DROP statement against it, that's not internal. Currently
254 : * this suppresses calling event triggers and making some permissions checks.
255 : *
256 : * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
257 : * not currently work for anything except dropping indexes; don't set it for
258 : * other object types or you may get strange results.
259 : *
260 : * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
261 : *
262 : * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
263 : * but only what depends on it/them.
264 : *
265 : * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
266 : * deleting objects that are part of an extension. This should generally
267 : * be used only when dropping temporary objects.
268 : *
269 : * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
270 : * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
271 : *
272 : */
273 : void
274 6602 : performDeletion(const ObjectAddress *object,
275 : DropBehavior behavior, int flags)
276 : {
277 : Relation depRel;
278 : ObjectAddresses *targetObjects;
279 :
280 : /*
281 : * We save some cycles by opening pg_depend just once and passing the
282 : * Relation pointer down to all the recursive deletion steps.
283 : */
284 6602 : depRel = table_open(DependRelationId, RowExclusiveLock);
285 :
286 : /*
287 : * Acquire deletion lock on the target object. (Ideally the caller has
288 : * done this already, but many places are sloppy about it.)
289 : */
290 6602 : AcquireDeletionLock(object, 0);
291 :
292 : /*
293 : * Construct a list of objects to delete (ie, the given object plus
294 : * everything directly or indirectly dependent on it).
295 : */
296 6602 : targetObjects = new_object_addresses();
297 :
298 6602 : findDependentObjects(object,
299 : DEPFLAG_ORIGINAL,
300 : flags,
301 : NULL, /* empty stack */
302 : targetObjects,
303 : NULL, /* no pendingObjects */
304 : &depRel);
305 :
306 : /*
307 : * Check if deletion is allowed, and report about cascaded deletes.
308 : */
309 6602 : reportDependentObjects(targetObjects,
310 : behavior,
311 : flags,
312 : object);
313 :
314 : /* do the deed */
315 6566 : deleteObjectsInList(targetObjects, &depRel, flags);
316 :
317 : /* And clean up */
318 6564 : free_object_addresses(targetObjects);
319 :
320 6564 : table_close(depRel, RowExclusiveLock);
321 6564 : }
322 :
323 : /*
324 : * performDeletionCheck: Check whether a specific object can be safely deleted.
325 : * This function does not perform any deletion; instead, it raises an error
326 : * if the object cannot be deleted due to existing dependencies.
327 : *
328 : * It can be useful when you need to delete some objects later. See comments
329 : * in performDeletion too.
330 : * The behavior must be specified as DROP_RESTRICT.
331 : */
332 : void
333 564 : performDeletionCheck(const ObjectAddress *object,
334 : DropBehavior behavior, int flags)
335 : {
336 : Relation depRel;
337 : ObjectAddresses *targetObjects;
338 :
339 : Assert(behavior == DROP_RESTRICT);
340 :
341 564 : depRel = table_open(DependRelationId, RowExclusiveLock);
342 :
343 564 : AcquireDeletionLock(object, 0);
344 :
345 : /*
346 : * Construct a list of objects we want to delete later (ie, the given
347 : * object plus everything directly or indirectly dependent on it).
348 : */
349 564 : targetObjects = new_object_addresses();
350 :
351 564 : findDependentObjects(object,
352 : DEPFLAG_ORIGINAL,
353 : flags,
354 : NULL, /* empty stack */
355 : targetObjects,
356 : NULL, /* no pendingObjects */
357 : &depRel);
358 :
359 : /*
360 : * Check if deletion is allowed.
361 : */
362 564 : reportDependentObjects(targetObjects,
363 : behavior,
364 : flags,
365 : object);
366 :
367 : /* And clean up */
368 558 : free_object_addresses(targetObjects);
369 :
370 558 : table_close(depRel, RowExclusiveLock);
371 558 : }
372 :
373 : /*
374 : * performMultipleDeletions: Similar to performDeletion, but acts on multiple
375 : * objects at once.
376 : *
377 : * The main difference from issuing multiple performDeletion calls is that the
378 : * list of objects that would be implicitly dropped, for each object to be
379 : * dropped, is the union of the implicit-object list for all objects. This
380 : * makes each check more relaxed.
381 : */
382 : void
383 30884 : performMultipleDeletions(const ObjectAddresses *objects,
384 : DropBehavior behavior, int flags)
385 : {
386 : Relation depRel;
387 : ObjectAddresses *targetObjects;
388 : int i;
389 :
390 : /* No work if no objects... */
391 30884 : if (objects->numrefs <= 0)
392 2970 : return;
393 :
394 : /*
395 : * We save some cycles by opening pg_depend just once and passing the
396 : * Relation pointer down to all the recursive deletion steps.
397 : */
398 27914 : depRel = table_open(DependRelationId, RowExclusiveLock);
399 :
400 : /*
401 : * Construct a list of objects to delete (ie, the given objects plus
402 : * everything directly or indirectly dependent on them). Note that
403 : * because we pass the whole objects list as pendingObjects context, we
404 : * won't get a failure from trying to delete an object that is internally
405 : * dependent on another one in the list; we'll just skip that object and
406 : * delete it when we reach its owner.
407 : */
408 27914 : targetObjects = new_object_addresses();
409 :
410 61594 : for (i = 0; i < objects->numrefs; i++)
411 : {
412 33722 : const ObjectAddress *thisobj = objects->refs + i;
413 :
414 : /*
415 : * Acquire deletion lock on each target object. (Ideally the caller
416 : * has done this already, but many places are sloppy about it.)
417 : */
418 33722 : AcquireDeletionLock(thisobj, flags);
419 :
420 33722 : findDependentObjects(thisobj,
421 : DEPFLAG_ORIGINAL,
422 : flags,
423 : NULL, /* empty stack */
424 : targetObjects,
425 : objects,
426 : &depRel);
427 : }
428 :
429 : /*
430 : * Check if deletion is allowed, and report about cascaded deletes.
431 : *
432 : * If there's exactly one object being deleted, report it the same way as
433 : * in performDeletion(), else we have to be vaguer.
434 : */
435 27872 : reportDependentObjects(targetObjects,
436 : behavior,
437 : flags,
438 27872 : (objects->numrefs == 1 ? objects->refs : NULL));
439 :
440 : /* do the deed */
441 27570 : deleteObjectsInList(targetObjects, &depRel, flags);
442 :
443 : /* And clean up */
444 27562 : free_object_addresses(targetObjects);
445 :
446 27562 : table_close(depRel, RowExclusiveLock);
447 : }
448 :
449 : /*
450 : * findDependentObjects - find all objects that depend on 'object'
451 : *
452 : * For every object that depends on the starting object, acquire a deletion
453 : * lock on the object, add it to targetObjects (if not already there),
454 : * and recursively find objects that depend on it. An object's dependencies
455 : * will be placed into targetObjects before the object itself; this means
456 : * that the finished list's order represents a safe deletion order.
457 : *
458 : * The caller must already have a deletion lock on 'object' itself,
459 : * but must not have added it to targetObjects. (Note: there are corner
460 : * cases where we won't add the object either, and will also release the
461 : * caller-taken lock. This is a bit ugly, but the API is set up this way
462 : * to allow easy rechecking of an object's liveness after we lock it. See
463 : * notes within the function.)
464 : *
465 : * When dropping a whole object (subId = 0), we find dependencies for
466 : * its sub-objects too.
467 : *
468 : * object: the object to add to targetObjects and find dependencies on
469 : * objflags: flags to be ORed into the object's targetObjects entry
470 : * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
471 : * stack: list of objects being visited in current recursion; topmost item
472 : * is the object that we recursed from (NULL for external callers)
473 : * targetObjects: list of objects that are scheduled to be deleted
474 : * pendingObjects: list of other objects slated for destruction, but
475 : * not necessarily in targetObjects yet (can be NULL if none)
476 : * *depRel: already opened pg_depend relation
477 : *
478 : * Note: objflags describes the reason for visiting this particular object
479 : * at this time, and is not passed down when recursing. The flags argument
480 : * is passed down, since it describes what we're doing overall.
481 : */
482 : static void
483 291026 : findDependentObjects(const ObjectAddress *object,
484 : int objflags,
485 : int flags,
486 : ObjectAddressStack *stack,
487 : ObjectAddresses *targetObjects,
488 : const ObjectAddresses *pendingObjects,
489 : Relation *depRel)
490 : {
491 : ScanKeyData key[3];
492 : int nkeys;
493 : SysScanDesc scan;
494 : HeapTuple tup;
495 : ObjectAddress otherObject;
496 : ObjectAddress owningObject;
497 : ObjectAddress partitionObject;
498 : ObjectAddressAndFlags *dependentObjects;
499 : int numDependentObjects;
500 : int maxDependentObjects;
501 : ObjectAddressStack mystack;
502 : ObjectAddressExtra extra;
503 :
504 : /*
505 : * If the target object is already being visited in an outer recursion
506 : * level, just report the current objflags back to that level and exit.
507 : * This is needed to avoid infinite recursion in the face of circular
508 : * dependencies.
509 : *
510 : * The stack check alone would result in dependency loops being broken at
511 : * an arbitrary point, ie, the first member object of the loop to be
512 : * visited is the last one to be deleted. This is obviously unworkable.
513 : * However, the check for internal dependency below guarantees that we
514 : * will not break a loop at an internal dependency: if we enter the loop
515 : * at an "owned" object we will switch and start at the "owning" object
516 : * instead. We could probably hack something up to avoid breaking at an
517 : * auto dependency, too, if we had to. However there are no known cases
518 : * where that would be necessary.
519 : */
520 291026 : if (stack_address_present_add_flags(object, objflags, stack))
521 52160 : return;
522 :
523 : /*
524 : * since this function recurses, it could be driven to stack overflow,
525 : * because of the deep dependency tree, not only due to dependency loops.
526 : */
527 290708 : check_stack_depth();
528 :
529 : /*
530 : * It's also possible that the target object has already been completely
531 : * processed and put into targetObjects. If so, again we just add the
532 : * specified objflags to its entry and return.
533 : *
534 : * (Note: in these early-exit cases we could release the caller-taken
535 : * lock, since the object is presumably now locked multiple times; but it
536 : * seems not worth the cycles.)
537 : */
538 290708 : if (object_address_present_add_flags(object, objflags, targetObjects))
539 50092 : return;
540 :
541 : /*
542 : * If the target object is pinned, we can just error out immediately; it
543 : * won't have any objects recorded as depending on it.
544 : */
545 240616 : if (IsPinnedObject(object->classId, object->objectId))
546 2 : ereport(ERROR,
547 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
548 : errmsg("cannot drop %s because it is required by the database system",
549 : getObjectDescription(object, false))));
550 :
551 : /*
552 : * The target object might be internally dependent on some other object
553 : * (its "owner"), and/or be a member of an extension (also considered its
554 : * owner). If so, and if we aren't recursing from the owning object, we
555 : * have to transform this deletion request into a deletion request of the
556 : * owning object. (We'll eventually recurse back to this object, but the
557 : * owning object has to be visited first so it will be deleted after.) The
558 : * way to find out about this is to scan the pg_depend entries that show
559 : * what this object depends on.
560 : */
561 240614 : ScanKeyInit(&key[0],
562 : Anum_pg_depend_classid,
563 : BTEqualStrategyNumber, F_OIDEQ,
564 240614 : ObjectIdGetDatum(object->classId));
565 240614 : ScanKeyInit(&key[1],
566 : Anum_pg_depend_objid,
567 : BTEqualStrategyNumber, F_OIDEQ,
568 240614 : ObjectIdGetDatum(object->objectId));
569 240614 : if (object->objectSubId != 0)
570 : {
571 : /* Consider only dependencies of this sub-object */
572 2242 : ScanKeyInit(&key[2],
573 : Anum_pg_depend_objsubid,
574 : BTEqualStrategyNumber, F_INT4EQ,
575 2242 : Int32GetDatum(object->objectSubId));
576 2242 : nkeys = 3;
577 : }
578 : else
579 : {
580 : /* Consider dependencies of this object and any sub-objects it has */
581 238372 : nkeys = 2;
582 : }
583 :
584 240614 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
585 : NULL, nkeys, key);
586 :
587 : /* initialize variables that loop may fill */
588 240614 : memset(&owningObject, 0, sizeof(owningObject));
589 240614 : memset(&partitionObject, 0, sizeof(partitionObject));
590 :
591 571322 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
592 : {
593 332458 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
594 :
595 332458 : otherObject.classId = foundDep->refclassid;
596 332458 : otherObject.objectId = foundDep->refobjid;
597 332458 : otherObject.objectSubId = foundDep->refobjsubid;
598 :
599 : /*
600 : * When scanning dependencies of a whole object, we may find rows
601 : * linking sub-objects of the object to the object itself. (Normally,
602 : * such a dependency is implicit, but we must make explicit ones in
603 : * some cases involving partitioning.) We must ignore such rows to
604 : * avoid infinite recursion.
605 : */
606 332458 : if (otherObject.classId == object->classId &&
607 110378 : otherObject.objectId == object->objectId &&
608 4856 : object->objectSubId == 0)
609 4832 : continue;
610 :
611 327626 : switch (foundDep->deptype)
612 : {
613 187122 : case DEPENDENCY_NORMAL:
614 : case DEPENDENCY_AUTO:
615 : case DEPENDENCY_AUTO_EXTENSION:
616 : /* no problem */
617 187122 : break;
618 :
619 5224 : case DEPENDENCY_EXTENSION:
620 :
621 : /*
622 : * If told to, ignore EXTENSION dependencies altogether. This
623 : * flag is normally used to prevent dropping extensions during
624 : * temporary-object cleanup, even if a temp object was created
625 : * during an extension script.
626 : */
627 5224 : if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
628 8 : break;
629 :
630 : /*
631 : * If the other object is the extension currently being
632 : * created/altered, ignore this dependency and continue with
633 : * the deletion. This allows dropping of an extension's
634 : * objects within the extension's scripts, as well as corner
635 : * cases such as dropping a transient object created within
636 : * such a script.
637 : */
638 5216 : if (creating_extension &&
639 344 : otherObject.classId == ExtensionRelationId &&
640 344 : otherObject.objectId == CurrentExtensionObject)
641 344 : break;
642 :
643 : /* Otherwise, treat this like an internal dependency */
644 : /* FALL THRU */
645 :
646 : case DEPENDENCY_INTERNAL:
647 :
648 : /*
649 : * This object is part of the internal implementation of
650 : * another object, or is part of the extension that is the
651 : * other object. We have three cases:
652 : *
653 : * 1. At the outermost recursion level, we must disallow the
654 : * DROP. However, if the owning object is listed in
655 : * pendingObjects, just release the caller's lock and return;
656 : * we'll eventually complete the DROP when we reach that entry
657 : * in the pending list.
658 : *
659 : * Note: the above statement is true only if this pg_depend
660 : * entry still exists by then; in principle, therefore, we
661 : * could miss deleting an item the user told us to delete.
662 : * However, no inconsistency can result: since we're at outer
663 : * level, there is no object depending on this one.
664 : */
665 128724 : if (stack == NULL)
666 : {
667 80 : if (pendingObjects &&
668 40 : object_address_present(&otherObject, pendingObjects))
669 : {
670 0 : systable_endscan(scan);
671 : /* need to release caller's lock; see notes below */
672 0 : ReleaseDeletionLock(object);
673 0 : return;
674 : }
675 :
676 : /*
677 : * We postpone actually issuing the error message until
678 : * after this loop, so that we can make the behavior
679 : * independent of the ordering of pg_depend entries, at
680 : * least if there's not more than one INTERNAL and one
681 : * EXTENSION dependency. (If there's more, we'll complain
682 : * about a random one of them.) Prefer to complain about
683 : * EXTENSION, since that's generally a more important
684 : * dependency.
685 : */
686 40 : if (!OidIsValid(owningObject.classId) ||
687 0 : foundDep->deptype == DEPENDENCY_EXTENSION)
688 40 : owningObject = otherObject;
689 40 : break;
690 : }
691 :
692 : /*
693 : * 2. When recursing from the other end of this dependency,
694 : * it's okay to continue with the deletion. This holds when
695 : * recursing from a whole object that includes the nominal
696 : * other end as a component, too. Since there can be more
697 : * than one "owning" object, we have to allow matches that are
698 : * more than one level down in the stack.
699 : */
700 128684 : if (stack_address_present_add_flags(&otherObject, 0, stack))
701 126934 : break;
702 :
703 : /*
704 : * 3. Not all the owning objects have been visited, so
705 : * transform this deletion request into a delete of this
706 : * owning object.
707 : *
708 : * First, release caller's lock on this object and get
709 : * deletion lock on the owning object. (We must release
710 : * caller's lock to avoid deadlock against a concurrent
711 : * deletion of the owning object.)
712 : */
713 1750 : ReleaseDeletionLock(object);
714 1750 : AcquireDeletionLock(&otherObject, 0);
715 :
716 : /*
717 : * The owning object might have been deleted while we waited
718 : * to lock it; if so, neither it nor the current object are
719 : * interesting anymore. We test this by checking the
720 : * pg_depend entry (see notes below).
721 : */
722 1750 : if (!systable_recheck_tuple(scan, tup))
723 : {
724 0 : systable_endscan(scan);
725 0 : ReleaseDeletionLock(&otherObject);
726 0 : return;
727 : }
728 :
729 : /*
730 : * One way or the other, we're done with the scan; might as
731 : * well close it down before recursing, to reduce peak
732 : * resource consumption.
733 : */
734 1750 : systable_endscan(scan);
735 :
736 : /*
737 : * Okay, recurse to the owning object instead of proceeding.
738 : *
739 : * We do not need to stack the current object; we want the
740 : * traversal order to be as if the original reference had
741 : * linked to the owning object instead of this one.
742 : *
743 : * The dependency type is a "reverse" dependency: we need to
744 : * delete the owning object if this one is to be deleted, but
745 : * this linkage is never a reason for an automatic deletion.
746 : */
747 1750 : findDependentObjects(&otherObject,
748 : DEPFLAG_REVERSE,
749 : flags,
750 : stack,
751 : targetObjects,
752 : pendingObjects,
753 : depRel);
754 :
755 : /*
756 : * The current target object should have been added to
757 : * targetObjects while processing the owning object; but it
758 : * probably got only the flag bits associated with the
759 : * dependency we're looking at. We need to add the objflags
760 : * that were passed to this recursion level, too, else we may
761 : * get a bogus failure in reportDependentObjects (if, for
762 : * example, we were called due to a partition dependency).
763 : *
764 : * If somehow the current object didn't get scheduled for
765 : * deletion, bleat. (That would imply that somebody deleted
766 : * this dependency record before the recursion got to it.)
767 : * Another idea would be to reacquire lock on the current
768 : * object and resume trying to delete it, but it seems not
769 : * worth dealing with the race conditions inherent in that.
770 : */
771 1750 : if (!object_address_present_add_flags(object, objflags,
772 : targetObjects))
773 0 : elog(ERROR, "deletion of owning object %s failed to delete %s",
774 : getObjectDescription(&otherObject, false),
775 : getObjectDescription(object, false));
776 :
777 : /* And we're done here. */
778 1750 : return;
779 :
780 5714 : case DEPENDENCY_PARTITION_PRI:
781 :
782 : /*
783 : * Remember that this object has a partition-type dependency.
784 : * After the dependency scan, we'll complain if we didn't find
785 : * a reason to delete one of its partition dependencies.
786 : */
787 5714 : objflags |= DEPFLAG_IS_PART;
788 :
789 : /*
790 : * Also remember the primary partition owner, for error
791 : * messages. If there are multiple primary owners (which
792 : * there should not be), we'll report a random one of them.
793 : */
794 5714 : partitionObject = otherObject;
795 5714 : break;
796 :
797 5714 : case DEPENDENCY_PARTITION_SEC:
798 :
799 : /*
800 : * Only use secondary partition owners in error messages if we
801 : * find no primary owner (which probably shouldn't happen).
802 : */
803 5714 : if (!(objflags & DEPFLAG_IS_PART))
804 4 : partitionObject = otherObject;
805 :
806 : /*
807 : * Remember that this object has a partition-type dependency.
808 : * After the dependency scan, we'll complain if we didn't find
809 : * a reason to delete one of its partition dependencies.
810 : */
811 5714 : objflags |= DEPFLAG_IS_PART;
812 5714 : break;
813 :
814 0 : default:
815 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
816 : foundDep->deptype, getObjectDescription(object, false));
817 : break;
818 : }
819 : }
820 :
821 238864 : systable_endscan(scan);
822 :
823 : /*
824 : * If we found an INTERNAL or EXTENSION dependency when we're at outer
825 : * level, complain about it now. If we also found a PARTITION dependency,
826 : * we prefer to report the PARTITION dependency. This is arbitrary but
827 : * seems to be more useful in practice.
828 : */
829 238864 : if (OidIsValid(owningObject.classId))
830 : {
831 : char *otherObjDesc;
832 :
833 40 : if (OidIsValid(partitionObject.classId))
834 12 : otherObjDesc = getObjectDescription(&partitionObject, false);
835 : else
836 28 : otherObjDesc = getObjectDescription(&owningObject, false);
837 :
838 40 : ereport(ERROR,
839 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
840 : errmsg("cannot drop %s because %s requires it",
841 : getObjectDescription(object, false), otherObjDesc),
842 : errhint("You can drop %s instead.", otherObjDesc)));
843 : }
844 :
845 : /*
846 : * Next, identify all objects that directly depend on the current object.
847 : * To ensure predictable deletion order, we collect them up in
848 : * dependentObjects and sort the list before actually recursing. (The
849 : * deletion order would be valid in any case, but doing this ensures
850 : * consistent output from DROP CASCADE commands, which is helpful for
851 : * regression testing.)
852 : */
853 238824 : maxDependentObjects = 128; /* arbitrary initial allocation */
854 238824 : dependentObjects = palloc_array(ObjectAddressAndFlags, maxDependentObjects);
855 238824 : numDependentObjects = 0;
856 :
857 238824 : ScanKeyInit(&key[0],
858 : Anum_pg_depend_refclassid,
859 : BTEqualStrategyNumber, F_OIDEQ,
860 238824 : ObjectIdGetDatum(object->classId));
861 238824 : ScanKeyInit(&key[1],
862 : Anum_pg_depend_refobjid,
863 : BTEqualStrategyNumber, F_OIDEQ,
864 238824 : ObjectIdGetDatum(object->objectId));
865 238824 : if (object->objectSubId != 0)
866 : {
867 2218 : ScanKeyInit(&key[2],
868 : Anum_pg_depend_refobjsubid,
869 : BTEqualStrategyNumber, F_INT4EQ,
870 2218 : Int32GetDatum(object->objectSubId));
871 2218 : nkeys = 3;
872 : }
873 : else
874 236606 : nkeys = 2;
875 :
876 238824 : scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
877 : NULL, nkeys, key);
878 :
879 492044 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
880 : {
881 253220 : Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
882 : int subflags;
883 :
884 253220 : otherObject.classId = foundDep->classid;
885 253220 : otherObject.objectId = foundDep->objid;
886 253220 : otherObject.objectSubId = foundDep->objsubid;
887 :
888 : /*
889 : * If what we found is a sub-object of the current object, just ignore
890 : * it. (Normally, such a dependency is implicit, but we must make
891 : * explicit ones in some cases involving partitioning.)
892 : */
893 253220 : if (otherObject.classId == object->classId &&
894 105844 : otherObject.objectId == object->objectId &&
895 4832 : object->objectSubId == 0)
896 4832 : continue;
897 :
898 : /*
899 : * Must lock the dependent object before recursing to it.
900 : */
901 248388 : AcquireDeletionLock(&otherObject, 0);
902 :
903 : /*
904 : * The dependent object might have been deleted while we waited to
905 : * lock it; if so, we don't need to do anything more with it. We can
906 : * test this cheaply and independently of the object's type by seeing
907 : * if the pg_depend tuple we are looking at is still live. (If the
908 : * object got deleted, the tuple would have been deleted too.)
909 : */
910 248388 : if (!systable_recheck_tuple(scan, tup))
911 : {
912 : /* release the now-useless lock */
913 0 : ReleaseDeletionLock(&otherObject);
914 : /* and continue scanning for dependencies */
915 0 : continue;
916 : }
917 :
918 : /*
919 : * We do need to delete it, so identify objflags to be passed down,
920 : * which depend on the dependency type.
921 : */
922 248388 : switch (foundDep->deptype)
923 : {
924 33530 : case DEPENDENCY_NORMAL:
925 33530 : subflags = DEPFLAG_NORMAL;
926 33530 : break;
927 77498 : case DEPENDENCY_AUTO:
928 : case DEPENDENCY_AUTO_EXTENSION:
929 77498 : subflags = DEPFLAG_AUTO;
930 77498 : break;
931 122072 : case DEPENDENCY_INTERNAL:
932 122072 : subflags = DEPFLAG_INTERNAL;
933 122072 : break;
934 10502 : case DEPENDENCY_PARTITION_PRI:
935 : case DEPENDENCY_PARTITION_SEC:
936 10502 : subflags = DEPFLAG_PARTITION;
937 10502 : break;
938 4786 : case DEPENDENCY_EXTENSION:
939 4786 : subflags = DEPFLAG_EXTENSION;
940 4786 : break;
941 0 : default:
942 0 : elog(ERROR, "unrecognized dependency type '%c' for %s",
943 : foundDep->deptype, getObjectDescription(object, false));
944 : subflags = 0; /* keep compiler quiet */
945 : break;
946 : }
947 :
948 : /* And add it to the pending-objects list */
949 248388 : if (numDependentObjects >= maxDependentObjects)
950 : {
951 : /* enlarge array if needed */
952 36 : maxDependentObjects *= 2;
953 : dependentObjects = (ObjectAddressAndFlags *)
954 36 : repalloc(dependentObjects,
955 : maxDependentObjects * sizeof(ObjectAddressAndFlags));
956 : }
957 :
958 248388 : dependentObjects[numDependentObjects].obj = otherObject;
959 248388 : dependentObjects[numDependentObjects].subflags = subflags;
960 248388 : numDependentObjects++;
961 : }
962 :
963 238824 : systable_endscan(scan);
964 :
965 : /*
966 : * Now we can sort the dependent objects into a stable visitation order.
967 : * It's safe to use object_address_comparator here since the obj field is
968 : * first within ObjectAddressAndFlags.
969 : */
970 238824 : if (numDependentObjects > 1)
971 52054 : qsort(dependentObjects, numDependentObjects,
972 : sizeof(ObjectAddressAndFlags),
973 : object_address_comparator);
974 :
975 : /*
976 : * Now recurse to the dependent objects. We must visit them first since
977 : * they have to be deleted before the current object.
978 : */
979 238824 : mystack.object = object; /* set up a new stack level */
980 238824 : mystack.flags = objflags;
981 238824 : mystack.next = stack;
982 :
983 487212 : for (int i = 0; i < numDependentObjects; i++)
984 : {
985 248388 : ObjectAddressAndFlags *depObj = dependentObjects + i;
986 :
987 248388 : findDependentObjects(&depObj->obj,
988 : depObj->subflags,
989 : flags,
990 : &mystack,
991 : targetObjects,
992 : pendingObjects,
993 : depRel);
994 : }
995 :
996 238824 : pfree(dependentObjects);
997 :
998 : /*
999 : * Finally, we can add the target object to targetObjects. Be careful to
1000 : * include any flags that were passed back down to us from inner recursion
1001 : * levels. Record the "dependee" as being either the most important
1002 : * partition owner if there is one, else the object we recursed from, if
1003 : * any. (The logic in reportDependentObjects() is such that it can only
1004 : * need one of those objects.)
1005 : */
1006 238824 : extra.flags = mystack.flags;
1007 238824 : if (extra.flags & DEPFLAG_IS_PART)
1008 5702 : extra.dependee = partitionObject;
1009 233122 : else if (stack)
1010 193096 : extra.dependee = *stack->object;
1011 : else
1012 40026 : memset(&extra.dependee, 0, sizeof(extra.dependee));
1013 238824 : add_exact_object_address_extra(object, &extra, targetObjects);
1014 : }
1015 :
1016 : /*
1017 : * reportDependentObjects - report about dependencies, and fail if RESTRICT
1018 : *
1019 : * Tell the user about dependent objects that we are going to delete
1020 : * (or would need to delete, but are prevented by RESTRICT mode);
1021 : * then error out if there are any and it's not CASCADE mode.
1022 : *
1023 : * targetObjects: list of objects that are scheduled to be deleted
1024 : * behavior: RESTRICT or CASCADE
1025 : * flags: other flags for the deletion operation
1026 : * origObject: base object of deletion, or NULL if not available
1027 : * (the latter case occurs in DROP OWNED)
1028 : */
1029 : static void
1030 35038 : reportDependentObjects(const ObjectAddresses *targetObjects,
1031 : DropBehavior behavior,
1032 : int flags,
1033 : const ObjectAddress *origObject)
1034 : {
1035 35038 : int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
1036 35038 : bool ok = true;
1037 : StringInfoData clientdetail;
1038 : StringInfoData logdetail;
1039 35038 : int numReportedClient = 0;
1040 35038 : int numNotReportedClient = 0;
1041 : int i;
1042 :
1043 : /*
1044 : * If we need to delete any partition-dependent objects, make sure that
1045 : * we're deleting at least one of their partition dependencies, too. That
1046 : * can be detected by checking that we reached them by a PARTITION
1047 : * dependency at some point.
1048 : *
1049 : * We just report the first such object, as in most cases the only way to
1050 : * trigger this complaint is to explicitly try to delete one partition of
1051 : * a partitioned object.
1052 : */
1053 273832 : for (i = 0; i < targetObjects->numrefs; i++)
1054 : {
1055 238824 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1056 :
1057 238824 : if ((extra->flags & DEPFLAG_IS_PART) &&
1058 5702 : !(extra->flags & DEPFLAG_PARTITION))
1059 : {
1060 30 : const ObjectAddress *object = &targetObjects->refs[i];
1061 30 : char *otherObjDesc = getObjectDescription(&extra->dependee,
1062 : false);
1063 :
1064 30 : ereport(ERROR,
1065 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1066 : errmsg("cannot drop %s because %s requires it",
1067 : getObjectDescription(object, false), otherObjDesc),
1068 : errhint("You can drop %s instead.", otherObjDesc)));
1069 : }
1070 : }
1071 :
1072 : /*
1073 : * If no error is to be thrown, and the msglevel is too low to be shown to
1074 : * either client or server log, there's no need to do any of the rest of
1075 : * the work.
1076 : */
1077 35008 : if (behavior == DROP_CASCADE &&
1078 3518 : !message_level_is_interesting(msglevel))
1079 964 : return;
1080 :
1081 : /*
1082 : * We limit the number of dependencies reported to the client to
1083 : * MAX_REPORTED_DEPS, since client software may not deal well with
1084 : * enormous error strings. The server log always gets a full report.
1085 : */
1086 : #define MAX_REPORTED_DEPS 100
1087 :
1088 34044 : initStringInfo(&clientdetail);
1089 34044 : initStringInfo(&logdetail);
1090 :
1091 : /*
1092 : * We process the list back to front (ie, in dependency order not deletion
1093 : * order), since this makes for a more understandable display.
1094 : */
1095 260268 : for (i = targetObjects->numrefs - 1; i >= 0; i--)
1096 : {
1097 226224 : const ObjectAddress *obj = &targetObjects->refs[i];
1098 226224 : const ObjectAddressExtra *extra = &targetObjects->extras[i];
1099 : char *objDesc;
1100 :
1101 : /* Ignore the original deletion target(s) */
1102 226224 : if (extra->flags & DEPFLAG_ORIGINAL)
1103 39870 : continue;
1104 :
1105 : /* Also ignore sub-objects; we'll report the whole object elsewhere */
1106 186354 : if (extra->flags & DEPFLAG_SUBOBJECT)
1107 0 : continue;
1108 :
1109 186354 : objDesc = getObjectDescription(obj, false);
1110 :
1111 : /* An object being dropped concurrently doesn't need to be reported */
1112 186354 : if (objDesc == NULL)
1113 0 : continue;
1114 :
1115 : /*
1116 : * If, at any stage of the recursive search, we reached the object via
1117 : * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1118 : * okay to delete it even in RESTRICT mode.
1119 : */
1120 186354 : if (extra->flags & (DEPFLAG_AUTO |
1121 : DEPFLAG_INTERNAL |
1122 : DEPFLAG_PARTITION |
1123 : DEPFLAG_EXTENSION))
1124 : {
1125 : /*
1126 : * auto-cascades are reported at DEBUG2, not msglevel. We don't
1127 : * try to combine them with the regular message because the
1128 : * results are too confusing when client_min_messages and
1129 : * log_min_messages are different.
1130 : */
1131 177448 : ereport(DEBUG2,
1132 : (errmsg_internal("drop auto-cascades to %s",
1133 : objDesc)));
1134 : }
1135 8906 : else if (behavior == DROP_RESTRICT)
1136 : {
1137 520 : char *otherDesc = getObjectDescription(&extra->dependee,
1138 : false);
1139 :
1140 520 : if (otherDesc)
1141 : {
1142 520 : if (numReportedClient < MAX_REPORTED_DEPS)
1143 : {
1144 : /* separate entries with a newline */
1145 520 : if (clientdetail.len != 0)
1146 206 : appendStringInfoChar(&clientdetail, '\n');
1147 520 : appendStringInfo(&clientdetail, _("%s depends on %s"),
1148 : objDesc, otherDesc);
1149 520 : numReportedClient++;
1150 : }
1151 : else
1152 0 : numNotReportedClient++;
1153 : /* separate entries with a newline */
1154 520 : if (logdetail.len != 0)
1155 206 : appendStringInfoChar(&logdetail, '\n');
1156 520 : appendStringInfo(&logdetail, _("%s depends on %s"),
1157 : objDesc, otherDesc);
1158 520 : pfree(otherDesc);
1159 : }
1160 : else
1161 0 : numNotReportedClient++;
1162 520 : ok = false;
1163 : }
1164 : else
1165 : {
1166 8386 : if (numReportedClient < MAX_REPORTED_DEPS)
1167 : {
1168 : /* separate entries with a newline */
1169 6548 : if (clientdetail.len != 0)
1170 5062 : appendStringInfoChar(&clientdetail, '\n');
1171 6548 : appendStringInfo(&clientdetail, _("drop cascades to %s"),
1172 : objDesc);
1173 6548 : numReportedClient++;
1174 : }
1175 : else
1176 1838 : numNotReportedClient++;
1177 : /* separate entries with a newline */
1178 8386 : if (logdetail.len != 0)
1179 6900 : appendStringInfoChar(&logdetail, '\n');
1180 8386 : appendStringInfo(&logdetail, _("drop cascades to %s"),
1181 : objDesc);
1182 : }
1183 :
1184 186354 : pfree(objDesc);
1185 : }
1186 :
1187 34044 : if (numNotReportedClient > 0)
1188 20 : appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1189 : "(see server log for list)",
1190 : "\nand %d other objects "
1191 : "(see server log for list)",
1192 : numNotReportedClient),
1193 : numNotReportedClient);
1194 :
1195 34044 : if (!ok)
1196 : {
1197 314 : if (origObject)
1198 308 : ereport(ERROR,
1199 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1200 : errmsg("cannot drop %s because other objects depend on it",
1201 : getObjectDescription(origObject, false)),
1202 : errdetail_internal("%s", clientdetail.data),
1203 : errdetail_log("%s", logdetail.data),
1204 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1205 : else
1206 6 : ereport(ERROR,
1207 : (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1208 : errmsg("cannot drop desired object(s) because other objects depend on them"),
1209 : errdetail_internal("%s", clientdetail.data),
1210 : errdetail_log("%s", logdetail.data),
1211 : errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1212 : }
1213 33730 : else if (numReportedClient > 1)
1214 : {
1215 708 : ereport(msglevel,
1216 : (errmsg_plural("drop cascades to %d other object",
1217 : "drop cascades to %d other objects",
1218 : numReportedClient + numNotReportedClient,
1219 : numReportedClient + numNotReportedClient),
1220 : errdetail_internal("%s", clientdetail.data),
1221 : errdetail_log("%s", logdetail.data)));
1222 : }
1223 33022 : else if (numReportedClient == 1)
1224 : {
1225 : /* we just use the single item as-is */
1226 778 : ereport(msglevel,
1227 : (errmsg_internal("%s", clientdetail.data)));
1228 : }
1229 :
1230 33730 : pfree(clientdetail.data);
1231 33730 : pfree(logdetail.data);
1232 : }
1233 :
1234 : /*
1235 : * Drop an object by OID. Works for most catalogs, if no special processing
1236 : * is needed.
1237 : */
1238 : static void
1239 6166 : DropObjectById(const ObjectAddress *object)
1240 : {
1241 : int cacheId;
1242 : Relation rel;
1243 : HeapTuple tup;
1244 :
1245 6166 : cacheId = get_object_catcache_oid(object->classId);
1246 :
1247 6166 : rel = table_open(object->classId, RowExclusiveLock);
1248 :
1249 : /*
1250 : * Use the system cache for the oid column, if one exists.
1251 : */
1252 6166 : if (cacheId >= 0)
1253 : {
1254 2186 : tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1255 2186 : if (!HeapTupleIsValid(tup))
1256 0 : elog(ERROR, "cache lookup failed for %s %u",
1257 : get_object_class_descr(object->classId), object->objectId);
1258 :
1259 2186 : CatalogTupleDelete(rel, &tup->t_self);
1260 :
1261 2186 : ReleaseSysCache(tup);
1262 : }
1263 : else
1264 : {
1265 : ScanKeyData skey[1];
1266 : SysScanDesc scan;
1267 :
1268 3980 : ScanKeyInit(&skey[0],
1269 3980 : get_object_attnum_oid(object->classId),
1270 : BTEqualStrategyNumber, F_OIDEQ,
1271 3980 : ObjectIdGetDatum(object->objectId));
1272 :
1273 3980 : scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1274 : NULL, 1, skey);
1275 :
1276 : /* we expect exactly one match */
1277 3980 : tup = systable_getnext(scan);
1278 3980 : if (!HeapTupleIsValid(tup))
1279 0 : elog(ERROR, "could not find tuple for %s %u",
1280 : get_object_class_descr(object->classId), object->objectId);
1281 :
1282 3980 : CatalogTupleDelete(rel, &tup->t_self);
1283 :
1284 3980 : systable_endscan(scan);
1285 : }
1286 :
1287 6166 : table_close(rel, RowExclusiveLock);
1288 6166 : }
1289 :
1290 : /*
1291 : * deleteOneObject: delete a single object for performDeletion.
1292 : *
1293 : * *depRel is the already-open pg_depend relation.
1294 : */
1295 : static void
1296 231028 : deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1297 : {
1298 : ScanKeyData key[3];
1299 : int nkeys;
1300 : SysScanDesc scan;
1301 : HeapTuple tup;
1302 :
1303 : /* DROP hook of the objects being removed */
1304 231028 : InvokeObjectDropHookArg(object->classId, object->objectId,
1305 : object->objectSubId, flags);
1306 :
1307 : /*
1308 : * Close depRel if we are doing a drop concurrently. The object deletion
1309 : * subroutine will commit the current transaction, so we can't keep the
1310 : * relation open across doDeletion().
1311 : */
1312 231028 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1313 108 : table_close(*depRel, RowExclusiveLock);
1314 :
1315 : /*
1316 : * Delete the object itself, in an object-type-dependent way.
1317 : *
1318 : * We used to do this after removing the outgoing dependency links, but it
1319 : * seems just as reasonable to do it beforehand. In the concurrent case
1320 : * we *must* do it in this order, because we can't make any transactional
1321 : * updates before calling doDeletion() --- they'd get committed right
1322 : * away, which is not cool if the deletion then fails.
1323 : */
1324 231028 : doDeletion(object, flags);
1325 :
1326 : /*
1327 : * Reopen depRel if we closed it above
1328 : */
1329 231018 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1330 108 : *depRel = table_open(DependRelationId, RowExclusiveLock);
1331 :
1332 : /*
1333 : * Now remove any pg_depend records that link from this object to others.
1334 : * (Any records linking to this object should be gone already.)
1335 : *
1336 : * When dropping a whole object (subId = 0), remove all pg_depend records
1337 : * for its sub-objects too.
1338 : */
1339 231018 : ScanKeyInit(&key[0],
1340 : Anum_pg_depend_classid,
1341 : BTEqualStrategyNumber, F_OIDEQ,
1342 231018 : ObjectIdGetDatum(object->classId));
1343 231018 : ScanKeyInit(&key[1],
1344 : Anum_pg_depend_objid,
1345 : BTEqualStrategyNumber, F_OIDEQ,
1346 231018 : ObjectIdGetDatum(object->objectId));
1347 231018 : if (object->objectSubId != 0)
1348 : {
1349 2122 : ScanKeyInit(&key[2],
1350 : Anum_pg_depend_objsubid,
1351 : BTEqualStrategyNumber, F_INT4EQ,
1352 2122 : Int32GetDatum(object->objectSubId));
1353 2122 : nkeys = 3;
1354 : }
1355 : else
1356 228896 : nkeys = 2;
1357 :
1358 231018 : scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1359 : NULL, nkeys, key);
1360 :
1361 548692 : while (HeapTupleIsValid(tup = systable_getnext(scan)))
1362 : {
1363 317674 : CatalogTupleDelete(*depRel, &tup->t_self);
1364 : }
1365 :
1366 231018 : systable_endscan(scan);
1367 :
1368 : /*
1369 : * Delete shared dependency references related to this object. Again, if
1370 : * subId = 0, remove records for sub-objects too.
1371 : */
1372 231018 : deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1373 231018 : object->objectSubId);
1374 :
1375 :
1376 : /*
1377 : * Delete any comments, security labels, or initial privileges associated
1378 : * with this object. (This is a convenient place to do these things,
1379 : * rather than having every object type know to do it.) As above, all
1380 : * these functions must remove records for sub-objects too if the subid is
1381 : * zero.
1382 : */
1383 231018 : DeleteComments(object->objectId, object->classId, object->objectSubId);
1384 231018 : DeleteSecurityLabel(object);
1385 231018 : DeleteInitPrivs(object);
1386 :
1387 : /*
1388 : * CommandCounterIncrement here to ensure that preceding changes are all
1389 : * visible to the next deletion step.
1390 : */
1391 231018 : CommandCounterIncrement();
1392 :
1393 : /*
1394 : * And we're done!
1395 : */
1396 231018 : }
1397 :
1398 : /*
1399 : * doDeletion: actually delete a single object
1400 : */
1401 : static void
1402 231028 : doDeletion(const ObjectAddress *object, int flags)
1403 : {
1404 231028 : switch (object->classId)
1405 : {
1406 79098 : case RelationRelationId:
1407 : {
1408 79098 : char relKind = get_rel_relkind(object->objectId);
1409 :
1410 79098 : if (relKind == RELKIND_INDEX ||
1411 : relKind == RELKIND_PARTITIONED_INDEX)
1412 25272 : {
1413 25272 : bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1414 25272 : bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1415 :
1416 : Assert(object->objectSubId == 0);
1417 25272 : index_drop(object->objectId, concurrent, concurrent_lock_mode);
1418 : }
1419 : else
1420 : {
1421 53826 : if (object->objectSubId != 0)
1422 2122 : RemoveAttributeById(object->objectId,
1423 2122 : object->objectSubId);
1424 : else
1425 51704 : heap_drop_with_catalog(object->objectId);
1426 : }
1427 :
1428 : /*
1429 : * for a sequence, in addition to dropping the heap, also
1430 : * delete pg_sequence tuple
1431 : */
1432 79092 : if (relKind == RELKIND_SEQUENCE)
1433 1034 : DeleteSequenceTuple(object->objectId);
1434 79092 : break;
1435 : }
1436 :
1437 8368 : case ProcedureRelationId:
1438 8368 : RemoveFunctionById(object->objectId);
1439 8368 : break;
1440 :
1441 82618 : case TypeRelationId:
1442 82618 : RemoveTypeById(object->objectId);
1443 82618 : break;
1444 :
1445 29108 : case ConstraintRelationId:
1446 29108 : RemoveConstraintById(object->objectId);
1447 29106 : break;
1448 :
1449 3854 : case AttrDefaultRelationId:
1450 3854 : RemoveAttrDefaultById(object->objectId);
1451 3854 : break;
1452 :
1453 94 : case LargeObjectRelationId:
1454 94 : LargeObjectDrop(object->objectId);
1455 94 : break;
1456 :
1457 788 : case OperatorRelationId:
1458 788 : RemoveOperatorById(object->objectId);
1459 788 : break;
1460 :
1461 2948 : case RewriteRelationId:
1462 2948 : RemoveRewriteRuleById(object->objectId);
1463 2946 : break;
1464 :
1465 14924 : case TriggerRelationId:
1466 14924 : RemoveTriggerById(object->objectId);
1467 14924 : break;
1468 :
1469 658 : case StatisticExtRelationId:
1470 658 : RemoveStatisticsById(object->objectId);
1471 658 : break;
1472 :
1473 48 : case TSConfigRelationId:
1474 48 : RemoveTSConfigurationById(object->objectId);
1475 48 : break;
1476 :
1477 164 : case ExtensionRelationId:
1478 164 : RemoveExtensionById(object->objectId);
1479 164 : break;
1480 :
1481 652 : case PolicyRelationId:
1482 652 : RemovePolicyById(object->objectId);
1483 652 : break;
1484 :
1485 192 : case PublicationNamespaceRelationId:
1486 192 : RemovePublicationSchemaById(object->objectId);
1487 192 : break;
1488 :
1489 848 : case PublicationRelRelationId:
1490 848 : RemovePublicationRelById(object->objectId);
1491 848 : break;
1492 :
1493 500 : case PublicationRelationId:
1494 500 : RemovePublicationById(object->objectId);
1495 500 : break;
1496 :
1497 6166 : case CastRelationId:
1498 : case CollationRelationId:
1499 : case ConversionRelationId:
1500 : case LanguageRelationId:
1501 : case OperatorClassRelationId:
1502 : case OperatorFamilyRelationId:
1503 : case AccessMethodRelationId:
1504 : case AccessMethodOperatorRelationId:
1505 : case AccessMethodProcedureRelationId:
1506 : case NamespaceRelationId:
1507 : case TSParserRelationId:
1508 : case TSDictionaryRelationId:
1509 : case TSTemplateRelationId:
1510 : case ForeignDataWrapperRelationId:
1511 : case ForeignServerRelationId:
1512 : case UserMappingRelationId:
1513 : case DefaultAclRelationId:
1514 : case EventTriggerRelationId:
1515 : case TransformRelationId:
1516 : case AuthMemRelationId:
1517 6166 : DropObjectById(object);
1518 6166 : break;
1519 :
1520 : /*
1521 : * These global object types are not supported here.
1522 : */
1523 0 : case AuthIdRelationId:
1524 : case DatabaseRelationId:
1525 : case TableSpaceRelationId:
1526 : case SubscriptionRelationId:
1527 : case ParameterAclRelationId:
1528 0 : elog(ERROR, "global objects cannot be deleted by doDeletion");
1529 : break;
1530 :
1531 0 : default:
1532 0 : elog(ERROR, "unsupported object class: %u", object->classId);
1533 : }
1534 231018 : }
1535 :
1536 : /*
1537 : * AcquireDeletionLock - acquire a suitable lock for deleting an object
1538 : *
1539 : * Accepts the same flags as performDeletion (though currently only
1540 : * PERFORM_DELETION_CONCURRENTLY does anything).
1541 : *
1542 : * We use LockRelation for relations, and otherwise LockSharedObject or
1543 : * LockDatabaseObject as appropriate for the object type.
1544 : */
1545 : void
1546 291418 : AcquireDeletionLock(const ObjectAddress *object, int flags)
1547 : {
1548 291418 : if (object->classId == RelationRelationId)
1549 : {
1550 : /*
1551 : * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1552 : * the index for the moment. index_drop() will promote the lock once
1553 : * it's safe to do so. In all other cases we need full exclusive
1554 : * lock.
1555 : */
1556 100710 : if (flags & PERFORM_DELETION_CONCURRENTLY)
1557 108 : LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1558 : else
1559 100602 : LockRelationOid(object->objectId, AccessExclusiveLock);
1560 : }
1561 190708 : else if (object->classId == AuthMemRelationId)
1562 12 : LockSharedObject(object->classId, object->objectId, 0,
1563 : AccessExclusiveLock);
1564 : else
1565 : {
1566 : /* assume we should lock the whole object not a sub-object */
1567 190696 : LockDatabaseObject(object->classId, object->objectId, 0,
1568 : AccessExclusiveLock);
1569 : }
1570 291418 : }
1571 :
1572 : /*
1573 : * ReleaseDeletionLock - release an object deletion lock
1574 : *
1575 : * Companion to AcquireDeletionLock.
1576 : */
1577 : void
1578 1750 : ReleaseDeletionLock(const ObjectAddress *object)
1579 : {
1580 1750 : if (object->classId == RelationRelationId)
1581 56 : UnlockRelationOid(object->objectId, AccessExclusiveLock);
1582 : else
1583 : /* assume we should lock the whole object not a sub-object */
1584 1694 : UnlockDatabaseObject(object->classId, object->objectId, 0,
1585 : AccessExclusiveLock);
1586 1750 : }
1587 :
1588 : /*
1589 : * recordDependencyOnExpr - find expression dependencies
1590 : *
1591 : * This is used to find the dependencies of rules, constraint expressions,
1592 : * etc.
1593 : *
1594 : * Given an expression or query in node-tree form, find all the objects
1595 : * it refers to (tables, columns, operators, functions, etc). Record
1596 : * a dependency of the specified type from the given depender object
1597 : * to each object mentioned in the expression.
1598 : *
1599 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1600 : * It can be NIL if no such variables are expected.
1601 : */
1602 : void
1603 21032 : recordDependencyOnExpr(const ObjectAddress *depender,
1604 : Node *expr, List *rtable,
1605 : DependencyType behavior)
1606 : {
1607 : ObjectAddresses *addrs;
1608 :
1609 21032 : addrs = new_object_addresses();
1610 :
1611 : /* Collect all dependencies from the expression */
1612 21032 : collectDependenciesOfExpr(addrs, expr, rtable);
1613 :
1614 : /* Remove duplicates */
1615 21032 : eliminate_duplicate_dependencies(addrs);
1616 :
1617 : /* And record 'em */
1618 21032 : recordMultipleDependencies(depender,
1619 21032 : addrs->refs, addrs->numrefs,
1620 : behavior);
1621 :
1622 21032 : free_object_addresses(addrs);
1623 21032 : }
1624 :
1625 : /*
1626 : * collectDependenciesOfExpr - collect expression dependencies
1627 : *
1628 : * This function analyzes an expression or query in node-tree form to
1629 : * find all the objects it refers to (tables, columns, operators,
1630 : * functions, etc.) and adds them to the provided ObjectAddresses
1631 : * structure. Unlike recordDependencyOnExpr, this function does not
1632 : * immediately record the dependencies, allowing the caller to add to,
1633 : * filter, or modify the collected dependencies before recording them.
1634 : *
1635 : * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1636 : * It can be NIL if no such variables are expected.
1637 : *
1638 : * Note: the returned list may well contain duplicates. The caller should
1639 : * de-duplicate before recording the dependencies. Within this file, callers
1640 : * must call eliminate_duplicate_dependencies(). External callers typically
1641 : * go through record_object_address_dependencies() which will see to that.
1642 : * This choice allows collecting dependencies from multiple sources without
1643 : * redundant de-duplication work.
1644 : */
1645 : void
1646 48514 : collectDependenciesOfExpr(ObjectAddresses *addrs,
1647 : Node *expr, List *rtable)
1648 : {
1649 : find_expr_references_context context;
1650 :
1651 48514 : context.addrs = addrs;
1652 :
1653 : /* Set up interpretation for Vars at varlevelsup = 0 */
1654 48514 : context.rtables = list_make1(rtable);
1655 :
1656 : /* Scan the expression tree for referenceable objects */
1657 48514 : find_expr_references_walker(expr, &context);
1658 48508 : }
1659 :
1660 : /*
1661 : * recordDependencyOnSingleRelExpr - find expression dependencies
1662 : *
1663 : * As above, but only one relation is expected to be referenced (with
1664 : * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1665 : * range table. An additional frammish is that dependencies on that
1666 : * relation's component columns will be marked with 'self_behavior',
1667 : * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1668 : * is true, those dependencies are reversed so that the columns are made
1669 : * to depend on the table not vice versa.
1670 : *
1671 : * NOTE: the caller should ensure that a whole-table dependency on the
1672 : * specified relation is created separately, if one is needed. In particular,
1673 : * a whole-row Var "relation.*" will not cause this routine to emit any
1674 : * dependency item. This is appropriate behavior for subexpressions of an
1675 : * ordinary query, so other cases need to cope as necessary.
1676 : */
1677 : void
1678 11226 : recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1679 : Node *expr, Oid relId,
1680 : DependencyType behavior,
1681 : DependencyType self_behavior,
1682 : bool reverse_self)
1683 : {
1684 : find_expr_references_context context;
1685 11226 : RangeTblEntry rte = {0};
1686 :
1687 11226 : context.addrs = new_object_addresses();
1688 :
1689 : /* We gin up a rather bogus rangetable list to handle Vars */
1690 11226 : rte.type = T_RangeTblEntry;
1691 11226 : rte.rtekind = RTE_RELATION;
1692 11226 : rte.relid = relId;
1693 11226 : rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1694 11226 : rte.rellockmode = AccessShareLock;
1695 :
1696 11226 : context.rtables = list_make1(list_make1(&rte));
1697 :
1698 : /* Scan the expression tree for referenceable objects */
1699 11226 : find_expr_references_walker(expr, &context);
1700 :
1701 : /* Remove any duplicates */
1702 11214 : eliminate_duplicate_dependencies(context.addrs);
1703 :
1704 : /* Separate self-dependencies if necessary */
1705 11214 : if ((behavior != self_behavior || reverse_self) &&
1706 1900 : context.addrs->numrefs > 0)
1707 : {
1708 : ObjectAddresses *self_addrs;
1709 : ObjectAddress *outobj;
1710 : int oldref,
1711 : outrefs;
1712 :
1713 1894 : self_addrs = new_object_addresses();
1714 :
1715 1894 : outobj = context.addrs->refs;
1716 1894 : outrefs = 0;
1717 7760 : for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1718 : {
1719 5866 : ObjectAddress *thisobj = context.addrs->refs + oldref;
1720 :
1721 5866 : if (thisobj->classId == RelationRelationId &&
1722 2408 : thisobj->objectId == relId)
1723 : {
1724 : /* Move this ref into self_addrs */
1725 2336 : add_exact_object_address(thisobj, self_addrs);
1726 : }
1727 : else
1728 : {
1729 : /* Keep it in context.addrs */
1730 3530 : *outobj = *thisobj;
1731 3530 : outobj++;
1732 3530 : outrefs++;
1733 : }
1734 : }
1735 1894 : context.addrs->numrefs = outrefs;
1736 :
1737 : /* Record the self-dependencies with the appropriate direction */
1738 1894 : if (!reverse_self)
1739 1674 : recordMultipleDependencies(depender,
1740 1674 : self_addrs->refs, self_addrs->numrefs,
1741 : self_behavior);
1742 : else
1743 : {
1744 : /* Can't use recordMultipleDependencies, so do it the hard way */
1745 : int selfref;
1746 :
1747 522 : for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1748 : {
1749 302 : ObjectAddress *thisobj = self_addrs->refs + selfref;
1750 :
1751 302 : recordDependencyOn(thisobj, depender, self_behavior);
1752 : }
1753 : }
1754 :
1755 1894 : free_object_addresses(self_addrs);
1756 : }
1757 :
1758 : /* Record the external dependencies */
1759 11214 : recordMultipleDependencies(depender,
1760 11214 : context.addrs->refs, context.addrs->numrefs,
1761 : behavior);
1762 :
1763 11214 : free_object_addresses(context.addrs);
1764 11214 : }
1765 :
1766 : /*
1767 : * Recursively search an expression tree for object references.
1768 : *
1769 : * Note: in many cases we do not need to create dependencies on the datatypes
1770 : * involved in an expression, because we'll have an indirect dependency via
1771 : * some other object. For instance Var nodes depend on a column which depends
1772 : * on the datatype, and OpExpr nodes depend on the operator which depends on
1773 : * the datatype. However we do need a type dependency if there is no such
1774 : * indirect dependency, as for example in Const and CoerceToDomain nodes.
1775 : *
1776 : * Similarly, we don't need to create dependencies on collations except where
1777 : * the collation is being freshly introduced to the expression.
1778 : */
1779 : static bool
1780 3841412 : find_expr_references_walker(Node *node,
1781 : find_expr_references_context *context)
1782 : {
1783 3841412 : if (node == NULL)
1784 1286608 : return false;
1785 2554804 : if (IsA(node, Var))
1786 : {
1787 651850 : Var *var = (Var *) node;
1788 : List *rtable;
1789 : RangeTblEntry *rte;
1790 :
1791 : /* Find matching rtable entry, or complain if not found */
1792 651850 : if (var->varlevelsup >= list_length(context->rtables))
1793 0 : elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1794 651850 : rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1795 651850 : if (var->varno <= 0 || var->varno > list_length(rtable))
1796 0 : elog(ERROR, "invalid varno %d", var->varno);
1797 651850 : rte = rt_fetch(var->varno, rtable);
1798 :
1799 : /*
1800 : * A whole-row Var references no specific columns, so adds no new
1801 : * dependency. (We assume that there is a whole-table dependency
1802 : * arising from each underlying rangetable entry. While we could
1803 : * record such a dependency when finding a whole-row Var that
1804 : * references a relation directly, it's quite unclear how to extend
1805 : * that to whole-row Vars for JOINs, so it seems better to leave the
1806 : * responsibility with the range table. Note that this poses some
1807 : * risks for identifying dependencies of stand-alone expressions:
1808 : * whole-table references may need to be created separately.)
1809 : */
1810 651850 : if (var->varattno == InvalidAttrNumber)
1811 11312 : return false;
1812 640538 : if (rte->rtekind == RTE_RELATION)
1813 : {
1814 : /* If it's a plain relation, reference this column */
1815 458604 : add_object_address(RelationRelationId, rte->relid, var->varattno,
1816 : context->addrs);
1817 : }
1818 181934 : else if (rte->rtekind == RTE_FUNCTION)
1819 : {
1820 : /* Might need to add a dependency on a composite type's column */
1821 : /* (done out of line, because it's a bit bulky) */
1822 94080 : process_function_rte_ref(rte, var->varattno, context);
1823 : }
1824 :
1825 : /*
1826 : * Vars referencing other RTE types require no additional work. In
1827 : * particular, a join alias Var can be ignored, because it must
1828 : * reference a merged USING column. The relevant join input columns
1829 : * will also be referenced in the join qual, and any type coercion
1830 : * functions involved in the alias expression will be dealt with when
1831 : * we scan the RTE itself.
1832 : */
1833 640538 : return false;
1834 : }
1835 1902954 : else if (IsA(node, Const))
1836 : {
1837 310442 : Const *con = (Const *) node;
1838 : Oid objoid;
1839 :
1840 : /* A constant must depend on the constant's datatype */
1841 310442 : add_object_address(TypeRelationId, con->consttype, 0,
1842 : context->addrs);
1843 :
1844 : /*
1845 : * We must also depend on the constant's collation: it could be
1846 : * different from the datatype's, if a CollateExpr was const-folded to
1847 : * a simple constant. However we can save work in the most common
1848 : * case where the collation is "default", since we know that's pinned.
1849 : */
1850 310442 : if (OidIsValid(con->constcollid) &&
1851 129006 : con->constcollid != DEFAULT_COLLATION_OID)
1852 32100 : add_object_address(CollationRelationId, con->constcollid, 0,
1853 : context->addrs);
1854 :
1855 : /*
1856 : * If it's a regclass or similar literal referring to an existing
1857 : * object, add a reference to that object. (Currently, only the
1858 : * regclass and regconfig cases have any likely use, but we may as
1859 : * well handle all the OID-alias datatypes consistently.)
1860 : */
1861 310442 : if (!con->constisnull)
1862 : {
1863 260360 : switch (con->consttype)
1864 : {
1865 0 : case REGPROCOID:
1866 : case REGPROCEDUREOID:
1867 0 : objoid = DatumGetObjectId(con->constvalue);
1868 0 : if (SearchSysCacheExists1(PROCOID,
1869 : ObjectIdGetDatum(objoid)))
1870 0 : add_object_address(ProcedureRelationId, objoid, 0,
1871 : context->addrs);
1872 0 : break;
1873 0 : case REGOPEROID:
1874 : case REGOPERATOROID:
1875 0 : objoid = DatumGetObjectId(con->constvalue);
1876 0 : if (SearchSysCacheExists1(OPEROID,
1877 : ObjectIdGetDatum(objoid)))
1878 0 : add_object_address(OperatorRelationId, objoid, 0,
1879 : context->addrs);
1880 0 : break;
1881 7906 : case REGCLASSOID:
1882 7906 : objoid = DatumGetObjectId(con->constvalue);
1883 7906 : if (SearchSysCacheExists1(RELOID,
1884 : ObjectIdGetDatum(objoid)))
1885 7906 : add_object_address(RelationRelationId, objoid, 0,
1886 : context->addrs);
1887 7906 : break;
1888 0 : case REGTYPEOID:
1889 0 : objoid = DatumGetObjectId(con->constvalue);
1890 0 : if (SearchSysCacheExists1(TYPEOID,
1891 : ObjectIdGetDatum(objoid)))
1892 0 : add_object_address(TypeRelationId, objoid, 0,
1893 : context->addrs);
1894 0 : break;
1895 0 : case REGCOLLATIONOID:
1896 0 : objoid = DatumGetObjectId(con->constvalue);
1897 0 : if (SearchSysCacheExists1(COLLOID,
1898 : ObjectIdGetDatum(objoid)))
1899 0 : add_object_address(CollationRelationId, objoid, 0,
1900 : context->addrs);
1901 0 : break;
1902 0 : case REGCONFIGOID:
1903 0 : objoid = DatumGetObjectId(con->constvalue);
1904 0 : if (SearchSysCacheExists1(TSCONFIGOID,
1905 : ObjectIdGetDatum(objoid)))
1906 0 : add_object_address(TSConfigRelationId, objoid, 0,
1907 : context->addrs);
1908 0 : break;
1909 0 : case REGDICTIONARYOID:
1910 0 : objoid = DatumGetObjectId(con->constvalue);
1911 0 : if (SearchSysCacheExists1(TSDICTOID,
1912 : ObjectIdGetDatum(objoid)))
1913 0 : add_object_address(TSDictionaryRelationId, objoid, 0,
1914 : context->addrs);
1915 0 : break;
1916 :
1917 196 : case REGNAMESPACEOID:
1918 196 : objoid = DatumGetObjectId(con->constvalue);
1919 196 : if (SearchSysCacheExists1(NAMESPACEOID,
1920 : ObjectIdGetDatum(objoid)))
1921 196 : add_object_address(NamespaceRelationId, objoid, 0,
1922 : context->addrs);
1923 196 : break;
1924 :
1925 : /*
1926 : * Dependencies for regrole should be shared among all
1927 : * databases, so explicitly inhibit to have dependencies.
1928 : */
1929 6 : case REGROLEOID:
1930 6 : ereport(ERROR,
1931 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1932 : errmsg("constant of the type %s cannot be used here",
1933 : "regrole")));
1934 : break;
1935 :
1936 : /*
1937 : * Dependencies for regdatabase should be shared among all
1938 : * databases, so explicitly inhibit to have dependencies.
1939 : */
1940 6 : case REGDATABASEOID:
1941 6 : ereport(ERROR,
1942 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1943 : errmsg("constant of the type %s cannot be used here",
1944 : "regdatabase")));
1945 : break;
1946 : }
1947 : }
1948 310430 : return false;
1949 : }
1950 1592512 : else if (IsA(node, Param))
1951 : {
1952 17930 : Param *param = (Param *) node;
1953 :
1954 : /* A parameter must depend on the parameter's datatype */
1955 17930 : add_object_address(TypeRelationId, param->paramtype, 0,
1956 : context->addrs);
1957 : /* and its collation, just as for Consts */
1958 17930 : if (OidIsValid(param->paramcollid) &&
1959 4278 : param->paramcollid != DEFAULT_COLLATION_OID)
1960 2940 : add_object_address(CollationRelationId, param->paramcollid, 0,
1961 : context->addrs);
1962 : }
1963 1574582 : else if (IsA(node, FuncExpr))
1964 : {
1965 155474 : FuncExpr *funcexpr = (FuncExpr *) node;
1966 :
1967 155474 : add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1968 : context->addrs);
1969 : /* fall through to examine arguments */
1970 : }
1971 1419108 : else if (IsA(node, OpExpr))
1972 : {
1973 174378 : OpExpr *opexpr = (OpExpr *) node;
1974 :
1975 174378 : add_object_address(OperatorRelationId, opexpr->opno, 0,
1976 : context->addrs);
1977 : /* fall through to examine arguments */
1978 : }
1979 1244730 : else if (IsA(node, DistinctExpr))
1980 : {
1981 12 : DistinctExpr *distinctexpr = (DistinctExpr *) node;
1982 :
1983 12 : add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1984 : context->addrs);
1985 : /* fall through to examine arguments */
1986 : }
1987 1244718 : else if (IsA(node, NullIfExpr))
1988 : {
1989 462 : NullIfExpr *nullifexpr = (NullIfExpr *) node;
1990 :
1991 462 : add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1992 : context->addrs);
1993 : /* fall through to examine arguments */
1994 : }
1995 1244256 : else if (IsA(node, ScalarArrayOpExpr))
1996 : {
1997 12950 : ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1998 :
1999 12950 : add_object_address(OperatorRelationId, opexpr->opno, 0,
2000 : context->addrs);
2001 : /* fall through to examine arguments */
2002 : }
2003 1231306 : else if (IsA(node, Aggref))
2004 : {
2005 3628 : Aggref *aggref = (Aggref *) node;
2006 :
2007 3628 : add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
2008 : context->addrs);
2009 : /* fall through to examine arguments */
2010 : }
2011 1227678 : else if (IsA(node, WindowFunc))
2012 : {
2013 298 : WindowFunc *wfunc = (WindowFunc *) node;
2014 :
2015 298 : add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
2016 : context->addrs);
2017 : /* fall through to examine arguments */
2018 : }
2019 1227380 : else if (IsA(node, SubscriptingRef))
2020 : {
2021 5142 : SubscriptingRef *sbsref = (SubscriptingRef *) node;
2022 :
2023 : /*
2024 : * The refexpr should provide adequate dependency on refcontainertype,
2025 : * and that type in turn depends on refelemtype. However, a custom
2026 : * subscripting handler might set refrestype to something different
2027 : * from either of those, in which case we'd better record it.
2028 : */
2029 5142 : if (sbsref->refrestype != sbsref->refcontainertype &&
2030 5016 : sbsref->refrestype != sbsref->refelemtype)
2031 0 : add_object_address(TypeRelationId, sbsref->refrestype, 0,
2032 : context->addrs);
2033 : /* fall through to examine arguments */
2034 : }
2035 1222238 : else if (IsA(node, SubPlan))
2036 : {
2037 : /* Extra work needed here if we ever need this case */
2038 0 : elog(ERROR, "already-planned subqueries not supported");
2039 : }
2040 1222238 : else if (IsA(node, FieldSelect))
2041 : {
2042 27402 : FieldSelect *fselect = (FieldSelect *) node;
2043 27402 : Oid argtype = getBaseType(exprType((Node *) fselect->arg));
2044 27402 : Oid reltype = get_typ_typrelid(argtype);
2045 :
2046 : /*
2047 : * We need a dependency on the specific column named in FieldSelect,
2048 : * assuming we can identify the pg_class OID for it. (Probably we
2049 : * always can at the moment, but in future it might be possible for
2050 : * argtype to be RECORDOID.) If we can make a column dependency then
2051 : * we shouldn't need a dependency on the column's type; but if we
2052 : * can't, make a dependency on the type, as it might not appear
2053 : * anywhere else in the expression.
2054 : */
2055 27402 : if (OidIsValid(reltype))
2056 15178 : add_object_address(RelationRelationId, reltype, fselect->fieldnum,
2057 : context->addrs);
2058 : else
2059 12224 : add_object_address(TypeRelationId, fselect->resulttype, 0,
2060 : context->addrs);
2061 : /* the collation might not be referenced anywhere else, either */
2062 27402 : if (OidIsValid(fselect->resultcollid) &&
2063 3414 : fselect->resultcollid != DEFAULT_COLLATION_OID)
2064 0 : add_object_address(CollationRelationId, fselect->resultcollid, 0,
2065 : context->addrs);
2066 : }
2067 1194836 : else if (IsA(node, FieldStore))
2068 : {
2069 96 : FieldStore *fstore = (FieldStore *) node;
2070 96 : Oid reltype = get_typ_typrelid(fstore->resulttype);
2071 :
2072 : /* similar considerations to FieldSelect, but multiple column(s) */
2073 96 : if (OidIsValid(reltype))
2074 : {
2075 : ListCell *l;
2076 :
2077 192 : foreach(l, fstore->fieldnums)
2078 96 : add_object_address(RelationRelationId, reltype, lfirst_int(l),
2079 : context->addrs);
2080 : }
2081 : else
2082 0 : add_object_address(TypeRelationId, fstore->resulttype, 0,
2083 : context->addrs);
2084 : }
2085 1194740 : else if (IsA(node, RelabelType))
2086 : {
2087 24088 : RelabelType *relab = (RelabelType *) node;
2088 :
2089 : /* since there is no function dependency, need to depend on type */
2090 24088 : add_object_address(TypeRelationId, relab->resulttype, 0,
2091 : context->addrs);
2092 : /* the collation might not be referenced anywhere else, either */
2093 24088 : if (OidIsValid(relab->resultcollid) &&
2094 6220 : relab->resultcollid != DEFAULT_COLLATION_OID)
2095 5684 : add_object_address(CollationRelationId, relab->resultcollid, 0,
2096 : context->addrs);
2097 : }
2098 1170652 : else if (IsA(node, CoerceViaIO))
2099 : {
2100 4540 : CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2101 :
2102 : /* since there is no exposed function, need to depend on type */
2103 4540 : add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2104 : context->addrs);
2105 : /* the collation might not be referenced anywhere else, either */
2106 4540 : if (OidIsValid(iocoerce->resultcollid) &&
2107 3748 : iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2108 1372 : add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2109 : context->addrs);
2110 : }
2111 1166112 : else if (IsA(node, ArrayCoerceExpr))
2112 : {
2113 888 : ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2114 :
2115 : /* as above, depend on type */
2116 888 : add_object_address(TypeRelationId, acoerce->resulttype, 0,
2117 : context->addrs);
2118 : /* the collation might not be referenced anywhere else, either */
2119 888 : if (OidIsValid(acoerce->resultcollid) &&
2120 300 : acoerce->resultcollid != DEFAULT_COLLATION_OID)
2121 196 : add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2122 : context->addrs);
2123 : /* fall through to examine arguments */
2124 : }
2125 1165224 : else if (IsA(node, ConvertRowtypeExpr))
2126 : {
2127 0 : ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2128 :
2129 : /* since there is no function dependency, need to depend on type */
2130 0 : add_object_address(TypeRelationId, cvt->resulttype, 0,
2131 : context->addrs);
2132 : }
2133 1165224 : else if (IsA(node, CollateExpr))
2134 : {
2135 138 : CollateExpr *coll = (CollateExpr *) node;
2136 :
2137 138 : add_object_address(CollationRelationId, coll->collOid, 0,
2138 : context->addrs);
2139 : }
2140 1165086 : else if (IsA(node, RowExpr))
2141 : {
2142 72 : RowExpr *rowexpr = (RowExpr *) node;
2143 :
2144 72 : add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2145 : context->addrs);
2146 : }
2147 1165014 : else if (IsA(node, RowCompareExpr))
2148 : {
2149 24 : RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2150 : ListCell *l;
2151 :
2152 72 : foreach(l, rcexpr->opnos)
2153 : {
2154 48 : add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2155 : context->addrs);
2156 : }
2157 72 : foreach(l, rcexpr->opfamilies)
2158 : {
2159 48 : add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2160 : context->addrs);
2161 : }
2162 : /* fall through to examine arguments */
2163 : }
2164 1164990 : else if (IsA(node, CoerceToDomain))
2165 : {
2166 123828 : CoerceToDomain *cd = (CoerceToDomain *) node;
2167 :
2168 123828 : add_object_address(TypeRelationId, cd->resulttype, 0,
2169 : context->addrs);
2170 : }
2171 1041162 : else if (IsA(node, NextValueExpr))
2172 : {
2173 0 : NextValueExpr *nve = (NextValueExpr *) node;
2174 :
2175 0 : add_object_address(RelationRelationId, nve->seqid, 0,
2176 : context->addrs);
2177 : }
2178 1041162 : else if (IsA(node, OnConflictExpr))
2179 : {
2180 18 : OnConflictExpr *onconflict = (OnConflictExpr *) node;
2181 :
2182 18 : if (OidIsValid(onconflict->constraint))
2183 0 : add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2184 : context->addrs);
2185 : /* fall through to examine arguments */
2186 : }
2187 1041144 : else if (IsA(node, SortGroupClause))
2188 : {
2189 24720 : SortGroupClause *sgc = (SortGroupClause *) node;
2190 :
2191 24720 : add_object_address(OperatorRelationId, sgc->eqop, 0,
2192 : context->addrs);
2193 24720 : if (OidIsValid(sgc->sortop))
2194 24720 : add_object_address(OperatorRelationId, sgc->sortop, 0,
2195 : context->addrs);
2196 24720 : return false;
2197 : }
2198 1016424 : else if (IsA(node, WindowClause))
2199 : {
2200 274 : WindowClause *wc = (WindowClause *) node;
2201 :
2202 274 : if (OidIsValid(wc->startInRangeFunc))
2203 6 : add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2204 : context->addrs);
2205 274 : if (OidIsValid(wc->endInRangeFunc))
2206 6 : add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2207 : context->addrs);
2208 274 : if (OidIsValid(wc->inRangeColl) &&
2209 0 : wc->inRangeColl != DEFAULT_COLLATION_OID)
2210 0 : add_object_address(CollationRelationId, wc->inRangeColl, 0,
2211 : context->addrs);
2212 : /* fall through to examine substructure */
2213 : }
2214 1016150 : else if (IsA(node, CTECycleClause))
2215 : {
2216 12 : CTECycleClause *cc = (CTECycleClause *) node;
2217 :
2218 12 : if (OidIsValid(cc->cycle_mark_type))
2219 12 : add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2220 : context->addrs);
2221 12 : if (OidIsValid(cc->cycle_mark_collation))
2222 6 : add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2223 : context->addrs);
2224 12 : if (OidIsValid(cc->cycle_mark_neop))
2225 12 : add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2226 : context->addrs);
2227 : /* fall through to examine substructure */
2228 : }
2229 1016138 : else if (IsA(node, Query))
2230 : {
2231 : /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2232 68204 : Query *query = (Query *) node;
2233 : ListCell *lc;
2234 : bool result;
2235 :
2236 : /*
2237 : * Add whole-relation refs for each plain relation mentioned in the
2238 : * subquery's rtable, and ensure we add refs for any type-coercion
2239 : * functions used in join alias lists.
2240 : *
2241 : * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2242 : * RTEs, subqueries, etc, so no need to do that here. But we must
2243 : * tell it not to visit join alias lists, or we'll add refs for join
2244 : * input columns whether or not they are actually used in our query.
2245 : *
2246 : * Note: we don't need to worry about collations mentioned in
2247 : * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2248 : * collations referenced in other parts of the Query. We do have to
2249 : * worry about collations mentioned in RTE_FUNCTION, but we take care
2250 : * of those when we recurse to the RangeTblFunction node(s).
2251 : */
2252 227566 : foreach(lc, query->rtable)
2253 : {
2254 159368 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2255 :
2256 159368 : switch (rte->rtekind)
2257 : {
2258 98364 : case RTE_RELATION:
2259 98364 : add_object_address(RelationRelationId, rte->relid, 0,
2260 : context->addrs);
2261 98364 : break;
2262 29856 : case RTE_JOIN:
2263 :
2264 : /*
2265 : * Examine joinaliasvars entries only for merged JOIN
2266 : * USING columns. Only those entries could contain
2267 : * type-coercion functions. Also, their join input
2268 : * columns must be referenced in the join quals, so this
2269 : * won't accidentally add refs to otherwise-unused join
2270 : * input columns. (We want to ref the type coercion
2271 : * functions even if the merged column isn't explicitly
2272 : * used anywhere, to protect possible expansion of the
2273 : * join RTE as a whole-row var, and because it seems like
2274 : * a bad idea to allow dropping a function that's present
2275 : * in our query tree, whether or not it could get called.)
2276 : */
2277 29856 : context->rtables = lcons(query->rtable, context->rtables);
2278 30256 : for (int i = 0; i < rte->joinmergedcols; i++)
2279 : {
2280 400 : Node *aliasvar = list_nth(rte->joinaliasvars, i);
2281 :
2282 400 : if (!IsA(aliasvar, Var))
2283 96 : find_expr_references_walker(aliasvar, context);
2284 : }
2285 29856 : context->rtables = list_delete_first(context->rtables);
2286 29856 : break;
2287 6 : case RTE_NAMEDTUPLESTORE:
2288 :
2289 : /*
2290 : * Cataloged objects cannot depend on tuplestores, because
2291 : * those have no cataloged representation. For now we can
2292 : * call the tuplestore a "transition table" because that's
2293 : * the only kind exposed to SQL, but someday we might have
2294 : * to work harder.
2295 : */
2296 6 : ereport(ERROR,
2297 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2298 : errmsg("transition table \"%s\" cannot be referenced in a persistent object",
2299 : rte->eref->aliasname)));
2300 : break;
2301 31142 : default:
2302 : /* Other RTE types can be ignored here */
2303 31142 : break;
2304 : }
2305 : }
2306 :
2307 : /*
2308 : * If the query is an INSERT or UPDATE, we should create a dependency
2309 : * on each target column, to prevent the specific target column from
2310 : * being dropped. Although we will visit the TargetEntry nodes again
2311 : * during query_tree_walker, we won't have enough context to do this
2312 : * conveniently, so do it here.
2313 : */
2314 68198 : if (query->commandType == CMD_INSERT ||
2315 67730 : query->commandType == CMD_UPDATE)
2316 : {
2317 : RangeTblEntry *rte;
2318 :
2319 1396 : if (query->resultRelation <= 0 ||
2320 698 : query->resultRelation > list_length(query->rtable))
2321 0 : elog(ERROR, "invalid resultRelation %d",
2322 : query->resultRelation);
2323 698 : rte = rt_fetch(query->resultRelation, query->rtable);
2324 698 : if (rte->rtekind == RTE_RELATION)
2325 : {
2326 2094 : foreach(lc, query->targetList)
2327 : {
2328 1396 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
2329 :
2330 1396 : if (tle->resjunk)
2331 6 : continue; /* ignore junk tlist items */
2332 1390 : add_object_address(RelationRelationId, rte->relid, tle->resno,
2333 : context->addrs);
2334 : }
2335 : }
2336 : }
2337 :
2338 : /*
2339 : * Add dependencies on constraints listed in query's constraintDeps
2340 : */
2341 68272 : foreach(lc, query->constraintDeps)
2342 : {
2343 74 : add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2344 : context->addrs);
2345 : }
2346 :
2347 : /* Examine substructure of query */
2348 68198 : context->rtables = lcons(query->rtable, context->rtables);
2349 68198 : result = query_tree_walker(query,
2350 : find_expr_references_walker,
2351 : context,
2352 : QTW_IGNORE_JOINALIASES |
2353 : QTW_EXAMINE_SORTGROUP);
2354 68198 : context->rtables = list_delete_first(context->rtables);
2355 68198 : return result;
2356 : }
2357 947934 : else if (IsA(node, SetOperationStmt))
2358 : {
2359 7830 : SetOperationStmt *setop = (SetOperationStmt *) node;
2360 :
2361 : /* we need to look at the groupClauses for operator references */
2362 7830 : find_expr_references_walker((Node *) setop->groupClauses, context);
2363 : /* fall through to examine child nodes */
2364 : }
2365 940104 : else if (IsA(node, RangeTblFunction))
2366 : {
2367 10704 : RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2368 : ListCell *ct;
2369 :
2370 : /*
2371 : * Add refs for any datatypes and collations used in a column
2372 : * definition list for a RECORD function. (For other cases, it should
2373 : * be enough to depend on the function itself.)
2374 : */
2375 10914 : foreach(ct, rtfunc->funccoltypes)
2376 : {
2377 210 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2378 : context->addrs);
2379 : }
2380 10914 : foreach(ct, rtfunc->funccolcollations)
2381 : {
2382 210 : Oid collid = lfirst_oid(ct);
2383 :
2384 210 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2385 0 : add_object_address(CollationRelationId, collid, 0,
2386 : context->addrs);
2387 : }
2388 : }
2389 929400 : else if (IsA(node, TableFunc))
2390 : {
2391 164 : TableFunc *tf = (TableFunc *) node;
2392 : ListCell *ct;
2393 :
2394 : /*
2395 : * Add refs for the datatypes and collations used in the TableFunc.
2396 : */
2397 776 : foreach(ct, tf->coltypes)
2398 : {
2399 612 : add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2400 : context->addrs);
2401 : }
2402 776 : foreach(ct, tf->colcollations)
2403 : {
2404 612 : Oid collid = lfirst_oid(ct);
2405 :
2406 612 : if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2407 0 : add_object_address(CollationRelationId, collid, 0,
2408 : context->addrs);
2409 : }
2410 : }
2411 929236 : else if (IsA(node, TableSampleClause))
2412 : {
2413 40 : TableSampleClause *tsc = (TableSampleClause *) node;
2414 :
2415 40 : add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2416 : context->addrs);
2417 : /* fall through to examine arguments */
2418 : }
2419 :
2420 1499588 : return expression_tree_walker(node, find_expr_references_walker,
2421 : context);
2422 : }
2423 :
2424 : /*
2425 : * find_expr_references_walker subroutine: handle a Var reference
2426 : * to an RTE_FUNCTION RTE
2427 : */
2428 : static void
2429 94080 : process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2430 : find_expr_references_context *context)
2431 : {
2432 94080 : int atts_done = 0;
2433 : ListCell *lc;
2434 :
2435 : /*
2436 : * Identify which RangeTblFunction produces this attnum, and see if it
2437 : * returns a composite type. If so, we'd better make a dependency on the
2438 : * referenced column of the composite type (or actually, of its associated
2439 : * relation).
2440 : */
2441 94356 : foreach(lc, rte->functions)
2442 : {
2443 94212 : RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2444 :
2445 94212 : if (attnum > atts_done &&
2446 94212 : attnum <= atts_done + rtfunc->funccolcount)
2447 : {
2448 : TupleDesc tupdesc;
2449 :
2450 : /* If it has a coldeflist, it certainly returns RECORD */
2451 93936 : if (rtfunc->funccolnames != NIL)
2452 210 : tupdesc = NULL; /* no need to work hard */
2453 : else
2454 93726 : tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2455 93936 : if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2456 : {
2457 : /*
2458 : * Named composite type, so individual columns could get
2459 : * dropped. Make a dependency on this specific column.
2460 : */
2461 360 : Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2462 :
2463 : Assert(attnum - atts_done <= tupdesc->natts);
2464 360 : if (OidIsValid(reltype)) /* can this fail? */
2465 360 : add_object_address(RelationRelationId, reltype,
2466 : attnum - atts_done,
2467 : context->addrs);
2468 93936 : return;
2469 : }
2470 : /* Nothing to do; function's result type is handled elsewhere */
2471 93576 : return;
2472 : }
2473 276 : atts_done += rtfunc->funccolcount;
2474 : }
2475 :
2476 : /* If we get here, must be looking for the ordinality column */
2477 144 : if (rte->funcordinality && attnum == atts_done + 1)
2478 144 : return;
2479 :
2480 : /* this probably can't happen ... */
2481 0 : ereport(ERROR,
2482 : (errcode(ERRCODE_UNDEFINED_COLUMN),
2483 : errmsg("column %d of relation \"%s\" does not exist",
2484 : attnum, rte->eref->aliasname)));
2485 : }
2486 :
2487 : /*
2488 : * find_temp_object - search an array of dependency references for temp objects
2489 : *
2490 : * Scan an ObjectAddresses array for references to temporary objects (objects
2491 : * in temporary namespaces), ignoring those in our own temp namespace if
2492 : * local_temp_okay is true. If one is found, return true after storing its
2493 : * address in *foundobj.
2494 : *
2495 : * Current callers only use this to deliver helpful notices, so reporting
2496 : * one such object seems sufficient. We return the first one, which should
2497 : * be a stable result for a given query since it depends only on the order
2498 : * in which this module searches query trees. (However, it's important to
2499 : * call this before de-duplicating the objects, else OID order would affect
2500 : * the result.)
2501 : */
2502 : bool
2503 44684 : find_temp_object(const ObjectAddresses *addrs, bool local_temp_okay,
2504 : ObjectAddress *foundobj)
2505 : {
2506 947030 : for (int i = 0; i < addrs->numrefs; i++)
2507 : {
2508 902530 : const ObjectAddress *thisobj = addrs->refs + i;
2509 : Oid objnamespace;
2510 :
2511 : /*
2512 : * Use get_object_namespace() to see if this object belongs to a
2513 : * schema. If not, we can skip it.
2514 : */
2515 902530 : objnamespace = get_object_namespace(thisobj);
2516 :
2517 : /*
2518 : * If the object is in a temporary namespace, complain, except if
2519 : * local_temp_okay and it's our own temp namespace.
2520 : */
2521 902530 : if (OidIsValid(objnamespace) && isAnyTempNamespace(objnamespace) &&
2522 184 : !(local_temp_okay && isTempNamespace(objnamespace)))
2523 : {
2524 184 : *foundobj = *thisobj;
2525 184 : return true;
2526 : }
2527 : }
2528 44500 : return false;
2529 : }
2530 :
2531 : /*
2532 : * query_uses_temp_object - convenience wrapper for find_temp_object
2533 : *
2534 : * If the Query includes any use of a temporary object, fill *temp_object
2535 : * with the address of one such object and return true.
2536 : */
2537 : bool
2538 17630 : query_uses_temp_object(Query *query, ObjectAddress *temp_object)
2539 : {
2540 : bool result;
2541 : ObjectAddresses *addrs;
2542 :
2543 17630 : addrs = new_object_addresses();
2544 :
2545 : /* Collect all dependencies from the Query */
2546 17630 : collectDependenciesOfExpr(addrs, (Node *) query, NIL);
2547 :
2548 : /* Look for one that is temp */
2549 17624 : result = find_temp_object(addrs, false, temp_object);
2550 :
2551 17624 : free_object_addresses(addrs);
2552 :
2553 17624 : return result;
2554 : }
2555 :
2556 : /*
2557 : * Given an array of dependency references, eliminate any duplicates.
2558 : */
2559 : static void
2560 452496 : eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2561 : {
2562 : ObjectAddress *priorobj;
2563 : int oldref,
2564 : newrefs;
2565 :
2566 : /*
2567 : * We can't sort if the array has "extra" data, because there's no way to
2568 : * keep it in sync. Fortunately that combination of features is not
2569 : * needed.
2570 : */
2571 : Assert(!addrs->extras);
2572 :
2573 452496 : if (addrs->numrefs <= 1)
2574 158078 : return; /* nothing to do */
2575 :
2576 : /* Sort the refs so that duplicates are adjacent */
2577 294418 : qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2578 : object_address_comparator);
2579 :
2580 : /* Remove dups */
2581 294418 : priorobj = addrs->refs;
2582 294418 : newrefs = 1;
2583 2024074 : for (oldref = 1; oldref < addrs->numrefs; oldref++)
2584 : {
2585 1729656 : ObjectAddress *thisobj = addrs->refs + oldref;
2586 :
2587 1729656 : if (priorobj->classId == thisobj->classId &&
2588 1482732 : priorobj->objectId == thisobj->objectId)
2589 : {
2590 787584 : if (priorobj->objectSubId == thisobj->objectSubId)
2591 612790 : continue; /* identical, so drop thisobj */
2592 :
2593 : /*
2594 : * If we have a whole-object reference and a reference to a part
2595 : * of the same object, we don't need the whole-object reference
2596 : * (for example, we don't need to reference both table foo and
2597 : * column foo.bar). The whole-object reference will always appear
2598 : * first in the sorted list.
2599 : */
2600 174794 : if (priorobj->objectSubId == 0)
2601 : {
2602 : /* replace whole ref with partial */
2603 37882 : priorobj->objectSubId = thisobj->objectSubId;
2604 37882 : continue;
2605 : }
2606 : }
2607 : /* Not identical, so add thisobj to output set */
2608 1078984 : priorobj++;
2609 1078984 : *priorobj = *thisobj;
2610 1078984 : newrefs++;
2611 : }
2612 :
2613 294418 : addrs->numrefs = newrefs;
2614 : }
2615 :
2616 : /*
2617 : * qsort comparator for ObjectAddress items
2618 : */
2619 : static int
2620 5998758 : object_address_comparator(const void *a, const void *b)
2621 : {
2622 5998758 : const ObjectAddress *obja = (const ObjectAddress *) a;
2623 5998758 : const ObjectAddress *objb = (const ObjectAddress *) b;
2624 :
2625 : /*
2626 : * Primary sort key is OID descending. Most of the time, this will result
2627 : * in putting newer objects before older ones, which is likely to be the
2628 : * right order to delete in.
2629 : */
2630 5998758 : if (obja->objectId > objb->objectId)
2631 1461194 : return -1;
2632 4537564 : if (obja->objectId < objb->objectId)
2633 3166500 : return 1;
2634 :
2635 : /*
2636 : * Next sort on catalog ID, in case identical OIDs appear in different
2637 : * catalogs. Sort direction is pretty arbitrary here.
2638 : */
2639 1371064 : if (obja->classId < objb->classId)
2640 0 : return -1;
2641 1371064 : if (obja->classId > objb->classId)
2642 0 : return 1;
2643 :
2644 : /*
2645 : * Last, sort on object subId.
2646 : *
2647 : * We sort the subId as an unsigned int so that 0 (the whole object) will
2648 : * come first. This is essential for eliminate_duplicate_dependencies,
2649 : * and is also the best order for findDependentObjects.
2650 : */
2651 1371064 : if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2652 324662 : return -1;
2653 1046402 : if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2654 293136 : return 1;
2655 753266 : return 0;
2656 : }
2657 :
2658 : /*
2659 : * Routines for handling an expansible array of ObjectAddress items.
2660 : *
2661 : * new_object_addresses: create a new ObjectAddresses array.
2662 : */
2663 : ObjectAddresses *
2664 538934 : new_object_addresses(void)
2665 : {
2666 : ObjectAddresses *addrs;
2667 :
2668 538934 : addrs = palloc_object(ObjectAddresses);
2669 :
2670 538934 : addrs->numrefs = 0;
2671 538934 : addrs->maxrefs = 32;
2672 538934 : addrs->refs = palloc_array(ObjectAddress, addrs->maxrefs);
2673 538934 : addrs->extras = NULL; /* until/unless needed */
2674 :
2675 538934 : return addrs;
2676 : }
2677 :
2678 : /*
2679 : * Add an entry to an ObjectAddresses array.
2680 : */
2681 : static void
2682 1516252 : add_object_address(Oid classId, Oid objectId, int32 subId,
2683 : ObjectAddresses *addrs)
2684 : {
2685 : ObjectAddress *item;
2686 :
2687 : /* enlarge array if needed */
2688 1516252 : if (addrs->numrefs >= addrs->maxrefs)
2689 : {
2690 21910 : addrs->maxrefs *= 2;
2691 21910 : addrs->refs = (ObjectAddress *)
2692 21910 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2693 : Assert(!addrs->extras);
2694 : }
2695 : /* record this item */
2696 1516252 : item = addrs->refs + addrs->numrefs;
2697 1516252 : item->classId = classId;
2698 1516252 : item->objectId = objectId;
2699 1516252 : item->objectSubId = subId;
2700 1516252 : addrs->numrefs++;
2701 1516252 : }
2702 :
2703 : /*
2704 : * Add an entry to an ObjectAddresses array.
2705 : *
2706 : * As above, but specify entry exactly.
2707 : */
2708 : void
2709 1352432 : add_exact_object_address(const ObjectAddress *object,
2710 : ObjectAddresses *addrs)
2711 : {
2712 : ObjectAddress *item;
2713 :
2714 : /* enlarge array if needed */
2715 1352432 : if (addrs->numrefs >= addrs->maxrefs)
2716 : {
2717 74 : addrs->maxrefs *= 2;
2718 74 : addrs->refs = (ObjectAddress *)
2719 74 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2720 : Assert(!addrs->extras);
2721 : }
2722 : /* record this item */
2723 1352432 : item = addrs->refs + addrs->numrefs;
2724 1352432 : *item = *object;
2725 1352432 : addrs->numrefs++;
2726 1352432 : }
2727 :
2728 : /*
2729 : * Add an entry to an ObjectAddresses array.
2730 : *
2731 : * As above, but specify entry exactly and provide some "extra" data too.
2732 : */
2733 : static void
2734 238824 : add_exact_object_address_extra(const ObjectAddress *object,
2735 : const ObjectAddressExtra *extra,
2736 : ObjectAddresses *addrs)
2737 : {
2738 : ObjectAddress *item;
2739 : ObjectAddressExtra *itemextra;
2740 :
2741 : /* allocate extra space if first time */
2742 238824 : if (!addrs->extras)
2743 35038 : addrs->extras = (ObjectAddressExtra *)
2744 35038 : palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2745 :
2746 : /* enlarge array if needed */
2747 238824 : if (addrs->numrefs >= addrs->maxrefs)
2748 : {
2749 910 : addrs->maxrefs *= 2;
2750 910 : addrs->refs = (ObjectAddress *)
2751 910 : repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2752 910 : addrs->extras = (ObjectAddressExtra *)
2753 910 : repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2754 : }
2755 : /* record this item */
2756 238824 : item = addrs->refs + addrs->numrefs;
2757 238824 : *item = *object;
2758 238824 : itemextra = addrs->extras + addrs->numrefs;
2759 238824 : *itemextra = *extra;
2760 238824 : addrs->numrefs++;
2761 238824 : }
2762 :
2763 : /*
2764 : * Test whether an object is present in an ObjectAddresses array.
2765 : *
2766 : * We return "true" if object is a subobject of something in the array, too.
2767 : */
2768 : bool
2769 644 : object_address_present(const ObjectAddress *object,
2770 : const ObjectAddresses *addrs)
2771 : {
2772 : int i;
2773 :
2774 2538 : for (i = addrs->numrefs - 1; i >= 0; i--)
2775 : {
2776 1894 : const ObjectAddress *thisobj = addrs->refs + i;
2777 :
2778 1894 : if (object->classId == thisobj->classId &&
2779 524 : object->objectId == thisobj->objectId)
2780 : {
2781 0 : if (object->objectSubId == thisobj->objectSubId ||
2782 0 : thisobj->objectSubId == 0)
2783 0 : return true;
2784 : }
2785 : }
2786 :
2787 644 : return false;
2788 : }
2789 :
2790 : /*
2791 : * As above, except that if the object is present then also OR the given
2792 : * flags into its associated extra data (which must exist).
2793 : */
2794 : static bool
2795 292458 : object_address_present_add_flags(const ObjectAddress *object,
2796 : int flags,
2797 : ObjectAddresses *addrs)
2798 : {
2799 292458 : bool result = false;
2800 : int i;
2801 :
2802 11722586 : for (i = addrs->numrefs - 1; i >= 0; i--)
2803 : {
2804 11430128 : ObjectAddress *thisobj = addrs->refs + i;
2805 :
2806 11430128 : if (object->classId == thisobj->classId &&
2807 4415924 : object->objectId == thisobj->objectId)
2808 : {
2809 51890 : if (object->objectSubId == thisobj->objectSubId)
2810 : {
2811 51434 : ObjectAddressExtra *thisextra = addrs->extras + i;
2812 :
2813 51434 : thisextra->flags |= flags;
2814 51434 : result = true;
2815 : }
2816 456 : else if (thisobj->objectSubId == 0)
2817 : {
2818 : /*
2819 : * We get here if we find a need to delete a column after
2820 : * having already decided to drop its whole table. Obviously
2821 : * we no longer need to drop the subobject, so report that we
2822 : * found the subobject in the array. But don't plaster its
2823 : * flags on the whole object.
2824 : */
2825 408 : result = true;
2826 : }
2827 48 : else if (object->objectSubId == 0)
2828 : {
2829 : /*
2830 : * We get here if we find a need to delete a whole table after
2831 : * having already decided to drop one of its columns. We
2832 : * can't report that the whole object is in the array, but we
2833 : * should mark the subobject with the whole object's flags.
2834 : *
2835 : * It might seem attractive to physically delete the column's
2836 : * array entry, or at least mark it as no longer needing
2837 : * separate deletion. But that could lead to, e.g., dropping
2838 : * the column's datatype before we drop the table, which does
2839 : * not seem like a good idea. This is a very rare situation
2840 : * in practice, so we just take the hit of doing a separate
2841 : * DROP COLUMN action even though we know we're gonna delete
2842 : * the table later.
2843 : *
2844 : * What we can do, though, is mark this as a subobject so that
2845 : * we don't report it separately, which is confusing because
2846 : * it's unpredictable whether it happens or not. But do so
2847 : * only if flags != 0 (flags == 0 is a read-only probe).
2848 : *
2849 : * Because there could be other subobjects of this object in
2850 : * the array, this case means we always have to loop through
2851 : * the whole array; we cannot exit early on a match.
2852 : */
2853 36 : ObjectAddressExtra *thisextra = addrs->extras + i;
2854 :
2855 36 : if (flags)
2856 36 : thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2857 : }
2858 : }
2859 : }
2860 :
2861 292458 : return result;
2862 : }
2863 :
2864 : /*
2865 : * Similar to above, except we search an ObjectAddressStack.
2866 : */
2867 : static bool
2868 419710 : stack_address_present_add_flags(const ObjectAddress *object,
2869 : int flags,
2870 : ObjectAddressStack *stack)
2871 : {
2872 419710 : bool result = false;
2873 : ObjectAddressStack *stackptr;
2874 :
2875 1115874 : for (stackptr = stack; stackptr; stackptr = stackptr->next)
2876 : {
2877 696164 : const ObjectAddress *thisobj = stackptr->object;
2878 :
2879 696164 : if (object->classId == thisobj->classId &&
2880 305802 : object->objectId == thisobj->objectId)
2881 : {
2882 127324 : if (object->objectSubId == thisobj->objectSubId)
2883 : {
2884 125996 : stackptr->flags |= flags;
2885 125996 : result = true;
2886 : }
2887 1328 : else if (thisobj->objectSubId == 0)
2888 : {
2889 : /*
2890 : * We're visiting a column with whole table already on stack.
2891 : * As in object_address_present_add_flags(), we can skip
2892 : * further processing of the subobject, but we don't want to
2893 : * propagate flags for the subobject to the whole object.
2894 : */
2895 1256 : result = true;
2896 : }
2897 72 : else if (object->objectSubId == 0)
2898 : {
2899 : /*
2900 : * We're visiting a table with column already on stack. As in
2901 : * object_address_present_add_flags(), we should propagate
2902 : * flags for the whole object to each of its subobjects.
2903 : */
2904 0 : if (flags)
2905 0 : stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2906 : }
2907 : }
2908 : }
2909 :
2910 419710 : return result;
2911 : }
2912 :
2913 : /*
2914 : * Record multiple dependencies from an ObjectAddresses array, after first
2915 : * removing any duplicates.
2916 : */
2917 : void
2918 420250 : record_object_address_dependencies(const ObjectAddress *depender,
2919 : ObjectAddresses *referenced,
2920 : DependencyType behavior)
2921 : {
2922 420250 : eliminate_duplicate_dependencies(referenced);
2923 420250 : recordMultipleDependencies(depender,
2924 420250 : referenced->refs, referenced->numrefs,
2925 : behavior);
2926 420250 : }
2927 :
2928 : /*
2929 : * Sort the items in an ObjectAddresses array.
2930 : *
2931 : * The major sort key is OID-descending, so that newer objects will be listed
2932 : * first in most cases. This is primarily useful for ensuring stable outputs
2933 : * from regression tests; it's not recommended if the order of the objects is
2934 : * determined by user input, such as the order of targets in a DROP command.
2935 : */
2936 : void
2937 134 : sort_object_addresses(ObjectAddresses *addrs)
2938 : {
2939 134 : if (addrs->numrefs > 1)
2940 74 : qsort(addrs->refs, addrs->numrefs,
2941 : sizeof(ObjectAddress),
2942 : object_address_comparator);
2943 134 : }
2944 :
2945 : /*
2946 : * Clean up when done with an ObjectAddresses array.
2947 : */
2948 : void
2949 536828 : free_object_addresses(ObjectAddresses *addrs)
2950 : {
2951 536828 : pfree(addrs->refs);
2952 536828 : if (addrs->extras)
2953 34684 : pfree(addrs->extras);
2954 536828 : pfree(addrs);
2955 536828 : }
2956 :
2957 : /*
2958 : * delete initial ACL for extension objects
2959 : */
2960 : static void
2961 231018 : DeleteInitPrivs(const ObjectAddress *object)
2962 : {
2963 : Relation relation;
2964 : ScanKeyData key[3];
2965 : int nkeys;
2966 : SysScanDesc scan;
2967 : HeapTuple oldtuple;
2968 :
2969 231018 : relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2970 :
2971 231018 : ScanKeyInit(&key[0],
2972 : Anum_pg_init_privs_objoid,
2973 : BTEqualStrategyNumber, F_OIDEQ,
2974 231018 : ObjectIdGetDatum(object->objectId));
2975 231018 : ScanKeyInit(&key[1],
2976 : Anum_pg_init_privs_classoid,
2977 : BTEqualStrategyNumber, F_OIDEQ,
2978 231018 : ObjectIdGetDatum(object->classId));
2979 231018 : if (object->objectSubId != 0)
2980 : {
2981 2122 : ScanKeyInit(&key[2],
2982 : Anum_pg_init_privs_objsubid,
2983 : BTEqualStrategyNumber, F_INT4EQ,
2984 2122 : Int32GetDatum(object->objectSubId));
2985 2122 : nkeys = 3;
2986 : }
2987 : else
2988 228896 : nkeys = 2;
2989 :
2990 231018 : scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2991 : NULL, nkeys, key);
2992 :
2993 231148 : while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2994 130 : CatalogTupleDelete(relation, &oldtuple->t_self);
2995 :
2996 231018 : systable_endscan(scan);
2997 :
2998 231018 : table_close(relation, RowExclusiveLock);
2999 231018 : }
|