Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * xlogutils.c
4 : *
5 : * PostgreSQL write-ahead log manager utility routines
6 : *
7 : * This file contains support routines that are used by XLOG replay functions.
8 : * None of this code is used during normal system operation.
9 : *
10 : *
11 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
12 : * Portions Copyright (c) 1994, Regents of the University of California
13 : *
14 : * src/backend/access/transam/xlogutils.c
15 : *
16 : *-------------------------------------------------------------------------
17 : */
18 : #include "postgres.h"
19 :
20 : #include <unistd.h>
21 :
22 : #include "access/timeline.h"
23 : #include "access/xlogrecovery.h"
24 : #include "access/xlog_internal.h"
25 : #include "access/xlogutils.h"
26 : #include "miscadmin.h"
27 : #include "storage/fd.h"
28 : #include "storage/smgr.h"
29 : #include "utils/hsearch.h"
30 : #include "utils/rel.h"
31 :
32 :
33 : /* GUC variable */
34 : bool ignore_invalid_pages = false;
35 :
36 : /*
37 : * Are we doing recovery from XLOG?
38 : *
39 : * This is only ever true in the startup process; it should be read as meaning
40 : * "this process is replaying WAL records", rather than "the system is in
41 : * recovery mode". It should be examined primarily by functions that need
42 : * to act differently when called from a WAL redo function (e.g., to skip WAL
43 : * logging). To check whether the system is in recovery regardless of which
44 : * process you're running in, use RecoveryInProgress() but only after shared
45 : * memory startup and lock initialization.
46 : *
47 : * This is updated from xlog.c and xlogrecovery.c, but lives here because
48 : * it's mostly read by WAL redo functions.
49 : */
50 : bool InRecovery = false;
51 :
52 : /* Are we in Hot Standby mode? Only valid in startup process, see xlogutils.h */
53 : HotStandbyState standbyState = STANDBY_DISABLED;
54 :
55 : /*
56 : * During XLOG replay, we may see XLOG records for incremental updates of
57 : * pages that no longer exist, because their relation was later dropped or
58 : * truncated. (Note: this is only possible when full_page_writes = OFF,
59 : * since when it's ON, the first reference we see to a page should always
60 : * be a full-page rewrite not an incremental update.) Rather than simply
61 : * ignoring such records, we make a note of the referenced page, and then
62 : * complain if we don't actually see a drop or truncate covering the page
63 : * later in replay.
64 : */
65 : typedef struct xl_invalid_page_key
66 : {
67 : RelFileLocator locator; /* the relation */
68 : ForkNumber forkno; /* the fork number */
69 : BlockNumber blkno; /* the page */
70 : } xl_invalid_page_key;
71 :
72 : typedef struct xl_invalid_page
73 : {
74 : xl_invalid_page_key key; /* hash key ... must be first */
75 : bool present; /* page existed but contained zeroes */
76 : } xl_invalid_page;
77 :
78 : static HTAB *invalid_page_tab = NULL;
79 :
80 : static int read_local_xlog_page_guts(XLogReaderState *state, XLogRecPtr targetPagePtr,
81 : int reqLen, XLogRecPtr targetRecPtr,
82 : char *cur_page, bool wait_for_wal);
83 :
84 : /* Report a reference to an invalid page */
85 : static void
86 0 : report_invalid_page(int elevel, RelFileLocator locator, ForkNumber forkno,
87 : BlockNumber blkno, bool present)
88 : {
89 0 : char *path = relpathperm(locator, forkno);
90 :
91 0 : if (present)
92 0 : elog(elevel, "page %u of relation %s is uninitialized",
93 : blkno, path);
94 : else
95 0 : elog(elevel, "page %u of relation %s does not exist",
96 : blkno, path);
97 0 : pfree(path);
98 0 : }
99 :
100 : /* Log a reference to an invalid page */
101 : static void
102 0 : log_invalid_page(RelFileLocator locator, ForkNumber forkno, BlockNumber blkno,
103 : bool present)
104 : {
105 : xl_invalid_page_key key;
106 : xl_invalid_page *hentry;
107 : bool found;
108 :
109 : /*
110 : * Once recovery has reached a consistent state, the invalid-page table
111 : * should be empty and remain so. If a reference to an invalid page is
112 : * found after consistency is reached, PANIC immediately. This might seem
113 : * aggressive, but it's better than letting the invalid reference linger
114 : * in the hash table until the end of recovery and PANIC there, which
115 : * might come only much later if this is a standby server.
116 : */
117 0 : if (reachedConsistency)
118 : {
119 0 : report_invalid_page(WARNING, locator, forkno, blkno, present);
120 0 : elog(ignore_invalid_pages ? WARNING : PANIC,
121 : "WAL contains references to invalid pages");
122 : }
123 :
124 : /*
125 : * Log references to invalid pages at DEBUG1 level. This allows some
126 : * tracing of the cause (note the elog context mechanism will tell us
127 : * something about the XLOG record that generated the reference).
128 : */
129 0 : if (message_level_is_interesting(DEBUG1))
130 0 : report_invalid_page(DEBUG1, locator, forkno, blkno, present);
131 :
132 0 : if (invalid_page_tab == NULL)
133 : {
134 : /* create hash table when first needed */
135 : HASHCTL ctl;
136 :
137 0 : ctl.keysize = sizeof(xl_invalid_page_key);
138 0 : ctl.entrysize = sizeof(xl_invalid_page);
139 :
140 0 : invalid_page_tab = hash_create("XLOG invalid-page table",
141 : 100,
142 : &ctl,
143 : HASH_ELEM | HASH_BLOBS);
144 : }
145 :
146 : /* we currently assume xl_invalid_page_key contains no padding */
147 0 : key.locator = locator;
148 0 : key.forkno = forkno;
149 0 : key.blkno = blkno;
150 : hentry = (xl_invalid_page *)
151 0 : hash_search(invalid_page_tab, &key, HASH_ENTER, &found);
152 :
153 0 : if (!found)
154 : {
155 : /* hash_search already filled in the key */
156 0 : hentry->present = present;
157 : }
158 : else
159 : {
160 : /* repeat reference ... leave "present" as it was */
161 : }
162 0 : }
163 :
164 : /* Forget any invalid pages >= minblkno, because they've been dropped */
165 : static void
166 58234 : forget_invalid_pages(RelFileLocator locator, ForkNumber forkno,
167 : BlockNumber minblkno)
168 : {
169 : HASH_SEQ_STATUS status;
170 : xl_invalid_page *hentry;
171 :
172 58234 : if (invalid_page_tab == NULL)
173 58234 : return; /* nothing to do */
174 :
175 0 : hash_seq_init(&status, invalid_page_tab);
176 :
177 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
178 : {
179 0 : if (RelFileLocatorEquals(hentry->key.locator, locator) &&
180 0 : hentry->key.forkno == forkno &&
181 0 : hentry->key.blkno >= minblkno)
182 : {
183 0 : if (message_level_is_interesting(DEBUG2))
184 : {
185 0 : char *path = relpathperm(hentry->key.locator, forkno);
186 :
187 0 : elog(DEBUG2, "page %u of relation %s has been dropped",
188 : hentry->key.blkno, path);
189 0 : pfree(path);
190 : }
191 :
192 0 : if (hash_search(invalid_page_tab,
193 0 : &hentry->key,
194 : HASH_REMOVE, NULL) == NULL)
195 0 : elog(ERROR, "hash table corrupted");
196 : }
197 : }
198 : }
199 :
200 : /* Forget any invalid pages in a whole database */
201 : static void
202 26 : forget_invalid_pages_db(Oid dbid)
203 : {
204 : HASH_SEQ_STATUS status;
205 : xl_invalid_page *hentry;
206 :
207 26 : if (invalid_page_tab == NULL)
208 26 : return; /* nothing to do */
209 :
210 0 : hash_seq_init(&status, invalid_page_tab);
211 :
212 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
213 : {
214 0 : if (hentry->key.locator.dbOid == dbid)
215 : {
216 0 : if (message_level_is_interesting(DEBUG2))
217 : {
218 0 : char *path = relpathperm(hentry->key.locator, hentry->key.forkno);
219 :
220 0 : elog(DEBUG2, "page %u of relation %s has been dropped",
221 : hentry->key.blkno, path);
222 0 : pfree(path);
223 : }
224 :
225 0 : if (hash_search(invalid_page_tab,
226 0 : &hentry->key,
227 : HASH_REMOVE, NULL) == NULL)
228 0 : elog(ERROR, "hash table corrupted");
229 : }
230 : }
231 : }
232 :
233 : /* Are there any unresolved references to invalid pages? */
234 : bool
235 750 : XLogHaveInvalidPages(void)
236 : {
237 750 : if (invalid_page_tab != NULL &&
238 0 : hash_get_num_entries(invalid_page_tab) > 0)
239 0 : return true;
240 750 : return false;
241 : }
242 :
243 : /* Complain about any remaining invalid-page entries */
244 : void
245 214 : XLogCheckInvalidPages(void)
246 : {
247 : HASH_SEQ_STATUS status;
248 : xl_invalid_page *hentry;
249 214 : bool foundone = false;
250 :
251 214 : if (invalid_page_tab == NULL)
252 214 : return; /* nothing to do */
253 :
254 0 : hash_seq_init(&status, invalid_page_tab);
255 :
256 : /*
257 : * Our strategy is to emit WARNING messages for all remaining entries and
258 : * only PANIC after we've dumped all the available info.
259 : */
260 0 : while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL)
261 : {
262 0 : report_invalid_page(WARNING, hentry->key.locator, hentry->key.forkno,
263 0 : hentry->key.blkno, hentry->present);
264 0 : foundone = true;
265 : }
266 :
267 0 : if (foundone)
268 0 : elog(ignore_invalid_pages ? WARNING : PANIC,
269 : "WAL contains references to invalid pages");
270 :
271 0 : hash_destroy(invalid_page_tab);
272 0 : invalid_page_tab = NULL;
273 : }
274 :
275 :
276 : /*
277 : * XLogReadBufferForRedo
278 : * Read a page during XLOG replay
279 : *
280 : * Reads a block referenced by a WAL record into shared buffer cache, and
281 : * determines what needs to be done to redo the changes to it. If the WAL
282 : * record includes a full-page image of the page, it is restored.
283 : *
284 : * 'record.EndRecPtr' is compared to the page's LSN to determine if the record
285 : * has already been replayed. 'block_id' is the ID number the block was
286 : * registered with, when the WAL record was created.
287 : *
288 : * Returns one of the following:
289 : *
290 : * BLK_NEEDS_REDO - changes from the WAL record need to be applied
291 : * BLK_DONE - block doesn't need replaying
292 : * BLK_RESTORED - block was restored from a full-page image included in
293 : * the record
294 : * BLK_NOTFOUND - block was not found (because it was truncated away by
295 : * an operation later in the WAL stream)
296 : *
297 : * On return, the buffer is locked in exclusive-mode, and returned in *buf.
298 : * Note that the buffer is locked and returned even if it doesn't need
299 : * replaying. (Getting the buffer lock is not really necessary during
300 : * single-process crash recovery, but some subroutines such as MarkBufferDirty
301 : * will complain if we don't have the lock. In hot standby mode it's
302 : * definitely necessary.)
303 : *
304 : * Note: when a backup block is available in XLOG with the BKPIMAGE_APPLY flag
305 : * set, we restore it, even if the page in the database appears newer. This
306 : * is to protect ourselves against database pages that were partially or
307 : * incorrectly written during a crash. We assume that the XLOG data must be
308 : * good because it has passed a CRC check, while the database page might not
309 : * be. This will force us to replay all subsequent modifications of the page
310 : * that appear in XLOG, rather than possibly ignoring them as already
311 : * applied, but that's not a huge drawback.
312 : */
313 : XLogRedoAction
314 5491776 : XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id,
315 : Buffer *buf)
316 : {
317 5491776 : return XLogReadBufferForRedoExtended(record, block_id, RBM_NORMAL,
318 : false, buf);
319 : }
320 :
321 : /*
322 : * Pin and lock a buffer referenced by a WAL record, for the purpose of
323 : * re-initializing it.
324 : */
325 : Buffer
326 101714 : XLogInitBufferForRedo(XLogReaderState *record, uint8 block_id)
327 : {
328 : Buffer buf;
329 :
330 101714 : XLogReadBufferForRedoExtended(record, block_id, RBM_ZERO_AND_LOCK, false,
331 : &buf);
332 101714 : return buf;
333 : }
334 :
335 : /*
336 : * XLogReadBufferForRedoExtended
337 : * Like XLogReadBufferForRedo, but with extra options.
338 : *
339 : * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
340 : * with all-zeroes pages up to the referenced block number. In
341 : * RBM_ZERO_AND_LOCK and RBM_ZERO_AND_CLEANUP_LOCK modes, the return value
342 : * is always BLK_NEEDS_REDO.
343 : *
344 : * (The RBM_ZERO_AND_CLEANUP_LOCK mode is redundant with the get_cleanup_lock
345 : * parameter. Do not use an inconsistent combination!)
346 : *
347 : * If 'get_cleanup_lock' is true, a "cleanup lock" is acquired on the buffer
348 : * using LockBufferForCleanup(), instead of a regular exclusive lock.
349 : */
350 : XLogRedoAction
351 5626840 : XLogReadBufferForRedoExtended(XLogReaderState *record,
352 : uint8 block_id,
353 : ReadBufferMode mode, bool get_cleanup_lock,
354 : Buffer *buf)
355 : {
356 5626840 : XLogRecPtr lsn = record->EndRecPtr;
357 : RelFileLocator rlocator;
358 : ForkNumber forknum;
359 : BlockNumber blkno;
360 : Buffer prefetch_buffer;
361 : Page page;
362 : bool zeromode;
363 : bool willinit;
364 :
365 5626840 : if (!XLogRecGetBlockTagExtended(record, block_id, &rlocator, &forknum, &blkno,
366 : &prefetch_buffer))
367 : {
368 : /* Caller specified a bogus block_id */
369 0 : elog(PANIC, "failed to locate backup block with ID %d in WAL record",
370 : block_id);
371 : }
372 :
373 : /*
374 : * Make sure that if the block is marked with WILL_INIT, the caller is
375 : * going to initialize it. And vice versa.
376 : */
377 5626840 : zeromode = (mode == RBM_ZERO_AND_LOCK || mode == RBM_ZERO_AND_CLEANUP_LOCK);
378 5626840 : willinit = (XLogRecGetBlock(record, block_id)->flags & BKPBLOCK_WILL_INIT) != 0;
379 5626840 : if (willinit && !zeromode)
380 0 : elog(PANIC, "block with WILL_INIT flag in WAL record must be zeroed by redo routine");
381 5626840 : if (!willinit && zeromode)
382 0 : elog(PANIC, "block to be initialized in redo routine must be marked with WILL_INIT flag in the WAL record");
383 :
384 : /* If it has a full-page image and it should be restored, do it. */
385 5626840 : if (XLogRecBlockImageApply(record, block_id))
386 : {
387 : Assert(XLogRecHasBlockImage(record, block_id));
388 131894 : *buf = XLogReadBufferExtended(rlocator, forknum, blkno,
389 : get_cleanup_lock ? RBM_ZERO_AND_CLEANUP_LOCK : RBM_ZERO_AND_LOCK,
390 : prefetch_buffer);
391 131894 : page = BufferGetPage(*buf);
392 131894 : if (!RestoreBlockImage(record, block_id, page))
393 0 : ereport(ERROR,
394 : (errcode(ERRCODE_INTERNAL_ERROR),
395 : errmsg_internal("%s", record->errormsg_buf)));
396 :
397 : /*
398 : * The page may be uninitialized. If so, we can't set the LSN because
399 : * that would corrupt the page.
400 : */
401 131894 : if (!PageIsNew(page))
402 : {
403 131862 : PageSetLSN(page, lsn);
404 : }
405 :
406 131894 : MarkBufferDirty(*buf);
407 :
408 : /*
409 : * At the end of crash recovery the init forks of unlogged relations
410 : * are copied, without going through shared buffers. So we need to
411 : * force the on-disk state of init forks to always be in sync with the
412 : * state in shared buffers.
413 : */
414 131894 : if (forknum == INIT_FORKNUM)
415 52 : FlushOneBuffer(*buf);
416 :
417 131894 : return BLK_RESTORED;
418 : }
419 : else
420 : {
421 5494946 : *buf = XLogReadBufferExtended(rlocator, forknum, blkno, mode, prefetch_buffer);
422 5494946 : if (BufferIsValid(*buf))
423 : {
424 5494946 : if (mode != RBM_ZERO_AND_LOCK && mode != RBM_ZERO_AND_CLEANUP_LOCK)
425 : {
426 5392784 : if (get_cleanup_lock)
427 15344 : LockBufferForCleanup(*buf);
428 : else
429 5377440 : LockBuffer(*buf, BUFFER_LOCK_EXCLUSIVE);
430 : }
431 5494946 : if (lsn <= PageGetLSN(BufferGetPage(*buf)))
432 0 : return BLK_DONE;
433 : else
434 5494946 : return BLK_NEEDS_REDO;
435 : }
436 : else
437 0 : return BLK_NOTFOUND;
438 : }
439 : }
440 :
441 : /*
442 : * XLogReadBufferExtended
443 : * Read a page during XLOG replay
444 : *
445 : * This is functionally comparable to ReadBufferExtended. There's some
446 : * differences in the behavior wrt. the "mode" argument:
447 : *
448 : * In RBM_NORMAL mode, if the page doesn't exist, or contains all-zeroes, we
449 : * return InvalidBuffer. In this case the caller should silently skip the
450 : * update on this page. (In this situation, we expect that the page was later
451 : * dropped or truncated. If we don't see evidence of that later in the WAL
452 : * sequence, we'll complain at the end of WAL replay.)
453 : *
454 : * In RBM_ZERO_* modes, if the page doesn't exist, the relation is extended
455 : * with all-zeroes pages up to the given block number.
456 : *
457 : * In RBM_NORMAL_NO_LOG mode, we return InvalidBuffer if the page doesn't
458 : * exist, and we don't check for all-zeroes. Thus, no log entry is made
459 : * to imply that the page should be dropped or truncated later.
460 : *
461 : * Optionally, recent_buffer can be used to provide a hint about the location
462 : * of the page in the buffer pool; it does not have to be correct, but avoids
463 : * a buffer mapping table probe if it is.
464 : *
465 : * NB: A redo function should normally not call this directly. To get a page
466 : * to modify, use XLogReadBufferForRedoExtended instead. It is important that
467 : * all pages modified by a WAL record are registered in the WAL records, or
468 : * they will be invisible to tools that need to know which pages are modified.
469 : */
470 : Buffer
471 10666122 : XLogReadBufferExtended(RelFileLocator rlocator, ForkNumber forknum,
472 : BlockNumber blkno, ReadBufferMode mode,
473 : Buffer recent_buffer)
474 : {
475 : BlockNumber lastblock;
476 : Buffer buffer;
477 : SMgrRelation smgr;
478 :
479 : Assert(blkno != P_NEW);
480 :
481 : /* Do we have a clue where the buffer might be already? */
482 10666122 : if (BufferIsValid(recent_buffer) &&
483 9330 : mode == RBM_NORMAL &&
484 9330 : ReadRecentBuffer(rlocator, forknum, blkno, recent_buffer))
485 : {
486 9266 : buffer = recent_buffer;
487 9266 : goto recent_buffer_fast_path;
488 : }
489 :
490 : /* Open the relation at smgr level */
491 10656856 : smgr = smgropen(rlocator, INVALID_PROC_NUMBER);
492 :
493 : /*
494 : * Create the target file if it doesn't already exist. This lets us cope
495 : * if the replay sequence contains writes to a relation that is later
496 : * deleted. (The original coding of this routine would instead suppress
497 : * the writes, but that seems like it risks losing valuable data if the
498 : * filesystem loses an inode during a crash. Better to write the data
499 : * until we are actually told to delete the file.)
500 : */
501 10656856 : smgrcreate(smgr, forknum, true);
502 :
503 10656856 : lastblock = smgrnblocks(smgr, forknum);
504 :
505 10656856 : if (blkno < lastblock)
506 : {
507 : /* page exists in file */
508 10572430 : buffer = ReadBufferWithoutRelcache(rlocator, forknum, blkno,
509 : mode, NULL, true);
510 : }
511 : else
512 : {
513 : /* hm, page doesn't exist in file */
514 84426 : if (mode == RBM_NORMAL)
515 : {
516 0 : log_invalid_page(rlocator, forknum, blkno, false);
517 0 : return InvalidBuffer;
518 : }
519 84426 : if (mode == RBM_NORMAL_NO_LOG)
520 0 : return InvalidBuffer;
521 : /* OK to extend the file */
522 : /* we do this in recovery only - no rel-extension lock needed */
523 : Assert(InRecovery);
524 84426 : buffer = ExtendBufferedRelTo(BMR_SMGR(smgr, RELPERSISTENCE_PERMANENT),
525 : forknum,
526 : NULL,
527 : EB_PERFORMING_RECOVERY |
528 : EB_SKIP_EXTENSION_LOCK,
529 : blkno + 1,
530 : mode);
531 : }
532 :
533 10666122 : recent_buffer_fast_path:
534 10666122 : if (mode == RBM_NORMAL)
535 : {
536 : /* check that page has been initialized */
537 5383832 : Page page = (Page) BufferGetPage(buffer);
538 :
539 : /*
540 : * We assume that PageIsNew is safe without a lock. During recovery,
541 : * there should be no other backends that could modify the buffer at
542 : * the same time.
543 : */
544 5383832 : if (PageIsNew(page))
545 : {
546 0 : ReleaseBuffer(buffer);
547 0 : log_invalid_page(rlocator, forknum, blkno, true);
548 0 : return InvalidBuffer;
549 : }
550 : }
551 :
552 10666122 : return buffer;
553 : }
554 :
555 : /*
556 : * Struct actually returned by CreateFakeRelcacheEntry, though the declared
557 : * return type is Relation.
558 : */
559 : typedef struct
560 : {
561 : RelationData reldata; /* Note: this must be first */
562 : FormData_pg_class pgc;
563 : } FakeRelCacheEntryData;
564 :
565 : typedef FakeRelCacheEntryData *FakeRelCacheEntry;
566 :
567 : /*
568 : * Create a fake relation cache entry for a physical relation
569 : *
570 : * It's often convenient to use the same functions in XLOG replay as in the
571 : * main codepath, but those functions typically work with a relcache entry.
572 : * We don't have a working relation cache during XLOG replay, but this
573 : * function can be used to create a fake relcache entry instead. Only the
574 : * fields related to physical storage, like rd_rel, are initialized, so the
575 : * fake entry is only usable in low-level operations like ReadBuffer().
576 : *
577 : * This is also used for syncing WAL-skipped files.
578 : *
579 : * Caller must free the returned entry with FreeFakeRelcacheEntry().
580 : */
581 : Relation
582 91994 : CreateFakeRelcacheEntry(RelFileLocator rlocator)
583 : {
584 : FakeRelCacheEntry fakeentry;
585 : Relation rel;
586 :
587 : /* Allocate the Relation struct and all related space in one block. */
588 91994 : fakeentry = palloc0(sizeof(FakeRelCacheEntryData));
589 91994 : rel = (Relation) fakeentry;
590 :
591 91994 : rel->rd_rel = &fakeentry->pgc;
592 91994 : rel->rd_locator = rlocator;
593 :
594 : /*
595 : * We will never be working with temp rels during recovery or while
596 : * syncing WAL-skipped files.
597 : */
598 91994 : rel->rd_backend = INVALID_PROC_NUMBER;
599 :
600 : /* It must be a permanent table here */
601 91994 : rel->rd_rel->relpersistence = RELPERSISTENCE_PERMANENT;
602 :
603 : /* We don't know the name of the relation; use relfilenumber instead */
604 91994 : sprintf(RelationGetRelationName(rel), "%u", rlocator.relNumber);
605 :
606 : /*
607 : * We set up the lockRelId in case anything tries to lock the dummy
608 : * relation. Note that this is fairly bogus since relNumber may be
609 : * different from the relation's OID. It shouldn't really matter though.
610 : * In recovery, we are running by ourselves and can't have any lock
611 : * conflicts. While syncing, we already hold AccessExclusiveLock.
612 : */
613 91994 : rel->rd_lockInfo.lockRelId.dbId = rlocator.dbOid;
614 91994 : rel->rd_lockInfo.lockRelId.relId = rlocator.relNumber;
615 :
616 : /*
617 : * Set up a non-pinned SMgrRelation reference, so that we don't need to
618 : * worry about unpinning it on error.
619 : */
620 91994 : rel->rd_smgr = smgropen(rlocator, INVALID_PROC_NUMBER);
621 :
622 91994 : return rel;
623 : }
624 :
625 : /*
626 : * Free a fake relation cache entry.
627 : */
628 : void
629 91994 : FreeFakeRelcacheEntry(Relation fakerel)
630 : {
631 91994 : pfree(fakerel);
632 91994 : }
633 :
634 : /*
635 : * Drop a relation during XLOG replay
636 : *
637 : * This is called when the relation is about to be deleted; we need to remove
638 : * any open "invalid-page" records for the relation.
639 : */
640 : void
641 58136 : XLogDropRelation(RelFileLocator rlocator, ForkNumber forknum)
642 : {
643 58136 : forget_invalid_pages(rlocator, forknum, 0);
644 58136 : }
645 :
646 : /*
647 : * Drop a whole database during XLOG replay
648 : *
649 : * As above, but for DROP DATABASE instead of dropping a single rel
650 : */
651 : void
652 26 : XLogDropDatabase(Oid dbid)
653 : {
654 : /*
655 : * This is unnecessarily heavy-handed, as it will close SMgrRelation
656 : * objects for other databases as well. DROP DATABASE occurs seldom enough
657 : * that it's not worth introducing a variant of smgrdestroy for just this
658 : * purpose.
659 : */
660 26 : smgrdestroyall();
661 :
662 26 : forget_invalid_pages_db(dbid);
663 26 : }
664 :
665 : /*
666 : * Truncate a relation during XLOG replay
667 : *
668 : * We need to clean up any open "invalid-page" records for the dropped pages.
669 : */
670 : void
671 98 : XLogTruncateRelation(RelFileLocator rlocator, ForkNumber forkNum,
672 : BlockNumber nblocks)
673 : {
674 98 : forget_invalid_pages(rlocator, forkNum, nblocks);
675 98 : }
676 :
677 : /*
678 : * Determine which timeline to read an xlog page from and set the
679 : * XLogReaderState's currTLI to that timeline ID.
680 : *
681 : * We care about timelines in xlogreader when we might be reading xlog
682 : * generated prior to a promotion, either if we're currently a standby in
683 : * recovery or if we're a promoted primary reading xlogs generated by the old
684 : * primary before our promotion.
685 : *
686 : * wantPage must be set to the start address of the page to read and
687 : * wantLength to the amount of the page that will be read, up to
688 : * XLOG_BLCKSZ. If the amount to be read isn't known, pass XLOG_BLCKSZ.
689 : *
690 : * The currTLI argument should be the system-wide current timeline.
691 : * Note that this may be different from state->currTLI, which is the timeline
692 : * from which the caller is currently reading previous xlog records.
693 : *
694 : * We switch to an xlog segment from the new timeline eagerly when on a
695 : * historical timeline, as soon as we reach the start of the xlog segment
696 : * containing the timeline switch. The server copied the segment to the new
697 : * timeline so all the data up to the switch point is the same, but there's no
698 : * guarantee the old segment will still exist. It may have been deleted or
699 : * renamed with a .partial suffix so we can't necessarily keep reading from
700 : * the old TLI even though tliSwitchPoint says it's OK.
701 : *
702 : * We can't just check the timeline when we read a page on a different segment
703 : * to the last page. We could've received a timeline switch from a cascading
704 : * upstream, so the current segment ends abruptly (possibly getting renamed to
705 : * .partial) and we have to switch to a new one. Even in the middle of reading
706 : * a page we could have to dump the cached page and switch to a new TLI.
707 : *
708 : * Because of this, callers MAY NOT assume that currTLI is the timeline that
709 : * will be in a page's xlp_tli; the page may begin on an older timeline or we
710 : * might be reading from historical timeline data on a segment that's been
711 : * copied to a new timeline.
712 : *
713 : * The caller must also make sure it doesn't read past the current replay
714 : * position (using GetXLogReplayRecPtr) if executing in recovery, so it
715 : * doesn't fail to notice that the current timeline became historical.
716 : */
717 : void
718 81814 : XLogReadDetermineTimeline(XLogReaderState *state, XLogRecPtr wantPage,
719 : uint32 wantLength, TimeLineID currTLI)
720 : {
721 81814 : const XLogRecPtr lastReadPage = (state->seg.ws_segno *
722 81814 : state->segcxt.ws_segsize + state->segoff);
723 :
724 : Assert(wantPage != InvalidXLogRecPtr && wantPage % XLOG_BLCKSZ == 0);
725 : Assert(wantLength <= XLOG_BLCKSZ);
726 : Assert(state->readLen == 0 || state->readLen <= XLOG_BLCKSZ);
727 : Assert(currTLI != 0);
728 :
729 : /*
730 : * If the desired page is currently read in and valid, we have nothing to
731 : * do.
732 : *
733 : * The caller should've ensured that it didn't previously advance readOff
734 : * past the valid limit of this timeline, so it doesn't matter if the
735 : * current TLI has since become historical.
736 : */
737 81814 : if (lastReadPage == wantPage &&
738 3756 : state->readLen != 0 &&
739 0 : lastReadPage + state->readLen >= wantPage + Min(wantLength, XLOG_BLCKSZ - 1))
740 0 : return;
741 :
742 : /*
743 : * If we're reading from the current timeline, it hasn't become historical
744 : * and the page we're reading is after the last page read, we can again
745 : * just carry on. (Seeking backwards requires a check to make sure the
746 : * older page isn't on a prior timeline).
747 : *
748 : * currTLI might've become historical since the caller obtained the value,
749 : * but the caller is required not to read past the flush limit it saw at
750 : * the time it looked up the timeline. There's nothing we can do about it
751 : * if StartupXLOG() renames it to .partial concurrently.
752 : */
753 81814 : if (state->currTLI == currTLI && wantPage >= lastReadPage)
754 : {
755 : Assert(state->currTLIValidUntil == InvalidXLogRecPtr);
756 75538 : return;
757 : }
758 :
759 : /*
760 : * If we're just reading pages from a previously validated historical
761 : * timeline and the timeline we're reading from is valid until the end of
762 : * the current segment we can just keep reading.
763 : */
764 6276 : if (state->currTLIValidUntil != InvalidXLogRecPtr &&
765 3352 : state->currTLI != currTLI &&
766 3352 : state->currTLI != 0 &&
767 3352 : ((wantPage + wantLength) / state->segcxt.ws_segsize) <
768 3352 : (state->currTLIValidUntil / state->segcxt.ws_segsize))
769 3344 : return;
770 :
771 : /*
772 : * If we reach this point we're either looking up a page for random
773 : * access, the current timeline just became historical, or we're reading
774 : * from a new segment containing a timeline switch. In all cases we need
775 : * to determine the newest timeline on the segment.
776 : *
777 : * If it's the current timeline we can just keep reading from here unless
778 : * we detect a timeline switch that makes the current timeline historical.
779 : * If it's a historical timeline we can read all the segment on the newest
780 : * timeline because it contains all the old timelines' data too. So only
781 : * one switch check is required.
782 : */
783 : {
784 : /*
785 : * We need to re-read the timeline history in case it's been changed
786 : * by a promotion or replay from a cascaded replica.
787 : */
788 2932 : List *timelineHistory = readTimeLineHistory(currTLI);
789 : XLogRecPtr endOfSegment;
790 :
791 2932 : endOfSegment = ((wantPage / state->segcxt.ws_segsize) + 1) *
792 2932 : state->segcxt.ws_segsize - 1;
793 : Assert(wantPage / state->segcxt.ws_segsize ==
794 : endOfSegment / state->segcxt.ws_segsize);
795 :
796 : /*
797 : * Find the timeline of the last LSN on the segment containing
798 : * wantPage.
799 : */
800 2932 : state->currTLI = tliOfPointInHistory(endOfSegment, timelineHistory);
801 2932 : state->currTLIValidUntil = tliSwitchPoint(state->currTLI, timelineHistory,
802 : &state->nextTLI);
803 :
804 : Assert(state->currTLIValidUntil == InvalidXLogRecPtr ||
805 : wantPage + wantLength < state->currTLIValidUntil);
806 :
807 2932 : list_free_deep(timelineHistory);
808 :
809 2932 : elog(DEBUG3, "switched to timeline %u valid until %X/%X",
810 : state->currTLI,
811 : LSN_FORMAT_ARGS(state->currTLIValidUntil));
812 : }
813 : }
814 :
815 : /* XLogReaderRoutine->segment_open callback for local pg_wal files */
816 : void
817 1664 : wal_segment_open(XLogReaderState *state, XLogSegNo nextSegNo,
818 : TimeLineID *tli_p)
819 : {
820 1664 : TimeLineID tli = *tli_p;
821 : char path[MAXPGPATH];
822 :
823 1664 : XLogFilePath(path, tli, nextSegNo, state->segcxt.ws_segsize);
824 1664 : state->seg.ws_file = BasicOpenFile(path, O_RDONLY | PG_BINARY);
825 1664 : if (state->seg.ws_file >= 0)
826 1664 : return;
827 :
828 0 : if (errno == ENOENT)
829 0 : ereport(ERROR,
830 : (errcode_for_file_access(),
831 : errmsg("requested WAL segment %s has already been removed",
832 : path)));
833 : else
834 0 : ereport(ERROR,
835 : (errcode_for_file_access(),
836 : errmsg("could not open file \"%s\": %m",
837 : path)));
838 : }
839 :
840 : /* stock XLogReaderRoutine->segment_close callback */
841 : void
842 10748 : wal_segment_close(XLogReaderState *state)
843 : {
844 10748 : close(state->seg.ws_file);
845 : /* need to check errno? */
846 10748 : state->seg.ws_file = -1;
847 10748 : }
848 :
849 : /*
850 : * XLogReaderRoutine->page_read callback for reading local xlog files
851 : *
852 : * Public because it would likely be very helpful for someone writing another
853 : * output method outside walsender, e.g. in a bgworker.
854 : *
855 : * TODO: The walsender has its own version of this, but it relies on the
856 : * walsender's latch being set whenever WAL is flushed. No such infrastructure
857 : * exists for normal backends, so we have to do a check/sleep/repeat style of
858 : * loop for now.
859 : */
860 : int
861 43246 : read_local_xlog_page(XLogReaderState *state, XLogRecPtr targetPagePtr,
862 : int reqLen, XLogRecPtr targetRecPtr, char *cur_page)
863 : {
864 43246 : return read_local_xlog_page_guts(state, targetPagePtr, reqLen,
865 : targetRecPtr, cur_page, true);
866 : }
867 :
868 : /*
869 : * Same as read_local_xlog_page except that it doesn't wait for future WAL
870 : * to be available.
871 : */
872 : int
873 7656 : read_local_xlog_page_no_wait(XLogReaderState *state, XLogRecPtr targetPagePtr,
874 : int reqLen, XLogRecPtr targetRecPtr,
875 : char *cur_page)
876 : {
877 7656 : return read_local_xlog_page_guts(state, targetPagePtr, reqLen,
878 : targetRecPtr, cur_page, false);
879 : }
880 :
881 : /*
882 : * Implementation of read_local_xlog_page and its no wait version.
883 : */
884 : static int
885 50902 : read_local_xlog_page_guts(XLogReaderState *state, XLogRecPtr targetPagePtr,
886 : int reqLen, XLogRecPtr targetRecPtr,
887 : char *cur_page, bool wait_for_wal)
888 : {
889 : XLogRecPtr read_upto,
890 : loc;
891 : TimeLineID tli;
892 : int count;
893 : WALReadError errinfo;
894 : TimeLineID currTLI;
895 :
896 50902 : loc = targetPagePtr + reqLen;
897 :
898 : /* Loop waiting for xlog to be available if necessary */
899 : while (1)
900 : {
901 : /*
902 : * Determine the limit of xlog we can currently read to, and what the
903 : * most recent timeline is.
904 : */
905 52208 : if (!RecoveryInProgress())
906 50690 : read_upto = GetFlushRecPtr(&currTLI);
907 : else
908 1518 : read_upto = GetXLogReplayRecPtr(&currTLI);
909 52208 : tli = currTLI;
910 :
911 : /*
912 : * Check which timeline to get the record from.
913 : *
914 : * We have to do it each time through the loop because if we're in
915 : * recovery as a cascading standby, the current timeline might've
916 : * become historical. We can't rely on RecoveryInProgress() because in
917 : * a standby configuration like
918 : *
919 : * A => B => C
920 : *
921 : * if we're a logical decoding session on C, and B gets promoted, our
922 : * timeline will change while we remain in recovery.
923 : *
924 : * We can't just keep reading from the old timeline as the last WAL
925 : * archive in the timeline will get renamed to .partial by
926 : * StartupXLOG().
927 : *
928 : * If that happens after our caller determined the TLI but before we
929 : * actually read the xlog page, we might still try to read from the
930 : * old (now renamed) segment and fail. There's not much we can do
931 : * about this, but it can only happen when we're a leaf of a cascading
932 : * standby whose primary gets promoted while we're decoding, so a
933 : * one-off ERROR isn't too bad.
934 : */
935 52208 : XLogReadDetermineTimeline(state, targetPagePtr, reqLen, tli);
936 :
937 52208 : if (state->currTLI == currTLI)
938 : {
939 :
940 48858 : if (loc <= read_upto)
941 47534 : break;
942 :
943 : /* If asked, let's not wait for future WAL. */
944 1324 : if (!wait_for_wal)
945 : {
946 : ReadLocalXLogPageNoWaitPrivate *private_data;
947 :
948 : /*
949 : * Inform the caller of read_local_xlog_page_no_wait that the
950 : * end of WAL has been reached.
951 : */
952 18 : private_data = (ReadLocalXLogPageNoWaitPrivate *)
953 : state->private_data;
954 18 : private_data->end_of_wal = true;
955 18 : break;
956 : }
957 :
958 1306 : CHECK_FOR_INTERRUPTS();
959 1306 : pg_usleep(1000L);
960 : }
961 : else
962 : {
963 : /*
964 : * We're on a historical timeline, so limit reading to the switch
965 : * point where we moved to the next timeline.
966 : *
967 : * We don't need to GetFlushRecPtr or GetXLogReplayRecPtr. We know
968 : * about the new timeline, so we must've received past the end of
969 : * it.
970 : */
971 3350 : read_upto = state->currTLIValidUntil;
972 :
973 : /*
974 : * Setting tli to our wanted record's TLI is slightly wrong; the
975 : * page might begin on an older timeline if it contains a timeline
976 : * switch, since its xlog segment will have been copied from the
977 : * prior timeline. This is pretty harmless though, as nothing
978 : * cares so long as the timeline doesn't go backwards. We should
979 : * read the page header instead; FIXME someday.
980 : */
981 3350 : tli = state->currTLI;
982 :
983 : /* No need to wait on a historical timeline */
984 3350 : break;
985 : }
986 : }
987 :
988 50902 : if (targetPagePtr + XLOG_BLCKSZ <= read_upto)
989 : {
990 : /*
991 : * more than one block available; read only that block, have caller
992 : * come back if they need more.
993 : */
994 49342 : count = XLOG_BLCKSZ;
995 : }
996 1560 : else if (targetPagePtr + reqLen > read_upto)
997 : {
998 : /* not enough data there */
999 18 : return -1;
1000 : }
1001 : else
1002 : {
1003 : /* enough bytes available to satisfy the request */
1004 1542 : count = read_upto - targetPagePtr;
1005 : }
1006 :
1007 50884 : if (!WALRead(state, cur_page, targetPagePtr, count, tli,
1008 : &errinfo))
1009 0 : WALReadRaiseError(&errinfo);
1010 :
1011 : /* number of valid bytes in the buffer */
1012 50884 : return count;
1013 : }
1014 :
1015 : /*
1016 : * Backend-specific convenience code to handle read errors encountered by
1017 : * WALRead().
1018 : */
1019 : void
1020 0 : WALReadRaiseError(WALReadError *errinfo)
1021 : {
1022 0 : WALOpenSegment *seg = &errinfo->wre_seg;
1023 : char fname[MAXFNAMELEN];
1024 :
1025 0 : XLogFileName(fname, seg->ws_tli, seg->ws_segno, wal_segment_size);
1026 :
1027 0 : if (errinfo->wre_read < 0)
1028 : {
1029 0 : errno = errinfo->wre_errno;
1030 0 : ereport(ERROR,
1031 : (errcode_for_file_access(),
1032 : errmsg("could not read from WAL segment %s, offset %d: %m",
1033 : fname, errinfo->wre_off)));
1034 : }
1035 0 : else if (errinfo->wre_read == 0)
1036 : {
1037 0 : ereport(ERROR,
1038 : (errcode(ERRCODE_DATA_CORRUPTED),
1039 : errmsg("could not read from WAL segment %s, offset %d: read %d of %d",
1040 : fname, errinfo->wre_off, errinfo->wre_read,
1041 : errinfo->wre_req)));
1042 : }
1043 0 : }
|