Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * multixact.c
4 : * PostgreSQL multi-transaction-log manager
5 : *
6 : * The pg_multixact manager is a pg_xact-like manager that stores an array of
7 : * MultiXactMember for each MultiXactId. It is a fundamental part of the
8 : * shared-row-lock implementation. Each MultiXactMember is comprised of a
9 : * TransactionId and a set of flag bits. The name is a bit historical:
10 : * originally, a MultiXactId consisted of more than one TransactionId (except
11 : * in rare corner cases), hence "multi". Nowadays, however, it's perfectly
12 : * legitimate to have MultiXactIds that only include a single Xid.
13 : *
14 : * The meaning of the flag bits is opaque to this module, but they are mostly
15 : * used in heapam.c to identify lock modes that each of the member transactions
16 : * is holding on any given tuple. This module just contains support to store
17 : * and retrieve the arrays.
18 : *
19 : * We use two SLRU areas, one for storing the offsets at which the data
20 : * starts for each MultiXactId in the other one. This trick allows us to
21 : * store variable length arrays of TransactionIds. (We could alternatively
22 : * use one area containing counts and TransactionIds, with valid MultiXactId
23 : * values pointing at slots containing counts; but that way seems less robust
24 : * since it would get completely confused if someone inquired about a bogus
25 : * MultiXactId that pointed to an intermediate slot containing an XID.)
26 : *
27 : * XLOG interactions: this module generates a record whenever a new OFFSETs or
28 : * MEMBERs page is initialized to zeroes, as well as an
29 : * XLOG_MULTIXACT_CREATE_ID record whenever a new MultiXactId is defined.
30 : * This module ignores the WAL rule "write xlog before data," because it
31 : * suffices that actions recording a MultiXactId in a heap xmax do follow that
32 : * rule. The only way for the MXID to be referenced from any data page is for
33 : * heap_lock_tuple() or heap_update() to have put it there, and each generates
34 : * an XLOG record that must follow ours. The normal LSN interlock between the
35 : * data page and that XLOG record will ensure that our XLOG record reaches
36 : * disk first. If the SLRU members/offsets data reaches disk sooner than the
37 : * XLOG records, we do not care; after recovery, no xmax will refer to it. On
38 : * the flip side, to ensure that all referenced entries _do_ reach disk, this
39 : * module's XLOG records completely rebuild the data entered since the last
40 : * checkpoint. We flush and sync all dirty OFFSETs and MEMBERs pages to disk
41 : * before each checkpoint is considered complete.
42 : *
43 : * Like clog.c, and unlike subtrans.c, we have to preserve state across
44 : * crashes and ensure that MXID and offset numbering increases monotonically
45 : * across a crash. We do this in the same way as it's done for transaction
46 : * IDs: the WAL record is guaranteed to contain evidence of every MXID we
47 : * could need to worry about, and we just make sure that at the end of
48 : * replay, the next-MXID and next-offset counters are at least as large as
49 : * anything we saw during replay.
50 : *
51 : * We are able to remove segments no longer necessary by carefully tracking
52 : * each table's used values: during vacuum, any multixact older than a certain
53 : * value is removed; the cutoff value is stored in pg_class. The minimum value
54 : * across all tables in each database is stored in pg_database, and the global
55 : * minimum across all databases is part of pg_control and is kept in shared
56 : * memory. Whenever that minimum is advanced, the SLRUs are truncated.
57 : *
58 : * When new multixactid values are to be created, care is taken that the
59 : * counter does not fall within the wraparound horizon considering the global
60 : * minimum value.
61 : *
62 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
63 : * Portions Copyright (c) 1994, Regents of the University of California
64 : *
65 : * src/backend/access/transam/multixact.c
66 : *
67 : *-------------------------------------------------------------------------
68 : */
69 : #include "postgres.h"
70 :
71 : #include "access/multixact.h"
72 : #include "access/multixact_internal.h"
73 : #include "access/slru.h"
74 : #include "access/twophase.h"
75 : #include "access/twophase_rmgr.h"
76 : #include "access/xlog.h"
77 : #include "access/xloginsert.h"
78 : #include "access/xlogutils.h"
79 : #include "miscadmin.h"
80 : #include "pg_trace.h"
81 : #include "pgstat.h"
82 : #include "postmaster/autovacuum.h"
83 : #include "storage/pmsignal.h"
84 : #include "storage/proc.h"
85 : #include "storage/procarray.h"
86 : #include "utils/guc_hooks.h"
87 : #include "utils/injection_point.h"
88 : #include "utils/lsyscache.h"
89 : #include "utils/memutils.h"
90 :
91 :
92 : /*
93 : * Thresholds used to keep members disk usage in check when multixids have a
94 : * lot of members. When MULTIXACT_MEMBER_LOW_THRESHOLD is reached, vacuum
95 : * starts freezing multixids more aggressively, even if the normal multixid
96 : * age limits haven't been reached yet.
97 : */
98 : #define MULTIXACT_MEMBER_LOW_THRESHOLD UINT64CONST(2000000000)
99 : #define MULTIXACT_MEMBER_HIGH_THRESHOLD UINT64CONST(4000000000)
100 :
101 : static inline MultiXactId
102 215174 : NextMultiXactId(MultiXactId multi)
103 : {
104 215174 : return multi == MaxMultiXactId ? FirstMultiXactId : multi + 1;
105 : }
106 :
107 : static inline MultiXactId
108 0 : PreviousMultiXactId(MultiXactId multi)
109 : {
110 0 : return multi == FirstMultiXactId ? MaxMultiXactId : multi - 1;
111 : }
112 :
113 : /*
114 : * Links to shared-memory data structures for MultiXact control
115 : */
116 : static SlruCtlData MultiXactOffsetCtlData;
117 : static SlruCtlData MultiXactMemberCtlData;
118 :
119 : #define MultiXactOffsetCtl (&MultiXactOffsetCtlData)
120 : #define MultiXactMemberCtl (&MultiXactMemberCtlData)
121 :
122 : /*
123 : * MultiXact state shared across all backends. All this state is protected
124 : * by MultiXactGenLock. (We also use SLRU bank's lock of MultiXactOffset and
125 : * MultiXactMember to guard accesses to the two sets of SLRU buffers. For
126 : * concurrency's sake, we avoid holding more than one of these locks at a
127 : * time.)
128 : */
129 : typedef struct MultiXactStateData
130 : {
131 : /* next-to-be-assigned MultiXactId */
132 : MultiXactId nextMXact;
133 :
134 : /* next-to-be-assigned offset */
135 : MultiXactOffset nextOffset;
136 :
137 : /* Have we completed multixact startup? */
138 : bool finishedStartup;
139 :
140 : /*
141 : * Oldest multixact that is still potentially referenced by a relation.
142 : * Anything older than this should not be consulted. These values are
143 : * updated by vacuum.
144 : */
145 : MultiXactId oldestMultiXactId;
146 : Oid oldestMultiXactDB;
147 :
148 : /*
149 : * Oldest multixact offset that is potentially referenced by a multixact
150 : * referenced by a relation.
151 : */
152 : MultiXactOffset oldestOffset;
153 :
154 : /* support for anti-wraparound measures */
155 : MultiXactId multiVacLimit;
156 : MultiXactId multiWarnLimit;
157 : MultiXactId multiStopLimit;
158 : MultiXactId multiWrapLimit;
159 :
160 : /*
161 : * Per-backend data starts here. We have two arrays stored in the area
162 : * immediately following the MultiXactStateData struct. Each is indexed by
163 : * ProcNumber.
164 : *
165 : * In both arrays, there's a slot for all normal backends
166 : * (0..MaxBackends-1) followed by a slot for max_prepared_xacts prepared
167 : * transactions.
168 : *
169 : * OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
170 : * transaction(s) could possibly be a member of, or InvalidMultiXactId
171 : * when the backend has no live transaction that could possibly be a
172 : * member of a MultiXact. Each backend sets its entry to the current
173 : * nextMXact counter just before first acquiring a shared lock in a given
174 : * transaction, and clears it at transaction end. (This works because only
175 : * during or after acquiring a shared lock could an XID possibly become a
176 : * member of a MultiXact, and that MultiXact would have to be created
177 : * during or after the lock acquisition.)
178 : *
179 : * OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
180 : * current transaction(s) think is potentially live, or InvalidMultiXactId
181 : * when not in a transaction or not in a transaction that's paid any
182 : * attention to MultiXacts yet. This is computed when first needed in a
183 : * given transaction, and cleared at transaction end. We can compute it
184 : * as the minimum of the valid OldestMemberMXactId[] entries at the time
185 : * we compute it (using nextMXact if none are valid). Each backend is
186 : * required not to attempt to access any SLRU data for MultiXactIds older
187 : * than its own OldestVisibleMXactId[] setting; this is necessary because
188 : * the relevant SLRU data can be concurrently truncated away.
189 : *
190 : * The oldest valid value among all of the OldestMemberMXactId[] and
191 : * OldestVisibleMXactId[] entries is considered by vacuum as the earliest
192 : * possible value still having any live member transaction -- OldestMxact.
193 : * Any value older than that is typically removed from tuple headers, or
194 : * "frozen" via being replaced with a new xmax. VACUUM can sometimes even
195 : * remove an individual MultiXact xmax whose value is >= its OldestMxact
196 : * cutoff, though typically only when no individual member XID is still
197 : * running. See FreezeMultiXactId for full details.
198 : *
199 : * Whenever VACUUM advances relminmxid, then either its OldestMxact cutoff
200 : * or the oldest extant Multi remaining in the table is used as the new
201 : * pg_class.relminmxid value (whichever is earlier). The minimum of all
202 : * relminmxid values in each database is stored in pg_database.datminmxid.
203 : * In turn, the minimum of all of those values is stored in pg_control.
204 : * This is used as the truncation point for pg_multixact when unneeded
205 : * segments get removed by vac_truncate_clog() during vacuuming.
206 : */
207 : MultiXactId perBackendXactIds[FLEXIBLE_ARRAY_MEMBER];
208 : } MultiXactStateData;
209 :
210 : /*
211 : * Size of OldestMemberMXactId and OldestVisibleMXactId arrays.
212 : */
213 : #define MaxOldestSlot (MaxBackends + max_prepared_xacts)
214 :
215 : /* Pointers to the state data in shared memory */
216 : static MultiXactStateData *MultiXactState;
217 : static MultiXactId *OldestMemberMXactId;
218 : static MultiXactId *OldestVisibleMXactId;
219 :
220 :
221 : /*
222 : * Definitions for the backend-local MultiXactId cache.
223 : *
224 : * We use this cache to store known MultiXacts, so we don't need to go to
225 : * SLRU areas every time.
226 : *
227 : * The cache lasts for the duration of a single transaction, the rationale
228 : * for this being that most entries will contain our own TransactionId and
229 : * so they will be uninteresting by the time our next transaction starts.
230 : * (XXX not clear that this is correct --- other members of the MultiXact
231 : * could hang around longer than we did. However, it's not clear what a
232 : * better policy for flushing old cache entries would be.) FIXME actually
233 : * this is plain wrong now that multixact's may contain update Xids.
234 : *
235 : * We allocate the cache entries in a memory context that is deleted at
236 : * transaction end, so we don't need to do retail freeing of entries.
237 : */
238 : typedef struct mXactCacheEnt
239 : {
240 : MultiXactId multi;
241 : int nmembers;
242 : dlist_node node;
243 : MultiXactMember members[FLEXIBLE_ARRAY_MEMBER];
244 : } mXactCacheEnt;
245 :
246 : #define MAX_CACHE_ENTRIES 256
247 : static dclist_head MXactCache = DCLIST_STATIC_INIT(MXactCache);
248 : static MemoryContext MXactContext = NULL;
249 :
250 : #ifdef MULTIXACT_DEBUG
251 : #define debug_elog2(a,b) elog(a,b)
252 : #define debug_elog3(a,b,c) elog(a,b,c)
253 : #define debug_elog4(a,b,c,d) elog(a,b,c,d)
254 : #define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
255 : #define debug_elog6(a,b,c,d,e,f) elog(a,b,c,d,e,f)
256 : #else
257 : #define debug_elog2(a,b)
258 : #define debug_elog3(a,b,c)
259 : #define debug_elog4(a,b,c,d)
260 : #define debug_elog5(a,b,c,d,e)
261 : #define debug_elog6(a,b,c,d,e,f)
262 : #endif
263 :
264 : /* internal MultiXactId management */
265 : static void MultiXactIdSetOldestVisible(void);
266 : static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
267 : int nmembers, MultiXactMember *members);
268 : static MultiXactId GetNewMultiXactId(int nmembers, MultiXactOffset *offset);
269 :
270 : /* MultiXact cache management */
271 : static int mxactMemberComparator(const void *arg1, const void *arg2);
272 : static MultiXactId mXactCacheGetBySet(int nmembers, MultiXactMember *members);
273 : static int mXactCacheGetById(MultiXactId multi, MultiXactMember **members);
274 : static void mXactCachePut(MultiXactId multi, int nmembers,
275 : MultiXactMember *members);
276 :
277 : /* management of SLRU infrastructure */
278 : static bool MultiXactOffsetPagePrecedes(int64 page1, int64 page2);
279 : static bool MultiXactMemberPagePrecedes(int64 page1, int64 page2);
280 : static void ExtendMultiXactOffset(MultiXactId multi);
281 : static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
282 : static void SetOldestOffset(void);
283 : static bool find_multixact_start(MultiXactId multi, MultiXactOffset *result);
284 : static void WriteMTruncateXlogRec(Oid oldestMultiDB,
285 : MultiXactId startTruncOff,
286 : MultiXactId endTruncOff,
287 : MultiXactOffset startTruncMemb,
288 : MultiXactOffset endTruncMemb);
289 :
290 :
291 : /*
292 : * MultiXactIdCreate
293 : * Construct a MultiXactId representing two TransactionIds.
294 : *
295 : * The two XIDs must be different, or be requesting different statuses.
296 : *
297 : * NB - we don't worry about our local MultiXactId cache here, because that
298 : * is handled by the lower-level routines.
299 : */
300 : MultiXactId
301 2200 : MultiXactIdCreate(TransactionId xid1, MultiXactStatus status1,
302 : TransactionId xid2, MultiXactStatus status2)
303 : {
304 : MultiXactId newMulti;
305 : MultiXactMember members[2];
306 :
307 : Assert(TransactionIdIsValid(xid1));
308 : Assert(TransactionIdIsValid(xid2));
309 :
310 : Assert(!TransactionIdEquals(xid1, xid2) || (status1 != status2));
311 :
312 : /* MultiXactIdSetOldestMember() must have been called already. */
313 : Assert(MultiXactIdIsValid(OldestMemberMXactId[MyProcNumber]));
314 :
315 : /*
316 : * Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
317 : * are still running. In typical usage, xid2 will be our own XID and the
318 : * caller just did a check on xid1, so it'd be wasted effort.
319 : */
320 :
321 2200 : members[0].xid = xid1;
322 2200 : members[0].status = status1;
323 2200 : members[1].xid = xid2;
324 2200 : members[1].status = status2;
325 :
326 2200 : newMulti = MultiXactIdCreateFromMembers(2, members);
327 :
328 : debug_elog3(DEBUG2, "Create: %s",
329 : mxid_to_string(newMulti, 2, members));
330 :
331 2200 : return newMulti;
332 : }
333 :
334 : /*
335 : * MultiXactIdExpand
336 : * Add a TransactionId to a pre-existing MultiXactId.
337 : *
338 : * If the TransactionId is already a member of the passed MultiXactId with the
339 : * same status, just return it as-is.
340 : *
341 : * Note that we do NOT actually modify the membership of a pre-existing
342 : * MultiXactId; instead we create a new one. This is necessary to avoid
343 : * a race condition against code trying to wait for one MultiXactId to finish;
344 : * see notes in heapam.c.
345 : *
346 : * NB - we don't worry about our local MultiXactId cache here, because that
347 : * is handled by the lower-level routines.
348 : *
349 : * Note: It is critical that MultiXactIds that come from an old cluster (i.e.
350 : * one upgraded by pg_upgrade from a cluster older than this feature) are not
351 : * passed in.
352 : */
353 : MultiXactId
354 151050 : MultiXactIdExpand(MultiXactId multi, TransactionId xid, MultiXactStatus status)
355 : {
356 : MultiXactId newMulti;
357 : MultiXactMember *members;
358 : MultiXactMember *newMembers;
359 : int nmembers;
360 : int i;
361 : int j;
362 :
363 : Assert(MultiXactIdIsValid(multi));
364 : Assert(TransactionIdIsValid(xid));
365 :
366 : /* MultiXactIdSetOldestMember() must have been called already. */
367 : Assert(MultiXactIdIsValid(OldestMemberMXactId[MyProcNumber]));
368 :
369 : debug_elog5(DEBUG2, "Expand: received multi %u, xid %u status %s",
370 : multi, xid, mxstatus_to_string(status));
371 :
372 : /*
373 : * Note: we don't allow for old multis here. The reason is that the only
374 : * caller of this function does a check that the multixact is no longer
375 : * running.
376 : */
377 151050 : nmembers = GetMultiXactIdMembers(multi, &members, false, false);
378 :
379 151050 : if (nmembers < 0)
380 : {
381 : MultiXactMember member;
382 :
383 : /*
384 : * The MultiXactId is obsolete. This can only happen if all the
385 : * MultiXactId members stop running between the caller checking and
386 : * passing it to us. It would be better to return that fact to the
387 : * caller, but it would complicate the API and it's unlikely to happen
388 : * too often, so just deal with it by creating a singleton MultiXact.
389 : */
390 0 : member.xid = xid;
391 0 : member.status = status;
392 0 : newMulti = MultiXactIdCreateFromMembers(1, &member);
393 :
394 : debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
395 : multi, newMulti);
396 0 : return newMulti;
397 : }
398 :
399 : /*
400 : * If the TransactionId is already a member of the MultiXactId with the
401 : * same status, just return the existing MultiXactId.
402 : */
403 2931794 : for (i = 0; i < nmembers; i++)
404 : {
405 2780744 : if (TransactionIdEquals(members[i].xid, xid) &&
406 108 : (members[i].status == status))
407 : {
408 : debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
409 : xid, multi);
410 0 : pfree(members);
411 0 : return multi;
412 : }
413 : }
414 :
415 : /*
416 : * Determine which of the members of the MultiXactId are still of
417 : * interest. This is any running transaction, and also any transaction
418 : * that grabbed something stronger than just a lock and was committed. (An
419 : * update that aborted is of no interest here; and having more than one
420 : * update Xid in a multixact would cause errors elsewhere.)
421 : *
422 : * Removing dead members is not just an optimization: freezing of tuples
423 : * whose Xmax are multis depends on this behavior.
424 : *
425 : * Note we have the same race condition here as above: j could be 0 at the
426 : * end of the loop.
427 : */
428 151050 : newMembers = palloc_array(MultiXactMember, nmembers + 1);
429 :
430 2931794 : for (i = 0, j = 0; i < nmembers; i++)
431 : {
432 2780744 : if (TransactionIdIsInProgress(members[i].xid) ||
433 149352 : (ISUPDATE_from_mxstatus(members[i].status) &&
434 34 : TransactionIdDidCommit(members[i].xid)))
435 : {
436 2631426 : newMembers[j].xid = members[i].xid;
437 2631426 : newMembers[j++].status = members[i].status;
438 : }
439 : }
440 :
441 151050 : newMembers[j].xid = xid;
442 151050 : newMembers[j++].status = status;
443 151050 : newMulti = MultiXactIdCreateFromMembers(j, newMembers);
444 :
445 151050 : pfree(members);
446 151050 : pfree(newMembers);
447 :
448 : debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
449 :
450 151050 : return newMulti;
451 : }
452 :
453 : /*
454 : * MultiXactIdIsRunning
455 : * Returns whether a MultiXactId is "running".
456 : *
457 : * We return true if at least one member of the given MultiXactId is still
458 : * running. Note that a "false" result is certain not to change,
459 : * because it is not legal to add members to an existing MultiXactId.
460 : *
461 : * Caller is expected to have verified that the multixact does not come from
462 : * a pg_upgraded share-locked tuple.
463 : */
464 : bool
465 299598 : MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
466 : {
467 : MultiXactMember *members;
468 : int nmembers;
469 : int i;
470 :
471 : debug_elog3(DEBUG2, "IsRunning %u?", multi);
472 :
473 : /*
474 : * "false" here means we assume our callers have checked that the given
475 : * multi cannot possibly come from a pg_upgraded database.
476 : */
477 299598 : nmembers = GetMultiXactIdMembers(multi, &members, false, isLockOnly);
478 :
479 299598 : if (nmembers <= 0)
480 : {
481 : debug_elog2(DEBUG2, "IsRunning: no members");
482 1430 : return false;
483 : }
484 :
485 : /*
486 : * Checking for myself is cheap compared to looking in shared memory;
487 : * return true if any live subtransaction of the current top-level
488 : * transaction is a member.
489 : *
490 : * This is not needed for correctness, it's just a fast path.
491 : */
492 5782842 : for (i = 0; i < nmembers; i++)
493 : {
494 5484986 : if (TransactionIdIsCurrentTransactionId(members[i].xid))
495 : {
496 : debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
497 312 : pfree(members);
498 312 : return true;
499 : }
500 : }
501 :
502 : /*
503 : * This could be made faster by having another entry point in procarray.c,
504 : * walking the PGPROC array only once for all the members. But in most
505 : * cases nmembers should be small enough that it doesn't much matter.
506 : */
507 592262 : for (i = 0; i < nmembers; i++)
508 : {
509 592166 : if (TransactionIdIsInProgress(members[i].xid))
510 : {
511 : debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
512 : i, members[i].xid);
513 297760 : pfree(members);
514 297760 : return true;
515 : }
516 : }
517 :
518 96 : pfree(members);
519 :
520 : debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
521 :
522 96 : return false;
523 : }
524 :
525 : /*
526 : * MultiXactIdSetOldestMember
527 : * Save the oldest MultiXactId this transaction could be a member of.
528 : *
529 : * We set the OldestMemberMXactId for a given transaction the first time it's
530 : * going to do some operation that might require a MultiXactId (tuple lock,
531 : * update or delete). We need to do this even if we end up using a
532 : * TransactionId instead of a MultiXactId, because there is a chance that
533 : * another transaction would add our XID to a MultiXactId.
534 : *
535 : * The value to set is the next-to-be-assigned MultiXactId, so this is meant to
536 : * be called just before doing any such possibly-MultiXactId-able operation.
537 : */
538 : void
539 3982584 : MultiXactIdSetOldestMember(void)
540 : {
541 3982584 : if (!MultiXactIdIsValid(OldestMemberMXactId[MyProcNumber]))
542 : {
543 : MultiXactId nextMXact;
544 :
545 : /*
546 : * You might think we don't need to acquire a lock here, since
547 : * fetching and storing of TransactionIds is probably atomic, but in
548 : * fact we do: suppose we pick up nextMXact and then lose the CPU for
549 : * a long time. Someone else could advance nextMXact, and then
550 : * another someone else could compute an OldestVisibleMXactId that
551 : * would be after the value we are going to store when we get control
552 : * back. Which would be wrong.
553 : *
554 : * Note that a shared lock is sufficient, because it's enough to stop
555 : * someone from advancing nextMXact; and nobody else could be trying
556 : * to write to our OldestMember entry, only reading (and we assume
557 : * storing it is atomic.)
558 : */
559 149504 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
560 :
561 149504 : nextMXact = MultiXactState->nextMXact;
562 :
563 149504 : OldestMemberMXactId[MyProcNumber] = nextMXact;
564 :
565 149504 : LWLockRelease(MultiXactGenLock);
566 :
567 : debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
568 : MyProcNumber, nextMXact);
569 : }
570 3982584 : }
571 :
572 : /*
573 : * MultiXactIdSetOldestVisible
574 : * Save the oldest MultiXactId this transaction considers possibly live.
575 : *
576 : * We set the OldestVisibleMXactId for a given transaction the first time
577 : * it's going to inspect any MultiXactId. Once we have set this, we are
578 : * guaranteed that SLRU data for MultiXactIds >= our own OldestVisibleMXactId
579 : * won't be truncated away.
580 : *
581 : * The value to set is the oldest of nextMXact and all the valid per-backend
582 : * OldestMemberMXactId[] entries. Because of the locking we do, we can be
583 : * certain that no subsequent call to MultiXactIdSetOldestMember can set
584 : * an OldestMemberMXactId[] entry older than what we compute here. Therefore
585 : * there is no live transaction, now or later, that can be a member of any
586 : * MultiXactId older than the OldestVisibleMXactId we compute here.
587 : */
588 : static void
589 184874 : MultiXactIdSetOldestVisible(void)
590 : {
591 184874 : if (!MultiXactIdIsValid(OldestVisibleMXactId[MyProcNumber]))
592 : {
593 : MultiXactId oldestMXact;
594 : int i;
595 :
596 6362 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
597 :
598 6362 : oldestMXact = MultiXactState->nextMXact;
599 811718 : for (i = 0; i < MaxOldestSlot; i++)
600 : {
601 805356 : MultiXactId thisoldest = OldestMemberMXactId[i];
602 :
603 917122 : if (MultiXactIdIsValid(thisoldest) &&
604 111766 : MultiXactIdPrecedes(thisoldest, oldestMXact))
605 11330 : oldestMXact = thisoldest;
606 : }
607 :
608 6362 : OldestVisibleMXactId[MyProcNumber] = oldestMXact;
609 :
610 6362 : LWLockRelease(MultiXactGenLock);
611 :
612 : debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
613 : MyProcNumber, oldestMXact);
614 : }
615 184874 : }
616 :
617 : /*
618 : * ReadNextMultiXactId
619 : * Return the next MultiXactId to be assigned, but don't allocate it
620 : */
621 : MultiXactId
622 335798 : ReadNextMultiXactId(void)
623 : {
624 : MultiXactId mxid;
625 :
626 : /* XXX we could presumably do this without a lock. */
627 335798 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
628 335798 : mxid = MultiXactState->nextMXact;
629 335798 : LWLockRelease(MultiXactGenLock);
630 :
631 335798 : return mxid;
632 : }
633 :
634 : /*
635 : * ReadMultiXactIdRange
636 : * Get the range of IDs that may still be referenced by a relation.
637 : */
638 : void
639 2862 : ReadMultiXactIdRange(MultiXactId *oldest, MultiXactId *next)
640 : {
641 2862 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
642 2862 : *oldest = MultiXactState->oldestMultiXactId;
643 2862 : *next = MultiXactState->nextMXact;
644 2862 : LWLockRelease(MultiXactGenLock);
645 2862 : }
646 :
647 :
648 : /*
649 : * MultiXactIdCreateFromMembers
650 : * Make a new MultiXactId from the specified set of members
651 : *
652 : * Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
653 : * given TransactionIds as members. Returns the newly created MultiXactId.
654 : *
655 : * NB: the passed members[] array will be sorted in-place.
656 : */
657 : MultiXactId
658 153252 : MultiXactIdCreateFromMembers(int nmembers, MultiXactMember *members)
659 : {
660 : MultiXactId multi;
661 : MultiXactOffset offset;
662 : xl_multixact_create xlrec;
663 :
664 : debug_elog3(DEBUG2, "Create: %s",
665 : mxid_to_string(InvalidMultiXactId, nmembers, members));
666 :
667 : /*
668 : * See if the same set of members already exists in our cache; if so, just
669 : * re-use that MultiXactId. (Note: it might seem that looking in our
670 : * cache is insufficient, and we ought to search disk to see if a
671 : * duplicate definition already exists. But since we only ever create
672 : * MultiXacts containing our own XID, in most cases any such MultiXacts
673 : * were in fact created by us, and so will be in our cache. There are
674 : * corner cases where someone else added us to a MultiXact without our
675 : * knowledge, but it's not worth checking for.)
676 : */
677 153252 : multi = mXactCacheGetBySet(nmembers, members);
678 153252 : if (MultiXactIdIsValid(multi))
679 : {
680 : debug_elog2(DEBUG2, "Create: in cache!");
681 142680 : return multi;
682 : }
683 :
684 : /* Verify that there is a single update Xid among the given members. */
685 : {
686 : int i;
687 10572 : bool has_update = false;
688 :
689 199944 : for (i = 0; i < nmembers; i++)
690 : {
691 189372 : if (ISUPDATE_from_mxstatus(members[i].status))
692 : {
693 4746 : if (has_update)
694 0 : elog(ERROR, "new multixact has more than one updating member: %s",
695 : mxid_to_string(InvalidMultiXactId, nmembers, members));
696 4746 : has_update = true;
697 : }
698 : }
699 : }
700 :
701 : /* Load the injection point before entering the critical section */
702 10572 : INJECTION_POINT_LOAD("multixact-create-from-members");
703 :
704 : /*
705 : * Assign the MXID and offsets range to use, and make sure there is space
706 : * in the OFFSETs and MEMBERs files. NB: this routine does
707 : * START_CRIT_SECTION().
708 : *
709 : * Note: unlike MultiXactIdCreate and MultiXactIdExpand, we do not check
710 : * that we've called MultiXactIdSetOldestMember here. This is because
711 : * this routine is used in some places to create new MultiXactIds of which
712 : * the current backend is not a member, notably during freezing of multis
713 : * in vacuum. During vacuum, in particular, it would be unacceptable to
714 : * keep OldestMulti set, in case it runs for long.
715 : */
716 10572 : multi = GetNewMultiXactId(nmembers, &offset);
717 :
718 10572 : INJECTION_POINT_CACHED("multixact-create-from-members", NULL);
719 :
720 : /* Make an XLOG entry describing the new MXID. */
721 10572 : xlrec.mid = multi;
722 10572 : xlrec.moff = offset;
723 10572 : xlrec.nmembers = nmembers;
724 :
725 : /*
726 : * XXX Note: there's a lot of padding space in MultiXactMember. We could
727 : * find a more compact representation of this Xlog record -- perhaps all
728 : * the status flags in one XLogRecData, then all the xids in another one?
729 : * Not clear that it's worth the trouble though.
730 : */
731 10572 : XLogBeginInsert();
732 10572 : XLogRegisterData(&xlrec, SizeOfMultiXactCreate);
733 10572 : XLogRegisterData(members, nmembers * sizeof(MultiXactMember));
734 :
735 10572 : (void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID);
736 :
737 : /* Now enter the information into the OFFSETs and MEMBERs logs */
738 10572 : RecordNewMultiXact(multi, offset, nmembers, members);
739 :
740 : /* Done with critical section */
741 10572 : END_CRIT_SECTION();
742 :
743 : /* Store the new MultiXactId in the local cache, too */
744 10572 : mXactCachePut(multi, nmembers, members);
745 :
746 : debug_elog2(DEBUG2, "Create: all done");
747 :
748 10572 : return multi;
749 : }
750 :
751 : /*
752 : * RecordNewMultiXact
753 : * Write info about a new multixact into the offsets and members files
754 : *
755 : * This is broken out of MultiXactIdCreateFromMembers so that xlog replay can
756 : * use it.
757 : */
758 : static void
759 10580 : RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
760 : int nmembers, MultiXactMember *members)
761 : {
762 : int64 pageno;
763 : int64 prev_pageno;
764 : int entryno;
765 : int slotno;
766 : MultiXactOffset *offptr;
767 : MultiXactId next;
768 : int64 next_pageno;
769 : int next_entryno;
770 : MultiXactOffset *next_offptr;
771 : MultiXactOffset next_offset;
772 : LWLock *lock;
773 10580 : LWLock *prevlock = NULL;
774 :
775 : /* position of this multixid in the offsets SLRU area */
776 10580 : pageno = MultiXactIdToOffsetPage(multi);
777 10580 : entryno = MultiXactIdToOffsetEntry(multi);
778 :
779 : /* position of the next multixid */
780 10580 : next = NextMultiXactId(multi);
781 10580 : next_pageno = MultiXactIdToOffsetPage(next);
782 10580 : next_entryno = MultiXactIdToOffsetEntry(next);
783 :
784 : /*
785 : * Set the starting offset of this multixid's members.
786 : *
787 : * In the common case, it was already be set by the previous
788 : * RecordNewMultiXact call, as this was the next multixid of the previous
789 : * multixid. But if multiple backends are generating multixids
790 : * concurrently, we might race ahead and get called before the previous
791 : * multixid.
792 : */
793 10580 : lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
794 10580 : LWLockAcquire(lock, LW_EXCLUSIVE);
795 :
796 : /*
797 : * Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
798 : * to complain about if there's any I/O error. This is kinda bogus, but
799 : * since the errors will always give the full pathname, it should be clear
800 : * enough that a MultiXactId is really involved. Perhaps someday we'll
801 : * take the trouble to generalize the slru.c error reporting code.
802 : */
803 10580 : slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
804 10580 : offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
805 10580 : offptr += entryno;
806 :
807 10580 : if (*offptr != offset)
808 : {
809 : /* should already be set to the correct value, or not at all */
810 : Assert(*offptr == 0);
811 2 : *offptr = offset;
812 2 : MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
813 : }
814 :
815 : /*
816 : * Set the next multixid's offset to the end of this multixid's members.
817 : */
818 10580 : if (next_pageno == pageno)
819 : {
820 10570 : next_offptr = offptr + 1;
821 : }
822 : else
823 : {
824 : /* must be the first entry on the page */
825 : Assert(next_entryno == 0 || next == FirstMultiXactId);
826 :
827 : /* Swap the lock for a lock on the next page */
828 10 : LWLockRelease(lock);
829 10 : lock = SimpleLruGetBankLock(MultiXactOffsetCtl, next_pageno);
830 10 : LWLockAcquire(lock, LW_EXCLUSIVE);
831 :
832 10 : slotno = SimpleLruReadPage(MultiXactOffsetCtl, next_pageno, true, next);
833 10 : next_offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
834 10 : next_offptr += next_entryno;
835 : }
836 :
837 : /* Like in GetNewMultiXactId(), skip over offset 0 */
838 10580 : next_offset = offset + nmembers;
839 10580 : if (next_offset == 0)
840 0 : next_offset = 1;
841 10580 : if (*next_offptr != next_offset)
842 : {
843 : /* should already be set to the correct value, or not at all */
844 : Assert(*next_offptr == 0);
845 10580 : *next_offptr = next_offset;
846 10580 : MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
847 : }
848 :
849 : /* Release MultiXactOffset SLRU lock. */
850 10580 : LWLockRelease(lock);
851 :
852 10580 : prev_pageno = -1;
853 :
854 199968 : for (int i = 0; i < nmembers; i++, offset++)
855 : {
856 : TransactionId *memberptr;
857 : uint32 *flagsptr;
858 : uint32 flagsval;
859 : int bshift;
860 : int flagsoff;
861 : int memberoff;
862 :
863 : Assert(members[i].status <= MultiXactStatusUpdate);
864 :
865 189388 : pageno = MXOffsetToMemberPage(offset);
866 189388 : memberoff = MXOffsetToMemberOffset(offset);
867 189388 : flagsoff = MXOffsetToFlagsOffset(offset);
868 189388 : bshift = MXOffsetToFlagsBitShift(offset);
869 :
870 189388 : if (pageno != prev_pageno)
871 : {
872 : /*
873 : * MultiXactMember SLRU page is changed so check if this new page
874 : * fall into the different SLRU bank then release the old bank's
875 : * lock and acquire lock on the new bank.
876 : */
877 10688 : lock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
878 10688 : if (lock != prevlock)
879 : {
880 10688 : if (prevlock != NULL)
881 108 : LWLockRelease(prevlock);
882 :
883 10688 : LWLockAcquire(lock, LW_EXCLUSIVE);
884 10688 : prevlock = lock;
885 : }
886 10688 : slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
887 10688 : prev_pageno = pageno;
888 : }
889 :
890 189388 : memberptr = (TransactionId *)
891 189388 : (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
892 :
893 189388 : *memberptr = members[i].xid;
894 :
895 189388 : flagsptr = (uint32 *)
896 189388 : (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
897 :
898 189388 : flagsval = *flagsptr;
899 189388 : flagsval &= ~(((1 << MXACT_MEMBER_BITS_PER_XACT) - 1) << bshift);
900 189388 : flagsval |= (members[i].status << bshift);
901 189388 : *flagsptr = flagsval;
902 :
903 189388 : MultiXactMemberCtl->shared->page_dirty[slotno] = true;
904 : }
905 :
906 10580 : if (prevlock != NULL)
907 10580 : LWLockRelease(prevlock);
908 10580 : }
909 :
910 : /*
911 : * GetNewMultiXactId
912 : * Get the next MultiXactId.
913 : *
914 : * Also, reserve the needed amount of space in the "members" area. The
915 : * starting offset of the reserved space is returned in *offset.
916 : *
917 : * This may generate XLOG records for expansion of the offsets and/or members
918 : * files. Unfortunately, we have to do that while holding MultiXactGenLock
919 : * to avoid race conditions --- the XLOG record for zeroing a page must appear
920 : * before any backend can possibly try to store data in that page!
921 : *
922 : * We start a critical section before advancing the shared counters. The
923 : * caller must end the critical section after writing SLRU data.
924 : */
925 : static MultiXactId
926 10572 : GetNewMultiXactId(int nmembers, MultiXactOffset *offset)
927 : {
928 : MultiXactId result;
929 : MultiXactOffset nextOffset;
930 :
931 : debug_elog3(DEBUG2, "GetNew: for %d xids", nmembers);
932 :
933 : /* safety check, we should never get this far in a HS standby */
934 10572 : if (RecoveryInProgress())
935 0 : elog(ERROR, "cannot assign MultiXactIds during recovery");
936 :
937 10572 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
938 :
939 : /* Assign the MXID */
940 10572 : result = MultiXactState->nextMXact;
941 :
942 : /*----------
943 : * Check to see if it's safe to assign another MultiXactId. This protects
944 : * against catastrophic data loss due to multixact wraparound. The basic
945 : * rules are:
946 : *
947 : * If we're past multiVacLimit or the safe threshold for member storage
948 : * space, or we don't know what the safe threshold for member storage is,
949 : * start trying to force autovacuum cycles.
950 : * If we're past multiWarnLimit, start issuing warnings.
951 : * If we're past multiStopLimit, refuse to create new MultiXactIds.
952 : *
953 : * Note these are pretty much the same protections in GetNewTransactionId.
954 : *----------
955 : */
956 10572 : if (!MultiXactIdPrecedes(result, MultiXactState->multiVacLimit))
957 : {
958 : /*
959 : * For safety's sake, we release MultiXactGenLock while sending
960 : * signals, warnings, etc. This is not so much because we care about
961 : * preserving concurrency in this situation, as to avoid any
962 : * possibility of deadlock while doing get_database_name(). First,
963 : * copy all the shared values we'll need in this path.
964 : */
965 0 : MultiXactId multiWarnLimit = MultiXactState->multiWarnLimit;
966 0 : MultiXactId multiStopLimit = MultiXactState->multiStopLimit;
967 0 : MultiXactId multiWrapLimit = MultiXactState->multiWrapLimit;
968 0 : Oid oldest_datoid = MultiXactState->oldestMultiXactDB;
969 :
970 0 : LWLockRelease(MultiXactGenLock);
971 :
972 0 : if (IsUnderPostmaster &&
973 0 : !MultiXactIdPrecedes(result, multiStopLimit))
974 : {
975 0 : char *oldest_datname = get_database_name(oldest_datoid);
976 :
977 : /*
978 : * Immediately kick autovacuum into action as we're already in
979 : * ERROR territory.
980 : */
981 0 : SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
982 :
983 : /* complain even if that DB has disappeared */
984 0 : if (oldest_datname)
985 0 : ereport(ERROR,
986 : (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
987 : errmsg("database is not accepting commands that assign new MultiXactIds to avoid wraparound data loss in database \"%s\"",
988 : oldest_datname),
989 : errhint("Execute a database-wide VACUUM in that database.\n"
990 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
991 : else
992 0 : ereport(ERROR,
993 : (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
994 : errmsg("database is not accepting commands that assign new MultiXactIds to avoid wraparound data loss in database with OID %u",
995 : oldest_datoid),
996 : errhint("Execute a database-wide VACUUM in that database.\n"
997 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
998 : }
999 :
1000 : /*
1001 : * To avoid swamping the postmaster with signals, we issue the autovac
1002 : * request only once per 64K multis generated. This still gives
1003 : * plenty of chances before we get into real trouble.
1004 : */
1005 0 : if (IsUnderPostmaster && ((result % 65536) == 0 || result == FirstMultiXactId))
1006 0 : SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
1007 :
1008 0 : if (!MultiXactIdPrecedes(result, multiWarnLimit))
1009 : {
1010 0 : char *oldest_datname = get_database_name(oldest_datoid);
1011 :
1012 : /* complain even if that DB has disappeared */
1013 0 : if (oldest_datname)
1014 0 : ereport(WARNING,
1015 : (errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
1016 : "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
1017 : multiWrapLimit - result,
1018 : oldest_datname,
1019 : multiWrapLimit - result),
1020 : errhint("Execute a database-wide VACUUM in that database.\n"
1021 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1022 : else
1023 0 : ereport(WARNING,
1024 : (errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
1025 : "database with OID %u must be vacuumed before %u more MultiXactIds are used",
1026 : multiWrapLimit - result,
1027 : oldest_datoid,
1028 : multiWrapLimit - result),
1029 : errhint("Execute a database-wide VACUUM in that database.\n"
1030 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1031 : }
1032 :
1033 : /* Re-acquire lock and start over */
1034 0 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1035 0 : result = MultiXactState->nextMXact;
1036 : }
1037 :
1038 : /*
1039 : * Make sure there is room for the next MXID in the file. Assigning this
1040 : * MXID sets the next MXID's offset already.
1041 : */
1042 10572 : ExtendMultiXactOffset(NextMultiXactId(result));
1043 :
1044 : /*
1045 : * Reserve the members space, similarly to above.
1046 : */
1047 10572 : nextOffset = MultiXactState->nextOffset;
1048 :
1049 : /*
1050 : * Offsets are 64-bit integers and will never wrap around. Firstly, it
1051 : * would take an unrealistic amount of time and resources to consume 2^64
1052 : * offsets. Secondly, multixid creation is WAL-logged, so you would run
1053 : * out of LSNs before reaching offset wraparound. Nevertheless, check for
1054 : * wraparound as a sanity check.
1055 : */
1056 10572 : if (nextOffset + nmembers < nextOffset)
1057 0 : ereport(ERROR,
1058 : (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1059 : errmsg("MultiXact members would wrap around")));
1060 10572 : *offset = nextOffset;
1061 :
1062 10572 : ExtendMultiXactMember(nextOffset, nmembers);
1063 :
1064 : /*
1065 : * Critical section from here until caller has written the data into the
1066 : * just-reserved SLRU space; we don't want to error out with a partly
1067 : * written MultiXact structure. (In particular, failing to write our
1068 : * start offset after advancing nextMXact would effectively corrupt the
1069 : * previous MultiXact.)
1070 : */
1071 10572 : START_CRIT_SECTION();
1072 :
1073 : /*
1074 : * Advance counters. As in GetNewTransactionId(), this must not happen
1075 : * until after file extension has succeeded!
1076 : */
1077 10572 : MultiXactState->nextMXact = NextMultiXactId(result);
1078 10572 : MultiXactState->nextOffset += nmembers;
1079 :
1080 10572 : LWLockRelease(MultiXactGenLock);
1081 :
1082 : debug_elog4(DEBUG2, "GetNew: returning %u offset %" PRIu64,
1083 : result, *offset);
1084 10572 : return result;
1085 : }
1086 :
1087 : /*
1088 : * GetMultiXactIdMembers
1089 : * Return the set of MultiXactMembers that make up a MultiXactId
1090 : *
1091 : * Return value is the number of members found, or -1 if there are none,
1092 : * and *members is set to a newly palloc'ed array of members. It's the
1093 : * caller's responsibility to free it when done with it.
1094 : *
1095 : * from_pgupgrade must be passed as true if and only if only the multixact
1096 : * corresponds to a value from a tuple that was locked in a 9.2-or-older
1097 : * installation and later pg_upgrade'd (that is, the infomask is
1098 : * HEAP_LOCKED_UPGRADED). In this case, we know for certain that no members
1099 : * can still be running, so we return -1 just like for an empty multixact
1100 : * without any further checking. It would be wrong to try to resolve such a
1101 : * multixact: either the multixact is within the current valid multixact
1102 : * range, in which case the returned result would be bogus, or outside that
1103 : * range, in which case an error would be raised.
1104 : *
1105 : * In all other cases, the passed multixact must be within the known valid
1106 : * range, that is, greater than or equal to oldestMultiXactId, and less than
1107 : * nextMXact. Otherwise, an error is raised.
1108 : *
1109 : * isLockOnly must be set to true if caller is certain that the given multi
1110 : * is used only to lock tuples; can be false without loss of correctness,
1111 : * but passing a true means we can return quickly without checking for
1112 : * old updates.
1113 : */
1114 : int
1115 1099616 : GetMultiXactIdMembers(MultiXactId multi, MultiXactMember **members,
1116 : bool from_pgupgrade, bool isLockOnly)
1117 : {
1118 : int64 pageno;
1119 : int64 prev_pageno;
1120 : int entryno;
1121 : int slotno;
1122 : MultiXactOffset *offptr;
1123 : MultiXactOffset offset;
1124 : MultiXactOffset nextMXOffset;
1125 : int length;
1126 : MultiXactId oldestMXact;
1127 : MultiXactId nextMXact;
1128 : MultiXactMember *ptr;
1129 : LWLock *lock;
1130 :
1131 : debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
1132 :
1133 1099616 : if (!MultiXactIdIsValid(multi) || from_pgupgrade)
1134 : {
1135 0 : *members = NULL;
1136 0 : return -1;
1137 : }
1138 :
1139 : /* See if the MultiXactId is in the local cache */
1140 1099616 : length = mXactCacheGetById(multi, members);
1141 1099616 : if (length >= 0)
1142 : {
1143 : debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
1144 : mxid_to_string(multi, length, *members));
1145 914742 : return length;
1146 : }
1147 :
1148 : /* Set our OldestVisibleMXactId[] entry if we didn't already */
1149 184874 : MultiXactIdSetOldestVisible();
1150 :
1151 : /*
1152 : * If we know the multi is used only for locking and not for updates, then
1153 : * we can skip checking if the value is older than our oldest visible
1154 : * multi. It cannot possibly still be running.
1155 : */
1156 192234 : if (isLockOnly &&
1157 7360 : MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyProcNumber]))
1158 : {
1159 : debug_elog2(DEBUG2, "GetMembers: a locker-only multi is too old");
1160 1432 : *members = NULL;
1161 1432 : return -1;
1162 : }
1163 :
1164 : /*
1165 : * We check known limits on MultiXact before resorting to the SLRU area.
1166 : *
1167 : * An ID older than MultiXactState->oldestMultiXactId cannot possibly be
1168 : * useful; it has already been removed, or will be removed shortly, by
1169 : * truncation. If one is passed, an error is raised.
1170 : *
1171 : * Also, an ID >= nextMXact shouldn't ever be seen here; if it is seen, it
1172 : * implies undetected ID wraparound has occurred. This raises a hard
1173 : * error.
1174 : *
1175 : * Shared lock is enough here since we aren't modifying any global state.
1176 : * Acquire it just long enough to grab the current counter values.
1177 : */
1178 183442 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
1179 :
1180 183442 : oldestMXact = MultiXactState->oldestMultiXactId;
1181 183442 : nextMXact = MultiXactState->nextMXact;
1182 :
1183 183442 : LWLockRelease(MultiXactGenLock);
1184 :
1185 183442 : if (MultiXactIdPrecedes(multi, oldestMXact))
1186 0 : ereport(ERROR,
1187 : (errcode(ERRCODE_INTERNAL_ERROR),
1188 : errmsg("MultiXactId %u does no longer exist -- apparent wraparound",
1189 : multi)));
1190 :
1191 183442 : if (!MultiXactIdPrecedes(multi, nextMXact))
1192 0 : ereport(ERROR,
1193 : (errcode(ERRCODE_INTERNAL_ERROR),
1194 : errmsg("MultiXactId %u has not been created yet -- apparent wraparound",
1195 : multi)));
1196 :
1197 : /*
1198 : * Find out the offset at which we need to start reading MultiXactMembers
1199 : * and the number of members in the multixact. We determine the latter as
1200 : * the difference between this multixact's starting offset and the next
1201 : * one's.
1202 : */
1203 183442 : pageno = MultiXactIdToOffsetPage(multi);
1204 183442 : entryno = MultiXactIdToOffsetEntry(multi);
1205 :
1206 : /* Acquire the bank lock for the page we need. */
1207 183442 : lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
1208 183442 : LWLockAcquire(lock, LW_EXCLUSIVE);
1209 :
1210 : /* read this multi's offset */
1211 183442 : slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
1212 183442 : offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1213 183442 : offptr += entryno;
1214 183442 : offset = *offptr;
1215 :
1216 183442 : if (offset == 0)
1217 0 : ereport(ERROR,
1218 : (errcode(ERRCODE_DATA_CORRUPTED),
1219 : errmsg("MultiXact %u has invalid offset", multi)));
1220 :
1221 : /* read next multi's offset */
1222 : {
1223 : MultiXactId tmpMXact;
1224 :
1225 : /* handle wraparound if needed */
1226 183442 : tmpMXact = NextMultiXactId(multi);
1227 :
1228 183442 : prev_pageno = pageno;
1229 :
1230 183442 : pageno = MultiXactIdToOffsetPage(tmpMXact);
1231 183442 : entryno = MultiXactIdToOffsetEntry(tmpMXact);
1232 :
1233 183442 : if (pageno != prev_pageno)
1234 : {
1235 : LWLock *newlock;
1236 :
1237 : /*
1238 : * Since we're going to access a different SLRU page, if this page
1239 : * falls under a different bank, release the old bank's lock and
1240 : * acquire the lock of the new bank.
1241 : */
1242 26 : newlock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
1243 26 : if (newlock != lock)
1244 : {
1245 0 : LWLockRelease(lock);
1246 0 : LWLockAcquire(newlock, LW_EXCLUSIVE);
1247 0 : lock = newlock;
1248 : }
1249 26 : slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, tmpMXact);
1250 : }
1251 :
1252 183442 : offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1253 183442 : offptr += entryno;
1254 183442 : nextMXOffset = *offptr;
1255 : }
1256 :
1257 183442 : LWLockRelease(lock);
1258 183442 : lock = NULL;
1259 :
1260 : /* Sanity check the next offset */
1261 183442 : if (nextMXOffset == 0)
1262 0 : ereport(ERROR,
1263 : (errcode(ERRCODE_DATA_CORRUPTED),
1264 : errmsg("MultiXact %u has invalid next offset", multi)));
1265 183442 : if (nextMXOffset == offset)
1266 0 : ereport(ERROR,
1267 : (errcode(ERRCODE_DATA_CORRUPTED),
1268 : errmsg("MultiXact %u with offset (%" PRIu64 ") has zero members",
1269 : multi, offset)));
1270 183442 : if (nextMXOffset < offset)
1271 0 : ereport(ERROR,
1272 : (errcode(ERRCODE_DATA_CORRUPTED),
1273 : errmsg("MultiXact %u has offset (%" PRIu64 ") greater than its next offset (%" PRIu64 ")",
1274 : multi, offset, nextMXOffset)));
1275 183442 : if (nextMXOffset - offset > INT32_MAX)
1276 0 : ereport(ERROR,
1277 : (errcode(ERRCODE_DATA_CORRUPTED),
1278 : errmsg("MultiXact %u has too many members (%" PRIu64 ")",
1279 : multi, nextMXOffset - offset)));
1280 183442 : length = nextMXOffset - offset;
1281 :
1282 : /* read the members */
1283 183442 : ptr = (MultiXactMember *) palloc(length * sizeof(MultiXactMember));
1284 183442 : prev_pageno = -1;
1285 3655704 : for (int i = 0; i < length; i++, offset++)
1286 : {
1287 : TransactionId *xactptr;
1288 : uint32 *flagsptr;
1289 : int flagsoff;
1290 : int bshift;
1291 : int memberoff;
1292 :
1293 3472262 : pageno = MXOffsetToMemberPage(offset);
1294 3472262 : memberoff = MXOffsetToMemberOffset(offset);
1295 :
1296 3472262 : if (pageno != prev_pageno)
1297 : {
1298 : LWLock *newlock;
1299 :
1300 : /*
1301 : * Since we're going to access a different SLRU page, if this page
1302 : * falls under a different bank, release the old bank's lock and
1303 : * acquire the lock of the new bank.
1304 : */
1305 183766 : newlock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
1306 183766 : if (newlock != lock)
1307 : {
1308 183766 : if (lock)
1309 324 : LWLockRelease(lock);
1310 183766 : LWLockAcquire(newlock, LW_EXCLUSIVE);
1311 183766 : lock = newlock;
1312 : }
1313 :
1314 183766 : slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
1315 183766 : prev_pageno = pageno;
1316 : }
1317 :
1318 3472262 : xactptr = (TransactionId *)
1319 3472262 : (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
1320 : Assert(TransactionIdIsValid(*xactptr));
1321 :
1322 3472262 : flagsoff = MXOffsetToFlagsOffset(offset);
1323 3472262 : bshift = MXOffsetToFlagsBitShift(offset);
1324 3472262 : flagsptr = (uint32 *) (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
1325 :
1326 3472262 : ptr[i].xid = *xactptr;
1327 3472262 : ptr[i].status = (*flagsptr >> bshift) & MXACT_MEMBER_XACT_BITMASK;
1328 : }
1329 :
1330 183442 : LWLockRelease(lock);
1331 :
1332 : /*
1333 : * Copy the result into the local cache.
1334 : */
1335 183442 : mXactCachePut(multi, length, ptr);
1336 :
1337 : debug_elog3(DEBUG2, "GetMembers: no cache for %s",
1338 : mxid_to_string(multi, length, ptr));
1339 183442 : *members = ptr;
1340 183442 : return length;
1341 : }
1342 :
1343 : /*
1344 : * mxactMemberComparator
1345 : * qsort comparison function for MultiXactMember
1346 : *
1347 : * We can't use wraparound comparison for XIDs because that does not respect
1348 : * the triangle inequality! Any old sort order will do.
1349 : */
1350 : static int
1351 6101274 : mxactMemberComparator(const void *arg1, const void *arg2)
1352 : {
1353 6101274 : MultiXactMember member1 = *(const MultiXactMember *) arg1;
1354 6101274 : MultiXactMember member2 = *(const MultiXactMember *) arg2;
1355 :
1356 6101274 : if (member1.xid > member2.xid)
1357 52 : return 1;
1358 6101222 : if (member1.xid < member2.xid)
1359 6100798 : return -1;
1360 424 : if (member1.status > member2.status)
1361 32 : return 1;
1362 392 : if (member1.status < member2.status)
1363 392 : return -1;
1364 0 : return 0;
1365 : }
1366 :
1367 : /*
1368 : * mXactCacheGetBySet
1369 : * returns a MultiXactId from the cache based on the set of
1370 : * TransactionIds that compose it, or InvalidMultiXactId if
1371 : * none matches.
1372 : *
1373 : * This is helpful, for example, if two transactions want to lock a huge
1374 : * table. By using the cache, the second will use the same MultiXactId
1375 : * for the majority of tuples, thus keeping MultiXactId usage low (saving
1376 : * both I/O and wraparound issues).
1377 : *
1378 : * NB: the passed members array will be sorted in-place.
1379 : */
1380 : static MultiXactId
1381 153252 : mXactCacheGetBySet(int nmembers, MultiXactMember *members)
1382 : {
1383 : dlist_iter iter;
1384 :
1385 : debug_elog3(DEBUG2, "CacheGet: looking for %s",
1386 : mxid_to_string(InvalidMultiXactId, nmembers, members));
1387 :
1388 : /* sort the array so comparison is easy */
1389 153252 : qsort(members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1390 :
1391 616598 : dclist_foreach(iter, &MXactCache)
1392 : {
1393 606026 : mXactCacheEnt *entry = dclist_container(mXactCacheEnt, node,
1394 : iter.cur);
1395 :
1396 606026 : if (entry->nmembers != nmembers)
1397 170652 : continue;
1398 :
1399 : /*
1400 : * We assume the cache entries are sorted, and that the unused bits in
1401 : * "status" are zeroed.
1402 : */
1403 435374 : if (memcmp(members, entry->members, nmembers * sizeof(MultiXactMember)) == 0)
1404 : {
1405 : debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
1406 142680 : dclist_move_head(&MXactCache, iter.cur);
1407 142680 : return entry->multi;
1408 : }
1409 : }
1410 :
1411 : debug_elog2(DEBUG2, "CacheGet: not found :-(");
1412 10572 : return InvalidMultiXactId;
1413 : }
1414 :
1415 : /*
1416 : * mXactCacheGetById
1417 : * returns the composing MultiXactMember set from the cache for a
1418 : * given MultiXactId, if present.
1419 : *
1420 : * If successful, *xids is set to the address of a palloc'd copy of the
1421 : * MultiXactMember set. Return value is number of members, or -1 on failure.
1422 : */
1423 : static int
1424 1099616 : mXactCacheGetById(MultiXactId multi, MultiXactMember **members)
1425 : {
1426 : dlist_iter iter;
1427 :
1428 : debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
1429 :
1430 9811200 : dclist_foreach(iter, &MXactCache)
1431 : {
1432 9626326 : mXactCacheEnt *entry = dclist_container(mXactCacheEnt, node,
1433 : iter.cur);
1434 :
1435 9626326 : if (entry->multi == multi)
1436 : {
1437 : MultiXactMember *ptr;
1438 : Size size;
1439 :
1440 914742 : size = sizeof(MultiXactMember) * entry->nmembers;
1441 914742 : ptr = (MultiXactMember *) palloc(size);
1442 :
1443 914742 : memcpy(ptr, entry->members, size);
1444 :
1445 : debug_elog3(DEBUG2, "CacheGet: found %s",
1446 : mxid_to_string(multi,
1447 : entry->nmembers,
1448 : entry->members));
1449 :
1450 : /*
1451 : * Note we modify the list while not using a modifiable iterator.
1452 : * This is acceptable only because we exit the iteration
1453 : * immediately afterwards.
1454 : */
1455 914742 : dclist_move_head(&MXactCache, iter.cur);
1456 :
1457 914742 : *members = ptr;
1458 914742 : return entry->nmembers;
1459 : }
1460 : }
1461 :
1462 : debug_elog2(DEBUG2, "CacheGet: not found");
1463 184874 : return -1;
1464 : }
1465 :
1466 : /*
1467 : * mXactCachePut
1468 : * Add a new MultiXactId and its composing set into the local cache.
1469 : */
1470 : static void
1471 194014 : mXactCachePut(MultiXactId multi, int nmembers, MultiXactMember *members)
1472 : {
1473 : mXactCacheEnt *entry;
1474 :
1475 : debug_elog3(DEBUG2, "CachePut: storing %s",
1476 : mxid_to_string(multi, nmembers, members));
1477 :
1478 194014 : if (MXactContext == NULL)
1479 : {
1480 : /* The cache only lives as long as the current transaction */
1481 : debug_elog2(DEBUG2, "CachePut: initializing memory context");
1482 6642 : MXactContext = AllocSetContextCreate(TopTransactionContext,
1483 : "MultiXact cache context",
1484 : ALLOCSET_SMALL_SIZES);
1485 : }
1486 :
1487 : entry = (mXactCacheEnt *)
1488 194014 : MemoryContextAlloc(MXactContext,
1489 194014 : offsetof(mXactCacheEnt, members) +
1490 : nmembers * sizeof(MultiXactMember));
1491 :
1492 194014 : entry->multi = multi;
1493 194014 : entry->nmembers = nmembers;
1494 194014 : memcpy(entry->members, members, nmembers * sizeof(MultiXactMember));
1495 :
1496 : /* mXactCacheGetBySet assumes the entries are sorted, so sort them */
1497 194014 : qsort(entry->members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1498 :
1499 194014 : dclist_push_head(&MXactCache, &entry->node);
1500 194014 : if (dclist_count(&MXactCache) > MAX_CACHE_ENTRIES)
1501 : {
1502 : dlist_node *node;
1503 :
1504 18956 : node = dclist_tail_node(&MXactCache);
1505 18956 : dclist_delete_from(&MXactCache, node);
1506 :
1507 18956 : entry = dclist_container(mXactCacheEnt, node, node);
1508 : debug_elog3(DEBUG2, "CachePut: pruning cached multi %u",
1509 : entry->multi);
1510 :
1511 18956 : pfree(entry);
1512 : }
1513 194014 : }
1514 :
1515 : char *
1516 376176 : mxstatus_to_string(MultiXactStatus status)
1517 : {
1518 376176 : switch (status)
1519 : {
1520 367268 : case MultiXactStatusForKeyShare:
1521 367268 : return "keysh";
1522 0 : case MultiXactStatusForShare:
1523 0 : return "sh";
1524 0 : case MultiXactStatusForNoKeyUpdate:
1525 0 : return "fornokeyupd";
1526 0 : case MultiXactStatusForUpdate:
1527 0 : return "forupd";
1528 8908 : case MultiXactStatusNoKeyUpdate:
1529 8908 : return "nokeyupd";
1530 0 : case MultiXactStatusUpdate:
1531 0 : return "upd";
1532 0 : default:
1533 0 : elog(ERROR, "unrecognized multixact status %d", status);
1534 : return "";
1535 : }
1536 : }
1537 :
1538 : char *
1539 0 : mxid_to_string(MultiXactId multi, int nmembers, MultiXactMember *members)
1540 : {
1541 : static char *str = NULL;
1542 : StringInfoData buf;
1543 : int i;
1544 :
1545 0 : if (str != NULL)
1546 0 : pfree(str);
1547 :
1548 0 : initStringInfo(&buf);
1549 :
1550 0 : appendStringInfo(&buf, "%u %d[%u (%s)", multi, nmembers, members[0].xid,
1551 : mxstatus_to_string(members[0].status));
1552 :
1553 0 : for (i = 1; i < nmembers; i++)
1554 0 : appendStringInfo(&buf, ", %u (%s)", members[i].xid,
1555 0 : mxstatus_to_string(members[i].status));
1556 :
1557 0 : appendStringInfoChar(&buf, ']');
1558 0 : str = MemoryContextStrdup(TopMemoryContext, buf.data);
1559 0 : pfree(buf.data);
1560 0 : return str;
1561 : }
1562 :
1563 : /*
1564 : * AtEOXact_MultiXact
1565 : * Handle transaction end for MultiXact
1566 : *
1567 : * This is called at top transaction commit or abort (we don't care which).
1568 : */
1569 : void
1570 1013590 : AtEOXact_MultiXact(void)
1571 : {
1572 : /*
1573 : * Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
1574 : * which should only be valid while within a transaction.
1575 : *
1576 : * We assume that storing a MultiXactId is atomic and so we need not take
1577 : * MultiXactGenLock to do this.
1578 : */
1579 1013590 : OldestMemberMXactId[MyProcNumber] = InvalidMultiXactId;
1580 1013590 : OldestVisibleMXactId[MyProcNumber] = InvalidMultiXactId;
1581 :
1582 : /*
1583 : * Discard the local MultiXactId cache. Since MXactContext was created as
1584 : * a child of TopTransactionContext, we needn't delete it explicitly.
1585 : */
1586 1013590 : MXactContext = NULL;
1587 1013590 : dclist_init(&MXactCache);
1588 1013590 : }
1589 :
1590 : /*
1591 : * AtPrepare_MultiXact
1592 : * Save multixact state at 2PC transaction prepare
1593 : *
1594 : * In this phase, we only store our OldestMemberMXactId value in the two-phase
1595 : * state file.
1596 : */
1597 : void
1598 620 : AtPrepare_MultiXact(void)
1599 : {
1600 620 : MultiXactId myOldestMember = OldestMemberMXactId[MyProcNumber];
1601 :
1602 620 : if (MultiXactIdIsValid(myOldestMember))
1603 124 : RegisterTwoPhaseRecord(TWOPHASE_RM_MULTIXACT_ID, 0,
1604 : &myOldestMember, sizeof(MultiXactId));
1605 620 : }
1606 :
1607 : /*
1608 : * PostPrepare_MultiXact
1609 : * Clean up after successful PREPARE TRANSACTION
1610 : */
1611 : void
1612 620 : PostPrepare_MultiXact(FullTransactionId fxid)
1613 : {
1614 : MultiXactId myOldestMember;
1615 :
1616 : /*
1617 : * Transfer our OldestMemberMXactId value to the slot reserved for the
1618 : * prepared transaction.
1619 : */
1620 620 : myOldestMember = OldestMemberMXactId[MyProcNumber];
1621 620 : if (MultiXactIdIsValid(myOldestMember))
1622 : {
1623 124 : ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(fxid, false);
1624 :
1625 : /*
1626 : * Even though storing MultiXactId is atomic, acquire lock to make
1627 : * sure others see both changes, not just the reset of the slot of the
1628 : * current backend. Using a volatile pointer might suffice, but this
1629 : * isn't a hot spot.
1630 : */
1631 124 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1632 :
1633 124 : OldestMemberMXactId[dummyProcNumber] = myOldestMember;
1634 124 : OldestMemberMXactId[MyProcNumber] = InvalidMultiXactId;
1635 :
1636 124 : LWLockRelease(MultiXactGenLock);
1637 : }
1638 :
1639 : /*
1640 : * We don't need to transfer OldestVisibleMXactId value, because the
1641 : * transaction is not going to be looking at any more multixacts once it's
1642 : * prepared.
1643 : *
1644 : * We assume that storing a MultiXactId is atomic and so we need not take
1645 : * MultiXactGenLock to do this.
1646 : */
1647 620 : OldestVisibleMXactId[MyProcNumber] = InvalidMultiXactId;
1648 :
1649 : /*
1650 : * Discard the local MultiXactId cache like in AtEOXact_MultiXact.
1651 : */
1652 620 : MXactContext = NULL;
1653 620 : dclist_init(&MXactCache);
1654 620 : }
1655 :
1656 : /*
1657 : * multixact_twophase_recover
1658 : * Recover the state of a prepared transaction at startup
1659 : */
1660 : void
1661 16 : multixact_twophase_recover(FullTransactionId fxid, uint16 info,
1662 : void *recdata, uint32 len)
1663 : {
1664 16 : ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(fxid, false);
1665 : MultiXactId oldestMember;
1666 :
1667 : /*
1668 : * Get the oldest member XID from the state file record, and set it in the
1669 : * OldestMemberMXactId slot reserved for this prepared transaction.
1670 : */
1671 : Assert(len == sizeof(MultiXactId));
1672 16 : oldestMember = *((MultiXactId *) recdata);
1673 :
1674 16 : OldestMemberMXactId[dummyProcNumber] = oldestMember;
1675 16 : }
1676 :
1677 : /*
1678 : * multixact_twophase_postcommit
1679 : * Similar to AtEOXact_MultiXact but for COMMIT PREPARED
1680 : */
1681 : void
1682 136 : multixact_twophase_postcommit(FullTransactionId fxid, uint16 info,
1683 : void *recdata, uint32 len)
1684 : {
1685 136 : ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(fxid, true);
1686 :
1687 : Assert(len == sizeof(MultiXactId));
1688 :
1689 136 : OldestMemberMXactId[dummyProcNumber] = InvalidMultiXactId;
1690 136 : }
1691 :
1692 : /*
1693 : * multixact_twophase_postabort
1694 : * This is actually just the same as the COMMIT case.
1695 : */
1696 : void
1697 52 : multixact_twophase_postabort(FullTransactionId fxid, uint16 info,
1698 : void *recdata, uint32 len)
1699 : {
1700 52 : multixact_twophase_postcommit(fxid, info, recdata, len);
1701 52 : }
1702 :
1703 : /*
1704 : * Initialization of shared memory for MultiXact. We use two SLRU areas,
1705 : * thus double memory. Also, reserve space for the shared MultiXactState
1706 : * struct and the per-backend MultiXactId arrays (two of those, too).
1707 : */
1708 : Size
1709 4226 : MultiXactShmemSize(void)
1710 : {
1711 : Size size;
1712 :
1713 : /* We need 2*MaxOldestSlot perBackendXactIds[] entries */
1714 : #define SHARED_MULTIXACT_STATE_SIZE \
1715 : add_size(offsetof(MultiXactStateData, perBackendXactIds), \
1716 : mul_size(sizeof(MultiXactId) * 2, MaxOldestSlot))
1717 :
1718 4226 : size = SHARED_MULTIXACT_STATE_SIZE;
1719 4226 : size = add_size(size, SimpleLruShmemSize(multixact_offset_buffers, 0));
1720 4226 : size = add_size(size, SimpleLruShmemSize(multixact_member_buffers, 0));
1721 :
1722 4226 : return size;
1723 : }
1724 :
1725 : void
1726 2266 : MultiXactShmemInit(void)
1727 : {
1728 : bool found;
1729 :
1730 : debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
1731 :
1732 2266 : MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
1733 2266 : MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
1734 :
1735 2266 : SimpleLruInit(MultiXactOffsetCtl,
1736 : "multixact_offset", multixact_offset_buffers, 0,
1737 : "pg_multixact/offsets", LWTRANCHE_MULTIXACTOFFSET_BUFFER,
1738 : LWTRANCHE_MULTIXACTOFFSET_SLRU,
1739 : SYNC_HANDLER_MULTIXACT_OFFSET,
1740 : false);
1741 : SlruPagePrecedesUnitTests(MultiXactOffsetCtl, MULTIXACT_OFFSETS_PER_PAGE);
1742 2266 : SimpleLruInit(MultiXactMemberCtl,
1743 : "multixact_member", multixact_member_buffers, 0,
1744 : "pg_multixact/members", LWTRANCHE_MULTIXACTMEMBER_BUFFER,
1745 : LWTRANCHE_MULTIXACTMEMBER_SLRU,
1746 : SYNC_HANDLER_MULTIXACT_MEMBER,
1747 : true);
1748 : /* doesn't call SimpleLruTruncate() or meet criteria for unit tests */
1749 :
1750 : /* Initialize our shared state struct */
1751 2266 : MultiXactState = ShmemInitStruct("Shared MultiXact State",
1752 2266 : SHARED_MULTIXACT_STATE_SIZE,
1753 : &found);
1754 2266 : if (!IsUnderPostmaster)
1755 : {
1756 : Assert(!found);
1757 :
1758 : /* Make sure we zero out the per-backend state */
1759 38544 : MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
1760 : }
1761 : else
1762 : Assert(found);
1763 :
1764 : /*
1765 : * Set up array pointers.
1766 : */
1767 2266 : OldestMemberMXactId = MultiXactState->perBackendXactIds;
1768 2266 : OldestVisibleMXactId = OldestMemberMXactId + MaxOldestSlot;
1769 2266 : }
1770 :
1771 : /*
1772 : * GUC check_hook for multixact_offset_buffers
1773 : */
1774 : bool
1775 2342 : check_multixact_offset_buffers(int *newval, void **extra, GucSource source)
1776 : {
1777 2342 : return check_slru_buffers("multixact_offset_buffers", newval);
1778 : }
1779 :
1780 : /*
1781 : * GUC check_hook for multixact_member_buffers
1782 : */
1783 : bool
1784 2342 : check_multixact_member_buffers(int *newval, void **extra, GucSource source)
1785 : {
1786 2342 : return check_slru_buffers("multixact_member_buffers", newval);
1787 : }
1788 :
1789 : /*
1790 : * This func must be called ONCE on system install. It creates the initial
1791 : * MultiXact segments. (The MultiXacts directories are assumed to have been
1792 : * created by initdb, and MultiXactShmemInit must have been called already.)
1793 : */
1794 : void
1795 102 : BootStrapMultiXact(void)
1796 : {
1797 : /* Zero the initial pages and flush them to disk */
1798 102 : SimpleLruZeroAndWritePage(MultiXactOffsetCtl, 0);
1799 102 : SimpleLruZeroAndWritePage(MultiXactMemberCtl, 0);
1800 102 : }
1801 :
1802 : /*
1803 : * This must be called ONCE during postmaster or standalone-backend startup.
1804 : *
1805 : * StartupXLOG has already established nextMXact/nextOffset by calling
1806 : * MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact, and the oldestMulti
1807 : * info from pg_control and/or MultiXactAdvanceOldest, but we haven't yet
1808 : * replayed WAL.
1809 : */
1810 : void
1811 1974 : StartupMultiXact(void)
1812 : {
1813 1974 : MultiXactId multi = MultiXactState->nextMXact;
1814 1974 : MultiXactOffset offset = MultiXactState->nextOffset;
1815 : int64 pageno;
1816 :
1817 : /*
1818 : * Initialize offset's idea of the latest page number.
1819 : */
1820 1974 : pageno = MultiXactIdToOffsetPage(multi);
1821 1974 : pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
1822 : pageno);
1823 :
1824 : /*
1825 : * Initialize member's idea of the latest page number.
1826 : */
1827 1974 : pageno = MXOffsetToMemberPage(offset);
1828 1974 : pg_atomic_write_u64(&MultiXactMemberCtl->shared->latest_page_number,
1829 : pageno);
1830 1974 : }
1831 :
1832 : /*
1833 : * This must be called ONCE at the end of startup/recovery.
1834 : */
1835 : void
1836 1852 : TrimMultiXact(void)
1837 : {
1838 : MultiXactId nextMXact;
1839 : MultiXactOffset offset;
1840 : MultiXactId oldestMXact;
1841 : Oid oldestMXactDB;
1842 : int64 pageno;
1843 : int entryno;
1844 : int flagsoff;
1845 :
1846 1852 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
1847 1852 : nextMXact = MultiXactState->nextMXact;
1848 1852 : offset = MultiXactState->nextOffset;
1849 1852 : oldestMXact = MultiXactState->oldestMultiXactId;
1850 1852 : oldestMXactDB = MultiXactState->oldestMultiXactDB;
1851 1852 : LWLockRelease(MultiXactGenLock);
1852 :
1853 : /* Clean up offsets state */
1854 :
1855 : /*
1856 : * (Re-)Initialize our idea of the latest page number for offsets.
1857 : */
1858 1852 : pageno = MultiXactIdToOffsetPage(nextMXact);
1859 1852 : pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
1860 : pageno);
1861 :
1862 : /*
1863 : * Set the offset of nextMXact on the offsets page. This is normally done
1864 : * in RecordNewMultiXact() of the previous multixact, but let's be sure
1865 : * the next page exists, if the nextMXact was reset with pg_resetwal for
1866 : * example.
1867 : *
1868 : * Zero out the remainder of the page. See notes in TrimCLOG() for
1869 : * background. Unlike CLOG, some WAL record covers every pg_multixact
1870 : * SLRU mutation. Since, also unlike CLOG, we ignore the WAL rule "write
1871 : * xlog before data," nextMXact successors may carry obsolete, nonzero
1872 : * offset values.
1873 : */
1874 1852 : entryno = MultiXactIdToOffsetEntry(nextMXact);
1875 : {
1876 : int slotno;
1877 : MultiXactOffset *offptr;
1878 1852 : LWLock *lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
1879 :
1880 1852 : LWLockAcquire(lock, LW_EXCLUSIVE);
1881 1852 : if (entryno == 0 || nextMXact == FirstMultiXactId)
1882 1816 : slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
1883 : else
1884 36 : slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, nextMXact);
1885 1852 : offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1886 1852 : offptr += entryno;
1887 :
1888 1852 : *offptr = offset;
1889 1852 : if (entryno != 0 && (entryno + 1) * sizeof(MultiXactOffset) != BLCKSZ)
1890 3094 : MemSet(offptr + 1, 0, BLCKSZ - (entryno + 1) * sizeof(MultiXactOffset));
1891 :
1892 1852 : MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
1893 1852 : LWLockRelease(lock);
1894 : }
1895 :
1896 : /*
1897 : * And the same for members.
1898 : *
1899 : * (Re-)Initialize our idea of the latest page number for members.
1900 : */
1901 1852 : pageno = MXOffsetToMemberPage(offset);
1902 1852 : pg_atomic_write_u64(&MultiXactMemberCtl->shared->latest_page_number,
1903 : pageno);
1904 :
1905 : /*
1906 : * Zero out the remainder of the current members page. See notes in
1907 : * TrimCLOG() for motivation.
1908 : */
1909 1852 : flagsoff = MXOffsetToFlagsOffset(offset);
1910 1852 : if (flagsoff != 0)
1911 : {
1912 : int slotno;
1913 : TransactionId *xidptr;
1914 : int memberoff;
1915 34 : LWLock *lock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
1916 :
1917 34 : LWLockAcquire(lock, LW_EXCLUSIVE);
1918 34 : memberoff = MXOffsetToMemberOffset(offset);
1919 34 : slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, offset);
1920 34 : xidptr = (TransactionId *)
1921 34 : (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
1922 :
1923 34 : MemSet(xidptr, 0, BLCKSZ - memberoff);
1924 :
1925 : /*
1926 : * Note: we don't need to zero out the flag bits in the remaining
1927 : * members of the current group, because they are always reset before
1928 : * writing.
1929 : */
1930 :
1931 34 : MultiXactMemberCtl->shared->page_dirty[slotno] = true;
1932 34 : LWLockRelease(lock);
1933 : }
1934 :
1935 : /* signal that we're officially up */
1936 1852 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1937 1852 : MultiXactState->finishedStartup = true;
1938 1852 : LWLockRelease(MultiXactGenLock);
1939 :
1940 : /* Now compute how far away the next multixid wraparound is. */
1941 1852 : SetMultiXactIdLimit(oldestMXact, oldestMXactDB);
1942 1852 : }
1943 :
1944 : /*
1945 : * Get the MultiXact data to save in a checkpoint record
1946 : */
1947 : void
1948 3164 : MultiXactGetCheckptMulti(bool is_shutdown,
1949 : MultiXactId *nextMulti,
1950 : MultiXactOffset *nextMultiOffset,
1951 : MultiXactId *oldestMulti,
1952 : Oid *oldestMultiDB)
1953 : {
1954 3164 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
1955 3164 : *nextMulti = MultiXactState->nextMXact;
1956 3164 : *nextMultiOffset = MultiXactState->nextOffset;
1957 3164 : *oldestMulti = MultiXactState->oldestMultiXactId;
1958 3164 : *oldestMultiDB = MultiXactState->oldestMultiXactDB;
1959 3164 : LWLockRelease(MultiXactGenLock);
1960 :
1961 : debug_elog6(DEBUG2,
1962 : "MultiXact: checkpoint is nextMulti %u, nextOffset %" PRIu64 ", oldestMulti %u in DB %u",
1963 : *nextMulti, *nextMultiOffset, *oldestMulti, *oldestMultiDB);
1964 3164 : }
1965 :
1966 : /*
1967 : * Perform a checkpoint --- either during shutdown, or on-the-fly
1968 : */
1969 : void
1970 3554 : CheckPointMultiXact(void)
1971 : {
1972 : TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_START(true);
1973 :
1974 : /*
1975 : * Write dirty MultiXact pages to disk. This may result in sync requests
1976 : * queued for later handling by ProcessSyncRequests(), as part of the
1977 : * checkpoint.
1978 : */
1979 3554 : SimpleLruWriteAll(MultiXactOffsetCtl, true);
1980 3554 : SimpleLruWriteAll(MultiXactMemberCtl, true);
1981 :
1982 : TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_DONE(true);
1983 3554 : }
1984 :
1985 : /*
1986 : * Set the next-to-be-assigned MultiXactId and offset
1987 : *
1988 : * This is used when we can determine the correct next ID/offset exactly
1989 : * from a checkpoint record. Although this is only called during bootstrap
1990 : * and XLog replay, we take the lock in case any hot-standby backends are
1991 : * examining the values.
1992 : */
1993 : void
1994 2158 : MultiXactSetNextMXact(MultiXactId nextMulti,
1995 : MultiXactOffset nextMultiOffset)
1996 : {
1997 : Assert(MultiXactIdIsValid(nextMulti));
1998 : debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %" PRIu64,
1999 : nextMulti, nextMultiOffset);
2000 :
2001 2158 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2002 2158 : MultiXactState->nextMXact = nextMulti;
2003 2158 : MultiXactState->nextOffset = nextMultiOffset;
2004 2158 : LWLockRelease(MultiXactGenLock);
2005 2158 : }
2006 :
2007 : /*
2008 : * Determine the last safe MultiXactId to allocate given the currently oldest
2009 : * datminmxid (ie, the oldest MultiXactId that might exist in any database
2010 : * of our cluster), and the OID of the (or a) database with that value.
2011 : *
2012 : * This also updates MultiXactState->oldestOffset, by looking up the offset of
2013 : * MultiXactState->oldestMultiXactId.
2014 : */
2015 : void
2016 5886 : SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid)
2017 : {
2018 : MultiXactId multiVacLimit;
2019 : MultiXactId multiWarnLimit;
2020 : MultiXactId multiStopLimit;
2021 : MultiXactId multiWrapLimit;
2022 : MultiXactId curMulti;
2023 :
2024 : Assert(MultiXactIdIsValid(oldest_datminmxid));
2025 :
2026 : /*
2027 : * We pretend that a wrap will happen halfway through the multixact ID
2028 : * space, but that's not really true, because multixacts wrap differently
2029 : * from transaction IDs.
2030 : */
2031 5886 : multiWrapLimit = oldest_datminmxid + (MaxMultiXactId >> 1);
2032 5886 : if (multiWrapLimit < FirstMultiXactId)
2033 0 : multiWrapLimit += FirstMultiXactId;
2034 :
2035 : /*
2036 : * We'll refuse to continue assigning MultiXactIds once we get within 3M
2037 : * multi of data loss. See SetTransactionIdLimit.
2038 : */
2039 5886 : multiStopLimit = multiWrapLimit - 3000000;
2040 5886 : if (multiStopLimit < FirstMultiXactId)
2041 0 : multiStopLimit -= FirstMultiXactId;
2042 :
2043 : /*
2044 : * We'll start complaining loudly when we get within 40M multis of data
2045 : * loss. This is kind of arbitrary, but if you let your gas gauge get
2046 : * down to 2% of full, would you be looking for the next gas station? We
2047 : * need to be fairly liberal about this number because there are lots of
2048 : * scenarios where most transactions are done by automatic clients that
2049 : * won't pay attention to warnings. (No, we're not gonna make this
2050 : * configurable. If you know enough to configure it, you know enough to
2051 : * not get in this kind of trouble in the first place.)
2052 : */
2053 5886 : multiWarnLimit = multiWrapLimit - 40000000;
2054 5886 : if (multiWarnLimit < FirstMultiXactId)
2055 0 : multiWarnLimit -= FirstMultiXactId;
2056 :
2057 : /*
2058 : * We'll start trying to force autovacuums when oldest_datminmxid gets to
2059 : * be more than autovacuum_multixact_freeze_max_age mxids old.
2060 : *
2061 : * Note: autovacuum_multixact_freeze_max_age is a PGC_POSTMASTER parameter
2062 : * so that we don't have to worry about dealing with on-the-fly changes in
2063 : * its value. See SetTransactionIdLimit.
2064 : */
2065 5886 : multiVacLimit = oldest_datminmxid + autovacuum_multixact_freeze_max_age;
2066 5886 : if (multiVacLimit < FirstMultiXactId)
2067 0 : multiVacLimit += FirstMultiXactId;
2068 :
2069 : /* Grab lock for just long enough to set the new limit values */
2070 5886 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2071 5886 : MultiXactState->oldestMultiXactId = oldest_datminmxid;
2072 5886 : MultiXactState->oldestMultiXactDB = oldest_datoid;
2073 5886 : MultiXactState->multiVacLimit = multiVacLimit;
2074 5886 : MultiXactState->multiWarnLimit = multiWarnLimit;
2075 5886 : MultiXactState->multiStopLimit = multiStopLimit;
2076 5886 : MultiXactState->multiWrapLimit = multiWrapLimit;
2077 5886 : curMulti = MultiXactState->nextMXact;
2078 5886 : LWLockRelease(MultiXactGenLock);
2079 :
2080 : /* Log the info */
2081 5886 : ereport(DEBUG1,
2082 : (errmsg_internal("MultiXactId wrap limit is %u, limited by database with OID %u",
2083 : multiWrapLimit, oldest_datoid)));
2084 :
2085 : /*
2086 : * Computing the actual limits is only possible once the data directory is
2087 : * in a consistent state. There's no need to compute the limits while
2088 : * still replaying WAL - no decisions about new multis are made even
2089 : * though multixact creations might be replayed. So we'll only do further
2090 : * checks after TrimMultiXact() has been called.
2091 : */
2092 5886 : if (!MultiXactState->finishedStartup)
2093 2080 : return;
2094 :
2095 : Assert(!InRecovery);
2096 :
2097 : /*
2098 : * Offsets are 64-bits wide and never wrap around, so we don't need to
2099 : * consider them for emergency autovacuum purposes. But now that we're in
2100 : * a consistent state, determine MultiXactState->oldestOffset. It will be
2101 : * used to adjust the freezing cutoff, to keep the offsets disk usage in
2102 : * check.
2103 : */
2104 3806 : SetOldestOffset();
2105 :
2106 : /*
2107 : * If past the autovacuum force point, immediately signal an autovac
2108 : * request. The reason for this is that autovac only processes one
2109 : * database per invocation. Once it's finished cleaning up the oldest
2110 : * database, it'll call here, and we'll signal the postmaster to start
2111 : * another iteration immediately if there are still any old databases.
2112 : */
2113 3806 : if (MultiXactIdPrecedes(multiVacLimit, curMulti) && IsUnderPostmaster)
2114 0 : SendPostmasterSignal(PMSIGNAL_START_AUTOVAC_LAUNCHER);
2115 :
2116 : /* Give an immediate warning if past the wrap warn point */
2117 3806 : if (MultiXactIdPrecedes(multiWarnLimit, curMulti))
2118 : {
2119 : char *oldest_datname;
2120 :
2121 : /*
2122 : * We can be called when not inside a transaction, for example during
2123 : * StartupXLOG(). In such a case we cannot do database access, so we
2124 : * must just report the oldest DB's OID.
2125 : *
2126 : * Note: it's also possible that get_database_name fails and returns
2127 : * NULL, for example because the database just got dropped. We'll
2128 : * still warn, even though the warning might now be unnecessary.
2129 : */
2130 0 : if (IsTransactionState())
2131 0 : oldest_datname = get_database_name(oldest_datoid);
2132 : else
2133 0 : oldest_datname = NULL;
2134 :
2135 0 : if (oldest_datname)
2136 0 : ereport(WARNING,
2137 : (errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
2138 : "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
2139 : multiWrapLimit - curMulti,
2140 : oldest_datname,
2141 : multiWrapLimit - curMulti),
2142 : errhint("To avoid MultiXactId assignment failures, execute a database-wide VACUUM in that database.\n"
2143 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2144 : else
2145 0 : ereport(WARNING,
2146 : (errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
2147 : "database with OID %u must be vacuumed before %u more MultiXactIds are used",
2148 : multiWrapLimit - curMulti,
2149 : oldest_datoid,
2150 : multiWrapLimit - curMulti),
2151 : errhint("To avoid MultiXactId assignment failures, execute a database-wide VACUUM in that database.\n"
2152 : "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2153 : }
2154 : }
2155 :
2156 : /*
2157 : * Ensure the next-to-be-assigned MultiXactId is at least minMulti,
2158 : * and similarly nextOffset is at least minMultiOffset.
2159 : *
2160 : * This is used when we can determine minimum safe values from an XLog
2161 : * record (either an on-line checkpoint or an mxact creation log entry).
2162 : * Although this is only called during XLog replay, we take the lock in case
2163 : * any hot-standby backends are examining the values.
2164 : */
2165 : void
2166 1386 : MultiXactAdvanceNextMXact(MultiXactId minMulti,
2167 : MultiXactOffset minMultiOffset)
2168 : {
2169 : Assert(MultiXactIdIsValid(minMulti));
2170 :
2171 1386 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2172 1386 : if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
2173 : {
2174 : debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
2175 8 : MultiXactState->nextMXact = minMulti;
2176 : }
2177 1386 : if (MultiXactState->nextOffset < minMultiOffset)
2178 : {
2179 : debug_elog3(DEBUG2, "MultiXact: setting next offset to %" PRIu64,
2180 : minMultiOffset);
2181 8 : MultiXactState->nextOffset = minMultiOffset;
2182 : }
2183 1386 : LWLockRelease(MultiXactGenLock);
2184 1386 : }
2185 :
2186 : /*
2187 : * Update our oldestMultiXactId value, but only if it's more recent than what
2188 : * we had.
2189 : *
2190 : * This may only be called during WAL replay.
2191 : */
2192 : void
2193 1456 : MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
2194 : {
2195 : Assert(InRecovery);
2196 :
2197 1456 : if (MultiXactIdPrecedes(MultiXactState->oldestMultiXactId, oldestMulti))
2198 0 : SetMultiXactIdLimit(oldestMulti, oldestMultiDB);
2199 1456 : }
2200 :
2201 : /*
2202 : * Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
2203 : *
2204 : * NB: this is called while holding MultiXactGenLock. We want it to be very
2205 : * fast most of the time; even when it's not so fast, no actual I/O need
2206 : * happen unless we're forced to write out a dirty log or xlog page to make
2207 : * room in shared memory.
2208 : */
2209 : static void
2210 10572 : ExtendMultiXactOffset(MultiXactId multi)
2211 : {
2212 : int64 pageno;
2213 : LWLock *lock;
2214 :
2215 : /*
2216 : * No work except at first MultiXactId of a page. But beware: just after
2217 : * wraparound, the first MultiXactId of page zero is FirstMultiXactId.
2218 : */
2219 10572 : if (MultiXactIdToOffsetEntry(multi) != 0 &&
2220 : multi != FirstMultiXactId)
2221 10562 : return;
2222 :
2223 10 : pageno = MultiXactIdToOffsetPage(multi);
2224 10 : lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
2225 :
2226 10 : LWLockAcquire(lock, LW_EXCLUSIVE);
2227 :
2228 : /* Zero the page and make a WAL entry about it */
2229 10 : SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
2230 10 : XLogSimpleInsertInt64(RM_MULTIXACT_ID, XLOG_MULTIXACT_ZERO_OFF_PAGE,
2231 : pageno);
2232 :
2233 10 : LWLockRelease(lock);
2234 : }
2235 :
2236 : /*
2237 : * Make sure that MultiXactMember has room for the members of a newly-
2238 : * allocated MultiXactId.
2239 : *
2240 : * Like the above routine, this is called while holding MultiXactGenLock;
2241 : * same comments apply.
2242 : */
2243 : static void
2244 10572 : ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
2245 : {
2246 : /*
2247 : * It's possible that the members span more than one page of the members
2248 : * file, so we loop to ensure we consider each page. The coding is not
2249 : * optimal if the members span several pages, but that seems unusual
2250 : * enough to not worry much about.
2251 : */
2252 21252 : while (nmembers > 0)
2253 : {
2254 : int flagsoff;
2255 : int flagsbit;
2256 : uint32 difference;
2257 :
2258 : /*
2259 : * Only zero when at first entry of a page.
2260 : */
2261 10680 : flagsoff = MXOffsetToFlagsOffset(offset);
2262 10680 : flagsbit = MXOffsetToFlagsBitShift(offset);
2263 10680 : if (flagsoff == 0 && flagsbit == 0)
2264 : {
2265 : int64 pageno;
2266 : LWLock *lock;
2267 :
2268 114 : pageno = MXOffsetToMemberPage(offset);
2269 114 : lock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
2270 :
2271 114 : LWLockAcquire(lock, LW_EXCLUSIVE);
2272 :
2273 : /* Zero the page and make a WAL entry about it */
2274 114 : SimpleLruZeroPage(MultiXactMemberCtl, pageno);
2275 114 : XLogSimpleInsertInt64(RM_MULTIXACT_ID,
2276 : XLOG_MULTIXACT_ZERO_MEM_PAGE, pageno);
2277 :
2278 114 : LWLockRelease(lock);
2279 : }
2280 :
2281 : /* Compute the number of items till end of current page. */
2282 10680 : difference = MULTIXACT_MEMBERS_PER_PAGE - offset % MULTIXACT_MEMBERS_PER_PAGE;
2283 :
2284 : /*
2285 : * Advance to next page. OK if nmembers goes negative.
2286 : */
2287 10680 : nmembers -= difference;
2288 10680 : offset += difference;
2289 : }
2290 10572 : }
2291 :
2292 : /*
2293 : * GetOldestMultiXactId
2294 : *
2295 : * Return the oldest MultiXactId that's still possibly still seen as live by
2296 : * any running transaction. Older ones might still exist on disk, but they no
2297 : * longer have any running member transaction.
2298 : *
2299 : * It's not safe to truncate MultiXact SLRU segments on the value returned by
2300 : * this function; however, it can be set as the new relminmxid for any table
2301 : * that VACUUM knows has no remaining MXIDs < the same value. It is only safe
2302 : * to truncate SLRUs when no table can possibly still have a referencing MXID.
2303 : */
2304 : MultiXactId
2305 266400 : GetOldestMultiXactId(void)
2306 : {
2307 : MultiXactId oldestMXact;
2308 : int i;
2309 :
2310 : /*
2311 : * This is the oldest valid value among all the OldestMemberMXactId[] and
2312 : * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
2313 : */
2314 266400 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
2315 266400 : oldestMXact = MultiXactState->nextMXact;
2316 33114282 : for (i = 0; i < MaxOldestSlot; i++)
2317 : {
2318 : MultiXactId thisoldest;
2319 :
2320 32847882 : thisoldest = OldestMemberMXactId[i];
2321 32922336 : if (MultiXactIdIsValid(thisoldest) &&
2322 74454 : MultiXactIdPrecedes(thisoldest, oldestMXact))
2323 22 : oldestMXact = thisoldest;
2324 32847882 : thisoldest = OldestVisibleMXactId[i];
2325 32848166 : if (MultiXactIdIsValid(thisoldest) &&
2326 284 : MultiXactIdPrecedes(thisoldest, oldestMXact))
2327 4 : oldestMXact = thisoldest;
2328 : }
2329 :
2330 266400 : LWLockRelease(MultiXactGenLock);
2331 :
2332 266400 : return oldestMXact;
2333 : }
2334 :
2335 : /*
2336 : * Calculate the oldest member offset and install it in MultiXactState, where
2337 : * it can be used to adjust multixid freezing cutoffs.
2338 : */
2339 : static void
2340 3806 : SetOldestOffset(void)
2341 : {
2342 : MultiXactId oldestMultiXactId;
2343 : MultiXactId nextMXact;
2344 3806 : MultiXactOffset oldestOffset = 0; /* placate compiler */
2345 : MultiXactOffset nextOffset;
2346 3806 : bool oldestOffsetKnown = false;
2347 :
2348 : /*
2349 : * NB: Have to prevent concurrent truncation, we might otherwise try to
2350 : * lookup an oldestMulti that's concurrently getting truncated away.
2351 : */
2352 3806 : LWLockAcquire(MultiXactTruncationLock, LW_SHARED);
2353 :
2354 : /* Read relevant fields from shared memory. */
2355 3806 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
2356 3806 : oldestMultiXactId = MultiXactState->oldestMultiXactId;
2357 3806 : nextMXact = MultiXactState->nextMXact;
2358 3806 : nextOffset = MultiXactState->nextOffset;
2359 : Assert(MultiXactState->finishedStartup);
2360 3806 : LWLockRelease(MultiXactGenLock);
2361 :
2362 : /*
2363 : * Determine the offset of the oldest multixact. Normally, we can read
2364 : * the offset from the multixact itself, but there's an important special
2365 : * case: if there are no multixacts in existence at all, oldestMXact
2366 : * obviously can't point to one. It will instead point to the multixact
2367 : * ID that will be assigned the next time one is needed.
2368 : */
2369 3806 : if (oldestMultiXactId == nextMXact)
2370 : {
2371 : /*
2372 : * When the next multixact gets created, it will be stored at the next
2373 : * offset.
2374 : */
2375 3766 : oldestOffset = nextOffset;
2376 3766 : oldestOffsetKnown = true;
2377 : }
2378 : else
2379 : {
2380 : /*
2381 : * Look up the offset at which the oldest existing multixact's members
2382 : * are stored. If we cannot find it, be careful not to fail, and
2383 : * leave oldestOffset unchanged. oldestOffset is initialized to zero
2384 : * at system startup, which prevents truncating members until a proper
2385 : * value is calculated.
2386 : *
2387 : * (We had bugs in early releases of PostgreSQL 9.3.X and 9.4.X where
2388 : * the supposedly-earliest multixact might not really exist. Those
2389 : * should be long gone by now, so this should not fail, but let's
2390 : * still be defensive.)
2391 : */
2392 : oldestOffsetKnown =
2393 40 : find_multixact_start(oldestMultiXactId, &oldestOffset);
2394 :
2395 40 : if (oldestOffsetKnown)
2396 40 : ereport(DEBUG1,
2397 : (errmsg_internal("oldest MultiXactId member is at offset %" PRIu64,
2398 : oldestOffset)));
2399 : else
2400 0 : ereport(LOG,
2401 : (errmsg("MultiXact member truncation is disabled because oldest checkpointed MultiXact %u does not exist on disk",
2402 : oldestMultiXactId)));
2403 : }
2404 :
2405 3806 : LWLockRelease(MultiXactTruncationLock);
2406 :
2407 : /* Install the computed value */
2408 3806 : if (oldestOffsetKnown)
2409 : {
2410 3806 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2411 3806 : MultiXactState->oldestOffset = oldestOffset;
2412 3806 : LWLockRelease(MultiXactGenLock);
2413 : }
2414 3806 : }
2415 :
2416 : /*
2417 : * Find the starting offset of the given MultiXactId.
2418 : *
2419 : * Returns false if the file containing the multi does not exist on disk.
2420 : * Otherwise, returns true and sets *result to the starting member offset.
2421 : *
2422 : * This function does not prevent concurrent truncation, so if that's
2423 : * required, the caller has to protect against that.
2424 : */
2425 : static bool
2426 40 : find_multixact_start(MultiXactId multi, MultiXactOffset *result)
2427 : {
2428 : MultiXactOffset offset;
2429 : int64 pageno;
2430 : int entryno;
2431 : int slotno;
2432 : MultiXactOffset *offptr;
2433 :
2434 : Assert(MultiXactState->finishedStartup);
2435 :
2436 40 : pageno = MultiXactIdToOffsetPage(multi);
2437 40 : entryno = MultiXactIdToOffsetEntry(multi);
2438 :
2439 : /*
2440 : * Write out dirty data, so PhysicalPageExists can work correctly.
2441 : */
2442 40 : SimpleLruWriteAll(MultiXactOffsetCtl, true);
2443 40 : SimpleLruWriteAll(MultiXactMemberCtl, true);
2444 :
2445 40 : if (!SimpleLruDoesPhysicalPageExist(MultiXactOffsetCtl, pageno))
2446 0 : return false;
2447 :
2448 : /* lock is acquired by SimpleLruReadPage_ReadOnly */
2449 40 : slotno = SimpleLruReadPage_ReadOnly(MultiXactOffsetCtl, pageno, multi);
2450 40 : offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2451 40 : offptr += entryno;
2452 40 : offset = *offptr;
2453 40 : LWLockRelease(SimpleLruGetBankLock(MultiXactOffsetCtl, pageno));
2454 :
2455 40 : *result = offset;
2456 40 : return true;
2457 : }
2458 :
2459 : /*
2460 : * GetMultiXactInfo
2461 : *
2462 : * Returns information about the current MultiXact state, as of:
2463 : * multixacts: Number of MultiXacts (nextMultiXactId - oldestMultiXactId)
2464 : * members: Number of member entries (nextOffset - oldestOffset)
2465 : * oldestMultiXactId: Oldest MultiXact ID still in use
2466 : * oldestOffset: Oldest offset still in use
2467 : */
2468 : void
2469 200276 : GetMultiXactInfo(uint32 *multixacts, MultiXactOffset *members,
2470 : MultiXactId *oldestMultiXactId, MultiXactOffset *oldestOffset)
2471 : {
2472 : MultiXactOffset nextOffset;
2473 : MultiXactId nextMultiXactId;
2474 :
2475 200276 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
2476 200276 : nextOffset = MultiXactState->nextOffset;
2477 200276 : *oldestMultiXactId = MultiXactState->oldestMultiXactId;
2478 200276 : nextMultiXactId = MultiXactState->nextMXact;
2479 200276 : *oldestOffset = MultiXactState->oldestOffset;
2480 200276 : LWLockRelease(MultiXactGenLock);
2481 :
2482 200276 : *members = nextOffset - *oldestOffset;
2483 200276 : *multixacts = nextMultiXactId - *oldestMultiXactId;
2484 200276 : }
2485 :
2486 : /*
2487 : * Multixact members can be removed once the multixacts that refer to them
2488 : * are older than every datminmxid. autovacuum_multixact_freeze_max_age and
2489 : * vacuum_multixact_freeze_table_age work together to make sure we never have
2490 : * too many multixacts; we hope that, at least under normal circumstances,
2491 : * this will also be sufficient to keep us from using too many offsets.
2492 : * However, if the average multixact has many members, we might accumulate a
2493 : * large amount of members, consuming disk space, while still using few enough
2494 : * multixids that the multixid limits fail to trigger relminmxid advancement
2495 : * by VACUUM.
2496 : *
2497 : * To prevent that, if the members space usage exceeds a threshold
2498 : * (MULTIXACT_MEMBER_LOW_THRESHOLD), we effectively reduce
2499 : * autovacuum_multixact_freeze_max_age to a value just less than the number of
2500 : * multixacts in use. We hope that this will quickly trigger autovacuuming on
2501 : * the table or tables with the oldest relminmxid, thus allowing datminmxid
2502 : * values to advance and removing some members.
2503 : *
2504 : * As the amount of the member space in use grows, we become more aggressive
2505 : * in clamping this value. That not only causes autovacuum to ramp up, but
2506 : * also makes any manual vacuums the user issues more aggressive. This
2507 : * happens because vacuum_get_cutoffs() will clamp the freeze table and the
2508 : * minimum freeze age cutoffs based on the effective
2509 : * autovacuum_multixact_freeze_max_age this function returns. At the extreme,
2510 : * when the members usage reaches MULTIXACT_MEMBER_HIGH_THRESHOLD, we clamp
2511 : * freeze_max_age to zero, and every vacuum of any table will freeze every
2512 : * multixact.
2513 : */
2514 : int
2515 200276 : MultiXactMemberFreezeThreshold(void)
2516 : {
2517 : MultiXactOffset members;
2518 : uint32 multixacts;
2519 : uint32 victim_multixacts;
2520 : double fraction;
2521 : int result;
2522 : MultiXactId oldestMultiXactId;
2523 : MultiXactOffset oldestOffset;
2524 :
2525 : /* Read the current offsets and members usage. */
2526 200276 : GetMultiXactInfo(&multixacts, &members, &oldestMultiXactId, &oldestOffset);
2527 :
2528 : /* If member space utilization is low, no special action is required. */
2529 200276 : if (members <= MULTIXACT_MEMBER_LOW_THRESHOLD)
2530 200276 : return autovacuum_multixact_freeze_max_age;
2531 :
2532 : /*
2533 : * Compute a target for relminmxid advancement. The number of multixacts
2534 : * we try to eliminate from the system is based on how far we are past
2535 : * MULTIXACT_MEMBER_LOW_THRESHOLD.
2536 : *
2537 : * The way this formula works is that when members is exactly at the low
2538 : * threshold, fraction = 0.0, and we set freeze_max_age equal to
2539 : * mxid_age(oldestMultiXactId). As members grows further, towards the
2540 : * high threshold, fraction grows linearly from 0.0 to 1.0, and the result
2541 : * shrinks from mxid_age(oldestMultiXactId) to 0. Beyond the high
2542 : * threshold, fraction > 1.0 and the result is clamped to 0.
2543 : */
2544 0 : fraction = (double) (members - MULTIXACT_MEMBER_LOW_THRESHOLD) /
2545 : (MULTIXACT_MEMBER_HIGH_THRESHOLD - MULTIXACT_MEMBER_LOW_THRESHOLD);
2546 :
2547 : /* fraction could be > 1.0, but lowest possible freeze age is zero */
2548 0 : if (fraction >= 1.0)
2549 0 : return 0;
2550 :
2551 0 : victim_multixacts = multixacts * fraction;
2552 0 : result = multixacts - victim_multixacts;
2553 :
2554 : /*
2555 : * Clamp to autovacuum_multixact_freeze_max_age, so that we never make
2556 : * autovacuum less aggressive than it would otherwise be.
2557 : */
2558 0 : return Min(result, autovacuum_multixact_freeze_max_age);
2559 : }
2560 :
2561 : typedef struct mxtruncinfo
2562 : {
2563 : int64 earliestExistingPage;
2564 : } mxtruncinfo;
2565 :
2566 : /*
2567 : * SlruScanDirectory callback
2568 : * This callback determines the earliest existing page number.
2569 : */
2570 : static bool
2571 0 : SlruScanDirCbFindEarliest(SlruCtl ctl, char *filename, int64 segpage, void *data)
2572 : {
2573 0 : mxtruncinfo *trunc = (mxtruncinfo *) data;
2574 :
2575 0 : if (trunc->earliestExistingPage == -1 ||
2576 0 : ctl->PagePrecedes(segpage, trunc->earliestExistingPage))
2577 : {
2578 0 : trunc->earliestExistingPage = segpage;
2579 : }
2580 :
2581 0 : return false; /* keep going */
2582 : }
2583 :
2584 :
2585 : /*
2586 : * Delete members segments [oldest, newOldest)
2587 : */
2588 : static void
2589 0 : PerformMembersTruncation(MultiXactOffset oldestOffset, MultiXactOffset newOldestOffset)
2590 : {
2591 0 : SimpleLruTruncate(MultiXactMemberCtl,
2592 : MXOffsetToMemberPage(newOldestOffset));
2593 0 : }
2594 :
2595 : /*
2596 : * Delete offsets segments [oldest, newOldest)
2597 : */
2598 : static void
2599 0 : PerformOffsetsTruncation(MultiXactId oldestMulti, MultiXactId newOldestMulti)
2600 : {
2601 : /*
2602 : * We step back one multixact to avoid passing a cutoff page that hasn't
2603 : * been created yet in the rare case that oldestMulti would be the first
2604 : * item on a page and oldestMulti == nextMulti. In that case, if we
2605 : * didn't subtract one, we'd trigger SimpleLruTruncate's wraparound
2606 : * detection.
2607 : */
2608 0 : SimpleLruTruncate(MultiXactOffsetCtl,
2609 : MultiXactIdToOffsetPage(PreviousMultiXactId(newOldestMulti)));
2610 0 : }
2611 :
2612 : /*
2613 : * Remove all MultiXactOffset and MultiXactMember segments before the oldest
2614 : * ones still of interest.
2615 : *
2616 : * This is only called on a primary as part of vacuum (via
2617 : * vac_truncate_clog()). During recovery truncation is done by replaying
2618 : * truncation WAL records logged here.
2619 : *
2620 : * newOldestMulti is the oldest currently required multixact, newOldestMultiDB
2621 : * is one of the databases preventing newOldestMulti from increasing.
2622 : */
2623 : void
2624 1954 : TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
2625 : {
2626 : MultiXactId oldestMulti;
2627 : MultiXactId nextMulti;
2628 : MultiXactOffset newOldestOffset;
2629 : MultiXactOffset oldestOffset;
2630 : MultiXactOffset nextOffset;
2631 : mxtruncinfo trunc;
2632 : MultiXactId earliest;
2633 :
2634 : Assert(!RecoveryInProgress());
2635 : Assert(MultiXactState->finishedStartup);
2636 : Assert(MultiXactIdIsValid(newOldestMulti));
2637 :
2638 : /*
2639 : * We can only allow one truncation to happen at once. Otherwise parts of
2640 : * members might vanish while we're doing lookups or similar. There's no
2641 : * need to have an interlock with creating new multis or such, since those
2642 : * are constrained by the limits (which only grow, never shrink).
2643 : */
2644 1954 : LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
2645 :
2646 1954 : LWLockAcquire(MultiXactGenLock, LW_SHARED);
2647 1954 : nextMulti = MultiXactState->nextMXact;
2648 1954 : nextOffset = MultiXactState->nextOffset;
2649 1954 : oldestMulti = MultiXactState->oldestMultiXactId;
2650 1954 : LWLockRelease(MultiXactGenLock);
2651 :
2652 : /*
2653 : * Make sure to only attempt truncation if there's values to truncate
2654 : * away. In normal processing values shouldn't go backwards, but there's
2655 : * some corner cases (due to bugs) where that's possible.
2656 : */
2657 1954 : if (MultiXactIdPrecedesOrEquals(newOldestMulti, oldestMulti))
2658 : {
2659 1954 : LWLockRelease(MultiXactTruncationLock);
2660 1954 : return;
2661 : }
2662 :
2663 : /*
2664 : * Note we can't just plow ahead with the truncation; it's possible that
2665 : * there are no segments to truncate, which is a problem because we are
2666 : * going to attempt to read the offsets page to determine where to
2667 : * truncate the members SLRU. So we first scan the directory to determine
2668 : * the earliest offsets page number that we can read without error.
2669 : *
2670 : * When nextMXact is less than one segment away from multiWrapLimit,
2671 : * SlruScanDirCbFindEarliest can find some early segment other than the
2672 : * actual earliest. (MultiXactOffsetPagePrecedes(EARLIEST, LATEST)
2673 : * returns false, because not all pairs of entries have the same answer.)
2674 : * That can also arise when an earlier truncation attempt failed unlink()
2675 : * or returned early from this function. The only consequence is
2676 : * returning early, which wastes space that we could have liberated.
2677 : *
2678 : * NB: It's also possible that the page that oldestMulti is on has already
2679 : * been truncated away, and we crashed before updating oldestMulti.
2680 : */
2681 0 : trunc.earliestExistingPage = -1;
2682 0 : SlruScanDirectory(MultiXactOffsetCtl, SlruScanDirCbFindEarliest, &trunc);
2683 0 : earliest = trunc.earliestExistingPage * MULTIXACT_OFFSETS_PER_PAGE;
2684 0 : if (earliest < FirstMultiXactId)
2685 0 : earliest = FirstMultiXactId;
2686 :
2687 : /* If there's nothing to remove, we can bail out early. */
2688 0 : if (MultiXactIdPrecedes(oldestMulti, earliest))
2689 : {
2690 0 : LWLockRelease(MultiXactTruncationLock);
2691 0 : return;
2692 : }
2693 :
2694 : /*
2695 : * First, compute the safe truncation point for MultiXactMember. This is
2696 : * the starting offset of the oldest multixact.
2697 : *
2698 : * Hopefully, find_multixact_start will always work here, because we've
2699 : * already checked that it doesn't precede the earliest MultiXact on disk.
2700 : * But if it fails, don't truncate anything, and log a message.
2701 : */
2702 0 : if (oldestMulti == nextMulti)
2703 : {
2704 : /* there are NO MultiXacts */
2705 0 : oldestOffset = nextOffset;
2706 : }
2707 0 : else if (!find_multixact_start(oldestMulti, &oldestOffset))
2708 : {
2709 0 : ereport(LOG,
2710 : (errmsg("oldest MultiXact %u not found, earliest MultiXact %u, skipping truncation",
2711 : oldestMulti, earliest)));
2712 0 : LWLockRelease(MultiXactTruncationLock);
2713 0 : return;
2714 : }
2715 :
2716 : /*
2717 : * Secondly compute up to where to truncate. Lookup the corresponding
2718 : * member offset for newOldestMulti for that.
2719 : */
2720 0 : if (newOldestMulti == nextMulti)
2721 : {
2722 : /* there are NO MultiXacts */
2723 0 : newOldestOffset = nextOffset;
2724 : }
2725 0 : else if (!find_multixact_start(newOldestMulti, &newOldestOffset))
2726 : {
2727 0 : ereport(LOG,
2728 : (errmsg("cannot truncate up to MultiXact %u because it does not exist on disk, skipping truncation",
2729 : newOldestMulti)));
2730 0 : LWLockRelease(MultiXactTruncationLock);
2731 0 : return;
2732 : }
2733 :
2734 0 : elog(DEBUG1, "performing multixact truncation: "
2735 : "offsets [%u, %u), offsets segments [%" PRIx64 ", %" PRIx64 "), "
2736 : "members [%" PRIu64 ", %" PRIu64 "), members segments [%" PRIx64 ", %" PRIx64 ")",
2737 : oldestMulti, newOldestMulti,
2738 : MultiXactIdToOffsetSegment(oldestMulti),
2739 : MultiXactIdToOffsetSegment(newOldestMulti),
2740 : oldestOffset, newOldestOffset,
2741 : MXOffsetToMemberSegment(oldestOffset),
2742 : MXOffsetToMemberSegment(newOldestOffset));
2743 :
2744 : /*
2745 : * Do truncation, and the WAL logging of the truncation, in a critical
2746 : * section. That way offsets/members cannot get out of sync anymore, i.e.
2747 : * once consistent the newOldestMulti will always exist in members, even
2748 : * if we crashed in the wrong moment.
2749 : */
2750 0 : START_CRIT_SECTION();
2751 :
2752 : /*
2753 : * Prevent checkpoints from being scheduled concurrently. This is critical
2754 : * because otherwise a truncation record might not be replayed after a
2755 : * crash/basebackup, even though the state of the data directory would
2756 : * require it.
2757 : */
2758 : Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
2759 0 : MyProc->delayChkptFlags |= DELAY_CHKPT_START;
2760 :
2761 : /* WAL log truncation */
2762 0 : WriteMTruncateXlogRec(newOldestMultiDB,
2763 : oldestMulti, newOldestMulti,
2764 : oldestOffset, newOldestOffset);
2765 :
2766 : /*
2767 : * Update in-memory limits before performing the truncation, while inside
2768 : * the critical section: Have to do it before truncation, to prevent
2769 : * concurrent lookups of those values. Has to be inside the critical
2770 : * section as otherwise a future call to this function would error out,
2771 : * while looking up the oldest member in offsets, if our caller crashes
2772 : * before updating the limits.
2773 : */
2774 0 : LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2775 0 : MultiXactState->oldestMultiXactId = newOldestMulti;
2776 0 : MultiXactState->oldestMultiXactDB = newOldestMultiDB;
2777 0 : MultiXactState->oldestOffset = newOldestOffset;
2778 0 : LWLockRelease(MultiXactGenLock);
2779 :
2780 : /* First truncate members */
2781 0 : PerformMembersTruncation(oldestOffset, newOldestOffset);
2782 :
2783 : /* Then offsets */
2784 0 : PerformOffsetsTruncation(oldestMulti, newOldestMulti);
2785 :
2786 0 : MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
2787 :
2788 0 : END_CRIT_SECTION();
2789 0 : LWLockRelease(MultiXactTruncationLock);
2790 : }
2791 :
2792 : /*
2793 : * Decide whether a MultiXactOffset page number is "older" for truncation
2794 : * purposes. Analogous to CLOGPagePrecedes().
2795 : *
2796 : * Offsetting the values is optional, because MultiXactIdPrecedes() has
2797 : * translational symmetry.
2798 : */
2799 : static bool
2800 0 : MultiXactOffsetPagePrecedes(int64 page1, int64 page2)
2801 : {
2802 : MultiXactId multi1;
2803 : MultiXactId multi2;
2804 :
2805 0 : multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
2806 0 : multi1 += FirstMultiXactId + 1;
2807 0 : multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
2808 0 : multi2 += FirstMultiXactId + 1;
2809 :
2810 0 : return (MultiXactIdPrecedes(multi1, multi2) &&
2811 0 : MultiXactIdPrecedes(multi1,
2812 : multi2 + MULTIXACT_OFFSETS_PER_PAGE - 1));
2813 : }
2814 :
2815 : /*
2816 : * Decide whether a MultiXactMember page number is "older" for truncation
2817 : * purposes. There is no "invalid offset number" and members never wrap
2818 : * around, so use the numbers verbatim.
2819 : */
2820 : static bool
2821 0 : MultiXactMemberPagePrecedes(int64 page1, int64 page2)
2822 : {
2823 0 : return page1 < page2;
2824 : }
2825 :
2826 : /*
2827 : * Decide which of two MultiXactIds is earlier.
2828 : *
2829 : * XXX do we need to do something special for InvalidMultiXactId?
2830 : * (Doesn't look like it.)
2831 : */
2832 : bool
2833 2889462 : MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
2834 : {
2835 2889462 : int32 diff = (int32) (multi1 - multi2);
2836 :
2837 2889462 : return (diff < 0);
2838 : }
2839 :
2840 : /*
2841 : * MultiXactIdPrecedesOrEquals -- is multi1 logically <= multi2?
2842 : *
2843 : * XXX do we need to do something special for InvalidMultiXactId?
2844 : * (Doesn't look like it.)
2845 : */
2846 : bool
2847 13700 : MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
2848 : {
2849 13700 : int32 diff = (int32) (multi1 - multi2);
2850 :
2851 13700 : return (diff <= 0);
2852 : }
2853 :
2854 :
2855 : /*
2856 : * Write a TRUNCATE xlog record
2857 : *
2858 : * We must flush the xlog record to disk before returning --- see notes in
2859 : * TruncateCLOG().
2860 : */
2861 : static void
2862 0 : WriteMTruncateXlogRec(Oid oldestMultiDB,
2863 : MultiXactId startTruncOff, MultiXactId endTruncOff,
2864 : MultiXactOffset startTruncMemb, MultiXactOffset endTruncMemb)
2865 : {
2866 : XLogRecPtr recptr;
2867 : xl_multixact_truncate xlrec;
2868 :
2869 0 : xlrec.oldestMultiDB = oldestMultiDB;
2870 :
2871 0 : xlrec.startTruncOff = startTruncOff;
2872 0 : xlrec.endTruncOff = endTruncOff;
2873 :
2874 0 : xlrec.startTruncMemb = startTruncMemb;
2875 0 : xlrec.endTruncMemb = endTruncMemb;
2876 :
2877 0 : XLogBeginInsert();
2878 0 : XLogRegisterData(&xlrec, SizeOfMultiXactTruncate);
2879 0 : recptr = XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_TRUNCATE_ID);
2880 0 : XLogFlush(recptr);
2881 0 : }
2882 :
2883 : /*
2884 : * MULTIXACT resource manager's routines
2885 : */
2886 : void
2887 8 : multixact_redo(XLogReaderState *record)
2888 : {
2889 8 : uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
2890 :
2891 : /* Backup blocks are not used in multixact records */
2892 : Assert(!XLogRecHasAnyBlockRefs(record));
2893 :
2894 8 : if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
2895 : {
2896 : int64 pageno;
2897 :
2898 0 : memcpy(&pageno, XLogRecGetData(record), sizeof(pageno));
2899 0 : SimpleLruZeroAndWritePage(MultiXactOffsetCtl, pageno);
2900 : }
2901 8 : else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
2902 : {
2903 : int64 pageno;
2904 :
2905 0 : memcpy(&pageno, XLogRecGetData(record), sizeof(pageno));
2906 0 : SimpleLruZeroAndWritePage(MultiXactMemberCtl, pageno);
2907 : }
2908 8 : else if (info == XLOG_MULTIXACT_CREATE_ID)
2909 : {
2910 8 : xl_multixact_create *xlrec =
2911 8 : (xl_multixact_create *) XLogRecGetData(record);
2912 : TransactionId max_xid;
2913 : int i;
2914 :
2915 : /* Store the data back into the SLRU files */
2916 8 : RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nmembers,
2917 8 : xlrec->members);
2918 :
2919 : /* Make sure nextMXact/nextOffset are beyond what this record has */
2920 8 : MultiXactAdvanceNextMXact(NextMultiXactId(xlrec->mid),
2921 8 : xlrec->moff + xlrec->nmembers);
2922 :
2923 : /*
2924 : * Make sure nextXid is beyond any XID mentioned in the record. This
2925 : * should be unnecessary, since any XID found here ought to have other
2926 : * evidence in the XLOG, but let's be safe.
2927 : */
2928 8 : max_xid = XLogRecGetXid(record);
2929 24 : for (i = 0; i < xlrec->nmembers; i++)
2930 : {
2931 16 : if (TransactionIdPrecedes(max_xid, xlrec->members[i].xid))
2932 0 : max_xid = xlrec->members[i].xid;
2933 : }
2934 :
2935 8 : AdvanceNextFullTransactionIdPastXid(max_xid);
2936 : }
2937 0 : else if (info == XLOG_MULTIXACT_TRUNCATE_ID)
2938 : {
2939 : xl_multixact_truncate xlrec;
2940 : int64 pageno;
2941 :
2942 0 : memcpy(&xlrec, XLogRecGetData(record),
2943 : SizeOfMultiXactTruncate);
2944 :
2945 0 : elog(DEBUG1, "replaying multixact truncation: "
2946 : "offsets [%u, %u), offsets segments [%" PRIx64 ", %" PRIx64 "), "
2947 : "members [%" PRIu64 ", %" PRIu64 "), members segments [%" PRIx64 ", %" PRIx64 ")",
2948 : xlrec.startTruncOff, xlrec.endTruncOff,
2949 : MultiXactIdToOffsetSegment(xlrec.startTruncOff),
2950 : MultiXactIdToOffsetSegment(xlrec.endTruncOff),
2951 : xlrec.startTruncMemb, xlrec.endTruncMemb,
2952 : MXOffsetToMemberSegment(xlrec.startTruncMemb),
2953 : MXOffsetToMemberSegment(xlrec.endTruncMemb));
2954 :
2955 : /* should not be required, but more than cheap enough */
2956 0 : LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
2957 :
2958 : /*
2959 : * Advance the horizon values, so they're current at the end of
2960 : * recovery.
2961 : */
2962 0 : SetMultiXactIdLimit(xlrec.endTruncOff, xlrec.oldestMultiDB);
2963 :
2964 0 : PerformMembersTruncation(xlrec.startTruncMemb, xlrec.endTruncMemb);
2965 :
2966 : /*
2967 : * During XLOG replay, latest_page_number isn't necessarily set up
2968 : * yet; insert a suitable value to bypass the sanity test in
2969 : * SimpleLruTruncate.
2970 : */
2971 0 : pageno = MultiXactIdToOffsetPage(xlrec.endTruncOff);
2972 0 : pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
2973 : pageno);
2974 0 : PerformOffsetsTruncation(xlrec.startTruncOff, xlrec.endTruncOff);
2975 :
2976 0 : LWLockRelease(MultiXactTruncationLock);
2977 : }
2978 : else
2979 0 : elog(PANIC, "multixact_redo: unknown op code %u", info);
2980 8 : }
2981 :
2982 : /*
2983 : * Entrypoint for sync.c to sync offsets files.
2984 : */
2985 : int
2986 0 : multixactoffsetssyncfiletag(const FileTag *ftag, char *path)
2987 : {
2988 0 : return SlruSyncFileTag(MultiXactOffsetCtl, ftag, path);
2989 : }
2990 :
2991 : /*
2992 : * Entrypoint for sync.c to sync members files.
2993 : */
2994 : int
2995 0 : multixactmemberssyncfiletag(const FileTag *ftag, char *path)
2996 : {
2997 0 : return SlruSyncFileTag(MultiXactMemberCtl, ftag, path);
2998 : }
|