LCOV - code coverage report
Current view: top level - src/backend/access/table - tableam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 17devel Lines: 162 181 89.5 %
Date: 2023-12-01 20:11:03 Functions: 19 19 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*----------------------------------------------------------------------
       2             :  *
       3             :  * tableam.c
       4             :  *      Table access method routines too big to be inline functions.
       5             :  *
       6             :  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/table/tableam.c
      12             :  *
      13             :  * NOTES
      14             :  *    Note that most function in here are documented in tableam.h, rather than
      15             :  *    here. That's because there's a lot of inline functions in tableam.h and
      16             :  *    it'd be harder to understand if one constantly had to switch between files.
      17             :  *
      18             :  *----------------------------------------------------------------------
      19             :  */
      20             : #include "postgres.h"
      21             : 
      22             : #include <math.h>
      23             : 
      24             : #include "access/syncscan.h"
      25             : #include "access/tableam.h"
      26             : #include "access/xact.h"
      27             : #include "optimizer/plancat.h"
      28             : #include "port/pg_bitutils.h"
      29             : #include "storage/bufmgr.h"
      30             : #include "storage/shmem.h"
      31             : #include "storage/smgr.h"
      32             : 
      33             : /*
      34             :  * Constants to control the behavior of block allocation to parallel workers
      35             :  * during a parallel seqscan.  Technically these values do not need to be
      36             :  * powers of 2, but having them as powers of 2 makes the math more optimal
      37             :  * and makes the ramp-down stepping more even.
      38             :  */
      39             : 
      40             : /* The number of I/O chunks we try to break a parallel seqscan down into */
      41             : #define PARALLEL_SEQSCAN_NCHUNKS            2048
      42             : /* Ramp down size of allocations when we've only this number of chunks left */
      43             : #define PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS    64
      44             : /* Cap the size of parallel I/O chunks to this number of blocks */
      45             : #define PARALLEL_SEQSCAN_MAX_CHUNK_SIZE     8192
      46             : 
      47             : /* GUC variables */
      48             : char       *default_table_access_method = DEFAULT_TABLE_ACCESS_METHOD;
      49             : bool        synchronize_seqscans = true;
      50             : 
      51             : 
      52             : /* ----------------------------------------------------------------------------
      53             :  * Slot functions.
      54             :  * ----------------------------------------------------------------------------
      55             :  */
      56             : 
      57             : const TupleTableSlotOps *
      58    22452224 : table_slot_callbacks(Relation relation)
      59             : {
      60             :     const TupleTableSlotOps *tts_cb;
      61             : 
      62    22452224 :     if (relation->rd_tableam)
      63    22444456 :         tts_cb = relation->rd_tableam->slot_callbacks(relation);
      64        7768 :     else if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
      65             :     {
      66             :         /*
      67             :          * Historically FDWs expect to store heap tuples in slots. Continue
      68             :          * handing them one, to make it less painful to adapt FDWs to new
      69             :          * versions. The cost of a heap slot over a virtual slot is pretty
      70             :          * small.
      71             :          */
      72         414 :         tts_cb = &TTSOpsHeapTuple;
      73             :     }
      74             :     else
      75             :     {
      76             :         /*
      77             :          * These need to be supported, as some parts of the code (like COPY)
      78             :          * need to create slots for such relations too. It seems better to
      79             :          * centralize the knowledge that a heap slot is the right thing in
      80             :          * that case here.
      81             :          */
      82             :         Assert(relation->rd_rel->relkind == RELKIND_VIEW ||
      83             :                relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
      84        7354 :         tts_cb = &TTSOpsVirtual;
      85             :     }
      86             : 
      87    22452224 :     return tts_cb;
      88             : }
      89             : 
      90             : TupleTableSlot *
      91    22080240 : table_slot_create(Relation relation, List **reglist)
      92             : {
      93             :     const TupleTableSlotOps *tts_cb;
      94             :     TupleTableSlot *slot;
      95             : 
      96    22080240 :     tts_cb = table_slot_callbacks(relation);
      97    22080240 :     slot = MakeSingleTupleTableSlot(RelationGetDescr(relation), tts_cb);
      98             : 
      99    22080240 :     if (reglist)
     100      256078 :         *reglist = lappend(*reglist, slot);
     101             : 
     102    22080240 :     return slot;
     103             : }
     104             : 
     105             : 
     106             : /* ----------------------------------------------------------------------------
     107             :  * Table scan functions.
     108             :  * ----------------------------------------------------------------------------
     109             :  */
     110             : 
     111             : TableScanDesc
     112       69316 : table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
     113             : {
     114       69316 :     uint32      flags = SO_TYPE_SEQSCAN |
     115             :         SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE | SO_TEMP_SNAPSHOT;
     116       69316 :     Oid         relid = RelationGetRelid(relation);
     117       69316 :     Snapshot    snapshot = RegisterSnapshot(GetCatalogSnapshot(relid));
     118             : 
     119       69316 :     return relation->rd_tableam->scan_begin(relation, snapshot, nkeys, key,
     120             :                                             NULL, flags);
     121             : }
     122             : 
     123             : void
     124         276 : table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot)
     125             : {
     126             :     Assert(IsMVCCSnapshot(snapshot));
     127             : 
     128         276 :     RegisterSnapshot(snapshot);
     129         276 :     scan->rs_snapshot = snapshot;
     130         276 :     scan->rs_flags |= SO_TEMP_SNAPSHOT;
     131         276 : }
     132             : 
     133             : 
     134             : /* ----------------------------------------------------------------------------
     135             :  * Parallel table scan related functions.
     136             :  * ----------------------------------------------------------------------------
     137             :  */
     138             : 
     139             : Size
     140        1034 : table_parallelscan_estimate(Relation rel, Snapshot snapshot)
     141             : {
     142        1034 :     Size        sz = 0;
     143             : 
     144        1034 :     if (IsMVCCSnapshot(snapshot))
     145         892 :         sz = add_size(sz, EstimateSnapshotSpace(snapshot));
     146             :     else
     147             :         Assert(snapshot == SnapshotAny);
     148             : 
     149        1034 :     sz = add_size(sz, rel->rd_tableam->parallelscan_estimate(rel));
     150             : 
     151        1034 :     return sz;
     152             : }
     153             : 
     154             : void
     155        1034 : table_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan,
     156             :                               Snapshot snapshot)
     157             : {
     158        1034 :     Size        snapshot_off = rel->rd_tableam->parallelscan_initialize(rel, pscan);
     159             : 
     160        1034 :     pscan->phs_snapshot_off = snapshot_off;
     161             : 
     162        1034 :     if (IsMVCCSnapshot(snapshot))
     163             :     {
     164         892 :         SerializeSnapshot(snapshot, (char *) pscan + pscan->phs_snapshot_off);
     165         892 :         pscan->phs_snapshot_any = false;
     166             :     }
     167             :     else
     168             :     {
     169             :         Assert(snapshot == SnapshotAny);
     170         142 :         pscan->phs_snapshot_any = true;
     171             :     }
     172        1034 : }
     173             : 
     174             : TableScanDesc
     175        3822 : table_beginscan_parallel(Relation relation, ParallelTableScanDesc pscan)
     176             : {
     177             :     Snapshot    snapshot;
     178        3822 :     uint32      flags = SO_TYPE_SEQSCAN |
     179             :         SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
     180             : 
     181             :     Assert(RelationGetRelid(relation) == pscan->phs_relid);
     182             : 
     183        3822 :     if (!pscan->phs_snapshot_any)
     184             :     {
     185             :         /* Snapshot was serialized -- restore it */
     186        3538 :         snapshot = RestoreSnapshot((char *) pscan + pscan->phs_snapshot_off);
     187        3538 :         RegisterSnapshot(snapshot);
     188        3538 :         flags |= SO_TEMP_SNAPSHOT;
     189             :     }
     190             :     else
     191             :     {
     192             :         /* SnapshotAny passed by caller (not serialized) */
     193         284 :         snapshot = SnapshotAny;
     194             :     }
     195             : 
     196        3822 :     return relation->rd_tableam->scan_begin(relation, snapshot, 0, NULL,
     197             :                                             pscan, flags);
     198             : }
     199             : 
     200             : 
     201             : /* ----------------------------------------------------------------------------
     202             :  * Index scan related functions.
     203             :  * ----------------------------------------------------------------------------
     204             :  */
     205             : 
     206             : /*
     207             :  * To perform that check simply start an index scan, create the necessary
     208             :  * slot, do the heap lookup, and shut everything down again. This could be
     209             :  * optimized, but is unlikely to matter from a performance POV. If there
     210             :  * frequently are live index pointers also matching a unique index key, the
     211             :  * CPU overhead of this routine is unlikely to matter.
     212             :  *
     213             :  * Note that *tid may be modified when we return true if the AM supports
     214             :  * storing multiple row versions reachable via a single index entry (like
     215             :  * heap's HOT).
     216             :  */
     217             : bool
     218    11390404 : table_index_fetch_tuple_check(Relation rel,
     219             :                               ItemPointer tid,
     220             :                               Snapshot snapshot,
     221             :                               bool *all_dead)
     222             : {
     223             :     IndexFetchTableData *scan;
     224             :     TupleTableSlot *slot;
     225    11390404 :     bool        call_again = false;
     226             :     bool        found;
     227             : 
     228    11390404 :     slot = table_slot_create(rel, NULL);
     229    11390404 :     scan = table_index_fetch_begin(rel);
     230    11390404 :     found = table_index_fetch_tuple(scan, tid, snapshot, slot, &call_again,
     231             :                                     all_dead);
     232    11390404 :     table_index_fetch_end(scan);
     233    11390404 :     ExecDropSingleTupleTableSlot(slot);
     234             : 
     235    11390404 :     return found;
     236             : }
     237             : 
     238             : 
     239             : /* ------------------------------------------------------------------------
     240             :  * Functions for non-modifying operations on individual tuples
     241             :  * ------------------------------------------------------------------------
     242             :  */
     243             : 
     244             : void
     245         306 : table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid)
     246             : {
     247         306 :     Relation    rel = scan->rs_rd;
     248         306 :     const TableAmRoutine *tableam = rel->rd_tableam;
     249             : 
     250             :     /*
     251             :      * We don't expect direct calls to table_tuple_get_latest_tid with valid
     252             :      * CheckXidAlive for catalog or regular tables.  See detailed comments in
     253             :      * xact.c where these variables are declared.
     254             :      */
     255         306 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
     256           0 :         elog(ERROR, "unexpected table_tuple_get_latest_tid call during logical decoding");
     257             : 
     258             :     /*
     259             :      * Since this can be called with user-supplied TID, don't trust the input
     260             :      * too much.
     261             :      */
     262         306 :     if (!tableam->tuple_tid_valid(scan, tid))
     263          12 :         ereport(ERROR,
     264             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     265             :                  errmsg("tid (%u, %u) is not valid for relation \"%s\"",
     266             :                         ItemPointerGetBlockNumberNoCheck(tid),
     267             :                         ItemPointerGetOffsetNumberNoCheck(tid),
     268             :                         RelationGetRelationName(rel))));
     269             : 
     270         294 :     tableam->tuple_get_latest_tid(scan, tid);
     271         294 : }
     272             : 
     273             : 
     274             : /* ----------------------------------------------------------------------------
     275             :  * Functions to make modifications a bit simpler.
     276             :  * ----------------------------------------------------------------------------
     277             :  */
     278             : 
     279             : /*
     280             :  * simple_table_tuple_insert - insert a tuple
     281             :  *
     282             :  * Currently, this routine differs from table_tuple_insert only in supplying a
     283             :  * default command ID and not allowing access to the speedup options.
     284             :  */
     285             : void
     286      152402 : simple_table_tuple_insert(Relation rel, TupleTableSlot *slot)
     287             : {
     288      152402 :     table_tuple_insert(rel, slot, GetCurrentCommandId(true), 0, NULL);
     289      152402 : }
     290             : 
     291             : /*
     292             :  * simple_table_tuple_delete - delete a tuple
     293             :  *
     294             :  * This routine may be used to delete a tuple when concurrent updates of
     295             :  * the target tuple are not expected (for example, because we have a lock
     296             :  * on the relation associated with the tuple).  Any failure is reported
     297             :  * via ereport().
     298             :  */
     299             : void
     300       80602 : simple_table_tuple_delete(Relation rel, ItemPointer tid, Snapshot snapshot)
     301             : {
     302             :     TM_Result   result;
     303             :     TM_FailureData tmfd;
     304             : 
     305       80602 :     result = table_tuple_delete(rel, tid,
     306             :                                 GetCurrentCommandId(true),
     307             :                                 snapshot, InvalidSnapshot,
     308             :                                 true /* wait for commit */ ,
     309             :                                 &tmfd, false /* changingPart */ );
     310             : 
     311       80602 :     switch (result)
     312             :     {
     313           0 :         case TM_SelfModified:
     314             :             /* Tuple was already updated in current command? */
     315           0 :             elog(ERROR, "tuple already updated by self");
     316             :             break;
     317             : 
     318       80602 :         case TM_Ok:
     319             :             /* done successfully */
     320       80602 :             break;
     321             : 
     322           0 :         case TM_Updated:
     323           0 :             elog(ERROR, "tuple concurrently updated");
     324             :             break;
     325             : 
     326           0 :         case TM_Deleted:
     327           0 :             elog(ERROR, "tuple concurrently deleted");
     328             :             break;
     329             : 
     330           0 :         default:
     331           0 :             elog(ERROR, "unrecognized table_tuple_delete status: %u", result);
     332             :             break;
     333             :     }
     334       80602 : }
     335             : 
     336             : /*
     337             :  * simple_table_tuple_update - replace a tuple
     338             :  *
     339             :  * This routine may be used to update a tuple when concurrent updates of
     340             :  * the target tuple are not expected (for example, because we have a lock
     341             :  * on the relation associated with the tuple).  Any failure is reported
     342             :  * via ereport().
     343             :  */
     344             : void
     345       63822 : simple_table_tuple_update(Relation rel, ItemPointer otid,
     346             :                           TupleTableSlot *slot,
     347             :                           Snapshot snapshot,
     348             :                           TU_UpdateIndexes *update_indexes)
     349             : {
     350             :     TM_Result   result;
     351             :     TM_FailureData tmfd;
     352             :     LockTupleMode lockmode;
     353             : 
     354       63822 :     result = table_tuple_update(rel, otid, slot,
     355             :                                 GetCurrentCommandId(true),
     356             :                                 snapshot, InvalidSnapshot,
     357             :                                 true /* wait for commit */ ,
     358             :                                 &tmfd, &lockmode, update_indexes);
     359             : 
     360       63822 :     switch (result)
     361             :     {
     362           0 :         case TM_SelfModified:
     363             :             /* Tuple was already updated in current command? */
     364           0 :             elog(ERROR, "tuple already updated by self");
     365             :             break;
     366             : 
     367       63822 :         case TM_Ok:
     368             :             /* done successfully */
     369       63822 :             break;
     370             : 
     371           0 :         case TM_Updated:
     372           0 :             elog(ERROR, "tuple concurrently updated");
     373             :             break;
     374             : 
     375           0 :         case TM_Deleted:
     376           0 :             elog(ERROR, "tuple concurrently deleted");
     377             :             break;
     378             : 
     379           0 :         default:
     380           0 :             elog(ERROR, "unrecognized table_tuple_update status: %u", result);
     381             :             break;
     382             :     }
     383       63822 : }
     384             : 
     385             : 
     386             : /* ----------------------------------------------------------------------------
     387             :  * Helper functions to implement parallel scans for block oriented AMs.
     388             :  * ----------------------------------------------------------------------------
     389             :  */
     390             : 
     391             : Size
     392        1034 : table_block_parallelscan_estimate(Relation rel)
     393             : {
     394        1034 :     return sizeof(ParallelBlockTableScanDescData);
     395             : }
     396             : 
     397             : Size
     398        1034 : table_block_parallelscan_initialize(Relation rel, ParallelTableScanDesc pscan)
     399             : {
     400        1034 :     ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
     401             : 
     402        1034 :     bpscan->base.phs_relid = RelationGetRelid(rel);
     403        1034 :     bpscan->phs_nblocks = RelationGetNumberOfBlocks(rel);
     404             :     /* compare phs_syncscan initialization to similar logic in initscan */
     405        2764 :     bpscan->base.phs_syncscan = synchronize_seqscans &&
     406        1730 :         !RelationUsesLocalBuffers(rel) &&
     407         696 :         bpscan->phs_nblocks > NBuffers / 4;
     408        1034 :     SpinLockInit(&bpscan->phs_mutex);
     409        1034 :     bpscan->phs_startblock = InvalidBlockNumber;
     410        1034 :     pg_atomic_init_u64(&bpscan->phs_nallocated, 0);
     411             : 
     412        1034 :     return sizeof(ParallelBlockTableScanDescData);
     413             : }
     414             : 
     415             : void
     416         228 : table_block_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
     417             : {
     418         228 :     ParallelBlockTableScanDesc bpscan = (ParallelBlockTableScanDesc) pscan;
     419             : 
     420         228 :     pg_atomic_write_u64(&bpscan->phs_nallocated, 0);
     421         228 : }
     422             : 
     423             : /*
     424             :  * find and set the scan's startblock
     425             :  *
     426             :  * Determine where the parallel seq scan should start.  This function may be
     427             :  * called many times, once by each parallel worker.  We must be careful only
     428             :  * to set the startblock once.
     429             :  */
     430             : void
     431        2456 : table_block_parallelscan_startblock_init(Relation rel,
     432             :                                          ParallelBlockTableScanWorker pbscanwork,
     433             :                                          ParallelBlockTableScanDesc pbscan)
     434             : {
     435        2456 :     BlockNumber sync_startpage = InvalidBlockNumber;
     436             : 
     437             :     /* Reset the state we use for controlling allocation size. */
     438        2456 :     memset(pbscanwork, 0, sizeof(*pbscanwork));
     439             : 
     440             :     StaticAssertStmt(MaxBlockNumber <= 0xFFFFFFFE,
     441             :                      "pg_nextpower2_32 may be too small for non-standard BlockNumber width");
     442             : 
     443             :     /*
     444             :      * We determine the chunk size based on the size of the relation. First we
     445             :      * split the relation into PARALLEL_SEQSCAN_NCHUNKS chunks but we then
     446             :      * take the next highest power of 2 number of the chunk size.  This means
     447             :      * we split the relation into somewhere between PARALLEL_SEQSCAN_NCHUNKS
     448             :      * and PARALLEL_SEQSCAN_NCHUNKS / 2 chunks.
     449             :      */
     450        2456 :     pbscanwork->phsw_chunk_size = pg_nextpower2_32(Max(pbscan->phs_nblocks /
     451             :                                                        PARALLEL_SEQSCAN_NCHUNKS, 1));
     452             : 
     453             :     /*
     454             :      * Ensure we don't go over the maximum chunk size with larger tables. This
     455             :      * means we may get much more than PARALLEL_SEQSCAN_NCHUNKS for larger
     456             :      * tables.  Too large a chunk size has been shown to be detrimental to
     457             :      * synchronous scan performance.
     458             :      */
     459        2456 :     pbscanwork->phsw_chunk_size = Min(pbscanwork->phsw_chunk_size,
     460             :                                       PARALLEL_SEQSCAN_MAX_CHUNK_SIZE);
     461             : 
     462        2458 : retry:
     463             :     /* Grab the spinlock. */
     464        2458 :     SpinLockAcquire(&pbscan->phs_mutex);
     465             : 
     466             :     /*
     467             :      * If the scan's startblock has not yet been initialized, we must do so
     468             :      * now.  If this is not a synchronized scan, we just start at block 0, but
     469             :      * if it is a synchronized scan, we must get the starting position from
     470             :      * the synchronized scan machinery.  We can't hold the spinlock while
     471             :      * doing that, though, so release the spinlock, get the information we
     472             :      * need, and retry.  If nobody else has initialized the scan in the
     473             :      * meantime, we'll fill in the value we fetched on the second time
     474             :      * through.
     475             :      */
     476        2458 :     if (pbscan->phs_startblock == InvalidBlockNumber)
     477             :     {
     478         826 :         if (!pbscan->base.phs_syncscan)
     479         822 :             pbscan->phs_startblock = 0;
     480           4 :         else if (sync_startpage != InvalidBlockNumber)
     481           2 :             pbscan->phs_startblock = sync_startpage;
     482             :         else
     483             :         {
     484           2 :             SpinLockRelease(&pbscan->phs_mutex);
     485           2 :             sync_startpage = ss_get_location(rel, pbscan->phs_nblocks);
     486           2 :             goto retry;
     487             :         }
     488             :     }
     489        2456 :     SpinLockRelease(&pbscan->phs_mutex);
     490        2456 : }
     491             : 
     492             : /*
     493             :  * get the next page to scan
     494             :  *
     495             :  * Get the next page to scan.  Even if there are no pages left to scan,
     496             :  * another backend could have grabbed a page to scan and not yet finished
     497             :  * looking at it, so it doesn't follow that the scan is done when the first
     498             :  * backend gets an InvalidBlockNumber return.
     499             :  */
     500             : BlockNumber
     501      198524 : table_block_parallelscan_nextpage(Relation rel,
     502             :                                   ParallelBlockTableScanWorker pbscanwork,
     503             :                                   ParallelBlockTableScanDesc pbscan)
     504             : {
     505             :     BlockNumber page;
     506             :     uint64      nallocated;
     507             : 
     508             :     /*
     509             :      * The logic below allocates block numbers out to parallel workers in a
     510             :      * way that each worker will receive a set of consecutive block numbers to
     511             :      * scan.  Earlier versions of this would allocate the next highest block
     512             :      * number to the next worker to call this function.  This would generally
     513             :      * result in workers never receiving consecutive block numbers.  Some
     514             :      * operating systems would not detect the sequential I/O pattern due to
     515             :      * each backend being a different process which could result in poor
     516             :      * performance due to inefficient or no readahead.  To work around this
     517             :      * issue, we now allocate a range of block numbers for each worker and
     518             :      * when they come back for another block, we give them the next one in
     519             :      * that range until the range is complete.  When the worker completes the
     520             :      * range of blocks we then allocate another range for it and return the
     521             :      * first block number from that range.
     522             :      *
     523             :      * Here we name these ranges of blocks "chunks".  The initial size of
     524             :      * these chunks is determined in table_block_parallelscan_startblock_init
     525             :      * based on the size of the relation.  Towards the end of the scan, we
     526             :      * start making reductions in the size of the chunks in order to attempt
     527             :      * to divide the remaining work over all the workers as evenly as
     528             :      * possible.
     529             :      *
     530             :      * Here pbscanwork is local worker memory.  phsw_chunk_remaining tracks
     531             :      * the number of blocks remaining in the chunk.  When that reaches 0 then
     532             :      * we must allocate a new chunk for the worker.
     533             :      *
     534             :      * phs_nallocated tracks how many blocks have been allocated to workers
     535             :      * already.  When phs_nallocated >= rs_nblocks, all blocks have been
     536             :      * allocated.
     537             :      *
     538             :      * Because we use an atomic fetch-and-add to fetch the current value, the
     539             :      * phs_nallocated counter will exceed rs_nblocks, because workers will
     540             :      * still increment the value, when they try to allocate the next block but
     541             :      * all blocks have been allocated already. The counter must be 64 bits
     542             :      * wide because of that, to avoid wrapping around when rs_nblocks is close
     543             :      * to 2^32.
     544             :      *
     545             :      * The actual block to return is calculated by adding the counter to the
     546             :      * starting block number, modulo nblocks.
     547             :      */
     548             : 
     549             :     /*
     550             :      * First check if we have any remaining blocks in a previous chunk for
     551             :      * this worker.  We must consume all of the blocks from that before we
     552             :      * allocate a new chunk to the worker.
     553             :      */
     554      198524 :     if (pbscanwork->phsw_chunk_remaining > 0)
     555             :     {
     556             :         /*
     557             :          * Give them the next block in the range and update the remaining
     558             :          * number of blocks.
     559             :          */
     560       13026 :         nallocated = ++pbscanwork->phsw_nallocated;
     561       13026 :         pbscanwork->phsw_chunk_remaining--;
     562             :     }
     563             :     else
     564             :     {
     565             :         /*
     566             :          * When we've only got PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS chunks
     567             :          * remaining in the scan, we half the chunk size.  Since we reduce the
     568             :          * chunk size here, we'll hit this again after doing
     569             :          * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS at the new size.  After a few
     570             :          * iterations of this, we'll end up doing the last few blocks with the
     571             :          * chunk size set to 1.
     572             :          */
     573      185498 :         if (pbscanwork->phsw_chunk_size > 1 &&
     574        4430 :             pbscanwork->phsw_nallocated > pbscan->phs_nblocks -
     575        4430 :             (pbscanwork->phsw_chunk_size * PARALLEL_SEQSCAN_RAMPDOWN_CHUNKS))
     576           8 :             pbscanwork->phsw_chunk_size >>= 1;
     577             : 
     578      185498 :         nallocated = pbscanwork->phsw_nallocated =
     579      185498 :             pg_atomic_fetch_add_u64(&pbscan->phs_nallocated,
     580      185498 :                                     pbscanwork->phsw_chunk_size);
     581             : 
     582             :         /*
     583             :          * Set the remaining number of blocks in this chunk so that subsequent
     584             :          * calls from this worker continue on with this chunk until it's done.
     585             :          */
     586      185498 :         pbscanwork->phsw_chunk_remaining = pbscanwork->phsw_chunk_size - 1;
     587             :     }
     588             : 
     589      198524 :     if (nallocated >= pbscan->phs_nblocks)
     590        2456 :         page = InvalidBlockNumber;  /* all blocks have been allocated */
     591             :     else
     592      196068 :         page = (nallocated + pbscan->phs_startblock) % pbscan->phs_nblocks;
     593             : 
     594             :     /*
     595             :      * Report scan location.  Normally, we report the current page number.
     596             :      * When we reach the end of the scan, though, we report the starting page,
     597             :      * not the ending page, just so the starting positions for later scans
     598             :      * doesn't slew backwards.  We only report the position at the end of the
     599             :      * scan once, though: subsequent callers will report nothing.
     600             :      */
     601      198524 :     if (pbscan->base.phs_syncscan)
     602             :     {
     603       17704 :         if (page != InvalidBlockNumber)
     604       17700 :             ss_report_location(rel, page);
     605           4 :         else if (nallocated == pbscan->phs_nblocks)
     606           2 :             ss_report_location(rel, pbscan->phs_startblock);
     607             :     }
     608             : 
     609      198524 :     return page;
     610             : }
     611             : 
     612             : /* ----------------------------------------------------------------------------
     613             :  * Helper functions to implement relation sizing for block oriented AMs.
     614             :  * ----------------------------------------------------------------------------
     615             :  */
     616             : 
     617             : /*
     618             :  * table_block_relation_size
     619             :  *
     620             :  * If a table AM uses the various relation forks as the sole place where data
     621             :  * is stored, and if it uses them in the expected manner (e.g. the actual data
     622             :  * is in the main fork rather than some other), it can use this implementation
     623             :  * of the relation_size callback rather than implementing its own.
     624             :  */
     625             : uint64
     626     1935630 : table_block_relation_size(Relation rel, ForkNumber forkNumber)
     627             : {
     628     1935630 :     uint64      nblocks = 0;
     629             : 
     630             :     /* InvalidForkNumber indicates returning the size for all forks */
     631     1935630 :     if (forkNumber == InvalidForkNumber)
     632             :     {
     633           0 :         for (int i = 0; i < MAX_FORKNUM; i++)
     634           0 :             nblocks += smgrnblocks(RelationGetSmgr(rel), i);
     635             :     }
     636             :     else
     637     1935630 :         nblocks = smgrnblocks(RelationGetSmgr(rel), forkNumber);
     638             : 
     639     1935592 :     return nblocks * BLCKSZ;
     640             : }
     641             : 
     642             : /*
     643             :  * table_block_relation_estimate_size
     644             :  *
     645             :  * This function can't be directly used as the implementation of the
     646             :  * relation_estimate_size callback, because it has a few additional parameters.
     647             :  * Instead, it is intended to be used as a helper function; the caller can
     648             :  * pass through the arguments to its relation_estimate_size function plus the
     649             :  * additional values required here.
     650             :  *
     651             :  * overhead_bytes_per_tuple should contain the approximate number of bytes
     652             :  * of storage required to store a tuple above and beyond what is required for
     653             :  * the tuple data proper. Typically, this would include things like the
     654             :  * size of the tuple header and item pointer. This is only used for query
     655             :  * planning, so a table AM where the value is not constant could choose to
     656             :  * pass a "best guess".
     657             :  *
     658             :  * usable_bytes_per_page should contain the approximate number of bytes per
     659             :  * page usable for tuple data, excluding the page header and any anticipated
     660             :  * special space.
     661             :  */
     662             : void
     663      361200 : table_block_relation_estimate_size(Relation rel, int32 *attr_widths,
     664             :                                    BlockNumber *pages, double *tuples,
     665             :                                    double *allvisfrac,
     666             :                                    Size overhead_bytes_per_tuple,
     667             :                                    Size usable_bytes_per_page)
     668             : {
     669             :     BlockNumber curpages;
     670             :     BlockNumber relpages;
     671             :     double      reltuples;
     672             :     BlockNumber relallvisible;
     673             :     double      density;
     674             : 
     675             :     /* it should have storage, so we can call the smgr */
     676      361200 :     curpages = RelationGetNumberOfBlocks(rel);
     677             : 
     678             :     /* coerce values in pg_class to more desirable types */
     679      361200 :     relpages = (BlockNumber) rel->rd_rel->relpages;
     680      361200 :     reltuples = (double) rel->rd_rel->reltuples;
     681      361200 :     relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
     682             : 
     683             :     /*
     684             :      * HACK: if the relation has never yet been vacuumed, use a minimum size
     685             :      * estimate of 10 pages.  The idea here is to avoid assuming a
     686             :      * newly-created table is really small, even if it currently is, because
     687             :      * that may not be true once some data gets loaded into it.  Once a vacuum
     688             :      * or analyze cycle has been done on it, it's more reasonable to believe
     689             :      * the size is somewhat stable.
     690             :      *
     691             :      * (Note that this is only an issue if the plan gets cached and used again
     692             :      * after the table has been filled.  What we're trying to avoid is using a
     693             :      * nestloop-type plan on a table that has grown substantially since the
     694             :      * plan was made.  Normally, autovacuum/autoanalyze will occur once enough
     695             :      * inserts have happened and cause cached-plan invalidation; but that
     696             :      * doesn't happen instantaneously, and it won't happen at all for cases
     697             :      * such as temporary tables.)
     698             :      *
     699             :      * We test "never vacuumed" by seeing whether reltuples < 0.
     700             :      *
     701             :      * If the table has inheritance children, we don't apply this heuristic.
     702             :      * Totally empty parent tables are quite common, so we should be willing
     703             :      * to believe that they are empty.
     704             :      */
     705      361200 :     if (curpages < 10 &&
     706       96252 :         reltuples < 0 &&
     707       96252 :         !rel->rd_rel->relhassubclass)
     708       93872 :         curpages = 10;
     709             : 
     710             :     /* report estimated # pages */
     711      361200 :     *pages = curpages;
     712             :     /* quick exit if rel is clearly empty */
     713      361200 :     if (curpages == 0)
     714             :     {
     715       12320 :         *tuples = 0;
     716       12320 :         *allvisfrac = 0;
     717       12320 :         return;
     718             :     }
     719             : 
     720             :     /* estimate number of tuples from previous tuple density */
     721      348880 :     if (reltuples >= 0 && relpages > 0)
     722      227154 :         density = reltuples / (double) relpages;
     723             :     else
     724             :     {
     725             :         /*
     726             :          * When we have no data because the relation was never yet vacuumed,
     727             :          * estimate tuple width from attribute datatypes.  We assume here that
     728             :          * the pages are completely full, which is OK for tables but is
     729             :          * probably an overestimate for indexes.  Fortunately
     730             :          * get_relation_info() can clamp the overestimate to the parent
     731             :          * table's size.
     732             :          *
     733             :          * Note: this code intentionally disregards alignment considerations,
     734             :          * because (a) that would be gilding the lily considering how crude
     735             :          * the estimate is, (b) it creates platform dependencies in the
     736             :          * default plans which are kind of a headache for regression testing,
     737             :          * and (c) different table AMs might use different padding schemes.
     738             :          */
     739             :         int32       tuple_width;
     740             :         int         fillfactor;
     741             : 
     742             :         /*
     743             :          * Without reltuples/relpages, we also need to consider fillfactor.
     744             :          * The other branch considers it implicitly by calculating density
     745             :          * from actual relpages/reltuples statistics.
     746             :          */
     747      121726 :         fillfactor = RelationGetFillFactor(rel, HEAP_DEFAULT_FILLFACTOR);
     748             : 
     749      121726 :         tuple_width = get_rel_data_width(rel, attr_widths);
     750      121726 :         tuple_width += overhead_bytes_per_tuple;
     751             :         /* note: integer division is intentional here */
     752      121726 :         density = (usable_bytes_per_page * fillfactor / 100) / tuple_width;
     753             :     }
     754      348880 :     *tuples = rint(density * (double) curpages);
     755             : 
     756             :     /*
     757             :      * We use relallvisible as-is, rather than scaling it up like we do for
     758             :      * the pages and tuples counts, on the theory that any pages added since
     759             :      * the last VACUUM are most likely not marked all-visible.  But costsize.c
     760             :      * wants it converted to a fraction.
     761             :      */
     762      348880 :     if (relallvisible == 0 || curpages <= 0)
     763      172756 :         *allvisfrac = 0;
     764      176124 :     else if ((double) relallvisible >= curpages)
     765       91462 :         *allvisfrac = 1;
     766             :     else
     767       84662 :         *allvisfrac = (double) relallvisible / curpages;
     768             : }

Generated by: LCOV version 1.14