LCOV - code coverage report
Current view: top level - src/backend/access/heap - pruneheap.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 474 498 95.2 %
Date: 2025-01-18 05:15:39 Functions: 22 22 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pruneheap.c
       4             :  *    heap page pruning and HOT-chain management code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/pruneheap.c
      12             :  *
      13             :  *-------------------------------------------------------------------------
      14             :  */
      15             : #include "postgres.h"
      16             : 
      17             : #include "access/heapam.h"
      18             : #include "access/heapam_xlog.h"
      19             : #include "access/htup_details.h"
      20             : #include "access/multixact.h"
      21             : #include "access/transam.h"
      22             : #include "access/xlog.h"
      23             : #include "access/xloginsert.h"
      24             : #include "commands/vacuum.h"
      25             : #include "executor/instrument.h"
      26             : #include "miscadmin.h"
      27             : #include "pgstat.h"
      28             : #include "storage/bufmgr.h"
      29             : #include "utils/rel.h"
      30             : #include "utils/snapmgr.h"
      31             : 
      32             : /* Working data for heap_page_prune_and_freeze() and subroutines */
      33             : typedef struct
      34             : {
      35             :     /*-------------------------------------------------------
      36             :      * Arguments passed to heap_page_prune_and_freeze()
      37             :      *-------------------------------------------------------
      38             :      */
      39             : 
      40             :     /* tuple visibility test, initialized for the relation */
      41             :     GlobalVisState *vistest;
      42             :     /* whether or not dead items can be set LP_UNUSED during pruning */
      43             :     bool        mark_unused_now;
      44             :     /* whether to attempt freezing tuples */
      45             :     bool        freeze;
      46             :     struct VacuumCutoffs *cutoffs;
      47             : 
      48             :     /*-------------------------------------------------------
      49             :      * Fields describing what to do to the page
      50             :      *-------------------------------------------------------
      51             :      */
      52             :     TransactionId new_prune_xid;    /* new prune hint value */
      53             :     TransactionId latest_xid_removed;
      54             :     int         nredirected;    /* numbers of entries in arrays below */
      55             :     int         ndead;
      56             :     int         nunused;
      57             :     int         nfrozen;
      58             :     /* arrays that accumulate indexes of items to be changed */
      59             :     OffsetNumber redirected[MaxHeapTuplesPerPage * 2];
      60             :     OffsetNumber nowdead[MaxHeapTuplesPerPage];
      61             :     OffsetNumber nowunused[MaxHeapTuplesPerPage];
      62             :     HeapTupleFreeze frozen[MaxHeapTuplesPerPage];
      63             : 
      64             :     /*-------------------------------------------------------
      65             :      * Working state for HOT chain processing
      66             :      *-------------------------------------------------------
      67             :      */
      68             : 
      69             :     /*
      70             :      * 'root_items' contains offsets of all LP_REDIRECT line pointers and
      71             :      * normal non-HOT tuples.  They can be stand-alone items or the first item
      72             :      * in a HOT chain.  'heaponly_items' contains heap-only tuples which can
      73             :      * only be removed as part of a HOT chain.
      74             :      */
      75             :     int         nroot_items;
      76             :     OffsetNumber root_items[MaxHeapTuplesPerPage];
      77             :     int         nheaponly_items;
      78             :     OffsetNumber heaponly_items[MaxHeapTuplesPerPage];
      79             : 
      80             :     /*
      81             :      * processed[offnum] is true if item at offnum has been processed.
      82             :      *
      83             :      * This needs to be MaxHeapTuplesPerPage + 1 long as FirstOffsetNumber is
      84             :      * 1. Otherwise every access would need to subtract 1.
      85             :      */
      86             :     bool        processed[MaxHeapTuplesPerPage + 1];
      87             : 
      88             :     /*
      89             :      * Tuple visibility is only computed once for each tuple, for correctness
      90             :      * and efficiency reasons; see comment in heap_page_prune_and_freeze() for
      91             :      * details.  This is of type int8[], instead of HTSV_Result[], so we can
      92             :      * use -1 to indicate no visibility has been computed, e.g. for LP_DEAD
      93             :      * items.
      94             :      *
      95             :      * This needs to be MaxHeapTuplesPerPage + 1 long as FirstOffsetNumber is
      96             :      * 1. Otherwise every access would need to subtract 1.
      97             :      */
      98             :     int8        htsv[MaxHeapTuplesPerPage + 1];
      99             : 
     100             :     /*
     101             :      * Freezing-related state.
     102             :      */
     103             :     HeapPageFreeze pagefrz;
     104             : 
     105             :     /*-------------------------------------------------------
     106             :      * Information about what was done
     107             :      *
     108             :      * These fields are not used by pruning itself for the most part, but are
     109             :      * used to collect information about what was pruned and what state the
     110             :      * page is in after pruning, for the benefit of the caller.  They are
     111             :      * copied to the caller's PruneFreezeResult at the end.
     112             :      * -------------------------------------------------------
     113             :      */
     114             : 
     115             :     int         ndeleted;       /* Number of tuples deleted from the page */
     116             : 
     117             :     /* Number of live and recently dead tuples, after pruning */
     118             :     int         live_tuples;
     119             :     int         recently_dead_tuples;
     120             : 
     121             :     /* Whether or not the page makes rel truncation unsafe */
     122             :     bool        hastup;
     123             : 
     124             :     /*
     125             :      * LP_DEAD items on the page after pruning.  Includes existing LP_DEAD
     126             :      * items
     127             :      */
     128             :     int         lpdead_items;   /* number of items in the array */
     129             :     OffsetNumber *deadoffsets;  /* points directly to presult->deadoffsets */
     130             : 
     131             :     /*
     132             :      * all_visible and all_frozen indicate if the all-visible and all-frozen
     133             :      * bits in the visibility map can be set for this page after pruning.
     134             :      *
     135             :      * visibility_cutoff_xid is the newest xmin of live tuples on the page.
     136             :      * The caller can use it as the conflict horizon, when setting the VM
     137             :      * bits.  It is only valid if we froze some tuples, and all_frozen is
     138             :      * true.
     139             :      *
     140             :      * NOTE: all_visible and all_frozen don't include LP_DEAD items.  That's
     141             :      * convenient for heap_page_prune_and_freeze(), to use them to decide
     142             :      * whether to freeze the page or not.  The all_visible and all_frozen
     143             :      * values returned to the caller are adjusted to include LP_DEAD items at
     144             :      * the end.
     145             :      *
     146             :      * all_frozen should only be considered valid if all_visible is also set;
     147             :      * we don't bother to clear the all_frozen flag every time we clear the
     148             :      * all_visible flag.
     149             :      */
     150             :     bool        all_visible;
     151             :     bool        all_frozen;
     152             :     TransactionId visibility_cutoff_xid;
     153             : } PruneState;
     154             : 
     155             : /* Local functions */
     156             : static HTSV_Result heap_prune_satisfies_vacuum(PruneState *prstate,
     157             :                                                HeapTuple tup,
     158             :                                                Buffer buffer);
     159             : static inline HTSV_Result htsv_get_valid_status(int status);
     160             : static void heap_prune_chain(Page page, BlockNumber blockno, OffsetNumber maxoff,
     161             :                              OffsetNumber rootoffnum, PruneState *prstate);
     162             : static void heap_prune_record_prunable(PruneState *prstate, TransactionId xid);
     163             : static void heap_prune_record_redirect(PruneState *prstate,
     164             :                                        OffsetNumber offnum, OffsetNumber rdoffnum,
     165             :                                        bool was_normal);
     166             : static void heap_prune_record_dead(PruneState *prstate, OffsetNumber offnum,
     167             :                                    bool was_normal);
     168             : static void heap_prune_record_dead_or_unused(PruneState *prstate, OffsetNumber offnum,
     169             :                                              bool was_normal);
     170             : static void heap_prune_record_unused(PruneState *prstate, OffsetNumber offnum, bool was_normal);
     171             : 
     172             : static void heap_prune_record_unchanged_lp_unused(Page page, PruneState *prstate, OffsetNumber offnum);
     173             : static void heap_prune_record_unchanged_lp_normal(Page page, PruneState *prstate, OffsetNumber offnum);
     174             : static void heap_prune_record_unchanged_lp_dead(Page page, PruneState *prstate, OffsetNumber offnum);
     175             : static void heap_prune_record_unchanged_lp_redirect(PruneState *prstate, OffsetNumber offnum);
     176             : 
     177             : static void page_verify_redirects(Page page);
     178             : 
     179             : 
     180             : /*
     181             :  * Optionally prune and repair fragmentation in the specified page.
     182             :  *
     183             :  * This is an opportunistic function.  It will perform housekeeping
     184             :  * only if the page heuristically looks like a candidate for pruning and we
     185             :  * can acquire buffer cleanup lock without blocking.
     186             :  *
     187             :  * Note: this is called quite often.  It's important that it fall out quickly
     188             :  * if there's not any use in pruning.
     189             :  *
     190             :  * Caller must have pin on the buffer, and must *not* have a lock on it.
     191             :  */
     192             : void
     193    29051428 : heap_page_prune_opt(Relation relation, Buffer buffer)
     194             : {
     195    29051428 :     Page        page = BufferGetPage(buffer);
     196             :     TransactionId prune_xid;
     197             :     GlobalVisState *vistest;
     198             :     Size        minfree;
     199             : 
     200             :     /*
     201             :      * We can't write WAL in recovery mode, so there's no point trying to
     202             :      * clean the page. The primary will likely issue a cleaning WAL record
     203             :      * soon anyway, so this is no particular loss.
     204             :      */
     205    29051428 :     if (RecoveryInProgress())
     206      428894 :         return;
     207             : 
     208             :     /*
     209             :      * First check whether there's any chance there's something to prune,
     210             :      * determining the appropriate horizon is a waste if there's no prune_xid
     211             :      * (i.e. no updates/deletes left potentially dead tuples around).
     212             :      */
     213    28622534 :     prune_xid = ((PageHeader) page)->pd_prune_xid;
     214    28622534 :     if (!TransactionIdIsValid(prune_xid))
     215    13603150 :         return;
     216             : 
     217             :     /*
     218             :      * Check whether prune_xid indicates that there may be dead rows that can
     219             :      * be cleaned up.
     220             :      */
     221    15019384 :     vistest = GlobalVisTestFor(relation);
     222             : 
     223    15019384 :     if (!GlobalVisTestIsRemovableXid(vistest, prune_xid))
     224    12727706 :         return;
     225             : 
     226             :     /*
     227             :      * We prune when a previous UPDATE failed to find enough space on the page
     228             :      * for a new tuple version, or when free space falls below the relation's
     229             :      * fill-factor target (but not less than 10%).
     230             :      *
     231             :      * Checking free space here is questionable since we aren't holding any
     232             :      * lock on the buffer; in the worst case we could get a bogus answer. It's
     233             :      * unlikely to be *seriously* wrong, though, since reading either pd_lower
     234             :      * or pd_upper is probably atomic.  Avoiding taking a lock seems more
     235             :      * important than sometimes getting a wrong answer in what is after all
     236             :      * just a heuristic estimate.
     237             :      */
     238     2291678 :     minfree = RelationGetTargetPageFreeSpace(relation,
     239             :                                              HEAP_DEFAULT_FILLFACTOR);
     240     2291678 :     minfree = Max(minfree, BLCKSZ / 10);
     241             : 
     242     2291678 :     if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
     243             :     {
     244             :         /* OK, try to get exclusive buffer lock */
     245       76952 :         if (!ConditionalLockBufferForCleanup(buffer))
     246         608 :             return;
     247             : 
     248             :         /*
     249             :          * Now that we have buffer lock, get accurate information about the
     250             :          * page's free space, and recheck the heuristic about whether to
     251             :          * prune.
     252             :          */
     253       76344 :         if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
     254             :         {
     255             :             OffsetNumber dummy_off_loc;
     256             :             PruneFreezeResult presult;
     257             : 
     258             :             /*
     259             :              * For now, pass mark_unused_now as false regardless of whether or
     260             :              * not the relation has indexes, since we cannot safely determine
     261             :              * that during on-access pruning with the current implementation.
     262             :              */
     263       76344 :             heap_page_prune_and_freeze(relation, buffer, vistest, 0,
     264             :                                        NULL, &presult, PRUNE_ON_ACCESS, &dummy_off_loc, NULL, NULL);
     265             : 
     266             :             /*
     267             :              * Report the number of tuples reclaimed to pgstats.  This is
     268             :              * presult.ndeleted minus the number of newly-LP_DEAD-set items.
     269             :              *
     270             :              * We derive the number of dead tuples like this to avoid totally
     271             :              * forgetting about items that were set to LP_DEAD, since they
     272             :              * still need to be cleaned up by VACUUM.  We only want to count
     273             :              * heap-only tuples that just became LP_UNUSED in our report,
     274             :              * which don't.
     275             :              *
     276             :              * VACUUM doesn't have to compensate in the same way when it
     277             :              * tracks ndeleted, since it will set the same LP_DEAD items to
     278             :              * LP_UNUSED separately.
     279             :              */
     280       76344 :             if (presult.ndeleted > presult.nnewlpdead)
     281       33050 :                 pgstat_update_heap_dead_tuples(relation,
     282       33050 :                                                presult.ndeleted - presult.nnewlpdead);
     283             :         }
     284             : 
     285             :         /* And release buffer lock */
     286       76344 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     287             : 
     288             :         /*
     289             :          * We avoid reuse of any free space created on the page by unrelated
     290             :          * UPDATEs/INSERTs by opting to not update the FSM at this point.  The
     291             :          * free space should be reused by UPDATEs to *this* page.
     292             :          */
     293             :     }
     294             : }
     295             : 
     296             : 
     297             : /*
     298             :  * Prune and repair fragmentation and potentially freeze tuples on the
     299             :  * specified page.
     300             :  *
     301             :  * Caller must have pin and buffer cleanup lock on the page.  Note that we
     302             :  * don't update the FSM information for page on caller's behalf.  Caller might
     303             :  * also need to account for a reduction in the length of the line pointer
     304             :  * array following array truncation by us.
     305             :  *
     306             :  * If the HEAP_PRUNE_FREEZE option is set, we will also freeze tuples if it's
     307             :  * required in order to advance relfrozenxid / relminmxid, or if it's
     308             :  * considered advantageous for overall system performance to do so now.  The
     309             :  * 'cutoffs', 'presult', 'new_relfrozen_xid' and 'new_relmin_mxid' arguments
     310             :  * are required when freezing.  When HEAP_PRUNE_FREEZE option is set, we also
     311             :  * set presult->all_visible and presult->all_frozen on exit, to indicate if
     312             :  * the VM bits can be set.  They are always set to false when the
     313             :  * HEAP_PRUNE_FREEZE option is not set, because at the moment only callers
     314             :  * that also freeze need that information.
     315             :  *
     316             :  * vistest is used to distinguish whether tuples are DEAD or RECENTLY_DEAD
     317             :  * (see heap_prune_satisfies_vacuum).
     318             :  *
     319             :  * options:
     320             :  *   MARK_UNUSED_NOW indicates that dead items can be set LP_UNUSED during
     321             :  *   pruning.
     322             :  *
     323             :  *   FREEZE indicates that we will also freeze tuples, and will return
     324             :  *   'all_visible', 'all_frozen' flags to the caller.
     325             :  *
     326             :  * cutoffs contains the freeze cutoffs, established by VACUUM at the beginning
     327             :  * of vacuuming the relation.  Required if HEAP_PRUNE_FREEZE option is set.
     328             :  * cutoffs->OldestXmin is also used to determine if dead tuples are
     329             :  * HEAPTUPLE_RECENTLY_DEAD or HEAPTUPLE_DEAD.
     330             :  *
     331             :  * presult contains output parameters needed by callers, such as the number of
     332             :  * tuples removed and the offsets of dead items on the page after pruning.
     333             :  * heap_page_prune_and_freeze() is responsible for initializing it.  Required
     334             :  * by all callers.
     335             :  *
     336             :  * reason indicates why the pruning is performed.  It is included in the WAL
     337             :  * record for debugging and analysis purposes, but otherwise has no effect.
     338             :  *
     339             :  * off_loc is the offset location required by the caller to use in error
     340             :  * callback.
     341             :  *
     342             :  * new_relfrozen_xid and new_relmin_mxid must provided by the caller if the
     343             :  * HEAP_PRUNE_FREEZE option is set.  On entry, they contain the oldest XID and
     344             :  * multi-XID seen on the relation so far.  They will be updated with oldest
     345             :  * values present on the page after pruning.  After processing the whole
     346             :  * relation, VACUUM can use these values as the new relfrozenxid/relminmxid
     347             :  * for the relation.
     348             :  */
     349             : void
     350      845188 : heap_page_prune_and_freeze(Relation relation, Buffer buffer,
     351             :                            GlobalVisState *vistest,
     352             :                            int options,
     353             :                            struct VacuumCutoffs *cutoffs,
     354             :                            PruneFreezeResult *presult,
     355             :                            PruneReason reason,
     356             :                            OffsetNumber *off_loc,
     357             :                            TransactionId *new_relfrozen_xid,
     358             :                            MultiXactId *new_relmin_mxid)
     359             : {
     360      845188 :     Page        page = BufferGetPage(buffer);
     361      845188 :     BlockNumber blockno = BufferGetBlockNumber(buffer);
     362             :     OffsetNumber offnum,
     363             :                 maxoff;
     364             :     PruneState  prstate;
     365             :     HeapTupleData tup;
     366             :     bool        do_freeze;
     367             :     bool        do_prune;
     368             :     bool        do_hint;
     369             :     bool        hint_bit_fpi;
     370      845188 :     int64       fpi_before = pgWalUsage.wal_fpi;
     371             : 
     372             :     /* Copy parameters to prstate */
     373      845188 :     prstate.vistest = vistest;
     374      845188 :     prstate.mark_unused_now = (options & HEAP_PAGE_PRUNE_MARK_UNUSED_NOW) != 0;
     375      845188 :     prstate.freeze = (options & HEAP_PAGE_PRUNE_FREEZE) != 0;
     376      845188 :     prstate.cutoffs = cutoffs;
     377             : 
     378             :     /*
     379             :      * Our strategy is to scan the page and make lists of items to change,
     380             :      * then apply the changes within a critical section.  This keeps as much
     381             :      * logic as possible out of the critical section, and also ensures that
     382             :      * WAL replay will work the same as the normal case.
     383             :      *
     384             :      * First, initialize the new pd_prune_xid value to zero (indicating no
     385             :      * prunable tuples).  If we find any tuples which may soon become
     386             :      * prunable, we will save the lowest relevant XID in new_prune_xid. Also
     387             :      * initialize the rest of our working state.
     388             :      */
     389      845188 :     prstate.new_prune_xid = InvalidTransactionId;
     390      845188 :     prstate.latest_xid_removed = InvalidTransactionId;
     391      845188 :     prstate.nredirected = prstate.ndead = prstate.nunused = prstate.nfrozen = 0;
     392      845188 :     prstate.nroot_items = 0;
     393      845188 :     prstate.nheaponly_items = 0;
     394             : 
     395             :     /* initialize page freezing working state */
     396      845188 :     prstate.pagefrz.freeze_required = false;
     397      845188 :     if (prstate.freeze)
     398             :     {
     399             :         Assert(new_relfrozen_xid && new_relmin_mxid);
     400      768844 :         prstate.pagefrz.FreezePageRelfrozenXid = *new_relfrozen_xid;
     401      768844 :         prstate.pagefrz.NoFreezePageRelfrozenXid = *new_relfrozen_xid;
     402      768844 :         prstate.pagefrz.FreezePageRelminMxid = *new_relmin_mxid;
     403      768844 :         prstate.pagefrz.NoFreezePageRelminMxid = *new_relmin_mxid;
     404             :     }
     405             :     else
     406             :     {
     407             :         Assert(new_relfrozen_xid == NULL && new_relmin_mxid == NULL);
     408       76344 :         prstate.pagefrz.FreezePageRelminMxid = InvalidMultiXactId;
     409       76344 :         prstate.pagefrz.NoFreezePageRelminMxid = InvalidMultiXactId;
     410       76344 :         prstate.pagefrz.FreezePageRelfrozenXid = InvalidTransactionId;
     411       76344 :         prstate.pagefrz.NoFreezePageRelfrozenXid = InvalidTransactionId;
     412             :     }
     413             : 
     414      845188 :     prstate.ndeleted = 0;
     415      845188 :     prstate.live_tuples = 0;
     416      845188 :     prstate.recently_dead_tuples = 0;
     417      845188 :     prstate.hastup = false;
     418      845188 :     prstate.lpdead_items = 0;
     419      845188 :     prstate.deadoffsets = presult->deadoffsets;
     420             : 
     421             :     /*
     422             :      * Caller may update the VM after we're done.  We can keep track of
     423             :      * whether the page will be all-visible and all-frozen after pruning and
     424             :      * freezing to help the caller to do that.
     425             :      *
     426             :      * Currently, only VACUUM sets the VM bits.  To save the effort, only do
     427             :      * the bookkeeping if the caller needs it.  Currently, that's tied to
     428             :      * HEAP_PAGE_PRUNE_FREEZE, but it could be a separate flag if you wanted
     429             :      * to update the VM bits without also freezing or freeze without also
     430             :      * setting the VM bits.
     431             :      *
     432             :      * In addition to telling the caller whether it can set the VM bit, we
     433             :      * also use 'all_visible' and 'all_frozen' for our own decision-making. If
     434             :      * the whole page would become frozen, we consider opportunistically
     435             :      * freezing tuples.  We will not be able to freeze the whole page if there
     436             :      * are tuples present that are not visible to everyone or if there are
     437             :      * dead tuples which are not yet removable.  However, dead tuples which
     438             :      * will be removed by the end of vacuuming should not preclude us from
     439             :      * opportunistically freezing.  Because of that, we do not clear
     440             :      * all_visible when we see LP_DEAD items.  We fix that at the end of the
     441             :      * function, when we return the value to the caller, so that the caller
     442             :      * doesn't set the VM bit incorrectly.
     443             :      */
     444      845188 :     if (prstate.freeze)
     445             :     {
     446      768844 :         prstate.all_visible = true;
     447      768844 :         prstate.all_frozen = true;
     448             :     }
     449             :     else
     450             :     {
     451             :         /*
     452             :          * Initializing to false allows skipping the work to update them in
     453             :          * heap_prune_record_unchanged_lp_normal().
     454             :          */
     455       76344 :         prstate.all_visible = false;
     456       76344 :         prstate.all_frozen = false;
     457             :     }
     458             : 
     459             :     /*
     460             :      * The visibility cutoff xid is the newest xmin of live tuples on the
     461             :      * page.  In the common case, this will be set as the conflict horizon the
     462             :      * caller can use for updating the VM.  If, at the end of freezing and
     463             :      * pruning, the page is all-frozen, there is no possibility that any
     464             :      * running transaction on the standby does not see tuples on the page as
     465             :      * all-visible, so the conflict horizon remains InvalidTransactionId.
     466             :      */
     467      845188 :     prstate.visibility_cutoff_xid = InvalidTransactionId;
     468             : 
     469      845188 :     maxoff = PageGetMaxOffsetNumber(page);
     470      845188 :     tup.t_tableOid = RelationGetRelid(relation);
     471             : 
     472             :     /*
     473             :      * Determine HTSV for all tuples, and queue them up for processing as HOT
     474             :      * chain roots or as heap-only items.
     475             :      *
     476             :      * Determining HTSV only once for each tuple is required for correctness,
     477             :      * to deal with cases where running HTSV twice could result in different
     478             :      * results.  For example, RECENTLY_DEAD can turn to DEAD if another
     479             :      * checked item causes GlobalVisTestIsRemovableFullXid() to update the
     480             :      * horizon, or INSERT_IN_PROGRESS can change to DEAD if the inserting
     481             :      * transaction aborts.
     482             :      *
     483             :      * It's also good for performance. Most commonly tuples within a page are
     484             :      * stored at decreasing offsets (while the items are stored at increasing
     485             :      * offsets). When processing all tuples on a page this leads to reading
     486             :      * memory at decreasing offsets within a page, with a variable stride.
     487             :      * That's hard for CPU prefetchers to deal with. Processing the items in
     488             :      * reverse order (and thus the tuples in increasing order) increases
     489             :      * prefetching efficiency significantly / decreases the number of cache
     490             :      * misses.
     491             :      */
     492    41739532 :     for (offnum = maxoff;
     493             :          offnum >= FirstOffsetNumber;
     494    40894344 :          offnum = OffsetNumberPrev(offnum))
     495             :     {
     496    40894344 :         ItemId      itemid = PageGetItemId(page, offnum);
     497             :         HeapTupleHeader htup;
     498             : 
     499             :         /*
     500             :          * Set the offset number so that we can display it along with any
     501             :          * error that occurred while processing this tuple.
     502             :          */
     503    40894344 :         *off_loc = offnum;
     504             : 
     505    40894344 :         prstate.processed[offnum] = false;
     506    40894344 :         prstate.htsv[offnum] = -1;
     507             : 
     508             :         /* Nothing to do if slot doesn't contain a tuple */
     509    40894344 :         if (!ItemIdIsUsed(itemid))
     510             :         {
     511      358080 :             heap_prune_record_unchanged_lp_unused(page, &prstate, offnum);
     512      358080 :             continue;
     513             :         }
     514             : 
     515    40536264 :         if (ItemIdIsDead(itemid))
     516             :         {
     517             :             /*
     518             :              * If the caller set mark_unused_now true, we can set dead line
     519             :              * pointers LP_UNUSED now.
     520             :              */
     521     1884926 :             if (unlikely(prstate.mark_unused_now))
     522        2154 :                 heap_prune_record_unused(&prstate, offnum, false);
     523             :             else
     524     1882772 :                 heap_prune_record_unchanged_lp_dead(page, &prstate, offnum);
     525     1884926 :             continue;
     526             :         }
     527             : 
     528    38651338 :         if (ItemIdIsRedirected(itemid))
     529             :         {
     530             :             /* This is the start of a HOT chain */
     531      408510 :             prstate.root_items[prstate.nroot_items++] = offnum;
     532      408510 :             continue;
     533             :         }
     534             : 
     535             :         Assert(ItemIdIsNormal(itemid));
     536             : 
     537             :         /*
     538             :          * Get the tuple's visibility status and queue it up for processing.
     539             :          */
     540    38242828 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
     541    38242828 :         tup.t_data = htup;
     542    38242828 :         tup.t_len = ItemIdGetLength(itemid);
     543    38242828 :         ItemPointerSet(&tup.t_self, blockno, offnum);
     544             : 
     545    38242828 :         prstate.htsv[offnum] = heap_prune_satisfies_vacuum(&prstate, &tup,
     546             :                                                            buffer);
     547             : 
     548    38242828 :         if (!HeapTupleHeaderIsHeapOnly(htup))
     549    37617674 :             prstate.root_items[prstate.nroot_items++] = offnum;
     550             :         else
     551      625154 :             prstate.heaponly_items[prstate.nheaponly_items++] = offnum;
     552             :     }
     553             : 
     554             :     /*
     555             :      * If checksums are enabled, heap_prune_satisfies_vacuum() may have caused
     556             :      * an FPI to be emitted.
     557             :      */
     558      845188 :     hint_bit_fpi = fpi_before != pgWalUsage.wal_fpi;
     559             : 
     560             :     /*
     561             :      * Process HOT chains.
     562             :      *
     563             :      * We added the items to the array starting from 'maxoff', so by
     564             :      * processing the array in reverse order, we process the items in
     565             :      * ascending offset number order.  The order doesn't matter for
     566             :      * correctness, but some quick micro-benchmarking suggests that this is
     567             :      * faster.  (Earlier PostgreSQL versions, which scanned all the items on
     568             :      * the page instead of using the root_items array, also did it in
     569             :      * ascending offset number order.)
     570             :      */
     571    38871372 :     for (int i = prstate.nroot_items - 1; i >= 0; i--)
     572             :     {
     573    38026184 :         offnum = prstate.root_items[i];
     574             : 
     575             :         /* Ignore items already processed as part of an earlier chain */
     576    38026184 :         if (prstate.processed[offnum])
     577           0 :             continue;
     578             : 
     579             :         /* see preceding loop */
     580    38026184 :         *off_loc = offnum;
     581             : 
     582             :         /* Process this item or chain of items */
     583    38026184 :         heap_prune_chain(page, blockno, maxoff, offnum, &prstate);
     584             :     }
     585             : 
     586             :     /*
     587             :      * Process any heap-only tuples that were not already processed as part of
     588             :      * a HOT chain.
     589             :      */
     590     1470342 :     for (int i = prstate.nheaponly_items - 1; i >= 0; i--)
     591             :     {
     592      625154 :         offnum = prstate.heaponly_items[i];
     593             : 
     594      625154 :         if (prstate.processed[offnum])
     595      600352 :             continue;
     596             : 
     597             :         /* see preceding loop */
     598       24802 :         *off_loc = offnum;
     599             : 
     600             :         /*
     601             :          * If the tuple is DEAD and doesn't chain to anything else, mark it
     602             :          * unused.  (If it does chain, we can only remove it as part of
     603             :          * pruning its chain.)
     604             :          *
     605             :          * We need this primarily to handle aborted HOT updates, that is,
     606             :          * XMIN_INVALID heap-only tuples.  Those might not be linked to by any
     607             :          * chain, since the parent tuple might be re-updated before any
     608             :          * pruning occurs.  So we have to be able to reap them separately from
     609             :          * chain-pruning.  (Note that HeapTupleHeaderIsHotUpdated will never
     610             :          * return true for an XMIN_INVALID tuple, so this code will work even
     611             :          * when there were sequential updates within the aborted transaction.)
     612             :          */
     613       24802 :         if (prstate.htsv[offnum] == HEAPTUPLE_DEAD)
     614             :         {
     615        3634 :             ItemId      itemid = PageGetItemId(page, offnum);
     616        3634 :             HeapTupleHeader htup = (HeapTupleHeader) PageGetItem(page, itemid);
     617             : 
     618        3634 :             if (likely(!HeapTupleHeaderIsHotUpdated(htup)))
     619             :             {
     620        3634 :                 HeapTupleHeaderAdvanceConflictHorizon(htup,
     621             :                                                       &prstate.latest_xid_removed);
     622        3634 :                 heap_prune_record_unused(&prstate, offnum, true);
     623             :             }
     624             :             else
     625             :             {
     626             :                 /*
     627             :                  * This tuple should've been processed and removed as part of
     628             :                  * a HOT chain, so something's wrong.  To preserve evidence,
     629             :                  * we don't dare to remove it.  We cannot leave behind a DEAD
     630             :                  * tuple either, because that will cause VACUUM to error out.
     631             :                  * Throwing an error with a distinct error message seems like
     632             :                  * the least bad option.
     633             :                  */
     634           0 :                 elog(ERROR, "dead heap-only tuple (%u, %d) is not linked to from any HOT chain",
     635             :                      blockno, offnum);
     636             :             }
     637             :         }
     638             :         else
     639       21168 :             heap_prune_record_unchanged_lp_normal(page, &prstate, offnum);
     640             :     }
     641             : 
     642             :     /* We should now have processed every tuple exactly once  */
     643             : #ifdef USE_ASSERT_CHECKING
     644             :     for (offnum = FirstOffsetNumber;
     645             :          offnum <= maxoff;
     646             :          offnum = OffsetNumberNext(offnum))
     647             :     {
     648             :         *off_loc = offnum;
     649             : 
     650             :         Assert(prstate.processed[offnum]);
     651             :     }
     652             : #endif
     653             : 
     654             :     /* Clear the offset information once we have processed the given page. */
     655      845188 :     *off_loc = InvalidOffsetNumber;
     656             : 
     657     2506234 :     do_prune = prstate.nredirected > 0 ||
     658     1593562 :         prstate.ndead > 0 ||
     659      748374 :         prstate.nunused > 0;
     660             : 
     661             :     /*
     662             :      * Even if we don't prune anything, if we found a new value for the
     663             :      * pd_prune_xid field or the page was marked full, we will update the hint
     664             :      * bit.
     665             :      */
     666     1592966 :     do_hint = ((PageHeader) page)->pd_prune_xid != prstate.new_prune_xid ||
     667      747778 :         PageIsFull(page);
     668             : 
     669             :     /*
     670             :      * Decide if we want to go ahead with freezing according to the freeze
     671             :      * plans we prepared, or not.
     672             :      */
     673      845188 :     do_freeze = false;
     674      845188 :     if (prstate.freeze)
     675             :     {
     676      768844 :         if (prstate.pagefrz.freeze_required)
     677             :         {
     678             :             /*
     679             :              * heap_prepare_freeze_tuple indicated that at least one XID/MXID
     680             :              * from before FreezeLimit/MultiXactCutoff is present.  Must
     681             :              * freeze to advance relfrozenxid/relminmxid.
     682             :              */
     683       30020 :             do_freeze = true;
     684             :         }
     685             :         else
     686             :         {
     687             :             /*
     688             :              * Opportunistically freeze the page if we are generating an FPI
     689             :              * anyway and if doing so means that we can set the page
     690             :              * all-frozen afterwards (might not happen until VACUUM's final
     691             :              * heap pass).
     692             :              *
     693             :              * XXX: Previously, we knew if pruning emitted an FPI by checking
     694             :              * pgWalUsage.wal_fpi before and after pruning.  Once the freeze
     695             :              * and prune records were combined, this heuristic couldn't be
     696             :              * used anymore.  The opportunistic freeze heuristic must be
     697             :              * improved; however, for now, try to approximate the old logic.
     698             :              */
     699      738824 :             if (prstate.all_visible && prstate.all_frozen && prstate.nfrozen > 0)
     700             :             {
     701             :                 /*
     702             :                  * Freezing would make the page all-frozen.  Have already
     703             :                  * emitted an FPI or will do so anyway?
     704             :                  */
     705       30318 :                 if (RelationNeedsWAL(relation))
     706             :                 {
     707       27006 :                     if (hint_bit_fpi)
     708        2538 :                         do_freeze = true;
     709       24468 :                     else if (do_prune)
     710             :                     {
     711        2698 :                         if (XLogCheckBufferNeedsBackup(buffer))
     712         736 :                             do_freeze = true;
     713             :                     }
     714       21770 :                     else if (do_hint)
     715             :                     {
     716          14 :                         if (XLogHintBitIsNeeded() && XLogCheckBufferNeedsBackup(buffer))
     717           6 :                             do_freeze = true;
     718             :                     }
     719             :                 }
     720             :             }
     721             :         }
     722             :     }
     723             : 
     724      845188 :     if (do_freeze)
     725             :     {
     726             :         /*
     727             :          * Validate the tuples we will be freezing before entering the
     728             :          * critical section.
     729             :          */
     730       33300 :         heap_pre_freeze_checks(buffer, prstate.frozen, prstate.nfrozen);
     731             :     }
     732      811888 :     else if (prstate.nfrozen > 0)
     733             :     {
     734             :         /*
     735             :          * The page contained some tuples that were not already frozen, and we
     736             :          * chose not to freeze them now.  The page won't be all-frozen then.
     737             :          */
     738             :         Assert(!prstate.pagefrz.freeze_required);
     739             : 
     740       27606 :         prstate.all_frozen = false;
     741       27606 :         prstate.nfrozen = 0;    /* avoid miscounts in instrumentation */
     742             :     }
     743             :     else
     744             :     {
     745             :         /*
     746             :          * We have no freeze plans to execute.  The page might already be
     747             :          * all-frozen (perhaps only following pruning), though.  Such pages
     748             :          * can be marked all-frozen in the VM by our caller, even though none
     749             :          * of its tuples were newly frozen here.
     750             :          */
     751             :     }
     752             : 
     753             :     /* Any error while applying the changes is critical */
     754      845188 :     START_CRIT_SECTION();
     755             : 
     756      845188 :     if (do_hint)
     757             :     {
     758             :         /*
     759             :          * Update the page's pd_prune_xid field to either zero, or the lowest
     760             :          * XID of any soon-prunable tuple.
     761             :          */
     762       97516 :         ((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid;
     763             : 
     764             :         /*
     765             :          * Also clear the "page is full" flag, since there's no point in
     766             :          * repeating the prune/defrag process until something else happens to
     767             :          * the page.
     768             :          */
     769       97516 :         PageClearFull(page);
     770             : 
     771             :         /*
     772             :          * If that's all we had to do to the page, this is a non-WAL-logged
     773             :          * hint.  If we are going to freeze or prune the page, we will mark
     774             :          * the buffer dirty below.
     775             :          */
     776       97516 :         if (!do_freeze && !do_prune)
     777         306 :             MarkBufferDirtyHint(buffer, true);
     778             :     }
     779             : 
     780      845188 :     if (do_prune || do_freeze)
     781             :     {
     782             :         /* Apply the planned item changes and repair page fragmentation. */
     783      128656 :         if (do_prune)
     784             :         {
     785       97582 :             heap_page_prune_execute(buffer, false,
     786             :                                     prstate.redirected, prstate.nredirected,
     787             :                                     prstate.nowdead, prstate.ndead,
     788             :                                     prstate.nowunused, prstate.nunused);
     789             :         }
     790             : 
     791      128656 :         if (do_freeze)
     792       33300 :             heap_freeze_prepared_tuples(buffer, prstate.frozen, prstate.nfrozen);
     793             : 
     794      128656 :         MarkBufferDirty(buffer);
     795             : 
     796             :         /*
     797             :          * Emit a WAL XLOG_HEAP2_PRUNE_FREEZE record showing what we did
     798             :          */
     799      128656 :         if (RelationNeedsWAL(relation))
     800             :         {
     801             :             /*
     802             :              * The snapshotConflictHorizon for the whole record should be the
     803             :              * most conservative of all the horizons calculated for any of the
     804             :              * possible modifications.  If this record will prune tuples, any
     805             :              * transactions on the standby older than the youngest xmax of the
     806             :              * most recently removed tuple this record will prune will
     807             :              * conflict.  If this record will freeze tuples, any transactions
     808             :              * on the standby with xids older than the youngest tuple this
     809             :              * record will freeze will conflict.
     810             :              */
     811      126916 :             TransactionId frz_conflict_horizon = InvalidTransactionId;
     812             :             TransactionId conflict_xid;
     813             : 
     814             :             /*
     815             :              * We can use the visibility_cutoff_xid as our cutoff for
     816             :              * conflicts when the whole page is eligible to become all-frozen
     817             :              * in the VM once we're done with it.  Otherwise we generate a
     818             :              * conservative cutoff by stepping back from OldestXmin.
     819             :              */
     820      126916 :             if (do_freeze)
     821             :             {
     822       33296 :                 if (prstate.all_visible && prstate.all_frozen)
     823       28640 :                     frz_conflict_horizon = prstate.visibility_cutoff_xid;
     824             :                 else
     825             :                 {
     826             :                     /* Avoids false conflicts when hot_standby_feedback in use */
     827        4656 :                     frz_conflict_horizon = prstate.cutoffs->OldestXmin;
     828        4656 :                     TransactionIdRetreat(frz_conflict_horizon);
     829             :                 }
     830             :             }
     831             : 
     832      126916 :             if (TransactionIdFollows(frz_conflict_horizon, prstate.latest_xid_removed))
     833       31642 :                 conflict_xid = frz_conflict_horizon;
     834             :             else
     835       95274 :                 conflict_xid = prstate.latest_xid_removed;
     836             : 
     837      126916 :             log_heap_prune_and_freeze(relation, buffer,
     838             :                                       conflict_xid,
     839             :                                       true, reason,
     840             :                                       prstate.frozen, prstate.nfrozen,
     841             :                                       prstate.redirected, prstate.nredirected,
     842             :                                       prstate.nowdead, prstate.ndead,
     843             :                                       prstate.nowunused, prstate.nunused);
     844             :         }
     845             :     }
     846             : 
     847      845188 :     END_CRIT_SECTION();
     848             : 
     849             :     /* Copy information back for caller */
     850      845188 :     presult->ndeleted = prstate.ndeleted;
     851      845188 :     presult->nnewlpdead = prstate.ndead;
     852      845188 :     presult->nfrozen = prstate.nfrozen;
     853      845188 :     presult->live_tuples = prstate.live_tuples;
     854      845188 :     presult->recently_dead_tuples = prstate.recently_dead_tuples;
     855             : 
     856             :     /*
     857             :      * It was convenient to ignore LP_DEAD items in all_visible earlier on to
     858             :      * make the choice of whether or not to freeze the page unaffected by the
     859             :      * short-term presence of LP_DEAD items.  These LP_DEAD items were
     860             :      * effectively assumed to be LP_UNUSED items in the making.  It doesn't
     861             :      * matter which vacuum heap pass (initial pass or final pass) ends up
     862             :      * setting the page all-frozen, as long as the ongoing VACUUM does it.
     863             :      *
     864             :      * Now that freezing has been finalized, unset all_visible if there are
     865             :      * any LP_DEAD items on the page.  It needs to reflect the present state
     866             :      * of the page, as expected by our caller.
     867             :      */
     868      845188 :     if (prstate.all_visible && prstate.lpdead_items == 0)
     869             :     {
     870      232654 :         presult->all_visible = prstate.all_visible;
     871      232654 :         presult->all_frozen = prstate.all_frozen;
     872             :     }
     873             :     else
     874             :     {
     875      612534 :         presult->all_visible = false;
     876      612534 :         presult->all_frozen = false;
     877             :     }
     878             : 
     879      845188 :     presult->hastup = prstate.hastup;
     880             : 
     881             :     /*
     882             :      * For callers planning to update the visibility map, the conflict horizon
     883             :      * for that record must be the newest xmin on the page.  However, if the
     884             :      * page is completely frozen, there can be no conflict and the
     885             :      * vm_conflict_horizon should remain InvalidTransactionId.  This includes
     886             :      * the case that we just froze all the tuples; the prune-freeze record
     887             :      * included the conflict XID already so the caller doesn't need it.
     888             :      */
     889      845188 :     if (presult->all_frozen)
     890      211678 :         presult->vm_conflict_horizon = InvalidTransactionId;
     891             :     else
     892      633510 :         presult->vm_conflict_horizon = prstate.visibility_cutoff_xid;
     893             : 
     894      845188 :     presult->lpdead_items = prstate.lpdead_items;
     895             :     /* the presult->deadoffsets array was already filled in */
     896             : 
     897      845188 :     if (prstate.freeze)
     898             :     {
     899      768844 :         if (presult->nfrozen > 0)
     900             :         {
     901       33300 :             *new_relfrozen_xid = prstate.pagefrz.FreezePageRelfrozenXid;
     902       33300 :             *new_relmin_mxid = prstate.pagefrz.FreezePageRelminMxid;
     903             :         }
     904             :         else
     905             :         {
     906      735544 :             *new_relfrozen_xid = prstate.pagefrz.NoFreezePageRelfrozenXid;
     907      735544 :             *new_relmin_mxid = prstate.pagefrz.NoFreezePageRelminMxid;
     908             :         }
     909             :     }
     910      845188 : }
     911             : 
     912             : 
     913             : /*
     914             :  * Perform visibility checks for heap pruning.
     915             :  */
     916             : static HTSV_Result
     917    38242828 : heap_prune_satisfies_vacuum(PruneState *prstate, HeapTuple tup, Buffer buffer)
     918             : {
     919             :     HTSV_Result res;
     920             :     TransactionId dead_after;
     921             : 
     922    38242828 :     res = HeapTupleSatisfiesVacuumHorizon(tup, buffer, &dead_after);
     923             : 
     924    38242828 :     if (res != HEAPTUPLE_RECENTLY_DEAD)
     925    34904048 :         return res;
     926             : 
     927             :     /*
     928             :      * For VACUUM, we must be sure to prune tuples with xmax older than
     929             :      * OldestXmin -- a visibility cutoff determined at the beginning of
     930             :      * vacuuming the relation. OldestXmin is used for freezing determination
     931             :      * and we cannot freeze dead tuples' xmaxes.
     932             :      */
     933     3338780 :     if (prstate->cutoffs &&
     934     1806732 :         TransactionIdIsValid(prstate->cutoffs->OldestXmin) &&
     935     1806732 :         NormalTransactionIdPrecedes(dead_after, prstate->cutoffs->OldestXmin))
     936     1327234 :         return HEAPTUPLE_DEAD;
     937             : 
     938             :     /*
     939             :      * Determine whether or not the tuple is considered dead when compared
     940             :      * with the provided GlobalVisState. On-access pruning does not provide
     941             :      * VacuumCutoffs. And for vacuum, even if the tuple's xmax is not older
     942             :      * than OldestXmin, GlobalVisTestIsRemovableXid() could find the row dead
     943             :      * if the GlobalVisState has been updated since the beginning of vacuuming
     944             :      * the relation.
     945             :      */
     946     2011546 :     if (GlobalVisTestIsRemovableXid(prstate->vistest, dead_after))
     947     1477688 :         return HEAPTUPLE_DEAD;
     948             : 
     949      533858 :     return res;
     950             : }
     951             : 
     952             : 
     953             : /*
     954             :  * Pruning calculates tuple visibility once and saves the results in an array
     955             :  * of int8.  See PruneState.htsv for details.  This helper function is meant
     956             :  * to guard against examining visibility status array members which have not
     957             :  * yet been computed.
     958             :  */
     959             : static inline HTSV_Result
     960    38218026 : htsv_get_valid_status(int status)
     961             : {
     962             :     Assert(status >= HEAPTUPLE_DEAD &&
     963             :            status <= HEAPTUPLE_DELETE_IN_PROGRESS);
     964    38218026 :     return (HTSV_Result) status;
     965             : }
     966             : 
     967             : /*
     968             :  * Prune specified line pointer or a HOT chain originating at line pointer.
     969             :  *
     970             :  * Tuple visibility information is provided in prstate->htsv.
     971             :  *
     972             :  * If the item is an index-referenced tuple (i.e. not a heap-only tuple),
     973             :  * the HOT chain is pruned by removing all DEAD tuples at the start of the HOT
     974             :  * chain.  We also prune any RECENTLY_DEAD tuples preceding a DEAD tuple.
     975             :  * This is OK because a RECENTLY_DEAD tuple preceding a DEAD tuple is really
     976             :  * DEAD, our visibility test is just too coarse to detect it.
     977             :  *
     978             :  * Pruning must never leave behind a DEAD tuple that still has tuple storage.
     979             :  * VACUUM isn't prepared to deal with that case.
     980             :  *
     981             :  * The root line pointer is redirected to the tuple immediately after the
     982             :  * latest DEAD tuple.  If all tuples in the chain are DEAD, the root line
     983             :  * pointer is marked LP_DEAD.  (This includes the case of a DEAD simple
     984             :  * tuple, which we treat as a chain of length 1.)
     985             :  *
     986             :  * We don't actually change the page here. We just add entries to the arrays in
     987             :  * prstate showing the changes to be made.  Items to be redirected are added
     988             :  * to the redirected[] array (two entries per redirection); items to be set to
     989             :  * LP_DEAD state are added to nowdead[]; and items to be set to LP_UNUSED
     990             :  * state are added to nowunused[].  We perform bookkeeping of live tuples,
     991             :  * visibility etc. based on what the page will look like after the changes
     992             :  * applied.  All that bookkeeping is performed in the heap_prune_record_*()
     993             :  * subroutines.  The division of labor is that heap_prune_chain() decides the
     994             :  * fate of each tuple, ie. whether it's going to be removed, redirected or
     995             :  * left unchanged, and the heap_prune_record_*() subroutines update PruneState
     996             :  * based on that outcome.
     997             :  */
     998             : static void
     999    38026184 : heap_prune_chain(Page page, BlockNumber blockno, OffsetNumber maxoff,
    1000             :                  OffsetNumber rootoffnum, PruneState *prstate)
    1001             : {
    1002    38026184 :     TransactionId priorXmax = InvalidTransactionId;
    1003             :     ItemId      rootlp;
    1004             :     OffsetNumber offnum;
    1005             :     OffsetNumber chainitems[MaxHeapTuplesPerPage];
    1006             : 
    1007             :     /*
    1008             :      * After traversing the HOT chain, ndeadchain is the index in chainitems
    1009             :      * of the first live successor after the last dead item.
    1010             :      */
    1011    38026184 :     int         ndeadchain = 0,
    1012    38026184 :                 nchain = 0;
    1013             : 
    1014    38026184 :     rootlp = PageGetItemId(page, rootoffnum);
    1015             : 
    1016             :     /* Start from the root tuple */
    1017    38026184 :     offnum = rootoffnum;
    1018             : 
    1019             :     /* while not end of the chain */
    1020             :     for (;;)
    1021      600352 :     {
    1022             :         HeapTupleHeader htup;
    1023             :         ItemId      lp;
    1024             : 
    1025             :         /* Sanity check (pure paranoia) */
    1026    38626536 :         if (offnum < FirstOffsetNumber)
    1027           0 :             break;
    1028             : 
    1029             :         /*
    1030             :          * An offset past the end of page's line pointer array is possible
    1031             :          * when the array was truncated (original item must have been unused)
    1032             :          */
    1033    38626536 :         if (offnum > maxoff)
    1034           0 :             break;
    1035             : 
    1036             :         /* If item is already processed, stop --- it must not be same chain */
    1037    38626536 :         if (prstate->processed[offnum])
    1038           0 :             break;
    1039             : 
    1040    38626536 :         lp = PageGetItemId(page, offnum);
    1041             : 
    1042             :         /*
    1043             :          * Unused item obviously isn't part of the chain. Likewise, a dead
    1044             :          * line pointer can't be part of the chain.  Both of those cases were
    1045             :          * already marked as processed.
    1046             :          */
    1047             :         Assert(ItemIdIsUsed(lp));
    1048             :         Assert(!ItemIdIsDead(lp));
    1049             : 
    1050             :         /*
    1051             :          * If we are looking at the redirected root line pointer, jump to the
    1052             :          * first normal tuple in the chain.  If we find a redirect somewhere
    1053             :          * else, stop --- it must not be same chain.
    1054             :          */
    1055    38626536 :         if (ItemIdIsRedirected(lp))
    1056             :         {
    1057      408510 :             if (nchain > 0)
    1058           0 :                 break;          /* not at start of chain */
    1059      408510 :             chainitems[nchain++] = offnum;
    1060      408510 :             offnum = ItemIdGetRedirect(rootlp);
    1061      408510 :             continue;
    1062             :         }
    1063             : 
    1064             :         Assert(ItemIdIsNormal(lp));
    1065             : 
    1066    38218026 :         htup = (HeapTupleHeader) PageGetItem(page, lp);
    1067             : 
    1068             :         /*
    1069             :          * Check the tuple XMIN against prior XMAX, if any
    1070             :          */
    1071    38409868 :         if (TransactionIdIsValid(priorXmax) &&
    1072      191842 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    1073           0 :             break;
    1074             : 
    1075             :         /*
    1076             :          * OK, this tuple is indeed a member of the chain.
    1077             :          */
    1078    38218026 :         chainitems[nchain++] = offnum;
    1079             : 
    1080    38218026 :         switch (htsv_get_valid_status(prstate->htsv[offnum]))
    1081             :         {
    1082     2880874 :             case HEAPTUPLE_DEAD:
    1083             : 
    1084             :                 /* Remember the last DEAD tuple seen */
    1085     2880874 :                 ndeadchain = nchain;
    1086     2880874 :                 HeapTupleHeaderAdvanceConflictHorizon(htup,
    1087             :                                                       &prstate->latest_xid_removed);
    1088             :                 /* Advance to next chain member */
    1089     2880874 :                 break;
    1090             : 
    1091      533858 :             case HEAPTUPLE_RECENTLY_DEAD:
    1092             : 
    1093             :                 /*
    1094             :                  * We don't need to advance the conflict horizon for
    1095             :                  * RECENTLY_DEAD tuples, even if we are removing them.  This
    1096             :                  * is because we only remove RECENTLY_DEAD tuples if they
    1097             :                  * precede a DEAD tuple, and the DEAD tuple must have been
    1098             :                  * inserted by a newer transaction than the RECENTLY_DEAD
    1099             :                  * tuple by virtue of being later in the chain.  We will have
    1100             :                  * advanced the conflict horizon for the DEAD tuple.
    1101             :                  */
    1102             : 
    1103             :                 /*
    1104             :                  * Advance past RECENTLY_DEAD tuples just in case there's a
    1105             :                  * DEAD one after them.  We have to make sure that we don't
    1106             :                  * miss any DEAD tuples, since DEAD tuples that still have
    1107             :                  * tuple storage after pruning will confuse VACUUM.
    1108             :                  */
    1109      533858 :                 break;
    1110             : 
    1111    34803294 :             case HEAPTUPLE_DELETE_IN_PROGRESS:
    1112             :             case HEAPTUPLE_LIVE:
    1113             :             case HEAPTUPLE_INSERT_IN_PROGRESS:
    1114    34803294 :                 goto process_chain;
    1115             : 
    1116           0 :             default:
    1117           0 :                 elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
    1118             :                 goto process_chain;
    1119             :         }
    1120             : 
    1121             :         /*
    1122             :          * If the tuple is not HOT-updated, then we are at the end of this
    1123             :          * HOT-update chain.
    1124             :          */
    1125     3414732 :         if (!HeapTupleHeaderIsHotUpdated(htup))
    1126     3222890 :             goto process_chain;
    1127             : 
    1128             :         /* HOT implies it can't have moved to different partition */
    1129             :         Assert(!HeapTupleHeaderIndicatesMovedPartitions(htup));
    1130             : 
    1131             :         /*
    1132             :          * Advance to next chain member.
    1133             :          */
    1134             :         Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blockno);
    1135      191842 :         offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    1136      191842 :         priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    1137             :     }
    1138             : 
    1139           0 :     if (ItemIdIsRedirected(rootlp) && nchain < 2)
    1140             :     {
    1141             :         /*
    1142             :          * We found a redirect item that doesn't point to a valid follow-on
    1143             :          * item.  This can happen if the loop in heap_page_prune_and_freeze()
    1144             :          * caused us to visit the dead successor of a redirect item before
    1145             :          * visiting the redirect item.  We can clean up by setting the
    1146             :          * redirect item to LP_DEAD state or LP_UNUSED if the caller
    1147             :          * indicated.
    1148             :          */
    1149           0 :         heap_prune_record_dead_or_unused(prstate, rootoffnum, false);
    1150           0 :         return;
    1151             :     }
    1152             : 
    1153           0 : process_chain:
    1154             : 
    1155    38026184 :     if (ndeadchain == 0)
    1156             :     {
    1157             :         /*
    1158             :          * No DEAD tuple was found, so the chain is entirely composed of
    1159             :          * normal, unchanged tuples.  Leave it alone.
    1160             :          */
    1161    35207530 :         int         i = 0;
    1162             : 
    1163    35207530 :         if (ItemIdIsRedirected(rootlp))
    1164             :         {
    1165      378500 :             heap_prune_record_unchanged_lp_redirect(prstate, rootoffnum);
    1166      378500 :             i++;
    1167             :         }
    1168    70422326 :         for (; i < nchain; i++)
    1169    35214796 :             heap_prune_record_unchanged_lp_normal(page, prstate, chainitems[i]);
    1170             :     }
    1171     2818654 :     else if (ndeadchain == nchain)
    1172             :     {
    1173             :         /*
    1174             :          * The entire chain is dead.  Mark the root line pointer LP_DEAD, and
    1175             :          * fully remove the other tuples in the chain.
    1176             :          */
    1177     2700228 :         heap_prune_record_dead_or_unused(prstate, rootoffnum, ItemIdIsNormal(rootlp));
    1178     2760366 :         for (int i = 1; i < nchain; i++)
    1179       60138 :             heap_prune_record_unused(prstate, chainitems[i], true);
    1180             :     }
    1181             :     else
    1182             :     {
    1183             :         /*
    1184             :          * We found a DEAD tuple in the chain.  Redirect the root line pointer
    1185             :          * to the first non-DEAD tuple, and mark as unused each intermediate
    1186             :          * item that we are able to remove from the chain.
    1187             :          */
    1188      118426 :         heap_prune_record_redirect(prstate, rootoffnum, chainitems[ndeadchain],
    1189      118426 :                                    ItemIdIsNormal(rootlp));
    1190      150518 :         for (int i = 1; i < ndeadchain; i++)
    1191       32092 :             heap_prune_record_unused(prstate, chainitems[i], true);
    1192             : 
    1193             :         /* the rest of tuples in the chain are normal, unchanged tuples */
    1194      240782 :         for (int i = ndeadchain; i < nchain; i++)
    1195      122356 :             heap_prune_record_unchanged_lp_normal(page, prstate, chainitems[i]);
    1196             :     }
    1197             : }
    1198             : 
    1199             : /* Record lowest soon-prunable XID */
    1200             : static void
    1201    12991830 : heap_prune_record_prunable(PruneState *prstate, TransactionId xid)
    1202             : {
    1203             :     /*
    1204             :      * This should exactly match the PageSetPrunable macro.  We can't store
    1205             :      * directly into the page header yet, so we update working state.
    1206             :      */
    1207             :     Assert(TransactionIdIsNormal(xid));
    1208    25471720 :     if (!TransactionIdIsValid(prstate->new_prune_xid) ||
    1209    12479890 :         TransactionIdPrecedes(xid, prstate->new_prune_xid))
    1210      513858 :         prstate->new_prune_xid = xid;
    1211    12991830 : }
    1212             : 
    1213             : /* Record line pointer to be redirected */
    1214             : static void
    1215      118426 : heap_prune_record_redirect(PruneState *prstate,
    1216             :                            OffsetNumber offnum, OffsetNumber rdoffnum,
    1217             :                            bool was_normal)
    1218             : {
    1219             :     Assert(!prstate->processed[offnum]);
    1220      118426 :     prstate->processed[offnum] = true;
    1221             : 
    1222             :     /*
    1223             :      * Do not mark the redirect target here.  It needs to be counted
    1224             :      * separately as an unchanged tuple.
    1225             :      */
    1226             : 
    1227             :     Assert(prstate->nredirected < MaxHeapTuplesPerPage);
    1228      118426 :     prstate->redirected[prstate->nredirected * 2] = offnum;
    1229      118426 :     prstate->redirected[prstate->nredirected * 2 + 1] = rdoffnum;
    1230             : 
    1231      118426 :     prstate->nredirected++;
    1232             : 
    1233             :     /*
    1234             :      * If the root entry had been a normal tuple, we are deleting it, so count
    1235             :      * it in the result.  But changing a redirect (even to DEAD state) doesn't
    1236             :      * count.
    1237             :      */
    1238      118426 :     if (was_normal)
    1239      105108 :         prstate->ndeleted++;
    1240             : 
    1241      118426 :     prstate->hastup = true;
    1242      118426 : }
    1243             : 
    1244             : /* Record line pointer to be marked dead */
    1245             : static void
    1246     2631002 : heap_prune_record_dead(PruneState *prstate, OffsetNumber offnum,
    1247             :                        bool was_normal)
    1248             : {
    1249             :     Assert(!prstate->processed[offnum]);
    1250     2631002 :     prstate->processed[offnum] = true;
    1251             : 
    1252             :     Assert(prstate->ndead < MaxHeapTuplesPerPage);
    1253     2631002 :     prstate->nowdead[prstate->ndead] = offnum;
    1254     2631002 :     prstate->ndead++;
    1255             : 
    1256             :     /*
    1257             :      * Deliberately delay unsetting all_visible until later during pruning.
    1258             :      * Removable dead tuples shouldn't preclude freezing the page.
    1259             :      */
    1260             : 
    1261             :     /* Record the dead offset for vacuum */
    1262     2631002 :     prstate->deadoffsets[prstate->lpdead_items++] = offnum;
    1263             : 
    1264             :     /*
    1265             :      * If the root entry had been a normal tuple, we are deleting it, so count
    1266             :      * it in the result.  But changing a redirect (even to DEAD state) doesn't
    1267             :      * count.
    1268             :      */
    1269     2631002 :     if (was_normal)
    1270     2614310 :         prstate->ndeleted++;
    1271     2631002 : }
    1272             : 
    1273             : /*
    1274             :  * Depending on whether or not the caller set mark_unused_now to true, record that a
    1275             :  * line pointer should be marked LP_DEAD or LP_UNUSED. There are other cases in
    1276             :  * which we will mark line pointers LP_UNUSED, but we will not mark line
    1277             :  * pointers LP_DEAD if mark_unused_now is true.
    1278             :  */
    1279             : static void
    1280     2700228 : heap_prune_record_dead_or_unused(PruneState *prstate, OffsetNumber offnum,
    1281             :                                  bool was_normal)
    1282             : {
    1283             :     /*
    1284             :      * If the caller set mark_unused_now to true, we can remove dead tuples
    1285             :      * during pruning instead of marking their line pointers dead. Set this
    1286             :      * tuple's line pointer LP_UNUSED. We hint that this option is less
    1287             :      * likely.
    1288             :      */
    1289     2700228 :     if (unlikely(prstate->mark_unused_now))
    1290       69226 :         heap_prune_record_unused(prstate, offnum, was_normal);
    1291             :     else
    1292     2631002 :         heap_prune_record_dead(prstate, offnum, was_normal);
    1293     2700228 : }
    1294             : 
    1295             : /* Record line pointer to be marked unused */
    1296             : static void
    1297      167244 : heap_prune_record_unused(PruneState *prstate, OffsetNumber offnum, bool was_normal)
    1298             : {
    1299             :     Assert(!prstate->processed[offnum]);
    1300      167244 :     prstate->processed[offnum] = true;
    1301             : 
    1302             :     Assert(prstate->nunused < MaxHeapTuplesPerPage);
    1303      167244 :     prstate->nowunused[prstate->nunused] = offnum;
    1304      167244 :     prstate->nunused++;
    1305             : 
    1306             :     /*
    1307             :      * If the root entry had been a normal tuple, we are deleting it, so count
    1308             :      * it in the result.  But changing a redirect (even to DEAD state) doesn't
    1309             :      * count.
    1310             :      */
    1311      167244 :     if (was_normal)
    1312      165090 :         prstate->ndeleted++;
    1313      167244 : }
    1314             : 
    1315             : /*
    1316             :  * Record an unused line pointer that is left unchanged.
    1317             :  */
    1318             : static void
    1319      358080 : heap_prune_record_unchanged_lp_unused(Page page, PruneState *prstate, OffsetNumber offnum)
    1320             : {
    1321             :     Assert(!prstate->processed[offnum]);
    1322      358080 :     prstate->processed[offnum] = true;
    1323      358080 : }
    1324             : 
    1325             : /*
    1326             :  * Record line pointer that is left unchanged.  We consider freezing it, and
    1327             :  * update bookkeeping of tuple counts and page visibility.
    1328             :  */
    1329             : static void
    1330    35358320 : heap_prune_record_unchanged_lp_normal(Page page, PruneState *prstate, OffsetNumber offnum)
    1331             : {
    1332             :     HeapTupleHeader htup;
    1333             : 
    1334             :     Assert(!prstate->processed[offnum]);
    1335    35358320 :     prstate->processed[offnum] = true;
    1336             : 
    1337    35358320 :     prstate->hastup = true;      /* the page is not empty */
    1338             : 
    1339             :     /*
    1340             :      * The criteria for counting a tuple as live in this block need to match
    1341             :      * what analyze.c's acquire_sample_rows() does, otherwise VACUUM and
    1342             :      * ANALYZE may produce wildly different reltuples values, e.g. when there
    1343             :      * are many recently-dead tuples.
    1344             :      *
    1345             :      * The logic here is a bit simpler than acquire_sample_rows(), as VACUUM
    1346             :      * can't run inside a transaction block, which makes some cases impossible
    1347             :      * (e.g. in-progress insert from the same transaction).
    1348             :      *
    1349             :      * HEAPTUPLE_DEAD are handled by the other heap_prune_record_*()
    1350             :      * subroutines.  They don't count dead items like acquire_sample_rows()
    1351             :      * does, because we assume that all dead items will become LP_UNUSED
    1352             :      * before VACUUM finishes.  This difference is only superficial.  VACUUM
    1353             :      * effectively agrees with ANALYZE about DEAD items, in the end.  VACUUM
    1354             :      * won't remember LP_DEAD items, but only because they're not supposed to
    1355             :      * be left behind when it is done. (Cases where we bypass index vacuuming
    1356             :      * will violate this optimistic assumption, but the overall impact of that
    1357             :      * should be negligible.)
    1358             :      */
    1359    35358320 :     htup = (HeapTupleHeader) PageGetItem(page, PageGetItemId(page, offnum));
    1360             : 
    1361    35358320 :     switch (prstate->htsv[offnum])
    1362             :     {
    1363    22250864 :         case HEAPTUPLE_LIVE:
    1364             : 
    1365             :             /*
    1366             :              * Count it as live.  Not only is this natural, but it's also what
    1367             :              * acquire_sample_rows() does.
    1368             :              */
    1369    22250864 :             prstate->live_tuples++;
    1370             : 
    1371             :             /*
    1372             :              * Is the tuple definitely visible to all transactions?
    1373             :              *
    1374             :              * NB: Like with per-tuple hint bits, we can't set the
    1375             :              * PD_ALL_VISIBLE flag if the inserter committed asynchronously.
    1376             :              * See SetHintBits for more info.  Check that the tuple is hinted
    1377             :              * xmin-committed because of that.
    1378             :              */
    1379    22250864 :             if (prstate->all_visible)
    1380             :             {
    1381             :                 TransactionId xmin;
    1382             : 
    1383    14203894 :                 if (!HeapTupleHeaderXminCommitted(htup))
    1384             :                 {
    1385         238 :                     prstate->all_visible = false;
    1386         238 :                     break;
    1387             :                 }
    1388             : 
    1389             :                 /*
    1390             :                  * The inserter definitely committed.  But is it old enough
    1391             :                  * that everyone sees it as committed?  A FrozenTransactionId
    1392             :                  * is seen as committed to everyone.  Otherwise, we check if
    1393             :                  * there is a snapshot that considers this xid to still be
    1394             :                  * running, and if so, we don't consider the page all-visible.
    1395             :                  */
    1396    14203656 :                 xmin = HeapTupleHeaderGetXmin(htup);
    1397             : 
    1398             :                 /*
    1399             :                  * For now always use prstate->cutoffs for this test, because
    1400             :                  * we only update 'all_visible' when freezing is requested. We
    1401             :                  * could use GlobalVisTestIsRemovableXid instead, if a
    1402             :                  * non-freezing caller wanted to set the VM bit.
    1403             :                  */
    1404             :                 Assert(prstate->cutoffs);
    1405    14203656 :                 if (!TransactionIdPrecedes(xmin, prstate->cutoffs->OldestXmin))
    1406             :                 {
    1407        4872 :                     prstate->all_visible = false;
    1408        4872 :                     break;
    1409             :                 }
    1410             : 
    1411             :                 /* Track newest xmin on page. */
    1412    14198784 :                 if (TransactionIdFollows(xmin, prstate->visibility_cutoff_xid) &&
    1413             :                     TransactionIdIsNormal(xmin))
    1414      188730 :                     prstate->visibility_cutoff_xid = xmin;
    1415             :             }
    1416    22245754 :             break;
    1417             : 
    1418      533858 :         case HEAPTUPLE_RECENTLY_DEAD:
    1419      533858 :             prstate->recently_dead_tuples++;
    1420      533858 :             prstate->all_visible = false;
    1421             : 
    1422             :             /*
    1423             :              * This tuple will soon become DEAD.  Update the hint field so
    1424             :              * that the page is reconsidered for pruning in future.
    1425             :              */
    1426      533858 :             heap_prune_record_prunable(prstate,
    1427      533858 :                                        HeapTupleHeaderGetUpdateXid(htup));
    1428      533858 :             break;
    1429             : 
    1430      115626 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    1431             : 
    1432             :             /*
    1433             :              * We do not count these rows as live, because we expect the
    1434             :              * inserting transaction to update the counters at commit, and we
    1435             :              * assume that will happen only after we report our results.  This
    1436             :              * assumption is a bit shaky, but it is what acquire_sample_rows()
    1437             :              * does, so be consistent.
    1438             :              */
    1439      115626 :             prstate->all_visible = false;
    1440             : 
    1441             :             /*
    1442             :              * If we wanted to optimize for aborts, we might consider marking
    1443             :              * the page prunable when we see INSERT_IN_PROGRESS.  But we
    1444             :              * don't.  See related decisions about when to mark the page
    1445             :              * prunable in heapam.c.
    1446             :              */
    1447      115626 :             break;
    1448             : 
    1449    12457972 :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    1450             : 
    1451             :             /*
    1452             :              * This an expected case during concurrent vacuum.  Count such
    1453             :              * rows as live.  As above, we assume the deleting transaction
    1454             :              * will commit and update the counters after we report.
    1455             :              */
    1456    12457972 :             prstate->live_tuples++;
    1457    12457972 :             prstate->all_visible = false;
    1458             : 
    1459             :             /*
    1460             :              * This tuple may soon become DEAD.  Update the hint field so that
    1461             :              * the page is reconsidered for pruning in future.
    1462             :              */
    1463    12457972 :             heap_prune_record_prunable(prstate,
    1464    12457972 :                                        HeapTupleHeaderGetUpdateXid(htup));
    1465    12457972 :             break;
    1466             : 
    1467           0 :         default:
    1468             : 
    1469             :             /*
    1470             :              * DEAD tuples should've been passed to heap_prune_record_dead()
    1471             :              * or heap_prune_record_unused() instead.
    1472             :              */
    1473           0 :             elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result %d",
    1474             :                  prstate->htsv[offnum]);
    1475             :             break;
    1476             :     }
    1477             : 
    1478             :     /* Consider freezing any normal tuples which will not be removed */
    1479    35358320 :     if (prstate->freeze)
    1480             :     {
    1481             :         bool        totally_frozen;
    1482             : 
    1483    32526652 :         if ((heap_prepare_freeze_tuple(htup,
    1484    32526652 :                                        prstate->cutoffs,
    1485             :                                        &prstate->pagefrz,
    1486    32526652 :                                        &prstate->frozen[prstate->nfrozen],
    1487             :                                        &totally_frozen)))
    1488             :         {
    1489             :             /* Save prepared freeze plan for later */
    1490     3867576 :             prstate->frozen[prstate->nfrozen++].offset = offnum;
    1491             :         }
    1492             : 
    1493             :         /*
    1494             :          * If any tuple isn't either totally frozen already or eligible to
    1495             :          * become totally frozen (according to its freeze plan), then the page
    1496             :          * definitely cannot be set all-frozen in the visibility map later on.
    1497             :          */
    1498    32526652 :         if (!totally_frozen)
    1499    13509758 :             prstate->all_frozen = false;
    1500             :     }
    1501    35358320 : }
    1502             : 
    1503             : 
    1504             : /*
    1505             :  * Record line pointer that was already LP_DEAD and is left unchanged.
    1506             :  */
    1507             : static void
    1508     1882772 : heap_prune_record_unchanged_lp_dead(Page page, PruneState *prstate, OffsetNumber offnum)
    1509             : {
    1510             :     Assert(!prstate->processed[offnum]);
    1511     1882772 :     prstate->processed[offnum] = true;
    1512             : 
    1513             :     /*
    1514             :      * Deliberately don't set hastup for LP_DEAD items.  We make the soft
    1515             :      * assumption that any LP_DEAD items encountered here will become
    1516             :      * LP_UNUSED later on, before count_nondeletable_pages is reached.  If we
    1517             :      * don't make this assumption then rel truncation will only happen every
    1518             :      * other VACUUM, at most.  Besides, VACUUM must treat
    1519             :      * hastup/nonempty_pages as provisional no matter how LP_DEAD items are
    1520             :      * handled (handled here, or handled later on).
    1521             :      *
    1522             :      * Similarly, don't unset all_visible until later, at the end of
    1523             :      * heap_page_prune_and_freeze().  This will allow us to attempt to freeze
    1524             :      * the page after pruning.  As long as we unset it before updating the
    1525             :      * visibility map, this will be correct.
    1526             :      */
    1527             : 
    1528             :     /* Record the dead offset for vacuum */
    1529     1882772 :     prstate->deadoffsets[prstate->lpdead_items++] = offnum;
    1530     1882772 : }
    1531             : 
    1532             : /*
    1533             :  * Record LP_REDIRECT that is left unchanged.
    1534             :  */
    1535             : static void
    1536      378500 : heap_prune_record_unchanged_lp_redirect(PruneState *prstate, OffsetNumber offnum)
    1537             : {
    1538             :     /*
    1539             :      * A redirect line pointer doesn't count as a live tuple.
    1540             :      *
    1541             :      * If we leave a redirect line pointer in place, there will be another
    1542             :      * tuple on the page that it points to.  We will do the bookkeeping for
    1543             :      * that separately.  So we have nothing to do here, except remember that
    1544             :      * we processed this item.
    1545             :      */
    1546             :     Assert(!prstate->processed[offnum]);
    1547      378500 :     prstate->processed[offnum] = true;
    1548      378500 : }
    1549             : 
    1550             : /*
    1551             :  * Perform the actual page changes needed by heap_page_prune_and_freeze().
    1552             :  *
    1553             :  * If 'lp_truncate_only' is set, we are merely marking LP_DEAD line pointers
    1554             :  * as unused, not redirecting or removing anything else.  The
    1555             :  * PageRepairFragmentation() call is skipped in that case.
    1556             :  *
    1557             :  * If 'lp_truncate_only' is not set, the caller must hold a cleanup lock on
    1558             :  * the buffer.  If it is set, an ordinary exclusive lock suffices.
    1559             :  */
    1560             : void
    1561      112306 : heap_page_prune_execute(Buffer buffer, bool lp_truncate_only,
    1562             :                         OffsetNumber *redirected, int nredirected,
    1563             :                         OffsetNumber *nowdead, int ndead,
    1564             :                         OffsetNumber *nowunused, int nunused)
    1565             : {
    1566      112306 :     Page        page = (Page) BufferGetPage(buffer);
    1567             :     OffsetNumber *offnum;
    1568             :     HeapTupleHeader htup PG_USED_FOR_ASSERTS_ONLY;
    1569             : 
    1570             :     /* Shouldn't be called unless there's something to do */
    1571             :     Assert(nredirected > 0 || ndead > 0 || nunused > 0);
    1572             : 
    1573             :     /* If 'lp_truncate_only', we can only remove already-dead line pointers */
    1574             :     Assert(!lp_truncate_only || (nredirected == 0 && ndead == 0));
    1575             : 
    1576             :     /* Update all redirected line pointers */
    1577      112306 :     offnum = redirected;
    1578      267514 :     for (int i = 0; i < nredirected; i++)
    1579             :     {
    1580      155208 :         OffsetNumber fromoff = *offnum++;
    1581      155208 :         OffsetNumber tooff = *offnum++;
    1582      155208 :         ItemId      fromlp = PageGetItemId(page, fromoff);
    1583             :         ItemId      tolp PG_USED_FOR_ASSERTS_ONLY;
    1584             : 
    1585             : #ifdef USE_ASSERT_CHECKING
    1586             : 
    1587             :         /*
    1588             :          * Any existing item that we set as an LP_REDIRECT (any 'from' item)
    1589             :          * must be the first item from a HOT chain.  If the item has tuple
    1590             :          * storage then it can't be a heap-only tuple.  Otherwise we are just
    1591             :          * maintaining an existing LP_REDIRECT from an existing HOT chain that
    1592             :          * has been pruned at least once before now.
    1593             :          */
    1594             :         if (!ItemIdIsRedirected(fromlp))
    1595             :         {
    1596             :             Assert(ItemIdHasStorage(fromlp) && ItemIdIsNormal(fromlp));
    1597             : 
    1598             :             htup = (HeapTupleHeader) PageGetItem(page, fromlp);
    1599             :             Assert(!HeapTupleHeaderIsHeapOnly(htup));
    1600             :         }
    1601             :         else
    1602             :         {
    1603             :             /* We shouldn't need to redundantly set the redirect */
    1604             :             Assert(ItemIdGetRedirect(fromlp) != tooff);
    1605             :         }
    1606             : 
    1607             :         /*
    1608             :          * The item that we're about to set as an LP_REDIRECT (the 'from'
    1609             :          * item) will point to an existing item (the 'to' item) that is
    1610             :          * already a heap-only tuple.  There can be at most one LP_REDIRECT
    1611             :          * item per HOT chain.
    1612             :          *
    1613             :          * We need to keep around an LP_REDIRECT item (after original
    1614             :          * non-heap-only root tuple gets pruned away) so that it's always
    1615             :          * possible for VACUUM to easily figure out what TID to delete from
    1616             :          * indexes when an entire HOT chain becomes dead.  A heap-only tuple
    1617             :          * can never become LP_DEAD; an LP_REDIRECT item or a regular heap
    1618             :          * tuple can.
    1619             :          *
    1620             :          * This check may miss problems, e.g. the target of a redirect could
    1621             :          * be marked as unused subsequently. The page_verify_redirects() check
    1622             :          * below will catch such problems.
    1623             :          */
    1624             :         tolp = PageGetItemId(page, tooff);
    1625             :         Assert(ItemIdHasStorage(tolp) && ItemIdIsNormal(tolp));
    1626             :         htup = (HeapTupleHeader) PageGetItem(page, tolp);
    1627             :         Assert(HeapTupleHeaderIsHeapOnly(htup));
    1628             : #endif
    1629             : 
    1630      155208 :         ItemIdSetRedirect(fromlp, tooff);
    1631             :     }
    1632             : 
    1633             :     /* Update all now-dead line pointers */
    1634      112306 :     offnum = nowdead;
    1635     3240884 :     for (int i = 0; i < ndead; i++)
    1636             :     {
    1637     3128578 :         OffsetNumber off = *offnum++;
    1638     3128578 :         ItemId      lp = PageGetItemId(page, off);
    1639             : 
    1640             : #ifdef USE_ASSERT_CHECKING
    1641             : 
    1642             :         /*
    1643             :          * An LP_DEAD line pointer must be left behind when the original item
    1644             :          * (which is dead to everybody) could still be referenced by a TID in
    1645             :          * an index.  This should never be necessary with any individual
    1646             :          * heap-only tuple item, though. (It's not clear how much of a problem
    1647             :          * that would be, but there is no reason to allow it.)
    1648             :          */
    1649             :         if (ItemIdHasStorage(lp))
    1650             :         {
    1651             :             Assert(ItemIdIsNormal(lp));
    1652             :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    1653             :             Assert(!HeapTupleHeaderIsHeapOnly(htup));
    1654             :         }
    1655             :         else
    1656             :         {
    1657             :             /* Whole HOT chain becomes dead */
    1658             :             Assert(ItemIdIsRedirected(lp));
    1659             :         }
    1660             : #endif
    1661             : 
    1662     3128578 :         ItemIdSetDead(lp);
    1663             :     }
    1664             : 
    1665             :     /* Update all now-unused line pointers */
    1666      112306 :     offnum = nowunused;
    1667      559942 :     for (int i = 0; i < nunused; i++)
    1668             :     {
    1669      447636 :         OffsetNumber off = *offnum++;
    1670      447636 :         ItemId      lp = PageGetItemId(page, off);
    1671             : 
    1672             : #ifdef USE_ASSERT_CHECKING
    1673             : 
    1674             :         if (lp_truncate_only)
    1675             :         {
    1676             :             /* Setting LP_DEAD to LP_UNUSED in vacuum's second pass */
    1677             :             Assert(ItemIdIsDead(lp) && !ItemIdHasStorage(lp));
    1678             :         }
    1679             :         else
    1680             :         {
    1681             :             /*
    1682             :              * When heap_page_prune_and_freeze() was called, mark_unused_now
    1683             :              * may have been passed as true, which allows would-be LP_DEAD
    1684             :              * items to be made LP_UNUSED instead.  This is only possible if
    1685             :              * the relation has no indexes.  If there are any dead items, then
    1686             :              * mark_unused_now was not true and every item being marked
    1687             :              * LP_UNUSED must refer to a heap-only tuple.
    1688             :              */
    1689             :             if (ndead > 0)
    1690             :             {
    1691             :                 Assert(ItemIdHasStorage(lp) && ItemIdIsNormal(lp));
    1692             :                 htup = (HeapTupleHeader) PageGetItem(page, lp);
    1693             :                 Assert(HeapTupleHeaderIsHeapOnly(htup));
    1694             :             }
    1695             :             else
    1696             :                 Assert(ItemIdIsUsed(lp));
    1697             :         }
    1698             : 
    1699             : #endif
    1700             : 
    1701      447636 :         ItemIdSetUnused(lp);
    1702             :     }
    1703             : 
    1704      112306 :     if (lp_truncate_only)
    1705        2178 :         PageTruncateLinePointerArray(page);
    1706             :     else
    1707             :     {
    1708             :         /*
    1709             :          * Finally, repair any fragmentation, and update the page's hint bit
    1710             :          * about whether it has free pointers.
    1711             :          */
    1712      110128 :         PageRepairFragmentation(page);
    1713             : 
    1714             :         /*
    1715             :          * Now that the page has been modified, assert that redirect items
    1716             :          * still point to valid targets.
    1717             :          */
    1718      110128 :         page_verify_redirects(page);
    1719             :     }
    1720      112306 : }
    1721             : 
    1722             : 
    1723             : /*
    1724             :  * If built with assertions, verify that all LP_REDIRECT items point to a
    1725             :  * valid item.
    1726             :  *
    1727             :  * One way that bugs related to HOT pruning show is redirect items pointing to
    1728             :  * removed tuples. It's not trivial to reliably check that marking an item
    1729             :  * unused will not orphan a redirect item during heap_prune_chain() /
    1730             :  * heap_page_prune_execute(), so we additionally check the whole page after
    1731             :  * pruning. Without this check such bugs would typically only cause asserts
    1732             :  * later, potentially well after the corruption has been introduced.
    1733             :  *
    1734             :  * Also check comments in heap_page_prune_execute()'s redirection loop.
    1735             :  */
    1736             : static void
    1737      110128 : page_verify_redirects(Page page)
    1738             : {
    1739             : #ifdef USE_ASSERT_CHECKING
    1740             :     OffsetNumber offnum;
    1741             :     OffsetNumber maxoff;
    1742             : 
    1743             :     maxoff = PageGetMaxOffsetNumber(page);
    1744             :     for (offnum = FirstOffsetNumber;
    1745             :          offnum <= maxoff;
    1746             :          offnum = OffsetNumberNext(offnum))
    1747             :     {
    1748             :         ItemId      itemid = PageGetItemId(page, offnum);
    1749             :         OffsetNumber targoff;
    1750             :         ItemId      targitem;
    1751             :         HeapTupleHeader htup;
    1752             : 
    1753             :         if (!ItemIdIsRedirected(itemid))
    1754             :             continue;
    1755             : 
    1756             :         targoff = ItemIdGetRedirect(itemid);
    1757             :         targitem = PageGetItemId(page, targoff);
    1758             : 
    1759             :         Assert(ItemIdIsUsed(targitem));
    1760             :         Assert(ItemIdIsNormal(targitem));
    1761             :         Assert(ItemIdHasStorage(targitem));
    1762             :         htup = (HeapTupleHeader) PageGetItem(page, targitem);
    1763             :         Assert(HeapTupleHeaderIsHeapOnly(htup));
    1764             :     }
    1765             : #endif
    1766      110128 : }
    1767             : 
    1768             : 
    1769             : /*
    1770             :  * For all items in this page, find their respective root line pointers.
    1771             :  * If item k is part of a HOT-chain with root at item j, then we set
    1772             :  * root_offsets[k - 1] = j.
    1773             :  *
    1774             :  * The passed-in root_offsets array must have MaxHeapTuplesPerPage entries.
    1775             :  * Unused entries are filled with InvalidOffsetNumber (zero).
    1776             :  *
    1777             :  * The function must be called with at least share lock on the buffer, to
    1778             :  * prevent concurrent prune operations.
    1779             :  *
    1780             :  * Note: The information collected here is valid only as long as the caller
    1781             :  * holds a pin on the buffer. Once pin is released, a tuple might be pruned
    1782             :  * and reused by a completely unrelated tuple.
    1783             :  */
    1784             : void
    1785      214752 : heap_get_root_tuples(Page page, OffsetNumber *root_offsets)
    1786             : {
    1787             :     OffsetNumber offnum,
    1788             :                 maxoff;
    1789             : 
    1790      214752 :     MemSet(root_offsets, InvalidOffsetNumber,
    1791             :            MaxHeapTuplesPerPage * sizeof(OffsetNumber));
    1792             : 
    1793      214752 :     maxoff = PageGetMaxOffsetNumber(page);
    1794    17630086 :     for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum))
    1795             :     {
    1796    17415334 :         ItemId      lp = PageGetItemId(page, offnum);
    1797             :         HeapTupleHeader htup;
    1798             :         OffsetNumber nextoffnum;
    1799             :         TransactionId priorXmax;
    1800             : 
    1801             :         /* skip unused and dead items */
    1802    17415334 :         if (!ItemIdIsUsed(lp) || ItemIdIsDead(lp))
    1803       22878 :             continue;
    1804             : 
    1805    17392456 :         if (ItemIdIsNormal(lp))
    1806             :         {
    1807    17384262 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    1808             : 
    1809             :             /*
    1810             :              * Check if this tuple is part of a HOT-chain rooted at some other
    1811             :              * tuple. If so, skip it for now; we'll process it when we find
    1812             :              * its root.
    1813             :              */
    1814    17384262 :             if (HeapTupleHeaderIsHeapOnly(htup))
    1815        8764 :                 continue;
    1816             : 
    1817             :             /*
    1818             :              * This is either a plain tuple or the root of a HOT-chain.
    1819             :              * Remember it in the mapping.
    1820             :              */
    1821    17375498 :             root_offsets[offnum - 1] = offnum;
    1822             : 
    1823             :             /* If it's not the start of a HOT-chain, we're done with it */
    1824    17375498 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    1825    17375080 :                 continue;
    1826             : 
    1827             :             /* Set up to scan the HOT-chain */
    1828         418 :             nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    1829         418 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    1830             :         }
    1831             :         else
    1832             :         {
    1833             :             /* Must be a redirect item. We do not set its root_offsets entry */
    1834             :             Assert(ItemIdIsRedirected(lp));
    1835             :             /* Set up to scan the HOT-chain */
    1836        8194 :             nextoffnum = ItemIdGetRedirect(lp);
    1837        8194 :             priorXmax = InvalidTransactionId;
    1838             :         }
    1839             : 
    1840             :         /*
    1841             :          * Now follow the HOT-chain and collect other tuples in the chain.
    1842             :          *
    1843             :          * Note: Even though this is a nested loop, the complexity of the
    1844             :          * function is O(N) because a tuple in the page should be visited not
    1845             :          * more than twice, once in the outer loop and once in HOT-chain
    1846             :          * chases.
    1847             :          */
    1848             :         for (;;)
    1849             :         {
    1850             :             /* Sanity check (pure paranoia) */
    1851        8764 :             if (offnum < FirstOffsetNumber)
    1852           0 :                 break;
    1853             : 
    1854             :             /*
    1855             :              * An offset past the end of page's line pointer array is possible
    1856             :              * when the array was truncated
    1857             :              */
    1858        8764 :             if (offnum > maxoff)
    1859           0 :                 break;
    1860             : 
    1861        8764 :             lp = PageGetItemId(page, nextoffnum);
    1862             : 
    1863             :             /* Check for broken chains */
    1864        8764 :             if (!ItemIdIsNormal(lp))
    1865           0 :                 break;
    1866             : 
    1867        8764 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    1868             : 
    1869        9334 :             if (TransactionIdIsValid(priorXmax) &&
    1870         570 :                 !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(htup)))
    1871           0 :                 break;
    1872             : 
    1873             :             /* Remember the root line pointer for this item */
    1874        8764 :             root_offsets[nextoffnum - 1] = offnum;
    1875             : 
    1876             :             /* Advance to next chain member, if any */
    1877        8764 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    1878             :                 break;
    1879             : 
    1880             :             /* HOT implies it can't have moved to different partition */
    1881             :             Assert(!HeapTupleHeaderIndicatesMovedPartitions(htup));
    1882             : 
    1883         152 :             nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    1884         152 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    1885             :         }
    1886             :     }
    1887      214752 : }
    1888             : 
    1889             : 
    1890             : /*
    1891             :  * Compare fields that describe actions required to freeze tuple with caller's
    1892             :  * open plan.  If everything matches then the frz tuple plan is equivalent to
    1893             :  * caller's plan.
    1894             :  */
    1895             : static inline bool
    1896     1358936 : heap_log_freeze_eq(xlhp_freeze_plan *plan, HeapTupleFreeze *frz)
    1897             : {
    1898     1358936 :     if (plan->xmax == frz->xmax &&
    1899     1356348 :         plan->t_infomask2 == frz->t_infomask2 &&
    1900     1355074 :         plan->t_infomask == frz->t_infomask &&
    1901     1350766 :         plan->frzflags == frz->frzflags)
    1902     1350766 :         return true;
    1903             : 
    1904             :     /* Caller must call heap_log_freeze_new_plan again for frz */
    1905        8170 :     return false;
    1906             : }
    1907             : 
    1908             : /*
    1909             :  * Comparator used to deduplicate the freeze plans used in WAL records.
    1910             :  */
    1911             : static int
    1912     2049994 : heap_log_freeze_cmp(const void *arg1, const void *arg2)
    1913             : {
    1914     2049994 :     HeapTupleFreeze *frz1 = (HeapTupleFreeze *) arg1;
    1915     2049994 :     HeapTupleFreeze *frz2 = (HeapTupleFreeze *) arg2;
    1916             : 
    1917     2049994 :     if (frz1->xmax < frz2->xmax)
    1918       26510 :         return -1;
    1919     2023484 :     else if (frz1->xmax > frz2->xmax)
    1920       27320 :         return 1;
    1921             : 
    1922     1996164 :     if (frz1->t_infomask2 < frz2->t_infomask2)
    1923        6064 :         return -1;
    1924     1990100 :     else if (frz1->t_infomask2 > frz2->t_infomask2)
    1925        7710 :         return 1;
    1926             : 
    1927     1982390 :     if (frz1->t_infomask < frz2->t_infomask)
    1928       16478 :         return -1;
    1929     1965912 :     else if (frz1->t_infomask > frz2->t_infomask)
    1930       26230 :         return 1;
    1931             : 
    1932     1939682 :     if (frz1->frzflags < frz2->frzflags)
    1933           0 :         return -1;
    1934     1939682 :     else if (frz1->frzflags > frz2->frzflags)
    1935           0 :         return 1;
    1936             : 
    1937             :     /*
    1938             :      * heap_log_freeze_eq would consider these tuple-wise plans to be equal.
    1939             :      * (So the tuples will share a single canonical freeze plan.)
    1940             :      *
    1941             :      * We tiebreak on page offset number to keep each freeze plan's page
    1942             :      * offset number array individually sorted. (Unnecessary, but be tidy.)
    1943             :      */
    1944     1939682 :     if (frz1->offset < frz2->offset)
    1945     1572966 :         return -1;
    1946      366716 :     else if (frz1->offset > frz2->offset)
    1947      366716 :         return 1;
    1948             : 
    1949             :     Assert(false);
    1950           0 :     return 0;
    1951             : }
    1952             : 
    1953             : /*
    1954             :  * Start new plan initialized using tuple-level actions.  At least one tuple
    1955             :  * will have steps required to freeze described by caller's plan during REDO.
    1956             :  */
    1957             : static inline void
    1958       41466 : heap_log_freeze_new_plan(xlhp_freeze_plan *plan, HeapTupleFreeze *frz)
    1959             : {
    1960       41466 :     plan->xmax = frz->xmax;
    1961       41466 :     plan->t_infomask2 = frz->t_infomask2;
    1962       41466 :     plan->t_infomask = frz->t_infomask;
    1963       41466 :     plan->frzflags = frz->frzflags;
    1964       41466 :     plan->ntuples = 1;           /* for now */
    1965       41466 : }
    1966             : 
    1967             : /*
    1968             :  * Deduplicate tuple-based freeze plans so that each distinct set of
    1969             :  * processing steps is only stored once in the WAL record.
    1970             :  * Called during original execution of freezing (for logged relations).
    1971             :  *
    1972             :  * Return value is number of plans set in *plans_out for caller.  Also writes
    1973             :  * an array of offset numbers into *offsets_out output argument for caller
    1974             :  * (actually there is one array per freeze plan, but that's not of immediate
    1975             :  * concern to our caller).
    1976             :  */
    1977             : static int
    1978       33296 : heap_log_freeze_plan(HeapTupleFreeze *tuples, int ntuples,
    1979             :                      xlhp_freeze_plan *plans_out,
    1980             :                      OffsetNumber *offsets_out)
    1981             : {
    1982       33296 :     int         nplans = 0;
    1983             : 
    1984             :     /* Sort tuple-based freeze plans in the order required to deduplicate */
    1985       33296 :     qsort(tuples, ntuples, sizeof(HeapTupleFreeze), heap_log_freeze_cmp);
    1986             : 
    1987     1425528 :     for (int i = 0; i < ntuples; i++)
    1988             :     {
    1989     1392232 :         HeapTupleFreeze *frz = tuples + i;
    1990             : 
    1991     1392232 :         if (i == 0)
    1992             :         {
    1993             :             /* New canonical freeze plan starting with first tup */
    1994       33296 :             heap_log_freeze_new_plan(plans_out, frz);
    1995       33296 :             nplans++;
    1996             :         }
    1997     1358936 :         else if (heap_log_freeze_eq(plans_out, frz))
    1998             :         {
    1999             :             /* tup matches open canonical plan -- include tup in it */
    2000             :             Assert(offsets_out[i - 1] < frz->offset);
    2001     1350766 :             plans_out->ntuples++;
    2002             :         }
    2003             :         else
    2004             :         {
    2005             :             /* Tup doesn't match current plan -- done with it now */
    2006        8170 :             plans_out++;
    2007             : 
    2008             :             /* New canonical freeze plan starting with this tup */
    2009        8170 :             heap_log_freeze_new_plan(plans_out, frz);
    2010        8170 :             nplans++;
    2011             :         }
    2012             : 
    2013             :         /*
    2014             :          * Save page offset number in dedicated buffer in passing.
    2015             :          *
    2016             :          * REDO routine relies on the record's offset numbers array grouping
    2017             :          * offset numbers by freeze plan.  The sort order within each grouping
    2018             :          * is ascending offset number order, just to keep things tidy.
    2019             :          */
    2020     1392232 :         offsets_out[i] = frz->offset;
    2021             :     }
    2022             : 
    2023             :     Assert(nplans > 0 && nplans <= ntuples);
    2024             : 
    2025       33296 :     return nplans;
    2026             : }
    2027             : 
    2028             : /*
    2029             :  * Write an XLOG_HEAP2_PRUNE_FREEZE WAL record
    2030             :  *
    2031             :  * This is used for several different page maintenance operations:
    2032             :  *
    2033             :  * - Page pruning, in VACUUM's 1st pass or on access: Some items are
    2034             :  *   redirected, some marked dead, and some removed altogether.
    2035             :  *
    2036             :  * - Freezing: Items are marked as 'frozen'.
    2037             :  *
    2038             :  * - Vacuum, 2nd pass: Items that are already LP_DEAD are marked as unused.
    2039             :  *
    2040             :  * They have enough commonalities that we use a single WAL record for them
    2041             :  * all.
    2042             :  *
    2043             :  * If replaying the record requires a cleanup lock, pass cleanup_lock = true.
    2044             :  * Replaying 'redirected' or 'dead' items always requires a cleanup lock, but
    2045             :  * replaying 'unused' items depends on whether they were all previously marked
    2046             :  * as dead.
    2047             :  *
    2048             :  * Note: This function scribbles on the 'frozen' array.
    2049             :  *
    2050             :  * Note: This is called in a critical section, so careful what you do here.
    2051             :  */
    2052             : void
    2053      150752 : log_heap_prune_and_freeze(Relation relation, Buffer buffer,
    2054             :                           TransactionId conflict_xid,
    2055             :                           bool cleanup_lock,
    2056             :                           PruneReason reason,
    2057             :                           HeapTupleFreeze *frozen, int nfrozen,
    2058             :                           OffsetNumber *redirected, int nredirected,
    2059             :                           OffsetNumber *dead, int ndead,
    2060             :                           OffsetNumber *unused, int nunused)
    2061             : {
    2062             :     xl_heap_prune xlrec;
    2063             :     XLogRecPtr  recptr;
    2064             :     uint8       info;
    2065             : 
    2066             :     /* The following local variables hold data registered in the WAL record: */
    2067             :     xlhp_freeze_plan plans[MaxHeapTuplesPerPage];
    2068             :     xlhp_freeze_plans freeze_plans;
    2069             :     xlhp_prune_items redirect_items;
    2070             :     xlhp_prune_items dead_items;
    2071             :     xlhp_prune_items unused_items;
    2072             :     OffsetNumber frz_offsets[MaxHeapTuplesPerPage];
    2073             : 
    2074      150752 :     xlrec.flags = 0;
    2075             : 
    2076             :     /*
    2077             :      * Prepare data for the buffer.  The arrays are not actually in the
    2078             :      * buffer, but we pretend that they are.  When XLogInsert stores a full
    2079             :      * page image, the arrays can be omitted.
    2080             :      */
    2081      150752 :     XLogBeginInsert();
    2082      150752 :     XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    2083      150752 :     if (nfrozen > 0)
    2084             :     {
    2085             :         int         nplans;
    2086             : 
    2087       33296 :         xlrec.flags |= XLHP_HAS_FREEZE_PLANS;
    2088             : 
    2089             :         /*
    2090             :          * Prepare deduplicated representation for use in the WAL record. This
    2091             :          * destructively sorts frozen tuples array in-place.
    2092             :          */
    2093       33296 :         nplans = heap_log_freeze_plan(frozen, nfrozen, plans, frz_offsets);
    2094             : 
    2095       33296 :         freeze_plans.nplans = nplans;
    2096       33296 :         XLogRegisterBufData(0, (char *) &freeze_plans,
    2097             :                             offsetof(xlhp_freeze_plans, plans));
    2098       33296 :         XLogRegisterBufData(0, (char *) plans,
    2099             :                             sizeof(xlhp_freeze_plan) * nplans);
    2100             :     }
    2101      150752 :     if (nredirected > 0)
    2102             :     {
    2103       29324 :         xlrec.flags |= XLHP_HAS_REDIRECTIONS;
    2104             : 
    2105       29324 :         redirect_items.ntargets = nredirected;
    2106       29324 :         XLogRegisterBufData(0, (char *) &redirect_items,
    2107             :                             offsetof(xlhp_prune_items, data));
    2108       29324 :         XLogRegisterBufData(0, (char *) redirected,
    2109             :                             sizeof(OffsetNumber[2]) * nredirected);
    2110             :     }
    2111      150752 :     if (ndead > 0)
    2112             :     {
    2113       72730 :         xlrec.flags |= XLHP_HAS_DEAD_ITEMS;
    2114             : 
    2115       72730 :         dead_items.ntargets = ndead;
    2116       72730 :         XLogRegisterBufData(0, (char *) &dead_items,
    2117             :                             offsetof(xlhp_prune_items, data));
    2118       72730 :         XLogRegisterBufData(0, (char *) dead,
    2119             :                             sizeof(OffsetNumber) * ndead);
    2120             :     }
    2121      150752 :     if (nunused > 0)
    2122             :     {
    2123       43428 :         xlrec.flags |= XLHP_HAS_NOW_UNUSED_ITEMS;
    2124             : 
    2125       43428 :         unused_items.ntargets = nunused;
    2126       43428 :         XLogRegisterBufData(0, (char *) &unused_items,
    2127             :                             offsetof(xlhp_prune_items, data));
    2128       43428 :         XLogRegisterBufData(0, (char *) unused,
    2129             :                             sizeof(OffsetNumber) * nunused);
    2130             :     }
    2131      150752 :     if (nfrozen > 0)
    2132       33296 :         XLogRegisterBufData(0, (char *) frz_offsets,
    2133             :                             sizeof(OffsetNumber) * nfrozen);
    2134             : 
    2135             :     /*
    2136             :      * Prepare the main xl_heap_prune record.  We already set the XLHP_HAS_*
    2137             :      * flag above.
    2138             :      */
    2139      150752 :     if (RelationIsAccessibleInLogicalDecoding(relation))
    2140        1194 :         xlrec.flags |= XLHP_IS_CATALOG_REL;
    2141      150752 :     if (TransactionIdIsValid(conflict_xid))
    2142      117784 :         xlrec.flags |= XLHP_HAS_CONFLICT_HORIZON;
    2143      150752 :     if (cleanup_lock)
    2144      126916 :         xlrec.flags |= XLHP_CLEANUP_LOCK;
    2145             :     else
    2146             :     {
    2147             :         Assert(nredirected == 0 && ndead == 0);
    2148             :         /* also, any items in 'unused' must've been LP_DEAD previously */
    2149             :     }
    2150      150752 :     XLogRegisterData((char *) &xlrec, SizeOfHeapPrune);
    2151      150752 :     if (TransactionIdIsValid(conflict_xid))
    2152      117784 :         XLogRegisterData((char *) &conflict_xid, sizeof(TransactionId));
    2153             : 
    2154      150752 :     switch (reason)
    2155             :     {
    2156       75912 :         case PRUNE_ON_ACCESS:
    2157       75912 :             info = XLOG_HEAP2_PRUNE_ON_ACCESS;
    2158       75912 :             break;
    2159       51004 :         case PRUNE_VACUUM_SCAN:
    2160       51004 :             info = XLOG_HEAP2_PRUNE_VACUUM_SCAN;
    2161       51004 :             break;
    2162       23836 :         case PRUNE_VACUUM_CLEANUP:
    2163       23836 :             info = XLOG_HEAP2_PRUNE_VACUUM_CLEANUP;
    2164       23836 :             break;
    2165           0 :         default:
    2166           0 :             elog(ERROR, "unrecognized prune reason: %d", (int) reason);
    2167             :             break;
    2168             :     }
    2169      150752 :     recptr = XLogInsert(RM_HEAP2_ID, info);
    2170             : 
    2171      150752 :     PageSetLSN(BufferGetPage(buffer), recptr);
    2172      150752 : }

Generated by: LCOV version 1.14