LCOV - code coverage report
Current view: top level - src/backend/access/table - tableam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 178 197 90.4 %
Date: 2026-02-07 21:18:56 Functions: 19 19 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*----------------------------------------------------------------------
       2             :  *
       3             :  * tableam.c
       4             :  *      Table access method routines too big to be inline functions.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/table/tableam.c
      12             :  *
      13             :  * NOTES
      14             :  *    Note that most functions in here are documented in tableam.h, rather than
      15             :  *    here. That's because there's a lot of inline functions in tableam.h and
      16             :  *    it'd be harder to understand if one constantly had to switch between files.
      17             :  *
      18             :  *----------------------------------------------------------------------
      19             :  */
      20             : #include "postgres.h"
      21             : 
      22             : #include <math.h>
      23             : 
      24             : #include "access/syncscan.h"
      25             : #include "access/tableam.h"
      26             : #include "access/xact.h"
      27             : #include "optimizer/optimizer.h"
      28             : #include "optimizer/plancat.h"
      29             : #include "port/pg_bitutils.h"
      30             : #include "storage/bufmgr.h"
      31             : #include "storage/shmem.h"
      32             : #include "storage/smgr.h"
      33             : 
      34             : /*
      35             :  * Constants to control the behavior of block allocation to parallel workers
      36             :  * during a parallel seqscan.  Technically these values do not need to be
      37             :  * powers of 2, but having them as powers of 2 makes the math more optimal
      38             :  * and makes the ramp-down stepping more even.
      39             :  */
      40             : 
      41             : /* The number of I/O chunks we try to break a parallel seqscan down into */
      42             : #define PARALLEL_SEQSCAN_NCHUNKS            2048
      43             : /* Ramp down size of allocations when we've only this number of chunks left */
      44             : #define PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS    64
      45             : /* Cap the size of parallel I/O chunks to this number of blocks */
      46             : #define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE     8192
      47             : 
      48             : /* GUC variables */
      49             : char       *default_table_access_method = DEFAULT_TABLE_ACCESS_METHOD;
      50             : bool        synchronize_seqscans = true;
      51             : 
      52             : 
      53             : /* ----------------------------------------------------------------------------
      54             :  * Slot functions.
      55             :  * ----------------------------------------------------------------------------
      56             :  */
      57             : 
      58             : const TupleTableSlotOps *
      59    28740222 : table_slot_callbacks(Relation relation)
      60             : {
      61             :     const TupleTableSlotOps *tts_cb;
      62             : 
      63    28740222 :     if (relation->rd_tableam)
      64    28732626 :         tts_cb = relation->rd_tableam->slot_callbacks(relation);
      65        7596 :     else if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
      66             :     {
      67             :         /*
      68             :          * Historically FDWs expect to store heap tuples in slots. Continue
      69             :          * handing them one, to make it less painful to adapt FDWs to new
      70             :          * versions. The cost of a heap slot over a virtual slot is pretty
      71             :          * small.
      72             :          */
      73         444 :         tts_cb = &TTSOpsHeapTuple;
      74             :     }
      75             :     else
      76             :     {
      77             :         /*
      78             :          * These need to be supported, as some parts of the code (like COPY)
      79             :          * need to create slots for such relations too. It seems better to
      80             :          * centralize the knowledge that a heap slot is the right thing in
      81             :          * that case here.
      82             :          */
      83             :         Assert(relation->rd_rel->relkind == RELKIND_VIEW ||
      84             :                relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
      85        7152 :         tts_cb = &TTSOpsVirtual;
      86             :     }
      87             : 
      88    28740222 :     return tts_cb;
      89             : }
      90             : 
      91             : TupleTableSlot *
      92    28261942 : table_slot_create(Relation relation, List **reglist)
      93             : {
      94             :     const TupleTableSlotOps *tts_cb;
      95             :     TupleTableSlot *slot;
      96             : 
      97    28261942 :     tts_cb = table_slot_callbacks(relation);
      98    28261942 :     slot = MakeSingleTupleTableSlot(RelationGetDescr(relation), tts_cb);
      99             : 
     100    28261942 :     if (reglist)
     101      281480 :         *reglist = lappend(*reglist, slot);
     102             : 
     103    28261942 :     return slot;
     104             : }
     105             : 
     106             : 
     107             : /* ----------------------------------------------------------------------------
     108             :  * Table scan functions.
     109             :  * ----------------------------------------------------------------------------
     110             :  */
     111             : 
     112             : TableScanDesc
     113       76588 : table_beginscan_catalog(Relation relation, int nkeys, ScanKeyData *key)
     114             : {
     115       76588 :     uint32      flags = SO_TYPE_SEQSCAN |
     116             :         SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE | SO_TEMP_SNAPSHOT;
     117       76588 :     Oid         relid = RelationGetRelid(relation);
     118       76588 :     Snapshot    snapshot = RegisterSnapshot(GetCatalogSnapshot(relid));
     119             : 
     120       76588 :     return table_beginscan_common(relation, snapshot, nkeys, key,
     121             :                                   NULL, flags);
     122             : }
     123             : 
     124             : 
     125             : /* ----------------------------------------------------------------------------
     126             :  * Parallel table scan related functions.
     127             :  * ----------------------------------------------------------------------------
     128             :  */
     129             : 
     130             : Size
     131        1156 : table_parallelscan_estimate(Relation rel, Snapshot snapshot)
     132             : {
     133        1156 :     Size        sz = 0;
     134             : 
     135        1156 :     if (IsMVCCSnapshot(snapshot))
     136         966 :         sz = add_size(sz, EstimateSnapshotSpace(snapshot));
     137             :     else
     138             :         Assert(snapshot == SnapshotAny);
     139             : 
     140        1156 :     sz = add_size(sz, rel->rd_tableam->parallelscan_estimate(rel));
     141             : 
     142        1156 :     return sz;
     143             : }
     144             : 
     145             : void
     146        1156 : table_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan,
     147             :                               Snapshot snapshot)
     148             : {
     149        1156 :     Size        snapshot_off = rel->rd_tableam->parallelscan_initialize(rel, pscan);
     150             : 
     151        1156 :     pscan->phs_snapshot_off = snapshot_off;
     152             : 
     153        1156 :     if (IsMVCCSnapshot(snapshot))
     154             :     {
     155         966 :         SerializeSnapshot(snapshot, (char *) pscan + pscan->phs_snapshot_off);
     156         966 :         pscan->phs_snapshot_any = false;
     157             :     }
     158             :     else
     159             :     {
     160             :         Assert(snapshot == SnapshotAny);
     161         190 :         pscan->phs_snapshot_any = true;
     162             :     }
     163        1156 : }
     164             : 
     165             : TableScanDesc
     166        4122 : table_beginscan_parallel(Relation relation, ParallelTableScanDesc pscan)
     167             : {
     168             :     Snapshot    snapshot;
     169        4122 :     uint32      flags = SO_TYPE_SEQSCAN |
     170             :         SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
     171             : 
     172             :     Assert(RelFileLocatorEquals(relation->rd_locator, pscan->phs_locator));
     173             : 
     174        4122 :     if (!pscan->phs_snapshot_any)
     175             :     {
     176             :         /* Snapshot was serialized -- restore it */
     177        3716 :         snapshot = RestoreSnapshot((char *) pscan + pscan->phs_snapshot_off);
     178        3716 :         RegisterSnapshot(snapshot);
     179        3716 :         flags |= SO_TEMP_SNAPSHOT;
     180             :     }
     181             :     else
     182             :     {
     183             :         /* SnapshotAny passed by caller (not serialized) */
     184         406 :         snapshot = SnapshotAny;
     185             :     }
     186             : 
     187        4122 :     return table_beginscan_common(relation, snapshot, 0, NULL,
     188             :                                   pscan, flags);
     189             : }
     190             : 
     191             : TableScanDesc
     192         120 : table_beginscan_parallel_tidrange(Relation relation,
     193             :                                   ParallelTableScanDesc pscan)
     194             : {
     195             :     Snapshot    snapshot;
     196         120 :     uint32      flags = SO_TYPE_TIDRANGESCAN | SO_ALLOW_PAGEMODE;
     197             :     TableScanDesc sscan;
     198             : 
     199             :     Assert(RelFileLocatorEquals(relation->rd_locator, pscan->phs_locator));
     200             : 
     201             :     /* disable syncscan in parallel tid range scan. */
     202         120 :     pscan->phs_syncscan = false;
     203             : 
     204         120 :     if (!pscan->phs_snapshot_any)
     205             :     {
     206             :         /* Snapshot was serialized -- restore it */
     207         120 :         snapshot = RestoreSnapshot((char *) pscan + pscan->phs_snapshot_off);
     208         120 :         RegisterSnapshot(snapshot);
     209         120 :         flags |= SO_TEMP_SNAPSHOT;
     210             :     }
     211             :     else
     212             :     {
     213             :         /* SnapshotAny passed by caller (not serialized) */
     214           0 :         snapshot = SnapshotAny;
     215             :     }
     216             : 
     217         120 :     sscan = table_beginscan_common(relation, snapshot, 0, NULL,
     218             :                                    pscan, flags);
     219         120 :     return sscan;
     220             : }
     221             : 
     222             : 
     223             : /* ----------------------------------------------------------------------------
     224             :  * Index scan related functions.
     225             :  * ----------------------------------------------------------------------------
     226             :  */
     227             : 
     228             : /*
     229             :  * To perform that check simply start an index scan, create the necessary
     230             :  * slot, do the heap lookup, and shut everything down again. This could be
     231             :  * optimized, but is unlikely to matter from a performance POV. If there
     232             :  * frequently are live index pointers also matching a unique index key, the
     233             :  * CPU overhead of this routine is unlikely to matter.
     234             :  *
     235             :  * Note that *tid may be modified when we return true if the AM supports
     236             :  * storing multiple row versions reachable via a single index entry (like
     237             :  * heap's HOT).
     238             :  */
     239             : bool
     240    11472082 : table_index_fetch_tuple_check(Relation rel,
     241             :                               ItemPointer tid,
     242             :                               Snapshot snapshot,
     243             :                               bool *all_dead)
     244             : {
     245             :     IndexFetchTableData *scan;
     246             :     TupleTableSlot *slot;
     247    11472082 :     bool        call_again = false;
     248             :     bool        found;
     249             : 
     250    11472082 :     slot = table_slot_create(rel, NULL);
     251    11472082 :     scan = table_index_fetch_begin(rel);
     252    11472082 :     found = table_index_fetch_tuple(scan, tid, snapshot, slot, &call_again,
     253             :                                     all_dead);
     254    11472082 :     table_index_fetch_end(scan);
     255    11472082 :     ExecDropSingleTupleTableSlot(slot);
     256             : 
     257    11472082 :     return found;
     258             : }
     259             : 
     260             : 
     261             : /* ------------------------------------------------------------------------
     262             :  * Functions for non-modifying operations on individual tuples
     263             :  * ------------------------------------------------------------------------
     264             :  */
     265             : 
     266             : void
     267         312 : table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid)
     268             : {
     269         312 :     Relation    rel = scan->rs_rd;
     270         312 :     const TableAmRoutine *tableam = rel->rd_tableam;
     271             : 
     272             :     /*
     273             :      * Since this can be called with user-supplied TID, don't trust the input
     274             :      * too much.
     275             :      */
     276         312 :     if (!tableam->tuple_tid_valid(scan, tid))
     277          12 :         ereport(ERROR,
     278             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     279             :                  errmsg("tid (%u, %u) is not valid for relation \"%s\"",
     280             :                         ItemPointerGetBlockNumberNoCheck(tid),
     281             :                         ItemPointerGetOffsetNumberNoCheck(tid),
     282             :                         RelationGetRelationName(rel))));
     283             : 
     284         300 :     tableam->tuple_get_latest_tid(scan, tid);
     285         300 : }
     286             : 
     287             : 
     288             : /* ----------------------------------------------------------------------------
     289             :  * Functions to make modifications a bit simpler.
     290             :  * ----------------------------------------------------------------------------
     291             :  */
     292             : 
     293             : /*
     294             :  * simple_table_tuple_insert - insert a tuple
     295             :  *
     296             :  * Currently, this routine differs from table_tuple_insert only in supplying a
     297             :  * default command ID and not allowing access to the speedup options.
     298             :  */
     299             : void
     300      152178 : simple_table_tuple_insert(Relation rel, TupleTableSlot *slot)
     301             : {
     302      152178 :     table_tuple_insert(rel, slot, GetCurrentCommandId(true), 0, NULL);
     303      152178 : }
     304             : 
     305             : /*
     306             :  * simple_table_tuple_delete - delete a tuple
     307             :  *
     308             :  * This routine may be used to delete a tuple when concurrent updates of
     309             :  * the target tuple are not expected (for example, because we have a lock
     310             :  * on the relation associated with the tuple).  Any failure is reported
     311             :  * via ereport().
     312             :  */
     313             : void
     314       80624 : simple_table_tuple_delete(Relation rel, ItemPointer tid, Snapshot snapshot)
     315             : {
     316             :     TM_Result   result;
     317             :     TM_FailureData tmfd;
     318             : 
     319       80624 :     result = table_tuple_delete(rel, tid,
     320             :                                 GetCurrentCommandId(true),
     321             :                                 snapshot, InvalidSnapshot,
     322             :                                 true /* wait for commit */ ,
     323             :                                 &tmfd, false /* changingPart */ );
     324             : 
     325       80624 :     switch (result)
     326             :     {
     327           0 :         case TM_SelfModified:
     328             :             /* Tuple was already updated in current command? */
     329           0 :             elog(ERROR, "tuple already updated by self");
     330             :             break;
     331             : 
     332       80624 :         case TM_Ok:
     333             :             /* done successfully */
     334       80624 :             break;
     335             : 
     336           0 :         case TM_Updated:
     337           0 :             elog(ERROR, "tuple concurrently updated");
     338             :             break;
     339             : 
     340           0 :         case TM_Deleted:
     341           0 :             elog(ERROR, "tuple concurrently deleted");
     342             :             break;
     343             : 
     344           0 :         default:
     345           0 :             elog(ERROR, "unrecognized table_tuple_delete status: %u", result);
     346             :             break;
     347             :     }
     348       80624 : }
     349             : 
     350             : /*
     351             :  * simple_table_tuple_update - replace a tuple
     352             :  *
     353             :  * This routine may be used to update a tuple when concurrent updates of
     354             :  * the target tuple are not expected (for example, because we have a lock
     355             :  * on the relation associated with the tuple).  Any failure is reported
     356             :  * via ereport().
     357             :  */
     358             : void
     359       63836 : simple_table_tuple_update(Relation rel, ItemPointer otid,
     360             :                           TupleTableSlot *slot,
     361             :                           Snapshot snapshot,
     362             :                           TU_UpdateIndexes *update_indexes)
     363             : {
     364             :     TM_Result   result;
     365             :     TM_FailureData tmfd;
     366             :     LockTupleMode lockmode;
     367             : 
     368       63836 :     result = table_tuple_update(rel, otid, slot,
     369             :                                 GetCurrentCommandId(true),
     370             :                                 snapshot, InvalidSnapshot,
     371             :                                 true /* wait for commit */ ,
     372             :                                 &tmfd, &lockmode, update_indexes);
     373             : 
     374       63836 :     switch (result)
     375             :     {
     376           0 :         case TM_SelfModified:
     377             :             /* Tuple was already updated in current command? */
     378           0 :             elog(ERROR, "tuple already updated by self");
     379             :             break;
     380             : 
     381       63836 :         case TM_Ok:
     382             :             /* done successfully */
     383       63836 :             break;
     384             : 
     385           0 :         case TM_Updated:
     386           0 :             elog(ERROR, "tuple concurrently updated");
     387             :             break;
     388             : 
     389           0 :         case TM_Deleted:
     390           0 :             elog(ERROR, "tuple concurrently deleted");
     391             :             break;
     392             : 
     393           0 :         default:
     394           0 :             elog(ERROR, "unrecognized table_tuple_update status: %u", result);
     395             :             break;
     396             :     }
     397       63836 : }
     398             : 
     399             : 
     400             : /* ----------------------------------------------------------------------------
     401             :  * Helper functions to implement parallel scans for block oriented AMs.
     402             :  * ----------------------------------------------------------------------------
     403             :  */
     404             : 
     405             : Size
     406        1156 : table_block_parallelscan_estimate(Relation rel)
     407             : {
     408        1156 :     return sizeof(ParallelBlockTableScanDescData);
     409             : }
     410             : 
     411             : Size
     412        1156 : table_block_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan)
     413             : {
     414        1156 :     ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
     415             : 
     416        1156 :     bpscan->base.phs_locator = rel->rd_locator;
     417        1156 :     bpscan->phs_nblocks = RelationGetNumberOfBlocks(rel);
     418             :     /* compare phs_syncscan initialization to similar logic in initscan */
     419        3092 :     bpscan->base.phs_syncscan = synchronize_seqscans &&
     420        1936 :         !RelationUsesLocalBuffers(rel) &&
     421         780 :         bpscan->phs_nblocks > NBuffers / 4;
     422        1156 :     SpinLockInit(&bpscan->phs_mutex);
     423        1156 :     bpscan->phs_startblock = InvalidBlockNumber;
     424        1156 :     bpscan->phs_numblock = InvalidBlockNumber;
     425        1156 :     pg_atomic_init_u64(&bpscan->phs_nallocated, 0);
     426             : 
     427        1156 :     return sizeof(ParallelBlockTableScanDescData);
     428             : }
     429             : 
     430             : void
     431         228 : table_block_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
     432             : {
     433         228 :     ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
     434             : 
     435         228 :     pg_atomic_write_u64(&bpscan->phs_nallocated, 0);
     436         228 : }
     437             : 
     438             : /*
     439             :  * find and set the scan's startblock
     440             :  *
     441             :  * Determine where the parallel seq scan should start.  This function may be
     442             :  * called many times, once by each parallel worker.  We must be careful only
     443             :  * to set the phs_startblock and phs_numblock fields once.
     444             :  *
     445             :  * Callers may optionally specify a non-InvalidBlockNumber value for
     446             :  * 'startblock' to force the scan to start at the given page.  Likewise,
     447             :  * 'numblocks' can be specified as a non-InvalidBlockNumber to limit the
     448             :  * number of blocks to scan to that many blocks.
     449             :  */
     450             : void
     451        3296 : table_block_parallelscan_startblock_init(Relation rel,
     452             :                                          ParallelBlockTableScanWorker pbscanwork,
     453             :                                          ParallelBlockTableScanDesc pbscan,
     454             :                                          BlockNumber startblock,
     455             :                                          BlockNumber numblocks)
     456             : {
     457             :     StaticAssertDecl(MaxBlockNumber <= 0xFFFFFFFE,
     458             :                      "pg_nextpower2_32 may be too small for non-standard BlockNumber width");
     459             : 
     460        3296 :     BlockNumber sync_startpage = InvalidBlockNumber;
     461             :     BlockNumber scan_nblocks;
     462             : 
     463             :     /* Reset the state we use for controlling allocation size. */
     464        3296 :     memset(pbscanwork, 0, sizeof(*pbscanwork));
     465             : 
     466        3298 : retry:
     467             :     /* Grab the spinlock. */
     468        3298 :     SpinLockAcquire(&pbscan->phs_mutex);
     469             : 
     470             :     /*
     471             :      * When the caller specified a limit on the number of blocks to scan, set
     472             :      * that in the ParallelBlockTableScanDesc, if it's not been done by
     473             :      * another worker already.
     474             :      */
     475        3298 :     if (numblocks != InvalidBlockNumber &&
     476         120 :         pbscan->phs_numblock == InvalidBlockNumber)
     477             :     {
     478          24 :         pbscan->phs_numblock = numblocks;
     479             :     }
     480             : 
     481             :     /*
     482             :      * If the scan's phs_startblock has not yet been initialized, we must do
     483             :      * so now.  If a startblock was specified, start there, otherwise if this
     484             :      * is not a synchronized scan, we just start at block 0, but if it is a
     485             :      * synchronized scan, we must get the starting position from the
     486             :      * synchronized scan machinery.  We can't hold the spinlock while doing
     487             :      * that, though, so release the spinlock, get the information we need, and
     488             :      * retry.  If nobody else has initialized the scan in the meantime, we'll
     489             :      * fill in the value we fetched on the second time through.
     490             :      */
     491        3298 :     if (pbscan->phs_startblock == InvalidBlockNumber)
     492             :     {
     493        1138 :         if (startblock != InvalidBlockNumber)
     494          24 :             pbscan->phs_startblock = startblock;
     495        1114 :         else if (!pbscan->base.phs_syncscan)
     496        1110 :             pbscan->phs_startblock = 0;
     497           4 :         else if (sync_startpage != InvalidBlockNumber)
     498           2 :             pbscan->phs_startblock = sync_startpage;
     499             :         else
     500             :         {
     501           2 :             SpinLockRelease(&pbscan->phs_mutex);
     502           2 :             sync_startpage = ss_get_location(rel, pbscan->phs_nblocks);
     503           2 :             goto retry;
     504             :         }
     505             :     }
     506        3296 :     SpinLockRelease(&pbscan->phs_mutex);
     507             : 
     508             :     /*
     509             :      * Figure out how many blocks we're going to scan; either all of them, or
     510             :      * just phs_numblock's worth, if a limit has been imposed.
     511             :      */
     512        3296 :     if (pbscan->phs_numblock == InvalidBlockNumber)
     513        3176 :         scan_nblocks = pbscan->phs_nblocks;
     514             :     else
     515         120 :         scan_nblocks = pbscan->phs_numblock;
     516             : 
     517             :     /*
     518             :      * We determine the chunk size based on scan_nblocks.  First we split
     519             :      * scan_nblocks into PARALLEL_SEQSCAN_NCHUNKS chunks then we calculate the
     520             :      * next highest power of 2 number of the result.  This means we split the
     521             :      * blocks we're scanning into somewhere between PARALLEL_SEQSCAN_NCHUNKS
     522             :      * and PARALLEL_SEQSCAN_NCHUNKS / 2 chunks.
     523             :      */
     524        3296 :     pbscanwork->phsw_chunk_size = pg_nextpower2_32(Max(scan_nblocks /
     525             :                                                        PARALLEL_SEQSCAN_NCHUNKS, 1));
     526             : 
     527             :     /*
     528             :      * Ensure we don't go over the maximum chunk size with larger tables. This
     529             :      * means we may get much more than PARALLEL_SEQSCAN_NCHUNKS for larger
     530             :      * tables.  Too large a chunk size has been shown to be detrimental to
     531             :      * sequential scan performance.
     532             :      */
     533        3296 :     pbscanwork->phsw_chunk_size = Min(pbscanwork->phsw_chunk_size,
     534             :                                       PARALLEL_SEQSCAN_MAX_CHUNK_SIZE);
     535        3296 : }
     536             : 
     537             : /*
     538             :  * get the next page to scan
     539             :  *
     540             :  * Get the next page to scan.  Even if there are no pages left to scan,
     541             :  * another backend could have grabbed a page to scan and not yet finished
     542             :  * looking at it, so it doesn't follow that the scan is done when the first
     543             :  * backend gets an InvalidBlockNumber return.
     544             :  */
     545             : BlockNumber
     546      203424 : table_block_parallelscan_nextpage(Relation rel,
     547             :                                   ParallelBlockTableScanWorker pbscanwork,
     548             :                                   ParallelBlockTableScanDesc pbscan)
     549             : {
     550             :     BlockNumber scan_nblocks;
     551             :     BlockNumber page;
     552             :     uint64      nallocated;
     553             : 
     554             :     /*
     555             :      * The logic below allocates block numbers out to parallel workers in a
     556             :      * way that each worker will receive a set of consecutive block numbers to
     557             :      * scan.  Earlier versions of this would allocate the next highest block
     558             :      * number to the next worker to call this function.  This would generally
     559             :      * result in workers never receiving consecutive block numbers.  Some
     560             :      * operating systems would not detect the sequential I/O pattern due to
     561             :      * each backend being a different process which could result in poor
     562             :      * performance due to inefficient or no readahead.  To work around this
     563             :      * issue, we now allocate a range of block numbers for each worker and
     564             :      * when they come back for another block, we give them the next one in
     565             :      * that range until the range is complete.  When the worker completes the
     566             :      * range of blocks we then allocate another range for it and return the
     567             :      * first block number from that range.
     568             :      *
     569             :      * Here we name these ranges of blocks "chunks".  The initial size of
     570             :      * these chunks is determined in table_block_parallelscan_startblock_init
     571             :      * based on the number of blocks to scan.  Towards the end of the scan, we
     572             :      * start making reductions in the size of the chunks in order to attempt
     573             :      * to divide the remaining work over all the workers as evenly as
     574             :      * possible.
     575             :      *
     576             :      * Here pbscanwork is local worker memory.  phsw_chunk_remaining tracks
     577             :      * the number of blocks remaining in the chunk.  When that reaches 0 then
     578             :      * we must allocate a new chunk for the worker.
     579             :      *
     580             :      * phs_nallocated tracks how many blocks have been allocated to workers
     581             :      * already.  When phs_nallocated >= rs_nblocks, all blocks have been
     582             :      * allocated.
     583             :      *
     584             :      * Because we use an atomic fetch-and-add to fetch the current value, the
     585             :      * phs_nallocated counter will exceed rs_nblocks, because workers will
     586             :      * still increment the value, when they try to allocate the next block but
     587             :      * all blocks have been allocated already. The counter must be 64 bits
     588             :      * wide because of that, to avoid wrapping around when scan_nblocks is
     589             :      * close to 2^32.
     590             :      *
     591             :      * The actual block to return is calculated by adding the counter to the
     592             :      * starting block number, modulo phs_nblocks.
     593             :      */
     594             : 
     595             :     /* First, figure out how many blocks we're planning on scanning */
     596      203424 :     if (pbscan->phs_numblock == InvalidBlockNumber)
     597      202806 :         scan_nblocks = pbscan->phs_nblocks;
     598             :     else
     599         618 :         scan_nblocks = pbscan->phs_numblock;
     600             : 
     601             :     /*
     602             :      * Now check if we have any remaining blocks in a previous chunk for this
     603             :      * worker.  We must consume all of the blocks from that before we allocate
     604             :      * a new chunk to the worker.
     605             :      */
     606      203424 :     if (pbscanwork->phsw_chunk_remaining > 0)
     607             :     {
     608             :         /*
     609             :          * Give them the next block in the range and update the remaining
     610             :          * number of blocks.
     611             :          */
     612       13026 :         nallocated = ++pbscanwork->phsw_nallocated;
     613       13026 :         pbscanwork->phsw_chunk_remaining--;
     614             :     }
     615             :     else
     616             :     {
     617             :         /*
     618             :          * When we've only got PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS chunks
     619             :          * remaining in the scan, we half the chunk size.  Since we reduce the
     620             :          * chunk size here, we'll hit this again after doing
     621             :          * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS at the new size.  After a few
     622             :          * iterations of this, we'll end up doing the last few blocks with the
     623             :          * chunk size set to 1.
     624             :          */
     625      190398 :         if (pbscanwork->phsw_chunk_size > 1 &&
     626        4430 :             pbscanwork->phsw_nallocated > scan_nblocks -
     627        4430 :             (pbscanwork->phsw_chunk_size * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS))
     628           8 :             pbscanwork->phsw_chunk_size >>= 1;
     629             : 
     630      190398 :         nallocated = pbscanwork->phsw_nallocated =
     631      190398 :             pg_atomic_fetch_add_u64(&pbscan->phs_nallocated,
     632      190398 :                                     pbscanwork->phsw_chunk_size);
     633             : 
     634             :         /*
     635             :          * Set the remaining number of blocks in this chunk so that subsequent
     636             :          * calls from this worker continue on with this chunk until it's done.
     637             :          */
     638      190398 :         pbscanwork->phsw_chunk_remaining = pbscanwork->phsw_chunk_size - 1;
     639             :     }
     640             : 
     641             :     /* Check if we've run out of blocks to scan */
     642      203424 :     if (nallocated >= scan_nblocks)
     643        3296 :         page = InvalidBlockNumber;  /* all blocks have been allocated */
     644             :     else
     645      200128 :         page = (nallocated + pbscan->phs_startblock) % pbscan->phs_nblocks;
     646             : 
     647             :     /*
     648             :      * Report scan location.  Normally, we report the current page number.
     649             :      * When we reach the end of the scan, though, we report the starting page,
     650             :      * not the ending page, just so the starting positions for later scans
     651             :      * doesn't slew backwards.  We only report the position at the end of the
     652             :      * scan once, though: subsequent callers will report nothing.
     653             :      */
     654      203424 :     if (pbscan->base.phs_syncscan)
     655             :     {
     656       17704 :         if (page != InvalidBlockNumber)
     657       17700 :             ss_report_location(rel, page);
     658           4 :         else if (nallocated == pbscan->phs_nblocks)
     659           2 :             ss_report_location(rel, pbscan->phs_startblock);
     660             :     }
     661             : 
     662      203424 :     return page;
     663             : }
     664             : 
     665             : /* ----------------------------------------------------------------------------
     666             :  * Helper functions to implement relation sizing for block oriented AMs.
     667             :  * ----------------------------------------------------------------------------
     668             :  */
     669             : 
     670             : /*
     671             :  * table_block_relation_size
     672             :  *
     673             :  * If a table AM uses the various relation forks as the sole place where data
     674             :  * is stored, and if it uses them in the expected manner (e.g. the actual data
     675             :  * is in the main fork rather than some other), it can use this implementation
     676             :  * of the relation_size callback rather than implementing its own.
     677             :  */
     678             : uint64
     679     2891114 : table_block_relation_size(Relation rel, ForkNumber forkNumber)
     680             : {
     681     2891114 :     uint64      nblocks = 0;
     682             : 
     683             :     /* InvalidForkNumber indicates returning the size for all forks */
     684     2891114 :     if (forkNumber == InvalidForkNumber)
     685             :     {
     686           0 :         for (int i = 0; i < MAX_FORKNUM; i++)
     687           0 :             nblocks += smgrnblocks(RelationGetSmgr(rel), i);
     688             :     }
     689             :     else
     690     2891114 :         nblocks = smgrnblocks(RelationGetSmgr(rel), forkNumber);
     691             : 
     692     2891076 :     return nblocks * BLCKSZ;
     693             : }
     694             : 
     695             : /*
     696             :  * table_block_relation_estimate_size
     697             :  *
     698             :  * This function can't be directly used as the implementation of the
     699             :  * relation_estimate_size callback, because it has a few additional parameters.
     700             :  * Instead, it is intended to be used as a helper function; the caller can
     701             :  * pass through the arguments to its relation_estimate_size function plus the
     702             :  * additional values required here.
     703             :  *
     704             :  * overhead_bytes_per_tuple should contain the approximate number of bytes
     705             :  * of storage required to store a tuple above and beyond what is required for
     706             :  * the tuple data proper. Typically, this would include things like the
     707             :  * size of the tuple header and item pointer. This is only used for query
     708             :  * planning, so a table AM where the value is not constant could choose to
     709             :  * pass a "best guess".
     710             :  *
     711             :  * usable_bytes_per_page should contain the approximate number of bytes per
     712             :  * page usable for tuple data, excluding the page header and any anticipated
     713             :  * special space.
     714             :  */
     715             : void
     716      466540 : table_block_relation_estimate_size(Relation rel, int32 *attr_widths,
     717             :                                    BlockNumber *pages, double *tuples,
     718             :                                    double *allvisfrac,
     719             :                                    Size overhead_bytes_per_tuple,
     720             :                                    Size usable_bytes_per_page)
     721             : {
     722             :     BlockNumber curpages;
     723             :     BlockNumber relpages;
     724             :     double      reltuples;
     725             :     BlockNumber relallvisible;
     726             :     double      density;
     727             : 
     728             :     /* it should have storage, so we can call the smgr */
     729      466540 :     curpages = RelationGetNumberOfBlocks(rel);
     730             : 
     731             :     /* coerce values in pg_class to more desirable types */
     732      466540 :     relpages = (BlockNumber) rel->rd_rel->relpages;
     733      466540 :     reltuples = (double) rel->rd_rel->reltuples;
     734      466540 :     relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
     735             : 
     736             :     /*
     737             :      * HACK: if the relation has never yet been vacuumed, use a minimum size
     738             :      * estimate of 10 pages.  The idea here is to avoid assuming a
     739             :      * newly-created table is really small, even if it currently is, because
     740             :      * that may not be true once some data gets loaded into it.  Once a vacuum
     741             :      * or analyze cycle has been done on it, it's more reasonable to believe
     742             :      * the size is somewhat stable.
     743             :      *
     744             :      * (Note that this is only an issue if the plan gets cached and used again
     745             :      * after the table has been filled.  What we're trying to avoid is using a
     746             :      * nestloop-type plan on a table that has grown substantially since the
     747             :      * plan was made.  Normally, autovacuum/autoanalyze will occur once enough
     748             :      * inserts have happened and cause cached-plan invalidation; but that
     749             :      * doesn't happen instantaneously, and it won't happen at all for cases
     750             :      * such as temporary tables.)
     751             :      *
     752             :      * We test "never vacuumed" by seeing whether reltuples < 0.
     753             :      *
     754             :      * If the table has inheritance children, we don't apply this heuristic.
     755             :      * Totally empty parent tables are quite common, so we should be willing
     756             :      * to believe that they are empty.
     757             :      */
     758      466540 :     if (curpages < 10 &&
     759      117808 :         reltuples < 0 &&
     760      117808 :         !rel->rd_rel->relhassubclass)
     761      115168 :         curpages = 10;
     762             : 
     763             :     /* report estimated # pages */
     764      466540 :     *pages = curpages;
     765             :     /* quick exit if rel is clearly empty */
     766      466540 :     if (curpages == 0)
     767             :     {
     768       21606 :         *tuples = 0;
     769       21606 :         *allvisfrac = 0;
     770       21606 :         return;
     771             :     }
     772             : 
     773             :     /* estimate number of tuples from previous tuple density */
     774      444934 :     if (reltuples >= 0 && relpages > 0)
     775      288634 :         density = reltuples / (double) relpages;
     776             :     else
     777             :     {
     778             :         /*
     779             :          * When we have no data because the relation was never yet vacuumed,
     780             :          * estimate tuple width from attribute datatypes.  We assume here that
     781             :          * the pages are completely full, which is OK for tables but is
     782             :          * probably an overestimate for indexes.  Fortunately
     783             :          * get_relation_info() can clamp the overestimate to the parent
     784             :          * table's size.
     785             :          *
     786             :          * Note: this code intentionally disregards alignment considerations,
     787             :          * because (a) that would be gilding the lily considering how crude
     788             :          * the estimate is, (b) it creates platform dependencies in the
     789             :          * default plans which are kind of a headache for regression testing,
     790             :          * and (c) different table AMs might use different padding schemes.
     791             :          */
     792             :         int32       tuple_width;
     793             :         int         fillfactor;
     794             : 
     795             :         /*
     796             :          * Without reltuples/relpages, we also need to consider fillfactor.
     797             :          * The other branch considers it implicitly by calculating density
     798             :          * from actual relpages/reltuples statistics.
     799             :          */
     800      156300 :         fillfactor = RelationGetFillFactor(rel, HEAP_DEFAULT_FILLFACTOR);
     801             : 
     802      156300 :         tuple_width = get_rel_data_width(rel, attr_widths);
     803      156300 :         tuple_width += overhead_bytes_per_tuple;
     804             :         /* note: integer division is intentional here */
     805      156300 :         density = (usable_bytes_per_page * fillfactor / 100) / tuple_width;
     806             :         /* There's at least one row on the page, even with low fillfactor. */
     807      156300 :         density = clamp_row_est(density);
     808             :     }
     809      444934 :     *tuples = rint(density * (double) curpages);
     810             : 
     811             :     /*
     812             :      * We use relallvisible as-is, rather than scaling it up like we do for
     813             :      * the pages and tuples counts, on the theory that any pages added since
     814             :      * the last VACUUM are most likely not marked all-visible.  But costsize.c
     815             :      * wants it converted to a fraction.
     816             :      */
     817      444934 :     if (relallvisible == 0 || curpages <= 0)
     818      217776 :         *allvisfrac = 0;
     819      227158 :     else if ((double) relallvisible >= curpages)
     820      140924 :         *allvisfrac = 1;
     821             :     else
     822       86234 :         *allvisfrac = (double) relallvisible / curpages;
     823             : }

Generated by: LCOV version 1.16