LCOV - code coverage report
Current view: top level - src/backend/access/heap - rewriteheap.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 260 311 83.6 %
Date: 2025-11-05 04:18:35 Functions: 11 12 91.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * rewriteheap.c
       4             :  *    Support functions to rewrite tables.
       5             :  *
       6             :  * These functions provide a facility to completely rewrite a heap, while
       7             :  * preserving visibility information and update chains.
       8             :  *
       9             :  * INTERFACE
      10             :  *
      11             :  * The caller is responsible for creating the new heap, all catalog
      12             :  * changes, supplying the tuples to be written to the new heap, and
      13             :  * rebuilding indexes.  The caller must hold AccessExclusiveLock on the
      14             :  * target table, because we assume no one else is writing into it.
      15             :  *
      16             :  * To use the facility:
      17             :  *
      18             :  * begin_heap_rewrite
      19             :  * while (fetch next tuple)
      20             :  * {
      21             :  *     if (tuple is dead)
      22             :  *         rewrite_heap_dead_tuple
      23             :  *     else
      24             :  *     {
      25             :  *         // do any transformations here if required
      26             :  *         rewrite_heap_tuple
      27             :  *     }
      28             :  * }
      29             :  * end_heap_rewrite
      30             :  *
      31             :  * The contents of the new relation shouldn't be relied on until after
      32             :  * end_heap_rewrite is called.
      33             :  *
      34             :  *
      35             :  * IMPLEMENTATION
      36             :  *
      37             :  * This would be a fairly trivial affair, except that we need to maintain
      38             :  * the ctid chains that link versions of an updated tuple together.
      39             :  * Since the newly stored tuples will have tids different from the original
      40             :  * ones, if we just copied t_ctid fields to the new table the links would
      41             :  * be wrong.  When we are required to copy a (presumably recently-dead or
      42             :  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
      43             :  * to substitute the correct ctid instead.
      44             :  *
      45             :  * For each ctid reference from A -> B, we might encounter either A first
      46             :  * or B first.  (Note that a tuple in the middle of a chain is both A and B
      47             :  * of different pairs.)
      48             :  *
      49             :  * If we encounter A first, we'll store the tuple in the unresolved_tups
      50             :  * hash table. When we later encounter B, we remove A from the hash table,
      51             :  * fix the ctid to point to the new location of B, and insert both A and B
      52             :  * to the new heap.
      53             :  *
      54             :  * If we encounter B first, we can insert B to the new heap right away.
      55             :  * We then add an entry to the old_new_tid_map hash table showing B's
      56             :  * original tid (in the old heap) and new tid (in the new heap).
      57             :  * When we later encounter A, we get the new location of B from the table,
      58             :  * and can write A immediately with the correct ctid.
      59             :  *
      60             :  * Entries in the hash tables can be removed as soon as the later tuple
      61             :  * is encountered.  That helps to keep the memory usage down.  At the end,
      62             :  * both tables are usually empty; we should have encountered both A and B
      63             :  * of each pair.  However, it's possible for A to be RECENTLY_DEAD and B
      64             :  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
      65             :  * for deadness using OldestXmin is not exact.  In such a case we might
      66             :  * encounter B first, and skip it, and find A later.  Then A would be added
      67             :  * to unresolved_tups, and stay there until end of the rewrite.  Since
      68             :  * this case is very unusual, we don't worry about the memory usage.
      69             :  *
      70             :  * Using in-memory hash tables means that we use some memory for each live
      71             :  * update chain in the table, from the time we find one end of the
      72             :  * reference until we find the other end.  That shouldn't be a problem in
      73             :  * practice, but if you do something like an UPDATE without a where-clause
      74             :  * on a large table, and then run CLUSTER in the same transaction, you
      75             :  * could run out of memory.  It doesn't seem worthwhile to add support for
      76             :  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
      77             :  * table under normal circumstances.  Furthermore, in the typical scenario
      78             :  * of CLUSTERing on an unchanging key column, we'll see all the versions
      79             :  * of a given tuple together anyway, and so the peak memory usage is only
      80             :  * proportional to the number of RECENTLY_DEAD versions of a single row, not
      81             :  * in the whole table.  Note that if we do fail halfway through a CLUSTER,
      82             :  * the old table is still valid, so failure is not catastrophic.
      83             :  *
      84             :  * We can't use the normal heap_insert function to insert into the new
      85             :  * heap, because heap_insert overwrites the visibility information.
      86             :  * We use a special-purpose raw_heap_insert function instead, which
      87             :  * is optimized for bulk inserting a lot of tuples, knowing that we have
      88             :  * exclusive access to the heap.  raw_heap_insert builds new pages in
      89             :  * local storage.  When a page is full, or at the end of the process,
      90             :  * we insert it to WAL as a single record and then write it to disk with
      91             :  * the bulk smgr writer.  Note, however, that any data sent to the new
      92             :  * heap's TOAST table will go through the normal bufmgr.
      93             :  *
      94             :  *
      95             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
      96             :  * Portions Copyright (c) 1994-5, Regents of the University of California
      97             :  *
      98             :  * IDENTIFICATION
      99             :  *    src/backend/access/heap/rewriteheap.c
     100             :  *
     101             :  *-------------------------------------------------------------------------
     102             :  */
     103             : #include "postgres.h"
     104             : 
     105             : #include <unistd.h>
     106             : 
     107             : #include "access/heapam.h"
     108             : #include "access/heapam_xlog.h"
     109             : #include "access/heaptoast.h"
     110             : #include "access/rewriteheap.h"
     111             : #include "access/transam.h"
     112             : #include "access/xact.h"
     113             : #include "access/xloginsert.h"
     114             : #include "common/file_utils.h"
     115             : #include "lib/ilist.h"
     116             : #include "miscadmin.h"
     117             : #include "pgstat.h"
     118             : #include "replication/slot.h"
     119             : #include "storage/bufmgr.h"
     120             : #include "storage/bulk_write.h"
     121             : #include "storage/fd.h"
     122             : #include "storage/procarray.h"
     123             : #include "utils/memutils.h"
     124             : #include "utils/rel.h"
     125             : 
     126             : /*
     127             :  * State associated with a rewrite operation. This is opaque to the user
     128             :  * of the rewrite facility.
     129             :  */
     130             : typedef struct RewriteStateData
     131             : {
     132             :     Relation    rs_old_rel;     /* source heap */
     133             :     Relation    rs_new_rel;     /* destination heap */
     134             :     BulkWriteState *rs_bulkstate;   /* writer for the destination */
     135             :     BulkWriteBuffer rs_buffer;  /* page currently being built */
     136             :     BlockNumber rs_blockno;     /* block where page will go */
     137             :     bool        rs_logical_rewrite; /* do we need to do logical rewriting */
     138             :     TransactionId rs_oldest_xmin;   /* oldest xmin used by caller to determine
     139             :                                      * tuple visibility */
     140             :     TransactionId rs_freeze_xid;    /* Xid that will be used as freeze cutoff
     141             :                                      * point */
     142             :     TransactionId rs_logical_xmin;  /* Xid that will be used as cutoff point
     143             :                                      * for logical rewrites */
     144             :     MultiXactId rs_cutoff_multi;    /* MultiXactId that will be used as cutoff
     145             :                                      * point for multixacts */
     146             :     MemoryContext rs_cxt;       /* for hash tables and entries and tuples in
     147             :                                  * them */
     148             :     XLogRecPtr  rs_begin_lsn;   /* XLogInsertLsn when starting the rewrite */
     149             :     HTAB       *rs_unresolved_tups; /* unmatched A tuples */
     150             :     HTAB       *rs_old_new_tid_map; /* unmatched B tuples */
     151             :     HTAB       *rs_logical_mappings;    /* logical remapping files */
     152             :     uint32      rs_num_rewrite_mappings;    /* # in memory mappings */
     153             : }           RewriteStateData;
     154             : 
     155             : /*
     156             :  * The lookup keys for the hash tables are tuple TID and xmin (we must check
     157             :  * both to avoid false matches from dead tuples).  Beware that there is
     158             :  * probably some padding space in this struct; it must be zeroed out for
     159             :  * correct hashtable operation.
     160             :  */
     161             : typedef struct
     162             : {
     163             :     TransactionId xmin;         /* tuple xmin */
     164             :     ItemPointerData tid;        /* tuple location in old heap */
     165             : } TidHashKey;
     166             : 
     167             : /*
     168             :  * Entry structures for the hash tables
     169             :  */
     170             : typedef struct
     171             : {
     172             :     TidHashKey  key;            /* expected xmin/old location of B tuple */
     173             :     ItemPointerData old_tid;    /* A's location in the old heap */
     174             :     HeapTuple   tuple;          /* A's tuple contents */
     175             : } UnresolvedTupData;
     176             : 
     177             : typedef UnresolvedTupData *UnresolvedTup;
     178             : 
     179             : typedef struct
     180             : {
     181             :     TidHashKey  key;            /* actual xmin/old location of B tuple */
     182             :     ItemPointerData new_tid;    /* where we put it in the new heap */
     183             : } OldToNewMappingData;
     184             : 
     185             : typedef OldToNewMappingData *OldToNewMapping;
     186             : 
     187             : /*
     188             :  * In-Memory data for an xid that might need logical remapping entries
     189             :  * to be logged.
     190             :  */
     191             : typedef struct RewriteMappingFile
     192             : {
     193             :     TransactionId xid;          /* xid that might need to see the row */
     194             :     int         vfd;            /* fd of mappings file */
     195             :     off_t       off;            /* how far have we written yet */
     196             :     dclist_head mappings;       /* list of in-memory mappings */
     197             :     char        path[MAXPGPATH];    /* path, for error messages */
     198             : } RewriteMappingFile;
     199             : 
     200             : /*
     201             :  * A single In-Memory logical rewrite mapping, hanging off
     202             :  * RewriteMappingFile->mappings.
     203             :  */
     204             : typedef struct RewriteMappingDataEntry
     205             : {
     206             :     LogicalRewriteMappingData map;  /* map between old and new location of the
     207             :                                      * tuple */
     208             :     dlist_node  node;
     209             : } RewriteMappingDataEntry;
     210             : 
     211             : 
     212             : /* prototypes for internal functions */
     213             : static void raw_heap_insert(RewriteState state, HeapTuple tup);
     214             : 
     215             : /* internal logical remapping prototypes */
     216             : static void logical_begin_heap_rewrite(RewriteState state);
     217             : static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple);
     218             : static void logical_end_heap_rewrite(RewriteState state);
     219             : 
     220             : 
     221             : /*
     222             :  * Begin a rewrite of a table
     223             :  *
     224             :  * old_heap     old, locked heap relation tuples will be read from
     225             :  * new_heap     new, locked heap relation to insert tuples to
     226             :  * oldest_xmin  xid used by the caller to determine which tuples are dead
     227             :  * freeze_xid   xid before which tuples will be frozen
     228             :  * cutoff_multi multixact before which multis will be removed
     229             :  *
     230             :  * Returns an opaque RewriteState, allocated in current memory context,
     231             :  * to be used in subsequent calls to the other functions.
     232             :  */
     233             : RewriteState
     234         568 : begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
     235             :                    TransactionId freeze_xid, MultiXactId cutoff_multi)
     236             : {
     237             :     RewriteState state;
     238             :     MemoryContext rw_cxt;
     239             :     MemoryContext old_cxt;
     240             :     HASHCTL     hash_ctl;
     241             : 
     242             :     /*
     243             :      * To ease cleanup, make a separate context that will contain the
     244             :      * RewriteState struct itself plus all subsidiary data.
     245             :      */
     246         568 :     rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
     247             :                                    "Table rewrite",
     248             :                                    ALLOCSET_DEFAULT_SIZES);
     249         568 :     old_cxt = MemoryContextSwitchTo(rw_cxt);
     250             : 
     251             :     /* Create and fill in the state struct */
     252         568 :     state = palloc0(sizeof(RewriteStateData));
     253             : 
     254         568 :     state->rs_old_rel = old_heap;
     255         568 :     state->rs_new_rel = new_heap;
     256         568 :     state->rs_buffer = NULL;
     257             :     /* new_heap needn't be empty, just locked */
     258         568 :     state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
     259         568 :     state->rs_oldest_xmin = oldest_xmin;
     260         568 :     state->rs_freeze_xid = freeze_xid;
     261         568 :     state->rs_cutoff_multi = cutoff_multi;
     262         568 :     state->rs_cxt = rw_cxt;
     263         568 :     state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
     264             : 
     265             :     /* Initialize hash tables used to track update chains */
     266         568 :     hash_ctl.keysize = sizeof(TidHashKey);
     267         568 :     hash_ctl.entrysize = sizeof(UnresolvedTupData);
     268         568 :     hash_ctl.hcxt = state->rs_cxt;
     269             : 
     270         568 :     state->rs_unresolved_tups =
     271         568 :         hash_create("Rewrite / Unresolved ctids",
     272             :                     128,        /* arbitrary initial size */
     273             :                     &hash_ctl,
     274             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     275             : 
     276         568 :     hash_ctl.entrysize = sizeof(OldToNewMappingData);
     277             : 
     278         568 :     state->rs_old_new_tid_map =
     279         568 :         hash_create("Rewrite / Old to new tid map",
     280             :                     128,        /* arbitrary initial size */
     281             :                     &hash_ctl,
     282             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     283             : 
     284         568 :     MemoryContextSwitchTo(old_cxt);
     285             : 
     286         568 :     logical_begin_heap_rewrite(state);
     287             : 
     288         568 :     return state;
     289             : }
     290             : 
     291             : /*
     292             :  * End a rewrite.
     293             :  *
     294             :  * state and any other resources are freed.
     295             :  */
     296             : void
     297         568 : end_heap_rewrite(RewriteState state)
     298             : {
     299             :     HASH_SEQ_STATUS seq_status;
     300             :     UnresolvedTup unresolved;
     301             : 
     302             :     /*
     303             :      * Write any remaining tuples in the UnresolvedTups table. If we have any
     304             :      * left, they should in fact be dead, but let's err on the safe side.
     305             :      */
     306         568 :     hash_seq_init(&seq_status, state->rs_unresolved_tups);
     307             : 
     308         568 :     while ((unresolved = hash_seq_search(&seq_status)) != NULL)
     309             :     {
     310           0 :         ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
     311           0 :         raw_heap_insert(state, unresolved->tuple);
     312             :     }
     313             : 
     314             :     /* Write the last page, if any */
     315         568 :     if (state->rs_buffer)
     316             :     {
     317         398 :         smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
     318         398 :         state->rs_buffer = NULL;
     319             :     }
     320             : 
     321         568 :     smgr_bulk_finish(state->rs_bulkstate);
     322             : 
     323         568 :     logical_end_heap_rewrite(state);
     324             : 
     325             :     /* Deleting the context frees everything */
     326         568 :     MemoryContextDelete(state->rs_cxt);
     327         568 : }
     328             : 
     329             : /*
     330             :  * Add a tuple to the new heap.
     331             :  *
     332             :  * Visibility information is copied from the original tuple, except that
     333             :  * we "freeze" very-old tuples.  Note that since we scribble on new_tuple,
     334             :  * it had better be temp storage not a pointer to the original tuple.
     335             :  *
     336             :  * state        opaque state as returned by begin_heap_rewrite
     337             :  * old_tuple    original tuple in the old heap
     338             :  * new_tuple    new, rewritten tuple to be inserted to new heap
     339             :  */
     340             : void
     341      740332 : rewrite_heap_tuple(RewriteState state,
     342             :                    HeapTuple old_tuple, HeapTuple new_tuple)
     343             : {
     344             :     MemoryContext old_cxt;
     345             :     ItemPointerData old_tid;
     346             :     TidHashKey  hashkey;
     347             :     bool        found;
     348             :     bool        free_new;
     349             : 
     350      740332 :     old_cxt = MemoryContextSwitchTo(state->rs_cxt);
     351             : 
     352             :     /*
     353             :      * Copy the original tuple's visibility information into new_tuple.
     354             :      *
     355             :      * XXX we might later need to copy some t_infomask2 bits, too? Right now,
     356             :      * we intentionally clear the HOT status bits.
     357             :      */
     358      740332 :     memcpy(&new_tuple->t_data->t_choice.t_heap,
     359      740332 :            &old_tuple->t_data->t_choice.t_heap,
     360             :            sizeof(HeapTupleFields));
     361             : 
     362      740332 :     new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
     363      740332 :     new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
     364      740332 :     new_tuple->t_data->t_infomask |=
     365      740332 :         old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
     366             : 
     367             :     /*
     368             :      * While we have our hands on the tuple, we may as well freeze any
     369             :      * eligible xmin or xmax, so that future VACUUM effort can be saved.
     370             :      */
     371      740332 :     heap_freeze_tuple(new_tuple->t_data,
     372      740332 :                       state->rs_old_rel->rd_rel->relfrozenxid,
     373      740332 :                       state->rs_old_rel->rd_rel->relminmxid,
     374             :                       state->rs_freeze_xid,
     375             :                       state->rs_cutoff_multi);
     376             : 
     377             :     /*
     378             :      * Invalid ctid means that ctid should point to the tuple itself. We'll
     379             :      * override it later if the tuple is part of an update chain.
     380             :      */
     381      740332 :     ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
     382             : 
     383             :     /*
     384             :      * If the tuple has been updated, check the old-to-new mapping hash table.
     385             :      */
     386      786744 :     if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
     387       46412 :           HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
     388       46412 :         !HeapTupleHeaderIndicatesMovedPartitions(old_tuple->t_data) &&
     389       46412 :         !(ItemPointerEquals(&(old_tuple->t_self),
     390       46412 :                             &(old_tuple->t_data->t_ctid))))
     391             :     {
     392             :         OldToNewMapping mapping;
     393             : 
     394         962 :         memset(&hashkey, 0, sizeof(hashkey));
     395         962 :         hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
     396         962 :         hashkey.tid = old_tuple->t_data->t_ctid;
     397             : 
     398             :         mapping = (OldToNewMapping)
     399         962 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     400             :                         HASH_FIND, NULL);
     401             : 
     402         962 :         if (mapping != NULL)
     403             :         {
     404             :             /*
     405             :              * We've already copied the tuple that t_ctid points to, so we can
     406             :              * set the ctid of this tuple to point to the new location, and
     407             :              * insert it right away.
     408             :              */
     409         398 :             new_tuple->t_data->t_ctid = mapping->new_tid;
     410             : 
     411             :             /* We don't need the mapping entry anymore */
     412         398 :             hash_search(state->rs_old_new_tid_map, &hashkey,
     413             :                         HASH_REMOVE, &found);
     414             :             Assert(found);
     415             :         }
     416             :         else
     417             :         {
     418             :             /*
     419             :              * We haven't seen the tuple t_ctid points to yet. Stash this
     420             :              * tuple into unresolved_tups to be written later.
     421             :              */
     422             :             UnresolvedTup unresolved;
     423             : 
     424         564 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     425             :                                      HASH_ENTER, &found);
     426             :             Assert(!found);
     427             : 
     428         564 :             unresolved->old_tid = old_tuple->t_self;
     429         564 :             unresolved->tuple = heap_copytuple(new_tuple);
     430             : 
     431             :             /*
     432             :              * We can't do anything more now, since we don't know where the
     433             :              * tuple will be written.
     434             :              */
     435         564 :             MemoryContextSwitchTo(old_cxt);
     436         564 :             return;
     437             :         }
     438             :     }
     439             : 
     440             :     /*
     441             :      * Now we will write the tuple, and then check to see if it is the B tuple
     442             :      * in any new or known pair.  When we resolve a known pair, we will be
     443             :      * able to write that pair's A tuple, and then we have to check if it
     444             :      * resolves some other pair.  Hence, we need a loop here.
     445             :      */
     446      739768 :     old_tid = old_tuple->t_self;
     447      739768 :     free_new = false;
     448             : 
     449             :     for (;;)
     450         564 :     {
     451             :         ItemPointerData new_tid;
     452             : 
     453             :         /* Insert the tuple and find out where it's put in new_heap */
     454      740332 :         raw_heap_insert(state, new_tuple);
     455      740332 :         new_tid = new_tuple->t_self;
     456             : 
     457      740332 :         logical_rewrite_heap_tuple(state, old_tid, new_tuple);
     458             : 
     459             :         /*
     460             :          * If the tuple is the updated version of a row, and the prior version
     461             :          * wouldn't be DEAD yet, then we need to either resolve the prior
     462             :          * version (if it's waiting in rs_unresolved_tups), or make an entry
     463             :          * in rs_old_new_tid_map (so we can resolve it when we do see it). The
     464             :          * previous tuple's xmax would equal this one's xmin, so it's
     465             :          * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
     466             :          */
     467      740332 :         if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
     468       20774 :             !TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
     469             :                                    state->rs_oldest_xmin))
     470             :         {
     471             :             /*
     472             :              * Okay, this is B in an update pair.  See if we've seen A.
     473             :              */
     474             :             UnresolvedTup unresolved;
     475             : 
     476         962 :             memset(&hashkey, 0, sizeof(hashkey));
     477         962 :             hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
     478         962 :             hashkey.tid = old_tid;
     479             : 
     480         962 :             unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     481             :                                      HASH_FIND, NULL);
     482             : 
     483         962 :             if (unresolved != NULL)
     484             :             {
     485             :                 /*
     486             :                  * We have seen and memorized the previous tuple already. Now
     487             :                  * that we know where we inserted the tuple its t_ctid points
     488             :                  * to, fix its t_ctid and insert it to the new heap.
     489             :                  */
     490         564 :                 if (free_new)
     491         140 :                     heap_freetuple(new_tuple);
     492         564 :                 new_tuple = unresolved->tuple;
     493         564 :                 free_new = true;
     494         564 :                 old_tid = unresolved->old_tid;
     495         564 :                 new_tuple->t_data->t_ctid = new_tid;
     496             : 
     497             :                 /*
     498             :                  * We don't need the hash entry anymore, but don't free its
     499             :                  * tuple just yet.
     500             :                  */
     501         564 :                 hash_search(state->rs_unresolved_tups, &hashkey,
     502             :                             HASH_REMOVE, &found);
     503             :                 Assert(found);
     504             : 
     505             :                 /* loop back to insert the previous tuple in the chain */
     506         564 :                 continue;
     507             :             }
     508             :             else
     509             :             {
     510             :                 /*
     511             :                  * Remember the new tid of this tuple. We'll use it to set the
     512             :                  * ctid when we find the previous tuple in the chain.
     513             :                  */
     514             :                 OldToNewMapping mapping;
     515             : 
     516         398 :                 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
     517             :                                       HASH_ENTER, &found);
     518             :                 Assert(!found);
     519             : 
     520         398 :                 mapping->new_tid = new_tid;
     521             :             }
     522             :         }
     523             : 
     524             :         /* Done with this (chain of) tuples, for now */
     525      739768 :         if (free_new)
     526         424 :             heap_freetuple(new_tuple);
     527      739768 :         break;
     528             :     }
     529             : 
     530      739768 :     MemoryContextSwitchTo(old_cxt);
     531             : }
     532             : 
     533             : /*
     534             :  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
     535             :  * copied to the new table, but we still make note of them so that we
     536             :  * can release some resources earlier.
     537             :  *
     538             :  * Returns true if a tuple was removed from the unresolved_tups table.
     539             :  * This indicates that that tuple, previously thought to be "recently dead",
     540             :  * is now known really dead and won't be written to the output.
     541             :  */
     542             : bool
     543       33062 : rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
     544             : {
     545             :     /*
     546             :      * If we have already seen an earlier tuple in the update chain that
     547             :      * points to this tuple, let's forget about that earlier tuple. It's in
     548             :      * fact dead as well, our simple xmax < OldestXmin test in
     549             :      * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
     550             :      * when xmin of a tuple is greater than xmax, which sounds
     551             :      * counter-intuitive but is perfectly valid.
     552             :      *
     553             :      * We don't bother to try to detect the situation the other way round,
     554             :      * when we encounter the dead tuple first and then the recently dead one
     555             :      * that points to it. If that happens, we'll have some unmatched entries
     556             :      * in the UnresolvedTups hash table at the end. That can happen anyway,
     557             :      * because a vacuum might have removed the dead tuple in the chain before
     558             :      * us.
     559             :      */
     560             :     UnresolvedTup unresolved;
     561             :     TidHashKey  hashkey;
     562             :     bool        found;
     563             : 
     564       33062 :     memset(&hashkey, 0, sizeof(hashkey));
     565       33062 :     hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
     566       33062 :     hashkey.tid = old_tuple->t_self;
     567             : 
     568       33062 :     unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
     569             :                              HASH_FIND, NULL);
     570             : 
     571       33062 :     if (unresolved != NULL)
     572             :     {
     573             :         /* Need to free the contained tuple as well as the hashtable entry */
     574           0 :         heap_freetuple(unresolved->tuple);
     575           0 :         hash_search(state->rs_unresolved_tups, &hashkey,
     576             :                     HASH_REMOVE, &found);
     577             :         Assert(found);
     578           0 :         return true;
     579             :     }
     580             : 
     581       33062 :     return false;
     582             : }
     583             : 
     584             : /*
     585             :  * Insert a tuple to the new relation.  This has to track heap_insert
     586             :  * and its subsidiary functions!
     587             :  *
     588             :  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
     589             :  * tuple is invalid on entry, it's replaced with the new TID as well (in
     590             :  * the inserted data only, not in the caller's copy).
     591             :  */
     592             : static void
     593      740332 : raw_heap_insert(RewriteState state, HeapTuple tup)
     594             : {
     595             :     Page        page;
     596             :     Size        pageFreeSpace,
     597             :                 saveFreeSpace;
     598             :     Size        len;
     599             :     OffsetNumber newoff;
     600             :     HeapTuple   heaptup;
     601             : 
     602             :     /*
     603             :      * If the new tuple is too big for storage or contains already toasted
     604             :      * out-of-line attributes from some other relation, invoke the toaster.
     605             :      *
     606             :      * Note: below this point, heaptup is the data we actually intend to store
     607             :      * into the relation; tup is the caller's original untoasted data.
     608             :      */
     609      740332 :     if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
     610             :     {
     611             :         /* toast table entries should never be recursively toasted */
     612             :         Assert(!HeapTupleHasExternal(tup));
     613           0 :         heaptup = tup;
     614             :     }
     615      740332 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
     616         598 :     {
     617         598 :         int         options = HEAP_INSERT_SKIP_FSM;
     618             : 
     619             :         /*
     620             :          * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
     621             :          * for the TOAST table are not logically decoded.  The main heap is
     622             :          * WAL-logged as XLOG FPI records, which are not logically decoded.
     623             :          */
     624         598 :         options |= HEAP_INSERT_NO_LOGICAL;
     625             : 
     626         598 :         heaptup = heap_toast_insert_or_update(state->rs_new_rel, tup, NULL,
     627             :                                               options);
     628             :     }
     629             :     else
     630      739734 :         heaptup = tup;
     631             : 
     632      740332 :     len = MAXALIGN(heaptup->t_len); /* be conservative */
     633             : 
     634             :     /*
     635             :      * If we're gonna fail for oversize tuple, do it right away
     636             :      */
     637      740332 :     if (len > MaxHeapTupleSize)
     638           0 :         ereport(ERROR,
     639             :                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
     640             :                  errmsg("row is too big: size %zu, maximum size %zu",
     641             :                         len, MaxHeapTupleSize)));
     642             : 
     643             :     /* Compute desired extra freespace due to fillfactor option */
     644      740332 :     saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
     645             :                                                    HEAP_DEFAULT_FILLFACTOR);
     646             : 
     647             :     /* Now we can check to see if there's enough free space already. */
     648      740332 :     page = (Page) state->rs_buffer;
     649      740332 :     if (page)
     650             :     {
     651      739934 :         pageFreeSpace = PageGetHeapFreeSpace(page);
     652             : 
     653      739934 :         if (len + saveFreeSpace > pageFreeSpace)
     654             :         {
     655             :             /*
     656             :              * Doesn't fit, so write out the existing page.  It always
     657             :              * contains a tuple.  Hence, unlike RelationGetBufferForTuple(),
     658             :              * enforce saveFreeSpace unconditionally.
     659             :              */
     660       10380 :             smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
     661       10380 :             state->rs_buffer = NULL;
     662       10380 :             page = NULL;
     663       10380 :             state->rs_blockno++;
     664             :         }
     665             :     }
     666             : 
     667      740332 :     if (!page)
     668             :     {
     669             :         /* Initialize a new empty page */
     670       10778 :         state->rs_buffer = smgr_bulk_get_buf(state->rs_bulkstate);
     671       10778 :         page = (Page) state->rs_buffer;
     672       10778 :         PageInit(page, BLCKSZ, 0);
     673             :     }
     674             : 
     675             :     /* And now we can insert the tuple into the page */
     676      740332 :     newoff = PageAddItem(page, heaptup->t_data, heaptup->t_len, InvalidOffsetNumber, false, true);
     677      740332 :     if (newoff == InvalidOffsetNumber)
     678           0 :         elog(ERROR, "failed to add tuple");
     679             : 
     680             :     /* Update caller's t_self to the actual position where it was stored */
     681      740332 :     ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
     682             : 
     683             :     /*
     684             :      * Insert the correct position into CTID of the stored tuple, too, if the
     685             :      * caller didn't supply a valid CTID.
     686             :      */
     687      740332 :     if (!ItemPointerIsValid(&tup->t_data->t_ctid))
     688             :     {
     689             :         ItemId      newitemid;
     690             :         HeapTupleHeader onpage_tup;
     691             : 
     692      739370 :         newitemid = PageGetItemId(page, newoff);
     693      739370 :         onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
     694             : 
     695      739370 :         onpage_tup->t_ctid = tup->t_self;
     696             :     }
     697             : 
     698             :     /* If heaptup is a private copy, release it. */
     699      740332 :     if (heaptup != tup)
     700         598 :         heap_freetuple(heaptup);
     701      740332 : }
     702             : 
     703             : /* ------------------------------------------------------------------------
     704             :  * Logical rewrite support
     705             :  *
     706             :  * When doing logical decoding - which relies on using cmin/cmax of catalog
     707             :  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
     708             :  * information to allow the decoding backend to update its internal mapping
     709             :  * of (relfilelocator,ctid) => (cmin, cmax) to be correct for the rewritten heap.
     710             :  *
     711             :  * For that, every time we find a tuple that's been modified in a catalog
     712             :  * relation within the xmin horizon of any decoding slot, we log a mapping
     713             :  * from the old to the new location.
     714             :  *
     715             :  * To deal with rewrites that abort the filename of a mapping file contains
     716             :  * the xid of the transaction performing the rewrite, which then can be
     717             :  * checked before being read in.
     718             :  *
     719             :  * For efficiency we don't immediately spill every single map mapping for a
     720             :  * row to disk but only do so in batches when we've collected several of them
     721             :  * in memory or when end_heap_rewrite() has been called.
     722             :  *
     723             :  * Crash-Safety: This module diverts from the usual patterns of doing WAL
     724             :  * since it cannot rely on checkpoint flushing out all buffers and thus
     725             :  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
     726             :  * buffer modifications is performed while the buffer(s) that are being
     727             :  * modified are exclusively locked guaranteeing that both the WAL record and
     728             :  * the modified heap are on either side of the checkpoint. But since the
     729             :  * mapping files we log aren't in shared_buffers that interlock doesn't work.
     730             :  *
     731             :  * Instead we simply write the mapping files out to disk, *before* the
     732             :  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
     733             :  * inserted after the checkpoint's redo pointer or that the checkpoint (via
     734             :  * CheckPointLogicalRewriteHeap()) has flushed the (partial) mapping file to
     735             :  * disk. That leaves the tail end that has not yet been flushed open to
     736             :  * corruption, which is solved by including the current offset in the
     737             :  * xl_heap_rewrite_mapping records and truncating the mapping file to it
     738             :  * during replay. Every time a rewrite is finished all generated mapping files
     739             :  * are synced to disk.
     740             :  *
     741             :  * Note that if we were only concerned about crash safety we wouldn't have to
     742             :  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
     743             :  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
     744             :  * disk has to be by an aborted (explicitly or via a crash) transaction and is
     745             :  * ignored by virtue of the xid in its name being subject to a
     746             :  * TransactionDidCommit() check. But we want to support having standbys via
     747             :  * physical replication, both for availability and to do logical decoding
     748             :  * there.
     749             :  * ------------------------------------------------------------------------
     750             :  */
     751             : 
     752             : /*
     753             :  * Do preparations for logging logical mappings during a rewrite if
     754             :  * necessary. If we detect that we don't need to log anything we'll prevent
     755             :  * any further action by the various logical rewrite functions.
     756             :  */
     757             : static void
     758         568 : logical_begin_heap_rewrite(RewriteState state)
     759             : {
     760             :     HASHCTL     hash_ctl;
     761             :     TransactionId logical_xmin;
     762             : 
     763             :     /*
     764             :      * We only need to persist these mappings if the rewritten table can be
     765             :      * accessed during logical decoding, if not, we can skip doing any
     766             :      * additional work.
     767             :      */
     768         568 :     state->rs_logical_rewrite =
     769         568 :         RelationIsAccessibleInLogicalDecoding(state->rs_old_rel);
     770             : 
     771         568 :     if (!state->rs_logical_rewrite)
     772         528 :         return;
     773             : 
     774          44 :     ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
     775             : 
     776             :     /*
     777             :      * If there are no logical slots in progress we don't need to do anything,
     778             :      * there cannot be any remappings for relevant rows yet. The relation's
     779             :      * lock protects us against races.
     780             :      */
     781          44 :     if (logical_xmin == InvalidTransactionId)
     782             :     {
     783           4 :         state->rs_logical_rewrite = false;
     784           4 :         return;
     785             :     }
     786             : 
     787          40 :     state->rs_logical_xmin = logical_xmin;
     788          40 :     state->rs_begin_lsn = GetXLogInsertRecPtr();
     789          40 :     state->rs_num_rewrite_mappings = 0;
     790             : 
     791          40 :     hash_ctl.keysize = sizeof(TransactionId);
     792          40 :     hash_ctl.entrysize = sizeof(RewriteMappingFile);
     793          40 :     hash_ctl.hcxt = state->rs_cxt;
     794             : 
     795          40 :     state->rs_logical_mappings =
     796          40 :         hash_create("Logical rewrite mapping",
     797             :                     128,        /* arbitrary initial size */
     798             :                     &hash_ctl,
     799             :                     HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     800             : }
     801             : 
     802             : /*
     803             :  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
     804             :  */
     805             : static void
     806          18 : logical_heap_rewrite_flush_mappings(RewriteState state)
     807             : {
     808             :     HASH_SEQ_STATUS seq_status;
     809             :     RewriteMappingFile *src;
     810             :     dlist_mutable_iter iter;
     811             : 
     812             :     Assert(state->rs_logical_rewrite);
     813             : 
     814             :     /* no logical rewrite in progress, no need to iterate over mappings */
     815          18 :     if (state->rs_num_rewrite_mappings == 0)
     816           0 :         return;
     817             : 
     818          18 :     elog(DEBUG1, "flushing %u logical rewrite mapping entries",
     819             :          state->rs_num_rewrite_mappings);
     820             : 
     821          18 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     822         198 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     823             :     {
     824             :         char       *waldata;
     825             :         char       *waldata_start;
     826             :         xl_heap_rewrite_mapping xlrec;
     827             :         Oid         dboid;
     828             :         uint32      len;
     829             :         int         written;
     830         180 :         uint32      num_mappings = dclist_count(&src->mappings);
     831             : 
     832             :         /* this file hasn't got any new mappings */
     833         180 :         if (num_mappings == 0)
     834           0 :             continue;
     835             : 
     836         180 :         if (state->rs_old_rel->rd_rel->relisshared)
     837           0 :             dboid = InvalidOid;
     838             :         else
     839         180 :             dboid = MyDatabaseId;
     840             : 
     841         180 :         xlrec.num_mappings = num_mappings;
     842         180 :         xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
     843         180 :         xlrec.mapped_xid = src->xid;
     844         180 :         xlrec.mapped_db = dboid;
     845         180 :         xlrec.offset = src->off;
     846         180 :         xlrec.start_lsn = state->rs_begin_lsn;
     847             : 
     848             :         /* write all mappings consecutively */
     849         180 :         len = num_mappings * sizeof(LogicalRewriteMappingData);
     850         180 :         waldata_start = waldata = palloc(len);
     851             : 
     852             :         /*
     853             :          * collect data we need to write out, but don't modify ondisk data yet
     854             :          */
     855        1626 :         dclist_foreach_modify(iter, &src->mappings)
     856             :         {
     857             :             RewriteMappingDataEntry *pmap;
     858             : 
     859        1446 :             pmap = dclist_container(RewriteMappingDataEntry, node, iter.cur);
     860             : 
     861        1446 :             memcpy(waldata, &pmap->map, sizeof(pmap->map));
     862        1446 :             waldata += sizeof(pmap->map);
     863             : 
     864             :             /* remove from the list and free */
     865        1446 :             dclist_delete_from(&src->mappings, &pmap->node);
     866        1446 :             pfree(pmap);
     867             : 
     868             :             /* update bookkeeping */
     869        1446 :             state->rs_num_rewrite_mappings--;
     870             :         }
     871             : 
     872             :         Assert(dclist_count(&src->mappings) == 0);
     873             :         Assert(waldata == waldata_start + len);
     874             : 
     875             :         /*
     876             :          * Note that we deviate from the usual WAL coding practices here,
     877             :          * check the above "Logical rewrite support" comment for reasoning.
     878             :          */
     879         180 :         written = FileWrite(src->vfd, waldata_start, len, src->off,
     880             :                             WAIT_EVENT_LOGICAL_REWRITE_WRITE);
     881         180 :         if (written != len)
     882           0 :             ereport(ERROR,
     883             :                     (errcode_for_file_access(),
     884             :                      errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
     885             :                             written, len)));
     886         180 :         src->off += len;
     887             : 
     888         180 :         XLogBeginInsert();
     889         180 :         XLogRegisterData(&xlrec, sizeof(xlrec));
     890         180 :         XLogRegisterData(waldata_start, len);
     891             : 
     892             :         /* write xlog record */
     893         180 :         XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
     894             : 
     895         180 :         pfree(waldata_start);
     896             :     }
     897             :     Assert(state->rs_num_rewrite_mappings == 0);
     898             : }
     899             : 
     900             : /*
     901             :  * Logical remapping part of end_heap_rewrite().
     902             :  */
     903             : static void
     904         568 : logical_end_heap_rewrite(RewriteState state)
     905             : {
     906             :     HASH_SEQ_STATUS seq_status;
     907             :     RewriteMappingFile *src;
     908             : 
     909             :     /* done, no logical rewrite in progress */
     910         568 :     if (!state->rs_logical_rewrite)
     911         528 :         return;
     912             : 
     913             :     /* writeout remaining in-memory entries */
     914          40 :     if (state->rs_num_rewrite_mappings > 0)
     915          18 :         logical_heap_rewrite_flush_mappings(state);
     916             : 
     917             :     /* Iterate over all mappings we have written and fsync the files. */
     918          40 :     hash_seq_init(&seq_status, state->rs_logical_mappings);
     919         220 :     while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
     920             :     {
     921         180 :         if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
     922           0 :             ereport(data_sync_elevel(ERROR),
     923             :                     (errcode_for_file_access(),
     924             :                      errmsg("could not fsync file \"%s\": %m", src->path)));
     925         180 :         FileClose(src->vfd);
     926             :     }
     927             :     /* memory context cleanup will deal with the rest */
     928             : }
     929             : 
     930             : /*
     931             :  * Log a single (old->new) mapping for 'xid'.
     932             :  */
     933             : static void
     934        1446 : logical_rewrite_log_mapping(RewriteState state, TransactionId xid,
     935             :                             LogicalRewriteMappingData *map)
     936             : {
     937             :     RewriteMappingFile *src;
     938             :     RewriteMappingDataEntry *pmap;
     939             :     Oid         relid;
     940             :     bool        found;
     941             : 
     942        1446 :     relid = RelationGetRelid(state->rs_old_rel);
     943             : 
     944             :     /* look for existing mappings for this 'mapped' xid */
     945        1446 :     src = hash_search(state->rs_logical_mappings, &xid,
     946             :                       HASH_ENTER, &found);
     947             : 
     948             :     /*
     949             :      * We haven't yet had the need to map anything for this xid, create
     950             :      * per-xid data structures.
     951             :      */
     952        1446 :     if (!found)
     953             :     {
     954             :         char        path[MAXPGPATH];
     955             :         Oid         dboid;
     956             : 
     957         180 :         if (state->rs_old_rel->rd_rel->relisshared)
     958           0 :             dboid = InvalidOid;
     959             :         else
     960         180 :             dboid = MyDatabaseId;
     961             : 
     962         180 :         snprintf(path, MAXPGPATH,
     963             :                  "%s/" LOGICAL_REWRITE_FORMAT,
     964             :                  PG_LOGICAL_MAPPINGS_DIR, dboid, relid,
     965         180 :                  LSN_FORMAT_ARGS(state->rs_begin_lsn),
     966             :                  xid, GetCurrentTransactionId());
     967             : 
     968         180 :         dclist_init(&src->mappings);
     969         180 :         src->off = 0;
     970         180 :         memcpy(src->path, path, sizeof(path));
     971         180 :         src->vfd = PathNameOpenFile(path,
     972             :                                     O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
     973         180 :         if (src->vfd < 0)
     974           0 :             ereport(ERROR,
     975             :                     (errcode_for_file_access(),
     976             :                      errmsg("could not create file \"%s\": %m", path)));
     977             :     }
     978             : 
     979        1446 :     pmap = MemoryContextAlloc(state->rs_cxt,
     980             :                               sizeof(RewriteMappingDataEntry));
     981        1446 :     memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
     982        1446 :     dclist_push_tail(&src->mappings, &pmap->node);
     983        1446 :     state->rs_num_rewrite_mappings++;
     984             : 
     985             :     /*
     986             :      * Write out buffer every time we've too many in-memory entries across all
     987             :      * mapping files.
     988             :      */
     989        1446 :     if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
     990           0 :         logical_heap_rewrite_flush_mappings(state);
     991        1446 : }
     992             : 
     993             : /*
     994             :  * Perform logical remapping for a tuple that's mapped from old_tid to
     995             :  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
     996             :  */
     997             : static void
     998      740332 : logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid,
     999             :                            HeapTuple new_tuple)
    1000             : {
    1001      740332 :     ItemPointerData new_tid = new_tuple->t_self;
    1002      740332 :     TransactionId cutoff = state->rs_logical_xmin;
    1003             :     TransactionId xmin;
    1004             :     TransactionId xmax;
    1005      740332 :     bool        do_log_xmin = false;
    1006      740332 :     bool        do_log_xmax = false;
    1007             :     LogicalRewriteMappingData map;
    1008             : 
    1009             :     /* no logical rewrite in progress, we don't need to log anything */
    1010      740332 :     if (!state->rs_logical_rewrite)
    1011      738916 :         return;
    1012             : 
    1013       53240 :     xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
    1014             :     /* use *GetUpdateXid to correctly deal with multixacts */
    1015       53240 :     xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
    1016             : 
    1017             :     /*
    1018             :      * Log the mapping iff the tuple has been created recently.
    1019             :      */
    1020       53240 :     if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
    1021        1070 :         do_log_xmin = true;
    1022             : 
    1023       53240 :     if (!TransactionIdIsNormal(xmax))
    1024             :     {
    1025             :         /*
    1026             :          * no xmax is set, can't have any permanent ones, so this check is
    1027             :          * sufficient
    1028             :          */
    1029             :     }
    1030        1002 :     else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
    1031             :     {
    1032             :         /* only locked, we don't care */
    1033             :     }
    1034        1002 :     else if (!TransactionIdPrecedes(xmax, cutoff))
    1035             :     {
    1036             :         /* tuple has been deleted recently, log */
    1037        1002 :         do_log_xmax = true;
    1038             :     }
    1039             : 
    1040             :     /* if neither needs to be logged, we're done */
    1041       53240 :     if (!do_log_xmin && !do_log_xmax)
    1042       51824 :         return;
    1043             : 
    1044             :     /* fill out mapping information */
    1045        1416 :     map.old_locator = state->rs_old_rel->rd_locator;
    1046        1416 :     map.old_tid = old_tid;
    1047        1416 :     map.new_locator = state->rs_new_rel->rd_locator;
    1048        1416 :     map.new_tid = new_tid;
    1049             : 
    1050             :     /* ---
    1051             :      * Now persist the mapping for the individual xids that are affected. We
    1052             :      * need to log for both xmin and xmax if they aren't the same transaction
    1053             :      * since the mapping files are per "affected" xid.
    1054             :      * We don't muster all that much effort detecting whether xmin and xmax
    1055             :      * are actually the same transaction, we just check whether the xid is the
    1056             :      * same disregarding subtransactions. Logging too much is relatively
    1057             :      * harmless and we could never do the check fully since subtransaction
    1058             :      * data is thrown away during restarts.
    1059             :      * ---
    1060             :      */
    1061        1416 :     if (do_log_xmin)
    1062        1070 :         logical_rewrite_log_mapping(state, xmin, &map);
    1063             :     /* separately log mapping for xmax unless it'd be redundant */
    1064        1416 :     if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
    1065         376 :         logical_rewrite_log_mapping(state, xmax, &map);
    1066             : }
    1067             : 
    1068             : /*
    1069             :  * Replay XLOG_HEAP2_REWRITE records
    1070             :  */
    1071             : void
    1072           0 : heap_xlog_logical_rewrite(XLogReaderState *r)
    1073             : {
    1074             :     char        path[MAXPGPATH];
    1075             :     int         fd;
    1076             :     xl_heap_rewrite_mapping *xlrec;
    1077             :     uint32      len;
    1078             :     char       *data;
    1079             : 
    1080           0 :     xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
    1081             : 
    1082           0 :     snprintf(path, MAXPGPATH,
    1083             :              "%s/" LOGICAL_REWRITE_FORMAT,
    1084             :              PG_LOGICAL_MAPPINGS_DIR, xlrec->mapped_db, xlrec->mapped_rel,
    1085           0 :              LSN_FORMAT_ARGS(xlrec->start_lsn),
    1086           0 :              xlrec->mapped_xid, XLogRecGetXid(r));
    1087             : 
    1088           0 :     fd = OpenTransientFile(path,
    1089             :                            O_CREAT | O_WRONLY | PG_BINARY);
    1090           0 :     if (fd < 0)
    1091           0 :         ereport(ERROR,
    1092             :                 (errcode_for_file_access(),
    1093             :                  errmsg("could not create file \"%s\": %m", path)));
    1094             : 
    1095             :     /*
    1096             :      * Truncate all data that's not guaranteed to have been safely fsynced (by
    1097             :      * previous record or by the last checkpoint).
    1098             :      */
    1099           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
    1100           0 :     if (ftruncate(fd, xlrec->offset) != 0)
    1101           0 :         ereport(ERROR,
    1102             :                 (errcode_for_file_access(),
    1103             :                  errmsg("could not truncate file \"%s\" to %u: %m",
    1104             :                         path, (uint32) xlrec->offset)));
    1105           0 :     pgstat_report_wait_end();
    1106             : 
    1107           0 :     data = XLogRecGetData(r) + sizeof(*xlrec);
    1108             : 
    1109           0 :     len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
    1110             : 
    1111             :     /* write out tail end of mapping file (again) */
    1112           0 :     errno = 0;
    1113           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
    1114           0 :     if (pg_pwrite(fd, data, len, xlrec->offset) != len)
    1115             :     {
    1116             :         /* if write didn't set errno, assume problem is no disk space */
    1117           0 :         if (errno == 0)
    1118           0 :             errno = ENOSPC;
    1119           0 :         ereport(ERROR,
    1120             :                 (errcode_for_file_access(),
    1121             :                  errmsg("could not write to file \"%s\": %m", path)));
    1122             :     }
    1123           0 :     pgstat_report_wait_end();
    1124             : 
    1125             :     /*
    1126             :      * Now fsync all previously written data. We could improve things and only
    1127             :      * do this for the last write to a file, but the required bookkeeping
    1128             :      * doesn't seem worth the trouble.
    1129             :      */
    1130           0 :     pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
    1131           0 :     if (pg_fsync(fd) != 0)
    1132           0 :         ereport(data_sync_elevel(ERROR),
    1133             :                 (errcode_for_file_access(),
    1134             :                  errmsg("could not fsync file \"%s\": %m", path)));
    1135           0 :     pgstat_report_wait_end();
    1136             : 
    1137           0 :     if (CloseTransientFile(fd) != 0)
    1138           0 :         ereport(ERROR,
    1139             :                 (errcode_for_file_access(),
    1140             :                  errmsg("could not close file \"%s\": %m", path)));
    1141           0 : }
    1142             : 
    1143             : /* ---
    1144             :  * Perform a checkpoint for logical rewrite mappings
    1145             :  *
    1146             :  * This serves two tasks:
    1147             :  * 1) Remove all mappings not needed anymore based on the logical restart LSN
    1148             :  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
    1149             :  *    only has to deal with the parts of a mapping that have been written out
    1150             :  *    after the checkpoint started.
    1151             :  * ---
    1152             :  */
    1153             : void
    1154        3456 : CheckPointLogicalRewriteHeap(void)
    1155             : {
    1156             :     XLogRecPtr  cutoff;
    1157             :     XLogRecPtr  redo;
    1158             :     DIR        *mappings_dir;
    1159             :     struct dirent *mapping_de;
    1160             :     char        path[MAXPGPATH + sizeof(PG_LOGICAL_MAPPINGS_DIR)];
    1161             : 
    1162             :     /*
    1163             :      * We start of with a minimum of the last redo pointer. No new decoding
    1164             :      * slot will start before that, so that's a safe upper bound for removal.
    1165             :      */
    1166        3456 :     redo = GetRedoRecPtr();
    1167             : 
    1168             :     /* now check for the restart ptrs from existing slots */
    1169        3456 :     cutoff = ReplicationSlotsComputeLogicalRestartLSN();
    1170             : 
    1171             :     /* don't start earlier than the restart lsn */
    1172        3456 :     if (cutoff != InvalidXLogRecPtr && redo < cutoff)
    1173           2 :         cutoff = redo;
    1174             : 
    1175        3456 :     mappings_dir = AllocateDir(PG_LOGICAL_MAPPINGS_DIR);
    1176       10728 :     while ((mapping_de = ReadDir(mappings_dir, PG_LOGICAL_MAPPINGS_DIR)) != NULL)
    1177             :     {
    1178             :         Oid         dboid;
    1179             :         Oid         relid;
    1180             :         XLogRecPtr  lsn;
    1181             :         TransactionId rewrite_xid;
    1182             :         TransactionId create_xid;
    1183             :         uint32      hi,
    1184             :                     lo;
    1185             :         PGFileType  de_type;
    1186             : 
    1187        7272 :         if (strcmp(mapping_de->d_name, ".") == 0 ||
    1188        3816 :             strcmp(mapping_de->d_name, "..") == 0)
    1189        6912 :             continue;
    1190             : 
    1191         360 :         snprintf(path, sizeof(path), "%s/%s", PG_LOGICAL_MAPPINGS_DIR, mapping_de->d_name);
    1192         360 :         de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
    1193             : 
    1194         360 :         if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
    1195           0 :             continue;
    1196             : 
    1197             :         /* Skip over files that cannot be ours. */
    1198         360 :         if (strncmp(mapping_de->d_name, "map-", 4) != 0)
    1199           0 :             continue;
    1200             : 
    1201         360 :         if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
    1202             :                    &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
    1203           0 :             elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
    1204             : 
    1205         360 :         lsn = ((uint64) hi) << 32 | lo;
    1206             : 
    1207         360 :         if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
    1208             :         {
    1209         180 :             elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
    1210         180 :             if (unlink(path) < 0)
    1211           0 :                 ereport(ERROR,
    1212             :                         (errcode_for_file_access(),
    1213             :                          errmsg("could not remove file \"%s\": %m", path)));
    1214             :         }
    1215             :         else
    1216             :         {
    1217             :             /* on some operating systems fsyncing a file requires O_RDWR */
    1218         180 :             int         fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
    1219             : 
    1220             :             /*
    1221             :              * The file cannot vanish due to concurrency since this function
    1222             :              * is the only one removing logical mappings and only one
    1223             :              * checkpoint can be in progress at a time.
    1224             :              */
    1225         180 :             if (fd < 0)
    1226           0 :                 ereport(ERROR,
    1227             :                         (errcode_for_file_access(),
    1228             :                          errmsg("could not open file \"%s\": %m", path)));
    1229             : 
    1230             :             /*
    1231             :              * We could try to avoid fsyncing files that either haven't
    1232             :              * changed or have only been created since the checkpoint's start,
    1233             :              * but it's currently not deemed worth the effort.
    1234             :              */
    1235         180 :             pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
    1236         180 :             if (pg_fsync(fd) != 0)
    1237           0 :                 ereport(data_sync_elevel(ERROR),
    1238             :                         (errcode_for_file_access(),
    1239             :                          errmsg("could not fsync file \"%s\": %m", path)));
    1240         180 :             pgstat_report_wait_end();
    1241             : 
    1242         180 :             if (CloseTransientFile(fd) != 0)
    1243           0 :                 ereport(ERROR,
    1244             :                         (errcode_for_file_access(),
    1245             :                          errmsg("could not close file \"%s\": %m", path)));
    1246             :         }
    1247             :     }
    1248        3456 :     FreeDir(mappings_dir);
    1249             : 
    1250             :     /* persist directory entries to disk */
    1251        3456 :     fsync_fname(PG_LOGICAL_MAPPINGS_DIR, true);
    1252        3456 : }

Generated by: LCOV version 1.16