LCOV - code coverage report
Current view: top level - src/backend/access/heap - rewriteheap.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 260 311 83.6 %
Date: 2026-02-02 00:17:47 Functions: 11 12 91.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * rewriteheap.c
       4             :  *    Support functions to rewrite tables.
       5             :  *
       6             :  * These functions provide a facility to completely rewrite a heap, while
       7             :  * preserving visibility information and update chains.
       8             :  *
       9             :  * INTERFACE
      10             :  *
      11             :  * The caller is responsible for creating the new heap, all catalog
      12             :  * changes, supplying the tuples to be written to the new heap, and
      13             :  * rebuilding indexes.  The caller must hold AccessExclusiveLock on the
      14             :  * target table, because we assume no one else is writing into it.
      15             :  *
      16             :  * To use the facility:
      17             :  *
      18             :  * begin_heap_rewrite
      19             :  * while (fetch next tuple)
      20             :  * {
      21             :  *     if (tuple is dead)
      22             :  *         rewrite_heap_dead_tuple
      23             :  *     else
      24             :  *     {
      25             :  *         // do any transformations here if required
      26             :  *         rewrite_heap_tuple
      27             :  *     }
      28             :  * }
      29             :  * end_heap_rewrite
      30             :  *
      31             :  * The contents of the new relation shouldn't be relied on until after
      32             :  * end_heap_rewrite is called.
      33             :  *
      34             :  *
      35             :  * IMPLEMENTATION
      36             :  *
      37             :  * This would be a fairly trivial affair, except that we need to maintain
      38             :  * the ctid chains that link versions of an updated tuple together.
      39             :  * Since the newly stored tuples will have tids different from the original
      40             :  * ones, if we just copied t_ctid fields to the new table the links would
      41             :  * be wrong.  When we are required to copy a (presumably recently-dead or
      42             :  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
      43             :  * to substitute the correct ctid instead.
      44             :  *
      45             :  * For each ctid reference from A -> B, we might encounter either A first
      46             :  * or B first.  (Note that a tuple in the middle of a chain is both A and B
      47             :  * of different pairs.)
      48             :  *
      49             :  * If we encounter A first, we'll store the tuple in the unresolved_tups
      50             :  * hash table. When we later encounter B, we remove A from the hash table,
      51             :  * fix the ctid to point to the new location of B, and insert both A and B
      52             :  * to the new heap.
      53             :  *
      54             :  * If we encounter B first, we can insert B to the new heap right away.
      55             :  * We then add an entry to the old_new_tid_map hash table showing B's
      56             :  * original tid (in the old heap) and new tid (in the new heap).
      57             :  * When we later encounter A, we get the new location of B from the table,
      58             :  * and can write A immediately with the correct ctid.
      59             :  *
      60             :  * Entries in the hash tables can be removed as soon as the later tuple
      61             :  * is encountered.  That helps to keep the memory usage down.  At the end,
      62             :  * both tables are usually empty; we should have encountered both A and B
      63             :  * of each pair.  However, it's possible for A to be RECENTLY_DEAD and B
      64             :  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
      65             :  * for deadness using OldestXmin is not exact.  In such a case we might
      66             :  * encounter B first, and skip it, and find A later.  Then A would be added
      67             :  * to unresolved_tups, and stay there until end of the rewrite.  Since
      68             :  * this case is very unusual, we don't worry about the memory usage.
      69             :  *
      70             :  * Using in-memory hash tables means that we use some memory for each live
      71             :  * update chain in the table, from the time we find one end of the
      72             :  * reference until we find the other end.  That shouldn't be a problem in
      73             :  * practice, but if you do something like an UPDATE without a where-clause
      74             :  * on a large table, and then run CLUSTER in the same transaction, you
      75             :  * could run out of memory.  It doesn't seem worthwhile to add support for
      76             :  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
      77             :  * table under normal circumstances.  Furthermore, in the typical scenario
      78             :  * of CLUSTERing on an unchanging key column, we'll see all the versions
      79             :  * of a given tuple together anyway, and so the peak memory usage is only
      80             :  * proportional to the number of RECENTLY_DEAD versions of a single row, not
      81             :  * in the whole table.  Note that if we do fail halfway through a CLUSTER,
      82             :  * the old table is still valid, so failure is not catastrophic.
      83             :  *
      84             :  * We can't use the normal heap_insert function to insert into the new
      85             :  * heap, because heap_insert overwrites the visibility information.
      86             :  * We use a special-purpose raw_heap_insert function instead, which
      87             :  * is optimized for bulk inserting a lot of tuples, knowing that we have
      88             :  * exclusive access to the heap.  raw_heap_insert builds new pages in
      89             :  * local storage.  When a page is full, or at the end of the process,
      90             :  * we insert it to WAL as a single record and then write it to disk with
      91             :  * the bulk smgr writer.  Note, however, that any data sent to the new
      92             :  * heap's TOAST table will go through the normal bufmgr.
      93             :  *
      94             :  *
      95             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      96             :  * Portions Copyright (c) 1994-5, Regents of the University of California
      97             :  *
      98             :  * IDENTIFICATION
      99             :  *    src/backend/access/heap/rewriteheap.c
     100             :  *
     101             :  *-------------------------------------------------------------------------
     102             :  */
     103             : #include "postgres.h"
     104             : 
     105             : #include <unistd.h>
     106             : 
     107             : #include "access/heapam.h"
     108             : #include "access/heapam_xlog.h"
     109             : #include "access/heaptoast.h"
     110             : #include "access/rewriteheap.h"
     111             : #include "access/transam.h"
     112             : #include "access/xact.h"
     113             : #include "access/xloginsert.h"
     114             : #include "common/file_utils.h"
     115             : #include "lib/ilist.h"
     116             : #include "miscadmin.h"
     117             : #include "pgstat.h"
     118             : #include "replication/slot.h"
     119             : #include "storage/bufmgr.h"
     120             : #include "storage/bulk_write.h"
     121             : #include "storage/fd.h"
     122             : #include "storage/procarray.h"
     123             : #include "utils/memutils.h"
     124             : #include "utils/rel.h"
     125             : 
     126             : /*
     127             :  * State associated with a rewrite operation. This is opaque to the user
     128             :  * of the rewrite facility.
     129             :  */
     130             : typedef struct RewriteStateData
     131             : {
     132             :     Relation    rs_old_rel;     /* source heap */
     133             :     Relation    rs_new_rel;     /* destination heap */
     134             :     BulkWriteState *rs_bulkstate;   /* writer for the destination */
     135             :     BulkWriteBuffer rs_buffer;  /* page currently being built */
     136             :     BlockNumber rs_blockno;     /* block where page will go */
     137             :     bool        rs_logical_rewrite; /* do we need to do logical rewriting */
     138             :     TransactionId rs_oldest_xmin;   /* oldest xmin used by caller to determine
     139             :                                      * tuple visibility */
     140             :     TransactionId rs_freeze_xid;    /* Xid that will be used as freeze cutoff
     141             :                                      * point */
     142             :     TransactionId rs_logical_xmin;  /* Xid that will be used as cutoff point
     143             :                                      * for logical rewrites */
     144             :     MultiXactId rs_cutoff_multi;    /* MultiXactId that will be used as cutoff
     145             :                                      * point for multixacts */
     146             :     MemoryContext rs_cxt;       /* for hash tables and entries and tuples in
     147             :                                  * them */
     148             :     XLogRecPtr  rs_begin_lsn;   /* XLogInsertLsn when starting the rewrite */
     149             :     HTAB       *rs_unresolved_tups; /* unmatched A tuples */
     150             :     HTAB       *rs_old_new_tid_map; /* unmatched B tuples */
     151             :     HTAB       *rs_logical_mappings;    /* logical remapping files */
     152             :     uint32      rs_num_rewrite_mappings;    /* # in memory mappings */
     153             : } RewriteStateData;
     154             : 
     155             : /*
     156             :  * The lookup keys for the hash tables are tuple TID and xmin (we must check
     157             :  * both to avoid false matches from dead tuples).  Beware that there is
     158             :  * probably some padding space in this struct; it must be zeroed out for
     159             :  * correct hashtable operation.
     160             :  */
     161             : typedef struct
     162             : {
     163             :     TransactionId xmin;         /* tuple xmin */
     164             :     ItemPointerData tid;        /* tuple location in old heap */
     165             : } TidHashKey;
     166             : 
     167             : /*
     168             :  * Entry structures for the hash tables
     169             :  */
     170             : typedef struct
     171             : {
     172             :     TidHashKey  key;            /* expected xmin/old location of B tuple */
     173             :     ItemPointerData old_tid;    /* A's location in the old heap */
     174             :     HeapTuple   tuple;          /* A's tuple contents */
     175             : } UnresolvedTupData;
     176             : 
     177             : typedef UnresolvedTupData *UnresolvedTup;
     178             : 
     179             : typedef struct
     180             : {
     181             :     TidHashKey  key;            /* actual xmin/old location of B tuple */
     182             :     ItemPointerData new_tid;    /* where we put it in the new heap */
     183             : } OldToNewMappingData;
     184             : 
     185             : typedef OldToNewMappingData *OldToNewMapping;
     186             : 
     187             : /*
     188             :  * In-Memory data for an xid that might need logical remapping entries
     189             :  * to be logged.
     190             :  */
     191             : typedef struct RewriteMappingFile
     192             : {
     193             :     TransactionId xid;          /* xid that might need to see the row */
     194             :     int         vfd;            /* fd of mappings file */
     195             :     off_t       off;            /* how far have we written yet */
     196             :     dclist_head mappings;       /* list of in-memory mappings */
     197             :     char        path[MAXPGPATH];    /* path, for error messages */
     198             : } RewriteMappingFile;
     199             : 
     200             : /*
     201             :  * A single In-Memory logical rewrite mapping, hanging off
     202             :  * RewriteMappingFile->mappings.
     203             :  */
     204             : typedef struct RewriteMappingDataEntry
     205             : {
     206             :     LogicalRewriteMappingData map;  /* map between old and new location of the
     207             :                                      * tuple */
     208             :     dlist_node  node;
     209             : } RewriteMappingDataEntry;
     210             : 
     211             : 
     212             : /* prototypes for internal functions */
     213             : static void raw_heap_insert(RewriteState state, HeapTuple tup);
     214             : 
     215             : /* internal logical remapping prototypes */
     216             : static void logical_begin_heap_rewrite(RewriteState state);
     217             : static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple);
     218             : static void logical_end_heap_rewrite(RewriteState state);
     219             : 
     220             : 
     221             : /*
     222             :  * Begin a rewrite of a table
     223             :  *
     224             :  * old_heap     old, locked heap relation tuples will be read from
     225             :  * new_heap     new, locked heap relation to insert tuples to
     226             :  * oldest_xmin  xid used by the caller to determine which tuples are dead
     227             :  * freeze_xid   xid before which tuples will be frozen
     228             :  * cutoff_multi multixact before which multis will be removed
     229             :  *
     230             :  * Returns an opaque RewriteState, allocated in current memory context,
     231             :  * to be used in subsequent calls to the other functions.
     232             :  */
     233             : RewriteState
     234         566 : begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
     235             :                    TransactionId freeze_xid, MultiXactId cutoff_multi)
     236             : {
     237             :     RewriteState state;
     238             :     MemoryContext rw_cxt;
     239             :     MemoryContext old_cxt;
     240             :     HASHCTL     hash_ctl;
     241             : 
     242             :     /*
     243             :      * To ease cleanup, make a separate context that will contain the
     244             :      * RewriteState struct itself plus all subsidiary data.
     245             :      */
     246         566 :     rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
     247             :                                    "Table rewrite",
     248             :                                    ALLOCSET_DEFAULT_SIZES);
     249         566 :     old_cxt = MemoryContextSwitchTo(rw_cxt);
     250             : 
     251             :     /* Create and fill in the state struct */
     252         566 :     state = palloc0_object(RewriteStateData);
     253             : 
     254         566 :     state->rs_old_rel = old_heap;
     255         566 :     state->rs_new_rel = new_heap;
     256         566 :     state->rs_buffer = NULL;
     257             :     /* new_heap needn't be empty, just locked */
     258         566 :     state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
     259         566 :     state->rs_oldest_xmin = oldest_xmin;
     260         566 :     state->rs_freeze_xid = freeze_xid;
     261         566 :     state->rs_cutoff_multi = cutoff_multi;
     262         566 :     state->rs_cxt = rw_cxt;
     263         566 :     state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
     264             : 
     265             :     /* Initialize hash tables used to track update chains */
     266         566 :     hash_ctl.keysize = sizeof(TidHashKey);
     267         566 :     hash_ctl.entrysize = sizeof(UnresolvedTupData);
     268         566 :     hash_ctl.hcxt = state->rs_cxt;
     269             : 
     270         566 :     state->rs_unresolved_tups =
     271         566 :         hash_create("Rewrite / Unresolved ctids",
     272             :                     128,        /* arbitrary initial size */
     273             :                     &hash_ctl,
     274             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     275             : 
     276         566 :     hash_ctl.entrysize = sizeof(OldToNewMappingData);
     277             : 
     278         566 :     state->rs_old_new_tid_map =
     279         566 :         hash_create("Rewrite / Old to new tid map",
     280             :                     128,        /* arbitrary initial size */
     281             :                     &hash_ctl,
     282             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     283             : 
     284         566 :     MemoryContextSwitchTo(old_cxt);
     285             : 
     286         566 :     logical_begin_heap_rewrite(state);
     287             : 
     288         566 :     return state;
     289             : }
     290             : 
     291             : /*
     292             :  * End a rewrite.
     293             :  *
     294             :  * state and any other resources are freed.
     295             :  */
     296             : void
     297         566 : end_heap_rewrite(RewriteState state)
     298             : {
     299             :     HASH_SEQ_STATUS seq_status;
     300             :     UnresolvedTup unresolved;
     301             : 
     302             :     /*
     303             :      * Write any remaining tuples in the UnresolvedTups table. If we have any
     304             :      * left, they should in fact be dead, but let's err on the safe side.
     305             :      */
     306         566 :     hash_seq_init(&seq_status, state->rs_unresolved_tups);
     307             : 
     308         566 :     while ((unresolved = hash_seq_search(&seq_status)) != NULL)
     309             :     {
     310           0 :         ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
     311           0 :         raw_heap_insert(state, unresolved->tuple);
     312             :     }
     313             : 
     314             :     /* Write the last page, if any */
     315         566 :     if (state->rs_buffer)
     316             :     {
     317         402 :         smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
     318         402 :         state->rs_buffer = NULL;
     319             :     }
     320             : 
     321         566 :     smgr_bulk_finish(state->rs_bulkstate);
     322             : 
     323         566 :     logical_end_heap_rewrite(state);
     324             : 
     325             :     /* Deleting the context frees everything */
     326         566 :     MemoryContextDelete(state->rs_cxt);
     327         566 : }
     328             : 
     329             : /*
     330             :  * Add a tuple to the new heap.
     331             :  *
     332             :  * Visibility information is copied from the original tuple, except that
     333             :  * we "freeze" very-old tuples.  Note that since we scribble on new_tuple,
     334             :  * it had better be temp storage not a pointer to the original tuple.
     335             :  *
     336             :  * state        opaque state as returned by begin_heap_rewrite
     337             :  * old_tuple    original tuple in the old heap
     338             :  * new_tuple    new, rewritten tuple to be inserted to new heap
     339             :  */
     340             : void
     341      728706 : rewrite_heap_tuple(RewriteState state,
     342             :                    HeapTuple old_tuple, HeapTuple new_tuple)
     343             : {
     344             :     MemoryContext old_cxt;
     345             :     ItemPointerData old_tid;
     346             :     TidHashKey  hashkey;
     347             :     bool        found;
     348             :     bool        free_new;
     349             : 
     350      728706 :     old_cxt = MemoryContextSwitchTo(state->rs_cxt);
     351             : 
     352             :     /*
     353             :      * Copy the original tuple's visibility information into new_tuple.
     354             :      *
     355             :      * XXX we might later need to copy some t_infomask2 bits, too? Right now,
     356             :      * we intentionally clear the HOT status bits.
     357             :      */
     358      728706 :     memcpy(&new_tuple->t_data->t_choice.t_heap,
     359      728706 :            &old_tuple->t_data->t_choice.t_heap,
     360             :            sizeof(HeapTupleFields));
     361             : 
     362      728706 :     new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
     363      728706 :     new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
     364      728706 :     new_tuple->t_data->t_infomask |=
     365      728706 :         old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
     366             : 
     367             :     /*
     368             :      * While we have our hands on the tuple, we may as well freeze any
     369             :      * eligible xmin or xmax, so that future VACUUM effort can be saved.
     370             :      */
     371      728706 :     heap_freeze_tuple(new_tuple->t_data,
     372      728706 :                       state->rs_old_rel->rd_rel->relfrozenxid,
     373      728706 :                       state->rs_old_rel->rd_rel->relminmxid,
     374             :                       state->rs_freeze_xid,
     375             :                       state->rs_cutoff_multi);
     376             : 
     377             :     /*
     378             :      * Invalid ctid means that ctid should point to the tuple itself. We'll
     379             :      * override it later if the tuple is part of an update chain.
     380             :      */
     381      728706 :     ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
     382             : 
     383             :     /*
     384             :      * If the tuple has been updated, check the old-to-new mapping hash table.
     385             :      *
     386             :      * Note that this check relies on the HeapTupleSatisfiesVacuum() in
     387             :      * heapam_relation_copy_for_cluster() to have set hint bits.
     388             :      */
     389      762818 :     if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
     390       34112 :           HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
     391       34112 :         !HeapTupleHeaderIndicatesMovedPartitions(old_tuple->t_data) &&
     392       34112 :         !(ItemPointerEquals(&(old_tuple->t_self),
     393       34112 :                             &(old_tuple->t_data->t_ctid))))
     394             :     {
     395             :         OldToNewMapping mapping;
     396             : 
     397         938 :         memset(&hashkey, 0, sizeof(hashkey));
     398         938 :         hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
     399         938 :         hashkey.tid = old_tuple->t_data->t_ctid;
     400             : 
     401             :         mapping = (OldToNewMapping)
     402         938 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     403             :                         HASH_FIND, NULL);
     404             : 
     405         938 :         if (mapping != NULL)
     406             :         {
     407             :             /*
     408             :              * We've already copied the tuple that t_ctid points to, so we can
     409             :              * set the ctid of this tuple to point to the new location, and
     410             :              * insert it right away.
     411             :              */
     412         392 :             new_tuple->t_data->t_ctid = mapping->new_tid;
     413             : 
     414             :             /* We don't need the mapping entry anymore */
     415         392 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     416             :                         HASH_REMOVE, &found);
     417             :             Assert(found);
     418             :         }
     419             :         else
     420             :         {
     421             :             /*
     422             :              * We haven't seen the tuple t_ctid points to yet. Stash this
     423             :              * tuple into unresolved_tups to be written later.
     424             :              */
     425             :             UnresolvedTup unresolved;
     426             : 
     427         546 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     428             :                                      HASH_ENTER, &found);
     429             :             Assert(!found);
     430             : 
     431         546 :             unresolved->old_tid = old_tuple->t_self;
     432         546 :             unresolved->tuple = heap_copytuple(new_tuple);
     433             : 
     434             :             /*
     435             :              * We can't do anything more now, since we don't know where the
     436             :              * tuple will be written.
     437             :              */
     438         546 :             MemoryContextSwitchTo(old_cxt);
     439         546 :             return;
     440             :         }
     441             :     }
     442             : 
     443             :     /*
     444             :      * Now we will write the tuple, and then check to see if it is the B tuple
     445             :      * in any new or known pair.  When we resolve a known pair, we will be
     446             :      * able to write that pair's A tuple, and then we have to check if it
     447             :      * resolves some other pair.  Hence, we need a loop here.
     448             :      */
     449      728160 :     old_tid = old_tuple->t_self;
     450      728160 :     free_new = false;
     451             : 
     452             :     for (;;)
     453         546 :     {
     454             :         ItemPointerData new_tid;
     455             : 
     456             :         /* Insert the tuple and find out where it's put in new_heap */
     457      728706 :         raw_heap_insert(state, new_tuple);
     458      728706 :         new_tid = new_tuple->t_self;
     459             : 
     460      728706 :         logical_rewrite_heap_tuple(state, old_tid, new_tuple);
     461             : 
     462             :         /*
     463             :          * If the tuple is the updated version of a row, and the prior version
     464             :          * wouldn't be DEAD yet, then we need to either resolve the prior
     465             :          * version (if it's waiting in rs_unresolved_tups), or make an entry
     466             :          * in rs_old_new_tid_map (so we can resolve it when we do see it). The
     467             :          * previous tuple's xmax would equal this one's xmin, so it's
     468             :          * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
     469             :          */
     470      728706 :         if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
     471       20792 :             !TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
     472             :                                    state->rs_oldest_xmin))
     473             :         {
     474             :             /*
     475             :              * Okay, this is B in an update pair.  See if we've seen A.
     476             :              */
     477             :             UnresolvedTup unresolved;
     478             : 
     479         938 :             memset(&hashkey, 0, sizeof(hashkey));
     480         938 :             hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
     481         938 :             hashkey.tid = old_tid;
     482             : 
     483         938 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     484             :                                      HASH_FIND, NULL);
     485             : 
     486         938 :             if (unresolved != NULL)
     487             :             {
     488             :                 /*
     489             :                  * We have seen and memorized the previous tuple already. Now
     490             :                  * that we know where we inserted the tuple its t_ctid points
     491             :                  * to, fix its t_ctid and insert it to the new heap.
     492             :                  */
     493         546 :                 if (free_new)
     494         132 :                     heap_freetuple(new_tuple);
     495         546 :                 new_tuple = unresolved->tuple;
     496         546 :                 free_new = true;
     497         546 :                 old_tid = unresolved->old_tid;
     498         546 :                 new_tuple->t_data->t_ctid = new_tid;
     499             : 
     500             :                 /*
     501             :                  * We don't need the hash entry anymore, but don't free its
     502             :                  * tuple just yet.
     503             :                  */
     504         546 :                 hash_search(state->rs_unresolved_tups, &hashkey,
     505             :                             HASH_REMOVE, &found);
     506             :                 Assert(found);
     507             : 
     508             :                 /* loop back to insert the previous tuple in the chain */
     509         546 :                 continue;
     510             :             }
     511             :             else
     512             :             {
     513             :                 /*
     514             :                  * Remember the new tid of this tuple. We'll use it to set the
     515             :                  * ctid when we find the previous tuple in the chain.
     516             :                  */
     517             :                 OldToNewMapping mapping;
     518             : 
     519         392 :                 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
     520             :                                       HASH_ENTER, &found);
     521             :                 Assert(!found);
     522             : 
     523         392 :                 mapping->new_tid = new_tid;
     524             :             }
     525             :         }
     526             : 
     527             :         /* Done with this (chain of) tuples, for now */
     528      728160 :         if (free_new)
     529         414 :             heap_freetuple(new_tuple);
     530      728160 :         break;
     531             :     }
     532             : 
     533      728160 :     MemoryContextSwitchTo(old_cxt);
     534             : }
     535             : 
     536             : /*
     537             :  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
     538             :  * copied to the new table, but we still make note of them so that we
     539             :  * can release some resources earlier.
     540             :  *
     541             :  * Returns true if a tuple was removed from the unresolved_tups table.
     542             :  * This indicates that that tuple, previously thought to be "recently dead",
     543             :  * is now known really dead and won't be written to the output.
     544             :  */
     545             : bool
     546       32998 : rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
     547             : {
     548             :     /*
     549             :      * If we have already seen an earlier tuple in the update chain that
     550             :      * points to this tuple, let's forget about that earlier tuple. It's in
     551             :      * fact dead as well, our simple xmax < OldestXmin test in
     552             :      * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
     553             :      * when xmin of a tuple is greater than xmax, which sounds
     554             :      * counter-intuitive but is perfectly valid.
     555             :      *
     556             :      * We don't bother to try to detect the situation the other way round,
     557             :      * when we encounter the dead tuple first and then the recently dead one
     558             :      * that points to it. If that happens, we'll have some unmatched entries
     559             :      * in the UnresolvedTups hash table at the end. That can happen anyway,
     560             :      * because a vacuum might have removed the dead tuple in the chain before
     561             :      * us.
     562             :      */
     563             :     UnresolvedTup unresolved;
     564             :     TidHashKey  hashkey;
     565             :     bool        found;
     566             : 
     567       32998 :     memset(&hashkey, 0, sizeof(hashkey));
     568       32998 :     hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
     569       32998 :     hashkey.tid = old_tuple->t_self;
     570             : 
     571       32998 :     unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     572             :                              HASH_FIND, NULL);
     573             : 
     574       32998 :     if (unresolved != NULL)
     575             :     {
     576             :         /* Need to free the contained tuple as well as the hashtable entry */
     577           0 :         heap_freetuple(unresolved->tuple);
     578           0 :         hash_search(state->rs_unresolved_tups, &hashkey,
     579             :                     HASH_REMOVE, &found);
     580             :         Assert(found);
     581           0 :         return true;
     582             :     }
     583             : 
     584       32998 :     return false;
     585             : }
     586             : 
     587             : /*
     588             :  * Insert a tuple to the new relation.  This has to track heap_insert
     589             :  * and its subsidiary functions!
     590             :  *
     591             :  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
     592             :  * tuple is invalid on entry, it's replaced with the new TID as well (in
     593             :  * the inserted data only, not in the caller's copy).
     594             :  */
     595             : static void
     596      728706 : raw_heap_insert(RewriteState state, HeapTuple tup)
     597             : {
     598             :     Page        page;
     599             :     Size        pageFreeSpace,
     600             :                 saveFreeSpace;
     601             :     Size        len;
     602             :     OffsetNumber newoff;
     603             :     HeapTuple   heaptup;
     604             : 
     605             :     /*
     606             :      * If the new tuple is too big for storage or contains already toasted
     607             :      * out-of-line attributes from some other relation, invoke the toaster.
     608             :      *
     609             :      * Note: below this point, heaptup is the data we actually intend to store
     610             :      * into the relation; tup is the caller's original untoasted data.
     611             :      */
     612      728706 :     if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
     613             :     {
     614             :         /* toast table entries should never be recursively toasted */
     615             :         Assert(!HeapTupleHasExternal(tup));
     616           0 :         heaptup = tup;
     617             :     }
     618      728706 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
     619         598 :     {
     620         598 :         int         options = HEAP_INSERT_SKIP_FSM;
     621             : 
     622             :         /*
     623             :          * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
     624             :          * for the TOAST table are not logically decoded.  The main heap is
     625             :          * WAL-logged as XLOG FPI records, which are not logically decoded.
     626             :          */
     627         598 :         options |= HEAP_INSERT_NO_LOGICAL;
     628             : 
     629         598 :         heaptup = heap_toast_insert_or_update(state->rs_new_rel, tup, NULL,
     630             :                                               options);
     631             :     }
     632             :     else
     633      728108 :         heaptup = tup;
     634             : 
     635      728706 :     len = MAXALIGN(heaptup->t_len); /* be conservative */
     636             : 
     637             :     /*
     638             :      * If we're gonna fail for oversize tuple, do it right away
     639             :      */
     640      728706 :     if (len > MaxHeapTupleSize)
     641           0 :         ereport(ERROR,
     642             :                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
     643             :                  errmsg("row is too big: size %zu, maximum size %zu",
     644             :                         len, MaxHeapTupleSize)));
     645             : 
     646             :     /* Compute desired extra freespace due to fillfactor option */
     647      728706 :     saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
     648             :                                                    HEAP_DEFAULT_FILLFACTOR);
     649             : 
     650             :     /* Now we can check to see if there's enough free space already. */
     651      728706 :     page = (Page) state->rs_buffer;
     652      728706 :     if (page)
     653             :     {
     654      728304 :         pageFreeSpace = PageGetHeapFreeSpace(page);
     655             : 
     656      728304 :         if (len + saveFreeSpace > pageFreeSpace)
     657             :         {
     658             :             /*
     659             :              * Doesn't fit, so write out the existing page.  It always
     660             :              * contains a tuple.  Hence, unlike RelationGetBufferForTuple(),
     661             :              * enforce saveFreeSpace unconditionally.
     662             :              */
     663       10326 :             smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
     664       10326 :             state->rs_buffer = NULL;
     665       10326 :             page = NULL;
     666       10326 :             state->rs_blockno++;
     667             :         }
     668             :     }
     669             : 
     670      728706 :     if (!page)
     671             :     {
     672             :         /* Initialize a new empty page */
     673       10728 :         state->rs_buffer = smgr_bulk_get_buf(state->rs_bulkstate);
     674       10728 :         page = (Page) state->rs_buffer;
     675       10728 :         PageInit(page, BLCKSZ, 0);
     676             :     }
     677             : 
     678             :     /* And now we can insert the tuple into the page */
     679      728706 :     newoff = PageAddItem(page, heaptup->t_data, heaptup->t_len, InvalidOffsetNumber, false, true);
     680      728706 :     if (newoff == InvalidOffsetNumber)
     681           0 :         elog(ERROR, "failed to add tuple");
     682             : 
     683             :     /* Update caller's t_self to the actual position where it was stored */
     684      728706 :     ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
     685             : 
     686             :     /*
     687             :      * Insert the correct position into CTID of the stored tuple, too, if the
     688             :      * caller didn't supply a valid CTID.
     689             :      */
     690      728706 :     if (!ItemPointerIsValid(&tup->t_data->t_ctid))
     691             :     {
     692             :         ItemId      newitemid;
     693             :         HeapTupleHeader onpage_tup;
     694             : 
     695      727768 :         newitemid = PageGetItemId(page, newoff);
     696      727768 :         onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
     697             : 
     698      727768 :         onpage_tup->t_ctid = tup->t_self;
     699             :     }
     700             : 
     701             :     /* If heaptup is a private copy, release it. */
     702      728706 :     if (heaptup != tup)
     703         598 :         heap_freetuple(heaptup);
     704      728706 : }
     705             : 
     706             : /* ------------------------------------------------------------------------
     707             :  * Logical rewrite support
     708             :  *
     709             :  * When doing logical decoding - which relies on using cmin/cmax of catalog
     710             :  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
     711             :  * information to allow the decoding backend to update its internal mapping
     712             :  * of (relfilelocator,ctid) => (cmin, cmax) to be correct for the rewritten heap.
     713             :  *
     714             :  * For that, every time we find a tuple that's been modified in a catalog
     715             :  * relation within the xmin horizon of any decoding slot, we log a mapping
     716             :  * from the old to the new location.
     717             :  *
     718             :  * To deal with rewrites that abort the filename of a mapping file contains
     719             :  * the xid of the transaction performing the rewrite, which then can be
     720             :  * checked before being read in.
     721             :  *
     722             :  * For efficiency we don't immediately spill every single map mapping for a
     723             :  * row to disk but only do so in batches when we've collected several of them
     724             :  * in memory or when end_heap_rewrite() has been called.
     725             :  *
     726             :  * Crash-Safety: This module diverts from the usual patterns of doing WAL
     727             :  * since it cannot rely on checkpoint flushing out all buffers and thus
     728             :  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
     729             :  * buffer modifications is performed while the buffer(s) that are being
     730             :  * modified are exclusively locked guaranteeing that both the WAL record and
     731             :  * the modified heap are on either side of the checkpoint. But since the
     732             :  * mapping files we log aren't in shared_buffers that interlock doesn't work.
     733             :  *
     734             :  * Instead we simply write the mapping files out to disk, *before* the
     735             :  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
     736             :  * inserted after the checkpoint's redo pointer or that the checkpoint (via
     737             :  * CheckPointLogicalRewriteHeap()) has flushed the (partial) mapping file to
     738             :  * disk. That leaves the tail end that has not yet been flushed open to
     739             :  * corruption, which is solved by including the current offset in the
     740             :  * xl_heap_rewrite_mapping records and truncating the mapping file to it
     741             :  * during replay. Every time a rewrite is finished all generated mapping files
     742             :  * are synced to disk.
     743             :  *
     744             :  * Note that if we were only concerned about crash safety we wouldn't have to
     745             :  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
     746             :  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
     747             :  * disk has to be by an aborted (explicitly or via a crash) transaction and is
     748             :  * ignored by virtue of the xid in its name being subject to a
     749             :  * TransactionDidCommit() check. But we want to support having standbys via
     750             :  * physical replication, both for availability and to do logical decoding
     751             :  * there.
     752             :  * ------------------------------------------------------------------------
     753             :  */
     754             : 
     755             : /*
     756             :  * Do preparations for logging logical mappings during a rewrite if
     757             :  * necessary. If we detect that we don't need to log anything we'll prevent
     758             :  * any further action by the various logical rewrite functions.
     759             :  */
     760             : static void
     761         566 : logical_begin_heap_rewrite(RewriteState state)
     762             : {
     763             :     HASHCTL     hash_ctl;
     764             :     TransactionId logical_xmin;
     765             : 
     766             :     /*
     767             :      * We only need to persist these mappings if the rewritten table can be
     768             :      * accessed during logical decoding, if not, we can skip doing any
     769             :      * additional work.
     770             :      */
     771         566 :     state->rs_logical_rewrite =
     772         566 :         RelationIsAccessibleInLogicalDecoding(state->rs_old_rel);
     773             : 
     774         566 :     if (!state->rs_logical_rewrite)
     775         526 :         return;
     776             : 
     777          44 :     ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
     778             : 
     779             :     /*
     780             :      * If there are no logical slots in progress we don't need to do anything,
     781             :      * there cannot be any remappings for relevant rows yet. The relation's
     782             :      * lock protects us against races.
     783             :      */
     784          44 :     if (logical_xmin == InvalidTransactionId)
     785             :     {
     786           4 :         state->rs_logical_rewrite = false;
     787           4 :         return;
     788             :     }
     789             : 
     790          40 :     state->rs_logical_xmin = logical_xmin;
     791          40 :     state->rs_begin_lsn = GetXLogInsertRecPtr();
     792          40 :     state->rs_num_rewrite_mappings = 0;
     793             : 
     794          40 :     hash_ctl.keysize = sizeof(TransactionId);
     795          40 :     hash_ctl.entrysize = sizeof(RewriteMappingFile);
     796          40 :     hash_ctl.hcxt = state->rs_cxt;
     797             : 
     798          40 :     state->rs_logical_mappings =
     799          40 :         hash_create("Logical rewrite mapping",
     800             :                     128,        /* arbitrary initial size */
     801             :                     &hash_ctl,
     802             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     803             : }
     804             : 
     805             : /*
     806             :  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
     807             :  */
     808             : static void
     809          18 : logical_heap_rewrite_flush_mappings(RewriteState state)
     810             : {
     811             :     HASH_SEQ_STATUS seq_status;
     812             :     RewriteMappingFile *src;
     813             :     dlist_mutable_iter iter;
     814             : 
     815             :     Assert(state->rs_logical_rewrite);
     816             : 
     817             :     /* no logical rewrite in progress, no need to iterate over mappings */
     818          18 :     if (state->rs_num_rewrite_mappings == 0)
     819           0 :         return;
     820             : 
     821          18 :     elog(DEBUG1, "flushing %u logical rewrite mapping entries",
     822             :          state->rs_num_rewrite_mappings);
     823             : 
     824          18 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     825         198 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     826             :     {
     827             :         char       *waldata;
     828             :         char       *waldata_start;
     829             :         xl_heap_rewrite_mapping xlrec;
     830             :         Oid         dboid;
     831             :         uint32      len;
     832             :         int         written;
     833         180 :         uint32      num_mappings = dclist_count(&src->mappings);
     834             : 
     835             :         /* this file hasn't got any new mappings */
     836         180 :         if (num_mappings == 0)
     837           0 :             continue;
     838             : 
     839         180 :         if (state->rs_old_rel->rd_rel->relisshared)
     840           0 :             dboid = InvalidOid;
     841             :         else
     842         180 :             dboid = MyDatabaseId;
     843             : 
     844         180 :         xlrec.num_mappings = num_mappings;
     845         180 :         xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
     846         180 :         xlrec.mapped_xid = src->xid;
     847         180 :         xlrec.mapped_db = dboid;
     848         180 :         xlrec.offset = src->off;
     849         180 :         xlrec.start_lsn = state->rs_begin_lsn;
     850             : 
     851             :         /* write all mappings consecutively */
     852         180 :         len = num_mappings * sizeof(LogicalRewriteMappingData);
     853         180 :         waldata_start = waldata = palloc(len);
     854             : 
     855             :         /*
     856             :          * collect data we need to write out, but don't modify ondisk data yet
     857             :          */
     858        1626 :         dclist_foreach_modify(iter, &src->mappings)
     859             :         {
     860             :             RewriteMappingDataEntry *pmap;
     861             : 
     862        1446 :             pmap = dclist_container(RewriteMappingDataEntry, node, iter.cur);
     863             : 
     864        1446 :             memcpy(waldata, &pmap->map, sizeof(pmap->map));
     865        1446 :             waldata += sizeof(pmap->map);
     866             : 
     867             :             /* remove from the list and free */
     868        1446 :             dclist_delete_from(&src->mappings, &pmap->node);
     869        1446 :             pfree(pmap);
     870             : 
     871             :             /* update bookkeeping */
     872        1446 :             state->rs_num_rewrite_mappings--;
     873             :         }
     874             : 
     875             :         Assert(dclist_count(&src->mappings) == 0);
     876             :         Assert(waldata == waldata_start + len);
     877             : 
     878             :         /*
     879             :          * Note that we deviate from the usual WAL coding practices here,
     880             :          * check the above "Logical rewrite support" comment for reasoning.
     881             :          */
     882         180 :         written = FileWrite(src->vfd, waldata_start, len, src->off,
     883             :                             WAIT_EVENT_LOGICAL_REWRITE_WRITE);
     884         180 :         if (written != len)
     885           0 :             ereport(ERROR,
     886             :                     (errcode_for_file_access(),
     887             :                      errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
     888             :                             written, len)));
     889         180 :         src->off += len;
     890             : 
     891         180 :         XLogBeginInsert();
     892         180 :         XLogRegisterData(&xlrec, sizeof(xlrec));
     893         180 :         XLogRegisterData(waldata_start, len);
     894             : 
     895             :         /* write xlog record */
     896         180 :         XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
     897             : 
     898         180 :         pfree(waldata_start);
     899             :     }
     900             :     Assert(state->rs_num_rewrite_mappings == 0);
     901             : }
     902             : 
     903             : /*
     904             :  * Logical remapping part of end_heap_rewrite().
     905             :  */
     906             : static void
     907         566 : logical_end_heap_rewrite(RewriteState state)
     908             : {
     909             :     HASH_SEQ_STATUS seq_status;
     910             :     RewriteMappingFile *src;
     911             : 
     912             :     /* done, no logical rewrite in progress */
     913         566 :     if (!state->rs_logical_rewrite)
     914         526 :         return;
     915             : 
     916             :     /* writeout remaining in-memory entries */
     917          40 :     if (state->rs_num_rewrite_mappings > 0)
     918          18 :         logical_heap_rewrite_flush_mappings(state);
     919             : 
     920             :     /* Iterate over all mappings we have written and fsync the files. */
     921          40 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     922         220 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     923             :     {
     924         180 :         if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
     925           0 :             ereport(data_sync_elevel(ERROR),
     926             :                     (errcode_for_file_access(),
     927             :                      errmsg("could not fsync file \"%s\": %m", src->path)));
     928         180 :         FileClose(src->vfd);
     929             :     }
     930             :     /* memory context cleanup will deal with the rest */
     931             : }
     932             : 
     933             : /*
     934             :  * Log a single (old->new) mapping for 'xid'.
     935             :  */
     936             : static void
     937        1446 : logical_rewrite_log_mapping(RewriteState state, TransactionId xid,
     938             :                             LogicalRewriteMappingData *map)
     939             : {
     940             :     RewriteMappingFile *src;
     941             :     RewriteMappingDataEntry *pmap;
     942             :     Oid         relid;
     943             :     bool        found;
     944             : 
     945        1446 :     relid = RelationGetRelid(state->rs_old_rel);
     946             : 
     947             :     /* look for existing mappings for this 'mapped' xid */
     948        1446 :     src = hash_search(state->rs_logical_mappings, &xid,
     949             :                       HASH_ENTER, &found);
     950             : 
     951             :     /*
     952             :      * We haven't yet had the need to map anything for this xid, create
     953             :      * per-xid data structures.
     954             :      */
     955        1446 :     if (!found)
     956             :     {
     957             :         char        path[MAXPGPATH];
     958             :         Oid         dboid;
     959             : 
     960         180 :         if (state->rs_old_rel->rd_rel->relisshared)
     961           0 :             dboid = InvalidOid;
     962             :         else
     963         180 :             dboid = MyDatabaseId;
     964             : 
     965         180 :         snprintf(path, MAXPGPATH,
     966             :                  "%s/" LOGICAL_REWRITE_FORMAT,
     967             :                  PG_LOGICAL_MAPPINGS_DIR, dboid, relid,
     968         180 :                  LSN_FORMAT_ARGS(state->rs_begin_lsn),
     969             :                  xid, GetCurrentTransactionId());
     970             : 
     971         180 :         dclist_init(&src->mappings);
     972         180 :         src->off = 0;
     973         180 :         memcpy(src->path, path, sizeof(path));
     974         180 :         src->vfd = PathNameOpenFile(path,
     975             :                                     O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
     976         180 :         if (src->vfd < 0)
     977           0 :             ereport(ERROR,
     978             :                     (errcode_for_file_access(),
     979             :                      errmsg("could not create file \"%s\": %m", path)));
     980             :     }
     981             : 
     982        1446 :     pmap = MemoryContextAlloc(state->rs_cxt,
     983             :                               sizeof(RewriteMappingDataEntry));
     984        1446 :     memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
     985        1446 :     dclist_push_tail(&src->mappings, &pmap->node);
     986        1446 :     state->rs_num_rewrite_mappings++;
     987             : 
     988             :     /*
     989             :      * Write out buffer every time we've too many in-memory entries across all
     990             :      * mapping files.
     991             :      */
     992        1446 :     if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
     993           0 :         logical_heap_rewrite_flush_mappings(state);
     994        1446 : }
     995             : 
     996             : /*
     997             :  * Perform logical remapping for a tuple that's mapped from old_tid to
     998             :  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
     999             :  */
    1000             : static void
    1001      728706 : logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid,
    1002             :                            HeapTuple new_tuple)
    1003             : {
    1004      728706 :     ItemPointerData new_tid = new_tuple->t_self;
    1005      728706 :     TransactionId cutoff = state->rs_logical_xmin;
    1006             :     TransactionId xmin;
    1007             :     TransactionId xmax;
    1008      728706 :     bool        do_log_xmin = false;
    1009      728706 :     bool        do_log_xmax = false;
    1010             :     LogicalRewriteMappingData map;
    1011             : 
    1012             :     /* no logical rewrite in progress, we don't need to log anything */
    1013      728706 :     if (!state->rs_logical_rewrite)
    1014      727290 :         return;
    1015             : 
    1016       53554 :     xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
    1017             :     /* use *GetUpdateXid to correctly deal with multixacts */
    1018       53554 :     xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
    1019             : 
    1020             :     /*
    1021             :      * Log the mapping iff the tuple has been created recently.
    1022             :      */
    1023       53554 :     if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
    1024        1070 :         do_log_xmin = true;
    1025             : 
    1026       53554 :     if (!TransactionIdIsNormal(xmax))
    1027             :     {
    1028             :         /*
    1029             :          * no xmax is set, can't have any permanent ones, so this check is
    1030             :          * sufficient
    1031             :          */
    1032             :     }
    1033        1002 :     else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
    1034             :     {
    1035             :         /* only locked, we don't care */
    1036             :     }
    1037        1002 :     else if (!TransactionIdPrecedes(xmax, cutoff))
    1038             :     {
    1039             :         /* tuple has been deleted recently, log */
    1040        1002 :         do_log_xmax = true;
    1041             :     }
    1042             : 
    1043             :     /* if neither needs to be logged, we're done */
    1044       53554 :     if (!do_log_xmin && !do_log_xmax)
    1045       52138 :         return;
    1046             : 
    1047             :     /* fill out mapping information */
    1048        1416 :     map.old_locator = state->rs_old_rel->rd_locator;
    1049        1416 :     map.old_tid = old_tid;
    1050        1416 :     map.new_locator = state->rs_new_rel->rd_locator;
    1051        1416 :     map.new_tid = new_tid;
    1052             : 
    1053             :     /* ---
    1054             :      * Now persist the mapping for the individual xids that are affected. We
    1055             :      * need to log for both xmin and xmax if they aren't the same transaction
    1056             :      * since the mapping files are per "affected" xid.
    1057             :      * We don't muster all that much effort detecting whether xmin and xmax
    1058             :      * are actually the same transaction, we just check whether the xid is the
    1059             :      * same disregarding subtransactions. Logging too much is relatively
    1060             :      * harmless and we could never do the check fully since subtransaction
    1061             :      * data is thrown away during restarts.
    1062             :      * ---
    1063             :      */
    1064        1416 :     if (do_log_xmin)
    1065        1070 :         logical_rewrite_log_mapping(state, xmin, &map);
    1066             :     /* separately log mapping for xmax unless it'd be redundant */
    1067        1416 :     if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
    1068         376 :         logical_rewrite_log_mapping(state, xmax, &map);
    1069             : }
    1070             : 
    1071             : /*
    1072             :  * Replay XLOG_HEAP2_REWRITE records
    1073             :  */
    1074             : void
    1075           0 : heap_xlog_logical_rewrite(XLogReaderState *r)
    1076             : {
    1077             :     char        path[MAXPGPATH];
    1078             :     int         fd;
    1079             :     xl_heap_rewrite_mapping *xlrec;
    1080             :     uint32      len;
    1081             :     char       *data;
    1082             : 
    1083           0 :     xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
    1084             : 
    1085           0 :     snprintf(path, MAXPGPATH,
    1086             :              "%s/" LOGICAL_REWRITE_FORMAT,
    1087             :              PG_LOGICAL_MAPPINGS_DIR, xlrec->mapped_db, xlrec->mapped_rel,
    1088           0 :              LSN_FORMAT_ARGS(xlrec->start_lsn),
    1089           0 :              xlrec->mapped_xid, XLogRecGetXid(r));
    1090             : 
    1091           0 :     fd = OpenTransientFile(path,
    1092             :                            O_CREAT | O_WRONLY | PG_BINARY);
    1093           0 :     if (fd < 0)
    1094           0 :         ereport(ERROR,
    1095             :                 (errcode_for_file_access(),
    1096             :                  errmsg("could not create file \"%s\": %m", path)));
    1097             : 
    1098             :     /*
    1099             :      * Truncate all data that's not guaranteed to have been safely fsynced (by
    1100             :      * previous record or by the last checkpoint).
    1101             :      */
    1102           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
    1103           0 :     if (ftruncate(fd, xlrec->offset) != 0)
    1104           0 :         ereport(ERROR,
    1105             :                 (errcode_for_file_access(),
    1106             :                  errmsg("could not truncate file \"%s\" to %u: %m",
    1107             :                         path, (uint32) xlrec->offset)));
    1108           0 :     pgstat_report_wait_end();
    1109             : 
    1110           0 :     data = XLogRecGetData(r) + sizeof(*xlrec);
    1111             : 
    1112           0 :     len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
    1113             : 
    1114             :     /* write out tail end of mapping file (again) */
    1115           0 :     errno = 0;
    1116           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
    1117           0 :     if (pg_pwrite(fd, data, len, xlrec->offset) != len)
    1118             :     {
    1119             :         /* if write didn't set errno, assume problem is no disk space */
    1120           0 :         if (errno == 0)
    1121           0 :             errno = ENOSPC;
    1122           0 :         ereport(ERROR,
    1123             :                 (errcode_for_file_access(),
    1124             :                  errmsg("could not write to file \"%s\": %m", path)));
    1125             :     }
    1126           0 :     pgstat_report_wait_end();
    1127             : 
    1128             :     /*
    1129             :      * Now fsync all previously written data. We could improve things and only
    1130             :      * do this for the last write to a file, but the required bookkeeping
    1131             :      * doesn't seem worth the trouble.
    1132             :      */
    1133           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
    1134           0 :     if (pg_fsync(fd) != 0)
    1135           0 :         ereport(data_sync_elevel(ERROR),
    1136             :                 (errcode_for_file_access(),
    1137             :                  errmsg("could not fsync file \"%s\": %m", path)));
    1138           0 :     pgstat_report_wait_end();
    1139             : 
    1140           0 :     if (CloseTransientFile(fd) != 0)
    1141           0 :         ereport(ERROR,
    1142             :                 (errcode_for_file_access(),
    1143             :                  errmsg("could not close file \"%s\": %m", path)));
    1144           0 : }
    1145             : 
    1146             : /* ---
    1147             :  * Perform a checkpoint for logical rewrite mappings
    1148             :  *
    1149             :  * This serves two tasks:
    1150             :  * 1) Remove all mappings not needed anymore based on the logical restart LSN
    1151             :  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
    1152             :  *    only has to deal with the parts of a mapping that have been written out
    1153             :  *    after the checkpoint started.
    1154             :  * ---
    1155             :  */
    1156             : void
    1157        3578 : CheckPointLogicalRewriteHeap(void)
    1158             : {
    1159             :     XLogRecPtr  cutoff;
    1160             :     XLogRecPtr  redo;
    1161             :     DIR        *mappings_dir;
    1162             :     struct dirent *mapping_de;
    1163             :     char        path[MAXPGPATH + sizeof(PG_LOGICAL_MAPPINGS_DIR)];
    1164             : 
    1165             :     /*
    1166             :      * We start of with a minimum of the last redo pointer. No new decoding
    1167             :      * slot will start before that, so that's a safe upper bound for removal.
    1168             :      */
    1169        3578 :     redo = GetRedoRecPtr();
    1170             : 
    1171             :     /* now check for the restart ptrs from existing slots */
    1172        3578 :     cutoff = ReplicationSlotsComputeLogicalRestartLSN();
    1173             : 
    1174             :     /* don't start earlier than the restart lsn */
    1175        3578 :     if (XLogRecPtrIsValid(cutoff) && redo < cutoff)
    1176           2 :         cutoff = redo;
    1177             : 
    1178        3578 :     mappings_dir = AllocateDir(PG_LOGICAL_MAPPINGS_DIR);
    1179       11094 :     while ((mapping_de = ReadDir(mappings_dir, PG_LOGICAL_MAPPINGS_DIR)) != NULL)
    1180             :     {
    1181             :         Oid         dboid;
    1182             :         Oid         relid;
    1183             :         XLogRecPtr  lsn;
    1184             :         TransactionId rewrite_xid;
    1185             :         TransactionId create_xid;
    1186             :         uint32      hi,
    1187             :                     lo;
    1188             :         PGFileType  de_type;
    1189             : 
    1190        7516 :         if (strcmp(mapping_de->d_name, ".") == 0 ||
    1191        3938 :             strcmp(mapping_de->d_name, "..") == 0)
    1192        7156 :             continue;
    1193             : 
    1194         360 :         snprintf(path, sizeof(path), "%s/%s", PG_LOGICAL_MAPPINGS_DIR, mapping_de->d_name);
    1195         360 :         de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
    1196             : 
    1197         360 :         if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
    1198           0 :             continue;
    1199             : 
    1200             :         /* Skip over files that cannot be ours. */
    1201         360 :         if (strncmp(mapping_de->d_name, "map-", 4) != 0)
    1202           0 :             continue;
    1203             : 
    1204         360 :         if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
    1205             :                    &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
    1206           0 :             elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
    1207             : 
    1208         360 :         lsn = ((uint64) hi) << 32 | lo;
    1209             : 
    1210         360 :         if (lsn < cutoff || !XLogRecPtrIsValid(cutoff))
    1211             :         {
    1212         180 :             elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
    1213         180 :             if (unlink(path) < 0)
    1214           0 :                 ereport(ERROR,
    1215             :                         (errcode_for_file_access(),
    1216             :                          errmsg("could not remove file \"%s\": %m", path)));
    1217             :         }
    1218             :         else
    1219             :         {
    1220             :             /* on some operating systems fsyncing a file requires O_RDWR */
    1221         180 :             int         fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
    1222             : 
    1223             :             /*
    1224             :              * The file cannot vanish due to concurrency since this function
    1225             :              * is the only one removing logical mappings and only one
    1226             :              * checkpoint can be in progress at a time.
    1227             :              */
    1228         180 :             if (fd < 0)
    1229           0 :                 ereport(ERROR,
    1230             :                         (errcode_for_file_access(),
    1231             :                          errmsg("could not open file \"%s\": %m", path)));
    1232             : 
    1233             :             /*
    1234             :              * We could try to avoid fsyncing files that either haven't
    1235             :              * changed or have only been created since the checkpoint's start,
    1236             :              * but it's currently not deemed worth the effort.
    1237             :              */
    1238         180 :             pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
    1239         180 :             if (pg_fsync(fd) != 0)
    1240           0 :                 ereport(data_sync_elevel(ERROR),
    1241             :                         (errcode_for_file_access(),
    1242             :                          errmsg("could not fsync file \"%s\": %m", path)));
    1243         180 :             pgstat_report_wait_end();
    1244             : 
    1245         180 :             if (CloseTransientFile(fd) != 0)
    1246           0 :                 ereport(ERROR,
    1247             :                         (errcode_for_file_access(),
    1248             :                          errmsg("could not close file \"%s\": %m", path)));
    1249             :         }
    1250             :     }
    1251        3578 :     FreeDir(mappings_dir);
    1252             : 
    1253             :     /* persist directory entries to disk */
    1254        3578 :     fsync_fname(PG_LOGICAL_MAPPINGS_DIR, true);
    1255        3578 : }

Generated by: LCOV version 1.16