Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * pruneheap.c
4 : * heap page pruning and HOT-chain management code
5 : *
6 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 : * Portions Copyright (c) 1994, Regents of the University of California
8 : *
9 : *
10 : * IDENTIFICATION
11 : * src/backend/access/heap/pruneheap.c
12 : *
13 : *-------------------------------------------------------------------------
14 : */
15 : #include "postgres.h"
16 :
17 : #include "access/heapam.h"
18 : #include "access/heapam_xlog.h"
19 : #include "access/htup_details.h"
20 : #include "access/multixact.h"
21 : #include "access/transam.h"
22 : #include "access/visibilitymapdefs.h"
23 : #include "access/xlog.h"
24 : #include "access/xloginsert.h"
25 : #include "commands/vacuum.h"
26 : #include "executor/instrument.h"
27 : #include "miscadmin.h"
28 : #include "pgstat.h"
29 : #include "storage/bufmgr.h"
30 : #include "utils/rel.h"
31 : #include "utils/snapmgr.h"
32 :
33 : /* Working data for heap_page_prune_and_freeze() and subroutines */
34 : typedef struct
35 : {
36 : /*-------------------------------------------------------
37 : * Arguments passed to heap_page_prune_and_freeze()
38 : *-------------------------------------------------------
39 : */
40 :
41 : /* tuple visibility test, initialized for the relation */
42 : GlobalVisState *vistest;
43 : /* whether or not dead items can be set LP_UNUSED during pruning */
44 : bool mark_unused_now;
45 : /* whether to attempt freezing tuples */
46 : bool attempt_freeze;
47 : struct VacuumCutoffs *cutoffs;
48 :
49 : /*-------------------------------------------------------
50 : * Fields describing what to do to the page
51 : *-------------------------------------------------------
52 : */
53 : TransactionId new_prune_xid; /* new prune hint value */
54 : TransactionId latest_xid_removed;
55 : int nredirected; /* numbers of entries in arrays below */
56 : int ndead;
57 : int nunused;
58 : int nfrozen;
59 : /* arrays that accumulate indexes of items to be changed */
60 : OffsetNumber redirected[MaxHeapTuplesPerPage * 2];
61 : OffsetNumber nowdead[MaxHeapTuplesPerPage];
62 : OffsetNumber nowunused[MaxHeapTuplesPerPage];
63 : HeapTupleFreeze frozen[MaxHeapTuplesPerPage];
64 :
65 : /*-------------------------------------------------------
66 : * Working state for HOT chain processing
67 : *-------------------------------------------------------
68 : */
69 :
70 : /*
71 : * 'root_items' contains offsets of all LP_REDIRECT line pointers and
72 : * normal non-HOT tuples. They can be stand-alone items or the first item
73 : * in a HOT chain. 'heaponly_items' contains heap-only tuples which can
74 : * only be removed as part of a HOT chain.
75 : */
76 : int nroot_items;
77 : OffsetNumber root_items[MaxHeapTuplesPerPage];
78 : int nheaponly_items;
79 : OffsetNumber heaponly_items[MaxHeapTuplesPerPage];
80 :
81 : /*
82 : * processed[offnum] is true if item at offnum has been processed.
83 : *
84 : * This needs to be MaxHeapTuplesPerPage + 1 long as FirstOffsetNumber is
85 : * 1. Otherwise every access would need to subtract 1.
86 : */
87 : bool processed[MaxHeapTuplesPerPage + 1];
88 :
89 : /*
90 : * Tuple visibility is only computed once for each tuple, for correctness
91 : * and efficiency reasons; see comment in heap_page_prune_and_freeze() for
92 : * details. This is of type int8[], instead of HTSV_Result[], so we can
93 : * use -1 to indicate no visibility has been computed, e.g. for LP_DEAD
94 : * items.
95 : *
96 : * This needs to be MaxHeapTuplesPerPage + 1 long as FirstOffsetNumber is
97 : * 1. Otherwise every access would need to subtract 1.
98 : */
99 : int8 htsv[MaxHeapTuplesPerPage + 1];
100 :
101 : /*
102 : * Freezing-related state.
103 : */
104 : HeapPageFreeze pagefrz;
105 :
106 : /*-------------------------------------------------------
107 : * Information about what was done
108 : *
109 : * These fields are not used by pruning itself for the most part, but are
110 : * used to collect information about what was pruned and what state the
111 : * page is in after pruning, for the benefit of the caller. They are
112 : * copied to the caller's PruneFreezeResult at the end.
113 : * -------------------------------------------------------
114 : */
115 :
116 : int ndeleted; /* Number of tuples deleted from the page */
117 :
118 : /* Number of live and recently dead tuples, after pruning */
119 : int live_tuples;
120 : int recently_dead_tuples;
121 :
122 : /* Whether or not the page makes rel truncation unsafe */
123 : bool hastup;
124 :
125 : /*
126 : * LP_DEAD items on the page after pruning. Includes existing LP_DEAD
127 : * items
128 : */
129 : int lpdead_items; /* number of items in the array */
130 : OffsetNumber *deadoffsets; /* points directly to presult->deadoffsets */
131 :
132 : /*
133 : * The snapshot conflict horizon used when freezing tuples. The final
134 : * snapshot conflict horizon for the record may be newer if pruning
135 : * removes newer transaction IDs.
136 : */
137 : TransactionId frz_conflict_horizon;
138 :
139 : /*
140 : * all_visible and all_frozen indicate if the all-visible and all-frozen
141 : * bits in the visibility map can be set for this page after pruning.
142 : *
143 : * visibility_cutoff_xid is the newest xmin of live tuples on the page.
144 : * The caller can use it as the conflict horizon, when setting the VM
145 : * bits. It is only valid if we froze some tuples, and all_frozen is
146 : * true.
147 : *
148 : * NOTE: all_visible and all_frozen initially don't include LP_DEAD items.
149 : * That's convenient for heap_page_prune_and_freeze() to use them to
150 : * decide whether to freeze the page or not. The all_visible and
151 : * all_frozen values returned to the caller are adjusted to include
152 : * LP_DEAD items after we determine whether to opportunistically freeze.
153 : */
154 : bool all_visible;
155 : bool all_frozen;
156 : TransactionId visibility_cutoff_xid;
157 : } PruneState;
158 :
159 : /* Local functions */
160 : static void prune_freeze_setup(PruneFreezeParams *params,
161 : TransactionId new_relfrozen_xid,
162 : MultiXactId new_relmin_mxid,
163 : const PruneFreezeResult *presult,
164 : PruneState *prstate);
165 : static void prune_freeze_plan(Oid reloid, Buffer buffer,
166 : PruneState *prstate,
167 : OffsetNumber *off_loc);
168 : static HTSV_Result heap_prune_satisfies_vacuum(PruneState *prstate,
169 : HeapTuple tup,
170 : Buffer buffer);
171 : static inline HTSV_Result htsv_get_valid_status(int status);
172 : static void heap_prune_chain(Page page, BlockNumber blockno, OffsetNumber maxoff,
173 : OffsetNumber rootoffnum, PruneState *prstate);
174 : static void heap_prune_record_prunable(PruneState *prstate, TransactionId xid);
175 : static void heap_prune_record_redirect(PruneState *prstate,
176 : OffsetNumber offnum, OffsetNumber rdoffnum,
177 : bool was_normal);
178 : static void heap_prune_record_dead(PruneState *prstate, OffsetNumber offnum,
179 : bool was_normal);
180 : static void heap_prune_record_dead_or_unused(PruneState *prstate, OffsetNumber offnum,
181 : bool was_normal);
182 : static void heap_prune_record_unused(PruneState *prstate, OffsetNumber offnum, bool was_normal);
183 :
184 : static void heap_prune_record_unchanged_lp_unused(Page page, PruneState *prstate, OffsetNumber offnum);
185 : static void heap_prune_record_unchanged_lp_normal(Page page, PruneState *prstate, OffsetNumber offnum);
186 : static void heap_prune_record_unchanged_lp_dead(Page page, PruneState *prstate, OffsetNumber offnum);
187 : static void heap_prune_record_unchanged_lp_redirect(PruneState *prstate, OffsetNumber offnum);
188 :
189 : static void page_verify_redirects(Page page);
190 :
191 : static bool heap_page_will_freeze(Relation relation, Buffer buffer,
192 : bool did_tuple_hint_fpi, bool do_prune, bool do_hint_prune,
193 : PruneState *prstate);
194 :
195 :
196 : /*
197 : * Optionally prune and repair fragmentation in the specified page.
198 : *
199 : * This is an opportunistic function. It will perform housekeeping
200 : * only if the page heuristically looks like a candidate for pruning and we
201 : * can acquire buffer cleanup lock without blocking.
202 : *
203 : * Note: this is called quite often. It's important that it fall out quickly
204 : * if there's not any use in pruning.
205 : *
206 : * Caller must have pin on the buffer, and must *not* have a lock on it.
207 : */
208 : void
209 32608568 : heap_page_prune_opt(Relation relation, Buffer buffer)
210 : {
211 32608568 : Page page = BufferGetPage(buffer);
212 : TransactionId prune_xid;
213 : GlobalVisState *vistest;
214 : Size minfree;
215 :
216 : /*
217 : * We can't write WAL in recovery mode, so there's no point trying to
218 : * clean the page. The primary will likely issue a cleaning WAL record
219 : * soon anyway, so this is no particular loss.
220 : */
221 32608568 : if (RecoveryInProgress())
222 442864 : return;
223 :
224 : /*
225 : * First check whether there's any chance there's something to prune,
226 : * determining the appropriate horizon is a waste if there's no prune_xid
227 : * (i.e. no updates/deletes left potentially dead tuples around).
228 : */
229 32165704 : prune_xid = ((PageHeader) page)->pd_prune_xid;
230 32165704 : if (!TransactionIdIsValid(prune_xid))
231 16649106 : return;
232 :
233 : /*
234 : * Check whether prune_xid indicates that there may be dead rows that can
235 : * be cleaned up.
236 : */
237 15516598 : vistest = GlobalVisTestFor(relation);
238 :
239 15516598 : if (!GlobalVisTestIsRemovableXid(vistest, prune_xid))
240 12993524 : return;
241 :
242 : /*
243 : * We prune when a previous UPDATE failed to find enough space on the page
244 : * for a new tuple version, or when free space falls below the relation's
245 : * fill-factor target (but not less than 10%).
246 : *
247 : * Checking free space here is questionable since we aren't holding any
248 : * lock on the buffer; in the worst case we could get a bogus answer. It's
249 : * unlikely to be *seriously* wrong, though, since reading either pd_lower
250 : * or pd_upper is probably atomic. Avoiding taking a lock seems more
251 : * important than sometimes getting a wrong answer in what is after all
252 : * just a heuristic estimate.
253 : */
254 2523074 : minfree = RelationGetTargetPageFreeSpace(relation,
255 : HEAP_DEFAULT_FILLFACTOR);
256 2523074 : minfree = Max(minfree, BLCKSZ / 10);
257 :
258 2523074 : if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
259 : {
260 : /* OK, try to get exclusive buffer lock */
261 84450 : if (!ConditionalLockBufferForCleanup(buffer))
262 1036 : return;
263 :
264 : /*
265 : * Now that we have buffer lock, get accurate information about the
266 : * page's free space, and recheck the heuristic about whether to
267 : * prune.
268 : */
269 83414 : if (PageIsFull(page) || PageGetHeapFreeSpace(page) < minfree)
270 : {
271 : OffsetNumber dummy_off_loc;
272 : PruneFreezeResult presult;
273 :
274 : /*
275 : * We don't pass the HEAP_PAGE_PRUNE_MARK_UNUSED_NOW option
276 : * regardless of whether or not the relation has indexes, since we
277 : * cannot safely determine that during on-access pruning with the
278 : * current implementation.
279 : */
280 83414 : PruneFreezeParams params = {
281 : .relation = relation,
282 : .buffer = buffer,
283 : .reason = PRUNE_ON_ACCESS,
284 : .options = 0,
285 : .vistest = vistest,
286 : .cutoffs = NULL,
287 : };
288 :
289 83414 : heap_page_prune_and_freeze(¶ms, &presult, &dummy_off_loc,
290 : NULL, NULL);
291 :
292 : /*
293 : * Report the number of tuples reclaimed to pgstats. This is
294 : * presult.ndeleted minus the number of newly-LP_DEAD-set items.
295 : *
296 : * We derive the number of dead tuples like this to avoid totally
297 : * forgetting about items that were set to LP_DEAD, since they
298 : * still need to be cleaned up by VACUUM. We only want to count
299 : * heap-only tuples that just became LP_UNUSED in our report,
300 : * which don't.
301 : *
302 : * VACUUM doesn't have to compensate in the same way when it
303 : * tracks ndeleted, since it will set the same LP_DEAD items to
304 : * LP_UNUSED separately.
305 : */
306 83414 : if (presult.ndeleted > presult.nnewlpdead)
307 37852 : pgstat_update_heap_dead_tuples(relation,
308 37852 : presult.ndeleted - presult.nnewlpdead);
309 : }
310 :
311 : /* And release buffer lock */
312 83414 : LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
313 :
314 : /*
315 : * We avoid reuse of any free space created on the page by unrelated
316 : * UPDATEs/INSERTs by opting to not update the FSM at this point. The
317 : * free space should be reused by UPDATEs to *this* page.
318 : */
319 : }
320 : }
321 :
322 : /*
323 : * Helper for heap_page_prune_and_freeze() to initialize the PruneState using
324 : * the provided parameters.
325 : */
326 : static void
327 1084810 : prune_freeze_setup(PruneFreezeParams *params,
328 : TransactionId new_relfrozen_xid,
329 : MultiXactId new_relmin_mxid,
330 : const PruneFreezeResult *presult,
331 : PruneState *prstate)
332 : {
333 : /* Copy parameters to prstate */
334 1084810 : prstate->vistest = params->vistest;
335 1084810 : prstate->mark_unused_now =
336 1084810 : (params->options & HEAP_PAGE_PRUNE_MARK_UNUSED_NOW) != 0;
337 :
338 : /* cutoffs must be provided if we will attempt freezing */
339 : Assert(!(params->options & HEAP_PAGE_PRUNE_FREEZE) || params->cutoffs);
340 1084810 : prstate->attempt_freeze = (params->options & HEAP_PAGE_PRUNE_FREEZE) != 0;
341 1084810 : prstate->cutoffs = params->cutoffs;
342 :
343 : /*
344 : * Our strategy is to scan the page and make lists of items to change,
345 : * then apply the changes within a critical section. This keeps as much
346 : * logic as possible out of the critical section, and also ensures that
347 : * WAL replay will work the same as the normal case.
348 : *
349 : * First, initialize the new pd_prune_xid value to zero (indicating no
350 : * prunable tuples). If we find any tuples which may soon become
351 : * prunable, we will save the lowest relevant XID in new_prune_xid. Also
352 : * initialize the rest of our working state.
353 : */
354 1084810 : prstate->new_prune_xid = InvalidTransactionId;
355 1084810 : prstate->latest_xid_removed = InvalidTransactionId;
356 1084810 : prstate->nredirected = prstate->ndead = prstate->nunused = 0;
357 1084810 : prstate->nfrozen = 0;
358 1084810 : prstate->nroot_items = 0;
359 1084810 : prstate->nheaponly_items = 0;
360 :
361 : /* initialize page freezing working state */
362 1084810 : prstate->pagefrz.freeze_required = false;
363 1084810 : if (prstate->attempt_freeze)
364 : {
365 1001396 : prstate->pagefrz.FreezePageRelfrozenXid = new_relfrozen_xid;
366 1001396 : prstate->pagefrz.NoFreezePageRelfrozenXid = new_relfrozen_xid;
367 1001396 : prstate->pagefrz.FreezePageRelminMxid = new_relmin_mxid;
368 1001396 : prstate->pagefrz.NoFreezePageRelminMxid = new_relmin_mxid;
369 : }
370 : else
371 : {
372 : Assert(new_relfrozen_xid == InvalidTransactionId &&
373 : new_relmin_mxid == InvalidMultiXactId);
374 83414 : prstate->pagefrz.FreezePageRelminMxid = InvalidMultiXactId;
375 83414 : prstate->pagefrz.NoFreezePageRelminMxid = InvalidMultiXactId;
376 83414 : prstate->pagefrz.FreezePageRelfrozenXid = InvalidTransactionId;
377 83414 : prstate->pagefrz.NoFreezePageRelfrozenXid = InvalidTransactionId;
378 : }
379 :
380 1084810 : prstate->ndeleted = 0;
381 1084810 : prstate->live_tuples = 0;
382 1084810 : prstate->recently_dead_tuples = 0;
383 1084810 : prstate->hastup = false;
384 1084810 : prstate->lpdead_items = 0;
385 1084810 : prstate->deadoffsets = (OffsetNumber *) presult->deadoffsets;
386 1084810 : prstate->frz_conflict_horizon = InvalidTransactionId;
387 :
388 : /*
389 : * Vacuum may update the VM after we're done. We can keep track of
390 : * whether the page will be all-visible and all-frozen after pruning and
391 : * freezing to help the caller to do that.
392 : *
393 : * Currently, only VACUUM sets the VM bits. To save the effort, only do
394 : * the bookkeeping if the caller needs it. Currently, that's tied to
395 : * HEAP_PAGE_PRUNE_FREEZE, but it could be a separate flag if you wanted
396 : * to update the VM bits without also freezing or freeze without also
397 : * setting the VM bits.
398 : *
399 : * In addition to telling the caller whether it can set the VM bit, we
400 : * also use 'all_visible' and 'all_frozen' for our own decision-making. If
401 : * the whole page would become frozen, we consider opportunistically
402 : * freezing tuples. We will not be able to freeze the whole page if there
403 : * are tuples present that are not visible to everyone or if there are
404 : * dead tuples which are not yet removable. However, dead tuples which
405 : * will be removed by the end of vacuuming should not preclude us from
406 : * opportunistically freezing. Because of that, we do not immediately
407 : * clear all_visible and all_frozen when we see LP_DEAD items. We fix
408 : * that after scanning the line pointers. We must correct all_visible and
409 : * all_frozen before we return them to the caller, so that the caller
410 : * doesn't set the VM bits incorrectly.
411 : */
412 1084810 : if (prstate->attempt_freeze)
413 : {
414 1001396 : prstate->all_visible = true;
415 1001396 : prstate->all_frozen = true;
416 : }
417 : else
418 : {
419 : /*
420 : * Initializing to false allows skipping the work to update them in
421 : * heap_prune_record_unchanged_lp_normal().
422 : */
423 83414 : prstate->all_visible = false;
424 83414 : prstate->all_frozen = false;
425 : }
426 :
427 : /*
428 : * The visibility cutoff xid is the newest xmin of live tuples on the
429 : * page. In the common case, this will be set as the conflict horizon the
430 : * caller can use for updating the VM. If, at the end of freezing and
431 : * pruning, the page is all-frozen, there is no possibility that any
432 : * running transaction on the standby does not see tuples on the page as
433 : * all-visible, so the conflict horizon remains InvalidTransactionId.
434 : */
435 1084810 : prstate->visibility_cutoff_xid = InvalidTransactionId;
436 1084810 : }
437 :
438 : /*
439 : * Helper for heap_page_prune_and_freeze(). Iterates over every tuple on the
440 : * page, examines its visibility information, and determines the appropriate
441 : * action for each tuple. All tuples are processed and classified during this
442 : * phase, but no modifications are made to the page until the later execution
443 : * stage.
444 : *
445 : * *off_loc is used for error callback and cleared before returning.
446 : */
447 : static void
448 1084810 : prune_freeze_plan(Oid reloid, Buffer buffer, PruneState *prstate,
449 : OffsetNumber *off_loc)
450 : {
451 1084810 : Page page = BufferGetPage(buffer);
452 1084810 : BlockNumber blockno = BufferGetBlockNumber(buffer);
453 1084810 : OffsetNumber maxoff = PageGetMaxOffsetNumber(page);
454 : OffsetNumber offnum;
455 : HeapTupleData tup;
456 :
457 1084810 : tup.t_tableOid = reloid;
458 :
459 : /*
460 : * Determine HTSV for all tuples, and queue them up for processing as HOT
461 : * chain roots or as heap-only items.
462 : *
463 : * Determining HTSV only once for each tuple is required for correctness,
464 : * to deal with cases where running HTSV twice could result in different
465 : * results. For example, RECENTLY_DEAD can turn to DEAD if another
466 : * checked item causes GlobalVisTestIsRemovableFullXid() to update the
467 : * horizon, or INSERT_IN_PROGRESS can change to DEAD if the inserting
468 : * transaction aborts.
469 : *
470 : * It's also good for performance. Most commonly tuples within a page are
471 : * stored at decreasing offsets (while the items are stored at increasing
472 : * offsets). When processing all tuples on a page this leads to reading
473 : * memory at decreasing offsets within a page, with a variable stride.
474 : * That's hard for CPU prefetchers to deal with. Processing the items in
475 : * reverse order (and thus the tuples in increasing order) increases
476 : * prefetching efficiency significantly / decreases the number of cache
477 : * misses.
478 : */
479 1084810 : for (offnum = maxoff;
480 54514926 : offnum >= FirstOffsetNumber;
481 53430116 : offnum = OffsetNumberPrev(offnum))
482 : {
483 53430116 : ItemId itemid = PageGetItemId(page, offnum);
484 : HeapTupleHeader htup;
485 :
486 : /*
487 : * Set the offset number so that we can display it along with any
488 : * error that occurred while processing this tuple.
489 : */
490 53430116 : *off_loc = offnum;
491 :
492 53430116 : prstate->processed[offnum] = false;
493 53430116 : prstate->htsv[offnum] = -1;
494 :
495 : /* Nothing to do if slot doesn't contain a tuple */
496 53430116 : if (!ItemIdIsUsed(itemid))
497 : {
498 586464 : heap_prune_record_unchanged_lp_unused(page, prstate, offnum);
499 586464 : continue;
500 : }
501 :
502 52843652 : if (ItemIdIsDead(itemid))
503 : {
504 : /*
505 : * If the caller set mark_unused_now true, we can set dead line
506 : * pointers LP_UNUSED now.
507 : */
508 2126528 : if (unlikely(prstate->mark_unused_now))
509 1128 : heap_prune_record_unused(prstate, offnum, false);
510 : else
511 2125400 : heap_prune_record_unchanged_lp_dead(page, prstate, offnum);
512 2126528 : continue;
513 : }
514 :
515 50717124 : if (ItemIdIsRedirected(itemid))
516 : {
517 : /* This is the start of a HOT chain */
518 619490 : prstate->root_items[prstate->nroot_items++] = offnum;
519 619490 : continue;
520 : }
521 :
522 : Assert(ItemIdIsNormal(itemid));
523 :
524 : /*
525 : * Get the tuple's visibility status and queue it up for processing.
526 : */
527 50097634 : htup = (HeapTupleHeader) PageGetItem(page, itemid);
528 50097634 : tup.t_data = htup;
529 50097634 : tup.t_len = ItemIdGetLength(itemid);
530 50097634 : ItemPointerSet(&tup.t_self, blockno, offnum);
531 :
532 50097634 : prstate->htsv[offnum] = heap_prune_satisfies_vacuum(prstate, &tup,
533 : buffer);
534 :
535 50097634 : if (!HeapTupleHeaderIsHeapOnly(htup))
536 49242544 : prstate->root_items[prstate->nroot_items++] = offnum;
537 : else
538 855090 : prstate->heaponly_items[prstate->nheaponly_items++] = offnum;
539 : }
540 :
541 : /*
542 : * Process HOT chains.
543 : *
544 : * We added the items to the array starting from 'maxoff', so by
545 : * processing the array in reverse order, we process the items in
546 : * ascending offset number order. The order doesn't matter for
547 : * correctness, but some quick micro-benchmarking suggests that this is
548 : * faster. (Earlier PostgreSQL versions, which scanned all the items on
549 : * the page instead of using the root_items array, also did it in
550 : * ascending offset number order.)
551 : */
552 50946844 : for (int i = prstate->nroot_items - 1; i >= 0; i--)
553 : {
554 49862034 : offnum = prstate->root_items[i];
555 :
556 : /* Ignore items already processed as part of an earlier chain */
557 49862034 : if (prstate->processed[offnum])
558 0 : continue;
559 :
560 : /* see preceding loop */
561 49862034 : *off_loc = offnum;
562 :
563 : /* Process this item or chain of items */
564 49862034 : heap_prune_chain(page, blockno, maxoff, offnum, prstate);
565 : }
566 :
567 : /*
568 : * Process any heap-only tuples that were not already processed as part of
569 : * a HOT chain.
570 : */
571 1939900 : for (int i = prstate->nheaponly_items - 1; i >= 0; i--)
572 : {
573 855090 : offnum = prstate->heaponly_items[i];
574 :
575 855090 : if (prstate->processed[offnum])
576 827314 : continue;
577 :
578 : /* see preceding loop */
579 27776 : *off_loc = offnum;
580 :
581 : /*
582 : * If the tuple is DEAD and doesn't chain to anything else, mark it
583 : * unused. (If it does chain, we can only remove it as part of
584 : * pruning its chain.)
585 : *
586 : * We need this primarily to handle aborted HOT updates, that is,
587 : * XMIN_INVALID heap-only tuples. Those might not be linked to by any
588 : * chain, since the parent tuple might be re-updated before any
589 : * pruning occurs. So we have to be able to reap them separately from
590 : * chain-pruning. (Note that HeapTupleHeaderIsHotUpdated will never
591 : * return true for an XMIN_INVALID tuple, so this code will work even
592 : * when there were sequential updates within the aborted transaction.)
593 : */
594 27776 : if (prstate->htsv[offnum] == HEAPTUPLE_DEAD)
595 : {
596 4182 : ItemId itemid = PageGetItemId(page, offnum);
597 4182 : HeapTupleHeader htup = (HeapTupleHeader) PageGetItem(page, itemid);
598 :
599 4182 : if (likely(!HeapTupleHeaderIsHotUpdated(htup)))
600 : {
601 4182 : HeapTupleHeaderAdvanceConflictHorizon(htup,
602 : &prstate->latest_xid_removed);
603 4182 : heap_prune_record_unused(prstate, offnum, true);
604 : }
605 : else
606 : {
607 : /*
608 : * This tuple should've been processed and removed as part of
609 : * a HOT chain, so something's wrong. To preserve evidence,
610 : * we don't dare to remove it. We cannot leave behind a DEAD
611 : * tuple either, because that will cause VACUUM to error out.
612 : * Throwing an error with a distinct error message seems like
613 : * the least bad option.
614 : */
615 0 : elog(ERROR, "dead heap-only tuple (%u, %d) is not linked to from any HOT chain",
616 : blockno, offnum);
617 : }
618 : }
619 : else
620 23594 : heap_prune_record_unchanged_lp_normal(page, prstate, offnum);
621 : }
622 :
623 : /* We should now have processed every tuple exactly once */
624 : #ifdef USE_ASSERT_CHECKING
625 : for (offnum = FirstOffsetNumber;
626 : offnum <= maxoff;
627 : offnum = OffsetNumberNext(offnum))
628 : {
629 : *off_loc = offnum;
630 :
631 : Assert(prstate->processed[offnum]);
632 : }
633 : #endif
634 :
635 : /* Clear the offset information once we have processed the given page. */
636 1084810 : *off_loc = InvalidOffsetNumber;
637 1084810 : }
638 :
639 : /*
640 : * Decide whether to proceed with freezing according to the freeze plans
641 : * prepared for the given heap buffer. If freezing is chosen, this function
642 : * performs several pre-freeze checks.
643 : *
644 : * The values of do_prune, do_hint_prune, and did_tuple_hint_fpi must be
645 : * determined before calling this function.
646 : *
647 : * prstate is both an input and output parameter.
648 : *
649 : * Returns true if we should apply the freeze plans and freeze tuples on the
650 : * page, and false otherwise.
651 : */
652 : static bool
653 1084810 : heap_page_will_freeze(Relation relation, Buffer buffer,
654 : bool did_tuple_hint_fpi,
655 : bool do_prune,
656 : bool do_hint_prune,
657 : PruneState *prstate)
658 : {
659 1084810 : bool do_freeze = false;
660 :
661 : /*
662 : * If the caller specified we should not attempt to freeze any tuples,
663 : * validate that everything is in the right state and return.
664 : */
665 1084810 : if (!prstate->attempt_freeze)
666 : {
667 : Assert(!prstate->all_frozen && prstate->nfrozen == 0);
668 : Assert(prstate->lpdead_items == 0 || !prstate->all_visible);
669 83414 : return false;
670 : }
671 :
672 1001396 : if (prstate->pagefrz.freeze_required)
673 : {
674 : /*
675 : * heap_prepare_freeze_tuple indicated that at least one XID/MXID from
676 : * before FreezeLimit/MultiXactCutoff is present. Must freeze to
677 : * advance relfrozenxid/relminmxid.
678 : */
679 41644 : do_freeze = true;
680 : }
681 : else
682 : {
683 : /*
684 : * Opportunistically freeze the page if we are generating an FPI
685 : * anyway and if doing so means that we can set the page all-frozen
686 : * afterwards (might not happen until VACUUM's final heap pass).
687 : *
688 : * XXX: Previously, we knew if pruning emitted an FPI by checking
689 : * pgWalUsage.wal_fpi before and after pruning. Once the freeze and
690 : * prune records were combined, this heuristic couldn't be used
691 : * anymore. The opportunistic freeze heuristic must be improved;
692 : * however, for now, try to approximate the old logic.
693 : */
694 959752 : if (prstate->all_frozen && prstate->nfrozen > 0)
695 : {
696 : Assert(prstate->all_visible);
697 :
698 : /*
699 : * Freezing would make the page all-frozen. Have already emitted
700 : * an FPI or will do so anyway?
701 : */
702 30072 : if (RelationNeedsWAL(relation))
703 : {
704 26758 : if (did_tuple_hint_fpi)
705 2376 : do_freeze = true;
706 24382 : else if (do_prune)
707 : {
708 2686 : if (XLogCheckBufferNeedsBackup(buffer))
709 1528 : do_freeze = true;
710 : }
711 21696 : else if (do_hint_prune)
712 : {
713 12 : if (XLogHintBitIsNeeded() && XLogCheckBufferNeedsBackup(buffer))
714 4 : do_freeze = true;
715 : }
716 : }
717 : }
718 : }
719 :
720 1001396 : if (do_freeze)
721 : {
722 : /*
723 : * Validate the tuples we will be freezing before entering the
724 : * critical section.
725 : */
726 45552 : heap_pre_freeze_checks(buffer, prstate->frozen, prstate->nfrozen);
727 :
728 : /*
729 : * Calculate what the snapshot conflict horizon should be for a record
730 : * freezing tuples. We can use the visibility_cutoff_xid as our cutoff
731 : * for conflicts when the whole page is eligible to become all-frozen
732 : * in the VM once we're done with it. Otherwise, we generate a
733 : * conservative cutoff by stepping back from OldestXmin.
734 : */
735 45552 : if (prstate->all_frozen)
736 41006 : prstate->frz_conflict_horizon = prstate->visibility_cutoff_xid;
737 : else
738 : {
739 : /* Avoids false conflicts when hot_standby_feedback in use */
740 4546 : prstate->frz_conflict_horizon = prstate->cutoffs->OldestXmin;
741 4546 : TransactionIdRetreat(prstate->frz_conflict_horizon);
742 : }
743 : }
744 955844 : else if (prstate->nfrozen > 0)
745 : {
746 : /*
747 : * The page contained some tuples that were not already frozen, and we
748 : * chose not to freeze them now. The page won't be all-frozen then.
749 : */
750 : Assert(!prstate->pagefrz.freeze_required);
751 :
752 26984 : prstate->all_frozen = false;
753 26984 : prstate->nfrozen = 0; /* avoid miscounts in instrumentation */
754 : }
755 : else
756 : {
757 : /*
758 : * We have no freeze plans to execute. The page might already be
759 : * all-frozen (perhaps only following pruning), though. Such pages
760 : * can be marked all-frozen in the VM by our caller, even though none
761 : * of its tuples were newly frozen here.
762 : */
763 : }
764 :
765 1001396 : return do_freeze;
766 : }
767 :
768 :
769 : /*
770 : * Prune and repair fragmentation and potentially freeze tuples on the
771 : * specified page.
772 : *
773 : * Caller must have pin and buffer cleanup lock on the page. Note that we
774 : * don't update the FSM information for page on caller's behalf. Caller might
775 : * also need to account for a reduction in the length of the line pointer
776 : * array following array truncation by us.
777 : *
778 : * params contains the input parameters used to control freezing and pruning
779 : * behavior. See the definition of PruneFreezeParams for more on what each
780 : * parameter does.
781 : *
782 : * If the HEAP_PAGE_PRUNE_FREEZE option is set in params, we will freeze
783 : * tuples if it's required in order to advance relfrozenxid / relminmxid, or
784 : * if it's considered advantageous for overall system performance to do so
785 : * now. The 'params.cutoffs', 'presult', 'new_relfrozen_xid' and
786 : * 'new_relmin_mxid' arguments are required when freezing. When
787 : * HEAP_PAGE_PRUNE_FREEZE option is passed, we also set presult->all_visible
788 : * and presult->all_frozen after determining whether or not to
789 : * opportunistically freeze, to indicate if the VM bits can be set. They are
790 : * always set to false when the HEAP_PAGE_PRUNE_FREEZE option is not passed,
791 : * because at the moment only callers that also freeze need that information.
792 : *
793 : * presult contains output parameters needed by callers, such as the number of
794 : * tuples removed and the offsets of dead items on the page after pruning.
795 : * heap_page_prune_and_freeze() is responsible for initializing it. Required
796 : * by all callers.
797 : *
798 : * off_loc is the offset location required by the caller to use in error
799 : * callback.
800 : *
801 : * new_relfrozen_xid and new_relmin_mxid must be provided by the caller if the
802 : * HEAP_PAGE_PRUNE_FREEZE option is set in params. On entry, they contain the
803 : * oldest XID and multi-XID seen on the relation so far. They will be updated
804 : * with the oldest values present on the page after pruning. After processing
805 : * the whole relation, VACUUM can use these values as the new
806 : * relfrozenxid/relminmxid for the relation.
807 : */
808 : void
809 1084810 : heap_page_prune_and_freeze(PruneFreezeParams *params,
810 : PruneFreezeResult *presult,
811 : OffsetNumber *off_loc,
812 : TransactionId *new_relfrozen_xid,
813 : MultiXactId *new_relmin_mxid)
814 : {
815 1084810 : Buffer buffer = params->buffer;
816 1084810 : Page page = BufferGetPage(buffer);
817 : PruneState prstate;
818 : bool do_freeze;
819 : bool do_prune;
820 : bool do_hint_prune;
821 : bool did_tuple_hint_fpi;
822 1084810 : int64 fpi_before = pgWalUsage.wal_fpi;
823 :
824 : /* Initialize prstate */
825 1084810 : prune_freeze_setup(params,
826 : new_relfrozen_xid ?
827 : *new_relfrozen_xid : InvalidTransactionId,
828 : new_relmin_mxid ?
829 : *new_relmin_mxid : InvalidMultiXactId,
830 : presult,
831 : &prstate);
832 :
833 : /*
834 : * Examine all line pointers and tuple visibility information to determine
835 : * which line pointers should change state and which tuples may be frozen.
836 : * Prepare queue of state changes to later be executed in a critical
837 : * section.
838 : */
839 1084810 : prune_freeze_plan(RelationGetRelid(params->relation),
840 : buffer, &prstate, off_loc);
841 :
842 : /*
843 : * If checksums are enabled, calling heap_prune_satisfies_vacuum() while
844 : * checking tuple visibility information in prune_freeze_plan() may have
845 : * caused an FPI to be emitted.
846 : */
847 1084810 : did_tuple_hint_fpi = fpi_before != pgWalUsage.wal_fpi;
848 :
849 3221080 : do_prune = prstate.nredirected > 0 ||
850 2064782 : prstate.ndead > 0 ||
851 979972 : prstate.nunused > 0;
852 :
853 : /*
854 : * Even if we don't prune anything, if we found a new value for the
855 : * pd_prune_xid field or the page was marked full, we will update the hint
856 : * bit.
857 : */
858 2064334 : do_hint_prune = ((PageHeader) page)->pd_prune_xid != prstate.new_prune_xid ||
859 979524 : PageIsFull(page);
860 :
861 : /*
862 : * Decide if we want to go ahead with freezing according to the freeze
863 : * plans we prepared, or not.
864 : */
865 1084810 : do_freeze = heap_page_will_freeze(params->relation, buffer,
866 : did_tuple_hint_fpi,
867 : do_prune,
868 : do_hint_prune,
869 : &prstate);
870 :
871 : /*
872 : * While scanning the line pointers, we did not clear
873 : * all_visible/all_frozen when encountering LP_DEAD items because we
874 : * wanted the decision whether or not to freeze the page to be unaffected
875 : * by the short-term presence of LP_DEAD items. These LP_DEAD items are
876 : * effectively assumed to be LP_UNUSED items in the making. It doesn't
877 : * matter which vacuum heap pass (initial pass or final pass) ends up
878 : * setting the page all-frozen, as long as the ongoing VACUUM does it.
879 : *
880 : * Now that we finished determining whether or not to freeze the page,
881 : * update all_visible and all_frozen so that they reflect the true state
882 : * of the page for setting PD_ALL_VISIBLE and VM bits.
883 : */
884 1084810 : if (prstate.lpdead_items > 0)
885 108404 : prstate.all_visible = prstate.all_frozen = false;
886 :
887 : Assert(!prstate.all_frozen || prstate.all_visible);
888 :
889 : /* Any error while applying the changes is critical */
890 1084810 : START_CRIT_SECTION();
891 :
892 1084810 : if (do_hint_prune)
893 : {
894 : /*
895 : * Update the page's pd_prune_xid field to either zero, or the lowest
896 : * XID of any soon-prunable tuple.
897 : */
898 105526 : ((PageHeader) page)->pd_prune_xid = prstate.new_prune_xid;
899 :
900 : /*
901 : * Also clear the "page is full" flag, since there's no point in
902 : * repeating the prune/defrag process until something else happens to
903 : * the page.
904 : */
905 105526 : PageClearFull(page);
906 :
907 : /*
908 : * If that's all we had to do to the page, this is a non-WAL-logged
909 : * hint. If we are going to freeze or prune the page, we will mark
910 : * the buffer dirty below.
911 : */
912 105526 : if (!do_freeze && !do_prune)
913 414 : MarkBufferDirtyHint(buffer, true);
914 : }
915 :
916 1084810 : if (do_prune || do_freeze)
917 : {
918 : /* Apply the planned item changes and repair page fragmentation. */
919 147548 : if (do_prune)
920 : {
921 105616 : heap_page_prune_execute(buffer, false,
922 : prstate.redirected, prstate.nredirected,
923 : prstate.nowdead, prstate.ndead,
924 : prstate.nowunused, prstate.nunused);
925 : }
926 :
927 147548 : if (do_freeze)
928 45552 : heap_freeze_prepared_tuples(buffer, prstate.frozen, prstate.nfrozen);
929 :
930 147548 : MarkBufferDirty(buffer);
931 :
932 : /*
933 : * Emit a WAL XLOG_HEAP2_PRUNE* record showing what we did
934 : */
935 147548 : if (RelationNeedsWAL(params->relation))
936 : {
937 : /*
938 : * The snapshotConflictHorizon for the whole record should be the
939 : * most conservative of all the horizons calculated for any of the
940 : * possible modifications. If this record will prune tuples, any
941 : * transactions on the standby older than the youngest xmax of the
942 : * most recently removed tuple this record will prune will
943 : * conflict. If this record will freeze tuples, any transactions
944 : * on the standby with xids older than the youngest tuple this
945 : * record will freeze will conflict.
946 : */
947 : TransactionId conflict_xid;
948 :
949 145794 : if (TransactionIdFollows(prstate.frz_conflict_horizon,
950 : prstate.latest_xid_removed))
951 42544 : conflict_xid = prstate.frz_conflict_horizon;
952 : else
953 103250 : conflict_xid = prstate.latest_xid_removed;
954 :
955 145794 : log_heap_prune_and_freeze(params->relation, buffer,
956 : InvalidBuffer, /* vmbuffer */
957 : 0, /* vmflags */
958 : conflict_xid,
959 : true, params->reason,
960 : prstate.frozen, prstate.nfrozen,
961 : prstate.redirected, prstate.nredirected,
962 : prstate.nowdead, prstate.ndead,
963 : prstate.nowunused, prstate.nunused);
964 : }
965 : }
966 :
967 1084810 : END_CRIT_SECTION();
968 :
969 : /* Copy information back for caller */
970 1084810 : presult->ndeleted = prstate.ndeleted;
971 1084810 : presult->nnewlpdead = prstate.ndead;
972 1084810 : presult->nfrozen = prstate.nfrozen;
973 1084810 : presult->live_tuples = prstate.live_tuples;
974 1084810 : presult->recently_dead_tuples = prstate.recently_dead_tuples;
975 1084810 : presult->all_visible = prstate.all_visible;
976 1084810 : presult->all_frozen = prstate.all_frozen;
977 1084810 : presult->hastup = prstate.hastup;
978 :
979 : /*
980 : * For callers planning to update the visibility map, the conflict horizon
981 : * for that record must be the newest xmin on the page. However, if the
982 : * page is completely frozen, there can be no conflict and the
983 : * vm_conflict_horizon should remain InvalidTransactionId. This includes
984 : * the case that we just froze all the tuples; the prune-freeze record
985 : * included the conflict XID already so the caller doesn't need it.
986 : */
987 1084810 : if (presult->all_frozen)
988 407024 : presult->vm_conflict_horizon = InvalidTransactionId;
989 : else
990 677786 : presult->vm_conflict_horizon = prstate.visibility_cutoff_xid;
991 :
992 1084810 : presult->lpdead_items = prstate.lpdead_items;
993 : /* the presult->deadoffsets array was already filled in */
994 :
995 1084810 : if (prstate.attempt_freeze)
996 : {
997 1001396 : if (presult->nfrozen > 0)
998 : {
999 45552 : *new_relfrozen_xid = prstate.pagefrz.FreezePageRelfrozenXid;
1000 45552 : *new_relmin_mxid = prstate.pagefrz.FreezePageRelminMxid;
1001 : }
1002 : else
1003 : {
1004 955844 : *new_relfrozen_xid = prstate.pagefrz.NoFreezePageRelfrozenXid;
1005 955844 : *new_relmin_mxid = prstate.pagefrz.NoFreezePageRelminMxid;
1006 : }
1007 : }
1008 1084810 : }
1009 :
1010 :
1011 : /*
1012 : * Perform visibility checks for heap pruning.
1013 : */
1014 : static HTSV_Result
1015 50097634 : heap_prune_satisfies_vacuum(PruneState *prstate, HeapTuple tup, Buffer buffer)
1016 : {
1017 : HTSV_Result res;
1018 : TransactionId dead_after;
1019 :
1020 50097634 : res = HeapTupleSatisfiesVacuumHorizon(tup, buffer, &dead_after);
1021 :
1022 50097634 : if (res != HEAPTUPLE_RECENTLY_DEAD)
1023 46786282 : return res;
1024 :
1025 : /*
1026 : * For VACUUM, we must be sure to prune tuples with xmax older than
1027 : * OldestXmin -- a visibility cutoff determined at the beginning of
1028 : * vacuuming the relation. OldestXmin is used for freezing determination
1029 : * and we cannot freeze dead tuples' xmaxes.
1030 : */
1031 3311352 : if (prstate->cutoffs &&
1032 1735570 : TransactionIdIsValid(prstate->cutoffs->OldestXmin) &&
1033 1735570 : NormalTransactionIdPrecedes(dead_after, prstate->cutoffs->OldestXmin))
1034 1278952 : return HEAPTUPLE_DEAD;
1035 :
1036 : /*
1037 : * Determine whether or not the tuple is considered dead when compared
1038 : * with the provided GlobalVisState. On-access pruning does not provide
1039 : * VacuumCutoffs. And for vacuum, even if the tuple's xmax is not older
1040 : * than OldestXmin, GlobalVisTestIsRemovableXid() could find the row dead
1041 : * if the GlobalVisState has been updated since the beginning of vacuuming
1042 : * the relation.
1043 : */
1044 2032400 : if (GlobalVisTestIsRemovableXid(prstate->vistest, dead_after))
1045 1522106 : return HEAPTUPLE_DEAD;
1046 :
1047 510294 : return res;
1048 : }
1049 :
1050 :
1051 : /*
1052 : * Pruning calculates tuple visibility once and saves the results in an array
1053 : * of int8. See PruneState.htsv for details. This helper function is meant
1054 : * to guard against examining visibility status array members which have not
1055 : * yet been computed.
1056 : */
1057 : static inline HTSV_Result
1058 50069858 : htsv_get_valid_status(int status)
1059 : {
1060 : Assert(status >= HEAPTUPLE_DEAD &&
1061 : status <= HEAPTUPLE_DELETE_IN_PROGRESS);
1062 50069858 : return (HTSV_Result) status;
1063 : }
1064 :
1065 : /*
1066 : * Prune specified line pointer or a HOT chain originating at line pointer.
1067 : *
1068 : * Tuple visibility information is provided in prstate->htsv.
1069 : *
1070 : * If the item is an index-referenced tuple (i.e. not a heap-only tuple),
1071 : * the HOT chain is pruned by removing all DEAD tuples at the start of the HOT
1072 : * chain. We also prune any RECENTLY_DEAD tuples preceding a DEAD tuple.
1073 : * This is OK because a RECENTLY_DEAD tuple preceding a DEAD tuple is really
1074 : * DEAD, our visibility test is just too coarse to detect it.
1075 : *
1076 : * Pruning must never leave behind a DEAD tuple that still has tuple storage.
1077 : * VACUUM isn't prepared to deal with that case.
1078 : *
1079 : * The root line pointer is redirected to the tuple immediately after the
1080 : * latest DEAD tuple. If all tuples in the chain are DEAD, the root line
1081 : * pointer is marked LP_DEAD. (This includes the case of a DEAD simple
1082 : * tuple, which we treat as a chain of length 1.)
1083 : *
1084 : * We don't actually change the page here. We just add entries to the arrays in
1085 : * prstate showing the changes to be made. Items to be redirected are added
1086 : * to the redirected[] array (two entries per redirection); items to be set to
1087 : * LP_DEAD state are added to nowdead[]; and items to be set to LP_UNUSED
1088 : * state are added to nowunused[]. We perform bookkeeping of live tuples,
1089 : * visibility etc. based on what the page will look like after the changes
1090 : * applied. All that bookkeeping is performed in the heap_prune_record_*()
1091 : * subroutines. The division of labor is that heap_prune_chain() decides the
1092 : * fate of each tuple, ie. whether it's going to be removed, redirected or
1093 : * left unchanged, and the heap_prune_record_*() subroutines update PruneState
1094 : * based on that outcome.
1095 : */
1096 : static void
1097 49862034 : heap_prune_chain(Page page, BlockNumber blockno, OffsetNumber maxoff,
1098 : OffsetNumber rootoffnum, PruneState *prstate)
1099 : {
1100 49862034 : TransactionId priorXmax = InvalidTransactionId;
1101 : ItemId rootlp;
1102 : OffsetNumber offnum;
1103 : OffsetNumber chainitems[MaxHeapTuplesPerPage];
1104 :
1105 : /*
1106 : * After traversing the HOT chain, ndeadchain is the index in chainitems
1107 : * of the first live successor after the last dead item.
1108 : */
1109 49862034 : int ndeadchain = 0,
1110 49862034 : nchain = 0;
1111 :
1112 49862034 : rootlp = PageGetItemId(page, rootoffnum);
1113 :
1114 : /* Start from the root tuple */
1115 49862034 : offnum = rootoffnum;
1116 :
1117 : /* while not end of the chain */
1118 : for (;;)
1119 827314 : {
1120 : HeapTupleHeader htup;
1121 : ItemId lp;
1122 :
1123 : /* Sanity check (pure paranoia) */
1124 50689348 : if (offnum < FirstOffsetNumber)
1125 0 : break;
1126 :
1127 : /*
1128 : * An offset past the end of page's line pointer array is possible
1129 : * when the array was truncated (original item must have been unused)
1130 : */
1131 50689348 : if (offnum > maxoff)
1132 0 : break;
1133 :
1134 : /* If item is already processed, stop --- it must not be same chain */
1135 50689348 : if (prstate->processed[offnum])
1136 0 : break;
1137 :
1138 50689348 : lp = PageGetItemId(page, offnum);
1139 :
1140 : /*
1141 : * Unused item obviously isn't part of the chain. Likewise, a dead
1142 : * line pointer can't be part of the chain. Both of those cases were
1143 : * already marked as processed.
1144 : */
1145 : Assert(ItemIdIsUsed(lp));
1146 : Assert(!ItemIdIsDead(lp));
1147 :
1148 : /*
1149 : * If we are looking at the redirected root line pointer, jump to the
1150 : * first normal tuple in the chain. If we find a redirect somewhere
1151 : * else, stop --- it must not be same chain.
1152 : */
1153 50689348 : if (ItemIdIsRedirected(lp))
1154 : {
1155 619490 : if (nchain > 0)
1156 0 : break; /* not at start of chain */
1157 619490 : chainitems[nchain++] = offnum;
1158 619490 : offnum = ItemIdGetRedirect(rootlp);
1159 619490 : continue;
1160 : }
1161 :
1162 : Assert(ItemIdIsNormal(lp));
1163 :
1164 50069858 : htup = (HeapTupleHeader) PageGetItem(page, lp);
1165 :
1166 : /*
1167 : * Check the tuple XMIN against prior XMAX, if any
1168 : */
1169 50277682 : if (TransactionIdIsValid(priorXmax) &&
1170 207824 : !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
1171 0 : break;
1172 :
1173 : /*
1174 : * OK, this tuple is indeed a member of the chain.
1175 : */
1176 50069858 : chainitems[nchain++] = offnum;
1177 :
1178 50069858 : switch (htsv_get_valid_status(prstate->htsv[offnum]))
1179 : {
1180 2884628 : case HEAPTUPLE_DEAD:
1181 :
1182 : /* Remember the last DEAD tuple seen */
1183 2884628 : ndeadchain = nchain;
1184 2884628 : HeapTupleHeaderAdvanceConflictHorizon(htup,
1185 : &prstate->latest_xid_removed);
1186 : /* Advance to next chain member */
1187 2884628 : break;
1188 :
1189 510294 : case HEAPTUPLE_RECENTLY_DEAD:
1190 :
1191 : /*
1192 : * We don't need to advance the conflict horizon for
1193 : * RECENTLY_DEAD tuples, even if we are removing them. This
1194 : * is because we only remove RECENTLY_DEAD tuples if they
1195 : * precede a DEAD tuple, and the DEAD tuple must have been
1196 : * inserted by a newer transaction than the RECENTLY_DEAD
1197 : * tuple by virtue of being later in the chain. We will have
1198 : * advanced the conflict horizon for the DEAD tuple.
1199 : */
1200 :
1201 : /*
1202 : * Advance past RECENTLY_DEAD tuples just in case there's a
1203 : * DEAD one after them. We have to make sure that we don't
1204 : * miss any DEAD tuples, since DEAD tuples that still have
1205 : * tuple storage after pruning will confuse VACUUM.
1206 : */
1207 510294 : break;
1208 :
1209 46674936 : case HEAPTUPLE_DELETE_IN_PROGRESS:
1210 : case HEAPTUPLE_LIVE:
1211 : case HEAPTUPLE_INSERT_IN_PROGRESS:
1212 46674936 : goto process_chain;
1213 :
1214 0 : default:
1215 0 : elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
1216 : goto process_chain;
1217 : }
1218 :
1219 : /*
1220 : * If the tuple is not HOT-updated, then we are at the end of this
1221 : * HOT-update chain.
1222 : */
1223 3394922 : if (!HeapTupleHeaderIsHotUpdated(htup))
1224 3187098 : goto process_chain;
1225 :
1226 : /* HOT implies it can't have moved to different partition */
1227 : Assert(!HeapTupleHeaderIndicatesMovedPartitions(htup));
1228 :
1229 : /*
1230 : * Advance to next chain member.
1231 : */
1232 : Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blockno);
1233 207824 : offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
1234 207824 : priorXmax = HeapTupleHeaderGetUpdateXid(htup);
1235 : }
1236 :
1237 0 : if (ItemIdIsRedirected(rootlp) && nchain < 2)
1238 : {
1239 : /*
1240 : * We found a redirect item that doesn't point to a valid follow-on
1241 : * item. This can happen if the loop in heap_page_prune_and_freeze()
1242 : * caused us to visit the dead successor of a redirect item before
1243 : * visiting the redirect item. We can clean up by setting the
1244 : * redirect item to LP_DEAD state or LP_UNUSED if the caller
1245 : * indicated.
1246 : */
1247 0 : heap_prune_record_dead_or_unused(prstate, rootoffnum, false);
1248 0 : return;
1249 : }
1250 :
1251 0 : process_chain:
1252 :
1253 49862034 : if (ndeadchain == 0)
1254 : {
1255 : /*
1256 : * No DEAD tuple was found, so the chain is entirely composed of
1257 : * normal, unchanged tuples. Leave it alone.
1258 : */
1259 47045644 : int i = 0;
1260 :
1261 47045644 : if (ItemIdIsRedirected(rootlp))
1262 : {
1263 585032 : heap_prune_record_unchanged_lp_redirect(prstate, rootoffnum);
1264 585032 : i++;
1265 : }
1266 94099360 : for (; i < nchain; i++)
1267 47053716 : heap_prune_record_unchanged_lp_normal(page, prstate, chainitems[i]);
1268 : }
1269 2816390 : else if (ndeadchain == nchain)
1270 : {
1271 : /*
1272 : * The entire chain is dead. Mark the root line pointer LP_DEAD, and
1273 : * fully remove the other tuples in the chain.
1274 : */
1275 2686484 : heap_prune_record_dead_or_unused(prstate, rootoffnum, ItemIdIsNormal(rootlp));
1276 2751312 : for (int i = 1; i < nchain; i++)
1277 64828 : heap_prune_record_unused(prstate, chainitems[i], true);
1278 : }
1279 : else
1280 : {
1281 : /*
1282 : * We found a DEAD tuple in the chain. Redirect the root line pointer
1283 : * to the first non-DEAD tuple, and mark as unused each intermediate
1284 : * item that we are able to remove from the chain.
1285 : */
1286 129906 : heap_prune_record_redirect(prstate, rootoffnum, chainitems[ndeadchain],
1287 129906 : ItemIdIsNormal(rootlp));
1288 167774 : for (int i = 1; i < ndeadchain; i++)
1289 37868 : heap_prune_record_unused(prstate, chainitems[i], true);
1290 :
1291 : /* the rest of tuples in the chain are normal, unchanged tuples */
1292 261420 : for (int i = ndeadchain; i < nchain; i++)
1293 131514 : heap_prune_record_unchanged_lp_normal(page, prstate, chainitems[i]);
1294 : }
1295 : }
1296 :
1297 : /* Record lowest soon-prunable XID */
1298 : static void
1299 13761630 : heap_prune_record_prunable(PruneState *prstate, TransactionId xid)
1300 : {
1301 : /*
1302 : * This should exactly match the PageSetPrunable macro. We can't store
1303 : * directly into the page header yet, so we update working state.
1304 : */
1305 : Assert(TransactionIdIsNormal(xid));
1306 26978744 : if (!TransactionIdIsValid(prstate->new_prune_xid) ||
1307 13217114 : TransactionIdPrecedes(xid, prstate->new_prune_xid))
1308 546776 : prstate->new_prune_xid = xid;
1309 13761630 : }
1310 :
1311 : /* Record line pointer to be redirected */
1312 : static void
1313 129906 : heap_prune_record_redirect(PruneState *prstate,
1314 : OffsetNumber offnum, OffsetNumber rdoffnum,
1315 : bool was_normal)
1316 : {
1317 : Assert(!prstate->processed[offnum]);
1318 129906 : prstate->processed[offnum] = true;
1319 :
1320 : /*
1321 : * Do not mark the redirect target here. It needs to be counted
1322 : * separately as an unchanged tuple.
1323 : */
1324 :
1325 : Assert(prstate->nredirected < MaxHeapTuplesPerPage);
1326 129906 : prstate->redirected[prstate->nredirected * 2] = offnum;
1327 129906 : prstate->redirected[prstate->nredirected * 2 + 1] = rdoffnum;
1328 :
1329 129906 : prstate->nredirected++;
1330 :
1331 : /*
1332 : * If the root entry had been a normal tuple, we are deleting it, so count
1333 : * it in the result. But changing a redirect (even to DEAD state) doesn't
1334 : * count.
1335 : */
1336 129906 : if (was_normal)
1337 114406 : prstate->ndeleted++;
1338 :
1339 129906 : prstate->hastup = true;
1340 129906 : }
1341 :
1342 : /* Record line pointer to be marked dead */
1343 : static void
1344 2617472 : heap_prune_record_dead(PruneState *prstate, OffsetNumber offnum,
1345 : bool was_normal)
1346 : {
1347 : Assert(!prstate->processed[offnum]);
1348 2617472 : prstate->processed[offnum] = true;
1349 :
1350 : Assert(prstate->ndead < MaxHeapTuplesPerPage);
1351 2617472 : prstate->nowdead[prstate->ndead] = offnum;
1352 2617472 : prstate->ndead++;
1353 :
1354 : /*
1355 : * Deliberately delay unsetting all_visible and all_frozen until later
1356 : * during pruning. Removable dead tuples shouldn't preclude freezing the
1357 : * page.
1358 : */
1359 :
1360 : /* Record the dead offset for vacuum */
1361 2617472 : prstate->deadoffsets[prstate->lpdead_items++] = offnum;
1362 :
1363 : /*
1364 : * If the root entry had been a normal tuple, we are deleting it, so count
1365 : * it in the result. But changing a redirect (even to DEAD state) doesn't
1366 : * count.
1367 : */
1368 2617472 : if (was_normal)
1369 2598514 : prstate->ndeleted++;
1370 2617472 : }
1371 :
1372 : /*
1373 : * Depending on whether or not the caller set mark_unused_now to true, record that a
1374 : * line pointer should be marked LP_DEAD or LP_UNUSED. There are other cases in
1375 : * which we will mark line pointers LP_UNUSED, but we will not mark line
1376 : * pointers LP_DEAD if mark_unused_now is true.
1377 : */
1378 : static void
1379 2686484 : heap_prune_record_dead_or_unused(PruneState *prstate, OffsetNumber offnum,
1380 : bool was_normal)
1381 : {
1382 : /*
1383 : * If the caller set mark_unused_now to true, we can remove dead tuples
1384 : * during pruning instead of marking their line pointers dead. Set this
1385 : * tuple's line pointer LP_UNUSED. We hint that this option is less
1386 : * likely.
1387 : */
1388 2686484 : if (unlikely(prstate->mark_unused_now))
1389 69012 : heap_prune_record_unused(prstate, offnum, was_normal);
1390 : else
1391 2617472 : heap_prune_record_dead(prstate, offnum, was_normal);
1392 2686484 : }
1393 :
1394 : /* Record line pointer to be marked unused */
1395 : static void
1396 177018 : heap_prune_record_unused(PruneState *prstate, OffsetNumber offnum, bool was_normal)
1397 : {
1398 : Assert(!prstate->processed[offnum]);
1399 177018 : prstate->processed[offnum] = true;
1400 :
1401 : Assert(prstate->nunused < MaxHeapTuplesPerPage);
1402 177018 : prstate->nowunused[prstate->nunused] = offnum;
1403 177018 : prstate->nunused++;
1404 :
1405 : /*
1406 : * If the root entry had been a normal tuple, we are deleting it, so count
1407 : * it in the result. But changing a redirect (even to DEAD state) doesn't
1408 : * count.
1409 : */
1410 177018 : if (was_normal)
1411 175890 : prstate->ndeleted++;
1412 177018 : }
1413 :
1414 : /*
1415 : * Record an unused line pointer that is left unchanged.
1416 : */
1417 : static void
1418 586464 : heap_prune_record_unchanged_lp_unused(Page page, PruneState *prstate, OffsetNumber offnum)
1419 : {
1420 : Assert(!prstate->processed[offnum]);
1421 586464 : prstate->processed[offnum] = true;
1422 586464 : }
1423 :
1424 : /*
1425 : * Record line pointer that is left unchanged. We consider freezing it, and
1426 : * update bookkeeping of tuple counts and page visibility.
1427 : */
1428 : static void
1429 47208824 : heap_prune_record_unchanged_lp_normal(Page page, PruneState *prstate, OffsetNumber offnum)
1430 : {
1431 : HeapTupleHeader htup;
1432 :
1433 : Assert(!prstate->processed[offnum]);
1434 47208824 : prstate->processed[offnum] = true;
1435 :
1436 47208824 : prstate->hastup = true; /* the page is not empty */
1437 :
1438 : /*
1439 : * The criteria for counting a tuple as live in this block need to match
1440 : * what analyze.c's acquire_sample_rows() does, otherwise VACUUM and
1441 : * ANALYZE may produce wildly different reltuples values, e.g. when there
1442 : * are many recently-dead tuples.
1443 : *
1444 : * The logic here is a bit simpler than acquire_sample_rows(), as VACUUM
1445 : * can't run inside a transaction block, which makes some cases impossible
1446 : * (e.g. in-progress insert from the same transaction).
1447 : *
1448 : * HEAPTUPLE_DEAD are handled by the other heap_prune_record_*()
1449 : * subroutines. They don't count dead items like acquire_sample_rows()
1450 : * does, because we assume that all dead items will become LP_UNUSED
1451 : * before VACUUM finishes. This difference is only superficial. VACUUM
1452 : * effectively agrees with ANALYZE about DEAD items, in the end. VACUUM
1453 : * won't remember LP_DEAD items, but only because they're not supposed to
1454 : * be left behind when it is done. (Cases where we bypass index vacuuming
1455 : * will violate this optimistic assumption, but the overall impact of that
1456 : * should be negligible.)
1457 : */
1458 47208824 : htup = (HeapTupleHeader) PageGetItem(page, PageGetItemId(page, offnum));
1459 :
1460 47208824 : switch (prstate->htsv[offnum])
1461 : {
1462 33294776 : case HEAPTUPLE_LIVE:
1463 :
1464 : /*
1465 : * Count it as live. Not only is this natural, but it's also what
1466 : * acquire_sample_rows() does.
1467 : */
1468 33294776 : prstate->live_tuples++;
1469 :
1470 : /*
1471 : * Is the tuple definitely visible to all transactions?
1472 : *
1473 : * NB: Like with per-tuple hint bits, we can't set the
1474 : * PD_ALL_VISIBLE flag if the inserter committed asynchronously.
1475 : * See SetHintBits for more info. Check that the tuple is hinted
1476 : * xmin-committed because of that.
1477 : */
1478 33294776 : if (prstate->all_visible)
1479 : {
1480 : TransactionId xmin;
1481 :
1482 24737904 : if (!HeapTupleHeaderXminCommitted(htup))
1483 : {
1484 340 : prstate->all_visible = false;
1485 340 : prstate->all_frozen = false;
1486 340 : break;
1487 : }
1488 :
1489 : /*
1490 : * The inserter definitely committed. But is it old enough
1491 : * that everyone sees it as committed? A FrozenTransactionId
1492 : * is seen as committed to everyone. Otherwise, we check if
1493 : * there is a snapshot that considers this xid to still be
1494 : * running, and if so, we don't consider the page all-visible.
1495 : */
1496 24737564 : xmin = HeapTupleHeaderGetXmin(htup);
1497 :
1498 : /*
1499 : * For now always use prstate->cutoffs for this test, because
1500 : * we only update 'all_visible' and 'all_frozen' when freezing
1501 : * is requested. We could use GlobalVisTestIsRemovableXid
1502 : * instead, if a non-freezing caller wanted to set the VM bit.
1503 : */
1504 : Assert(prstate->cutoffs);
1505 24737564 : if (!TransactionIdPrecedes(xmin, prstate->cutoffs->OldestXmin))
1506 : {
1507 6334 : prstate->all_visible = false;
1508 6334 : prstate->all_frozen = false;
1509 6334 : break;
1510 : }
1511 :
1512 : /* Track newest xmin on page. */
1513 24731230 : if (TransactionIdFollows(xmin, prstate->visibility_cutoff_xid) &&
1514 : TransactionIdIsNormal(xmin))
1515 224158 : prstate->visibility_cutoff_xid = xmin;
1516 : }
1517 33288102 : break;
1518 :
1519 510294 : case HEAPTUPLE_RECENTLY_DEAD:
1520 510294 : prstate->recently_dead_tuples++;
1521 510294 : prstate->all_visible = false;
1522 510294 : prstate->all_frozen = false;
1523 :
1524 : /*
1525 : * This tuple will soon become DEAD. Update the hint field so
1526 : * that the page is reconsidered for pruning in future.
1527 : */
1528 510294 : heap_prune_record_prunable(prstate,
1529 : HeapTupleHeaderGetUpdateXid(htup));
1530 510294 : break;
1531 :
1532 152418 : case HEAPTUPLE_INSERT_IN_PROGRESS:
1533 :
1534 : /*
1535 : * We do not count these rows as live, because we expect the
1536 : * inserting transaction to update the counters at commit, and we
1537 : * assume that will happen only after we report our results. This
1538 : * assumption is a bit shaky, but it is what acquire_sample_rows()
1539 : * does, so be consistent.
1540 : */
1541 152418 : prstate->all_visible = false;
1542 152418 : prstate->all_frozen = false;
1543 :
1544 : /*
1545 : * If we wanted to optimize for aborts, we might consider marking
1546 : * the page prunable when we see INSERT_IN_PROGRESS. But we
1547 : * don't. See related decisions about when to mark the page
1548 : * prunable in heapam.c.
1549 : */
1550 152418 : break;
1551 :
1552 13251336 : case HEAPTUPLE_DELETE_IN_PROGRESS:
1553 :
1554 : /*
1555 : * This an expected case during concurrent vacuum. Count such
1556 : * rows as live. As above, we assume the deleting transaction
1557 : * will commit and update the counters after we report.
1558 : */
1559 13251336 : prstate->live_tuples++;
1560 13251336 : prstate->all_visible = false;
1561 13251336 : prstate->all_frozen = false;
1562 :
1563 : /*
1564 : * This tuple may soon become DEAD. Update the hint field so that
1565 : * the page is reconsidered for pruning in future.
1566 : */
1567 13251336 : heap_prune_record_prunable(prstate,
1568 : HeapTupleHeaderGetUpdateXid(htup));
1569 13251336 : break;
1570 :
1571 0 : default:
1572 :
1573 : /*
1574 : * DEAD tuples should've been passed to heap_prune_record_dead()
1575 : * or heap_prune_record_unused() instead.
1576 : */
1577 0 : elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result %d",
1578 : prstate->htsv[offnum]);
1579 : break;
1580 : }
1581 :
1582 : /* Consider freezing any normal tuples which will not be removed */
1583 47208824 : if (prstate->attempt_freeze)
1584 : {
1585 : bool totally_frozen;
1586 :
1587 44266688 : if ((heap_prepare_freeze_tuple(htup,
1588 44266688 : prstate->cutoffs,
1589 : &prstate->pagefrz,
1590 44266688 : &prstate->frozen[prstate->nfrozen],
1591 : &totally_frozen)))
1592 : {
1593 : /* Save prepared freeze plan for later */
1594 4291270 : prstate->frozen[prstate->nfrozen++].offset = offnum;
1595 : }
1596 :
1597 : /*
1598 : * If any tuple isn't either totally frozen already or eligible to
1599 : * become totally frozen (according to its freeze plan), then the page
1600 : * definitely cannot be set all-frozen in the visibility map later on.
1601 : */
1602 44266688 : if (!totally_frozen)
1603 14410810 : prstate->all_frozen = false;
1604 : }
1605 47208824 : }
1606 :
1607 :
1608 : /*
1609 : * Record line pointer that was already LP_DEAD and is left unchanged.
1610 : */
1611 : static void
1612 2125400 : heap_prune_record_unchanged_lp_dead(Page page, PruneState *prstate, OffsetNumber offnum)
1613 : {
1614 : Assert(!prstate->processed[offnum]);
1615 2125400 : prstate->processed[offnum] = true;
1616 :
1617 : /*
1618 : * Deliberately don't set hastup for LP_DEAD items. We make the soft
1619 : * assumption that any LP_DEAD items encountered here will become
1620 : * LP_UNUSED later on, before count_nondeletable_pages is reached. If we
1621 : * don't make this assumption then rel truncation will only happen every
1622 : * other VACUUM, at most. Besides, VACUUM must treat
1623 : * hastup/nonempty_pages as provisional no matter how LP_DEAD items are
1624 : * handled (handled here, or handled later on).
1625 : *
1626 : * Similarly, don't unset all_visible and all_frozen until later, at the
1627 : * end of heap_page_prune_and_freeze(). This will allow us to attempt to
1628 : * freeze the page after pruning. As long as we unset it before updating
1629 : * the visibility map, this will be correct.
1630 : */
1631 :
1632 : /* Record the dead offset for vacuum */
1633 2125400 : prstate->deadoffsets[prstate->lpdead_items++] = offnum;
1634 2125400 : }
1635 :
1636 : /*
1637 : * Record LP_REDIRECT that is left unchanged.
1638 : */
1639 : static void
1640 585032 : heap_prune_record_unchanged_lp_redirect(PruneState *prstate, OffsetNumber offnum)
1641 : {
1642 : /*
1643 : * A redirect line pointer doesn't count as a live tuple.
1644 : *
1645 : * If we leave a redirect line pointer in place, there will be another
1646 : * tuple on the page that it points to. We will do the bookkeeping for
1647 : * that separately. So we have nothing to do here, except remember that
1648 : * we processed this item.
1649 : */
1650 : Assert(!prstate->processed[offnum]);
1651 585032 : prstate->processed[offnum] = true;
1652 585032 : }
1653 :
1654 : /*
1655 : * Perform the actual page changes needed by heap_page_prune_and_freeze().
1656 : *
1657 : * If 'lp_truncate_only' is set, we are merely marking LP_DEAD line pointers
1658 : * as unused, not redirecting or removing anything else. The
1659 : * PageRepairFragmentation() call is skipped in that case.
1660 : *
1661 : * If 'lp_truncate_only' is not set, the caller must hold a cleanup lock on
1662 : * the buffer. If it is set, an ordinary exclusive lock suffices.
1663 : */
1664 : void
1665 125628 : heap_page_prune_execute(Buffer buffer, bool lp_truncate_only,
1666 : OffsetNumber *redirected, int nredirected,
1667 : OffsetNumber *nowdead, int ndead,
1668 : OffsetNumber *nowunused, int nunused)
1669 : {
1670 125628 : Page page = BufferGetPage(buffer);
1671 : OffsetNumber *offnum;
1672 : HeapTupleHeader htup PG_USED_FOR_ASSERTS_ONLY;
1673 :
1674 : /* Shouldn't be called unless there's something to do */
1675 : Assert(nredirected > 0 || ndead > 0 || nunused > 0);
1676 :
1677 : /* If 'lp_truncate_only', we can only remove already-dead line pointers */
1678 : Assert(!lp_truncate_only || (nredirected == 0 && ndead == 0));
1679 :
1680 : /* Update all redirected line pointers */
1681 125628 : offnum = redirected;
1682 292992 : for (int i = 0; i < nredirected; i++)
1683 : {
1684 167364 : OffsetNumber fromoff = *offnum++;
1685 167364 : OffsetNumber tooff = *offnum++;
1686 167364 : ItemId fromlp = PageGetItemId(page, fromoff);
1687 : ItemId tolp PG_USED_FOR_ASSERTS_ONLY;
1688 :
1689 : #ifdef USE_ASSERT_CHECKING
1690 :
1691 : /*
1692 : * Any existing item that we set as an LP_REDIRECT (any 'from' item)
1693 : * must be the first item from a HOT chain. If the item has tuple
1694 : * storage then it can't be a heap-only tuple. Otherwise we are just
1695 : * maintaining an existing LP_REDIRECT from an existing HOT chain that
1696 : * has been pruned at least once before now.
1697 : */
1698 : if (!ItemIdIsRedirected(fromlp))
1699 : {
1700 : Assert(ItemIdHasStorage(fromlp) && ItemIdIsNormal(fromlp));
1701 :
1702 : htup = (HeapTupleHeader) PageGetItem(page, fromlp);
1703 : Assert(!HeapTupleHeaderIsHeapOnly(htup));
1704 : }
1705 : else
1706 : {
1707 : /* We shouldn't need to redundantly set the redirect */
1708 : Assert(ItemIdGetRedirect(fromlp) != tooff);
1709 : }
1710 :
1711 : /*
1712 : * The item that we're about to set as an LP_REDIRECT (the 'from'
1713 : * item) will point to an existing item (the 'to' item) that is
1714 : * already a heap-only tuple. There can be at most one LP_REDIRECT
1715 : * item per HOT chain.
1716 : *
1717 : * We need to keep around an LP_REDIRECT item (after original
1718 : * non-heap-only root tuple gets pruned away) so that it's always
1719 : * possible for VACUUM to easily figure out what TID to delete from
1720 : * indexes when an entire HOT chain becomes dead. A heap-only tuple
1721 : * can never become LP_DEAD; an LP_REDIRECT item or a regular heap
1722 : * tuple can.
1723 : *
1724 : * This check may miss problems, e.g. the target of a redirect could
1725 : * be marked as unused subsequently. The page_verify_redirects() check
1726 : * below will catch such problems.
1727 : */
1728 : tolp = PageGetItemId(page, tooff);
1729 : Assert(ItemIdHasStorage(tolp) && ItemIdIsNormal(tolp));
1730 : htup = (HeapTupleHeader) PageGetItem(page, tolp);
1731 : Assert(HeapTupleHeaderIsHeapOnly(htup));
1732 : #endif
1733 :
1734 167364 : ItemIdSetRedirect(fromlp, tooff);
1735 : }
1736 :
1737 : /* Update all now-dead line pointers */
1738 125628 : offnum = nowdead;
1739 3292936 : for (int i = 0; i < ndead; i++)
1740 : {
1741 3167308 : OffsetNumber off = *offnum++;
1742 3167308 : ItemId lp = PageGetItemId(page, off);
1743 :
1744 : #ifdef USE_ASSERT_CHECKING
1745 :
1746 : /*
1747 : * An LP_DEAD line pointer must be left behind when the original item
1748 : * (which is dead to everybody) could still be referenced by a TID in
1749 : * an index. This should never be necessary with any individual
1750 : * heap-only tuple item, though. (It's not clear how much of a problem
1751 : * that would be, but there is no reason to allow it.)
1752 : */
1753 : if (ItemIdHasStorage(lp))
1754 : {
1755 : Assert(ItemIdIsNormal(lp));
1756 : htup = (HeapTupleHeader) PageGetItem(page, lp);
1757 : Assert(!HeapTupleHeaderIsHeapOnly(htup));
1758 : }
1759 : else
1760 : {
1761 : /* Whole HOT chain becomes dead */
1762 : Assert(ItemIdIsRedirected(lp));
1763 : }
1764 : #endif
1765 :
1766 3167308 : ItemIdSetDead(lp);
1767 : }
1768 :
1769 : /* Update all now-unused line pointers */
1770 125628 : offnum = nowunused;
1771 804958 : for (int i = 0; i < nunused; i++)
1772 : {
1773 679330 : OffsetNumber off = *offnum++;
1774 679330 : ItemId lp = PageGetItemId(page, off);
1775 :
1776 : #ifdef USE_ASSERT_CHECKING
1777 :
1778 : if (lp_truncate_only)
1779 : {
1780 : /* Setting LP_DEAD to LP_UNUSED in vacuum's second pass */
1781 : Assert(ItemIdIsDead(lp) && !ItemIdHasStorage(lp));
1782 : }
1783 : else
1784 : {
1785 : /*
1786 : * When heap_page_prune_and_freeze() was called, mark_unused_now
1787 : * may have been passed as true, which allows would-be LP_DEAD
1788 : * items to be made LP_UNUSED instead. This is only possible if
1789 : * the relation has no indexes. If there are any dead items, then
1790 : * mark_unused_now was not true and every item being marked
1791 : * LP_UNUSED must refer to a heap-only tuple.
1792 : */
1793 : if (ndead > 0)
1794 : {
1795 : Assert(ItemIdHasStorage(lp) && ItemIdIsNormal(lp));
1796 : htup = (HeapTupleHeader) PageGetItem(page, lp);
1797 : Assert(HeapTupleHeaderIsHeapOnly(htup));
1798 : }
1799 : else
1800 : Assert(ItemIdIsUsed(lp));
1801 : }
1802 :
1803 : #endif
1804 :
1805 679330 : ItemIdSetUnused(lp);
1806 : }
1807 :
1808 125628 : if (lp_truncate_only)
1809 5528 : PageTruncateLinePointerArray(page);
1810 : else
1811 : {
1812 : /*
1813 : * Finally, repair any fragmentation, and update the page's hint bit
1814 : * about whether it has free pointers.
1815 : */
1816 120100 : PageRepairFragmentation(page);
1817 :
1818 : /*
1819 : * Now that the page has been modified, assert that redirect items
1820 : * still point to valid targets.
1821 : */
1822 120100 : page_verify_redirects(page);
1823 : }
1824 125628 : }
1825 :
1826 :
1827 : /*
1828 : * If built with assertions, verify that all LP_REDIRECT items point to a
1829 : * valid item.
1830 : *
1831 : * One way that bugs related to HOT pruning show is redirect items pointing to
1832 : * removed tuples. It's not trivial to reliably check that marking an item
1833 : * unused will not orphan a redirect item during heap_prune_chain() /
1834 : * heap_page_prune_execute(), so we additionally check the whole page after
1835 : * pruning. Without this check such bugs would typically only cause asserts
1836 : * later, potentially well after the corruption has been introduced.
1837 : *
1838 : * Also check comments in heap_page_prune_execute()'s redirection loop.
1839 : */
1840 : static void
1841 120100 : page_verify_redirects(Page page)
1842 : {
1843 : #ifdef USE_ASSERT_CHECKING
1844 : OffsetNumber offnum;
1845 : OffsetNumber maxoff;
1846 :
1847 : maxoff = PageGetMaxOffsetNumber(page);
1848 : for (offnum = FirstOffsetNumber;
1849 : offnum <= maxoff;
1850 : offnum = OffsetNumberNext(offnum))
1851 : {
1852 : ItemId itemid = PageGetItemId(page, offnum);
1853 : OffsetNumber targoff;
1854 : ItemId targitem;
1855 : HeapTupleHeader htup;
1856 :
1857 : if (!ItemIdIsRedirected(itemid))
1858 : continue;
1859 :
1860 : targoff = ItemIdGetRedirect(itemid);
1861 : targitem = PageGetItemId(page, targoff);
1862 :
1863 : Assert(ItemIdIsUsed(targitem));
1864 : Assert(ItemIdIsNormal(targitem));
1865 : Assert(ItemIdHasStorage(targitem));
1866 : htup = (HeapTupleHeader) PageGetItem(page, targitem);
1867 : Assert(HeapTupleHeaderIsHeapOnly(htup));
1868 : }
1869 : #endif
1870 120100 : }
1871 :
1872 :
1873 : /*
1874 : * For all items in this page, find their respective root line pointers.
1875 : * If item k is part of a HOT-chain with root at item j, then we set
1876 : * root_offsets[k - 1] = j.
1877 : *
1878 : * The passed-in root_offsets array must have MaxHeapTuplesPerPage entries.
1879 : * Unused entries are filled with InvalidOffsetNumber (zero).
1880 : *
1881 : * The function must be called with at least share lock on the buffer, to
1882 : * prevent concurrent prune operations.
1883 : *
1884 : * Note: The information collected here is valid only as long as the caller
1885 : * holds a pin on the buffer. Once pin is released, a tuple might be pruned
1886 : * and reused by a completely unrelated tuple.
1887 : */
1888 : void
1889 224766 : heap_get_root_tuples(Page page, OffsetNumber *root_offsets)
1890 : {
1891 : OffsetNumber offnum,
1892 : maxoff;
1893 :
1894 224766 : MemSet(root_offsets, InvalidOffsetNumber,
1895 : MaxHeapTuplesPerPage * sizeof(OffsetNumber));
1896 :
1897 224766 : maxoff = PageGetMaxOffsetNumber(page);
1898 18115978 : for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum))
1899 : {
1900 17891212 : ItemId lp = PageGetItemId(page, offnum);
1901 : HeapTupleHeader htup;
1902 : OffsetNumber nextoffnum;
1903 : TransactionId priorXmax;
1904 :
1905 : /* skip unused and dead items */
1906 17891212 : if (!ItemIdIsUsed(lp) || ItemIdIsDead(lp))
1907 22134 : continue;
1908 :
1909 17869078 : if (ItemIdIsNormal(lp))
1910 : {
1911 17860570 : htup = (HeapTupleHeader) PageGetItem(page, lp);
1912 :
1913 : /*
1914 : * Check if this tuple is part of a HOT-chain rooted at some other
1915 : * tuple. If so, skip it for now; we'll process it when we find
1916 : * its root.
1917 : */
1918 17860570 : if (HeapTupleHeaderIsHeapOnly(htup))
1919 9000 : continue;
1920 :
1921 : /*
1922 : * This is either a plain tuple or the root of a HOT-chain.
1923 : * Remember it in the mapping.
1924 : */
1925 17851570 : root_offsets[offnum - 1] = offnum;
1926 :
1927 : /* If it's not the start of a HOT-chain, we're done with it */
1928 17851570 : if (!HeapTupleHeaderIsHotUpdated(htup))
1929 17851176 : continue;
1930 :
1931 : /* Set up to scan the HOT-chain */
1932 394 : nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
1933 394 : priorXmax = HeapTupleHeaderGetUpdateXid(htup);
1934 : }
1935 : else
1936 : {
1937 : /* Must be a redirect item. We do not set its root_offsets entry */
1938 : Assert(ItemIdIsRedirected(lp));
1939 : /* Set up to scan the HOT-chain */
1940 8508 : nextoffnum = ItemIdGetRedirect(lp);
1941 8508 : priorXmax = InvalidTransactionId;
1942 : }
1943 :
1944 : /*
1945 : * Now follow the HOT-chain and collect other tuples in the chain.
1946 : *
1947 : * Note: Even though this is a nested loop, the complexity of the
1948 : * function is O(N) because a tuple in the page should be visited not
1949 : * more than twice, once in the outer loop and once in HOT-chain
1950 : * chases.
1951 : */
1952 : for (;;)
1953 : {
1954 : /* Sanity check (pure paranoia) */
1955 8994 : if (offnum < FirstOffsetNumber)
1956 0 : break;
1957 :
1958 : /*
1959 : * An offset past the end of page's line pointer array is possible
1960 : * when the array was truncated
1961 : */
1962 8994 : if (offnum > maxoff)
1963 0 : break;
1964 :
1965 8994 : lp = PageGetItemId(page, nextoffnum);
1966 :
1967 : /* Check for broken chains */
1968 8994 : if (!ItemIdIsNormal(lp))
1969 0 : break;
1970 :
1971 8994 : htup = (HeapTupleHeader) PageGetItem(page, lp);
1972 :
1973 9480 : if (TransactionIdIsValid(priorXmax) &&
1974 486 : !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(htup)))
1975 0 : break;
1976 :
1977 : /* Remember the root line pointer for this item */
1978 8994 : root_offsets[nextoffnum - 1] = offnum;
1979 :
1980 : /* Advance to next chain member, if any */
1981 8994 : if (!HeapTupleHeaderIsHotUpdated(htup))
1982 8902 : break;
1983 :
1984 : /* HOT implies it can't have moved to different partition */
1985 : Assert(!HeapTupleHeaderIndicatesMovedPartitions(htup));
1986 :
1987 92 : nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
1988 92 : priorXmax = HeapTupleHeaderGetUpdateXid(htup);
1989 : }
1990 : }
1991 224766 : }
1992 :
1993 :
1994 : /*
1995 : * Compare fields that describe actions required to freeze tuple with caller's
1996 : * open plan. If everything matches then the frz tuple plan is equivalent to
1997 : * caller's plan.
1998 : */
1999 : static inline bool
2000 1863648 : heap_log_freeze_eq(xlhp_freeze_plan *plan, HeapTupleFreeze *frz)
2001 : {
2002 1863648 : if (plan->xmax == frz->xmax &&
2003 1861060 : plan->t_infomask2 == frz->t_infomask2 &&
2004 1859352 : plan->t_infomask == frz->t_infomask &&
2005 1854216 : plan->frzflags == frz->frzflags)
2006 1854216 : return true;
2007 :
2008 : /* Caller must call heap_log_freeze_new_plan again for frz */
2009 9432 : return false;
2010 : }
2011 :
2012 : /*
2013 : * Comparator used to deduplicate the freeze plans used in WAL records.
2014 : */
2015 : static int
2016 2597952 : heap_log_freeze_cmp(const void *arg1, const void *arg2)
2017 : {
2018 2597952 : HeapTupleFreeze *frz1 = (HeapTupleFreeze *) arg1;
2019 2597952 : HeapTupleFreeze *frz2 = (HeapTupleFreeze *) arg2;
2020 :
2021 2597952 : if (frz1->xmax < frz2->xmax)
2022 26496 : return -1;
2023 2571456 : else if (frz1->xmax > frz2->xmax)
2024 27172 : return 1;
2025 :
2026 2544284 : if (frz1->t_infomask2 < frz2->t_infomask2)
2027 9158 : return -1;
2028 2535126 : else if (frz1->t_infomask2 > frz2->t_infomask2)
2029 9604 : return 1;
2030 :
2031 2525522 : if (frz1->t_infomask < frz2->t_infomask)
2032 22754 : return -1;
2033 2502768 : else if (frz1->t_infomask > frz2->t_infomask)
2034 31348 : return 1;
2035 :
2036 2471420 : if (frz1->frzflags < frz2->frzflags)
2037 0 : return -1;
2038 2471420 : else if (frz1->frzflags > frz2->frzflags)
2039 0 : return 1;
2040 :
2041 : /*
2042 : * heap_log_freeze_eq would consider these tuple-wise plans to be equal.
2043 : * (So the tuples will share a single canonical freeze plan.)
2044 : *
2045 : * We tiebreak on page offset number to keep each freeze plan's page
2046 : * offset number array individually sorted. (Unnecessary, but be tidy.)
2047 : */
2048 2471420 : if (frz1->offset < frz2->offset)
2049 2078564 : return -1;
2050 392856 : else if (frz1->offset > frz2->offset)
2051 392856 : return 1;
2052 :
2053 : Assert(false);
2054 0 : return 0;
2055 : }
2056 :
2057 : /*
2058 : * Start new plan initialized using tuple-level actions. At least one tuple
2059 : * will have steps required to freeze described by caller's plan during REDO.
2060 : */
2061 : static inline void
2062 54980 : heap_log_freeze_new_plan(xlhp_freeze_plan *plan, HeapTupleFreeze *frz)
2063 : {
2064 54980 : plan->xmax = frz->xmax;
2065 54980 : plan->t_infomask2 = frz->t_infomask2;
2066 54980 : plan->t_infomask = frz->t_infomask;
2067 54980 : plan->frzflags = frz->frzflags;
2068 54980 : plan->ntuples = 1; /* for now */
2069 54980 : }
2070 :
2071 : /*
2072 : * Deduplicate tuple-based freeze plans so that each distinct set of
2073 : * processing steps is only stored once in the WAL record.
2074 : * Called during original execution of freezing (for logged relations).
2075 : *
2076 : * Return value is number of plans set in *plans_out for caller. Also writes
2077 : * an array of offset numbers into *offsets_out output argument for caller
2078 : * (actually there is one array per freeze plan, but that's not of immediate
2079 : * concern to our caller).
2080 : */
2081 : static int
2082 45548 : heap_log_freeze_plan(HeapTupleFreeze *tuples, int ntuples,
2083 : xlhp_freeze_plan *plans_out,
2084 : OffsetNumber *offsets_out)
2085 : {
2086 45548 : int nplans = 0;
2087 :
2088 : /* Sort tuple-based freeze plans in the order required to deduplicate */
2089 45548 : qsort(tuples, ntuples, sizeof(HeapTupleFreeze), heap_log_freeze_cmp);
2090 :
2091 1954744 : for (int i = 0; i < ntuples; i++)
2092 : {
2093 1909196 : HeapTupleFreeze *frz = tuples + i;
2094 :
2095 1909196 : if (i == 0)
2096 : {
2097 : /* New canonical freeze plan starting with first tup */
2098 45548 : heap_log_freeze_new_plan(plans_out, frz);
2099 45548 : nplans++;
2100 : }
2101 1863648 : else if (heap_log_freeze_eq(plans_out, frz))
2102 : {
2103 : /* tup matches open canonical plan -- include tup in it */
2104 : Assert(offsets_out[i - 1] < frz->offset);
2105 1854216 : plans_out->ntuples++;
2106 : }
2107 : else
2108 : {
2109 : /* Tup doesn't match current plan -- done with it now */
2110 9432 : plans_out++;
2111 :
2112 : /* New canonical freeze plan starting with this tup */
2113 9432 : heap_log_freeze_new_plan(plans_out, frz);
2114 9432 : nplans++;
2115 : }
2116 :
2117 : /*
2118 : * Save page offset number in dedicated buffer in passing.
2119 : *
2120 : * REDO routine relies on the record's offset numbers array grouping
2121 : * offset numbers by freeze plan. The sort order within each grouping
2122 : * is ascending offset number order, just to keep things tidy.
2123 : */
2124 1909196 : offsets_out[i] = frz->offset;
2125 : }
2126 :
2127 : Assert(nplans > 0 && nplans <= ntuples);
2128 :
2129 45548 : return nplans;
2130 : }
2131 :
2132 : /*
2133 : * Write an XLOG_HEAP2_PRUNE* WAL record
2134 : *
2135 : * This is used for several different page maintenance operations:
2136 : *
2137 : * - Page pruning, in VACUUM's 1st pass or on access: Some items are
2138 : * redirected, some marked dead, and some removed altogether.
2139 : *
2140 : * - Freezing: Items are marked as 'frozen'.
2141 : *
2142 : * - Vacuum, 2nd pass: Items that are already LP_DEAD are marked as unused.
2143 : *
2144 : * They have enough commonalities that we use a single WAL record for them
2145 : * all.
2146 : *
2147 : * If replaying the record requires a cleanup lock, pass cleanup_lock = true.
2148 : * Replaying 'redirected' or 'dead' items always requires a cleanup lock, but
2149 : * replaying 'unused' items depends on whether they were all previously marked
2150 : * as dead.
2151 : *
2152 : * If the VM is being updated, vmflags will contain the bits to set. In this
2153 : * case, vmbuffer should already have been updated and marked dirty and should
2154 : * still be pinned and locked.
2155 : *
2156 : * Note: This function scribbles on the 'frozen' array.
2157 : *
2158 : * Note: This is called in a critical section, so careful what you do here.
2159 : */
2160 : void
2161 173588 : log_heap_prune_and_freeze(Relation relation, Buffer buffer,
2162 : Buffer vmbuffer, uint8 vmflags,
2163 : TransactionId conflict_xid,
2164 : bool cleanup_lock,
2165 : PruneReason reason,
2166 : HeapTupleFreeze *frozen, int nfrozen,
2167 : OffsetNumber *redirected, int nredirected,
2168 : OffsetNumber *dead, int ndead,
2169 : OffsetNumber *unused, int nunused)
2170 : {
2171 : xl_heap_prune xlrec;
2172 : XLogRecPtr recptr;
2173 : uint8 info;
2174 : uint8 regbuf_flags_heap;
2175 :
2176 : /* The following local variables hold data registered in the WAL record: */
2177 : xlhp_freeze_plan plans[MaxHeapTuplesPerPage];
2178 : xlhp_freeze_plans freeze_plans;
2179 : xlhp_prune_items redirect_items;
2180 : xlhp_prune_items dead_items;
2181 : xlhp_prune_items unused_items;
2182 : OffsetNumber frz_offsets[MaxHeapTuplesPerPage];
2183 173588 : bool do_prune = nredirected > 0 || ndead > 0 || nunused > 0;
2184 173588 : bool do_set_vm = vmflags & VISIBILITYMAP_VALID_BITS;
2185 :
2186 : Assert((vmflags & VISIBILITYMAP_VALID_BITS) == vmflags);
2187 :
2188 173588 : xlrec.flags = 0;
2189 173588 : regbuf_flags_heap = REGBUF_STANDARD;
2190 :
2191 : /*
2192 : * We can avoid an FPI of the heap page if the only modification we are
2193 : * making to it is to set PD_ALL_VISIBLE and checksums/wal_log_hints are
2194 : * disabled. Note that if we explicitly skip an FPI, we must not stamp the
2195 : * heap page with this record's LSN. Recovery skips records <= the stamped
2196 : * LSN, so this could lead to skipping an earlier FPI needed to repair a
2197 : * torn page.
2198 : */
2199 173588 : if (!do_prune &&
2200 0 : nfrozen == 0 &&
2201 0 : (!do_set_vm || !XLogHintBitIsNeeded()))
2202 0 : regbuf_flags_heap |= REGBUF_NO_IMAGE;
2203 :
2204 : /*
2205 : * Prepare data for the buffer. The arrays are not actually in the
2206 : * buffer, but we pretend that they are. When XLogInsert stores a full
2207 : * page image, the arrays can be omitted.
2208 : */
2209 173588 : XLogBeginInsert();
2210 173588 : XLogRegisterBuffer(0, buffer, regbuf_flags_heap);
2211 :
2212 173588 : if (do_set_vm)
2213 27478 : XLogRegisterBuffer(1, vmbuffer, 0);
2214 :
2215 173588 : if (nfrozen > 0)
2216 : {
2217 : int nplans;
2218 :
2219 45548 : xlrec.flags |= XLHP_HAS_FREEZE_PLANS;
2220 :
2221 : /*
2222 : * Prepare deduplicated representation for use in the WAL record. This
2223 : * destructively sorts frozen tuples array in-place.
2224 : */
2225 45548 : nplans = heap_log_freeze_plan(frozen, nfrozen, plans, frz_offsets);
2226 :
2227 45548 : freeze_plans.nplans = nplans;
2228 45548 : XLogRegisterBufData(0, &freeze_plans,
2229 : offsetof(xlhp_freeze_plans, plans));
2230 45548 : XLogRegisterBufData(0, plans,
2231 : sizeof(xlhp_freeze_plan) * nplans);
2232 : }
2233 173588 : if (nredirected > 0)
2234 : {
2235 33344 : xlrec.flags |= XLHP_HAS_REDIRECTIONS;
2236 :
2237 33344 : redirect_items.ntargets = nredirected;
2238 33344 : XLogRegisterBufData(0, &redirect_items,
2239 : offsetof(xlhp_prune_items, data));
2240 33344 : XLogRegisterBufData(0, redirected,
2241 : sizeof(OffsetNumber[2]) * nredirected);
2242 : }
2243 173588 : if (ndead > 0)
2244 : {
2245 77942 : xlrec.flags |= XLHP_HAS_DEAD_ITEMS;
2246 :
2247 77942 : dead_items.ntargets = ndead;
2248 77942 : XLogRegisterBufData(0, &dead_items,
2249 : offsetof(xlhp_prune_items, data));
2250 77942 : XLogRegisterBufData(0, dead,
2251 : sizeof(OffsetNumber) * ndead);
2252 : }
2253 173588 : if (nunused > 0)
2254 : {
2255 50186 : xlrec.flags |= XLHP_HAS_NOW_UNUSED_ITEMS;
2256 :
2257 50186 : unused_items.ntargets = nunused;
2258 50186 : XLogRegisterBufData(0, &unused_items,
2259 : offsetof(xlhp_prune_items, data));
2260 50186 : XLogRegisterBufData(0, unused,
2261 : sizeof(OffsetNumber) * nunused);
2262 : }
2263 173588 : if (nfrozen > 0)
2264 45548 : XLogRegisterBufData(0, frz_offsets,
2265 : sizeof(OffsetNumber) * nfrozen);
2266 :
2267 : /*
2268 : * Prepare the main xl_heap_prune record. We already set the XLHP_HAS_*
2269 : * flag above.
2270 : */
2271 173588 : if (vmflags & VISIBILITYMAP_ALL_VISIBLE)
2272 : {
2273 27478 : xlrec.flags |= XLHP_VM_ALL_VISIBLE;
2274 27478 : if (vmflags & VISIBILITYMAP_ALL_FROZEN)
2275 21248 : xlrec.flags |= XLHP_VM_ALL_FROZEN;
2276 : }
2277 173588 : if (RelationIsAccessibleInLogicalDecoding(relation))
2278 1286 : xlrec.flags |= XLHP_IS_CATALOG_REL;
2279 173588 : if (TransactionIdIsValid(conflict_xid))
2280 142128 : xlrec.flags |= XLHP_HAS_CONFLICT_HORIZON;
2281 173588 : if (cleanup_lock)
2282 145794 : xlrec.flags |= XLHP_CLEANUP_LOCK;
2283 : else
2284 : {
2285 : Assert(nredirected == 0 && ndead == 0);
2286 : /* also, any items in 'unused' must've been LP_DEAD previously */
2287 : }
2288 173588 : XLogRegisterData(&xlrec, SizeOfHeapPrune);
2289 173588 : if (TransactionIdIsValid(conflict_xid))
2290 142128 : XLogRegisterData(&conflict_xid, sizeof(TransactionId));
2291 :
2292 173588 : switch (reason)
2293 : {
2294 82968 : case PRUNE_ON_ACCESS:
2295 82968 : info = XLOG_HEAP2_PRUNE_ON_ACCESS;
2296 82968 : break;
2297 62826 : case PRUNE_VACUUM_SCAN:
2298 62826 : info = XLOG_HEAP2_PRUNE_VACUUM_SCAN;
2299 62826 : break;
2300 27794 : case PRUNE_VACUUM_CLEANUP:
2301 27794 : info = XLOG_HEAP2_PRUNE_VACUUM_CLEANUP;
2302 27794 : break;
2303 0 : default:
2304 0 : elog(ERROR, "unrecognized prune reason: %d", (int) reason);
2305 : break;
2306 : }
2307 173588 : recptr = XLogInsert(RM_HEAP2_ID, info);
2308 :
2309 173588 : if (do_set_vm)
2310 : {
2311 : Assert(BufferIsDirty(vmbuffer));
2312 27478 : PageSetLSN(BufferGetPage(vmbuffer), recptr);
2313 : }
2314 :
2315 : /*
2316 : * See comment at the top of the function about regbuf_flags_heap for
2317 : * details on when we can advance the page LSN.
2318 : */
2319 173588 : if (do_prune || nfrozen > 0 || (do_set_vm && XLogHintBitIsNeeded()))
2320 : {
2321 : Assert(BufferIsDirty(buffer));
2322 173588 : PageSetLSN(BufferGetPage(buffer), recptr);
2323 : }
2324 173588 : }
|