LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 2501 2726 91.7 %
Date: 2025-12-02 10:17:08 Functions: 82 82 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/injection_point.h"
      53             : #include "utils/inval.h"
      54             : #include "utils/spccache.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : 
      58             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      59             :                                      TransactionId xid, CommandId cid, int options);
      60             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      61             :                                   Buffer newbuf, HeapTuple oldtup,
      62             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      63             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      64             : #ifdef USE_ASSERT_CHECKING
      65             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      66             :                                                  const ItemPointerData *otid,
      67             :                                                  HeapTuple newtup);
      68             : static void check_inplace_rel_lock(HeapTuple oldtup);
      69             : #endif
      70             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      71             :                                            Bitmapset *interesting_cols,
      72             :                                            Bitmapset *external_cols,
      73             :                                            HeapTuple oldtup, HeapTuple newtup,
      74             :                                            bool *has_external);
      75             : static bool heap_acquire_tuplock(Relation relation, const ItemPointerData *tid,
      76             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      77             :                                  bool *have_tuple_lock);
      78             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      79             :                                                    BlockNumber block,
      80             :                                                    ScanDirection dir);
      81             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      82             :                                                         ScanDirection dir);
      83             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      84             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      85             :                                       LockTupleMode mode, bool is_update,
      86             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      87             :                                       uint16 *result_infomask2);
      88             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      89             :                                          const ItemPointerData *ctid, TransactionId xid,
      90             :                                          LockTupleMode mode);
      91             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      92             :                                    uint16 *new_infomask2);
      93             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      94             :                                              uint16 t_infomask);
      95             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      96             :                                     LockTupleMode lockmode, bool *current_is_member);
      97             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      98             :                             Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
      99             :                             int *remaining);
     100             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
     101             :                                        uint16 infomask, Relation rel, int *remaining,
     102             :                                        bool logLockFailure);
     103             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     104             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     105             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     106             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     107             :                                         bool *copy);
     108             : 
     109             : 
     110             : /*
     111             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     112             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     113             :  * update them).  This table (and the macros below) helps us determine the
     114             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     115             :  * tuple lock strength.
     116             :  *
     117             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     118             :  *
     119             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     120             :  * instead.
     121             :  */
     122             : static const struct
     123             : {
     124             :     LOCKMODE    hwlock;
     125             :     int         lockstatus;
     126             :     int         updstatus;
     127             : }
     128             : 
     129             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     130             : {
     131             :     {                           /* LockTupleKeyShare */
     132             :         AccessShareLock,
     133             :         MultiXactStatusForKeyShare,
     134             :         -1                      /* KeyShare does not allow updating tuples */
     135             :     },
     136             :     {                           /* LockTupleShare */
     137             :         RowShareLock,
     138             :         MultiXactStatusForShare,
     139             :         -1                      /* Share does not allow updating tuples */
     140             :     },
     141             :     {                           /* LockTupleNoKeyExclusive */
     142             :         ExclusiveLock,
     143             :         MultiXactStatusForNoKeyUpdate,
     144             :         MultiXactStatusNoKeyUpdate
     145             :     },
     146             :     {                           /* LockTupleExclusive */
     147             :         AccessExclusiveLock,
     148             :         MultiXactStatusForUpdate,
     149             :         MultiXactStatusUpdate
     150             :     }
     151             : };
     152             : 
     153             : /* Get the LOCKMODE for a given MultiXactStatus */
     154             : #define LOCKMODE_from_mxstatus(status) \
     155             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     156             : 
     157             : /*
     158             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     159             :  * This is more readable than having every caller translate it to lock.h's
     160             :  * LOCKMODE.
     161             :  */
     162             : #define LockTupleTuplock(rel, tup, mode) \
     163             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     164             : #define UnlockTupleTuplock(rel, tup, mode) \
     165             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     166             : #define ConditionalLockTupleTuplock(rel, tup, mode, log) \
     167             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock, (log))
     168             : 
     169             : #ifdef USE_PREFETCH
     170             : /*
     171             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     172             :  * structure to coordinate prefetching activity
     173             :  */
     174             : typedef struct
     175             : {
     176             :     BlockNumber cur_hblkno;
     177             :     int         next_item;
     178             :     int         ndeltids;
     179             :     TM_IndexDelete *deltids;
     180             : } IndexDeletePrefetchState;
     181             : #endif
     182             : 
     183             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     184             : #define BOTTOMUP_MAX_NBLOCKS            6
     185             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     186             : 
     187             : /*
     188             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     189             :  * must visit to help its bottom-up index deletion caller
     190             :  */
     191             : typedef struct IndexDeleteCounts
     192             : {
     193             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     194             :     int16       ntids;          /* Number of TIDs in group */
     195             :     int16       ifirsttid;      /* Offset to group's first deltid */
     196             : } IndexDeleteCounts;
     197             : 
     198             : /*
     199             :  * This table maps tuple lock strength values for each particular
     200             :  * MultiXactStatus value.
     201             :  */
     202             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     203             : {
     204             :     LockTupleKeyShare,          /* ForKeyShare */
     205             :     LockTupleShare,             /* ForShare */
     206             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     207             :     LockTupleExclusive,         /* ForUpdate */
     208             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     209             :     LockTupleExclusive          /* Update */
     210             : };
     211             : 
     212             : /* Get the LockTupleMode for a given MultiXactStatus */
     213             : #define TUPLOCK_from_mxstatus(status) \
     214             :             (MultiXactStatusLock[(status)])
     215             : 
     216             : /*
     217             :  * Check that we have a valid snapshot if we might need TOAST access.
     218             :  */
     219             : static inline void
     220    21030770 : AssertHasSnapshotForToast(Relation rel)
     221             : {
     222             : #ifdef USE_ASSERT_CHECKING
     223             : 
     224             :     /* bootstrap mode in particular breaks this rule */
     225             :     if (!IsNormalProcessingMode())
     226             :         return;
     227             : 
     228             :     /* if the relation doesn't have a TOAST table, we are good */
     229             :     if (!OidIsValid(rel->rd_rel->reltoastrelid))
     230             :         return;
     231             : 
     232             :     Assert(HaveRegisteredOrActiveSnapshot());
     233             : 
     234             : #endif                          /* USE_ASSERT_CHECKING */
     235    21030770 : }
     236             : 
     237             : /* ----------------------------------------------------------------
     238             :  *                       heap support routines
     239             :  * ----------------------------------------------------------------
     240             :  */
     241             : 
     242             : /*
     243             :  * Streaming read API callback for parallel sequential scans. Returns the next
     244             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     245             :  */
     246             : static BlockNumber
     247      202546 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     248             :                                     void *callback_private_data,
     249             :                                     void *per_buffer_data)
     250             : {
     251      202546 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     252             : 
     253             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     254             :     Assert(scan->rs_base.rs_parallel);
     255             : 
     256      202546 :     if (unlikely(!scan->rs_inited))
     257             :     {
     258             :         /* parallel scan */
     259        3154 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     260        3154 :                                                  scan->rs_parallelworkerdata,
     261        3154 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel,
     262             :                                                  scan->rs_startblock,
     263             :                                                  scan->rs_numblocks);
     264             : 
     265             :         /* may return InvalidBlockNumber if there are no more blocks */
     266        6308 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     267        3154 :                                                                     scan->rs_parallelworkerdata,
     268        3154 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     269        3154 :         scan->rs_inited = true;
     270             :     }
     271             :     else
     272             :     {
     273      199392 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     274      199392 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     275      199392 :                                                                     scan->rs_base.rs_parallel);
     276             :     }
     277             : 
     278      202546 :     return scan->rs_prefetch_block;
     279             : }
     280             : 
     281             : /*
     282             :  * Streaming read API callback for serial sequential and TID range scans.
     283             :  * Returns the next block the caller wants from the read stream or
     284             :  * InvalidBlockNumber when done.
     285             :  */
     286             : static BlockNumber
     287     7561364 : heap_scan_stream_read_next_serial(ReadStream *stream,
     288             :                                   void *callback_private_data,
     289             :                                   void *per_buffer_data)
     290             : {
     291     7561364 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     292             : 
     293     7561364 :     if (unlikely(!scan->rs_inited))
     294             :     {
     295     1959338 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     296     1959338 :         scan->rs_inited = true;
     297             :     }
     298             :     else
     299     5602026 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     300             :                                                            scan->rs_prefetch_block,
     301             :                                                            scan->rs_dir);
     302             : 
     303     7561364 :     return scan->rs_prefetch_block;
     304             : }
     305             : 
     306             : /*
     307             :  * Read stream API callback for bitmap heap scans.
     308             :  * Returns the next block the caller wants from the read stream or
     309             :  * InvalidBlockNumber when done.
     310             :  */
     311             : static BlockNumber
     312      421696 : bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data,
     313             :                             void *per_buffer_data)
     314             : {
     315      421696 :     TBMIterateResult *tbmres = per_buffer_data;
     316      421696 :     BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) private_data;
     317      421696 :     HeapScanDesc hscan = (HeapScanDesc) bscan;
     318      421696 :     TableScanDesc sscan = &hscan->rs_base;
     319             : 
     320             :     for (;;)
     321             :     {
     322      421696 :         CHECK_FOR_INTERRUPTS();
     323             : 
     324             :         /* no more entries in the bitmap */
     325      421696 :         if (!tbm_iterate(&sscan->st.rs_tbmiterator, tbmres))
     326       20550 :             return InvalidBlockNumber;
     327             : 
     328             :         /*
     329             :          * Ignore any claimed entries past what we think is the end of the
     330             :          * relation. It may have been extended after the start of our scan (we
     331             :          * only hold an AccessShareLock, and it could be inserts from this
     332             :          * backend).  We don't take this optimization in SERIALIZABLE
     333             :          * isolation though, as we need to examine all invisible tuples
     334             :          * reachable by the index.
     335             :          */
     336      401146 :         if (!IsolationIsSerializable() &&
     337      400928 :             tbmres->blockno >= hscan->rs_nblocks)
     338           0 :             continue;
     339             : 
     340      401146 :         return tbmres->blockno;
     341             :     }
     342             : 
     343             :     /* not reachable */
     344             :     Assert(false);
     345             : }
     346             : 
     347             : /* ----------------
     348             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     349             :  * ----------------
     350             :  */
     351             : static void
     352     2002806 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     353             : {
     354     2002806 :     ParallelBlockTableScanDesc bpscan = NULL;
     355             :     bool        allow_strat;
     356             :     bool        allow_sync;
     357             : 
     358             :     /*
     359             :      * Determine the number of blocks we have to scan.
     360             :      *
     361             :      * It is sufficient to do this once at scan start, since any tuples added
     362             :      * while the scan is in progress will be invisible to my snapshot anyway.
     363             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     364             :      * guarantee to return tuples added after scan start anyway, since they
     365             :      * might go into pages we already scanned.  To guarantee consistent
     366             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     367             :      * lock that ensures the interesting tuple(s) won't change.)
     368             :      */
     369     2002806 :     if (scan->rs_base.rs_parallel != NULL)
     370             :     {
     371        4338 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     372        4338 :         scan->rs_nblocks = bpscan->phs_nblocks;
     373             :     }
     374             :     else
     375     1998468 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     376             : 
     377             :     /*
     378             :      * If the table is large relative to NBuffers, use a bulk-read access
     379             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     380             :      * the thresholds for these features could be different, we make them the
     381             :      * same so that there are only two behaviors to tune rather than four.
     382             :      * (However, some callers need to be able to disable one or both of these
     383             :      * behaviors, independently of the size of the table; also there is a GUC
     384             :      * variable that can disable synchronized scanning.)
     385             :      *
     386             :      * Note that table_block_parallelscan_initialize has a very similar test;
     387             :      * if you change this, consider changing that one, too.
     388             :      */
     389     2002802 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     390     1988202 :         scan->rs_nblocks > NBuffers / 4)
     391             :     {
     392       28420 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     393       28420 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     394             :     }
     395             :     else
     396     1974382 :         allow_strat = allow_sync = false;
     397             : 
     398     2002802 :     if (allow_strat)
     399             :     {
     400             :         /* During a rescan, keep the previous strategy object. */
     401       25772 :         if (scan->rs_strategy == NULL)
     402       25430 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     403             :     }
     404             :     else
     405             :     {
     406     1977030 :         if (scan->rs_strategy != NULL)
     407           0 :             FreeAccessStrategy(scan->rs_strategy);
     408     1977030 :         scan->rs_strategy = NULL;
     409             :     }
     410             : 
     411     2002802 :     if (scan->rs_base.rs_parallel != NULL)
     412             :     {
     413             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     414        4338 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     415           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     416             :         else
     417        4334 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     418             : 
     419             :         /*
     420             :          * If not rescanning, initialize the startblock.  Finding the actual
     421             :          * start location is done in table_block_parallelscan_startblock_init,
     422             :          * based on whether an alternative start location has been set with
     423             :          * heap_setscanlimits, or using the syncscan location, when syncscan
     424             :          * is enabled.
     425             :          */
     426        4338 :         if (!keep_startblock)
     427        4110 :             scan->rs_startblock = InvalidBlockNumber;
     428             :     }
     429             :     else
     430             :     {
     431     1998464 :         if (keep_startblock)
     432             :         {
     433             :             /*
     434             :              * When rescanning, we want to keep the previous startblock
     435             :              * setting, so that rewinding a cursor doesn't generate surprising
     436             :              * results.  Reset the active syncscan setting, though.
     437             :              */
     438     1232100 :             if (allow_sync && synchronize_seqscans)
     439         100 :                 scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     440             :             else
     441     1232000 :                 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     442             :         }
     443      766364 :         else if (allow_sync && synchronize_seqscans)
     444             :         {
     445         144 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     446         144 :             scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     447             :         }
     448             :         else
     449             :         {
     450      766220 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     451      766220 :             scan->rs_startblock = 0;
     452             :         }
     453             :     }
     454             : 
     455     2002802 :     scan->rs_numblocks = InvalidBlockNumber;
     456     2002802 :     scan->rs_inited = false;
     457     2002802 :     scan->rs_ctup.t_data = NULL;
     458     2002802 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     459     2002802 :     scan->rs_cbuf = InvalidBuffer;
     460     2002802 :     scan->rs_cblock = InvalidBlockNumber;
     461     2002802 :     scan->rs_ntuples = 0;
     462     2002802 :     scan->rs_cindex = 0;
     463             : 
     464             :     /*
     465             :      * Initialize to ForwardScanDirection because it is most common and
     466             :      * because heap scans go forward before going backward (e.g. CURSORs).
     467             :      */
     468     2002802 :     scan->rs_dir = ForwardScanDirection;
     469     2002802 :     scan->rs_prefetch_block = InvalidBlockNumber;
     470             : 
     471             :     /* page-at-a-time fields are always invalid when not rs_inited */
     472             : 
     473             :     /*
     474             :      * copy the scan key, if appropriate
     475             :      */
     476     2002802 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     477      442620 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     478             : 
     479             :     /*
     480             :      * Currently, we only have a stats counter for sequential heap scans (but
     481             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     482             :      * and for sample scans we update stats for tuple fetches).
     483             :      */
     484     2002802 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     485     1961734 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     486     2002802 : }
     487             : 
     488             : /*
     489             :  * heap_setscanlimits - restrict range of a heapscan
     490             :  *
     491             :  * startBlk is the page to start at
     492             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     493             :  */
     494             : void
     495        5802 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     496             : {
     497        5802 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     498             : 
     499             :     Assert(!scan->rs_inited);    /* else too late to change */
     500             :     /* else rs_startblock is significant */
     501             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     502             : 
     503             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     504             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     505             : 
     506        5802 :     scan->rs_startblock = startBlk;
     507        5802 :     scan->rs_numblocks = numBlks;
     508        5802 : }
     509             : 
     510             : /*
     511             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     512             :  * multiple times, with constant arguments for all_visible,
     513             :  * check_serializable.
     514             :  */
     515             : pg_attribute_always_inline
     516             : static int
     517     5576570 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     518             :                     Page page, Buffer buffer,
     519             :                     BlockNumber block, int lines,
     520             :                     bool all_visible, bool check_serializable)
     521             : {
     522     5576570 :     int         ntup = 0;
     523             :     OffsetNumber lineoff;
     524             : 
     525   282063236 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     526             :     {
     527   276486682 :         ItemId      lpp = PageGetItemId(page, lineoff);
     528             :         HeapTupleData loctup;
     529             :         bool        valid;
     530             : 
     531   276486682 :         if (!ItemIdIsNormal(lpp))
     532    58941702 :             continue;
     533             : 
     534   217544980 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     535   217544980 :         loctup.t_len = ItemIdGetLength(lpp);
     536   217544980 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     537   217544980 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     538             : 
     539   217544980 :         if (all_visible)
     540    85851128 :             valid = true;
     541             :         else
     542   131693852 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     543             : 
     544   217544980 :         if (check_serializable)
     545        2818 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     546             :                                                 &loctup, buffer, snapshot);
     547             : 
     548   217544964 :         if (valid)
     549             :         {
     550   200812564 :             scan->rs_vistuples[ntup] = lineoff;
     551   200812564 :             ntup++;
     552             :         }
     553             :     }
     554             : 
     555             :     Assert(ntup <= MaxHeapTuplesPerPage);
     556             : 
     557     5576554 :     return ntup;
     558             : }
     559             : 
     560             : /*
     561             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     562             :  *
     563             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     564             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     565             :  */
     566             : void
     567     5576570 : heap_prepare_pagescan(TableScanDesc sscan)
     568             : {
     569     5576570 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     570     5576570 :     Buffer      buffer = scan->rs_cbuf;
     571     5576570 :     BlockNumber block = scan->rs_cblock;
     572             :     Snapshot    snapshot;
     573             :     Page        page;
     574             :     int         lines;
     575             :     bool        all_visible;
     576             :     bool        check_serializable;
     577             : 
     578             :     Assert(BufferGetBlockNumber(buffer) == block);
     579             : 
     580             :     /* ensure we're not accidentally being used when not in pagemode */
     581             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     582     5576570 :     snapshot = scan->rs_base.rs_snapshot;
     583             : 
     584             :     /*
     585             :      * Prune and repair fragmentation for the whole page, if possible.
     586             :      */
     587     5576570 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     588             : 
     589             :     /*
     590             :      * We must hold share lock on the buffer content while examining tuple
     591             :      * visibility.  Afterwards, however, the tuples we have found to be
     592             :      * visible are guaranteed good as long as we hold the buffer pin.
     593             :      */
     594     5576570 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     595             : 
     596     5576570 :     page = BufferGetPage(buffer);
     597     5576570 :     lines = PageGetMaxOffsetNumber(page);
     598             : 
     599             :     /*
     600             :      * If the all-visible flag indicates that all tuples on the page are
     601             :      * visible to everyone, we can skip the per-tuple visibility tests.
     602             :      *
     603             :      * Note: In hot standby, a tuple that's already visible to all
     604             :      * transactions on the primary might still be invisible to a read-only
     605             :      * transaction in the standby. We partly handle this problem by tracking
     606             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     607             :      * page all-visible on the primary and WAL log that along with the
     608             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     609             :      * all transactions that can potentially may not see one or more tuples on
     610             :      * the page. That's how index-only scans work fine in hot standby. A
     611             :      * crucial difference between index-only scans and heap scans is that the
     612             :      * index-only scan completely relies on the visibility map where as heap
     613             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     614             :      * the page-level flag can be trusted in the same way, because it might
     615             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     616             :      * full page write. Until we can prove that beyond doubt, let's check each
     617             :      * tuple for visibility the hard way.
     618             :      */
     619     5576570 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     620             :     check_serializable =
     621     5576570 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     622             : 
     623             :     /*
     624             :      * We call page_collect_tuples() with constant arguments, to get the
     625             :      * compiler to constant fold the constant arguments. Separate calls with
     626             :      * constant arguments, rather than variables, are needed on several
     627             :      * compilers to actually perform constant folding.
     628             :      */
     629     5576570 :     if (likely(all_visible))
     630             :     {
     631     1986304 :         if (likely(!check_serializable))
     632     1986304 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     633             :                                                    block, lines, true, false);
     634             :         else
     635           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     636             :                                                    block, lines, true, true);
     637             :     }
     638             :     else
     639             :     {
     640     3590266 :         if (likely(!check_serializable))
     641     3589020 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     642             :                                                    block, lines, false, false);
     643             :         else
     644        1246 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     645             :                                                    block, lines, false, true);
     646             :     }
     647             : 
     648     5576554 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     649     5576554 : }
     650             : 
     651             : /*
     652             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     653             :  *
     654             :  * Read the next block of the scan relation from the read stream and save it
     655             :  * in the scan descriptor.  It is already pinned.
     656             :  */
     657             : static inline void
     658     7392580 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     659             : {
     660             :     Assert(scan->rs_read_stream);
     661             : 
     662             :     /* release previous scan buffer, if any */
     663     7392580 :     if (BufferIsValid(scan->rs_cbuf))
     664             :     {
     665     5430088 :         ReleaseBuffer(scan->rs_cbuf);
     666     5430088 :         scan->rs_cbuf = InvalidBuffer;
     667             :     }
     668             : 
     669             :     /*
     670             :      * Be sure to check for interrupts at least once per page.  Checks at
     671             :      * higher code levels won't be able to stop a seqscan that encounters many
     672             :      * pages' worth of consecutive dead tuples.
     673             :      */
     674     7392580 :     CHECK_FOR_INTERRUPTS();
     675             : 
     676             :     /*
     677             :      * If the scan direction is changing, reset the prefetch block to the
     678             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     679             :      * between the prefetch block and the current block again before
     680             :      * prefetching blocks in the new, correct scan direction.
     681             :      */
     682     7392580 :     if (unlikely(scan->rs_dir != dir))
     683             :     {
     684         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     685         154 :         read_stream_reset(scan->rs_read_stream);
     686             :     }
     687             : 
     688     7392580 :     scan->rs_dir = dir;
     689             : 
     690     7392580 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     691     7392530 :     if (BufferIsValid(scan->rs_cbuf))
     692     5758184 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     693     7392530 : }
     694             : 
     695             : /*
     696             :  * heapgettup_initial_block - return the first BlockNumber to scan
     697             :  *
     698             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     699             :  * occur with empty tables and in parallel scans when parallel workers get all
     700             :  * of the pages before we can get a chance to get our first page.
     701             :  */
     702             : static pg_noinline BlockNumber
     703     1959338 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     704             : {
     705             :     Assert(!scan->rs_inited);
     706             :     Assert(scan->rs_base.rs_parallel == NULL);
     707             : 
     708             :     /* When there are no pages to scan, return InvalidBlockNumber */
     709     1959338 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     710      993204 :         return InvalidBlockNumber;
     711             : 
     712      966134 :     if (ScanDirectionIsForward(dir))
     713             :     {
     714      966070 :         return scan->rs_startblock;
     715             :     }
     716             :     else
     717             :     {
     718             :         /*
     719             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     720             :          * very likely anyone else is doing the same thing at the same time,
     721             :          * and much more likely that we'll just bollix things for forward
     722             :          * scanners.
     723             :          */
     724          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     725             : 
     726             :         /*
     727             :          * Start from last page of the scan.  Ensure we take into account
     728             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     729             :          */
     730          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     731           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     732             : 
     733          58 :         if (scan->rs_startblock > 0)
     734           0 :             return scan->rs_startblock - 1;
     735             : 
     736          58 :         return scan->rs_nblocks - 1;
     737             :     }
     738             : }
     739             : 
     740             : 
     741             : /*
     742             :  * heapgettup_start_page - helper function for heapgettup()
     743             :  *
     744             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     745             :  * to the number of tuples on this page.  Also set *lineoff to the first
     746             :  * offset to scan with forward scans getting the first offset and backward
     747             :  * getting the final offset on the page.
     748             :  */
     749             : static Page
     750      190166 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     751             :                       OffsetNumber *lineoff)
     752             : {
     753             :     Page        page;
     754             : 
     755             :     Assert(scan->rs_inited);
     756             :     Assert(BufferIsValid(scan->rs_cbuf));
     757             : 
     758             :     /* Caller is responsible for ensuring buffer is locked if needed */
     759      190166 :     page = BufferGetPage(scan->rs_cbuf);
     760             : 
     761      190166 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     762             : 
     763      190166 :     if (ScanDirectionIsForward(dir))
     764      190166 :         *lineoff = FirstOffsetNumber;
     765             :     else
     766           0 :         *lineoff = (OffsetNumber) (*linesleft);
     767             : 
     768             :     /* lineoff now references the physically previous or next tid */
     769      190166 :     return page;
     770             : }
     771             : 
     772             : 
     773             : /*
     774             :  * heapgettup_continue_page - helper function for heapgettup()
     775             :  *
     776             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     777             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     778             :  * the next offset to scan according to the ScanDirection in 'dir'.
     779             :  */
     780             : static inline Page
     781    15767264 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     782             :                          OffsetNumber *lineoff)
     783             : {
     784             :     Page        page;
     785             : 
     786             :     Assert(scan->rs_inited);
     787             :     Assert(BufferIsValid(scan->rs_cbuf));
     788             : 
     789             :     /* Caller is responsible for ensuring buffer is locked if needed */
     790    15767264 :     page = BufferGetPage(scan->rs_cbuf);
     791             : 
     792    15767264 :     if (ScanDirectionIsForward(dir))
     793             :     {
     794    15767264 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     795    15767264 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     796             :     }
     797             :     else
     798             :     {
     799             :         /*
     800             :          * The previous returned tuple may have been vacuumed since the
     801             :          * previous scan when we use a non-MVCC snapshot, so we must
     802             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     803             :          */
     804           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     805           0 :         *linesleft = *lineoff;
     806             :     }
     807             : 
     808             :     /* lineoff now references the physically previous or next tid */
     809    15767264 :     return page;
     810             : }
     811             : 
     812             : /*
     813             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     814             :  *
     815             :  * Given the current block number, the scan direction, and various information
     816             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     817             :  * and return it.  If there are no further blocks to scan, return
     818             :  * InvalidBlockNumber to indicate this fact to the caller.
     819             :  *
     820             :  * This should not be called to determine the initial block number -- only for
     821             :  * subsequent blocks.
     822             :  *
     823             :  * This also adjusts rs_numblocks when a limit has been imposed by
     824             :  * heap_setscanlimits().
     825             :  */
     826             : static inline BlockNumber
     827     5602026 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     828             : {
     829             :     Assert(scan->rs_base.rs_parallel == NULL);
     830             : 
     831     5602026 :     if (likely(ScanDirectionIsForward(dir)))
     832             :     {
     833     5601908 :         block++;
     834             : 
     835             :         /* wrap back to the start of the heap */
     836     5601908 :         if (block >= scan->rs_nblocks)
     837      763234 :             block = 0;
     838             : 
     839             :         /*
     840             :          * Report our new scan position for synchronization purposes. We don't
     841             :          * do that when moving backwards, however. That would just mess up any
     842             :          * other forward-moving scanners.
     843             :          *
     844             :          * Note: we do this before checking for end of scan so that the final
     845             :          * state of the position hint is back at the start of the rel.  That's
     846             :          * not strictly necessary, but otherwise when you run the same query
     847             :          * multiple times the starting position would shift a little bit
     848             :          * backwards on every invocation, which is confusing. We don't
     849             :          * guarantee any specific ordering in general, though.
     850             :          */
     851     5601908 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     852       22530 :             ss_report_location(scan->rs_base.rs_rd, block);
     853             : 
     854             :         /* we're done if we're back at where we started */
     855     5601908 :         if (block == scan->rs_startblock)
     856      763152 :             return InvalidBlockNumber;
     857             : 
     858             :         /* check if the limit imposed by heap_setscanlimits() is met */
     859     4838756 :         if (scan->rs_numblocks != InvalidBlockNumber)
     860             :         {
     861        4968 :             if (--scan->rs_numblocks == 0)
     862        3092 :                 return InvalidBlockNumber;
     863             :         }
     864             : 
     865     4835664 :         return block;
     866             :     }
     867             :     else
     868             :     {
     869             :         /* we're done if the last block is the start position */
     870         118 :         if (block == scan->rs_startblock)
     871         118 :             return InvalidBlockNumber;
     872             : 
     873             :         /* check if the limit imposed by heap_setscanlimits() is met */
     874           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     875             :         {
     876           0 :             if (--scan->rs_numblocks == 0)
     877           0 :                 return InvalidBlockNumber;
     878             :         }
     879             : 
     880             :         /* wrap to the end of the heap when the last page was page 0 */
     881           0 :         if (block == 0)
     882           0 :             block = scan->rs_nblocks;
     883             : 
     884           0 :         block--;
     885             : 
     886           0 :         return block;
     887             :     }
     888             : }
     889             : 
     890             : /* ----------------
     891             :  *      heapgettup - fetch next heap tuple
     892             :  *
     893             :  *      Initialize the scan if not already done; then advance to the next
     894             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     895             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     896             :  *
     897             :  * Note: the reason nkeys/key are passed separately, even though they are
     898             :  * kept in the scan descriptor, is that the caller may not want us to check
     899             :  * the scankeys.
     900             :  *
     901             :  * Note: when we fall off the end of the scan in either direction, we
     902             :  * reset rs_inited.  This means that a further request with the same
     903             :  * scan direction will restart the scan, which is a bit odd, but a
     904             :  * request with the opposite scan direction will start a fresh scan
     905             :  * in the proper direction.  The latter is required behavior for cursors,
     906             :  * while the former case is generally undefined behavior in Postgres
     907             :  * so we don't care too much.
     908             :  * ----------------
     909             :  */
     910             : static void
     911    15808304 : heapgettup(HeapScanDesc scan,
     912             :            ScanDirection dir,
     913             :            int nkeys,
     914             :            ScanKey key)
     915             : {
     916    15808304 :     HeapTuple   tuple = &(scan->rs_ctup);
     917             :     Page        page;
     918             :     OffsetNumber lineoff;
     919             :     int         linesleft;
     920             : 
     921    15808304 :     if (likely(scan->rs_inited))
     922             :     {
     923             :         /* continue from previously returned page/tuple */
     924    15767264 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     925    15767264 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     926    15767264 :         goto continue_page;
     927             :     }
     928             : 
     929             :     /*
     930             :      * advance the scan until we find a qualifying tuple or run out of stuff
     931             :      * to scan
     932             :      */
     933             :     while (true)
     934             :     {
     935      230906 :         heap_fetch_next_buffer(scan, dir);
     936             : 
     937             :         /* did we run out of blocks to scan? */
     938      230906 :         if (!BufferIsValid(scan->rs_cbuf))
     939       40740 :             break;
     940             : 
     941             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     942             : 
     943      190166 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     944      190166 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     945    15957430 : continue_page:
     946             : 
     947             :         /*
     948             :          * Only continue scanning the page while we have lines left.
     949             :          *
     950             :          * Note that this protects us from accessing line pointers past
     951             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     952             :          * table scan, and for when we start scanning a new page.
     953             :          */
     954    16041156 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     955             :         {
     956             :             bool        visible;
     957    15851290 :             ItemId      lpp = PageGetItemId(page, lineoff);
     958             : 
     959    15851290 :             if (!ItemIdIsNormal(lpp))
     960       73264 :                 continue;
     961             : 
     962    15778026 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     963    15778026 :             tuple->t_len = ItemIdGetLength(lpp);
     964    15778026 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     965             : 
     966    15778026 :             visible = HeapTupleSatisfiesVisibility(tuple,
     967             :                                                    scan->rs_base.rs_snapshot,
     968             :                                                    scan->rs_cbuf);
     969             : 
     970    15778026 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     971             :                                                 tuple, scan->rs_cbuf,
     972             :                                                 scan->rs_base.rs_snapshot);
     973             : 
     974             :             /* skip tuples not visible to this snapshot */
     975    15778026 :             if (!visible)
     976       10462 :                 continue;
     977             : 
     978             :             /* skip any tuples that don't match the scan key */
     979    15767564 :             if (key != NULL &&
     980           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     981             :                              nkeys, key))
     982           0 :                 continue;
     983             : 
     984    15767564 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     985    15767564 :             scan->rs_coffset = lineoff;
     986    15767564 :             return;
     987             :         }
     988             : 
     989             :         /*
     990             :          * if we get here, it means we've exhausted the items on this page and
     991             :          * it's time to move to the next.
     992             :          */
     993      189866 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     994             :     }
     995             : 
     996             :     /* end of scan */
     997       40740 :     if (BufferIsValid(scan->rs_cbuf))
     998           0 :         ReleaseBuffer(scan->rs_cbuf);
     999             : 
    1000       40740 :     scan->rs_cbuf = InvalidBuffer;
    1001       40740 :     scan->rs_cblock = InvalidBlockNumber;
    1002       40740 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1003       40740 :     tuple->t_data = NULL;
    1004       40740 :     scan->rs_inited = false;
    1005             : }
    1006             : 
    1007             : /* ----------------
    1008             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
    1009             :  *
    1010             :  *      Same API as heapgettup, but used in page-at-a-time mode
    1011             :  *
    1012             :  * The internal logic is much the same as heapgettup's too, but there are some
    1013             :  * differences: we do not take the buffer content lock (that only needs to
    1014             :  * happen inside heap_prepare_pagescan), and we iterate through just the
    1015             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
    1016             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
    1017             :  * heapgettup is 1-based.
    1018             :  * ----------------
    1019             :  */
    1020             : static void
    1021    99417478 : heapgettup_pagemode(HeapScanDesc scan,
    1022             :                     ScanDirection dir,
    1023             :                     int nkeys,
    1024             :                     ScanKey key)
    1025             : {
    1026    99417478 :     HeapTuple   tuple = &(scan->rs_ctup);
    1027             :     Page        page;
    1028             :     uint32      lineindex;
    1029             :     uint32      linesleft;
    1030             : 
    1031    99417478 :     if (likely(scan->rs_inited))
    1032             :     {
    1033             :         /* continue from previously returned page/tuple */
    1034    97496026 :         page = BufferGetPage(scan->rs_cbuf);
    1035             : 
    1036    97496026 :         lineindex = scan->rs_cindex + dir;
    1037    97496026 :         if (ScanDirectionIsForward(dir))
    1038    97495368 :             linesleft = scan->rs_ntuples - lineindex;
    1039             :         else
    1040         658 :             linesleft = scan->rs_cindex;
    1041             :         /* lineindex now references the next or previous visible tid */
    1042             : 
    1043    97496026 :         goto continue_page;
    1044             :     }
    1045             : 
    1046             :     /*
    1047             :      * advance the scan until we find a qualifying tuple or run out of stuff
    1048             :      * to scan
    1049             :      */
    1050             :     while (true)
    1051             :     {
    1052     7161674 :         heap_fetch_next_buffer(scan, dir);
    1053             : 
    1054             :         /* did we run out of blocks to scan? */
    1055     7161624 :         if (!BufferIsValid(scan->rs_cbuf))
    1056     1593606 :             break;
    1057             : 
    1058             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
    1059             : 
    1060             :         /* prune the page and determine visible tuple offsets */
    1061     5568018 :         heap_prepare_pagescan((TableScanDesc) scan);
    1062     5568002 :         page = BufferGetPage(scan->rs_cbuf);
    1063     5568002 :         linesleft = scan->rs_ntuples;
    1064     5568002 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
    1065             : 
    1066             :         /* block is the same for all tuples, set it once outside the loop */
    1067     5568002 :         ItemPointerSetBlockNumber(&tuple->t_self, scan->rs_cblock);
    1068             : 
    1069             :         /* lineindex now references the next or previous visible tid */
    1070   103064028 : continue_page:
    1071             : 
    1072   199603018 :         for (; linesleft > 0; linesleft--, lineindex += dir)
    1073             :         {
    1074             :             ItemId      lpp;
    1075             :             OffsetNumber lineoff;
    1076             : 
    1077             :             Assert(lineindex <= scan->rs_ntuples);
    1078   194362796 :             lineoff = scan->rs_vistuples[lineindex];
    1079   194362796 :             lpp = PageGetItemId(page, lineoff);
    1080             :             Assert(ItemIdIsNormal(lpp));
    1081             : 
    1082   194362796 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1083   194362796 :             tuple->t_len = ItemIdGetLength(lpp);
    1084   194362796 :             ItemPointerSetOffsetNumber(&tuple->t_self, lineoff);
    1085             : 
    1086             :             /* skip any tuples that don't match the scan key */
    1087   194362796 :             if (key != NULL &&
    1088    97343896 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1089             :                              nkeys, key))
    1090    96538990 :                 continue;
    1091             : 
    1092    97823806 :             scan->rs_cindex = lineindex;
    1093    97823806 :             return;
    1094             :         }
    1095             :     }
    1096             : 
    1097             :     /* end of scan */
    1098     1593606 :     if (BufferIsValid(scan->rs_cbuf))
    1099           0 :         ReleaseBuffer(scan->rs_cbuf);
    1100     1593606 :     scan->rs_cbuf = InvalidBuffer;
    1101     1593606 :     scan->rs_cblock = InvalidBlockNumber;
    1102     1593606 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1103     1593606 :     tuple->t_data = NULL;
    1104     1593606 :     scan->rs_inited = false;
    1105             : }
    1106             : 
    1107             : 
    1108             : /* ----------------------------------------------------------------
    1109             :  *                   heap access method interface
    1110             :  * ----------------------------------------------------------------
    1111             :  */
    1112             : 
    1113             : 
    1114             : TableScanDesc
    1115      770478 : heap_beginscan(Relation relation, Snapshot snapshot,
    1116             :                int nkeys, ScanKey key,
    1117             :                ParallelTableScanDesc parallel_scan,
    1118             :                uint32 flags)
    1119             : {
    1120             :     HeapScanDesc scan;
    1121             : 
    1122             :     /*
    1123             :      * increment relation ref count while scanning relation
    1124             :      *
    1125             :      * This is just to make really sure the relcache entry won't go away while
    1126             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1127             :      * anyway, so this is redundant in all normal scenarios...
    1128             :      */
    1129      770478 :     RelationIncrementReferenceCount(relation);
    1130             : 
    1131             :     /*
    1132             :      * allocate and initialize scan descriptor
    1133             :      */
    1134      770478 :     if (flags & SO_TYPE_BITMAPSCAN)
    1135             :     {
    1136       16376 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1137             : 
    1138             :         /*
    1139             :          * Bitmap Heap scans do not have any fields that a normal Heap Scan
    1140             :          * does not have, so no special initializations required here.
    1141             :          */
    1142       16376 :         scan = (HeapScanDesc) bscan;
    1143             :     }
    1144             :     else
    1145      754102 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1146             : 
    1147      770478 :     scan->rs_base.rs_rd = relation;
    1148      770478 :     scan->rs_base.rs_snapshot = snapshot;
    1149      770478 :     scan->rs_base.rs_nkeys = nkeys;
    1150      770478 :     scan->rs_base.rs_flags = flags;
    1151      770478 :     scan->rs_base.rs_parallel = parallel_scan;
    1152      770478 :     scan->rs_strategy = NULL;    /* set in initscan */
    1153      770478 :     scan->rs_cbuf = InvalidBuffer;
    1154             : 
    1155             :     /*
    1156             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1157             :      */
    1158      770478 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1159       58368 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1160             : 
    1161             :     /* Check that a historic snapshot is not used for non-catalog tables */
    1162      770478 :     if (snapshot &&
    1163      753154 :         IsHistoricMVCCSnapshot(snapshot) &&
    1164        1338 :         !RelationIsAccessibleInLogicalDecoding(relation))
    1165             :     {
    1166           0 :         ereport(ERROR,
    1167             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    1168             :                  errmsg("cannot query non-catalog table \"%s\" during logical decoding",
    1169             :                         RelationGetRelationName(relation))));
    1170             :     }
    1171             : 
    1172             :     /*
    1173             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1174             :      * predicate lock on the entire relation. This is required not only to
    1175             :      * lock all the matching tuples, but also to conflict with new insertions
    1176             :      * into the table. In an indexscan, we take page locks on the index pages
    1177             :      * covering the range specified in the scan qual, but in a heap scan there
    1178             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1179             :      * story, there we have already scanned the index and locked the index
    1180             :      * pages covering the predicate. But in that case we still have to lock
    1181             :      * any matching heap tuples. For sample scan we could optimize the locking
    1182             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1183             :      * locking for that.
    1184             :      */
    1185      770478 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1186             :     {
    1187             :         /*
    1188             :          * Ensure a missing snapshot is noticed reliably, even if the
    1189             :          * isolation mode means predicate locking isn't performed (and
    1190             :          * therefore the snapshot isn't used here).
    1191             :          */
    1192             :         Assert(snapshot);
    1193      734012 :         PredicateLockRelation(relation, snapshot);
    1194             :     }
    1195             : 
    1196             :     /* we only need to set this up once */
    1197      770478 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1198             : 
    1199             :     /*
    1200             :      * Allocate memory to keep track of page allocation for parallel workers
    1201             :      * when doing a parallel scan.
    1202             :      */
    1203      770478 :     if (parallel_scan != NULL)
    1204        4110 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1205             :     else
    1206      766368 :         scan->rs_parallelworkerdata = NULL;
    1207             : 
    1208             :     /*
    1209             :      * we do this here instead of in initscan() because heap_rescan also calls
    1210             :      * initscan() and we don't want to allocate memory again
    1211             :      */
    1212      770478 :     if (nkeys > 0)
    1213      442620 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1214             :     else
    1215      327858 :         scan->rs_base.rs_key = NULL;
    1216             : 
    1217      770478 :     initscan(scan, key, false);
    1218             : 
    1219      770474 :     scan->rs_read_stream = NULL;
    1220             : 
    1221             :     /*
    1222             :      * Set up a read stream for sequential scans and TID range scans. This
    1223             :      * should be done after initscan() because initscan() allocates the
    1224             :      * BufferAccessStrategy object passed to the read stream API.
    1225             :      */
    1226      770474 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1227       36612 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1228      735842 :     {
    1229             :         ReadStreamBlockNumberCB cb;
    1230             : 
    1231      735842 :         if (scan->rs_base.rs_parallel)
    1232        4110 :             cb = heap_scan_stream_read_next_parallel;
    1233             :         else
    1234      731732 :             cb = heap_scan_stream_read_next_serial;
    1235             : 
    1236             :         /* ---
    1237             :          * It is safe to use batchmode as the only locks taken by `cb`
    1238             :          * are never taken while waiting for IO:
    1239             :          * - SyncScanLock is used in the non-parallel case
    1240             :          * - in the parallel case, only spinlocks and atomics are used
    1241             :          * ---
    1242             :          */
    1243      735842 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL |
    1244             :                                                           READ_STREAM_USE_BATCHING,
    1245             :                                                           scan->rs_strategy,
    1246             :                                                           scan->rs_base.rs_rd,
    1247             :                                                           MAIN_FORKNUM,
    1248             :                                                           cb,
    1249             :                                                           scan,
    1250             :                                                           0);
    1251             :     }
    1252       34632 :     else if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1253             :     {
    1254       16376 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_DEFAULT |
    1255             :                                                           READ_STREAM_USE_BATCHING,
    1256             :                                                           scan->rs_strategy,
    1257             :                                                           scan->rs_base.rs_rd,
    1258             :                                                           MAIN_FORKNUM,
    1259             :                                                           bitmapheap_stream_read_next,
    1260             :                                                           scan,
    1261             :                                                           sizeof(TBMIterateResult));
    1262             :     }
    1263             : 
    1264             : 
    1265      770474 :     return (TableScanDesc) scan;
    1266             : }
    1267             : 
    1268             : void
    1269     1232328 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1270             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1271             : {
    1272     1232328 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1273             : 
    1274     1232328 :     if (set_params)
    1275             :     {
    1276          30 :         if (allow_strat)
    1277          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1278             :         else
    1279           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1280             : 
    1281          30 :         if (allow_sync)
    1282          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1283             :         else
    1284          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1285             : 
    1286          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1287          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1288          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1289             :         else
    1290           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1291             :     }
    1292             : 
    1293             :     /*
    1294             :      * unpin scan buffers
    1295             :      */
    1296     1232328 :     if (BufferIsValid(scan->rs_cbuf))
    1297             :     {
    1298        3264 :         ReleaseBuffer(scan->rs_cbuf);
    1299        3264 :         scan->rs_cbuf = InvalidBuffer;
    1300             :     }
    1301             : 
    1302             :     /*
    1303             :      * SO_TYPE_BITMAPSCAN would be cleaned up here, but it does not hold any
    1304             :      * additional data vs a normal HeapScan
    1305             :      */
    1306             : 
    1307             :     /*
    1308             :      * The read stream is reset on rescan. This must be done before
    1309             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1310             :      * in initscan().
    1311             :      */
    1312     1232328 :     if (scan->rs_read_stream)
    1313     1232292 :         read_stream_reset(scan->rs_read_stream);
    1314             : 
    1315             :     /*
    1316             :      * reinitialize scan descriptor
    1317             :      */
    1318     1232328 :     initscan(scan, key, true);
    1319     1232328 : }
    1320             : 
    1321             : void
    1322      765742 : heap_endscan(TableScanDesc sscan)
    1323             : {
    1324      765742 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1325             : 
    1326             :     /* Note: no locking manipulations needed */
    1327             : 
    1328             :     /*
    1329             :      * unpin scan buffers
    1330             :      */
    1331      765742 :     if (BufferIsValid(scan->rs_cbuf))
    1332      321572 :         ReleaseBuffer(scan->rs_cbuf);
    1333             : 
    1334             :     /*
    1335             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1336             :      */
    1337      765742 :     if (scan->rs_read_stream)
    1338      747592 :         read_stream_end(scan->rs_read_stream);
    1339             : 
    1340             :     /*
    1341             :      * decrement relation reference count and free scan descriptor storage
    1342             :      */
    1343      765742 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1344             : 
    1345      765742 :     if (scan->rs_base.rs_key)
    1346      442566 :         pfree(scan->rs_base.rs_key);
    1347             : 
    1348      765742 :     if (scan->rs_strategy != NULL)
    1349       25412 :         FreeAccessStrategy(scan->rs_strategy);
    1350             : 
    1351      765742 :     if (scan->rs_parallelworkerdata != NULL)
    1352        4110 :         pfree(scan->rs_parallelworkerdata);
    1353             : 
    1354      765742 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1355       78824 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1356             : 
    1357      765742 :     pfree(scan);
    1358      765742 : }
    1359             : 
    1360             : HeapTuple
    1361    19938624 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1362             : {
    1363    19938624 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1364             : 
    1365             :     /*
    1366             :      * This is still widely used directly, without going through table AM, so
    1367             :      * add a safety check.  It's possible we should, at a later point,
    1368             :      * downgrade this to an assert. The reason for checking the AM routine,
    1369             :      * rather than the AM oid, is that this allows to write regression tests
    1370             :      * that create another AM reusing the heap handler.
    1371             :      */
    1372    19938624 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1373           0 :         ereport(ERROR,
    1374             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1375             :                  errmsg_internal("only heap AM is supported")));
    1376             : 
    1377             :     /*
    1378             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1379             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1380             :      * these variables are declared.  Normally we have such a check at tableam
    1381             :      * level API but this is called from many places so we need to ensure it
    1382             :      * here.
    1383             :      */
    1384    19938624 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1385           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1386             : 
    1387             :     /* Note: no locking manipulations needed */
    1388             : 
    1389    19938624 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1390     5106388 :         heapgettup_pagemode(scan, direction,
    1391     5106388 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1392             :     else
    1393    14832236 :         heapgettup(scan, direction,
    1394    14832236 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1395             : 
    1396    19938624 :     if (scan->rs_ctup.t_data == NULL)
    1397      131546 :         return NULL;
    1398             : 
    1399             :     /*
    1400             :      * if we get here it means we have a new current scan tuple, so point to
    1401             :      * the proper return buffer and return the tuple.
    1402             :      */
    1403             : 
    1404    19807078 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1405             : 
    1406    19807078 :     return &scan->rs_ctup;
    1407             : }
    1408             : 
    1409             : bool
    1410    95275700 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1411             : {
    1412    95275700 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1413             : 
    1414             :     /* Note: no locking manipulations needed */
    1415             : 
    1416    95275700 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1417    94299632 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1418             :     else
    1419      976068 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1420             : 
    1421    95275650 :     if (scan->rs_ctup.t_data == NULL)
    1422             :     {
    1423     1502592 :         ExecClearTuple(slot);
    1424     1502592 :         return false;
    1425             :     }
    1426             : 
    1427             :     /*
    1428             :      * if we get here it means we have a new current scan tuple, so point to
    1429             :      * the proper return buffer and return the tuple.
    1430             :      */
    1431             : 
    1432    93773058 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1433             : 
    1434    93773058 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1435             :                              scan->rs_cbuf);
    1436    93773058 :     return true;
    1437             : }
    1438             : 
    1439             : void
    1440        2070 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1441             :                   ItemPointer maxtid)
    1442             : {
    1443        2070 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1444             :     BlockNumber startBlk;
    1445             :     BlockNumber numBlks;
    1446             :     ItemPointerData highestItem;
    1447             :     ItemPointerData lowestItem;
    1448             : 
    1449             :     /*
    1450             :      * For relations without any pages, we can simply leave the TID range
    1451             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1452             :      * the given TID range.
    1453             :      */
    1454        2070 :     if (scan->rs_nblocks == 0)
    1455          48 :         return;
    1456             : 
    1457             :     /*
    1458             :      * Set up some ItemPointers which point to the first and last possible
    1459             :      * tuples in the heap.
    1460             :      */
    1461        2058 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1462        2058 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1463             : 
    1464             :     /*
    1465             :      * If the given maximum TID is below the highest possible TID in the
    1466             :      * relation, then restrict the range to that, otherwise we scan to the end
    1467             :      * of the relation.
    1468             :      */
    1469        2058 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1470         260 :         ItemPointerCopy(maxtid, &highestItem);
    1471             : 
    1472             :     /*
    1473             :      * If the given minimum TID is above the lowest possible TID in the
    1474             :      * relation, then restrict the range to only scan for TIDs above that.
    1475             :      */
    1476        2058 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1477        1822 :         ItemPointerCopy(mintid, &lowestItem);
    1478             : 
    1479             :     /*
    1480             :      * Check for an empty range and protect from would be negative results
    1481             :      * from the numBlks calculation below.
    1482             :      */
    1483        2058 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1484             :     {
    1485             :         /* Set an empty range of blocks to scan */
    1486          36 :         heap_setscanlimits(sscan, 0, 0);
    1487          36 :         return;
    1488             :     }
    1489             : 
    1490             :     /*
    1491             :      * Calculate the first block and the number of blocks we must scan. We
    1492             :      * could be more aggressive here and perform some more validation to try
    1493             :      * and further narrow the scope of blocks to scan by checking if the
    1494             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1495             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1496             :      * we could scan one fewer blocks.  However, such an optimization does not
    1497             :      * seem worth troubling over, currently.
    1498             :      */
    1499        2022 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1500             : 
    1501        2022 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1502        2022 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1503             : 
    1504             :     /* Set the start block and number of blocks to scan */
    1505        2022 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1506             : 
    1507             :     /* Finally, set the TID range in sscan */
    1508        2022 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1509        2022 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1510             : }
    1511             : 
    1512             : bool
    1513       11272 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1514             :                           TupleTableSlot *slot)
    1515             : {
    1516       11272 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1517       11272 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1518       11272 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1519             : 
    1520             :     /* Note: no locking manipulations needed */
    1521             :     for (;;)
    1522             :     {
    1523       11458 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1524       11458 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1525             :         else
    1526           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1527             : 
    1528       11442 :         if (scan->rs_ctup.t_data == NULL)
    1529             :         {
    1530         208 :             ExecClearTuple(slot);
    1531         208 :             return false;
    1532             :         }
    1533             : 
    1534             :         /*
    1535             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1536             :          * range of pages we scan to only ones that can contain the TID range
    1537             :          * we're scanning for.  Here we must filter out any tuples from these
    1538             :          * pages that are outside of that range.
    1539             :          */
    1540       11234 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1541             :         {
    1542         186 :             ExecClearTuple(slot);
    1543             : 
    1544             :             /*
    1545             :              * When scanning backwards, the TIDs will be in descending order.
    1546             :              * Future tuples in this direction will be lower still, so we can
    1547             :              * just return false to indicate there will be no more tuples.
    1548             :              */
    1549         186 :             if (ScanDirectionIsBackward(direction))
    1550           0 :                 return false;
    1551             : 
    1552         186 :             continue;
    1553             :         }
    1554             : 
    1555             :         /*
    1556             :          * Likewise for the final page, we must filter out TIDs greater than
    1557             :          * maxtid.
    1558             :          */
    1559       11048 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1560             :         {
    1561         112 :             ExecClearTuple(slot);
    1562             : 
    1563             :             /*
    1564             :              * When scanning forward, the TIDs will be in ascending order.
    1565             :              * Future tuples in this direction will be higher still, so we can
    1566             :              * just return false to indicate there will be no more tuples.
    1567             :              */
    1568         112 :             if (ScanDirectionIsForward(direction))
    1569         112 :                 return false;
    1570           0 :             continue;
    1571             :         }
    1572             : 
    1573       10936 :         break;
    1574             :     }
    1575             : 
    1576             :     /*
    1577             :      * if we get here it means we have a new current scan tuple, so point to
    1578             :      * the proper return buffer and return the tuple.
    1579             :      */
    1580       10936 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1581             : 
    1582       10936 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1583       10936 :     return true;
    1584             : }
    1585             : 
    1586             : /*
    1587             :  *  heap_fetch      - retrieve tuple with given tid
    1588             :  *
    1589             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1590             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1591             :  * against the specified snapshot.
    1592             :  *
    1593             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1594             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1595             :  * must unpin the buffer when done with the tuple.
    1596             :  *
    1597             :  * If the tuple is not found (ie, item number references a deleted slot),
    1598             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1599             :  * and false is returned.
    1600             :  *
    1601             :  * If the tuple is found but fails the time qual check, then the behavior
    1602             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1603             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1604             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1605             :  * and again the caller must unpin the buffer; but false is returned.
    1606             :  *
    1607             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1608             :  * be fetched.
    1609             :  *
    1610             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1611             :  * return false on invalid item number.  There are a couple of reasons though.
    1612             :  * One is that the caller can relatively easily check the block number for
    1613             :  * validity, but cannot check the item number without reading the page
    1614             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1615             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1616             :  * truncate off the destination page without having killed the referencing
    1617             :  * tuple first), but the item number might well not be good.
    1618             :  */
    1619             : bool
    1620      356134 : heap_fetch(Relation relation,
    1621             :            Snapshot snapshot,
    1622             :            HeapTuple tuple,
    1623             :            Buffer *userbuf,
    1624             :            bool keep_buf)
    1625             : {
    1626      356134 :     ItemPointer tid = &(tuple->t_self);
    1627             :     ItemId      lp;
    1628             :     Buffer      buffer;
    1629             :     Page        page;
    1630             :     OffsetNumber offnum;
    1631             :     bool        valid;
    1632             : 
    1633             :     /*
    1634             :      * Fetch and pin the appropriate page of the relation.
    1635             :      */
    1636      356134 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1637             : 
    1638             :     /*
    1639             :      * Need share lock on buffer to examine tuple commit status.
    1640             :      */
    1641      356118 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1642      356118 :     page = BufferGetPage(buffer);
    1643             : 
    1644             :     /*
    1645             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1646             :      * TID was obtained.
    1647             :      */
    1648      356118 :     offnum = ItemPointerGetOffsetNumber(tid);
    1649      356118 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1650             :     {
    1651           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1652           6 :         ReleaseBuffer(buffer);
    1653           6 :         *userbuf = InvalidBuffer;
    1654           6 :         tuple->t_data = NULL;
    1655           6 :         return false;
    1656             :     }
    1657             : 
    1658             :     /*
    1659             :      * get the item line pointer corresponding to the requested tid
    1660             :      */
    1661      356112 :     lp = PageGetItemId(page, offnum);
    1662             : 
    1663             :     /*
    1664             :      * Must check for deleted tuple.
    1665             :      */
    1666      356112 :     if (!ItemIdIsNormal(lp))
    1667             :     {
    1668         708 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1669         708 :         ReleaseBuffer(buffer);
    1670         708 :         *userbuf = InvalidBuffer;
    1671         708 :         tuple->t_data = NULL;
    1672         708 :         return false;
    1673             :     }
    1674             : 
    1675             :     /*
    1676             :      * fill in *tuple fields
    1677             :      */
    1678      355404 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1679      355404 :     tuple->t_len = ItemIdGetLength(lp);
    1680      355404 :     tuple->t_tableOid = RelationGetRelid(relation);
    1681             : 
    1682             :     /*
    1683             :      * check tuple visibility, then release lock
    1684             :      */
    1685      355404 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1686             : 
    1687      355404 :     if (valid)
    1688      355294 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1689      355294 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1690             : 
    1691      355404 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1692             : 
    1693      355404 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1694             : 
    1695      355404 :     if (valid)
    1696             :     {
    1697             :         /*
    1698             :          * All checks passed, so return the tuple as valid. Caller is now
    1699             :          * responsible for releasing the buffer.
    1700             :          */
    1701      355294 :         *userbuf = buffer;
    1702             : 
    1703      355294 :         return true;
    1704             :     }
    1705             : 
    1706             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1707         110 :     if (keep_buf)
    1708          68 :         *userbuf = buffer;
    1709             :     else
    1710             :     {
    1711          42 :         ReleaseBuffer(buffer);
    1712          42 :         *userbuf = InvalidBuffer;
    1713          42 :         tuple->t_data = NULL;
    1714             :     }
    1715             : 
    1716         110 :     return false;
    1717             : }
    1718             : 
    1719             : /*
    1720             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1721             :  *
    1722             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1723             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1724             :  * for the first chain member satisfying the given snapshot.  If one is
    1725             :  * found, we update *tid to reference that tuple's offset number, and
    1726             :  * return true.  If no match, return false without modifying *tid.
    1727             :  *
    1728             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1729             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1730             :  * contents of this buffer on return are undefined.
    1731             :  *
    1732             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1733             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1734             :  * are vacuumable, false if not.
    1735             :  *
    1736             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1737             :  * lock on the buffer; it is still pinned/locked at exit.
    1738             :  */
    1739             : bool
    1740    44738660 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1741             :                        Snapshot snapshot, HeapTuple heapTuple,
    1742             :                        bool *all_dead, bool first_call)
    1743             : {
    1744    44738660 :     Page        page = BufferGetPage(buffer);
    1745    44738660 :     TransactionId prev_xmax = InvalidTransactionId;
    1746             :     BlockNumber blkno;
    1747             :     OffsetNumber offnum;
    1748             :     bool        at_chain_start;
    1749             :     bool        valid;
    1750             :     bool        skip;
    1751    44738660 :     GlobalVisState *vistest = NULL;
    1752             : 
    1753             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1754    44738660 :     if (all_dead)
    1755    38231144 :         *all_dead = first_call;
    1756             : 
    1757    44738660 :     blkno = ItemPointerGetBlockNumber(tid);
    1758    44738660 :     offnum = ItemPointerGetOffsetNumber(tid);
    1759    44738660 :     at_chain_start = first_call;
    1760    44738660 :     skip = !first_call;
    1761             : 
    1762             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1763             :     Assert(TransactionIdIsValid(RecentXmin));
    1764             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1765             : 
    1766             :     /* Scan through possible multiple members of HOT-chain */
    1767             :     for (;;)
    1768     2569974 :     {
    1769             :         ItemId      lp;
    1770             : 
    1771             :         /* check for bogus TID */
    1772    47308634 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1773             :             break;
    1774             : 
    1775    47308634 :         lp = PageGetItemId(page, offnum);
    1776             : 
    1777             :         /* check for unused, dead, or redirected items */
    1778    47308634 :         if (!ItemIdIsNormal(lp))
    1779             :         {
    1780             :             /* We should only see a redirect at start of chain */
    1781     1726726 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1782             :             {
    1783             :                 /* Follow the redirect */
    1784      971768 :                 offnum = ItemIdGetRedirect(lp);
    1785      971768 :                 at_chain_start = false;
    1786      971768 :                 continue;
    1787             :             }
    1788             :             /* else must be end of chain */
    1789      754958 :             break;
    1790             :         }
    1791             : 
    1792             :         /*
    1793             :          * Update heapTuple to point to the element of the HOT chain we're
    1794             :          * currently investigating. Having t_self set correctly is important
    1795             :          * because the SSI checks and the *Satisfies routine for historical
    1796             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1797             :          */
    1798    45581908 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1799    45581908 :         heapTuple->t_len = ItemIdGetLength(lp);
    1800    45581908 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1801    45581908 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1802             : 
    1803             :         /*
    1804             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1805             :          */
    1806    45581908 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1807           0 :             break;
    1808             : 
    1809             :         /*
    1810             :          * The xmin should match the previous xmax value, else chain is
    1811             :          * broken.
    1812             :          */
    1813    47180114 :         if (TransactionIdIsValid(prev_xmax) &&
    1814     1598206 :             !TransactionIdEquals(prev_xmax,
    1815             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1816           0 :             break;
    1817             : 
    1818             :         /*
    1819             :          * When first_call is true (and thus, skip is initially false) we'll
    1820             :          * return the first tuple we find.  But on later passes, heapTuple
    1821             :          * will initially be pointing to the tuple we returned last time.
    1822             :          * Returning it again would be incorrect (and would loop forever), so
    1823             :          * we skip it and return the next match we find.
    1824             :          */
    1825    45581908 :         if (!skip)
    1826             :         {
    1827             :             /* If it's visible per the snapshot, we must return it */
    1828    45410086 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1829    45410086 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1830             :                                                 buffer, snapshot);
    1831             : 
    1832    45410076 :             if (valid)
    1833             :             {
    1834    31543946 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1835    31543946 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1836    31543946 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1837    31543946 :                 if (all_dead)
    1838    25613370 :                     *all_dead = false;
    1839    31543946 :                 return true;
    1840             :             }
    1841             :         }
    1842    14037952 :         skip = false;
    1843             : 
    1844             :         /*
    1845             :          * If we can't see it, maybe no one else can either.  At caller
    1846             :          * request, check whether all chain members are dead to all
    1847             :          * transactions.
    1848             :          *
    1849             :          * Note: if you change the criterion here for what is "dead", fix the
    1850             :          * planner's get_actual_variable_range() function to match.
    1851             :          */
    1852    14037952 :         if (all_dead && *all_dead)
    1853             :         {
    1854    12879382 :             if (!vistest)
    1855    12645194 :                 vistest = GlobalVisTestFor(relation);
    1856             : 
    1857    12879382 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1858    12177192 :                 *all_dead = false;
    1859             :         }
    1860             : 
    1861             :         /*
    1862             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1863             :          * the next offnum and loop around.
    1864             :          */
    1865    14037952 :         if (HeapTupleIsHotUpdated(heapTuple))
    1866             :         {
    1867             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1868             :                    blkno);
    1869     1598206 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1870     1598206 :             at_chain_start = false;
    1871     1598206 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1872             :         }
    1873             :         else
    1874    12439746 :             break;              /* end of chain */
    1875             :     }
    1876             : 
    1877    13194704 :     return false;
    1878             : }
    1879             : 
    1880             : /*
    1881             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1882             :  *
    1883             :  * Actually, this gets the latest version that is visible according to the
    1884             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1885             :  * possibly uncommitted version.
    1886             :  *
    1887             :  * *tid is both an input and an output parameter: it is updated to
    1888             :  * show the latest version of the row.  Note that it will not be changed
    1889             :  * if no version of the row passes the snapshot test.
    1890             :  */
    1891             : void
    1892         300 : heap_get_latest_tid(TableScanDesc sscan,
    1893             :                     ItemPointer tid)
    1894             : {
    1895         300 :     Relation    relation = sscan->rs_rd;
    1896         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1897             :     ItemPointerData ctid;
    1898             :     TransactionId priorXmax;
    1899             : 
    1900             :     /*
    1901             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1902             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1903             :      * ones in the table.
    1904             :      */
    1905             :     Assert(ItemPointerIsValid(tid));
    1906             : 
    1907             :     /*
    1908             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1909             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1910             :      * to be bogus.
    1911             :      *
    1912             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1913             :      * Depending on the snapshot passed, there might be at most one visible
    1914             :      * version of the row, but we don't try to optimize for that.
    1915             :      */
    1916         300 :     ctid = *tid;
    1917         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1918             :     for (;;)
    1919          90 :     {
    1920             :         Buffer      buffer;
    1921             :         Page        page;
    1922             :         OffsetNumber offnum;
    1923             :         ItemId      lp;
    1924             :         HeapTupleData tp;
    1925             :         bool        valid;
    1926             : 
    1927             :         /*
    1928             :          * Read, pin, and lock the page.
    1929             :          */
    1930         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1931         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1932         390 :         page = BufferGetPage(buffer);
    1933             : 
    1934             :         /*
    1935             :          * Check for bogus item number.  This is not treated as an error
    1936             :          * condition because it can happen while following a t_ctid link. We
    1937             :          * just assume that the prior tid is OK and return it unchanged.
    1938             :          */
    1939         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1940         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1941             :         {
    1942           0 :             UnlockReleaseBuffer(buffer);
    1943           0 :             break;
    1944             :         }
    1945         390 :         lp = PageGetItemId(page, offnum);
    1946         390 :         if (!ItemIdIsNormal(lp))
    1947             :         {
    1948           0 :             UnlockReleaseBuffer(buffer);
    1949           0 :             break;
    1950             :         }
    1951             : 
    1952             :         /* OK to access the tuple */
    1953         390 :         tp.t_self = ctid;
    1954         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1955         390 :         tp.t_len = ItemIdGetLength(lp);
    1956         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1957             : 
    1958             :         /*
    1959             :          * After following a t_ctid link, we might arrive at an unrelated
    1960             :          * tuple.  Check for XMIN match.
    1961             :          */
    1962         480 :         if (TransactionIdIsValid(priorXmax) &&
    1963          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1964             :         {
    1965           0 :             UnlockReleaseBuffer(buffer);
    1966           0 :             break;
    1967             :         }
    1968             : 
    1969             :         /*
    1970             :          * Check tuple visibility; if visible, set it as the new result
    1971             :          * candidate.
    1972             :          */
    1973         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1974         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1975         390 :         if (valid)
    1976         276 :             *tid = ctid;
    1977             : 
    1978             :         /*
    1979             :          * If there's a valid t_ctid link, follow it, else we're done.
    1980             :          */
    1981         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1982         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1983         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1984         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1985             :         {
    1986         300 :             UnlockReleaseBuffer(buffer);
    1987         300 :             break;
    1988             :         }
    1989             : 
    1990          90 :         ctid = tp.t_data->t_ctid;
    1991          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1992          90 :         UnlockReleaseBuffer(buffer);
    1993             :     }                           /* end of loop */
    1994         300 : }
    1995             : 
    1996             : 
    1997             : /*
    1998             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1999             :  *
    2000             :  * This is called after we have waited for the XMAX transaction to terminate.
    2001             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    2002             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    2003             :  * hint bit if possible --- but beware that that may not yet be possible,
    2004             :  * if the transaction committed asynchronously.
    2005             :  *
    2006             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    2007             :  * even if it commits.
    2008             :  *
    2009             :  * Hence callers should look only at XMAX_INVALID.
    2010             :  *
    2011             :  * Note this is not allowed for tuples whose xmax is a multixact.
    2012             :  */
    2013             : static void
    2014         438 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    2015             : {
    2016             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    2017             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    2018             : 
    2019         438 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    2020             :     {
    2021         786 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    2022         348 :             TransactionIdDidCommit(xid))
    2023         294 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    2024             :                                  xid);
    2025             :         else
    2026         144 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    2027             :                                  InvalidTransactionId);
    2028             :     }
    2029         438 : }
    2030             : 
    2031             : 
    2032             : /*
    2033             :  * GetBulkInsertState - prepare status object for a bulk insert
    2034             :  */
    2035             : BulkInsertState
    2036        4784 : GetBulkInsertState(void)
    2037             : {
    2038             :     BulkInsertState bistate;
    2039             : 
    2040        4784 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    2041        4784 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    2042        4784 :     bistate->current_buf = InvalidBuffer;
    2043        4784 :     bistate->next_free = InvalidBlockNumber;
    2044        4784 :     bistate->last_free = InvalidBlockNumber;
    2045        4784 :     bistate->already_extended_by = 0;
    2046        4784 :     return bistate;
    2047             : }
    2048             : 
    2049             : /*
    2050             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    2051             :  */
    2052             : void
    2053        4496 : FreeBulkInsertState(BulkInsertState bistate)
    2054             : {
    2055        4496 :     if (bistate->current_buf != InvalidBuffer)
    2056        3612 :         ReleaseBuffer(bistate->current_buf);
    2057        4496 :     FreeAccessStrategy(bistate->strategy);
    2058        4496 :     pfree(bistate);
    2059        4496 : }
    2060             : 
    2061             : /*
    2062             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    2063             :  */
    2064             : void
    2065      161516 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    2066             : {
    2067      161516 :     if (bistate->current_buf != InvalidBuffer)
    2068       60042 :         ReleaseBuffer(bistate->current_buf);
    2069      161516 :     bistate->current_buf = InvalidBuffer;
    2070             : 
    2071             :     /*
    2072             :      * Despite the name, we also reset bulk relation extension state.
    2073             :      * Otherwise we can end up erroring out due to looking for free space in
    2074             :      * ->next_free of one partition, even though ->next_free was set when
    2075             :      * extending another partition. It could obviously also be bad for
    2076             :      * efficiency to look at existing blocks at offsets from another
    2077             :      * partition, even if we don't error out.
    2078             :      */
    2079      161516 :     bistate->next_free = InvalidBlockNumber;
    2080      161516 :     bistate->last_free = InvalidBlockNumber;
    2081      161516 : }
    2082             : 
    2083             : 
    2084             : /*
    2085             :  *  heap_insert     - insert tuple into a heap
    2086             :  *
    2087             :  * The new tuple is stamped with current transaction ID and the specified
    2088             :  * command ID.
    2089             :  *
    2090             :  * See table_tuple_insert for comments about most of the input flags, except
    2091             :  * that this routine directly takes a tuple rather than a slot.
    2092             :  *
    2093             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    2094             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    2095             :  * implement table_tuple_insert_speculative().
    2096             :  *
    2097             :  * On return the header fields of *tup are updated to match the stored tuple;
    2098             :  * in particular tup->t_self receives the actual TID where the tuple was
    2099             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2100             :  * reflected into *tup.
    2101             :  */
    2102             : void
    2103    16701978 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2104             :             int options, BulkInsertState bistate)
    2105             : {
    2106    16701978 :     TransactionId xid = GetCurrentTransactionId();
    2107             :     HeapTuple   heaptup;
    2108             :     Buffer      buffer;
    2109    16701964 :     Buffer      vmbuffer = InvalidBuffer;
    2110    16701964 :     bool        all_visible_cleared = false;
    2111             : 
    2112             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2113             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2114             :            RelationGetNumberOfAttributes(relation));
    2115             : 
    2116    16701964 :     AssertHasSnapshotForToast(relation);
    2117             : 
    2118             :     /*
    2119             :      * Fill in tuple header fields and toast the tuple if necessary.
    2120             :      *
    2121             :      * Note: below this point, heaptup is the data we actually intend to store
    2122             :      * into the relation; tup is the caller's original untoasted data.
    2123             :      */
    2124    16701964 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2125             : 
    2126             :     /*
    2127             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2128             :      * this will also pin the requisite visibility map page.
    2129             :      */
    2130    16701964 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2131             :                                        InvalidBuffer, options, bistate,
    2132             :                                        &vmbuffer, NULL,
    2133             :                                        0);
    2134             : 
    2135             :     /*
    2136             :      * We're about to do the actual insert -- but check for conflict first, to
    2137             :      * avoid possibly having to roll back work we've just done.
    2138             :      *
    2139             :      * This is safe without a recheck as long as there is no possibility of
    2140             :      * another process scanning the page between this check and the insert
    2141             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2142             :      * continuously held from this point until the tuple insert is visible).
    2143             :      *
    2144             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2145             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2146             :      * page locks are only consolidated versions of tuple locks; they do not
    2147             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2148             :      * buffer when making the call, which makes for a faster check.
    2149             :      */
    2150    16701964 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2151             : 
    2152             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2153    16701940 :     START_CRIT_SECTION();
    2154             : 
    2155    16701940 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2156    16701940 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2157             : 
    2158    16701940 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2159             :     {
    2160       14766 :         all_visible_cleared = true;
    2161       14766 :         PageClearAllVisible(BufferGetPage(buffer));
    2162       14766 :         visibilitymap_clear(relation,
    2163       14766 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2164             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2165             :     }
    2166             : 
    2167             :     /*
    2168             :      * XXX Should we set PageSetPrunable on this page ?
    2169             :      *
    2170             :      * The inserting transaction may eventually abort thus making this tuple
    2171             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2172             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2173             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2174             :      *
    2175             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2176             :      */
    2177             : 
    2178    16701940 :     MarkBufferDirty(buffer);
    2179             : 
    2180             :     /* XLOG stuff */
    2181    16701940 :     if (RelationNeedsWAL(relation))
    2182             :     {
    2183             :         xl_heap_insert xlrec;
    2184             :         xl_heap_header xlhdr;
    2185             :         XLogRecPtr  recptr;
    2186    14189356 :         Page        page = BufferGetPage(buffer);
    2187    14189356 :         uint8       info = XLOG_HEAP_INSERT;
    2188    14189356 :         int         bufflags = 0;
    2189             : 
    2190             :         /*
    2191             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2192             :          * decode, so log that as well.
    2193             :          */
    2194    14189356 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2195        6850 :             log_heap_new_cid(relation, heaptup);
    2196             : 
    2197             :         /*
    2198             :          * If this is the single and first tuple on page, we can reinit the
    2199             :          * page instead of restoring the whole thing.  Set flag, and hide
    2200             :          * buffer references from XLogInsert.
    2201             :          */
    2202    14372704 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2203      183348 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2204             :         {
    2205      181590 :             info |= XLOG_HEAP_INIT_PAGE;
    2206      181590 :             bufflags |= REGBUF_WILL_INIT;
    2207             :         }
    2208             : 
    2209    14189356 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2210    14189356 :         xlrec.flags = 0;
    2211    14189356 :         if (all_visible_cleared)
    2212       14760 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2213    14189356 :         if (options & HEAP_INSERT_SPECULATIVE)
    2214        4140 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2215             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2216             : 
    2217             :         /*
    2218             :          * For logical decoding, we need the tuple even if we're doing a full
    2219             :          * page write, so make sure it's included even if we take a full-page
    2220             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2221             :          */
    2222    14189356 :         if (RelationIsLogicallyLogged(relation) &&
    2223      501044 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2224             :         {
    2225      500990 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2226      500990 :             bufflags |= REGBUF_KEEP_DATA;
    2227             : 
    2228      500990 :             if (IsToastRelation(relation))
    2229        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2230             :         }
    2231             : 
    2232    14189356 :         XLogBeginInsert();
    2233    14189356 :         XLogRegisterData(&xlrec, SizeOfHeapInsert);
    2234             : 
    2235    14189356 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2236    14189356 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2237    14189356 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2238             : 
    2239             :         /*
    2240             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2241             :          * write the whole page to the xlog, we don't need to store
    2242             :          * xl_heap_header in the xlog.
    2243             :          */
    2244    14189356 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2245    14189356 :         XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    2246             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2247    14189356 :         XLogRegisterBufData(0,
    2248    14189356 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2249    14189356 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2250             : 
    2251             :         /* filtering by origin on a row level is much more efficient */
    2252    14189356 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2253             : 
    2254    14189356 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2255             : 
    2256    14189356 :         PageSetLSN(page, recptr);
    2257             :     }
    2258             : 
    2259    16701940 :     END_CRIT_SECTION();
    2260             : 
    2261    16701940 :     UnlockReleaseBuffer(buffer);
    2262    16701940 :     if (vmbuffer != InvalidBuffer)
    2263       15328 :         ReleaseBuffer(vmbuffer);
    2264             : 
    2265             :     /*
    2266             :      * If tuple is cacheable, mark it for invalidation from the caches in case
    2267             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2268             :      * the heaptup data structure is all in local memory, not in the shared
    2269             :      * buffer.
    2270             :      */
    2271    16701940 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2272             : 
    2273             :     /* Note: speculative insertions are counted too, even if aborted later */
    2274    16701940 :     pgstat_count_heap_insert(relation, 1);
    2275             : 
    2276             :     /*
    2277             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2278             :      * back to the caller's image, too.
    2279             :      */
    2280    16701940 :     if (heaptup != tup)
    2281             :     {
    2282       36448 :         tup->t_self = heaptup->t_self;
    2283       36448 :         heap_freetuple(heaptup);
    2284             :     }
    2285    16701940 : }
    2286             : 
    2287             : /*
    2288             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2289             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2290             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2291             :  * that in any case, the header fields are also set in the original tuple.
    2292             :  */
    2293             : static HeapTuple
    2294    19657896 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2295             :                     CommandId cid, int options)
    2296             : {
    2297             :     /*
    2298             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2299             :      * performed in workers. We have the infrastructure to allow parallel
    2300             :      * inserts in general except for the cases where inserts generate a new
    2301             :      * CommandId (eg. inserts into a table having a foreign key column).
    2302             :      */
    2303    19657896 :     if (IsParallelWorker())
    2304           0 :         ereport(ERROR,
    2305             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2306             :                  errmsg("cannot insert tuples in a parallel worker")));
    2307             : 
    2308    19657896 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2309    19657896 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2310    19657896 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2311    19657896 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2312    19657896 :     if (options & HEAP_INSERT_FROZEN)
    2313      204176 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2314             : 
    2315    19657896 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2316    19657896 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2317    19657896 :     tup->t_tableOid = RelationGetRelid(relation);
    2318             : 
    2319             :     /*
    2320             :      * If the new tuple is too big for storage or contains already toasted
    2321             :      * out-of-line attributes from some other relation, invoke the toaster.
    2322             :      */
    2323    19657896 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2324       62194 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2325             :     {
    2326             :         /* toast table entries should never be recursively toasted */
    2327             :         Assert(!HeapTupleHasExternal(tup));
    2328       62098 :         return tup;
    2329             :     }
    2330    19595798 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2331       36536 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2332             :     else
    2333    19559262 :         return tup;
    2334             : }
    2335             : 
    2336             : /*
    2337             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2338             :  * that inserting the remaining heaptuples requires. Used to determine how
    2339             :  * much the relation needs to be extended by.
    2340             :  */
    2341             : static int
    2342      733938 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2343             : {
    2344      733938 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2345      733938 :     int         npages = 1;
    2346             : 
    2347     4874590 :     for (int i = done; i < ntuples; i++)
    2348             :     {
    2349     4140652 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2350             : 
    2351     4140652 :         if (page_avail < tup_sz)
    2352             :         {
    2353       31092 :             npages++;
    2354       31092 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2355             :         }
    2356     4140652 :         page_avail -= tup_sz;
    2357             :     }
    2358             : 
    2359      733938 :     return npages;
    2360             : }
    2361             : 
    2362             : /*
    2363             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2364             :  *
    2365             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2366             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2367             :  * tuples can be inserted on a single page, we can write just a single WAL
    2368             :  * record covering all of them, and only need to lock/unlock the page once.
    2369             :  *
    2370             :  * Note: this leaks memory into the current memory context. You can create a
    2371             :  * temporary context before calling this, if that's a problem.
    2372             :  */
    2373             : void
    2374      721108 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2375             :                   CommandId cid, int options, BulkInsertState bistate)
    2376             : {
    2377      721108 :     TransactionId xid = GetCurrentTransactionId();
    2378             :     HeapTuple  *heaptuples;
    2379             :     int         i;
    2380             :     int         ndone;
    2381             :     PGAlignedBlock scratch;
    2382             :     Page        page;
    2383      721108 :     Buffer      vmbuffer = InvalidBuffer;
    2384             :     bool        needwal;
    2385             :     Size        saveFreeSpace;
    2386      721108 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2387      721108 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2388      721108 :     bool        starting_with_empty_page = false;
    2389      721108 :     int         npages = 0;
    2390      721108 :     int         npages_used = 0;
    2391             : 
    2392             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2393             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2394             : 
    2395      721108 :     AssertHasSnapshotForToast(relation);
    2396             : 
    2397      721108 :     needwal = RelationNeedsWAL(relation);
    2398      721108 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2399             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2400             : 
    2401             :     /* Toast and set header data in all the slots */
    2402      721108 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2403     3677040 :     for (i = 0; i < ntuples; i++)
    2404             :     {
    2405             :         HeapTuple   tuple;
    2406             : 
    2407     2955932 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2408     2955932 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2409     2955932 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2410     2955932 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2411             :                                             options);
    2412             :     }
    2413             : 
    2414             :     /*
    2415             :      * We're about to do the actual inserts -- but check for conflict first,
    2416             :      * to minimize the possibility of having to roll back work we've just
    2417             :      * done.
    2418             :      *
    2419             :      * A check here does not definitively prevent a serialization anomaly;
    2420             :      * that check MUST be done at least past the point of acquiring an
    2421             :      * exclusive buffer content lock on every buffer that will be affected,
    2422             :      * and MAY be done after all inserts are reflected in the buffers and
    2423             :      * those locks are released; otherwise there is a race condition.  Since
    2424             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2425             :      * would not be feasible to identify and lock all of those buffers before
    2426             :      * the loop, we must do a final check at the end.
    2427             :      *
    2428             :      * The check here could be omitted with no loss of correctness; it is
    2429             :      * present strictly as an optimization.
    2430             :      *
    2431             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2432             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2433             :      * page locks are only consolidated versions of tuple locks; they do not
    2434             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2435             :      * buffer when making the call, which makes for a faster check.
    2436             :      */
    2437      721108 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2438             : 
    2439      721108 :     ndone = 0;
    2440     1471348 :     while (ndone < ntuples)
    2441             :     {
    2442             :         Buffer      buffer;
    2443      750240 :         bool        all_visible_cleared = false;
    2444      750240 :         bool        all_frozen_set = false;
    2445             :         int         nthispage;
    2446             : 
    2447      750240 :         CHECK_FOR_INTERRUPTS();
    2448             : 
    2449             :         /*
    2450             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2451             :          * the worst case.  This will be used to determine how much to extend
    2452             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2453             :          * filled a prior page from scratch, we can just update our last
    2454             :          * computation, but if we started with a partially filled page,
    2455             :          * recompute from scratch, the number of potentially required pages
    2456             :          * can vary due to tuples needing to fit onto the page, page headers
    2457             :          * etc.
    2458             :          */
    2459      750240 :         if (ndone == 0 || !starting_with_empty_page)
    2460             :         {
    2461      733938 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2462             :                                              saveFreeSpace);
    2463      733938 :             npages_used = 0;
    2464             :         }
    2465             :         else
    2466       16302 :             npages_used++;
    2467             : 
    2468             :         /*
    2469             :          * Find buffer where at least the next tuple will fit.  If the page is
    2470             :          * all-visible, this will also pin the requisite visibility map page.
    2471             :          *
    2472             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2473             :          * empty page. See all_frozen_set below.
    2474             :          */
    2475      750240 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2476             :                                            InvalidBuffer, options, bistate,
    2477             :                                            &vmbuffer, NULL,
    2478             :                                            npages - npages_used);
    2479      750240 :         page = BufferGetPage(buffer);
    2480             : 
    2481      750240 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2482             : 
    2483      750240 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2484             :         {
    2485        3322 :             all_frozen_set = true;
    2486             :             /* Lock the vmbuffer before entering the critical section */
    2487        3322 :             LockBuffer(vmbuffer, BUFFER_LOCK_EXCLUSIVE);
    2488             :         }
    2489             : 
    2490             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2491      750240 :         START_CRIT_SECTION();
    2492             : 
    2493             :         /*
    2494             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2495             :          * Put that on the page, and then as many other tuples as fit.
    2496             :          */
    2497      750240 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2498             : 
    2499             :         /*
    2500             :          * For logical decoding we need combo CIDs to properly decode the
    2501             :          * catalog.
    2502             :          */
    2503      750240 :         if (needwal && need_cids)
    2504       10100 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2505             : 
    2506     2955932 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2507             :         {
    2508     2234824 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2509             : 
    2510     2234824 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2511       29132 :                 break;
    2512             : 
    2513     2205692 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2514             : 
    2515             :             /*
    2516             :              * For logical decoding we need combo CIDs to properly decode the
    2517             :              * catalog.
    2518             :              */
    2519     2205692 :             if (needwal && need_cids)
    2520        9454 :                 log_heap_new_cid(relation, heaptup);
    2521             :         }
    2522             : 
    2523             :         /*
    2524             :          * If the page is all visible, need to clear that, unless we're only
    2525             :          * going to add further frozen rows to it.
    2526             :          *
    2527             :          * If we're only adding already frozen rows to a previously empty
    2528             :          * page, mark it as all-frozen and update the visibility map. We're
    2529             :          * already holding a pin on the vmbuffer.
    2530             :          */
    2531      750240 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2532             :         {
    2533        5626 :             all_visible_cleared = true;
    2534        5626 :             PageClearAllVisible(page);
    2535        5626 :             visibilitymap_clear(relation,
    2536             :                                 BufferGetBlockNumber(buffer),
    2537             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2538             :         }
    2539      744614 :         else if (all_frozen_set)
    2540             :         {
    2541        3322 :             PageSetAllVisible(page);
    2542        3322 :             visibilitymap_set_vmbits(BufferGetBlockNumber(buffer),
    2543             :                                      vmbuffer,
    2544             :                                      VISIBILITYMAP_ALL_VISIBLE |
    2545             :                                      VISIBILITYMAP_ALL_FROZEN,
    2546             :                                      relation->rd_locator);
    2547             :         }
    2548             : 
    2549             :         /*
    2550             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2551             :          */
    2552             : 
    2553      750240 :         MarkBufferDirty(buffer);
    2554             : 
    2555             :         /* XLOG stuff */
    2556      750240 :         if (needwal)
    2557             :         {
    2558             :             XLogRecPtr  recptr;
    2559             :             xl_heap_multi_insert *xlrec;
    2560      742584 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2561             :             char       *tupledata;
    2562             :             int         totaldatalen;
    2563      742584 :             char       *scratchptr = scratch.data;
    2564             :             bool        init;
    2565      742584 :             int         bufflags = 0;
    2566             : 
    2567             :             /*
    2568             :              * If the page was previously empty, we can reinit the page
    2569             :              * instead of restoring the whole thing.
    2570             :              */
    2571      742584 :             init = starting_with_empty_page;
    2572             : 
    2573             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2574      742584 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2575      742584 :             scratchptr += SizeOfHeapMultiInsert;
    2576             : 
    2577             :             /*
    2578             :              * Allocate offsets array. Unless we're reinitializing the page,
    2579             :              * in that case the tuples are stored in order starting at
    2580             :              * FirstOffsetNumber and we don't need to store the offsets
    2581             :              * explicitly.
    2582             :              */
    2583      742584 :             if (!init)
    2584      716164 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2585             : 
    2586             :             /* the rest of the scratch space is used for tuple data */
    2587      742584 :             tupledata = scratchptr;
    2588             : 
    2589             :             /* check that the mutually exclusive flags are not both set */
    2590             :             Assert(!(all_visible_cleared && all_frozen_set));
    2591             : 
    2592      742584 :             xlrec->flags = 0;
    2593      742584 :             if (all_visible_cleared)
    2594        5626 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2595             : 
    2596             :             /*
    2597             :              * We don't have to worry about including a conflict xid in the
    2598             :              * WAL record, as HEAP_INSERT_FROZEN intentionally violates
    2599             :              * visibility rules.
    2600             :              */
    2601      742584 :             if (all_frozen_set)
    2602          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2603             : 
    2604      742584 :             xlrec->ntuples = nthispage;
    2605             : 
    2606             :             /*
    2607             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2608             :              * for each tuple.
    2609             :              */
    2610     3287686 :             for (i = 0; i < nthispage; i++)
    2611             :             {
    2612     2545102 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2613             :                 xl_multi_insert_tuple *tuphdr;
    2614             :                 int         datalen;
    2615             : 
    2616     2545102 :                 if (!init)
    2617     1496636 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2618             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2619     2545102 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2620     2545102 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2621             : 
    2622     2545102 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2623     2545102 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2624     2545102 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2625             : 
    2626             :                 /* write bitmap [+ padding] [+ oid] + data */
    2627     2545102 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2628     2545102 :                 memcpy(scratchptr,
    2629     2545102 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2630             :                        datalen);
    2631     2545102 :                 tuphdr->datalen = datalen;
    2632     2545102 :                 scratchptr += datalen;
    2633             :             }
    2634      742584 :             totaldatalen = scratchptr - tupledata;
    2635             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2636             : 
    2637      742584 :             if (need_tuple_data)
    2638         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2639             : 
    2640             :             /*
    2641             :              * Signal that this is the last xl_heap_multi_insert record
    2642             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2643             :              * decoding so it knows when to cleanup temporary data.
    2644             :              */
    2645      742584 :             if (ndone + nthispage == ntuples)
    2646      720270 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2647             : 
    2648      742584 :             if (init)
    2649             :             {
    2650       26420 :                 info |= XLOG_HEAP_INIT_PAGE;
    2651       26420 :                 bufflags |= REGBUF_WILL_INIT;
    2652             :             }
    2653             : 
    2654             :             /*
    2655             :              * If we're doing logical decoding, include the new tuple data
    2656             :              * even if we take a full-page image of the page.
    2657             :              */
    2658      742584 :             if (need_tuple_data)
    2659         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2660             : 
    2661      742584 :             XLogBeginInsert();
    2662      742584 :             XLogRegisterData(xlrec, tupledata - scratch.data);
    2663      742584 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2664      742584 :             if (all_frozen_set)
    2665          26 :                 XLogRegisterBuffer(1, vmbuffer, 0);
    2666             : 
    2667      742584 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2668             : 
    2669             :             /* filtering by origin on a row level is much more efficient */
    2670      742584 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2671             : 
    2672      742584 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2673             : 
    2674      742584 :             PageSetLSN(page, recptr);
    2675      742584 :             if (all_frozen_set)
    2676             :             {
    2677             :                 Assert(BufferIsDirty(vmbuffer));
    2678          26 :                 PageSetLSN(BufferGetPage(vmbuffer), recptr);
    2679             :             }
    2680             :         }
    2681             : 
    2682      750240 :         END_CRIT_SECTION();
    2683             : 
    2684      750240 :         if (all_frozen_set)
    2685        3322 :             LockBuffer(vmbuffer, BUFFER_LOCK_UNLOCK);
    2686             : 
    2687      750240 :         UnlockReleaseBuffer(buffer);
    2688      750240 :         ndone += nthispage;
    2689             : 
    2690             :         /*
    2691             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2692             :          * likely that we'll insert into subsequent heap pages that are likely
    2693             :          * to use the same vm page.
    2694             :          */
    2695             :     }
    2696             : 
    2697             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2698      721108 :     if (vmbuffer != InvalidBuffer)
    2699        5812 :         ReleaseBuffer(vmbuffer);
    2700             : 
    2701             :     /*
    2702             :      * We're done with the actual inserts.  Check for conflicts again, to
    2703             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2704             :      * this final check, a sequential scan of the heap may have locked the
    2705             :      * table after the "before" check, missing one opportunity to detect the
    2706             :      * conflict, and then scanned the table before the new tuples were there,
    2707             :      * missing the other chance to detect the conflict.
    2708             :      *
    2709             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2710             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2711             :      * page locks are only consolidated versions of tuple locks; they do not
    2712             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2713             :      * buffer when making the call.
    2714             :      */
    2715      721108 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2716             : 
    2717             :     /*
    2718             :      * If tuples are cacheable, mark them for invalidation from the caches in
    2719             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2720             :      * because the heaptuples data structure is all in local memory, not in
    2721             :      * the shared buffer.
    2722             :      */
    2723      721108 :     if (IsCatalogRelation(relation))
    2724             :     {
    2725     2471490 :         for (i = 0; i < ntuples; i++)
    2726     1752812 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2727             :     }
    2728             : 
    2729             :     /* copy t_self fields back to the caller's slots */
    2730     3677040 :     for (i = 0; i < ntuples; i++)
    2731     2955932 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2732             : 
    2733      721108 :     pgstat_count_heap_insert(relation, ntuples);
    2734      721108 : }
    2735             : 
    2736             : /*
    2737             :  *  simple_heap_insert - insert a tuple
    2738             :  *
    2739             :  * Currently, this routine differs from heap_insert only in supplying
    2740             :  * a default command ID and not allowing access to the speedup options.
    2741             :  *
    2742             :  * This should be used rather than using heap_insert directly in most places
    2743             :  * where we are modifying system catalogs.
    2744             :  */
    2745             : void
    2746     1803290 : simple_heap_insert(Relation relation, HeapTuple tup)
    2747             : {
    2748     1803290 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2749     1803290 : }
    2750             : 
    2751             : /*
    2752             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2753             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2754             :  * xl_heap_lock_updated WAL records.
    2755             :  *
    2756             :  * See fix_infomask_from_infobits.
    2757             :  */
    2758             : static uint8
    2759     3903834 : compute_infobits(uint16 infomask, uint16 infomask2)
    2760             : {
    2761             :     return
    2762     3903834 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2763     3903834 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2764     3903834 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2765             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2766     7807668 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2767             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2768     3903834 :          XLHL_KEYS_UPDATED : 0);
    2769             : }
    2770             : 
    2771             : /*
    2772             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2773             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2774             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2775             :  * that the tuple state continues to be the same it was when we previously
    2776             :  * examined it.
    2777             :  *
    2778             :  * Note the Xmax field itself must be compared separately.
    2779             :  */
    2780             : static inline bool
    2781       10748 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2782             : {
    2783       10748 :     const uint16 interesting =
    2784             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2785             : 
    2786       10748 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2787          28 :         return true;
    2788             : 
    2789       10720 :     return false;
    2790             : }
    2791             : 
    2792             : /*
    2793             :  *  heap_delete - delete a tuple
    2794             :  *
    2795             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2796             :  * this routine directly takes a tuple rather than a slot.
    2797             :  *
    2798             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2799             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2800             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2801             :  * generated by another transaction).
    2802             :  */
    2803             : TM_Result
    2804     3000022 : heap_delete(Relation relation, const ItemPointerData *tid,
    2805             :             CommandId cid, Snapshot crosscheck, bool wait,
    2806             :             TM_FailureData *tmfd, bool changingPart)
    2807             : {
    2808             :     TM_Result   result;
    2809     3000022 :     TransactionId xid = GetCurrentTransactionId();
    2810             :     ItemId      lp;
    2811             :     HeapTupleData tp;
    2812             :     Page        page;
    2813             :     BlockNumber block;
    2814             :     Buffer      buffer;
    2815     3000022 :     Buffer      vmbuffer = InvalidBuffer;
    2816             :     TransactionId new_xmax;
    2817             :     uint16      new_infomask,
    2818             :                 new_infomask2;
    2819     3000022 :     bool        have_tuple_lock = false;
    2820             :     bool        iscombo;
    2821     3000022 :     bool        all_visible_cleared = false;
    2822     3000022 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2823     3000022 :     bool        old_key_copied = false;
    2824             : 
    2825             :     Assert(ItemPointerIsValid(tid));
    2826             : 
    2827     3000022 :     AssertHasSnapshotForToast(relation);
    2828             : 
    2829             :     /*
    2830             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2831             :      * Other workers might need that combo CID for visibility checks, and we
    2832             :      * have no provision for broadcasting it to them.
    2833             :      */
    2834     3000022 :     if (IsInParallelMode())
    2835           0 :         ereport(ERROR,
    2836             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2837             :                  errmsg("cannot delete tuples during a parallel operation")));
    2838             : 
    2839     3000022 :     block = ItemPointerGetBlockNumber(tid);
    2840     3000022 :     buffer = ReadBuffer(relation, block);
    2841     3000022 :     page = BufferGetPage(buffer);
    2842             : 
    2843             :     /*
    2844             :      * Before locking the buffer, pin the visibility map page if it appears to
    2845             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2846             :      * in the middle of changing this, so we'll need to recheck after we have
    2847             :      * the lock.
    2848             :      */
    2849     3000022 :     if (PageIsAllVisible(page))
    2850         374 :         visibilitymap_pin(relation, block, &vmbuffer);
    2851             : 
    2852     3000022 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2853             : 
    2854     3000022 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2855             :     Assert(ItemIdIsNormal(lp));
    2856             : 
    2857     3000022 :     tp.t_tableOid = RelationGetRelid(relation);
    2858     3000022 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2859     3000022 :     tp.t_len = ItemIdGetLength(lp);
    2860     3000022 :     tp.t_self = *tid;
    2861             : 
    2862           2 : l1:
    2863             : 
    2864             :     /*
    2865             :      * If we didn't pin the visibility map page and the page has become all
    2866             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2867             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2868             :      * unfortunate, but hopefully shouldn't happen often.
    2869             :      */
    2870     3000024 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2871             :     {
    2872           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2873           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2874           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2875             :     }
    2876             : 
    2877     3000024 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2878             : 
    2879     3000024 :     if (result == TM_Invisible)
    2880             :     {
    2881           0 :         UnlockReleaseBuffer(buffer);
    2882           0 :         ereport(ERROR,
    2883             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2884             :                  errmsg("attempted to delete invisible tuple")));
    2885             :     }
    2886     3000024 :     else if (result == TM_BeingModified && wait)
    2887             :     {
    2888             :         TransactionId xwait;
    2889             :         uint16      infomask;
    2890             : 
    2891             :         /* must copy state data before unlocking buffer */
    2892       81120 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2893       81120 :         infomask = tp.t_data->t_infomask;
    2894             : 
    2895             :         /*
    2896             :          * Sleep until concurrent transaction ends -- except when there's a
    2897             :          * single locker and it's our own transaction.  Note we don't care
    2898             :          * which lock mode the locker has, because we need the strongest one.
    2899             :          *
    2900             :          * Before sleeping, we need to acquire tuple lock to establish our
    2901             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2902             :          * release us when we are next-in-line for the tuple.
    2903             :          *
    2904             :          * If we are forced to "start over" below, we keep the tuple lock;
    2905             :          * this arranges that we stay at the head of the line while rechecking
    2906             :          * tuple state.
    2907             :          */
    2908       81120 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2909             :         {
    2910          16 :             bool        current_is_member = false;
    2911             : 
    2912          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2913             :                                         LockTupleExclusive, &current_is_member))
    2914             :             {
    2915          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2916             : 
    2917             :                 /*
    2918             :                  * Acquire the lock, if necessary (but skip it when we're
    2919             :                  * requesting a lock and already have one; avoids deadlock).
    2920             :                  */
    2921          16 :                 if (!current_is_member)
    2922          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2923             :                                          LockWaitBlock, &have_tuple_lock);
    2924             : 
    2925             :                 /* wait for multixact */
    2926          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2927             :                                 relation, &(tp.t_self), XLTW_Delete,
    2928             :                                 NULL);
    2929          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2930             : 
    2931             :                 /*
    2932             :                  * If xwait had just locked the tuple then some other xact
    2933             :                  * could update this tuple before we get to this point.  Check
    2934             :                  * for xmax change, and start over if so.
    2935             :                  *
    2936             :                  * We also must start over if we didn't pin the VM page, and
    2937             :                  * the page has become all visible.
    2938             :                  */
    2939          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2940          32 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2941          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2942             :                                          xwait))
    2943           0 :                     goto l1;
    2944             :             }
    2945             : 
    2946             :             /*
    2947             :              * You might think the multixact is necessarily done here, but not
    2948             :              * so: it could have surviving members, namely our own xact or
    2949             :              * other subxacts of this backend.  It is legal for us to delete
    2950             :              * the tuple in either case, however (the latter case is
    2951             :              * essentially a situation of upgrading our former shared lock to
    2952             :              * exclusive).  We don't bother changing the on-disk hint bits
    2953             :              * since we are about to overwrite the xmax altogether.
    2954             :              */
    2955             :         }
    2956       81104 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2957             :         {
    2958             :             /*
    2959             :              * Wait for regular transaction to end; but first, acquire tuple
    2960             :              * lock.
    2961             :              */
    2962         104 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2963         104 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2964             :                                  LockWaitBlock, &have_tuple_lock);
    2965         104 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2966          96 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2967             : 
    2968             :             /*
    2969             :              * xwait is done, but if xwait had just locked the tuple then some
    2970             :              * other xact could update this tuple before we get to this point.
    2971             :              * Check for xmax change, and start over if so.
    2972             :              *
    2973             :              * We also must start over if we didn't pin the VM page, and the
    2974             :              * page has become all visible.
    2975             :              */
    2976         192 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2977         190 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2978          94 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2979             :                                      xwait))
    2980           2 :                 goto l1;
    2981             : 
    2982             :             /* Otherwise check if it committed or aborted */
    2983          94 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2984             :         }
    2985             : 
    2986             :         /*
    2987             :          * We may overwrite if previous xmax aborted, or if it committed but
    2988             :          * only locked the tuple without updating it.
    2989             :          */
    2990      162180 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2991       81132 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2992          62 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2993       81056 :             result = TM_Ok;
    2994          54 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2995          46 :             result = TM_Updated;
    2996             :         else
    2997           8 :             result = TM_Deleted;
    2998             :     }
    2999             : 
    3000             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3001             :     if (result != TM_Ok)
    3002             :     {
    3003             :         Assert(result == TM_SelfModified ||
    3004             :                result == TM_Updated ||
    3005             :                result == TM_Deleted ||
    3006             :                result == TM_BeingModified);
    3007             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    3008             :         Assert(result != TM_Updated ||
    3009             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    3010             :     }
    3011             : 
    3012     3000014 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3013             :     {
    3014             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3015           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    3016           2 :             result = TM_Updated;
    3017             :     }
    3018             : 
    3019     3000014 :     if (result != TM_Ok)
    3020             :     {
    3021         124 :         tmfd->ctid = tp.t_data->t_ctid;
    3022         124 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    3023         124 :         if (result == TM_SelfModified)
    3024          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    3025             :         else
    3026          82 :             tmfd->cmax = InvalidCommandId;
    3027         124 :         UnlockReleaseBuffer(buffer);
    3028         124 :         if (have_tuple_lock)
    3029          54 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3030         124 :         if (vmbuffer != InvalidBuffer)
    3031           0 :             ReleaseBuffer(vmbuffer);
    3032         124 :         return result;
    3033             :     }
    3034             : 
    3035             :     /*
    3036             :      * We're about to do the actual delete -- check for conflict first, to
    3037             :      * avoid possibly having to roll back work we've just done.
    3038             :      *
    3039             :      * This is safe without a recheck as long as there is no possibility of
    3040             :      * another process scanning the page between this check and the delete
    3041             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    3042             :      * continuously held from this point until the tuple delete is visible).
    3043             :      */
    3044     2999890 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    3045             : 
    3046             :     /* replace cid with a combo CID if necessary */
    3047     2999862 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    3048             : 
    3049             :     /*
    3050             :      * Compute replica identity tuple before entering the critical section so
    3051             :      * we don't PANIC upon a memory allocation failure.
    3052             :      */
    3053     2999862 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    3054             : 
    3055             :     /*
    3056             :      * If this is the first possibly-multixact-able operation in the current
    3057             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    3058             :      * certain that the transaction will never become a member of any older
    3059             :      * MultiXactIds than that.  (We have to do this even if we end up just
    3060             :      * using our own TransactionId below, since some other backend could
    3061             :      * incorporate our XID into a MultiXact immediately afterwards.)
    3062             :      */
    3063     2999862 :     MultiXactIdSetOldestMember();
    3064             : 
    3065     2999862 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    3066     2999862 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    3067             :                               xid, LockTupleExclusive, true,
    3068             :                               &new_xmax, &new_infomask, &new_infomask2);
    3069             : 
    3070     2999862 :     START_CRIT_SECTION();
    3071             : 
    3072             :     /*
    3073             :      * If this transaction commits, the tuple will become DEAD sooner or
    3074             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3075             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3076             :      * the subsequent page pruning will be a no-op and the hint will be
    3077             :      * cleared.
    3078             :      */
    3079     2999862 :     PageSetPrunable(page, xid);
    3080             : 
    3081     2999862 :     if (PageIsAllVisible(page))
    3082             :     {
    3083         374 :         all_visible_cleared = true;
    3084         374 :         PageClearAllVisible(page);
    3085         374 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3086             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3087             :     }
    3088             : 
    3089             :     /* store transaction information of xact deleting the tuple */
    3090     2999862 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3091     2999862 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3092     2999862 :     tp.t_data->t_infomask |= new_infomask;
    3093     2999862 :     tp.t_data->t_infomask2 |= new_infomask2;
    3094     2999862 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    3095     2999862 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    3096     2999862 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    3097             :     /* Make sure there is no forward chain link in t_ctid */
    3098     2999862 :     tp.t_data->t_ctid = tp.t_self;
    3099             : 
    3100             :     /* Signal that this is actually a move into another partition */
    3101     2999862 :     if (changingPart)
    3102         978 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    3103             : 
    3104     2999862 :     MarkBufferDirty(buffer);
    3105             : 
    3106             :     /*
    3107             :      * XLOG stuff
    3108             :      *
    3109             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    3110             :      * routines.
    3111             :      */
    3112     2999862 :     if (RelationNeedsWAL(relation))
    3113             :     {
    3114             :         xl_heap_delete xlrec;
    3115             :         xl_heap_header xlhdr;
    3116             :         XLogRecPtr  recptr;
    3117             : 
    3118             :         /*
    3119             :          * For logical decode we need combo CIDs to properly decode the
    3120             :          * catalog
    3121             :          */
    3122     2874624 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3123       12544 :             log_heap_new_cid(relation, &tp);
    3124             : 
    3125     2874624 :         xlrec.flags = 0;
    3126     2874624 :         if (all_visible_cleared)
    3127         374 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3128     2874624 :         if (changingPart)
    3129         978 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3130     5749248 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3131     2874624 :                                               tp.t_data->t_infomask2);
    3132     2874624 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3133     2874624 :         xlrec.xmax = new_xmax;
    3134             : 
    3135     2874624 :         if (old_key_tuple != NULL)
    3136             :         {
    3137       94040 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3138         264 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3139             :             else
    3140       93776 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3141             :         }
    3142             : 
    3143     2874624 :         XLogBeginInsert();
    3144     2874624 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    3145             : 
    3146     2874624 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3147             : 
    3148             :         /*
    3149             :          * Log replica identity of the deleted tuple if there is one
    3150             :          */
    3151     2874624 :         if (old_key_tuple != NULL)
    3152             :         {
    3153       94040 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3154       94040 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3155       94040 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3156             : 
    3157       94040 :             XLogRegisterData(&xlhdr, SizeOfHeapHeader);
    3158       94040 :             XLogRegisterData((char *) old_key_tuple->t_data
    3159             :                              + SizeofHeapTupleHeader,
    3160       94040 :                              old_key_tuple->t_len
    3161             :                              - SizeofHeapTupleHeader);
    3162             :         }
    3163             : 
    3164             :         /* filtering by origin on a row level is much more efficient */
    3165     2874624 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3166             : 
    3167     2874624 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3168             : 
    3169     2874624 :         PageSetLSN(page, recptr);
    3170             :     }
    3171             : 
    3172     2999862 :     END_CRIT_SECTION();
    3173             : 
    3174     2999862 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3175             : 
    3176     2999862 :     if (vmbuffer != InvalidBuffer)
    3177         374 :         ReleaseBuffer(vmbuffer);
    3178             : 
    3179             :     /*
    3180             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3181             :      * those items too.  We have to do this before releasing the buffer
    3182             :      * because we need to look at the contents of the tuple, but it's OK to
    3183             :      * release the content lock on the buffer first.
    3184             :      */
    3185     2999862 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3186        5114 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3187             :     {
    3188             :         /* toast table entries should never be recursively toasted */
    3189             :         Assert(!HeapTupleHasExternal(&tp));
    3190             :     }
    3191     2994768 :     else if (HeapTupleHasExternal(&tp))
    3192         598 :         heap_toast_delete(relation, &tp, false);
    3193             : 
    3194             :     /*
    3195             :      * Mark tuple for invalidation from system caches at next command
    3196             :      * boundary. We have to do this before releasing the buffer because we
    3197             :      * need to look at the contents of the tuple.
    3198             :      */
    3199     2999862 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3200             : 
    3201             :     /* Now we can release the buffer */
    3202     2999862 :     ReleaseBuffer(buffer);
    3203             : 
    3204             :     /*
    3205             :      * Release the lmgr tuple lock, if we had it.
    3206             :      */
    3207     2999862 :     if (have_tuple_lock)
    3208          52 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3209             : 
    3210     2999862 :     pgstat_count_heap_delete(relation);
    3211             : 
    3212     2999862 :     if (old_key_tuple != NULL && old_key_copied)
    3213       93778 :         heap_freetuple(old_key_tuple);
    3214             : 
    3215     2999862 :     return TM_Ok;
    3216             : }
    3217             : 
    3218             : /*
    3219             :  *  simple_heap_delete - delete a tuple
    3220             :  *
    3221             :  * This routine may be used to delete a tuple when concurrent updates of
    3222             :  * the target tuple are not expected (for example, because we have a lock
    3223             :  * on the relation associated with the tuple).  Any failure is reported
    3224             :  * via ereport().
    3225             :  */
    3226             : void
    3227     1268078 : simple_heap_delete(Relation relation, const ItemPointerData *tid)
    3228             : {
    3229             :     TM_Result   result;
    3230             :     TM_FailureData tmfd;
    3231             : 
    3232     1268078 :     result = heap_delete(relation, tid,
    3233             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3234             :                          true /* wait for commit */ ,
    3235             :                          &tmfd, false /* changingPart */ );
    3236     1268078 :     switch (result)
    3237             :     {
    3238           0 :         case TM_SelfModified:
    3239             :             /* Tuple was already updated in current command? */
    3240           0 :             elog(ERROR, "tuple already updated by self");
    3241             :             break;
    3242             : 
    3243     1268078 :         case TM_Ok:
    3244             :             /* done successfully */
    3245     1268078 :             break;
    3246             : 
    3247           0 :         case TM_Updated:
    3248           0 :             elog(ERROR, "tuple concurrently updated");
    3249             :             break;
    3250             : 
    3251           0 :         case TM_Deleted:
    3252           0 :             elog(ERROR, "tuple concurrently deleted");
    3253             :             break;
    3254             : 
    3255           0 :         default:
    3256           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3257             :             break;
    3258             :     }
    3259     1268078 : }
    3260             : 
    3261             : /*
    3262             :  *  heap_update - replace a tuple
    3263             :  *
    3264             :  * See table_tuple_update() for an explanation of the parameters, except that
    3265             :  * this routine directly takes a tuple rather than a slot.
    3266             :  *
    3267             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3268             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3269             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3270             :  * generated by another transaction).
    3271             :  */
    3272             : TM_Result
    3273      607676 : heap_update(Relation relation, const ItemPointerData *otid, HeapTuple newtup,
    3274             :             CommandId cid, Snapshot crosscheck, bool wait,
    3275             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3276             :             TU_UpdateIndexes *update_indexes)
    3277             : {
    3278             :     TM_Result   result;
    3279      607676 :     TransactionId xid = GetCurrentTransactionId();
    3280             :     Bitmapset  *hot_attrs;
    3281             :     Bitmapset  *sum_attrs;
    3282             :     Bitmapset  *key_attrs;
    3283             :     Bitmapset  *id_attrs;
    3284             :     Bitmapset  *interesting_attrs;
    3285             :     Bitmapset  *modified_attrs;
    3286             :     ItemId      lp;
    3287             :     HeapTupleData oldtup;
    3288             :     HeapTuple   heaptup;
    3289      607676 :     HeapTuple   old_key_tuple = NULL;
    3290      607676 :     bool        old_key_copied = false;
    3291             :     Page        page;
    3292             :     BlockNumber block;
    3293             :     MultiXactStatus mxact_status;
    3294             :     Buffer      buffer,
    3295             :                 newbuf,
    3296      607676 :                 vmbuffer = InvalidBuffer,
    3297      607676 :                 vmbuffer_new = InvalidBuffer;
    3298             :     bool        need_toast;
    3299             :     Size        newtupsize,
    3300             :                 pagefree;
    3301      607676 :     bool        have_tuple_lock = false;
    3302             :     bool        iscombo;
    3303      607676 :     bool        use_hot_update = false;
    3304      607676 :     bool        summarized_update = false;
    3305             :     bool        key_intact;
    3306      607676 :     bool        all_visible_cleared = false;
    3307      607676 :     bool        all_visible_cleared_new = false;
    3308             :     bool        checked_lockers;
    3309             :     bool        locker_remains;
    3310      607676 :     bool        id_has_external = false;
    3311             :     TransactionId xmax_new_tuple,
    3312             :                 xmax_old_tuple;
    3313             :     uint16      infomask_old_tuple,
    3314             :                 infomask2_old_tuple,
    3315             :                 infomask_new_tuple,
    3316             :                 infomask2_new_tuple;
    3317             : 
    3318             :     Assert(ItemPointerIsValid(otid));
    3319             : 
    3320             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3321             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3322             :            RelationGetNumberOfAttributes(relation));
    3323             : 
    3324      607676 :     AssertHasSnapshotForToast(relation);
    3325             : 
    3326             :     /*
    3327             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3328             :      * Other workers might need that combo CID for visibility checks, and we
    3329             :      * have no provision for broadcasting it to them.
    3330             :      */
    3331      607676 :     if (IsInParallelMode())
    3332           0 :         ereport(ERROR,
    3333             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3334             :                  errmsg("cannot update tuples during a parallel operation")));
    3335             : 
    3336             : #ifdef USE_ASSERT_CHECKING
    3337             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3338             : #endif
    3339             : 
    3340             :     /*
    3341             :      * Fetch the list of attributes to be checked for various operations.
    3342             :      *
    3343             :      * For HOT considerations, this is wasted effort if we fail to update or
    3344             :      * have to put the new tuple on a different page.  But we must compute the
    3345             :      * list before obtaining buffer lock --- in the worst case, if we are
    3346             :      * doing an update on one of the relevant system catalogs, we could
    3347             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3348             :      * caches the data so this is usually pretty cheap.
    3349             :      *
    3350             :      * We also need columns used by the replica identity and columns that are
    3351             :      * considered the "key" of rows in the table.
    3352             :      *
    3353             :      * Note that we get copies of each bitmap, so we need not worry about
    3354             :      * relcache flush happening midway through.
    3355             :      */
    3356      607676 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3357             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3358      607676 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3359             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3360      607676 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3361      607676 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3362             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3363      607676 :     interesting_attrs = NULL;
    3364      607676 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3365      607676 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3366      607676 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3367      607676 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3368             : 
    3369      607676 :     block = ItemPointerGetBlockNumber(otid);
    3370      607676 :     INJECTION_POINT("heap_update-before-pin", NULL);
    3371      607676 :     buffer = ReadBuffer(relation, block);
    3372      607676 :     page = BufferGetPage(buffer);
    3373             : 
    3374             :     /*
    3375             :      * Before locking the buffer, pin the visibility map page if it appears to
    3376             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3377             :      * in the middle of changing this, so we'll need to recheck after we have
    3378             :      * the lock.
    3379             :      */
    3380      607676 :     if (PageIsAllVisible(page))
    3381        2844 :         visibilitymap_pin(relation, block, &vmbuffer);
    3382             : 
    3383      607676 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3384             : 
    3385      607676 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3386             : 
    3387             :     /*
    3388             :      * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
    3389             :      * we see LP_NORMAL here.  When the otid origin is a syscache, we may have
    3390             :      * neither a pin nor a snapshot.  Hence, we may see other LP_ states, each
    3391             :      * of which indicates concurrent pruning.
    3392             :      *
    3393             :      * Failing with TM_Updated would be most accurate.  However, unlike other
    3394             :      * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
    3395             :      * LP_DEAD cases.  While the distinction between TM_Updated and TM_Deleted
    3396             :      * does matter to SQL statements UPDATE and MERGE, those SQL statements
    3397             :      * hold a snapshot that ensures LP_NORMAL.  Hence, the choice between
    3398             :      * TM_Updated and TM_Deleted affects only the wording of error messages.
    3399             :      * Settle on TM_Deleted, for two reasons.  First, it avoids complicating
    3400             :      * the specification of when tmfd->ctid is valid.  Second, it creates
    3401             :      * error log evidence that we took this branch.
    3402             :      *
    3403             :      * Since it's possible to see LP_UNUSED at otid, it's also possible to see
    3404             :      * LP_NORMAL for a tuple that replaced LP_UNUSED.  If it's a tuple for an
    3405             :      * unrelated row, we'll fail with "duplicate key value violates unique".
    3406             :      * XXX if otid is the live, newer version of the newtup row, we'll discard
    3407             :      * changes originating in versions of this catalog row after the version
    3408             :      * the caller got from syscache.  See syscache-update-pruned.spec.
    3409             :      */
    3410      607676 :     if (!ItemIdIsNormal(lp))
    3411             :     {
    3412             :         Assert(RelationSupportsSysCache(RelationGetRelid(relation)));
    3413             : 
    3414           2 :         UnlockReleaseBuffer(buffer);
    3415             :         Assert(!have_tuple_lock);
    3416           2 :         if (vmbuffer != InvalidBuffer)
    3417           2 :             ReleaseBuffer(vmbuffer);
    3418           2 :         tmfd->ctid = *otid;
    3419           2 :         tmfd->xmax = InvalidTransactionId;
    3420           2 :         tmfd->cmax = InvalidCommandId;
    3421           2 :         *update_indexes = TU_None;
    3422             : 
    3423           2 :         bms_free(hot_attrs);
    3424           2 :         bms_free(sum_attrs);
    3425           2 :         bms_free(key_attrs);
    3426           2 :         bms_free(id_attrs);
    3427             :         /* modified_attrs not yet initialized */
    3428           2 :         bms_free(interesting_attrs);
    3429           2 :         return TM_Deleted;
    3430             :     }
    3431             : 
    3432             :     /*
    3433             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3434             :      * properly.
    3435             :      */
    3436      607674 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3437      607674 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3438      607674 :     oldtup.t_len = ItemIdGetLength(lp);
    3439      607674 :     oldtup.t_self = *otid;
    3440             : 
    3441             :     /* the new tuple is ready, except for this: */
    3442      607674 :     newtup->t_tableOid = RelationGetRelid(relation);
    3443             : 
    3444             :     /*
    3445             :      * Determine columns modified by the update.  Additionally, identify
    3446             :      * whether any of the unmodified replica identity key attributes in the
    3447             :      * old tuple is externally stored or not.  This is required because for
    3448             :      * such attributes the flattened value won't be WAL logged as part of the
    3449             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3450             :      * ExtractReplicaIdentity.
    3451             :      */
    3452      607674 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3453             :                                               id_attrs, &oldtup,
    3454             :                                               newtup, &id_has_external);
    3455             : 
    3456             :     /*
    3457             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3458             :      * This allows for more concurrency when we are running simultaneously
    3459             :      * with foreign key checks.
    3460             :      *
    3461             :      * Note that if a column gets detoasted while executing the update, but
    3462             :      * the value ends up being the same, this test will fail and we will use
    3463             :      * the stronger lock.  This is acceptable; the important case to optimize
    3464             :      * is updates that don't manipulate key columns, not those that
    3465             :      * serendipitously arrive at the same key values.
    3466             :      */
    3467      607674 :     if (!bms_overlap(modified_attrs, key_attrs))
    3468             :     {
    3469      599282 :         *lockmode = LockTupleNoKeyExclusive;
    3470      599282 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3471      599282 :         key_intact = true;
    3472             : 
    3473             :         /*
    3474             :          * If this is the first possibly-multixact-able operation in the
    3475             :          * current transaction, set my per-backend OldestMemberMXactId
    3476             :          * setting. We can be certain that the transaction will never become a
    3477             :          * member of any older MultiXactIds than that.  (We have to do this
    3478             :          * even if we end up just using our own TransactionId below, since
    3479             :          * some other backend could incorporate our XID into a MultiXact
    3480             :          * immediately afterwards.)
    3481             :          */
    3482      599282 :         MultiXactIdSetOldestMember();
    3483             :     }
    3484             :     else
    3485             :     {
    3486        8392 :         *lockmode = LockTupleExclusive;
    3487        8392 :         mxact_status = MultiXactStatusUpdate;
    3488        8392 :         key_intact = false;
    3489             :     }
    3490             : 
    3491             :     /*
    3492             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3493             :      * otid may very well point at newtup->t_self, which we will overwrite
    3494             :      * with the new tuple's location, so there's great risk of confusion if we
    3495             :      * use otid anymore.
    3496             :      */
    3497             : 
    3498      607674 : l2:
    3499      607676 :     checked_lockers = false;
    3500      607676 :     locker_remains = false;
    3501      607676 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3502             : 
    3503             :     /* see below about the "no wait" case */
    3504             :     Assert(result != TM_BeingModified || wait);
    3505             : 
    3506      607676 :     if (result == TM_Invisible)
    3507             :     {
    3508           0 :         UnlockReleaseBuffer(buffer);
    3509           0 :         ereport(ERROR,
    3510             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3511             :                  errmsg("attempted to update invisible tuple")));
    3512             :     }
    3513      607676 :     else if (result == TM_BeingModified && wait)
    3514             :     {
    3515             :         TransactionId xwait;
    3516             :         uint16      infomask;
    3517       71968 :         bool        can_continue = false;
    3518             : 
    3519             :         /*
    3520             :          * XXX note that we don't consider the "no wait" case here.  This
    3521             :          * isn't a problem currently because no caller uses that case, but it
    3522             :          * should be fixed if such a caller is introduced.  It wasn't a
    3523             :          * problem previously because this code would always wait, but now
    3524             :          * that some tuple locks do not conflict with one of the lock modes we
    3525             :          * use, it is possible that this case is interesting to handle
    3526             :          * specially.
    3527             :          *
    3528             :          * This may cause failures with third-party code that calls
    3529             :          * heap_update directly.
    3530             :          */
    3531             : 
    3532             :         /* must copy state data before unlocking buffer */
    3533       71968 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3534       71968 :         infomask = oldtup.t_data->t_infomask;
    3535             : 
    3536             :         /*
    3537             :          * Now we have to do something about the existing locker.  If it's a
    3538             :          * multi, sleep on it; we might be awakened before it is completely
    3539             :          * gone (or even not sleep at all in some cases); we need to preserve
    3540             :          * it as locker, unless it is gone completely.
    3541             :          *
    3542             :          * If it's not a multi, we need to check for sleeping conditions
    3543             :          * before actually going to sleep.  If the update doesn't conflict
    3544             :          * with the locks, we just continue without sleeping (but making sure
    3545             :          * it is preserved).
    3546             :          *
    3547             :          * Before sleeping, we need to acquire tuple lock to establish our
    3548             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3549             :          * release us when we are next-in-line for the tuple.  Note we must
    3550             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3551             :          * otherwise we're open for race conditions with other transactions
    3552             :          * holding the tuple lock which sleep on us.
    3553             :          *
    3554             :          * If we are forced to "start over" below, we keep the tuple lock;
    3555             :          * this arranges that we stay at the head of the line while rechecking
    3556             :          * tuple state.
    3557             :          */
    3558       71968 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3559             :         {
    3560             :             TransactionId update_xact;
    3561             :             int         remain;
    3562         120 :             bool        current_is_member = false;
    3563             : 
    3564         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3565             :                                         *lockmode, &current_is_member))
    3566             :             {
    3567          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3568             : 
    3569             :                 /*
    3570             :                  * Acquire the lock, if necessary (but skip it when we're
    3571             :                  * requesting a lock and already have one; avoids deadlock).
    3572             :                  */
    3573          16 :                 if (!current_is_member)
    3574           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3575             :                                          LockWaitBlock, &have_tuple_lock);
    3576             : 
    3577             :                 /* wait for multixact */
    3578          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3579             :                                 relation, &oldtup.t_self, XLTW_Update,
    3580             :                                 &remain);
    3581          16 :                 checked_lockers = true;
    3582          16 :                 locker_remains = remain != 0;
    3583          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3584             : 
    3585             :                 /*
    3586             :                  * If xwait had just locked the tuple then some other xact
    3587             :                  * could update this tuple before we get to this point.  Check
    3588             :                  * for xmax change, and start over if so.
    3589             :                  */
    3590          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3591          16 :                                           infomask) ||
    3592          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3593             :                                          xwait))
    3594           0 :                     goto l2;
    3595             :             }
    3596             : 
    3597             :             /*
    3598             :              * Note that the multixact may not be done by now.  It could have
    3599             :              * surviving members; our own xact or other subxacts of this
    3600             :              * backend, and also any other concurrent transaction that locked
    3601             :              * the tuple with LockTupleKeyShare if we only got
    3602             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3603             :              * careful to mark the updated tuple with the surviving members in
    3604             :              * Xmax.
    3605             :              *
    3606             :              * Note that there could have been another update in the
    3607             :              * MultiXact. In that case, we need to check whether it committed
    3608             :              * or aborted. If it aborted we are safe to update it again;
    3609             :              * otherwise there is an update conflict, and we have to return
    3610             :              * TableTuple{Deleted, Updated} below.
    3611             :              *
    3612             :              * In the LockTupleExclusive case, we still need to preserve the
    3613             :              * surviving members: those would include the tuple locks we had
    3614             :              * before this one, which are important to keep in case this
    3615             :              * subxact aborts.
    3616             :              */
    3617         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3618          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3619             :             else
    3620         104 :                 update_xact = InvalidTransactionId;
    3621             : 
    3622             :             /*
    3623             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3624             :              * TransactionIdIsInProgress() call needed here, since we called
    3625             :              * MultiXactIdWait() above.
    3626             :              */
    3627         136 :             if (!TransactionIdIsValid(update_xact) ||
    3628          16 :                 TransactionIdDidAbort(update_xact))
    3629         106 :                 can_continue = true;
    3630             :         }
    3631       71848 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3632             :         {
    3633             :             /*
    3634             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3635             :              * lock here, but must preserve our locking information.
    3636             :              */
    3637       71634 :             checked_lockers = true;
    3638       71634 :             locker_remains = true;
    3639       71634 :             can_continue = true;
    3640             :         }
    3641         214 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3642             :         {
    3643             :             /*
    3644             :              * If it's just a key-share locker, and we're not changing the key
    3645             :              * columns, we don't need to wait for it to end; but we need to
    3646             :              * preserve it as locker.
    3647             :              */
    3648          58 :             checked_lockers = true;
    3649          58 :             locker_remains = true;
    3650          58 :             can_continue = true;
    3651             :         }
    3652             :         else
    3653             :         {
    3654             :             /*
    3655             :              * Wait for regular transaction to end; but first, acquire tuple
    3656             :              * lock.
    3657             :              */
    3658         156 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3659         156 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3660             :                                  LockWaitBlock, &have_tuple_lock);
    3661         156 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3662             :                               XLTW_Update);
    3663         156 :             checked_lockers = true;
    3664         156 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3665             : 
    3666             :             /*
    3667             :              * xwait is done, but if xwait had just locked the tuple then some
    3668             :              * other xact could update this tuple before we get to this point.
    3669             :              * Check for xmax change, and start over if so.
    3670             :              */
    3671         310 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3672         154 :                 !TransactionIdEquals(xwait,
    3673             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3674           2 :                 goto l2;
    3675             : 
    3676             :             /* Otherwise check if it committed or aborted */
    3677         154 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3678         154 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3679          44 :                 can_continue = true;
    3680             :         }
    3681             : 
    3682       71966 :         if (can_continue)
    3683       71842 :             result = TM_Ok;
    3684         124 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3685         114 :             result = TM_Updated;
    3686             :         else
    3687          10 :             result = TM_Deleted;
    3688             :     }
    3689             : 
    3690             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3691             :     if (result != TM_Ok)
    3692             :     {
    3693             :         Assert(result == TM_SelfModified ||
    3694             :                result == TM_Updated ||
    3695             :                result == TM_Deleted ||
    3696             :                result == TM_BeingModified);
    3697             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3698             :         Assert(result != TM_Updated ||
    3699             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3700             :     }
    3701             : 
    3702      607674 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3703             :     {
    3704             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3705           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3706           2 :             result = TM_Updated;
    3707             :     }
    3708             : 
    3709      607674 :     if (result != TM_Ok)
    3710             :     {
    3711         320 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3712         320 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3713         320 :         if (result == TM_SelfModified)
    3714         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3715             :         else
    3716         216 :             tmfd->cmax = InvalidCommandId;
    3717         320 :         UnlockReleaseBuffer(buffer);
    3718         320 :         if (have_tuple_lock)
    3719         110 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3720         320 :         if (vmbuffer != InvalidBuffer)
    3721           0 :             ReleaseBuffer(vmbuffer);
    3722         320 :         *update_indexes = TU_None;
    3723             : 
    3724         320 :         bms_free(hot_attrs);
    3725         320 :         bms_free(sum_attrs);
    3726         320 :         bms_free(key_attrs);
    3727         320 :         bms_free(id_attrs);
    3728         320 :         bms_free(modified_attrs);
    3729         320 :         bms_free(interesting_attrs);
    3730         320 :         return result;
    3731             :     }
    3732             : 
    3733             :     /*
    3734             :      * If we didn't pin the visibility map page and the page has become all
    3735             :      * visible while we were busy locking the buffer, or during some
    3736             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3737             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3738             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3739             :      * tuple has been locked or updated under us, but hopefully it won't
    3740             :      * happen very often.
    3741             :      */
    3742      607354 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3743             :     {
    3744           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3745           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3746           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3747           0 :         goto l2;
    3748             :     }
    3749             : 
    3750             :     /* Fill in transaction status data */
    3751             : 
    3752             :     /*
    3753             :      * If the tuple we're updating is locked, we need to preserve the locking
    3754             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3755             :      */
    3756      607354 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3757      607354 :                               oldtup.t_data->t_infomask,
    3758      607354 :                               oldtup.t_data->t_infomask2,
    3759             :                               xid, *lockmode, true,
    3760             :                               &xmax_old_tuple, &infomask_old_tuple,
    3761             :                               &infomask2_old_tuple);
    3762             : 
    3763             :     /*
    3764             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3765             :      * was no xmax previously, or there was one but all lockers are now gone,
    3766             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3767             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3768             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3769             :      */
    3770      679152 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3771      143596 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3772       71694 :         (checked_lockers && !locker_remains))
    3773      535556 :         xmax_new_tuple = InvalidTransactionId;
    3774             :     else
    3775       71798 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3776             : 
    3777      607354 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3778             :     {
    3779      535556 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3780      535556 :         infomask2_new_tuple = 0;
    3781             :     }
    3782             :     else
    3783             :     {
    3784             :         /*
    3785             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3786             :          * to use on the new tuple depend on what was there on the old one.
    3787             :          * Note that since we're doing an update, the only possibility is that
    3788             :          * the lockers had FOR KEY SHARE lock.
    3789             :          */
    3790       71798 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3791             :         {
    3792         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3793             :                                    &infomask2_new_tuple);
    3794             :         }
    3795             :         else
    3796             :         {
    3797       71692 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3798       71692 :             infomask2_new_tuple = 0;
    3799             :         }
    3800             :     }
    3801             : 
    3802             :     /*
    3803             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3804             :      * Xmax, as well as initial infomask bits as computed above.
    3805             :      */
    3806      607354 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3807      607354 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3808      607354 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3809      607354 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3810      607354 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3811      607354 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3812      607354 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3813             : 
    3814             :     /*
    3815             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3816             :      * the plain cid into the new tuple.
    3817             :      */
    3818      607354 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3819             : 
    3820             :     /*
    3821             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3822             :      * on the same page as the old, then we need to release the content lock
    3823             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3824             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3825             :      * show that it's locked, else other processes may try to update it
    3826             :      * themselves.
    3827             :      *
    3828             :      * We need to invoke the toaster if there are already any out-of-line
    3829             :      * toasted values present, or if the new tuple is over-threshold.
    3830             :      */
    3831      607354 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3832           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3833             :     {
    3834             :         /* toast table entries should never be recursively toasted */
    3835             :         Assert(!HeapTupleHasExternal(&oldtup));
    3836             :         Assert(!HeapTupleHasExternal(newtup));
    3837           0 :         need_toast = false;
    3838             :     }
    3839             :     else
    3840     1821338 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3841     1213984 :                       HeapTupleHasExternal(newtup) ||
    3842      606582 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3843             : 
    3844      607354 :     pagefree = PageGetHeapFreeSpace(page);
    3845             : 
    3846      607354 :     newtupsize = MAXALIGN(newtup->t_len);
    3847             : 
    3848      607354 :     if (need_toast || newtupsize > pagefree)
    3849      298890 :     {
    3850             :         TransactionId xmax_lock_old_tuple;
    3851             :         uint16      infomask_lock_old_tuple,
    3852             :                     infomask2_lock_old_tuple;
    3853      298890 :         bool        cleared_all_frozen = false;
    3854             : 
    3855             :         /*
    3856             :          * To prevent concurrent sessions from updating the tuple, we have to
    3857             :          * temporarily mark it locked, while we release the page-level lock.
    3858             :          *
    3859             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3860             :          * written out to disk, we unfortunately have to WAL log this
    3861             :          * temporary modification.  We can reuse xl_heap_lock for this
    3862             :          * purpose.  If we crash/error before following through with the
    3863             :          * actual update, xmax will be of an aborted transaction, allowing
    3864             :          * other sessions to proceed.
    3865             :          */
    3866             : 
    3867             :         /*
    3868             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3869             :          * to be done separately from the combo that's going to be used for
    3870             :          * updating, because the potentially created multixact would otherwise
    3871             :          * be wrong.
    3872             :          */
    3873      298890 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3874      298890 :                                   oldtup.t_data->t_infomask,
    3875      298890 :                                   oldtup.t_data->t_infomask2,
    3876             :                                   xid, *lockmode, false,
    3877             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3878             :                                   &infomask2_lock_old_tuple);
    3879             : 
    3880             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3881             : 
    3882      298890 :         START_CRIT_SECTION();
    3883             : 
    3884             :         /* Clear obsolete visibility flags ... */
    3885      298890 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3886      298890 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3887      298890 :         HeapTupleClearHotUpdated(&oldtup);
    3888             :         /* ... and store info about transaction updating this tuple */
    3889             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3890      298890 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3891      298890 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3892      298890 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3893      298890 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3894             : 
    3895             :         /* temporarily make it look not-updated, but locked */
    3896      298890 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3897             : 
    3898             :         /*
    3899             :          * Clear all-frozen bit on visibility map if needed. We could
    3900             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3901             :          * overhead would be unchanged, that doesn't seem necessarily
    3902             :          * worthwhile.
    3903             :          */
    3904      300592 :         if (PageIsAllVisible(page) &&
    3905        1702 :             visibilitymap_clear(relation, block, vmbuffer,
    3906             :                                 VISIBILITYMAP_ALL_FROZEN))
    3907        1368 :             cleared_all_frozen = true;
    3908             : 
    3909      298890 :         MarkBufferDirty(buffer);
    3910             : 
    3911      298890 :         if (RelationNeedsWAL(relation))
    3912             :         {
    3913             :             xl_heap_lock xlrec;
    3914             :             XLogRecPtr  recptr;
    3915             : 
    3916      278630 :             XLogBeginInsert();
    3917      278630 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3918             : 
    3919      278630 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3920      278630 :             xlrec.xmax = xmax_lock_old_tuple;
    3921      557260 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3922      278630 :                                                   oldtup.t_data->t_infomask2);
    3923      278630 :             xlrec.flags =
    3924      278630 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3925      278630 :             XLogRegisterData(&xlrec, SizeOfHeapLock);
    3926      278630 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3927      278630 :             PageSetLSN(page, recptr);
    3928             :         }
    3929             : 
    3930      298890 :         END_CRIT_SECTION();
    3931             : 
    3932      298890 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3933             : 
    3934             :         /*
    3935             :          * Let the toaster do its thing, if needed.
    3936             :          *
    3937             :          * Note: below this point, heaptup is the data we actually intend to
    3938             :          * store into the relation; newtup is the caller's original untoasted
    3939             :          * data.
    3940             :          */
    3941      298890 :         if (need_toast)
    3942             :         {
    3943             :             /* Note we always use WAL and FSM during updates */
    3944        3220 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3945        3220 :             newtupsize = MAXALIGN(heaptup->t_len);
    3946             :         }
    3947             :         else
    3948      295670 :             heaptup = newtup;
    3949             : 
    3950             :         /*
    3951             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3952             :          * tricky since someone else could have added tuples to the page while
    3953             :          * we weren't looking.  We have to recheck the available space after
    3954             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3955             :          * former amount of free space is still not enough; it's unlikely
    3956             :          * there's more free now than before.
    3957             :          *
    3958             :          * What's more, if we need to get a new page, we will need to acquire
    3959             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3960             :          * some other backend trying to get the same two locks in the other
    3961             :          * order, we must be consistent about the order we get the locks in.
    3962             :          * We use the rule "lock the lower-numbered page of the relation
    3963             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3964             :          * while not holding the lock on the old page, and we must rely on it
    3965             :          * to get the locks on both pages in the correct order.
    3966             :          *
    3967             :          * Another consideration is that we need visibility map page pin(s) if
    3968             :          * we will have to clear the all-visible flag on either page.  If we
    3969             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3970             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3971             :          * a loop.
    3972             :          */
    3973             :         for (;;)
    3974             :         {
    3975      298890 :             if (newtupsize > pagefree)
    3976             :             {
    3977             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3978      297792 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3979             :                                                    buffer, 0, NULL,
    3980             :                                                    &vmbuffer_new, &vmbuffer,
    3981             :                                                    0);
    3982             :                 /* We're all done. */
    3983      297792 :                 break;
    3984             :             }
    3985             :             /* Acquire VM page pin if needed and we don't have it. */
    3986        1098 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3987           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3988             :             /* Re-acquire the lock on the old tuple's page. */
    3989        1098 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3990             :             /* Re-check using the up-to-date free space */
    3991        1098 :             pagefree = PageGetHeapFreeSpace(page);
    3992        1098 :             if (newtupsize > pagefree ||
    3993        1098 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3994             :             {
    3995             :                 /*
    3996             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3997             :                  * all-visible flag.  We must now unlock and loop to avoid
    3998             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3999             :                  */
    4000           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4001             :             }
    4002             :             else
    4003             :             {
    4004             :                 /* We're all done. */
    4005        1098 :                 newbuf = buffer;
    4006        1098 :                 break;
    4007             :             }
    4008             :         }
    4009             :     }
    4010             :     else
    4011             :     {
    4012             :         /* No TOAST work needed, and it'll fit on same page */
    4013      308464 :         newbuf = buffer;
    4014      308464 :         heaptup = newtup;
    4015             :     }
    4016             : 
    4017             :     /*
    4018             :      * We're about to do the actual update -- check for conflict first, to
    4019             :      * avoid possibly having to roll back work we've just done.
    4020             :      *
    4021             :      * This is safe without a recheck as long as there is no possibility of
    4022             :      * another process scanning the pages between this check and the update
    4023             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    4024             :      * continuously held from this point until the tuple update is visible).
    4025             :      *
    4026             :      * For the new tuple the only check needed is at the relation level, but
    4027             :      * since both tuples are in the same relation and the check for oldtup
    4028             :      * will include checking the relation level, there is no benefit to a
    4029             :      * separate check for the new tuple.
    4030             :      */
    4031      607354 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    4032             :                                    BufferGetBlockNumber(buffer));
    4033             : 
    4034             :     /*
    4035             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    4036             :      * has enough space for the new tuple.  If they are the same buffer, only
    4037             :      * one pin is held.
    4038             :      */
    4039             : 
    4040      607330 :     if (newbuf == buffer)
    4041             :     {
    4042             :         /*
    4043             :          * Since the new tuple is going into the same page, we might be able
    4044             :          * to do a HOT update.  Check if any of the index columns have been
    4045             :          * changed.
    4046             :          */
    4047      309538 :         if (!bms_overlap(modified_attrs, hot_attrs))
    4048             :         {
    4049      285154 :             use_hot_update = true;
    4050             : 
    4051             :             /*
    4052             :              * If none of the columns that are used in hot-blocking indexes
    4053             :              * were updated, we can apply HOT, but we do still need to check
    4054             :              * if we need to update the summarizing indexes, and update those
    4055             :              * indexes if the columns were updated, or we may fail to detect
    4056             :              * e.g. value bound changes in BRIN minmax indexes.
    4057             :              */
    4058      285154 :             if (bms_overlap(modified_attrs, sum_attrs))
    4059        3282 :                 summarized_update = true;
    4060             :         }
    4061             :     }
    4062             :     else
    4063             :     {
    4064             :         /* Set a hint that the old page could use prune/defrag */
    4065      297792 :         PageSetFull(page);
    4066             :     }
    4067             : 
    4068             :     /*
    4069             :      * Compute replica identity tuple before entering the critical section so
    4070             :      * we don't PANIC upon a memory allocation failure.
    4071             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    4072             :      * logged.  Pass old key required as true only if the replica identity key
    4073             :      * columns are modified or it has external data.
    4074             :      */
    4075      607330 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    4076      607330 :                                            bms_overlap(modified_attrs, id_attrs) ||
    4077             :                                            id_has_external,
    4078             :                                            &old_key_copied);
    4079             : 
    4080             :     /* NO EREPORT(ERROR) from here till changes are logged */
    4081      607330 :     START_CRIT_SECTION();
    4082             : 
    4083             :     /*
    4084             :      * If this transaction commits, the old tuple will become DEAD sooner or
    4085             :      * later.  Set flag that this page is a candidate for pruning once our xid
    4086             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    4087             :      * the subsequent page pruning will be a no-op and the hint will be
    4088             :      * cleared.
    4089             :      *
    4090             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    4091             :      * there would be a prunable tuple in the newbuf; but for now we choose
    4092             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    4093             :      * sync if this decision changes.
    4094             :      */
    4095      607330 :     PageSetPrunable(page, xid);
    4096             : 
    4097      607330 :     if (use_hot_update)
    4098             :     {
    4099             :         /* Mark the old tuple as HOT-updated */
    4100      285154 :         HeapTupleSetHotUpdated(&oldtup);
    4101             :         /* And mark the new tuple as heap-only */
    4102      285154 :         HeapTupleSetHeapOnly(heaptup);
    4103             :         /* Mark the caller's copy too, in case different from heaptup */
    4104      285154 :         HeapTupleSetHeapOnly(newtup);
    4105             :     }
    4106             :     else
    4107             :     {
    4108             :         /* Make sure tuples are correctly marked as not-HOT */
    4109      322176 :         HeapTupleClearHotUpdated(&oldtup);
    4110      322176 :         HeapTupleClearHeapOnly(heaptup);
    4111      322176 :         HeapTupleClearHeapOnly(newtup);
    4112             :     }
    4113             : 
    4114      607330 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    4115             : 
    4116             : 
    4117             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    4118      607330 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    4119      607330 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    4120             :     /* ... and store info about transaction updating this tuple */
    4121             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    4122      607330 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    4123      607330 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    4124      607330 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    4125      607330 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    4126             : 
    4127             :     /* record address of new tuple in t_ctid of old one */
    4128      607330 :     oldtup.t_data->t_ctid = heaptup->t_self;
    4129             : 
    4130             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    4131      607330 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    4132             :     {
    4133        2842 :         all_visible_cleared = true;
    4134        2842 :         PageClearAllVisible(BufferGetPage(buffer));
    4135        2842 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    4136             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    4137             :     }
    4138      607330 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    4139             :     {
    4140        1660 :         all_visible_cleared_new = true;
    4141        1660 :         PageClearAllVisible(BufferGetPage(newbuf));
    4142        1660 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    4143             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    4144             :     }
    4145             : 
    4146      607330 :     if (newbuf != buffer)
    4147      297792 :         MarkBufferDirty(newbuf);
    4148      607330 :     MarkBufferDirty(buffer);
    4149             : 
    4150             :     /* XLOG stuff */
    4151      607330 :     if (RelationNeedsWAL(relation))
    4152             :     {
    4153             :         XLogRecPtr  recptr;
    4154             : 
    4155             :         /*
    4156             :          * For logical decoding we need combo CIDs to properly decode the
    4157             :          * catalog.
    4158             :          */
    4159      584584 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4160             :         {
    4161        5114 :             log_heap_new_cid(relation, &oldtup);
    4162        5114 :             log_heap_new_cid(relation, heaptup);
    4163             :         }
    4164             : 
    4165      584584 :         recptr = log_heap_update(relation, buffer,
    4166             :                                  newbuf, &oldtup, heaptup,
    4167             :                                  old_key_tuple,
    4168             :                                  all_visible_cleared,
    4169             :                                  all_visible_cleared_new);
    4170      584584 :         if (newbuf != buffer)
    4171             :         {
    4172      277544 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4173             :         }
    4174      584584 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4175             :     }
    4176             : 
    4177      607330 :     END_CRIT_SECTION();
    4178             : 
    4179      607330 :     if (newbuf != buffer)
    4180      297792 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4181      607330 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4182             : 
    4183             :     /*
    4184             :      * Mark old tuple for invalidation from system caches at next command
    4185             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4186             :      * have to do this before releasing the buffer because oldtup is in the
    4187             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4188             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4189             :      * sinval messages.)
    4190             :      */
    4191      607330 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4192             : 
    4193             :     /* Now we can release the buffer(s) */
    4194      607330 :     if (newbuf != buffer)
    4195      297792 :         ReleaseBuffer(newbuf);
    4196      607330 :     ReleaseBuffer(buffer);
    4197      607330 :     if (BufferIsValid(vmbuffer_new))
    4198        1660 :         ReleaseBuffer(vmbuffer_new);
    4199      607330 :     if (BufferIsValid(vmbuffer))
    4200        2842 :         ReleaseBuffer(vmbuffer);
    4201             : 
    4202             :     /*
    4203             :      * Release the lmgr tuple lock, if we had it.
    4204             :      */
    4205      607330 :     if (have_tuple_lock)
    4206          44 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4207             : 
    4208      607330 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4209             : 
    4210             :     /*
    4211             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4212             :      * back to the caller's image, too.
    4213             :      */
    4214      607330 :     if (heaptup != newtup)
    4215             :     {
    4216        3124 :         newtup->t_self = heaptup->t_self;
    4217        3124 :         heap_freetuple(heaptup);
    4218             :     }
    4219             : 
    4220             :     /*
    4221             :      * If it is a HOT update, the update may still need to update summarized
    4222             :      * indexes, lest we fail to update those summaries and get incorrect
    4223             :      * results (for example, minmax bounds of the block may change with this
    4224             :      * update).
    4225             :      */
    4226      607330 :     if (use_hot_update)
    4227             :     {
    4228      285154 :         if (summarized_update)
    4229        3282 :             *update_indexes = TU_Summarizing;
    4230             :         else
    4231      281872 :             *update_indexes = TU_None;
    4232             :     }
    4233             :     else
    4234      322176 :         *update_indexes = TU_All;
    4235             : 
    4236      607330 :     if (old_key_tuple != NULL && old_key_copied)
    4237         168 :         heap_freetuple(old_key_tuple);
    4238             : 
    4239      607330 :     bms_free(hot_attrs);
    4240      607330 :     bms_free(sum_attrs);
    4241      607330 :     bms_free(key_attrs);
    4242      607330 :     bms_free(id_attrs);
    4243      607330 :     bms_free(modified_attrs);
    4244      607330 :     bms_free(interesting_attrs);
    4245             : 
    4246      607330 :     return TM_Ok;
    4247             : }
    4248             : 
    4249             : #ifdef USE_ASSERT_CHECKING
    4250             : /*
    4251             :  * Confirm adequate lock held during heap_update(), per rules from
    4252             :  * README.tuplock section "Locking to write inplace-updated tables".
    4253             :  */
    4254             : static void
    4255             : check_lock_if_inplace_updateable_rel(Relation relation,
    4256             :                                      const ItemPointerData *otid,
    4257             :                                      HeapTuple newtup)
    4258             : {
    4259             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4260             :     switch (RelationGetRelid(relation))
    4261             :     {
    4262             :         case RelationRelationId:
    4263             :         case DatabaseRelationId:
    4264             :             {
    4265             :                 LOCKTAG     tuptag;
    4266             : 
    4267             :                 SET_LOCKTAG_TUPLE(tuptag,
    4268             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4269             :                                   relation->rd_lockInfo.lockRelId.relId,
    4270             :                                   ItemPointerGetBlockNumber(otid),
    4271             :                                   ItemPointerGetOffsetNumber(otid));
    4272             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4273             :                     return;
    4274             :             }
    4275             :             break;
    4276             :         default:
    4277             :             Assert(!IsInplaceUpdateRelation(relation));
    4278             :             return;
    4279             :     }
    4280             : 
    4281             :     switch (RelationGetRelid(relation))
    4282             :     {
    4283             :         case RelationRelationId:
    4284             :             {
    4285             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4286             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4287             :                 Oid         relid = classForm->oid;
    4288             :                 Oid         dbid;
    4289             :                 LOCKTAG     tag;
    4290             : 
    4291             :                 if (IsSharedRelation(relid))
    4292             :                     dbid = InvalidOid;
    4293             :                 else
    4294             :                     dbid = MyDatabaseId;
    4295             : 
    4296             :                 if (classForm->relkind == RELKIND_INDEX)
    4297             :                 {
    4298             :                     Relation    irel = index_open(relid, AccessShareLock);
    4299             : 
    4300             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4301             :                     index_close(irel, AccessShareLock);
    4302             :                 }
    4303             :                 else
    4304             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4305             : 
    4306             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4307             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4308             :                     elog(WARNING,
    4309             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4310             :                          NameStr(classForm->relname),
    4311             :                          relid,
    4312             :                          classForm->relkind,
    4313             :                          ItemPointerGetBlockNumber(otid),
    4314             :                          ItemPointerGetOffsetNumber(otid));
    4315             :             }
    4316             :             break;
    4317             :         case DatabaseRelationId:
    4318             :             {
    4319             :                 /* LOCKTAG_TUPLE required */
    4320             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4321             : 
    4322             :                 elog(WARNING,
    4323             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4324             :                      NameStr(dbForm->datname),
    4325             :                      dbForm->oid,
    4326             :                      ItemPointerGetBlockNumber(otid),
    4327             :                      ItemPointerGetOffsetNumber(otid));
    4328             :             }
    4329             :             break;
    4330             :     }
    4331             : }
    4332             : 
    4333             : /*
    4334             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4335             :  * "Locking to write inplace-updated tables".
    4336             :  */
    4337             : static void
    4338             : check_inplace_rel_lock(HeapTuple oldtup)
    4339             : {
    4340             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4341             :     Oid         relid = classForm->oid;
    4342             :     Oid         dbid;
    4343             :     LOCKTAG     tag;
    4344             : 
    4345             :     if (IsSharedRelation(relid))
    4346             :         dbid = InvalidOid;
    4347             :     else
    4348             :         dbid = MyDatabaseId;
    4349             : 
    4350             :     if (classForm->relkind == RELKIND_INDEX)
    4351             :     {
    4352             :         Relation    irel = index_open(relid, AccessShareLock);
    4353             : 
    4354             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4355             :         index_close(irel, AccessShareLock);
    4356             :     }
    4357             :     else
    4358             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4359             : 
    4360             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4361             :         elog(WARNING,
    4362             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4363             :              NameStr(classForm->relname),
    4364             :              relid,
    4365             :              classForm->relkind,
    4366             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4367             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4368             : }
    4369             : #endif
    4370             : 
    4371             : /*
    4372             :  * Check if the specified attribute's values are the same.  Subroutine for
    4373             :  * HeapDetermineColumnsInfo.
    4374             :  */
    4375             : static bool
    4376     1465070 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4377             :                  bool isnull1, bool isnull2)
    4378             : {
    4379             :     /*
    4380             :      * If one value is NULL and other is not, then they are certainly not
    4381             :      * equal
    4382             :      */
    4383     1465070 :     if (isnull1 != isnull2)
    4384          90 :         return false;
    4385             : 
    4386             :     /*
    4387             :      * If both are NULL, they can be considered equal.
    4388             :      */
    4389     1464980 :     if (isnull1)
    4390        9982 :         return true;
    4391             : 
    4392             :     /*
    4393             :      * We do simple binary comparison of the two datums.  This may be overly
    4394             :      * strict because there can be multiple binary representations for the
    4395             :      * same logical value.  But we should be OK as long as there are no false
    4396             :      * positives.  Using a type-specific equality operator is messy because
    4397             :      * there could be multiple notions of equality in different operator
    4398             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4399             :      * while holding exclusive buffer lock.
    4400             :      */
    4401     1454998 :     if (attrnum <= 0)
    4402             :     {
    4403             :         /* The only allowed system columns are OIDs, so do this */
    4404           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4405             :     }
    4406             :     else
    4407             :     {
    4408             :         CompactAttribute *att;
    4409             : 
    4410             :         Assert(attrnum <= tupdesc->natts);
    4411     1454998 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4412     1454998 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4413             :     }
    4414             : }
    4415             : 
    4416             : /*
    4417             :  * Check which columns are being updated.
    4418             :  *
    4419             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4420             :  * from those listed as interesting, the set of columns that changed.
    4421             :  *
    4422             :  * has_external indicates if any of the unmodified attributes (from those
    4423             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4424             :  * stored externally.
    4425             :  */
    4426             : static Bitmapset *
    4427      607674 : HeapDetermineColumnsInfo(Relation relation,
    4428             :                          Bitmapset *interesting_cols,
    4429             :                          Bitmapset *external_cols,
    4430             :                          HeapTuple oldtup, HeapTuple newtup,
    4431             :                          bool *has_external)
    4432             : {
    4433             :     int         attidx;
    4434      607674 :     Bitmapset  *modified = NULL;
    4435      607674 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4436             : 
    4437      607674 :     attidx = -1;
    4438     2072744 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4439             :     {
    4440             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4441     1465070 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4442             :         Datum       value1,
    4443             :                     value2;
    4444             :         bool        isnull1,
    4445             :                     isnull2;
    4446             : 
    4447             :         /*
    4448             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4449             :          * worth supporting this case, since it could only succeed after a
    4450             :          * no-op update, which is hardly a case worth optimizing for.
    4451             :          */
    4452     1465070 :         if (attrnum == 0)
    4453             :         {
    4454           0 :             modified = bms_add_member(modified, attidx);
    4455     1400714 :             continue;
    4456             :         }
    4457             : 
    4458             :         /*
    4459             :          * Likewise, automatically say "not equal" for any system attribute
    4460             :          * other than tableOID; we cannot expect these to be consistent in a
    4461             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4462             :          */
    4463     1465070 :         if (attrnum < 0)
    4464             :         {
    4465           0 :             if (attrnum != TableOidAttributeNumber)
    4466             :             {
    4467           0 :                 modified = bms_add_member(modified, attidx);
    4468           0 :                 continue;
    4469             :             }
    4470             :         }
    4471             : 
    4472             :         /*
    4473             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4474             :          * if there are many indexed columns.  Should we do a single
    4475             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4476             :          * work for system columns ...
    4477             :          */
    4478     1465070 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4479     1465070 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4480             : 
    4481     1465070 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4482             :                               value2, isnull1, isnull2))
    4483             :         {
    4484       53952 :             modified = bms_add_member(modified, attidx);
    4485       53952 :             continue;
    4486             :         }
    4487             : 
    4488             :         /*
    4489             :          * No need to check attributes that can't be stored externally. Note
    4490             :          * that system attributes can't be stored externally.
    4491             :          */
    4492     1411118 :         if (attrnum < 0 || isnull1 ||
    4493     1401136 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4494     1346762 :             continue;
    4495             : 
    4496             :         /*
    4497             :          * Check if the old tuple's attribute is stored externally and is a
    4498             :          * member of external_cols.
    4499             :          */
    4500       64366 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4501          10 :             bms_is_member(attidx, external_cols))
    4502           4 :             *has_external = true;
    4503             :     }
    4504             : 
    4505      607674 :     return modified;
    4506             : }
    4507             : 
    4508             : /*
    4509             :  *  simple_heap_update - replace a tuple
    4510             :  *
    4511             :  * This routine may be used to update a tuple when concurrent updates of
    4512             :  * the target tuple are not expected (for example, because we have a lock
    4513             :  * on the relation associated with the tuple).  Any failure is reported
    4514             :  * via ereport().
    4515             :  */
    4516             : void
    4517      220294 : simple_heap_update(Relation relation, const ItemPointerData *otid, HeapTuple tup,
    4518             :                    TU_UpdateIndexes *update_indexes)
    4519             : {
    4520             :     TM_Result   result;
    4521             :     TM_FailureData tmfd;
    4522             :     LockTupleMode lockmode;
    4523             : 
    4524      220294 :     result = heap_update(relation, otid, tup,
    4525             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4526             :                          true /* wait for commit */ ,
    4527             :                          &tmfd, &lockmode, update_indexes);
    4528      220294 :     switch (result)
    4529             :     {
    4530           0 :         case TM_SelfModified:
    4531             :             /* Tuple was already updated in current command? */
    4532           0 :             elog(ERROR, "tuple already updated by self");
    4533             :             break;
    4534             : 
    4535      220292 :         case TM_Ok:
    4536             :             /* done successfully */
    4537      220292 :             break;
    4538             : 
    4539           0 :         case TM_Updated:
    4540           0 :             elog(ERROR, "tuple concurrently updated");
    4541             :             break;
    4542             : 
    4543           2 :         case TM_Deleted:
    4544           2 :             elog(ERROR, "tuple concurrently deleted");
    4545             :             break;
    4546             : 
    4547           0 :         default:
    4548           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4549             :             break;
    4550             :     }
    4551      220292 : }
    4552             : 
    4553             : 
    4554             : /*
    4555             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4556             :  */
    4557             : static MultiXactStatus
    4558        2410 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4559             : {
    4560             :     int         retval;
    4561             : 
    4562        2410 :     if (is_update)
    4563         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4564             :     else
    4565        2218 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4566             : 
    4567        2410 :     if (retval == -1)
    4568           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4569             :              is_update ? "true" : "false");
    4570             : 
    4571        2410 :     return (MultiXactStatus) retval;
    4572             : }
    4573             : 
    4574             : /*
    4575             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4576             :  *
    4577             :  * Note that this acquires a buffer pin, which the caller must release.
    4578             :  *
    4579             :  * Input parameters:
    4580             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4581             :  *  cid: current command ID (used for visibility test, and stored into
    4582             :  *      tuple's cmax if lock is successful)
    4583             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4584             :  *  wait_policy: what to do if tuple lock is not available
    4585             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4586             :  *      tuples.
    4587             :  *
    4588             :  * Output parameters:
    4589             :  *  *tuple: all fields filled in
    4590             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4591             :  *  *tmfd: filled in failure cases (see below)
    4592             :  *
    4593             :  * Function results are the same as the ones for table_tuple_lock().
    4594             :  *
    4595             :  * In the failure cases other than TM_Invisible, the routine fills
    4596             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4597             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4598             :  * since we cannot obtain cmax from a combo CID generated by another
    4599             :  * transaction).
    4600             :  * See comments for struct TM_FailureData for additional info.
    4601             :  *
    4602             :  * See README.tuplock for a thorough explanation of this mechanism.
    4603             :  */
    4604             : TM_Result
    4605      170130 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4606             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4607             :                 bool follow_updates,
    4608             :                 Buffer *buffer, TM_FailureData *tmfd)
    4609             : {
    4610             :     TM_Result   result;
    4611      170130 :     ItemPointer tid = &(tuple->t_self);
    4612             :     ItemId      lp;
    4613             :     Page        page;
    4614      170130 :     Buffer      vmbuffer = InvalidBuffer;
    4615             :     BlockNumber block;
    4616             :     TransactionId xid,
    4617             :                 xmax;
    4618             :     uint16      old_infomask,
    4619             :                 new_infomask,
    4620             :                 new_infomask2;
    4621      170130 :     bool        first_time = true;
    4622      170130 :     bool        skip_tuple_lock = false;
    4623      170130 :     bool        have_tuple_lock = false;
    4624      170130 :     bool        cleared_all_frozen = false;
    4625             : 
    4626      170130 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4627      170130 :     block = ItemPointerGetBlockNumber(tid);
    4628             : 
    4629             :     /*
    4630             :      * Before locking the buffer, pin the visibility map page if it appears to
    4631             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4632             :      * in the middle of changing this, so we'll need to recheck after we have
    4633             :      * the lock.
    4634             :      */
    4635      170130 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4636        3332 :         visibilitymap_pin(relation, block, &vmbuffer);
    4637             : 
    4638      170130 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4639             : 
    4640      170130 :     page = BufferGetPage(*buffer);
    4641      170130 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4642             :     Assert(ItemIdIsNormal(lp));
    4643             : 
    4644      170130 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4645      170130 :     tuple->t_len = ItemIdGetLength(lp);
    4646      170130 :     tuple->t_tableOid = RelationGetRelid(relation);
    4647             : 
    4648          28 : l3:
    4649      170158 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4650             : 
    4651      170158 :     if (result == TM_Invisible)
    4652             :     {
    4653             :         /*
    4654             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4655             :          * UPDATE.  We return this value here rather than throwing an error in
    4656             :          * order to give that case the opportunity to throw a more specific
    4657             :          * error.
    4658             :          */
    4659          24 :         result = TM_Invisible;
    4660          24 :         goto out_locked;
    4661             :     }
    4662      170134 :     else if (result == TM_BeingModified ||
    4663      154296 :              result == TM_Updated ||
    4664             :              result == TM_Deleted)
    4665             :     {
    4666             :         TransactionId xwait;
    4667             :         uint16      infomask;
    4668             :         uint16      infomask2;
    4669             :         bool        require_sleep;
    4670             :         ItemPointerData t_ctid;
    4671             : 
    4672             :         /* must copy state data before unlocking buffer */
    4673       15840 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4674       15840 :         infomask = tuple->t_data->t_infomask;
    4675       15840 :         infomask2 = tuple->t_data->t_infomask2;
    4676       15840 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4677             : 
    4678       15840 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4679             : 
    4680             :         /*
    4681             :          * If any subtransaction of the current top transaction already holds
    4682             :          * a lock as strong as or stronger than what we're requesting, we
    4683             :          * effectively hold the desired lock already.  We *must* succeed
    4684             :          * without trying to take the tuple lock, else we will deadlock
    4685             :          * against anyone wanting to acquire a stronger lock.
    4686             :          *
    4687             :          * Note we only do this the first time we loop on the HTSU result;
    4688             :          * there is no point in testing in subsequent passes, because
    4689             :          * evidently our own transaction cannot have acquired a new lock after
    4690             :          * the first time we checked.
    4691             :          */
    4692       15840 :         if (first_time)
    4693             :         {
    4694       15822 :             first_time = false;
    4695             : 
    4696       15822 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4697             :             {
    4698             :                 int         i;
    4699             :                 int         nmembers;
    4700             :                 MultiXactMember *members;
    4701             : 
    4702             :                 /*
    4703             :                  * We don't need to allow old multixacts here; if that had
    4704             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4705             :                  * MayBeUpdated and we wouldn't be here.
    4706             :                  */
    4707             :                 nmembers =
    4708         160 :                     GetMultiXactIdMembers(xwait, &members, false,
    4709         160 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4710             : 
    4711         474 :                 for (i = 0; i < nmembers; i++)
    4712             :                 {
    4713             :                     /* only consider members of our own transaction */
    4714         342 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4715         244 :                         continue;
    4716             : 
    4717          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4718             :                     {
    4719          28 :                         pfree(members);
    4720          28 :                         result = TM_Ok;
    4721          28 :                         goto out_unlocked;
    4722             :                     }
    4723             :                     else
    4724             :                     {
    4725             :                         /*
    4726             :                          * Disable acquisition of the heavyweight tuple lock.
    4727             :                          * Otherwise, when promoting a weaker lock, we might
    4728             :                          * deadlock with another locker that has acquired the
    4729             :                          * heavyweight tuple lock and is waiting for our
    4730             :                          * transaction to finish.
    4731             :                          *
    4732             :                          * Note that in this case we still need to wait for
    4733             :                          * the multixact if required, to avoid acquiring
    4734             :                          * conflicting locks.
    4735             :                          */
    4736          70 :                         skip_tuple_lock = true;
    4737             :                     }
    4738             :                 }
    4739             : 
    4740         132 :                 if (members)
    4741         132 :                     pfree(members);
    4742             :             }
    4743       15662 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4744             :             {
    4745       13134 :                 switch (mode)
    4746             :                 {
    4747         332 :                     case LockTupleKeyShare:
    4748             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4749             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4750             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4751         332 :                         result = TM_Ok;
    4752         332 :                         goto out_unlocked;
    4753          48 :                     case LockTupleShare:
    4754          60 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4755          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4756             :                         {
    4757          36 :                             result = TM_Ok;
    4758          36 :                             goto out_unlocked;
    4759             :                         }
    4760          12 :                         break;
    4761         144 :                     case LockTupleNoKeyExclusive:
    4762         144 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4763             :                         {
    4764         120 :                             result = TM_Ok;
    4765         120 :                             goto out_unlocked;
    4766             :                         }
    4767          24 :                         break;
    4768       12610 :                     case LockTupleExclusive:
    4769       12610 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4770        2530 :                             infomask2 & HEAP_KEYS_UPDATED)
    4771             :                         {
    4772        2488 :                             result = TM_Ok;
    4773        2488 :                             goto out_unlocked;
    4774             :                         }
    4775       10122 :                         break;
    4776             :                 }
    4777             :             }
    4778             :         }
    4779             : 
    4780             :         /*
    4781             :          * Initially assume that we will have to wait for the locking
    4782             :          * transaction(s) to finish.  We check various cases below in which
    4783             :          * this can be turned off.
    4784             :          */
    4785       12836 :         require_sleep = true;
    4786       12836 :         if (mode == LockTupleKeyShare)
    4787             :         {
    4788             :             /*
    4789             :              * If we're requesting KeyShare, and there's no update present, we
    4790             :              * don't need to wait.  Even if there is an update, we can still
    4791             :              * continue if the key hasn't been modified.
    4792             :              *
    4793             :              * However, if there are updates, we need to walk the update chain
    4794             :              * to mark future versions of the row as locked, too.  That way,
    4795             :              * if somebody deletes that future version, we're protected
    4796             :              * against the key going away.  This locking of future versions
    4797             :              * could block momentarily, if a concurrent transaction is
    4798             :              * deleting a key; or it could return a value to the effect that
    4799             :              * the transaction deleting the key has already committed.  So we
    4800             :              * do this before re-locking the buffer; otherwise this would be
    4801             :              * prone to deadlocks.
    4802             :              *
    4803             :              * Note that the TID we're locking was grabbed before we unlocked
    4804             :              * the buffer.  For it to change while we're not looking, the
    4805             :              * other properties we're testing for below after re-locking the
    4806             :              * buffer would also change, in which case we would restart this
    4807             :              * loop above.
    4808             :              */
    4809        1190 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4810             :             {
    4811             :                 bool        updated;
    4812             : 
    4813        1104 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4814             : 
    4815             :                 /*
    4816             :                  * If there are updates, follow the update chain; bail out if
    4817             :                  * that cannot be done.
    4818             :                  */
    4819        1104 :                 if (follow_updates && updated)
    4820             :                 {
    4821             :                     TM_Result   res;
    4822             : 
    4823         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4824             :                                                   GetCurrentTransactionId(),
    4825             :                                                   mode);
    4826         100 :                     if (res != TM_Ok)
    4827             :                     {
    4828          12 :                         result = res;
    4829             :                         /* recovery code expects to have buffer lock held */
    4830          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4831         388 :                         goto failed;
    4832             :                     }
    4833             :                 }
    4834             : 
    4835        1092 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4836             : 
    4837             :                 /*
    4838             :                  * Make sure it's still an appropriate lock, else start over.
    4839             :                  * Also, if it wasn't updated before we released the lock, but
    4840             :                  * is updated now, we start over too; the reason is that we
    4841             :                  * now need to follow the update chain to lock the new
    4842             :                  * versions.
    4843             :                  */
    4844        1092 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4845          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4846          86 :                      !updated))
    4847          28 :                     goto l3;
    4848             : 
    4849             :                 /* Things look okay, so we can skip sleeping */
    4850        1092 :                 require_sleep = false;
    4851             : 
    4852             :                 /*
    4853             :                  * Note we allow Xmax to change here; other updaters/lockers
    4854             :                  * could have modified it before we grabbed the buffer lock.
    4855             :                  * However, this is not a problem, because with the recheck we
    4856             :                  * just did we ensure that they still don't conflict with the
    4857             :                  * lock we want.
    4858             :                  */
    4859             :             }
    4860             :         }
    4861       11646 :         else if (mode == LockTupleShare)
    4862             :         {
    4863             :             /*
    4864             :              * If we're requesting Share, we can similarly avoid sleeping if
    4865             :              * there's no update and no exclusive lock present.
    4866             :              */
    4867         886 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4868         886 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4869             :             {
    4870         874 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4871             : 
    4872             :                 /*
    4873             :                  * Make sure it's still an appropriate lock, else start over.
    4874             :                  * See above about allowing xmax to change.
    4875             :                  */
    4876        1748 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4877         874 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4878           0 :                     goto l3;
    4879         874 :                 require_sleep = false;
    4880             :             }
    4881             :         }
    4882       10760 :         else if (mode == LockTupleNoKeyExclusive)
    4883             :         {
    4884             :             /*
    4885             :              * If we're requesting NoKeyExclusive, we might also be able to
    4886             :              * avoid sleeping; just ensure that there no conflicting lock
    4887             :              * already acquired.
    4888             :              */
    4889         328 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4890             :             {
    4891          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4892             :                                              mode, NULL))
    4893             :                 {
    4894             :                     /*
    4895             :                      * No conflict, but if the xmax changed under us in the
    4896             :                      * meantime, start over.
    4897             :                      */
    4898          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4899          52 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4900          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4901             :                                              xwait))
    4902           0 :                         goto l3;
    4903             : 
    4904             :                     /* otherwise, we're good */
    4905          26 :                     require_sleep = false;
    4906             :                 }
    4907             :             }
    4908         276 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4909             :             {
    4910          36 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4911             : 
    4912             :                 /* if the xmax changed in the meantime, start over */
    4913          72 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4914          36 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4915             :                                          xwait))
    4916           0 :                     goto l3;
    4917             :                 /* otherwise, we're good */
    4918          36 :                 require_sleep = false;
    4919             :             }
    4920             :         }
    4921             : 
    4922             :         /*
    4923             :          * As a check independent from those above, we can also avoid sleeping
    4924             :          * if the current transaction is the sole locker of the tuple.  Note
    4925             :          * that the strength of the lock already held is irrelevant; this is
    4926             :          * not about recording the lock in Xmax (which will be done regardless
    4927             :          * of this optimization, below).  Also, note that the cases where we
    4928             :          * hold a lock stronger than we are requesting are already handled
    4929             :          * above by not doing anything.
    4930             :          *
    4931             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4932             :          * is well equipped to deal with this situation on its own.
    4933             :          */
    4934       23538 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4935       10714 :             TransactionIdIsCurrentTransactionId(xwait))
    4936             :         {
    4937             :             /* ... but if the xmax changed in the meantime, start over */
    4938       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4939       20244 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4940       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4941             :                                      xwait))
    4942           0 :                 goto l3;
    4943             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4944       10122 :             require_sleep = false;
    4945             :         }
    4946             : 
    4947             :         /*
    4948             :          * Time to sleep on the other transaction/multixact, if necessary.
    4949             :          *
    4950             :          * If the other transaction is an update/delete that's already
    4951             :          * committed, then sleeping cannot possibly do any good: if we're
    4952             :          * required to sleep, get out to raise an error instead.
    4953             :          *
    4954             :          * By here, we either have already acquired the buffer exclusive lock,
    4955             :          * or we must wait for the locking transaction or multixact; so below
    4956             :          * we ensure that we grab buffer lock after the sleep.
    4957             :          */
    4958       12824 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4959             :         {
    4960         300 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4961         300 :             goto failed;
    4962             :         }
    4963       12524 :         else if (require_sleep)
    4964             :         {
    4965             :             /*
    4966             :              * Acquire tuple lock to establish our priority for the tuple, or
    4967             :              * die trying.  LockTuple will release us when we are next-in-line
    4968             :              * for the tuple.  We must do this even if we are share-locking,
    4969             :              * but not if we already have a weaker lock on the tuple.
    4970             :              *
    4971             :              * If we are forced to "start over" below, we keep the tuple lock;
    4972             :              * this arranges that we stay at the head of the line while
    4973             :              * rechecking tuple state.
    4974             :              */
    4975         374 :             if (!skip_tuple_lock &&
    4976         342 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4977             :                                       &have_tuple_lock))
    4978             :             {
    4979             :                 /*
    4980             :                  * This can only happen if wait_policy is Skip and the lock
    4981             :                  * couldn't be obtained.
    4982             :                  */
    4983           2 :                 result = TM_WouldBlock;
    4984             :                 /* recovery code expects to have buffer lock held */
    4985           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4986           2 :                 goto failed;
    4987             :             }
    4988             : 
    4989         370 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4990             :             {
    4991          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4992             : 
    4993             :                 /* We only ever lock tuples, never update them */
    4994          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4995           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4996             : 
    4997             :                 /* wait for multixact to end, or die trying  */
    4998          80 :                 switch (wait_policy)
    4999             :                 {
    5000          72 :                     case LockWaitBlock:
    5001          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    5002          72 :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    5003          72 :                         break;
    5004           4 :                     case LockWaitSkip:
    5005           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    5006             :                                                         status, infomask, relation,
    5007             :                                                         NULL, false))
    5008             :                         {
    5009           4 :                             result = TM_WouldBlock;
    5010             :                             /* recovery code expects to have buffer lock held */
    5011           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5012           4 :                             goto failed;
    5013             :                         }
    5014           0 :                         break;
    5015           4 :                     case LockWaitError:
    5016           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    5017             :                                                         status, infomask, relation,
    5018             :                                                         NULL, log_lock_failures))
    5019           4 :                             ereport(ERROR,
    5020             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5021             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5022             :                                             RelationGetRelationName(relation))));
    5023             : 
    5024           0 :                         break;
    5025             :                 }
    5026             : 
    5027             :                 /*
    5028             :                  * Of course, the multixact might not be done here: if we're
    5029             :                  * requesting a light lock mode, other transactions with light
    5030             :                  * locks could still be alive, as well as locks owned by our
    5031             :                  * own xact or other subxacts of this backend.  We need to
    5032             :                  * preserve the surviving MultiXact members.  Note that it
    5033             :                  * isn't absolutely necessary in the latter case, but doing so
    5034             :                  * is simpler.
    5035             :                  */
    5036             :             }
    5037             :             else
    5038             :             {
    5039             :                 /* wait for regular transaction to end, or die trying */
    5040         290 :                 switch (wait_policy)
    5041             :                 {
    5042         212 :                     case LockWaitBlock:
    5043         212 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    5044             :                                           XLTW_Lock);
    5045         212 :                         break;
    5046          66 :                     case LockWaitSkip:
    5047          66 :                         if (!ConditionalXactLockTableWait(xwait, false))
    5048             :                         {
    5049          66 :                             result = TM_WouldBlock;
    5050             :                             /* recovery code expects to have buffer lock held */
    5051          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5052          66 :                             goto failed;
    5053             :                         }
    5054           0 :                         break;
    5055          12 :                     case LockWaitError:
    5056          12 :                         if (!ConditionalXactLockTableWait(xwait, log_lock_failures))
    5057          12 :                             ereport(ERROR,
    5058             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5059             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5060             :                                             RelationGetRelationName(relation))));
    5061           0 :                         break;
    5062             :                 }
    5063             :             }
    5064             : 
    5065             :             /* if there are updates, follow the update chain */
    5066         284 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    5067             :             {
    5068             :                 TM_Result   res;
    5069             : 
    5070         112 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    5071             :                                               GetCurrentTransactionId(),
    5072             :                                               mode);
    5073         112 :                 if (res != TM_Ok)
    5074             :                 {
    5075           4 :                     result = res;
    5076             :                     /* recovery code expects to have buffer lock held */
    5077           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5078           4 :                     goto failed;
    5079             :                 }
    5080             :             }
    5081             : 
    5082         280 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5083             : 
    5084             :             /*
    5085             :              * xwait is done, but if xwait had just locked the tuple then some
    5086             :              * other xact could update this tuple before we get to this point.
    5087             :              * Check for xmax change, and start over if so.
    5088             :              */
    5089         536 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    5090         256 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    5091             :                                      xwait))
    5092          28 :                 goto l3;
    5093             : 
    5094         252 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    5095             :             {
    5096             :                 /*
    5097             :                  * Otherwise check if it committed or aborted.  Note we cannot
    5098             :                  * be here if the tuple was only locked by somebody who didn't
    5099             :                  * conflict with us; that would have been handled above.  So
    5100             :                  * that transaction must necessarily be gone by now.  But
    5101             :                  * don't check for this in the multixact case, because some
    5102             :                  * locker transactions might still be running.
    5103             :                  */
    5104         190 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    5105             :             }
    5106             :         }
    5107             : 
    5108             :         /* By here, we're certain that we hold buffer exclusive lock again */
    5109             : 
    5110             :         /*
    5111             :          * We may lock if previous xmax aborted, or if it committed but only
    5112             :          * locked the tuple without updating it; or if we didn't have to wait
    5113             :          * at all for whatever reason.
    5114             :          */
    5115       12402 :         if (!require_sleep ||
    5116         444 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    5117         354 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    5118         162 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    5119       12252 :             result = TM_Ok;
    5120         150 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    5121         114 :             result = TM_Updated;
    5122             :         else
    5123          36 :             result = TM_Deleted;
    5124             :     }
    5125             : 
    5126      154294 : failed:
    5127      167084 :     if (result != TM_Ok)
    5128             :     {
    5129             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    5130             :                result == TM_Deleted || result == TM_WouldBlock);
    5131             : 
    5132             :         /*
    5133             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    5134             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    5135             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    5136             :          * this assert is slightly different from the equivalent one in
    5137             :          * heap_delete and heap_update.
    5138             :          */
    5139             :         Assert((result == TM_WouldBlock) ||
    5140             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    5141             :         Assert(result != TM_Updated ||
    5142             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    5143         550 :         tmfd->ctid = tuple->t_data->t_ctid;
    5144         550 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    5145         550 :         if (result == TM_SelfModified)
    5146          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    5147             :         else
    5148         538 :             tmfd->cmax = InvalidCommandId;
    5149         550 :         goto out_locked;
    5150             :     }
    5151             : 
    5152             :     /*
    5153             :      * If we didn't pin the visibility map page and the page has become all
    5154             :      * visible while we were busy locking the buffer, or during some
    5155             :      * subsequent window during which we had it unlocked, we'll have to unlock
    5156             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5157             :      * unfortunate, especially since we'll now have to recheck whether the
    5158             :      * tuple has been locked or updated under us, but hopefully it won't
    5159             :      * happen very often.
    5160             :      */
    5161      166534 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5162             :     {
    5163           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5164           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5165           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5166           0 :         goto l3;
    5167             :     }
    5168             : 
    5169      166534 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5170      166534 :     old_infomask = tuple->t_data->t_infomask;
    5171             : 
    5172             :     /*
    5173             :      * If this is the first possibly-multixact-able operation in the current
    5174             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5175             :      * certain that the transaction will never become a member of any older
    5176             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5177             :      * using our own TransactionId below, since some other backend could
    5178             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5179             :      */
    5180      166534 :     MultiXactIdSetOldestMember();
    5181             : 
    5182             :     /*
    5183             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5184             :      * not modify the tuple just yet, because that would leave it in the wrong
    5185             :      * state if multixact.c elogs.
    5186             :      */
    5187      166534 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5188             :                               GetCurrentTransactionId(), mode, false,
    5189             :                               &xid, &new_infomask, &new_infomask2);
    5190             : 
    5191      166534 :     START_CRIT_SECTION();
    5192             : 
    5193             :     /*
    5194             :      * Store transaction information of xact locking the tuple.
    5195             :      *
    5196             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5197             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5198             :      * previously updated tuple, it's important to preserve the Cmax.
    5199             :      *
    5200             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5201             :      * we would break the HOT chain.
    5202             :      */
    5203      166534 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5204      166534 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5205      166534 :     tuple->t_data->t_infomask |= new_infomask;
    5206      166534 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5207      166534 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5208      166456 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5209      166534 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5210             : 
    5211             :     /*
    5212             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5213             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5214             :      * because it was set by the updater.  Moreover, if the tuple has been
    5215             :      * updated, we need to follow the update chain to lock the new versions of
    5216             :      * the tuple as well.
    5217             :      */
    5218      166534 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5219      166456 :         tuple->t_data->t_ctid = *tid;
    5220             : 
    5221             :     /* Clear only the all-frozen bit on visibility map if needed */
    5222      169866 :     if (PageIsAllVisible(page) &&
    5223        3332 :         visibilitymap_clear(relation, block, vmbuffer,
    5224             :                             VISIBILITYMAP_ALL_FROZEN))
    5225          28 :         cleared_all_frozen = true;
    5226             : 
    5227             : 
    5228      166534 :     MarkBufferDirty(*buffer);
    5229             : 
    5230             :     /*
    5231             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5232             :      * there is no state change worth restoring after a crash.  You would be
    5233             :      * wrong however: we have just written either a TransactionId or a
    5234             :      * MultiXactId that may never have been seen on disk before, and we need
    5235             :      * to make sure that there are XLOG entries covering those ID numbers.
    5236             :      * Else the same IDs might be re-used after a crash, which would be
    5237             :      * disastrous if this page made it to disk before the crash.  Essentially
    5238             :      * we have to enforce the WAL log-before-data rule even in this case.
    5239             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5240             :      * entries for everything anyway.)
    5241             :      */
    5242      166534 :     if (RelationNeedsWAL(relation))
    5243             :     {
    5244             :         xl_heap_lock xlrec;
    5245             :         XLogRecPtr  recptr;
    5246             : 
    5247      165830 :         XLogBeginInsert();
    5248      165830 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5249             : 
    5250      165830 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5251      165830 :         xlrec.xmax = xid;
    5252      331660 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5253      165830 :                                               tuple->t_data->t_infomask2);
    5254      165830 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5255      165830 :         XLogRegisterData(&xlrec, SizeOfHeapLock);
    5256             : 
    5257             :         /* we don't decode row locks atm, so no need to log the origin */
    5258             : 
    5259      165830 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5260             : 
    5261      165830 :         PageSetLSN(page, recptr);
    5262             :     }
    5263             : 
    5264      166534 :     END_CRIT_SECTION();
    5265             : 
    5266      166534 :     result = TM_Ok;
    5267             : 
    5268      167108 : out_locked:
    5269      167108 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5270             : 
    5271      170112 : out_unlocked:
    5272      170112 :     if (BufferIsValid(vmbuffer))
    5273        3332 :         ReleaseBuffer(vmbuffer);
    5274             : 
    5275             :     /*
    5276             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5277             :      * visibility info.
    5278             :      */
    5279             : 
    5280             :     /*
    5281             :      * Now that we have successfully marked the tuple as locked, we can
    5282             :      * release the lmgr tuple lock, if we had it.
    5283             :      */
    5284      170112 :     if (have_tuple_lock)
    5285         312 :         UnlockTupleTuplock(relation, tid, mode);
    5286             : 
    5287      170112 :     return result;
    5288             : }
    5289             : 
    5290             : /*
    5291             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5292             :  * its normal, Xmax-based tuple lock.
    5293             :  *
    5294             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5295             :  * whether the lock has previously been acquired (and this function does
    5296             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5297             :  * has been flipped to true.
    5298             :  *
    5299             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5300             :  * wait_policy is Skip.
    5301             :  */
    5302             : static bool
    5303         614 : heap_acquire_tuplock(Relation relation, const ItemPointerData *tid, LockTupleMode mode,
    5304             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5305             : {
    5306         614 :     if (*have_tuple_lock)
    5307          18 :         return true;
    5308             : 
    5309         596 :     switch (wait_policy)
    5310             :     {
    5311         514 :         case LockWaitBlock:
    5312         514 :             LockTupleTuplock(relation, tid, mode);
    5313         514 :             break;
    5314             : 
    5315          68 :         case LockWaitSkip:
    5316          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, false))
    5317           2 :                 return false;
    5318          66 :             break;
    5319             : 
    5320          14 :         case LockWaitError:
    5321          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, log_lock_failures))
    5322           2 :                 ereport(ERROR,
    5323             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5324             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5325             :                                 RelationGetRelationName(relation))));
    5326          12 :             break;
    5327             :     }
    5328         592 :     *have_tuple_lock = true;
    5329             : 
    5330         592 :     return true;
    5331             : }
    5332             : 
    5333             : /*
    5334             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5335             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5336             :  * corresponding infomasks to use on the tuple.
    5337             :  *
    5338             :  * Note that this might have side effects such as creating a new MultiXactId.
    5339             :  *
    5340             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5341             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5342             :  * but it was not running anymore. There is a race condition, which is that the
    5343             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5344             :  * either here, or within MultiXactIdExpand.
    5345             :  *
    5346             :  * There is a similar race condition possible when the old xmax was a regular
    5347             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5348             :  * window, but it's still possible to end up creating an unnecessary
    5349             :  * MultiXactId.  Fortunately this is harmless.
    5350             :  */
    5351             : static void
    5352     4072786 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5353             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5354             :                           LockTupleMode mode, bool is_update,
    5355             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5356             :                           uint16 *result_infomask2)
    5357             : {
    5358             :     TransactionId new_xmax;
    5359             :     uint16      new_infomask,
    5360             :                 new_infomask2;
    5361             : 
    5362             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5363             : 
    5364      208068 : l5:
    5365     4280854 :     new_infomask = 0;
    5366     4280854 :     new_infomask2 = 0;
    5367     4280854 :     if (old_infomask & HEAP_XMAX_INVALID)
    5368             :     {
    5369             :         /*
    5370             :          * No previous locker; we just insert our own TransactionId.
    5371             :          *
    5372             :          * Note that it's critical that this case be the first one checked,
    5373             :          * because there are several blocks below that come back to this one
    5374             :          * to implement certain optimizations; old_infomask might contain
    5375             :          * other dirty bits in those cases, but we don't really care.
    5376             :          */
    5377     4070520 :         if (is_update)
    5378             :         {
    5379     3607024 :             new_xmax = add_to_xmax;
    5380     3607024 :             if (mode == LockTupleExclusive)
    5381     3072328 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5382             :         }
    5383             :         else
    5384             :         {
    5385      463496 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5386      463496 :             switch (mode)
    5387             :             {
    5388        5154 :                 case LockTupleKeyShare:
    5389        5154 :                     new_xmax = add_to_xmax;
    5390        5154 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5391        5154 :                     break;
    5392        1488 :                 case LockTupleShare:
    5393        1488 :                     new_xmax = add_to_xmax;
    5394        1488 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5395        1488 :                     break;
    5396      265474 :                 case LockTupleNoKeyExclusive:
    5397      265474 :                     new_xmax = add_to_xmax;
    5398      265474 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5399      265474 :                     break;
    5400      191380 :                 case LockTupleExclusive:
    5401      191380 :                     new_xmax = add_to_xmax;
    5402      191380 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5403      191380 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5404      191380 :                     break;
    5405           0 :                 default:
    5406           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5407           0 :                     elog(ERROR, "invalid lock mode");
    5408             :             }
    5409             :         }
    5410             :     }
    5411      210334 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5412             :     {
    5413             :         MultiXactStatus new_status;
    5414             : 
    5415             :         /*
    5416             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5417             :          * cross-check.
    5418             :          */
    5419             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5420             : 
    5421             :         /*
    5422             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5423             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5424             :          * anymore.  This check is critical for databases upgraded by
    5425             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5426             :          * that such multis are never passed.
    5427             :          */
    5428         232 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5429             :         {
    5430           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5431           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5432           0 :             goto l5;
    5433             :         }
    5434             : 
    5435             :         /*
    5436             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5437             :          * include add_to_xmax; but if all the members were lockers and are
    5438             :          * all gone, we can do away with the IS_MULTI bit and just set
    5439             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5440             :          * and we have an updater that aborted, we can also do without a
    5441             :          * multi.
    5442             :          *
    5443             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5444             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5445             :          * incurring extra work anyhow.
    5446             :          */
    5447         232 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5448             :         {
    5449          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5450          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5451             :                                                                 old_infomask)))
    5452             :             {
    5453             :                 /*
    5454             :                  * Reset these bits and restart; otherwise fall through to
    5455             :                  * create a new multi below.
    5456             :                  */
    5457          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5458          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5459          46 :                 goto l5;
    5460             :             }
    5461             :         }
    5462             : 
    5463         186 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5464             : 
    5465         186 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5466             :                                      new_status);
    5467         186 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5468             :     }
    5469      210102 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5470             :     {
    5471             :         /*
    5472             :          * It's a committed update, so we need to preserve him as updater of
    5473             :          * the tuple.
    5474             :          */
    5475             :         MultiXactStatus status;
    5476             :         MultiXactStatus new_status;
    5477             : 
    5478          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5479           0 :             status = MultiXactStatusUpdate;
    5480             :         else
    5481          26 :             status = MultiXactStatusNoKeyUpdate;
    5482             : 
    5483          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5484             : 
    5485             :         /*
    5486             :          * since it's not running, it's obviously impossible for the old
    5487             :          * updater to be identical to the current one, so we need not check
    5488             :          * for that case as we do in the block above.
    5489             :          */
    5490          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5491          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5492             :     }
    5493      210076 :     else if (TransactionIdIsInProgress(xmax))
    5494             :     {
    5495             :         /*
    5496             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5497             :          * create a new MultiXactId that includes both the old locker or
    5498             :          * updater and our own TransactionId.
    5499             :          */
    5500             :         MultiXactStatus new_status;
    5501             :         MultiXactStatus old_status;
    5502             :         LockTupleMode old_mode;
    5503             : 
    5504      210058 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5505             :         {
    5506      210006 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5507       11254 :                 old_status = MultiXactStatusForKeyShare;
    5508      198752 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5509         866 :                 old_status = MultiXactStatusForShare;
    5510      197886 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5511             :             {
    5512      197886 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5513      185544 :                     old_status = MultiXactStatusForUpdate;
    5514             :                 else
    5515       12342 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5516             :             }
    5517             :             else
    5518             :             {
    5519             :                 /*
    5520             :                  * LOCK_ONLY can be present alone only when a page has been
    5521             :                  * upgraded by pg_upgrade.  But in that case,
    5522             :                  * TransactionIdIsInProgress() should have returned false.  We
    5523             :                  * assume it's no longer locked in this case.
    5524             :                  */
    5525           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5526           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5527           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5528           0 :                 goto l5;
    5529             :             }
    5530             :         }
    5531             :         else
    5532             :         {
    5533             :             /* it's an update, but which kind? */
    5534          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5535           0 :                 old_status = MultiXactStatusUpdate;
    5536             :             else
    5537          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5538             :         }
    5539             : 
    5540      210058 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5541             : 
    5542             :         /*
    5543             :          * If the lock to be acquired is for the same TransactionId as the
    5544             :          * existing lock, there's an optimization possible: consider only the
    5545             :          * strongest of both locks as the only one present, and restart.
    5546             :          */
    5547      210058 :         if (xmax == add_to_xmax)
    5548             :         {
    5549             :             /*
    5550             :              * Note that it's not possible for the original tuple to be
    5551             :              * updated: we wouldn't be here because the tuple would have been
    5552             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5553             :              * this code can also run when traversing an update chain to lock
    5554             :              * future versions of a tuple.  But we wouldn't be here either,
    5555             :              * because the add_to_xmax would be different from the original
    5556             :              * updater.
    5557             :              */
    5558             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5559             : 
    5560             :             /* acquire the strongest of both */
    5561      208006 :             if (mode < old_mode)
    5562      104414 :                 mode = old_mode;
    5563             :             /* mustn't touch is_update */
    5564             : 
    5565      208006 :             old_infomask |= HEAP_XMAX_INVALID;
    5566      208006 :             goto l5;
    5567             :         }
    5568             : 
    5569             :         /* otherwise, just fall back to creating a new multixact */
    5570        2052 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5571        2052 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5572             :                                      add_to_xmax, new_status);
    5573        2052 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5574             :     }
    5575          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5576          10 :              TransactionIdDidCommit(xmax))
    5577           2 :     {
    5578             :         /*
    5579             :          * It's a committed update, so we gotta preserve him as updater of the
    5580             :          * tuple.
    5581             :          */
    5582             :         MultiXactStatus status;
    5583             :         MultiXactStatus new_status;
    5584             : 
    5585           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5586           0 :             status = MultiXactStatusUpdate;
    5587             :         else
    5588           2 :             status = MultiXactStatusNoKeyUpdate;
    5589             : 
    5590           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5591             : 
    5592             :         /*
    5593             :          * since it's not running, it's obviously impossible for the old
    5594             :          * updater to be identical to the current one, so we need not check
    5595             :          * for that case as we do in the block above.
    5596             :          */
    5597           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5598           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5599             :     }
    5600             :     else
    5601             :     {
    5602             :         /*
    5603             :          * Can get here iff the locking/updating transaction was running when
    5604             :          * the infomask was extracted from the tuple, but finished before
    5605             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5606             :          * no locker at all in the first place.
    5607             :          */
    5608          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5609          16 :         goto l5;
    5610             :     }
    5611             : 
    5612     4072786 :     *result_infomask = new_infomask;
    5613     4072786 :     *result_infomask2 = new_infomask2;
    5614     4072786 :     *result_xmax = new_xmax;
    5615     4072786 : }
    5616             : 
    5617             : /*
    5618             :  * Subroutine for heap_lock_updated_tuple_rec.
    5619             :  *
    5620             :  * Given a hypothetical multixact status held by the transaction identified
    5621             :  * with the given xid, does the current transaction need to wait, fail, or can
    5622             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5623             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5624             :  * returned.  If the lock is already held by the current transaction, return
    5625             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5626             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5627             :  *
    5628             :  * The held status is said to be hypothetical because it might correspond to a
    5629             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5630             :  * way for simplicity of API.
    5631             :  */
    5632             : static TM_Result
    5633          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5634             :                            LockTupleMode mode, HeapTuple tup,
    5635             :                            bool *needwait)
    5636             : {
    5637             :     MultiXactStatus wantedstatus;
    5638             : 
    5639          64 :     *needwait = false;
    5640          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5641             : 
    5642             :     /*
    5643             :      * Note: we *must* check TransactionIdIsInProgress before
    5644             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5645             :      * for an explanation.
    5646             :      */
    5647          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5648             :     {
    5649             :         /*
    5650             :          * The tuple has already been locked by our own transaction.  This is
    5651             :          * very rare but can happen if multiple transactions are trying to
    5652             :          * lock an ancient version of the same tuple.
    5653             :          */
    5654           0 :         return TM_SelfModified;
    5655             :     }
    5656          64 :     else if (TransactionIdIsInProgress(xid))
    5657             :     {
    5658             :         /*
    5659             :          * If the locking transaction is running, what we do depends on
    5660             :          * whether the lock modes conflict: if they do, then we must wait for
    5661             :          * it to finish; otherwise we can fall through to lock this tuple
    5662             :          * version without waiting.
    5663             :          */
    5664          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5665          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5666             :         {
    5667          16 :             *needwait = true;
    5668             :         }
    5669             : 
    5670             :         /*
    5671             :          * If we set needwait above, then this value doesn't matter;
    5672             :          * otherwise, this value signals to caller that it's okay to proceed.
    5673             :          */
    5674          32 :         return TM_Ok;
    5675             :     }
    5676          32 :     else if (TransactionIdDidAbort(xid))
    5677           6 :         return TM_Ok;
    5678          26 :     else if (TransactionIdDidCommit(xid))
    5679             :     {
    5680             :         /*
    5681             :          * The other transaction committed.  If it was only a locker, then the
    5682             :          * lock is completely gone now and we can return success; but if it
    5683             :          * was an update, then what we do depends on whether the two lock
    5684             :          * modes conflict.  If they conflict, then we must report error to
    5685             :          * caller. But if they don't, we can fall through to allow the current
    5686             :          * transaction to lock the tuple.
    5687             :          *
    5688             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5689             :          * a transaction ends, all its locks are gone and meaningless, and
    5690             :          * thus we can ignore them; whereas its updates persist.  In the
    5691             :          * TransactionIdIsInProgress case, above, we don't need to check
    5692             :          * because we know the lock is still "alive" and thus a conflict needs
    5693             :          * always be checked.
    5694             :          */
    5695          26 :         if (!ISUPDATE_from_mxstatus(status))
    5696           8 :             return TM_Ok;
    5697             : 
    5698          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5699          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5700             :         {
    5701             :             /* bummer */
    5702          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5703          12 :                 return TM_Updated;
    5704             :             else
    5705           4 :                 return TM_Deleted;
    5706             :         }
    5707             : 
    5708           2 :         return TM_Ok;
    5709             :     }
    5710             : 
    5711             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5712           0 :     return TM_Ok;
    5713             : }
    5714             : 
    5715             : 
    5716             : /*
    5717             :  * Recursive part of heap_lock_updated_tuple
    5718             :  *
    5719             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5720             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5721             :  * version as well.
    5722             :  */
    5723             : static TM_Result
    5724         182 : heap_lock_updated_tuple_rec(Relation rel, const ItemPointerData *tid, TransactionId xid,
    5725             :                             LockTupleMode mode)
    5726             : {
    5727             :     TM_Result   result;
    5728             :     ItemPointerData tupid;
    5729             :     HeapTupleData mytup;
    5730             :     Buffer      buf;
    5731             :     uint16      new_infomask,
    5732             :                 new_infomask2,
    5733             :                 old_infomask,
    5734             :                 old_infomask2;
    5735             :     TransactionId xmax,
    5736             :                 new_xmax;
    5737         182 :     TransactionId priorXmax = InvalidTransactionId;
    5738         182 :     bool        cleared_all_frozen = false;
    5739             :     bool        pinned_desired_page;
    5740         182 :     Buffer      vmbuffer = InvalidBuffer;
    5741             :     BlockNumber block;
    5742             : 
    5743         182 :     ItemPointerCopy(tid, &tupid);
    5744             : 
    5745             :     for (;;)
    5746             :     {
    5747         188 :         new_infomask = 0;
    5748         188 :         new_xmax = InvalidTransactionId;
    5749         188 :         block = ItemPointerGetBlockNumber(&tupid);
    5750         188 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5751             : 
    5752         188 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5753             :         {
    5754             :             /*
    5755             :              * if we fail to find the updated version of the tuple, it's
    5756             :              * because it was vacuumed/pruned away after its creator
    5757             :              * transaction aborted.  So behave as if we got to the end of the
    5758             :              * chain, and there's no further tuple to lock: return success to
    5759             :              * caller.
    5760             :              */
    5761           0 :             result = TM_Ok;
    5762           0 :             goto out_unlocked;
    5763             :         }
    5764             : 
    5765         188 : l4:
    5766         204 :         CHECK_FOR_INTERRUPTS();
    5767             : 
    5768             :         /*
    5769             :          * Before locking the buffer, pin the visibility map page if it
    5770             :          * appears to be necessary.  Since we haven't got the lock yet,
    5771             :          * someone else might be in the middle of changing this, so we'll need
    5772             :          * to recheck after we have the lock.
    5773             :          */
    5774         204 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5775             :         {
    5776           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5777           0 :             pinned_desired_page = true;
    5778             :         }
    5779             :         else
    5780         204 :             pinned_desired_page = false;
    5781             : 
    5782         204 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5783             : 
    5784             :         /*
    5785             :          * If we didn't pin the visibility map page and the page has become
    5786             :          * all visible while we were busy locking the buffer, we'll have to
    5787             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5788             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5789             :          *
    5790             :          * Note: in some paths through this function, we will reach here
    5791             :          * holding a pin on a vm page that may or may not be the one matching
    5792             :          * this page.  If this page isn't all-visible, we won't use the vm
    5793             :          * page, but we hold onto such a pin till the end of the function.
    5794             :          */
    5795         204 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5796             :         {
    5797           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5798           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5799           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5800             :         }
    5801             : 
    5802             :         /*
    5803             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5804             :          * end of the chain, we're done, so return success.
    5805             :          */
    5806         210 :         if (TransactionIdIsValid(priorXmax) &&
    5807           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5808             :                                  priorXmax))
    5809             :         {
    5810           0 :             result = TM_Ok;
    5811           0 :             goto out_locked;
    5812             :         }
    5813             : 
    5814             :         /*
    5815             :          * Also check Xmin: if this tuple was created by an aborted
    5816             :          * (sub)transaction, then we already locked the last live one in the
    5817             :          * chain, thus we're done, so return success.
    5818             :          */
    5819         204 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5820             :         {
    5821          26 :             result = TM_Ok;
    5822          26 :             goto out_locked;
    5823             :         }
    5824             : 
    5825         178 :         old_infomask = mytup.t_data->t_infomask;
    5826         178 :         old_infomask2 = mytup.t_data->t_infomask2;
    5827         178 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5828             : 
    5829             :         /*
    5830             :          * If this tuple version has been updated or locked by some concurrent
    5831             :          * transaction(s), what we do depends on whether our lock mode
    5832             :          * conflicts with what those other transactions hold, and also on the
    5833             :          * status of them.
    5834             :          */
    5835         178 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5836             :         {
    5837             :             TransactionId rawxmax;
    5838             :             bool        needwait;
    5839             : 
    5840          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5841          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5842             :             {
    5843             :                 int         nmembers;
    5844             :                 int         i;
    5845             :                 MultiXactMember *members;
    5846             : 
    5847             :                 /*
    5848             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5849             :                  * applied to tuples after the first in an update chain.  Said
    5850             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5851             :                  * pg_upgraded, but that one was already locked by our caller,
    5852             :                  * not us; and any subsequent ones cannot be because our
    5853             :                  * caller must necessarily have obtained a snapshot later than
    5854             :                  * the pg_upgrade itself.
    5855             :                  */
    5856             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5857             : 
    5858           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5859           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5860           8 :                 for (i = 0; i < nmembers; i++)
    5861             :                 {
    5862           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5863           6 :                                                         members[i].xid,
    5864             :                                                         mode,
    5865             :                                                         &mytup,
    5866             :                                                         &needwait);
    5867             : 
    5868             :                     /*
    5869             :                      * If the tuple was already locked by ourselves in a
    5870             :                      * previous iteration of this (say heap_lock_tuple was
    5871             :                      * forced to restart the locking loop because of a change
    5872             :                      * in xmax), then we hold the lock already on this tuple
    5873             :                      * version and we don't need to do anything; and this is
    5874             :                      * not an error condition either.  We just need to skip
    5875             :                      * this tuple and continue locking the next version in the
    5876             :                      * update chain.
    5877             :                      */
    5878           6 :                     if (result == TM_SelfModified)
    5879             :                     {
    5880           0 :                         pfree(members);
    5881           0 :                         goto next;
    5882             :                     }
    5883             : 
    5884           6 :                     if (needwait)
    5885             :                     {
    5886           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5887           0 :                         XactLockTableWait(members[i].xid, rel,
    5888             :                                           &mytup.t_self,
    5889             :                                           XLTW_LockUpdated);
    5890           0 :                         pfree(members);
    5891           0 :                         goto l4;
    5892             :                     }
    5893           6 :                     if (result != TM_Ok)
    5894             :                     {
    5895           0 :                         pfree(members);
    5896           0 :                         goto out_locked;
    5897             :                     }
    5898             :                 }
    5899           2 :                 if (members)
    5900           2 :                     pfree(members);
    5901             :             }
    5902             :             else
    5903             :             {
    5904             :                 MultiXactStatus status;
    5905             : 
    5906             :                 /*
    5907             :                  * For a non-multi Xmax, we first need to compute the
    5908             :                  * corresponding MultiXactStatus by using the infomask bits.
    5909             :                  */
    5910          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5911             :                 {
    5912          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5913          20 :                         status = MultiXactStatusForKeyShare;
    5914           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5915           0 :                         status = MultiXactStatusForShare;
    5916           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5917             :                     {
    5918           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5919           0 :                             status = MultiXactStatusForUpdate;
    5920             :                         else
    5921           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5922             :                     }
    5923             :                     else
    5924             :                     {
    5925             :                         /*
    5926             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5927             :                          * as share-locked in the old cluster) shouldn't be
    5928             :                          * seen in the middle of an update chain.
    5929             :                          */
    5930           0 :                         elog(ERROR, "invalid lock status in tuple");
    5931             :                     }
    5932             :                 }
    5933             :                 else
    5934             :                 {
    5935             :                     /* it's an update, but which kind? */
    5936          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5937          28 :                         status = MultiXactStatusUpdate;
    5938             :                     else
    5939          10 :                         status = MultiXactStatusNoKeyUpdate;
    5940             :                 }
    5941             : 
    5942          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5943             :                                                     &mytup, &needwait);
    5944             : 
    5945             :                 /*
    5946             :                  * If the tuple was already locked by ourselves in a previous
    5947             :                  * iteration of this (say heap_lock_tuple was forced to
    5948             :                  * restart the locking loop because of a change in xmax), then
    5949             :                  * we hold the lock already on this tuple version and we don't
    5950             :                  * need to do anything; and this is not an error condition
    5951             :                  * either.  We just need to skip this tuple and continue
    5952             :                  * locking the next version in the update chain.
    5953             :                  */
    5954          58 :                 if (result == TM_SelfModified)
    5955           0 :                     goto next;
    5956             : 
    5957          58 :                 if (needwait)
    5958             :                 {
    5959          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5960          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5961             :                                       XLTW_LockUpdated);
    5962          16 :                     goto l4;
    5963             :                 }
    5964          42 :                 if (result != TM_Ok)
    5965             :                 {
    5966          16 :                     goto out_locked;
    5967             :                 }
    5968             :             }
    5969             :         }
    5970             : 
    5971             :         /* compute the new Xmax and infomask values for the tuple ... */
    5972         146 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5973             :                                   xid, mode, false,
    5974             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5975             : 
    5976         146 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5977           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5978             :                                 VISIBILITYMAP_ALL_FROZEN))
    5979           0 :             cleared_all_frozen = true;
    5980             : 
    5981         146 :         START_CRIT_SECTION();
    5982             : 
    5983             :         /* ... and set them */
    5984         146 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5985         146 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5986         146 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5987         146 :         mytup.t_data->t_infomask |= new_infomask;
    5988         146 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5989             : 
    5990         146 :         MarkBufferDirty(buf);
    5991             : 
    5992             :         /* XLOG stuff */
    5993         146 :         if (RelationNeedsWAL(rel))
    5994             :         {
    5995             :             xl_heap_lock_updated xlrec;
    5996             :             XLogRecPtr  recptr;
    5997         146 :             Page        page = BufferGetPage(buf);
    5998             : 
    5999         146 :             XLogBeginInsert();
    6000         146 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    6001             : 
    6002         146 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    6003         146 :             xlrec.xmax = new_xmax;
    6004         146 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    6005         146 :             xlrec.flags =
    6006         146 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    6007             : 
    6008         146 :             XLogRegisterData(&xlrec, SizeOfHeapLockUpdated);
    6009             : 
    6010         146 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    6011             : 
    6012         146 :             PageSetLSN(page, recptr);
    6013             :         }
    6014             : 
    6015         146 :         END_CRIT_SECTION();
    6016             : 
    6017         146 : next:
    6018             :         /* if we find the end of update chain, we're done. */
    6019         292 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    6020         292 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    6021         154 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    6022           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    6023             :         {
    6024         140 :             result = TM_Ok;
    6025         140 :             goto out_locked;
    6026             :         }
    6027             : 
    6028             :         /* tail recursion */
    6029           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    6030           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    6031           6 :         UnlockReleaseBuffer(buf);
    6032             :     }
    6033             : 
    6034             :     result = TM_Ok;
    6035             : 
    6036         182 : out_locked:
    6037         182 :     UnlockReleaseBuffer(buf);
    6038             : 
    6039         182 : out_unlocked:
    6040         182 :     if (vmbuffer != InvalidBuffer)
    6041           0 :         ReleaseBuffer(vmbuffer);
    6042             : 
    6043         182 :     return result;
    6044             : }
    6045             : 
    6046             : /*
    6047             :  * heap_lock_updated_tuple
    6048             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    6049             :  *      marks) on the updated versions.
    6050             :  *
    6051             :  * The initial tuple is assumed to be already locked.
    6052             :  *
    6053             :  * This function doesn't check visibility, it just unconditionally marks the
    6054             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    6055             :  * concurrently (or updated with the key being modified), sleep until the
    6056             :  * transaction doing it is finished.
    6057             :  *
    6058             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    6059             :  * when we have to wait for other transactions to release them, as opposed to
    6060             :  * what heap_lock_tuple does.  The reason is that having more than one
    6061             :  * transaction walking the chain is probably uncommon enough that risk of
    6062             :  * starvation is not likely: one of the preconditions for being here is that
    6063             :  * the snapshot in use predates the update that created this tuple (because we
    6064             :  * started at an earlier version of the tuple), but at the same time such a
    6065             :  * transaction cannot be using repeatable read or serializable isolation
    6066             :  * levels, because that would lead to a serializability failure.
    6067             :  */
    6068             : static TM_Result
    6069         212 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, const ItemPointerData *ctid,
    6070             :                         TransactionId xid, LockTupleMode mode)
    6071             : {
    6072             :     /*
    6073             :      * If the tuple has not been updated, or has moved into another partition
    6074             :      * (effectively a delete) stop here.
    6075             :      */
    6076         212 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    6077         208 :         !ItemPointerEquals(&tuple->t_self, ctid))
    6078             :     {
    6079             :         /*
    6080             :          * If this is the first possibly-multixact-able operation in the
    6081             :          * current transaction, set my per-backend OldestMemberMXactId
    6082             :          * setting. We can be certain that the transaction will never become a
    6083             :          * member of any older MultiXactIds than that.  (We have to do this
    6084             :          * even if we end up just using our own TransactionId below, since
    6085             :          * some other backend could incorporate our XID into a MultiXact
    6086             :          * immediately afterwards.)
    6087             :          */
    6088         182 :         MultiXactIdSetOldestMember();
    6089             : 
    6090         182 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    6091             :     }
    6092             : 
    6093             :     /* nothing to lock */
    6094          30 :     return TM_Ok;
    6095             : }
    6096             : 
    6097             : /*
    6098             :  *  heap_finish_speculative - mark speculative insertion as successful
    6099             :  *
    6100             :  * To successfully finish a speculative insertion we have to clear speculative
    6101             :  * token from tuple.  To do so the t_ctid field, which will contain a
    6102             :  * speculative token value, is modified in place to point to the tuple itself,
    6103             :  * which is characteristic of a newly inserted ordinary tuple.
    6104             :  *
    6105             :  * NB: It is not ok to commit without either finishing or aborting a
    6106             :  * speculative insertion.  We could treat speculative tuples of committed
    6107             :  * transactions implicitly as completed, but then we would have to be prepared
    6108             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    6109             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    6110             :  * but clearing the token at completion isn't very expensive either.
    6111             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    6112             :  */
    6113             : void
    6114        4158 : heap_finish_speculative(Relation relation, const ItemPointerData *tid)
    6115             : {
    6116             :     Buffer      buffer;
    6117             :     Page        page;
    6118             :     OffsetNumber offnum;
    6119        4158 :     ItemId      lp = NULL;
    6120             :     HeapTupleHeader htup;
    6121             : 
    6122        4158 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    6123        4158 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6124        4158 :     page = BufferGetPage(buffer);
    6125             : 
    6126        4158 :     offnum = ItemPointerGetOffsetNumber(tid);
    6127        4158 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    6128        4158 :         lp = PageGetItemId(page, offnum);
    6129             : 
    6130        4158 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    6131           0 :         elog(ERROR, "invalid lp");
    6132             : 
    6133        4158 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    6134             : 
    6135             :     /* NO EREPORT(ERROR) from here till changes are logged */
    6136        4158 :     START_CRIT_SECTION();
    6137             : 
    6138             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    6139             : 
    6140        4158 :     MarkBufferDirty(buffer);
    6141             : 
    6142             :     /*
    6143             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    6144             :      * itself like it does on regular tuples.
    6145             :      */
    6146        4158 :     htup->t_ctid = *tid;
    6147             : 
    6148             :     /* XLOG stuff */
    6149        4158 :     if (RelationNeedsWAL(relation))
    6150             :     {
    6151             :         xl_heap_confirm xlrec;
    6152             :         XLogRecPtr  recptr;
    6153             : 
    6154        4124 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    6155             : 
    6156        4124 :         XLogBeginInsert();
    6157             : 
    6158             :         /* We want the same filtering on this as on a plain insert */
    6159        4124 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6160             : 
    6161        4124 :         XLogRegisterData(&xlrec, SizeOfHeapConfirm);
    6162        4124 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6163             : 
    6164        4124 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6165             : 
    6166        4124 :         PageSetLSN(page, recptr);
    6167             :     }
    6168             : 
    6169        4158 :     END_CRIT_SECTION();
    6170             : 
    6171        4158 :     UnlockReleaseBuffer(buffer);
    6172        4158 : }
    6173             : 
    6174             : /*
    6175             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6176             :  *
    6177             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6178             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6179             :  * to all transactions, including our own.  In particular, it makes
    6180             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6181             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6182             :  * transaction to finish (it'll just wait for our speculative insertion to
    6183             :  * finish).
    6184             :  *
    6185             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6186             :  * that arise due to a mutual dependency that is not user visible.  By
    6187             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6188             :  * reordering lock acquisition in client code, because the implementation level
    6189             :  * lock acquisitions are not under the user's direct control.  If speculative
    6190             :  * inserters did not take this precaution, then under high concurrency they
    6191             :  * could deadlock with each other, which would not be acceptable.
    6192             :  *
    6193             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6194             :  * dedicated routine with stripped down requirements.  Note that this is also
    6195             :  * used to delete the TOAST tuples created during speculative insertion.
    6196             :  *
    6197             :  * This routine does not affect logical decoding as it only looks at
    6198             :  * confirmation records.
    6199             :  */
    6200             : void
    6201          28 : heap_abort_speculative(Relation relation, const ItemPointerData *tid)
    6202             : {
    6203          28 :     TransactionId xid = GetCurrentTransactionId();
    6204             :     ItemId      lp;
    6205             :     HeapTupleData tp;
    6206             :     Page        page;
    6207             :     BlockNumber block;
    6208             :     Buffer      buffer;
    6209             : 
    6210             :     Assert(ItemPointerIsValid(tid));
    6211             : 
    6212          28 :     block = ItemPointerGetBlockNumber(tid);
    6213          28 :     buffer = ReadBuffer(relation, block);
    6214          28 :     page = BufferGetPage(buffer);
    6215             : 
    6216          28 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6217             : 
    6218             :     /*
    6219             :      * Page can't be all visible, we just inserted into it, and are still
    6220             :      * running.
    6221             :      */
    6222             :     Assert(!PageIsAllVisible(page));
    6223             : 
    6224          28 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6225             :     Assert(ItemIdIsNormal(lp));
    6226             : 
    6227          28 :     tp.t_tableOid = RelationGetRelid(relation);
    6228          28 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6229          28 :     tp.t_len = ItemIdGetLength(lp);
    6230          28 :     tp.t_self = *tid;
    6231             : 
    6232             :     /*
    6233             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6234             :      * inserted by us.
    6235             :      */
    6236          28 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6237           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6238          28 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6239           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6240             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6241             : 
    6242             :     /*
    6243             :      * No need to check for serializable conflicts here.  There is never a
    6244             :      * need for a combo CID, either.  No need to extract replica identity, or
    6245             :      * do anything special with infomask bits.
    6246             :      */
    6247             : 
    6248          28 :     START_CRIT_SECTION();
    6249             : 
    6250             :     /*
    6251             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6252             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6253             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6254             :      * that's safe against wraparound / being older than the table's
    6255             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6256             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6257             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6258             :      * TransactionXmin, so there's no race here).
    6259             :      */
    6260             :     Assert(TransactionIdIsValid(TransactionXmin));
    6261             :     {
    6262          28 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6263             :         TransactionId prune_xid;
    6264             : 
    6265          28 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6266           0 :             prune_xid = relfrozenxid;
    6267             :         else
    6268          28 :             prune_xid = TransactionXmin;
    6269          28 :         PageSetPrunable(page, prune_xid);
    6270             :     }
    6271             : 
    6272             :     /* store transaction information of xact deleting the tuple */
    6273          28 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6274          28 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6275             : 
    6276             :     /*
    6277             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6278             :      * tuple immediately invisible everyone.  (In particular, to any
    6279             :      * transactions waiting on the speculative token, woken up later.)
    6280             :      */
    6281          28 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6282             : 
    6283             :     /* Clear the speculative insertion token too */
    6284          28 :     tp.t_data->t_ctid = tp.t_self;
    6285             : 
    6286          28 :     MarkBufferDirty(buffer);
    6287             : 
    6288             :     /*
    6289             :      * XLOG stuff
    6290             :      *
    6291             :      * The WAL records generated here match heap_delete().  The same recovery
    6292             :      * routines are used.
    6293             :      */
    6294          28 :     if (RelationNeedsWAL(relation))
    6295             :     {
    6296             :         xl_heap_delete xlrec;
    6297             :         XLogRecPtr  recptr;
    6298             : 
    6299          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6300          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6301          20 :                                               tp.t_data->t_infomask2);
    6302          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6303          20 :         xlrec.xmax = xid;
    6304             : 
    6305          20 :         XLogBeginInsert();
    6306          20 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    6307          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6308             : 
    6309             :         /* No replica identity & replication origin logged */
    6310             : 
    6311          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6312             : 
    6313          20 :         PageSetLSN(page, recptr);
    6314             :     }
    6315             : 
    6316          28 :     END_CRIT_SECTION();
    6317             : 
    6318          28 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6319             : 
    6320          28 :     if (HeapTupleHasExternal(&tp))
    6321             :     {
    6322             :         Assert(!IsToastRelation(relation));
    6323           2 :         heap_toast_delete(relation, &tp, true);
    6324             :     }
    6325             : 
    6326             :     /*
    6327             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6328             :      * speculative insertion
    6329             :      */
    6330             : 
    6331             :     /* Now we can release the buffer */
    6332          28 :     ReleaseBuffer(buffer);
    6333             : 
    6334             :     /* count deletion, as we counted the insertion too */
    6335          28 :     pgstat_count_heap_delete(relation);
    6336          28 : }
    6337             : 
    6338             : /*
    6339             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6340             :  *
    6341             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6342             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6343             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6344             :  * and the caller must release that by calling
    6345             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6346             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6347             :  * transactions to end, and return false.
    6348             :  *
    6349             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6350             :  * DDL, this doesn't guarantee any particular predicate locking.
    6351             :  *
    6352             :  * One could modify this to return true for tuples with delete in progress,
    6353             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6354             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6355             :  * update.
    6356             :  *
    6357             :  * Readers of inplace-updated fields expect changes to those fields are
    6358             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6359             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6360             :  * return a lower datfrozenxid for the same database OID (lower in the
    6361             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6362             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6363             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6364             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6365             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6366             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6367             :  * committed tuple.)
    6368             :  *
    6369             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6370             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6371             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6372             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6373             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6374             :  * in one critical section or (b) accepting a chance of partial completion.
    6375             :  * Partial completion of a relfrozenxid update would have the weird
    6376             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6377             :  * move forward between vacuum_get_cutoffs() and finishing.
    6378             :  */
    6379             : bool
    6380      357166 : heap_inplace_lock(Relation relation,
    6381             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6382             :                   void (*release_callback) (void *), void *arg)
    6383             : {
    6384      357166 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6385             :     TM_Result   result;
    6386             :     bool        ret;
    6387             : 
    6388             : #ifdef USE_ASSERT_CHECKING
    6389             :     if (RelationGetRelid(relation) == RelationRelationId)
    6390             :         check_inplace_rel_lock(oldtup_ptr);
    6391             : #endif
    6392             : 
    6393             :     Assert(BufferIsValid(buffer));
    6394             : 
    6395             :     /*
    6396             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6397             :      * version without our own inplace changes or inplace changes other
    6398             :      * sessions complete while we wait for locks, inplace update mustn't
    6399             :      * change catcache lookup keys.  But we aren't bothering with index
    6400             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6401             :      * would be too late, because this might reach a
    6402             :      * CatalogCacheInitializeCache() that locks "buffer".
    6403             :      */
    6404      357166 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6405             : 
    6406      357166 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6407      357166 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6408             : 
    6409             :     /*----------
    6410             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6411             :      *
    6412             :      * - wait unconditionally
    6413             :      * - already locked tuple above, since inplace needs that unconditionally
    6414             :      * - don't recheck header after wait: simpler to defer to next iteration
    6415             :      * - don't try to continue even if the updater aborts: likewise
    6416             :      * - no crosscheck
    6417             :      */
    6418      357166 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6419             :                                       buffer);
    6420             : 
    6421      357166 :     if (result == TM_Invisible)
    6422             :     {
    6423             :         /* no known way this can happen */
    6424           0 :         ereport(ERROR,
    6425             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6426             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6427             :     }
    6428      357166 :     else if (result == TM_SelfModified)
    6429             :     {
    6430             :         /*
    6431             :          * CREATE INDEX might reach this if an expression is silly enough to
    6432             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6433             :          * statements might get here after a heap_update() of the same row, in
    6434             :          * the absence of an intervening CommandCounterIncrement().
    6435             :          */
    6436           0 :         ereport(ERROR,
    6437             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6438             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6439             :     }
    6440      357166 :     else if (result == TM_BeingModified)
    6441             :     {
    6442             :         TransactionId xwait;
    6443             :         uint16      infomask;
    6444             : 
    6445          54 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6446          54 :         infomask = oldtup.t_data->t_infomask;
    6447             : 
    6448          54 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6449             :         {
    6450          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6451          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6452             :             int         remain;
    6453             : 
    6454          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6455             :                                         lockmode, NULL))
    6456             :             {
    6457           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6458           4 :                 release_callback(arg);
    6459           4 :                 ret = false;
    6460           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6461             :                                 relation, &oldtup.t_self, XLTW_Update,
    6462             :                                 &remain);
    6463             :             }
    6464             :             else
    6465           6 :                 ret = true;
    6466             :         }
    6467          44 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6468           2 :             ret = true;
    6469          42 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6470           2 :             ret = true;
    6471             :         else
    6472             :         {
    6473          40 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6474          40 :             release_callback(arg);
    6475          40 :             ret = false;
    6476          40 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6477             :                               XLTW_Update);
    6478             :         }
    6479             :     }
    6480             :     else
    6481             :     {
    6482      357112 :         ret = (result == TM_Ok);
    6483      357112 :         if (!ret)
    6484             :         {
    6485           2 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6486           2 :             release_callback(arg);
    6487             :         }
    6488             :     }
    6489             : 
    6490             :     /*
    6491             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6492             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6493             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6494             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6495             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6496             :      * don't bother optimizing that.
    6497             :      */
    6498      357166 :     if (!ret)
    6499             :     {
    6500          46 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6501          46 :         ForgetInplace_Inval();
    6502          46 :         InvalidateCatalogSnapshot();
    6503             :     }
    6504      357166 :     return ret;
    6505             : }
    6506             : 
    6507             : /*
    6508             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6509             :  *
    6510             :  * The tuple cannot change size, and therefore its header fields and null
    6511             :  * bitmap (if any) don't change either.
    6512             :  *
    6513             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6514             :  */
    6515             : void
    6516      163324 : heap_inplace_update_and_unlock(Relation relation,
    6517             :                                HeapTuple oldtup, HeapTuple tuple,
    6518             :                                Buffer buffer)
    6519             : {
    6520      163324 :     HeapTupleHeader htup = oldtup->t_data;
    6521             :     uint32      oldlen;
    6522             :     uint32      newlen;
    6523             :     char       *dst;
    6524             :     char       *src;
    6525      163324 :     int         nmsgs = 0;
    6526      163324 :     SharedInvalidationMessage *invalMessages = NULL;
    6527      163324 :     bool        RelcacheInitFileInval = false;
    6528             : 
    6529             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6530      163324 :     oldlen = oldtup->t_len - htup->t_hoff;
    6531      163324 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6532      163324 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6533           0 :         elog(ERROR, "wrong tuple length");
    6534             : 
    6535      163324 :     dst = (char *) htup + htup->t_hoff;
    6536      163324 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6537             : 
    6538             :     /* Like RecordTransactionCommit(), log only if needed */
    6539      163324 :     if (XLogStandbyInfoActive())
    6540       99776 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6541             :                                                &RelcacheInitFileInval);
    6542             : 
    6543             :     /*
    6544             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6545             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6546             :      * in advance, if we checkpoint and then crash between inplace
    6547             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6548             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6549             :      * neglect to PANIC on EIO.
    6550             :      */
    6551      163324 :     PreInplace_Inval();
    6552             : 
    6553             :     /*----------
    6554             :      * NO EREPORT(ERROR) from here till changes are complete
    6555             :      *
    6556             :      * Our buffer lock won't stop a reader having already pinned and checked
    6557             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6558             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6559             :      * checkpoint delay makes that acceptable.  With the usual order of
    6560             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6561             :      * datfrozenxid to overtake relfrozenxid:
    6562             :      *
    6563             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6564             :      * ["R" is a VACUUM tbl]
    6565             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6566             :      * D: systable_getnext() returns pg_class tuple of tbl
    6567             :      * R: memcpy() into pg_class tuple of tbl
    6568             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6569             :      * [crash]
    6570             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6571             :      *
    6572             :      * Mimic MarkBufferDirtyHint() subroutine XLogSaveBufferForHint().
    6573             :      * Specifically, use DELAY_CHKPT_START, and copy the buffer to the stack.
    6574             :      * The stack copy facilitates a FPI of the post-mutation block before we
    6575             :      * accept other sessions seeing it.  DELAY_CHKPT_START allows us to
    6576             :      * XLogInsert() before MarkBufferDirty().  Since XLogSaveBufferForHint()
    6577             :      * can operate under BUFFER_LOCK_SHARED, it can't avoid DELAY_CHKPT_START.
    6578             :      * This function, however, likely could avoid it with the following order
    6579             :      * of operations: MarkBufferDirty(), XLogInsert(), memcpy().  Opt to use
    6580             :      * DELAY_CHKPT_START here, too, as a way to have fewer distinct code
    6581             :      * patterns to analyze.  Inplace update isn't so frequent that it should
    6582             :      * pursue the small optimization of skipping DELAY_CHKPT_START.
    6583             :      */
    6584             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6585      163324 :     START_CRIT_SECTION();
    6586      163324 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6587             : 
    6588             :     /* XLOG stuff */
    6589      163324 :     if (RelationNeedsWAL(relation))
    6590             :     {
    6591             :         xl_heap_inplace xlrec;
    6592             :         PGAlignedBlock copied_buffer;
    6593      163308 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6594      163308 :         Page        page = BufferGetPage(buffer);
    6595      163308 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6596      163308 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6597             :         uintptr_t   dst_offset_in_block;
    6598             :         RelFileLocator rlocator;
    6599             :         ForkNumber  forkno;
    6600             :         BlockNumber blkno;
    6601             :         XLogRecPtr  recptr;
    6602             : 
    6603      163308 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6604      163308 :         xlrec.dbId = MyDatabaseId;
    6605      163308 :         xlrec.tsId = MyDatabaseTableSpace;
    6606      163308 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6607      163308 :         xlrec.nmsgs = nmsgs;
    6608             : 
    6609      163308 :         XLogBeginInsert();
    6610      163308 :         XLogRegisterData(&xlrec, MinSizeOfHeapInplace);
    6611      163308 :         if (nmsgs != 0)
    6612       70476 :             XLogRegisterData(invalMessages,
    6613             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6614             : 
    6615             :         /* register block matching what buffer will look like after changes */
    6616      163308 :         memcpy(copied_buffer.data, origdata, lower);
    6617      163308 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6618      163308 :         dst_offset_in_block = dst - origdata;
    6619      163308 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6620      163308 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6621             :         Assert(forkno == MAIN_FORKNUM);
    6622      163308 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6623             :                           REGBUF_STANDARD);
    6624      163308 :         XLogRegisterBufData(0, src, newlen);
    6625             : 
    6626             :         /* inplace updates aren't decoded atm, don't log the origin */
    6627             : 
    6628      163308 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6629             : 
    6630      163308 :         PageSetLSN(page, recptr);
    6631             :     }
    6632             : 
    6633      163324 :     memcpy(dst, src, newlen);
    6634             : 
    6635      163324 :     MarkBufferDirty(buffer);
    6636             : 
    6637      163324 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6638             : 
    6639             :     /*
    6640             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6641             :      * do this before UnlockTuple().
    6642             :      *
    6643             :      * If we're mutating a tuple visible only to this transaction, there's an
    6644             :      * equivalent transactional inval from the action that created the tuple,
    6645             :      * and this inval is superfluous.
    6646             :      */
    6647      163324 :     AtInplace_Inval();
    6648             : 
    6649      163324 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6650      163324 :     END_CRIT_SECTION();
    6651      163324 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6652             : 
    6653      163324 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6654             : 
    6655             :     /*
    6656             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6657             :      * is the only one known to be necessary.  To reduce risk from the
    6658             :      * transition to immediate invalidation, continue sending a transactional
    6659             :      * invalidation like we've long done.  Third-party code might rely on it.
    6660             :      */
    6661      163324 :     if (!IsBootstrapProcessingMode())
    6662      134024 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6663      163324 : }
    6664             : 
    6665             : /*
    6666             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6667             :  */
    6668             : void
    6669      193796 : heap_inplace_unlock(Relation relation,
    6670             :                     HeapTuple oldtup, Buffer buffer)
    6671             : {
    6672      193796 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6673      193796 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6674      193796 :     ForgetInplace_Inval();
    6675      193796 : }
    6676             : 
    6677             : #define     FRM_NOOP                0x0001
    6678             : #define     FRM_INVALIDATE_XMAX     0x0002
    6679             : #define     FRM_RETURN_IS_XID       0x0004
    6680             : #define     FRM_RETURN_IS_MULTI     0x0008
    6681             : #define     FRM_MARK_COMMITTED      0x0010
    6682             : 
    6683             : /*
    6684             :  * FreezeMultiXactId
    6685             :  *      Determine what to do during freezing when a tuple is marked by a
    6686             :  *      MultiXactId.
    6687             :  *
    6688             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6689             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6690             :  *
    6691             :  * Possible values that we can set in "flags":
    6692             :  * FRM_NOOP
    6693             :  *      don't do anything -- keep existing Xmax
    6694             :  * FRM_INVALIDATE_XMAX
    6695             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6696             :  * FRM_RETURN_IS_XID
    6697             :  *      The Xid return value is a single update Xid to set as xmax.
    6698             :  * FRM_MARK_COMMITTED
    6699             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6700             :  * FRM_RETURN_IS_MULTI
    6701             :  *      The return value is a new MultiXactId to set as new Xmax.
    6702             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6703             :  *
    6704             :  * Caller delegates control of page freezing to us.  In practice we always
    6705             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6706             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6707             :  * can never be left behind.  We freely choose when and how to process each
    6708             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6709             :  *
    6710             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6711             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6712             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6713             :  * misses through eager processing.
    6714             :  *
    6715             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6716             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6717             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6718             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6719             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6720             :  * its own special risks.
    6721             :  *
    6722             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6723             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6724             :  *
    6725             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6726             :  * have already forced page-level freezing, since that might incur the same
    6727             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6728             :  */
    6729             : static TransactionId
    6730          14 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6731             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6732             :                   HeapPageFreeze *pagefrz)
    6733             : {
    6734             :     TransactionId newxmax;
    6735             :     MultiXactMember *members;
    6736             :     int         nmembers;
    6737             :     bool        need_replace;
    6738             :     int         nnewmembers;
    6739             :     MultiXactMember *newmembers;
    6740             :     bool        has_lockers;
    6741             :     TransactionId update_xid;
    6742             :     bool        update_committed;
    6743             :     TransactionId FreezePageRelfrozenXid;
    6744             : 
    6745          14 :     *flags = 0;
    6746             : 
    6747             :     /* We should only be called in Multis */
    6748             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6749             : 
    6750          28 :     if (!MultiXactIdIsValid(multi) ||
    6751          14 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6752             :     {
    6753           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6754           0 :         pagefrz->freeze_required = true;
    6755           0 :         return InvalidTransactionId;
    6756             :     }
    6757          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6758           0 :         ereport(ERROR,
    6759             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6760             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6761             :                                  multi, cutoffs->relminmxid)));
    6762          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6763             :     {
    6764             :         TransactionId update_xact;
    6765             : 
    6766             :         /*
    6767             :          * This old multi cannot possibly have members still running, but
    6768             :          * verify just in case.  If it was a locker only, it can be removed
    6769             :          * without any further consideration; but if it contained an update,
    6770             :          * we might need to preserve it.
    6771             :          */
    6772          10 :         if (MultiXactIdIsRunning(multi,
    6773          10 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6774           0 :             ereport(ERROR,
    6775             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6776             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6777             :                                      multi, cutoffs->OldestMxact)));
    6778             : 
    6779          10 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6780             :         {
    6781          10 :             *flags |= FRM_INVALIDATE_XMAX;
    6782          10 :             pagefrz->freeze_required = true;
    6783          10 :             return InvalidTransactionId;
    6784             :         }
    6785             : 
    6786             :         /* replace multi with single XID for its updater? */
    6787           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6788           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6789           0 :             ereport(ERROR,
    6790             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6791             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6792             :                                      multi, update_xact,
    6793             :                                      cutoffs->relfrozenxid)));
    6794           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6795             :         {
    6796             :             /*
    6797             :              * Updater XID has to have aborted (otherwise the tuple would have
    6798             :              * been pruned away instead, since updater XID is < OldestXmin).
    6799             :              * Just remove xmax.
    6800             :              */
    6801           0 :             if (TransactionIdDidCommit(update_xact))
    6802           0 :                 ereport(ERROR,
    6803             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6804             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6805             :                                          multi, update_xact,
    6806             :                                          cutoffs->OldestXmin)));
    6807           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6808           0 :             pagefrz->freeze_required = true;
    6809           0 :             return InvalidTransactionId;
    6810             :         }
    6811             : 
    6812             :         /* Have to keep updater XID as new xmax */
    6813           0 :         *flags |= FRM_RETURN_IS_XID;
    6814           0 :         pagefrz->freeze_required = true;
    6815           0 :         return update_xact;
    6816             :     }
    6817             : 
    6818             :     /*
    6819             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6820             :      * need to walk the whole members array to figure out what to do, if
    6821             :      * anything.
    6822             :      */
    6823             :     nmembers =
    6824           4 :         GetMultiXactIdMembers(multi, &members, false,
    6825           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6826           4 :     if (nmembers <= 0)
    6827             :     {
    6828             :         /* Nothing worth keeping */
    6829           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6830           0 :         pagefrz->freeze_required = true;
    6831           0 :         return InvalidTransactionId;
    6832             :     }
    6833             : 
    6834             :     /*
    6835             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6836             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6837             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6838             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6839             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6840             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6841             :      * required to make it safe to leave xmax undisturbed, independent of
    6842             :      * whether or not page freezing is triggered somewhere else.
    6843             :      *
    6844             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6845             :      * which obviates the need to maintain either set of trackers, anywhere.
    6846             :      * Every other case will reliably execute a freeze plan for xmax that
    6847             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6848             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6849             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6850             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6851             :      */
    6852           4 :     need_replace = false;
    6853           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6854           8 :     for (int i = 0; i < nmembers; i++)
    6855             :     {
    6856           6 :         TransactionId xid = members[i].xid;
    6857             : 
    6858             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6859             : 
    6860           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6861             :         {
    6862             :             /* Can't violate the FreezeLimit postcondition */
    6863           2 :             need_replace = true;
    6864           2 :             break;
    6865             :         }
    6866           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6867           0 :             FreezePageRelfrozenXid = xid;
    6868             :     }
    6869             : 
    6870             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6871           4 :     if (!need_replace)
    6872           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6873             : 
    6874           4 :     if (!need_replace)
    6875             :     {
    6876             :         /*
    6877             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6878             :          * both together to make it safe to retain this particular multi after
    6879             :          * freezing its page
    6880             :          */
    6881           2 :         *flags |= FRM_NOOP;
    6882           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6883           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6884           0 :             pagefrz->FreezePageRelminMxid = multi;
    6885           2 :         pfree(members);
    6886           2 :         return multi;
    6887             :     }
    6888             : 
    6889             :     /*
    6890             :      * Do a more thorough second pass over the multi to figure out which
    6891             :      * member XIDs actually need to be kept.  Checking the precise status of
    6892             :      * individual members might even show that we don't need to keep anything.
    6893             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6894             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6895             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6896             :      */
    6897           2 :     nnewmembers = 0;
    6898           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6899           2 :     has_lockers = false;
    6900           2 :     update_xid = InvalidTransactionId;
    6901           2 :     update_committed = false;
    6902             : 
    6903             :     /*
    6904             :      * Determine whether to keep each member xid, or to ignore it instead
    6905             :      */
    6906           6 :     for (int i = 0; i < nmembers; i++)
    6907             :     {
    6908           4 :         TransactionId xid = members[i].xid;
    6909           4 :         MultiXactStatus mstatus = members[i].status;
    6910             : 
    6911             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6912             : 
    6913           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6914             :         {
    6915             :             /*
    6916             :              * Locker XID (not updater XID).  We only keep lockers that are
    6917             :              * still running.
    6918             :              */
    6919           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6920           4 :                 TransactionIdIsInProgress(xid))
    6921             :             {
    6922           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6923           0 :                     ereport(ERROR,
    6924             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6925             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6926             :                                              multi, xid,
    6927             :                                              cutoffs->OldestXmin)));
    6928           2 :                 newmembers[nnewmembers++] = members[i];
    6929           2 :                 has_lockers = true;
    6930             :             }
    6931             : 
    6932           4 :             continue;
    6933             :         }
    6934             : 
    6935             :         /*
    6936             :          * Updater XID (not locker XID).  Should we keep it?
    6937             :          *
    6938             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6939             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6940             :          * the updater XID aborted.  If the updater transaction is known
    6941             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6942             :          *
    6943             :          * In any case the Multi should never contain two updaters, whatever
    6944             :          * their individual commit status.  Check for that first, in passing.
    6945             :          */
    6946           0 :         if (TransactionIdIsValid(update_xid))
    6947           0 :             ereport(ERROR,
    6948             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6949             :                      errmsg_internal("multixact %u has two or more updating members",
    6950             :                                      multi),
    6951             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6952             :                                         update_xid, xid)));
    6953             : 
    6954             :         /*
    6955             :          * As with all tuple visibility routines, it's critical to test
    6956             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6957             :          * race conditions explained in detail in heapam_visibility.c.
    6958             :          */
    6959           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6960           0 :             TransactionIdIsInProgress(xid))
    6961           0 :             update_xid = xid;
    6962           0 :         else if (TransactionIdDidCommit(xid))
    6963             :         {
    6964             :             /*
    6965             :              * The transaction committed, so we can tell caller to set
    6966             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6967             :              * transaction is not running.)
    6968             :              */
    6969           0 :             update_committed = true;
    6970           0 :             update_xid = xid;
    6971             :         }
    6972             :         else
    6973             :         {
    6974             :             /*
    6975             :              * Not in progress, not committed -- must be aborted or crashed;
    6976             :              * we can ignore it.
    6977             :              */
    6978           0 :             continue;
    6979             :         }
    6980             : 
    6981             :         /*
    6982             :          * We determined that updater must be kept -- add it to pending new
    6983             :          * members list
    6984             :          */
    6985           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6986           0 :             ereport(ERROR,
    6987             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6988             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6989             :                                      multi, xid, cutoffs->OldestXmin)));
    6990           0 :         newmembers[nnewmembers++] = members[i];
    6991             :     }
    6992             : 
    6993           2 :     pfree(members);
    6994             : 
    6995             :     /*
    6996             :      * Determine what to do with caller's multi based on information gathered
    6997             :      * during our second pass
    6998             :      */
    6999           2 :     if (nnewmembers == 0)
    7000             :     {
    7001             :         /* Nothing worth keeping */
    7002           0 :         *flags |= FRM_INVALIDATE_XMAX;
    7003           0 :         newxmax = InvalidTransactionId;
    7004             :     }
    7005           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    7006             :     {
    7007             :         /*
    7008             :          * If there's a single member and it's an update, pass it back alone
    7009             :          * without creating a new Multi.  (XXX we could do this when there's a
    7010             :          * single remaining locker, too, but that would complicate the API too
    7011             :          * much; moreover, the case with the single updater is more
    7012             :          * interesting, because those are longer-lived.)
    7013             :          */
    7014             :         Assert(nnewmembers == 1);
    7015           0 :         *flags |= FRM_RETURN_IS_XID;
    7016           0 :         if (update_committed)
    7017           0 :             *flags |= FRM_MARK_COMMITTED;
    7018           0 :         newxmax = update_xid;
    7019             :     }
    7020             :     else
    7021             :     {
    7022             :         /*
    7023             :          * Create a new multixact with the surviving members of the previous
    7024             :          * one, to set as new Xmax in the tuple
    7025             :          */
    7026           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    7027           2 :         *flags |= FRM_RETURN_IS_MULTI;
    7028             :     }
    7029             : 
    7030           2 :     pfree(newmembers);
    7031             : 
    7032           2 :     pagefrz->freeze_required = true;
    7033           2 :     return newxmax;
    7034             : }
    7035             : 
    7036             : /*
    7037             :  * heap_prepare_freeze_tuple
    7038             :  *
    7039             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7040             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    7041             :  * setup enough state (in the *frz output argument) to enable caller to
    7042             :  * process this tuple as part of freezing its page, and return true.  Return
    7043             :  * false if nothing can be changed about the tuple right now.
    7044             :  *
    7045             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    7046             :  * caller executes returned freeze plan (or if the tuple was already totally
    7047             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    7048             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    7049             :  *
    7050             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    7051             :  * tuple that we returned true for, and then execute freezing.  Caller must
    7052             :  * initialize pagefrz fields for page as a whole before first call here for
    7053             :  * each heap page.
    7054             :  *
    7055             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    7056             :  * We'll often prepare freeze plans for a page that caller just discards.
    7057             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    7058             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    7059             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    7060             :  * that VACUUM always follows that rule.
    7061             :  *
    7062             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    7063             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    7064             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    7065             :  * and it's convenient to make that happen by piggy-backing it on the "force
    7066             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    7067             :  * because it is expensive right now (though only when it's still possible to
    7068             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    7069             :  *
    7070             :  * It is assumed that the caller has checked the tuple with
    7071             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    7072             :  * (else we should be removing the tuple, not freezing it).
    7073             :  *
    7074             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    7075             :  * It will be set as tuple's new xmax when our *frz output is processed within
    7076             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    7077             :  * then caller had better have an exclusive lock on it already.
    7078             :  */
    7079             : bool
    7080    39062084 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    7081             :                           const struct VacuumCutoffs *cutoffs,
    7082             :                           HeapPageFreeze *pagefrz,
    7083             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    7084             : {
    7085    39062084 :     bool        xmin_already_frozen = false,
    7086    39062084 :                 xmax_already_frozen = false;
    7087    39062084 :     bool        freeze_xmin = false,
    7088    39062084 :                 replace_xvac = false,
    7089    39062084 :                 replace_xmax = false,
    7090    39062084 :                 freeze_xmax = false;
    7091             :     TransactionId xid;
    7092             : 
    7093    39062084 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    7094    39062084 :     frz->t_infomask2 = tuple->t_infomask2;
    7095    39062084 :     frz->t_infomask = tuple->t_infomask;
    7096    39062084 :     frz->frzflags = 0;
    7097    39062084 :     frz->checkflags = 0;
    7098             : 
    7099             :     /*
    7100             :      * Process xmin, while keeping track of whether it's already frozen, or
    7101             :      * will become frozen iff our freeze plan is executed by caller (could be
    7102             :      * neither).
    7103             :      */
    7104    39062084 :     xid = HeapTupleHeaderGetXmin(tuple);
    7105    39062084 :     if (!TransactionIdIsNormal(xid))
    7106    33307882 :         xmin_already_frozen = true;
    7107             :     else
    7108             :     {
    7109     5754202 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7110           0 :             ereport(ERROR,
    7111             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7112             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    7113             :                                      xid, cutoffs->relfrozenxid)));
    7114             : 
    7115             :         /* Will set freeze_xmin flags in freeze plan below */
    7116     5754202 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7117             : 
    7118             :         /* Verify that xmin committed if and when freeze plan is executed */
    7119     5754202 :         if (freeze_xmin)
    7120     4534658 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    7121             :     }
    7122             : 
    7123             :     /*
    7124             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    7125             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    7126             :      */
    7127    39062084 :     xid = HeapTupleHeaderGetXvac(tuple);
    7128    39062084 :     if (TransactionIdIsNormal(xid))
    7129             :     {
    7130             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7131             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    7132             : 
    7133             :         /*
    7134             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    7135             :          * tracking to ignore xvac.
    7136             :          */
    7137           0 :         replace_xvac = pagefrz->freeze_required = true;
    7138             : 
    7139             :         /* Will set replace_xvac flags in freeze plan below */
    7140             :     }
    7141             : 
    7142             :     /* Now process xmax */
    7143    39062084 :     xid = frz->xmax;
    7144    39062084 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7145             :     {
    7146             :         /* Raw xmax is a MultiXactId */
    7147             :         TransactionId newxmax;
    7148             :         uint16      flags;
    7149             : 
    7150             :         /*
    7151             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    7152             :          * process xmax by replacing it (in the "replace_xmax" path), or
    7153             :          * perform no-op xmax processing.  The only constraint is that the
    7154             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    7155             :          */
    7156          14 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    7157             :                                     &flags, pagefrz);
    7158             : 
    7159          14 :         if (flags & FRM_NOOP)
    7160             :         {
    7161             :             /*
    7162             :              * xmax is a MultiXactId, and nothing about it changes for now.
    7163             :              * This is the only case where 'freeze_required' won't have been
    7164             :              * set for us by FreezeMultiXactId, as well as the only case where
    7165             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7166             :              *
    7167             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7168             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7169             :              * for us (the "freeze page" variants, specifically).  That'll
    7170             :              * make it safe for our caller to freeze the page later on, while
    7171             :              * leaving this particular xmax undisturbed.
    7172             :              *
    7173             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7174             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7175             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7176             :              * will take place below if 'freeze_required' isn't set already.
    7177             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7178             :              * freeze" tracker maintenance to happen in only one place.)
    7179             :              */
    7180             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7181             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7182             :         }
    7183          12 :         else if (flags & FRM_RETURN_IS_XID)
    7184             :         {
    7185             :             /*
    7186             :              * xmax will become an updater Xid (original MultiXact's updater
    7187             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7188             :              */
    7189             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7190             : 
    7191             :             /*
    7192             :              * NB -- some of these transformations are only valid because we
    7193             :              * know the return Xid is a tuple updater (i.e. not merely a
    7194             :              * locker.) Also note that the only reason we don't explicitly
    7195             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7196             :              * t_infomask2 rather than t_infomask.
    7197             :              */
    7198           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7199           0 :             frz->xmax = newxmax;
    7200           0 :             if (flags & FRM_MARK_COMMITTED)
    7201           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7202           0 :             replace_xmax = true;
    7203             :         }
    7204          12 :         else if (flags & FRM_RETURN_IS_MULTI)
    7205             :         {
    7206             :             uint16      newbits;
    7207             :             uint16      newbits2;
    7208             : 
    7209             :             /*
    7210             :              * xmax is an old MultiXactId that we have to replace with a new
    7211             :              * MultiXactId, to carry forward two or more original member XIDs.
    7212             :              */
    7213             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7214             : 
    7215             :             /*
    7216             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7217             :              * here; that routine initializes the masks to all zeroes, which
    7218             :              * would lose other bits we need.  Doing it this way ensures all
    7219             :              * unrelated bits remain untouched.
    7220             :              */
    7221           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7222           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7223           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7224           2 :             frz->t_infomask |= newbits;
    7225           2 :             frz->t_infomask2 |= newbits2;
    7226           2 :             frz->xmax = newxmax;
    7227           2 :             replace_xmax = true;
    7228             :         }
    7229             :         else
    7230             :         {
    7231             :             /*
    7232             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7233             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7234             :              */
    7235             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7236             :             Assert(!TransactionIdIsValid(newxmax));
    7237             : 
    7238             :             /* Will set freeze_xmax flags in freeze plan below */
    7239          10 :             freeze_xmax = true;
    7240             :         }
    7241             : 
    7242             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7243             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7244             :     }
    7245    39062070 :     else if (TransactionIdIsNormal(xid))
    7246             :     {
    7247             :         /* Raw xmax is normal XID */
    7248    11737412 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7249           0 :             ereport(ERROR,
    7250             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7251             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7252             :                                      xid, cutoffs->relfrozenxid)));
    7253             : 
    7254             :         /* Will set freeze_xmax flags in freeze plan below */
    7255    11737412 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7256             : 
    7257             :         /*
    7258             :          * Verify that xmax aborted if and when freeze plan is executed,
    7259             :          * provided it's from an update. (A lock-only xmax can be removed
    7260             :          * independent of this, since the lock is released at xact end.)
    7261             :          */
    7262    11737412 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7263        1322 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7264             :     }
    7265    27324658 :     else if (!TransactionIdIsValid(xid))
    7266             :     {
    7267             :         /* Raw xmax is InvalidTransactionId XID */
    7268             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7269    27324658 :         xmax_already_frozen = true;
    7270             :     }
    7271             :     else
    7272           0 :         ereport(ERROR,
    7273             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7274             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7275             :                                  xid, tuple->t_infomask)));
    7276             : 
    7277    39062084 :     if (freeze_xmin)
    7278             :     {
    7279             :         Assert(!xmin_already_frozen);
    7280             : 
    7281     4534658 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7282             :     }
    7283    39062084 :     if (replace_xvac)
    7284             :     {
    7285             :         /*
    7286             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7287             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7288             :          * transaction succeeded.
    7289             :          */
    7290             :         Assert(pagefrz->freeze_required);
    7291           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7292           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7293             :         else
    7294           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7295             :     }
    7296             :     if (replace_xmax)
    7297             :     {
    7298             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7299             :         Assert(pagefrz->freeze_required);
    7300             : 
    7301             :         /* Already set replace_xmax flags in freeze plan earlier */
    7302             :     }
    7303    39062084 :     if (freeze_xmax)
    7304             :     {
    7305             :         Assert(!xmax_already_frozen && !replace_xmax);
    7306             : 
    7307        3074 :         frz->xmax = InvalidTransactionId;
    7308             : 
    7309             :         /*
    7310             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7311             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7312             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7313             :          */
    7314        3074 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7315        3074 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7316        3074 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7317        3074 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7318             :     }
    7319             : 
    7320             :     /*
    7321             :      * Determine if this tuple is already totally frozen, or will become
    7322             :      * totally frozen (provided caller executes freeze plans for the page)
    7323             :      */
    7324    76901550 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7325    37839466 :                        (freeze_xmax || xmax_already_frozen));
    7326             : 
    7327    39062084 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7328             :                                        xmax_already_frozen))
    7329             :     {
    7330             :         /*
    7331             :          * So far no previous tuple from the page made freezing mandatory.
    7332             :          * Does this tuple force caller to freeze the entire page?
    7333             :          */
    7334    14474848 :         pagefrz->freeze_required =
    7335    14474848 :             heap_tuple_should_freeze(tuple, cutoffs,
    7336             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7337             :                                      &pagefrz->NoFreezePageRelminMxid);
    7338             :     }
    7339             : 
    7340             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7341    39062084 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7342             : }
    7343             : 
    7344             : /*
    7345             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7346             :  * plans.
    7347             :  *
    7348             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7349             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7350             :  * successive VACUUMs that each decide against freezing the same page.
    7351             :  */
    7352             : void
    7353       44808 : heap_pre_freeze_checks(Buffer buffer,
    7354             :                        HeapTupleFreeze *tuples, int ntuples)
    7355             : {
    7356       44808 :     Page        page = BufferGetPage(buffer);
    7357             : 
    7358     1942564 :     for (int i = 0; i < ntuples; i++)
    7359             :     {
    7360     1897756 :         HeapTupleFreeze *frz = tuples + i;
    7361     1897756 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7362             :         HeapTupleHeader htup;
    7363             : 
    7364     1897756 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7365             : 
    7366             :         /* Deliberately avoid relying on tuple hint bits here */
    7367     1897756 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7368             :         {
    7369     1897754 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7370             : 
    7371             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7372     1897754 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7373           0 :                 ereport(ERROR,
    7374             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7375             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7376             :                                          xmin)));
    7377             :         }
    7378             : 
    7379             :         /*
    7380             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7381             :          * left behind by transactions that were in progress during a crash,
    7382             :          * so we can only check that xmax didn't commit
    7383             :          */
    7384     1897756 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7385             :         {
    7386         330 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7387             : 
    7388             :             Assert(TransactionIdIsNormal(xmax));
    7389         330 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7390           0 :                 ereport(ERROR,
    7391             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7392             :                          errmsg_internal("cannot freeze committed xmax %u",
    7393             :                                          xmax)));
    7394             :         }
    7395             :     }
    7396       44808 : }
    7397             : 
    7398             : /*
    7399             :  * Helper which executes freezing of one or more heap tuples on a page on
    7400             :  * behalf of caller.  Caller passes an array of tuple plans from
    7401             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7402             :  * Must be called in a critical section that also marks the buffer dirty and,
    7403             :  * if needed, emits WAL.
    7404             :  */
    7405             : void
    7406       44808 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7407             : {
    7408       44808 :     Page        page = BufferGetPage(buffer);
    7409             : 
    7410     1942564 :     for (int i = 0; i < ntuples; i++)
    7411             :     {
    7412     1897756 :         HeapTupleFreeze *frz = tuples + i;
    7413     1897756 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7414             :         HeapTupleHeader htup;
    7415             : 
    7416     1897756 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7417     1897756 :         heap_execute_freeze_tuple(htup, frz);
    7418             :     }
    7419       44808 : }
    7420             : 
    7421             : /*
    7422             :  * heap_freeze_tuple
    7423             :  *      Freeze tuple in place, without WAL logging.
    7424             :  *
    7425             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7426             :  */
    7427             : bool
    7428      732682 : heap_freeze_tuple(HeapTupleHeader tuple,
    7429             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7430             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7431             : {
    7432             :     HeapTupleFreeze frz;
    7433             :     bool        do_freeze;
    7434             :     bool        totally_frozen;
    7435             :     struct VacuumCutoffs cutoffs;
    7436             :     HeapPageFreeze pagefrz;
    7437             : 
    7438      732682 :     cutoffs.relfrozenxid = relfrozenxid;
    7439      732682 :     cutoffs.relminmxid = relminmxid;
    7440      732682 :     cutoffs.OldestXmin = FreezeLimit;
    7441      732682 :     cutoffs.OldestMxact = MultiXactCutoff;
    7442      732682 :     cutoffs.FreezeLimit = FreezeLimit;
    7443      732682 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7444             : 
    7445      732682 :     pagefrz.freeze_required = true;
    7446      732682 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7447      732682 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7448      732682 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7449      732682 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7450             : 
    7451      732682 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7452             :                                           &pagefrz, &frz, &totally_frozen);
    7453             : 
    7454             :     /*
    7455             :      * Note that because this is not a WAL-logged operation, we don't need to
    7456             :      * fill in the offset in the freeze record.
    7457             :      */
    7458             : 
    7459      732682 :     if (do_freeze)
    7460      547996 :         heap_execute_freeze_tuple(tuple, &frz);
    7461      732682 :     return do_freeze;
    7462             : }
    7463             : 
    7464             : /*
    7465             :  * For a given MultiXactId, return the hint bits that should be set in the
    7466             :  * tuple's infomask.
    7467             :  *
    7468             :  * Normally this should be called for a multixact that was just created, and
    7469             :  * so is on our local cache, so the GetMembers call is fast.
    7470             :  */
    7471             : static void
    7472        2374 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7473             :                        uint16 *new_infomask2)
    7474             : {
    7475             :     int         nmembers;
    7476             :     MultiXactMember *members;
    7477             :     int         i;
    7478        2374 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7479        2374 :     uint16      bits2 = 0;
    7480        2374 :     bool        has_update = false;
    7481        2374 :     LockTupleMode strongest = LockTupleKeyShare;
    7482             : 
    7483             :     /*
    7484             :      * We only use this in multis we just created, so they cannot be values
    7485             :      * pre-pg_upgrade.
    7486             :      */
    7487        2374 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7488             : 
    7489        7246 :     for (i = 0; i < nmembers; i++)
    7490             :     {
    7491             :         LockTupleMode mode;
    7492             : 
    7493             :         /*
    7494             :          * Remember the strongest lock mode held by any member of the
    7495             :          * multixact.
    7496             :          */
    7497        4872 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7498        4872 :         if (mode > strongest)
    7499        1322 :             strongest = mode;
    7500             : 
    7501             :         /* See what other bits we need */
    7502        4872 :         switch (members[i].status)
    7503             :         {
    7504        4490 :             case MultiXactStatusForKeyShare:
    7505             :             case MultiXactStatusForShare:
    7506             :             case MultiXactStatusForNoKeyUpdate:
    7507        4490 :                 break;
    7508             : 
    7509         104 :             case MultiXactStatusForUpdate:
    7510         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7511         104 :                 break;
    7512             : 
    7513         258 :             case MultiXactStatusNoKeyUpdate:
    7514         258 :                 has_update = true;
    7515         258 :                 break;
    7516             : 
    7517          20 :             case MultiXactStatusUpdate:
    7518          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7519          20 :                 has_update = true;
    7520          20 :                 break;
    7521             :         }
    7522             :     }
    7523             : 
    7524        2374 :     if (strongest == LockTupleExclusive ||
    7525             :         strongest == LockTupleNoKeyExclusive)
    7526         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7527        1936 :     else if (strongest == LockTupleShare)
    7528         878 :         bits |= HEAP_XMAX_SHR_LOCK;
    7529        1058 :     else if (strongest == LockTupleKeyShare)
    7530        1058 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7531             : 
    7532        2374 :     if (!has_update)
    7533        2096 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7534             : 
    7535        2374 :     if (nmembers > 0)
    7536        2374 :         pfree(members);
    7537             : 
    7538        2374 :     *new_infomask = bits;
    7539        2374 :     *new_infomask2 = bits2;
    7540        2374 : }
    7541             : 
    7542             : /*
    7543             :  * MultiXactIdGetUpdateXid
    7544             :  *
    7545             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7546             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7547             :  * transaction.
    7548             :  *
    7549             :  * Caller is expected to check the status of the updating transaction, if
    7550             :  * necessary.
    7551             :  */
    7552             : static TransactionId
    7553         980 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7554             : {
    7555         980 :     TransactionId update_xact = InvalidTransactionId;
    7556             :     MultiXactMember *members;
    7557             :     int         nmembers;
    7558             : 
    7559             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7560             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7561             : 
    7562             :     /*
    7563             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7564             :      * pre-pg_upgrade.
    7565             :      */
    7566         980 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7567             : 
    7568         980 :     if (nmembers > 0)
    7569             :     {
    7570             :         int         i;
    7571             : 
    7572        2548 :         for (i = 0; i < nmembers; i++)
    7573             :         {
    7574             :             /* Ignore lockers */
    7575        2548 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7576        1568 :                 continue;
    7577             : 
    7578             :             /* there can be at most one updater */
    7579             :             Assert(update_xact == InvalidTransactionId);
    7580         980 :             update_xact = members[i].xid;
    7581             : #ifndef USE_ASSERT_CHECKING
    7582             : 
    7583             :             /*
    7584             :              * in an assert-enabled build, walk the whole array to ensure
    7585             :              * there's no other updater.
    7586             :              */
    7587         980 :             break;
    7588             : #endif
    7589             :         }
    7590             : 
    7591         980 :         pfree(members);
    7592             :     }
    7593             : 
    7594         980 :     return update_xact;
    7595             : }
    7596             : 
    7597             : /*
    7598             :  * HeapTupleGetUpdateXid
    7599             :  *      As above, but use a HeapTupleHeader
    7600             :  *
    7601             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7602             :  * checking the hint bits.
    7603             :  */
    7604             : TransactionId
    7605         964 : HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
    7606             : {
    7607         964 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tup),
    7608         964 :                                    tup->t_infomask);
    7609             : }
    7610             : 
    7611             : /*
    7612             :  * Does the given multixact conflict with the current transaction grabbing a
    7613             :  * tuple lock of the given strength?
    7614             :  *
    7615             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7616             :  *
    7617             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7618             :  * transaction is a member of the given multixact.
    7619             :  */
    7620             : static bool
    7621         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7622             :                         LockTupleMode lockmode, bool *current_is_member)
    7623             : {
    7624             :     int         nmembers;
    7625             :     MultiXactMember *members;
    7626         198 :     bool        result = false;
    7627         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7628             : 
    7629         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7630           0 :         return false;
    7631             : 
    7632         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7633         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7634         198 :     if (nmembers >= 0)
    7635             :     {
    7636             :         int         i;
    7637             : 
    7638         618 :         for (i = 0; i < nmembers; i++)
    7639             :         {
    7640             :             TransactionId memxid;
    7641             :             LOCKMODE    memlockmode;
    7642             : 
    7643         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7644             :                 break;
    7645             : 
    7646         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7647             : 
    7648             :             /* ignore members from current xact (but track their presence) */
    7649         420 :             memxid = members[i].xid;
    7650         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7651             :             {
    7652         184 :                 if (current_is_member != NULL)
    7653         156 :                     *current_is_member = true;
    7654         184 :                 continue;
    7655             :             }
    7656         236 :             else if (result)
    7657          16 :                 continue;
    7658             : 
    7659             :             /* ignore members that don't conflict with the lock we want */
    7660         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7661         142 :                 continue;
    7662             : 
    7663          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7664             :             {
    7665             :                 /* ignore aborted updaters */
    7666          34 :                 if (TransactionIdDidAbort(memxid))
    7667           2 :                     continue;
    7668             :             }
    7669             :             else
    7670             :             {
    7671             :                 /* ignore lockers-only that are no longer in progress */
    7672          44 :                 if (!TransactionIdIsInProgress(memxid))
    7673          14 :                     continue;
    7674             :             }
    7675             : 
    7676             :             /*
    7677             :              * Whatever remains are either live lockers that conflict with our
    7678             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7679             :              * with what we want.  Set up to return true, but keep going to
    7680             :              * look for the current transaction among the multixact members,
    7681             :              * if needed.
    7682             :              */
    7683          62 :             result = true;
    7684             :         }
    7685         198 :         pfree(members);
    7686             :     }
    7687             : 
    7688         198 :     return result;
    7689             : }
    7690             : 
    7691             : /*
    7692             :  * Do_MultiXactIdWait
    7693             :  *      Actual implementation for the two functions below.
    7694             :  *
    7695             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7696             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7697             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7698             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7699             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7700             :  * context information for error messages.  'remaining', if not NULL, receives
    7701             :  * the number of members that are still running, including any (non-aborted)
    7702             :  * subtransactions of our own transaction.  'logLockFailure' indicates whether
    7703             :  * to log details when a lock acquisition fails with 'nowait' enabled.
    7704             :  *
    7705             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7706             :  * members that belong to the current backend are *not* waited for, however;
    7707             :  * this would not merely be useless but would lead to Assert failure inside
    7708             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7709             :  * transactions *of other backends* that were members of the MultiXactId
    7710             :  * that conflict with the requested status are dead (and no new ones can have
    7711             :  * been added, since it is not legal to add members to an existing
    7712             :  * MultiXactId).
    7713             :  *
    7714             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7715             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7716             :  *
    7717             :  * Note that in case we return false, the number of remaining members is
    7718             :  * not to be trusted.
    7719             :  */
    7720             : static bool
    7721         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7722             :                    uint16 infomask, bool nowait,
    7723             :                    Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
    7724             :                    int *remaining, bool logLockFailure)
    7725             : {
    7726         116 :     bool        result = true;
    7727             :     MultiXactMember *members;
    7728             :     int         nmembers;
    7729         116 :     int         remain = 0;
    7730             : 
    7731             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7732         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7733         116 :         GetMultiXactIdMembers(multi, &members, false,
    7734         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7735             : 
    7736         116 :     if (nmembers >= 0)
    7737             :     {
    7738             :         int         i;
    7739             : 
    7740         374 :         for (i = 0; i < nmembers; i++)
    7741             :         {
    7742         266 :             TransactionId memxid = members[i].xid;
    7743         266 :             MultiXactStatus memstatus = members[i].status;
    7744             : 
    7745         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7746             :             {
    7747          48 :                 remain++;
    7748          48 :                 continue;
    7749             :             }
    7750             : 
    7751         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7752         218 :                                      LOCKMODE_from_mxstatus(status)))
    7753             :             {
    7754          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7755          16 :                     remain++;
    7756          44 :                 continue;
    7757             :             }
    7758             : 
    7759             :             /*
    7760             :              * This member conflicts with our multi, so we have to sleep (or
    7761             :              * return failure, if asked to avoid waiting.)
    7762             :              *
    7763             :              * Note that we don't set up an error context callback ourselves,
    7764             :              * but instead we pass the info down to XactLockTableWait.  This
    7765             :              * might seem a bit wasteful because the context is set up and
    7766             :              * tore down for each member of the multixact, but in reality it
    7767             :              * should be barely noticeable, and it avoids duplicate code.
    7768             :              */
    7769         174 :             if (nowait)
    7770             :             {
    7771           8 :                 result = ConditionalXactLockTableWait(memxid, logLockFailure);
    7772           8 :                 if (!result)
    7773           8 :                     break;
    7774             :             }
    7775             :             else
    7776         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7777             :         }
    7778             : 
    7779         116 :         pfree(members);
    7780             :     }
    7781             : 
    7782         116 :     if (remaining)
    7783          20 :         *remaining = remain;
    7784             : 
    7785         116 :     return result;
    7786             : }
    7787             : 
    7788             : /*
    7789             :  * MultiXactIdWait
    7790             :  *      Sleep on a MultiXactId.
    7791             :  *
    7792             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7793             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7794             :  *
    7795             :  * We return (in *remaining, if not NULL) the number of members that are still
    7796             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7797             :  */
    7798             : static void
    7799         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7800             :                 Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
    7801             :                 int *remaining)
    7802             : {
    7803         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7804             :                               rel, ctid, oper, remaining, false);
    7805         108 : }
    7806             : 
    7807             : /*
    7808             :  * ConditionalMultiXactIdWait
    7809             :  *      As above, but only lock if we can get the lock without blocking.
    7810             :  *
    7811             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7812             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7813             :  *
    7814             :  * If the multixact is now all gone, return true.  Returns false if some
    7815             :  * transactions might still be running.
    7816             :  *
    7817             :  * We return (in *remaining, if not NULL) the number of members that are still
    7818             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7819             :  */
    7820             : static bool
    7821           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7822             :                            uint16 infomask, Relation rel, int *remaining,
    7823             :                            bool logLockFailure)
    7824             : {
    7825           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7826             :                               rel, NULL, XLTW_None, remaining, logLockFailure);
    7827             : }
    7828             : 
    7829             : /*
    7830             :  * heap_tuple_needs_eventual_freeze
    7831             :  *
    7832             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7833             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7834             :  */
    7835             : bool
    7836      253704 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7837             : {
    7838             :     TransactionId xid;
    7839             : 
    7840             :     /*
    7841             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7842             :      * frozen.
    7843             :      */
    7844      253704 :     xid = HeapTupleHeaderGetXmin(tuple);
    7845      253704 :     if (TransactionIdIsNormal(xid))
    7846        4844 :         return true;
    7847             : 
    7848             :     /*
    7849             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7850             :      */
    7851      248860 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7852             :     {
    7853             :         MultiXactId multi;
    7854             : 
    7855           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7856           0 :         if (MultiXactIdIsValid(multi))
    7857           0 :             return true;
    7858             :     }
    7859             :     else
    7860             :     {
    7861      248860 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7862      248860 :         if (TransactionIdIsNormal(xid))
    7863          14 :             return true;
    7864             :     }
    7865             : 
    7866      248846 :     if (tuple->t_infomask & HEAP_MOVED)
    7867             :     {
    7868           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7869           0 :         if (TransactionIdIsNormal(xid))
    7870           0 :             return true;
    7871             :     }
    7872             : 
    7873      248846 :     return false;
    7874             : }
    7875             : 
    7876             : /*
    7877             :  * heap_tuple_should_freeze
    7878             :  *
    7879             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7880             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7881             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7882             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7883             :  *
    7884             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7885             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7886             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7887             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7888             :  * point that it fully commits to not freezing the tuple/page in question.
    7889             :  */
    7890             : bool
    7891    14478970 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7892             :                          const struct VacuumCutoffs *cutoffs,
    7893             :                          TransactionId *NoFreezePageRelfrozenXid,
    7894             :                          MultiXactId *NoFreezePageRelminMxid)
    7895             : {
    7896             :     TransactionId xid;
    7897             :     MultiXactId multi;
    7898    14478970 :     bool        freeze = false;
    7899             : 
    7900             :     /* First deal with xmin */
    7901    14478970 :     xid = HeapTupleHeaderGetXmin(tuple);
    7902    14478970 :     if (TransactionIdIsNormal(xid))
    7903             :     {
    7904             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7905     3401082 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7906       45660 :             *NoFreezePageRelfrozenXid = xid;
    7907     3401082 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7908       41908 :             freeze = true;
    7909             :     }
    7910             : 
    7911             :     /* Now deal with xmax */
    7912    14478970 :     xid = InvalidTransactionId;
    7913    14478970 :     multi = InvalidMultiXactId;
    7914    14478970 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7915           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7916             :     else
    7917    14478966 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7918             : 
    7919    14478970 :     if (TransactionIdIsNormal(xid))
    7920             :     {
    7921             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7922             :         /* xmax is a non-permanent XID */
    7923    11588786 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7924           4 :             *NoFreezePageRelfrozenXid = xid;
    7925    11588786 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7926          52 :             freeze = true;
    7927             :     }
    7928     2890184 :     else if (!MultiXactIdIsValid(multi))
    7929             :     {
    7930             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7931             :     }
    7932           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7933             :     {
    7934             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7935           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7936           0 :             *NoFreezePageRelminMxid = multi;
    7937             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7938           0 :         freeze = true;
    7939             :     }
    7940             :     else
    7941             :     {
    7942             :         /* xmax is a MultiXactId that may have an updater XID */
    7943             :         MultiXactMember *members;
    7944             :         int         nmembers;
    7945             : 
    7946             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7947           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7948           4 :             *NoFreezePageRelminMxid = multi;
    7949           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7950           4 :             freeze = true;
    7951             : 
    7952             :         /* need to check whether any member of the mxact is old */
    7953           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7954           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7955             : 
    7956          10 :         for (int i = 0; i < nmembers; i++)
    7957             :         {
    7958           6 :             xid = members[i].xid;
    7959             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7960           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7961           0 :                 *NoFreezePageRelfrozenXid = xid;
    7962           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7963           0 :                 freeze = true;
    7964             :         }
    7965           4 :         if (nmembers > 0)
    7966           2 :             pfree(members);
    7967             :     }
    7968             : 
    7969    14478970 :     if (tuple->t_infomask & HEAP_MOVED)
    7970             :     {
    7971           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7972           0 :         if (TransactionIdIsNormal(xid))
    7973             :         {
    7974             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7975           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7976           0 :                 *NoFreezePageRelfrozenXid = xid;
    7977             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7978           0 :             freeze = true;
    7979             :         }
    7980             :     }
    7981             : 
    7982    14478970 :     return freeze;
    7983             : }
    7984             : 
    7985             : /*
    7986             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7987             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7988             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7989             :  * or index deletion.
    7990             :  *
    7991             :  * Caller must initialize its value to InvalidTransactionId, which is
    7992             :  * generally interpreted as "definitely no need for a recovery conflict".
    7993             :  * Final value must reflect all heap tuples that caller will physically remove
    7994             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7995             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7996             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7997             :  */
    7998             : void
    7999     3060040 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    8000             :                                       TransactionId *snapshotConflictHorizon)
    8001             : {
    8002     3060040 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    8003     3060040 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    8004     3060040 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    8005             : 
    8006     3060040 :     if (tuple->t_infomask & HEAP_MOVED)
    8007             :     {
    8008           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    8009           0 :             *snapshotConflictHorizon = xvac;
    8010             :     }
    8011             : 
    8012             :     /*
    8013             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    8014             :      * updated/deleted by the inserting transaction.
    8015             :      *
    8016             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    8017             :      */
    8018     3060040 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    8019      205524 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    8020             :     {
    8021     5501074 :         if (xmax != xmin &&
    8022     2595754 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    8023      193456 :             *snapshotConflictHorizon = xmax;
    8024             :     }
    8025     3060040 : }
    8026             : 
    8027             : #ifdef USE_PREFETCH
    8028             : /*
    8029             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    8030             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    8031             :  * we can prefetch, and which have already been prefetched; each call to this
    8032             :  * function picks up where the previous call left off.
    8033             :  *
    8034             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    8035             :  * by heap block, with all TIDs for each block appearing together in exactly
    8036             :  * one group.
    8037             :  */
    8038             : static void
    8039       38438 : index_delete_prefetch_buffer(Relation rel,
    8040             :                              IndexDeletePrefetchState *prefetch_state,
    8041             :                              int prefetch_count)
    8042             : {
    8043       38438 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    8044       38438 :     int         count = 0;
    8045             :     int         i;
    8046       38438 :     int         ndeltids = prefetch_state->ndeltids;
    8047       38438 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    8048             : 
    8049       38438 :     for (i = prefetch_state->next_item;
    8050     1334180 :          i < ndeltids && count < prefetch_count;
    8051     1295742 :          i++)
    8052             :     {
    8053     1295742 :         ItemPointer htid = &deltids[i].tid;
    8054             : 
    8055     2580046 :         if (cur_hblkno == InvalidBlockNumber ||
    8056     1284304 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    8057             :         {
    8058       34972 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    8059       34972 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    8060       34972 :             count++;
    8061             :         }
    8062             :     }
    8063             : 
    8064             :     /*
    8065             :      * Save the prefetch position so that next time we can continue from that
    8066             :      * position.
    8067             :      */
    8068       38438 :     prefetch_state->next_item = i;
    8069       38438 :     prefetch_state->cur_hblkno = cur_hblkno;
    8070       38438 : }
    8071             : #endif
    8072             : 
    8073             : /*
    8074             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    8075             :  * involving an invalid TID in index AM caller's index page.
    8076             :  *
    8077             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    8078             :  * lock on the index page containing the TIDs we examine here, so we don't
    8079             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    8080             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    8081             :  * heap-only tuple, which is not the case during standard index scans.
    8082             :  */
    8083             : static inline void
    8084     1073430 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    8085             :                         Page page, OffsetNumber maxoff,
    8086             :                         const ItemPointerData *htid, TM_IndexStatus *istatus)
    8087             : {
    8088     1073430 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    8089             :     ItemId      iid;
    8090             : 
    8091             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    8092             : 
    8093     1073430 :     if (unlikely(indexpagehoffnum > maxoff))
    8094           0 :         ereport(ERROR,
    8095             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8096             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    8097             :                                  ItemPointerGetBlockNumber(htid),
    8098             :                                  indexpagehoffnum,
    8099             :                                  istatus->idxoffnum, delstate->iblknum,
    8100             :                                  RelationGetRelationName(delstate->irel))));
    8101             : 
    8102     1073430 :     iid = PageGetItemId(page, indexpagehoffnum);
    8103     1073430 :     if (unlikely(!ItemIdIsUsed(iid)))
    8104           0 :         ereport(ERROR,
    8105             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8106             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    8107             :                                  ItemPointerGetBlockNumber(htid),
    8108             :                                  indexpagehoffnum,
    8109             :                                  istatus->idxoffnum, delstate->iblknum,
    8110             :                                  RelationGetRelationName(delstate->irel))));
    8111             : 
    8112     1073430 :     if (ItemIdHasStorage(iid))
    8113             :     {
    8114             :         HeapTupleHeader htup;
    8115             : 
    8116             :         Assert(ItemIdIsNormal(iid));
    8117      636048 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    8118             : 
    8119      636048 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    8120           0 :             ereport(ERROR,
    8121             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    8122             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    8123             :                                      ItemPointerGetBlockNumber(htid),
    8124             :                                      indexpagehoffnum,
    8125             :                                      istatus->idxoffnum, delstate->iblknum,
    8126             :                                      RelationGetRelationName(delstate->irel))));
    8127             :     }
    8128     1073430 : }
    8129             : 
    8130             : /*
    8131             :  * heapam implementation of tableam's index_delete_tuples interface.
    8132             :  *
    8133             :  * This helper function is called by index AMs during index tuple deletion.
    8134             :  * See tableam header comments for an explanation of the interface implemented
    8135             :  * here and a general theory of operation.  Note that each call here is either
    8136             :  * a simple index deletion call, or a bottom-up index deletion call.
    8137             :  *
    8138             :  * It's possible for this to generate a fair amount of I/O, since we may be
    8139             :  * deleting hundreds of tuples from a single index block.  To amortize that
    8140             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    8141             :  * the same heap block.
    8142             :  */
    8143             : TransactionId
    8144       11438 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    8145             : {
    8146             :     /* Initial assumption is that earlier pruning took care of conflict */
    8147       11438 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    8148       11438 :     BlockNumber blkno = InvalidBlockNumber;
    8149       11438 :     Buffer      buf = InvalidBuffer;
    8150       11438 :     Page        page = NULL;
    8151       11438 :     OffsetNumber maxoff = InvalidOffsetNumber;
    8152             :     TransactionId priorXmax;
    8153             : #ifdef USE_PREFETCH
    8154             :     IndexDeletePrefetchState prefetch_state;
    8155             :     int         prefetch_distance;
    8156             : #endif
    8157             :     SnapshotData SnapshotNonVacuumable;
    8158       11438 :     int         finalndeltids = 0,
    8159       11438 :                 nblocksaccessed = 0;
    8160             : 
    8161             :     /* State that's only used in bottom-up index deletion case */
    8162       11438 :     int         nblocksfavorable = 0;
    8163       11438 :     int         curtargetfreespace = delstate->bottomupfreespace,
    8164       11438 :                 lastfreespace = 0,
    8165       11438 :                 actualfreespace = 0;
    8166       11438 :     bool        bottomup_final_block = false;
    8167             : 
    8168       11438 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8169             : 
    8170             :     /* Sort caller's deltids array by TID for further processing */
    8171       11438 :     index_delete_sort(delstate);
    8172             : 
    8173             :     /*
    8174             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8175             :      * greatest number of promising TIDs are to be found, and determine how
    8176             :      * many blocks from the start of sorted array should be considered
    8177             :      * favorable.  This will also shrink the deltids array in order to
    8178             :      * eliminate completely unfavorable blocks up front.
    8179             :      */
    8180       11438 :     if (delstate->bottomup)
    8181        3866 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8182             : 
    8183             : #ifdef USE_PREFETCH
    8184             :     /* Initialize prefetch state. */
    8185       11438 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8186       11438 :     prefetch_state.next_item = 0;
    8187       11438 :     prefetch_state.ndeltids = delstate->ndeltids;
    8188       11438 :     prefetch_state.deltids = delstate->deltids;
    8189             : 
    8190             :     /*
    8191             :      * Determine the prefetch distance that we will attempt to maintain.
    8192             :      *
    8193             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8194             :      * sure that isn't a catalog relation before we call code that does
    8195             :      * syscache lookups, to avoid risk of deadlock.
    8196             :      */
    8197       11438 :     if (IsCatalogRelation(rel))
    8198        8248 :         prefetch_distance = maintenance_io_concurrency;
    8199             :     else
    8200             :         prefetch_distance =
    8201        3190 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8202             : 
    8203             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8204       11438 :     if (delstate->bottomup)
    8205             :     {
    8206             :         Assert(nblocksfavorable >= 1);
    8207             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8208        3866 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8209             :     }
    8210             : 
    8211             :     /* Start prefetching. */
    8212       11438 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8213             : #endif
    8214             : 
    8215             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8216             :     Assert(delstate->ndeltids > 0);
    8217     1084868 :     for (int i = 0; i < delstate->ndeltids; i++)
    8218             :     {
    8219     1077296 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8220     1077296 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8221     1077296 :         ItemPointer htid = &ideltid->tid;
    8222             :         OffsetNumber offnum;
    8223             : 
    8224             :         /*
    8225             :          * Read buffer, and perform required extra steps each time a new block
    8226             :          * is encountered.  Avoid refetching if it's the same block as the one
    8227             :          * from the last htid.
    8228             :          */
    8229     2143154 :         if (blkno == InvalidBlockNumber ||
    8230     1065858 :             ItemPointerGetBlockNumber(htid) != blkno)
    8231             :         {
    8232             :             /*
    8233             :              * Consider giving up early for bottom-up index deletion caller
    8234             :              * first. (Only prefetch next-next block afterwards, when it
    8235             :              * becomes clear that we're at least going to access the next
    8236             :              * block in line.)
    8237             :              *
    8238             :              * Sometimes the first block frees so much space for bottom-up
    8239             :              * caller that the deletion process can end without accessing any
    8240             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8241             :              * per bottom-up deletion operation, though.
    8242             :              */
    8243       30866 :             if (delstate->bottomup)
    8244             :             {
    8245             :                 /*
    8246             :                  * We often allow caller to delete a few additional items
    8247             :                  * whose entries we reached after the point that space target
    8248             :                  * from caller was satisfied.  The cost of accessing the page
    8249             :                  * was already paid at that point, so it made sense to finish
    8250             :                  * it off.  When that happened, we finalize everything here
    8251             :                  * (by finishing off the whole bottom-up deletion operation
    8252             :                  * without needlessly paying the cost of accessing any more
    8253             :                  * blocks).
    8254             :                  */
    8255        8526 :                 if (bottomup_final_block)
    8256         282 :                     break;
    8257             : 
    8258             :                 /*
    8259             :                  * Give up when we didn't enable our caller to free any
    8260             :                  * additional space as a result of processing the page that we
    8261             :                  * just finished up with.  This rule is the main way in which
    8262             :                  * we keep the cost of bottom-up deletion under control.
    8263             :                  */
    8264        8244 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8265        3584 :                     break;
    8266        4660 :                 lastfreespace = actualfreespace;    /* for next time */
    8267             : 
    8268             :                 /*
    8269             :                  * Deletion operation (which is bottom-up) will definitely
    8270             :                  * access the next block in line.  Prepare for that now.
    8271             :                  *
    8272             :                  * Decay target free space so that we don't hang on for too
    8273             :                  * long with a marginal case. (Space target is only truly
    8274             :                  * helpful when it allows us to recognize that we don't need
    8275             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8276             :                  * agreeable workload characteristics.)
    8277             :                  *
    8278             :                  * We are a bit more patient when we encounter contiguous
    8279             :                  * blocks, though: these are treated as favorable blocks.  The
    8280             :                  * decay process is only applied when the next block in line
    8281             :                  * is not a favorable/contiguous block.  This is not an
    8282             :                  * exception to the general rule; we still insist on finding
    8283             :                  * at least one deletable item per block accessed.  See
    8284             :                  * bottomup_nblocksfavorable() for full details of the theory
    8285             :                  * behind favorable blocks and heap block locality in general.
    8286             :                  *
    8287             :                  * Note: The first block in line is always treated as a
    8288             :                  * favorable block, so the earliest possible point that the
    8289             :                  * decay can be applied is just before we access the second
    8290             :                  * block in line.  The Assert() verifies this for us.
    8291             :                  */
    8292             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8293        4660 :                 if (nblocksfavorable > 0)
    8294        4188 :                     nblocksfavorable--;
    8295             :                 else
    8296         472 :                     curtargetfreespace /= 2;
    8297             :             }
    8298             : 
    8299             :             /* release old buffer */
    8300       27000 :             if (BufferIsValid(buf))
    8301       15562 :                 UnlockReleaseBuffer(buf);
    8302             : 
    8303       27000 :             blkno = ItemPointerGetBlockNumber(htid);
    8304       27000 :             buf = ReadBuffer(rel, blkno);
    8305       27000 :             nblocksaccessed++;
    8306             :             Assert(!delstate->bottomup ||
    8307             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8308             : 
    8309             : #ifdef USE_PREFETCH
    8310             : 
    8311             :             /*
    8312             :              * To maintain the prefetch distance, prefetch one more page for
    8313             :              * each page we read.
    8314             :              */
    8315       27000 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8316             : #endif
    8317             : 
    8318       27000 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8319             : 
    8320       27000 :             page = BufferGetPage(buf);
    8321       27000 :             maxoff = PageGetMaxOffsetNumber(page);
    8322             :         }
    8323             : 
    8324             :         /*
    8325             :          * In passing, detect index corruption involving an index page with a
    8326             :          * TID that points to a location in the heap that couldn't possibly be
    8327             :          * correct.  We only do this with actual TIDs from caller's index page
    8328             :          * (not items reached by traversing through a HOT chain).
    8329             :          */
    8330     1073430 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8331             : 
    8332     1073430 :         if (istatus->knowndeletable)
    8333             :             Assert(!delstate->bottomup && !istatus->promising);
    8334             :         else
    8335             :         {
    8336      807330 :             ItemPointerData tmp = *htid;
    8337             :             HeapTupleData heapTuple;
    8338             : 
    8339             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8340      807330 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8341             :                                        &heapTuple, NULL, true))
    8342      485638 :                 continue;       /* can't delete entry */
    8343             : 
    8344             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8345      321692 :             istatus->knowndeletable = true;
    8346             : 
    8347             :             /* Maintain index free space info for bottom-up deletion case */
    8348      321692 :             if (delstate->bottomup)
    8349             :             {
    8350             :                 Assert(istatus->freespace > 0);
    8351       16350 :                 actualfreespace += istatus->freespace;
    8352       16350 :                 if (actualfreespace >= curtargetfreespace)
    8353        4350 :                     bottomup_final_block = true;
    8354             :             }
    8355             :         }
    8356             : 
    8357             :         /*
    8358             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8359             :          * whole by advancing current value using heap tuple headers.  This is
    8360             :          * loosely based on the logic for pruning a HOT chain.
    8361             :          */
    8362      587792 :         offnum = ItemPointerGetOffsetNumber(htid);
    8363      587792 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8364             :         for (;;)
    8365       41622 :         {
    8366             :             ItemId      lp;
    8367             :             HeapTupleHeader htup;
    8368             : 
    8369             :             /* Sanity check (pure paranoia) */
    8370      629414 :             if (offnum < FirstOffsetNumber)
    8371           0 :                 break;
    8372             : 
    8373             :             /*
    8374             :              * An offset past the end of page's line pointer array is possible
    8375             :              * when the array was truncated
    8376             :              */
    8377      629414 :             if (offnum > maxoff)
    8378           0 :                 break;
    8379             : 
    8380      629414 :             lp = PageGetItemId(page, offnum);
    8381      629414 :             if (ItemIdIsRedirected(lp))
    8382             :             {
    8383       18730 :                 offnum = ItemIdGetRedirect(lp);
    8384       18730 :                 continue;
    8385             :             }
    8386             : 
    8387             :             /*
    8388             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8389             :              * entry marked knowndeletable by our caller up front).  No heap
    8390             :              * tuple headers get examined for an htid that leads us to an
    8391             :              * LP_DEAD item.  This is okay because the earlier pruning
    8392             :              * operation that made the line pointer LP_DEAD in the first place
    8393             :              * must have considered the original tuple header as part of
    8394             :              * generating its own snapshotConflictHorizon value.
    8395             :              *
    8396             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8397             :              * the same strategy that index vacuuming uses in all cases. Index
    8398             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8399             :              * field of their own for this reason.
    8400             :              */
    8401      610684 :             if (!ItemIdIsNormal(lp))
    8402      387750 :                 break;
    8403             : 
    8404      222934 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8405             : 
    8406             :             /*
    8407             :              * Check the tuple XMIN against prior XMAX, if any
    8408             :              */
    8409      245826 :             if (TransactionIdIsValid(priorXmax) &&
    8410       22892 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8411           0 :                 break;
    8412             : 
    8413      222934 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8414             :                                                   &snapshotConflictHorizon);
    8415             : 
    8416             :             /*
    8417             :              * If the tuple is not HOT-updated, then we are at the end of this
    8418             :              * HOT-chain.  No need to visit later tuples from the same update
    8419             :              * chain (they get their own index entries) -- just move on to
    8420             :              * next htid from index AM caller.
    8421             :              */
    8422      222934 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8423      200042 :                 break;
    8424             : 
    8425             :             /* Advance to next HOT chain member */
    8426             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8427       22892 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8428       22892 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8429             :         }
    8430             : 
    8431             :         /* Enable further/final shrinking of deltids for caller */
    8432      587792 :         finalndeltids = i + 1;
    8433             :     }
    8434             : 
    8435       11438 :     UnlockReleaseBuffer(buf);
    8436             : 
    8437             :     /*
    8438             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8439             :      * is not just a minor optimization.  Final deltids array size might be
    8440             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8441             :      * ndeltids being zero in all cases with zero total deletable entries.
    8442             :      */
    8443             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8444       11438 :     delstate->ndeltids = finalndeltids;
    8445             : 
    8446       11438 :     return snapshotConflictHorizon;
    8447             : }
    8448             : 
    8449             : /*
    8450             :  * Specialized inlineable comparison function for index_delete_sort()
    8451             :  */
    8452             : static inline int
    8453    25145272 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8454             : {
    8455    25145272 :     ItemPointer tid1 = &deltid1->tid;
    8456    25145272 :     ItemPointer tid2 = &deltid2->tid;
    8457             : 
    8458             :     {
    8459    25145272 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8460    25145272 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8461             : 
    8462    25145272 :         if (blk1 != blk2)
    8463    10222084 :             return (blk1 < blk2) ? -1 : 1;
    8464             :     }
    8465             :     {
    8466    14923188 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8467    14923188 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8468             : 
    8469    14923188 :         if (pos1 != pos2)
    8470    14923188 :             return (pos1 < pos2) ? -1 : 1;
    8471             :     }
    8472             : 
    8473             :     Assert(false);
    8474             : 
    8475           0 :     return 0;
    8476             : }
    8477             : 
    8478             : /*
    8479             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8480             :  * processing by heap_index_delete_tuples().
    8481             :  *
    8482             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8483             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8484             :  * We use shellsort for this because it's easy to specialize, compiles to
    8485             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8486             :  * (which are typical here).
    8487             :  */
    8488             : static void
    8489       11438 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8490             : {
    8491       11438 :     TM_IndexDelete *deltids = delstate->deltids;
    8492       11438 :     int         ndeltids = delstate->ndeltids;
    8493             : 
    8494             :     /*
    8495             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8496             :      *
    8497             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8498             :      * all supported BLCKSZ values.
    8499             :      */
    8500       11438 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8501             : 
    8502             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8503             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8504             :                      "element size exceeds 8 bytes");
    8505             : 
    8506      114380 :     for (int g = 0; g < lengthof(gaps); g++)
    8507             :     {
    8508    14981242 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8509             :         {
    8510    14878300 :             TM_IndexDelete d = deltids[i];
    8511    14878300 :             int         j = i;
    8512             : 
    8513    25874916 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8514             :             {
    8515    10996616 :                 deltids[j] = deltids[j - hi];
    8516    10996616 :                 j -= hi;
    8517             :             }
    8518    14878300 :             deltids[j] = d;
    8519             :         }
    8520             :     }
    8521       11438 : }
    8522             : 
    8523             : /*
    8524             :  * Returns how many blocks should be considered favorable/contiguous for a
    8525             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8526             :  * from and includes the first block in line.
    8527             :  *
    8528             :  * There is always at least one favorable block during bottom-up index
    8529             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8530             :  * first block in line (the only favorable block) can be thought of as a
    8531             :  * degenerate array of contiguous blocks that consists of a single block.
    8532             :  * heap_index_delete_tuples() will expect this.
    8533             :  *
    8534             :  * Caller passes blockgroups, a description of the final order that deltids
    8535             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8536             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8537             :  * only passes deltids to us so that we can interpret blockgroups).
    8538             :  *
    8539             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8540             :  * since in general the main factor that determines which blocks we visit is
    8541             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8542             :  * We're not really targeting the general case, though -- the actual goal is
    8543             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8544             :  * The effects of most of the heuristics we apply are only noticeable in the
    8545             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8546             :  * passes.
    8547             :  *
    8548             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8549             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8550             :  * accessed contiguously, in the sense that each newly visited block is the
    8551             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8552             :  * close enough to it).  It will likely be cheaper to access more favorable
    8553             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8554             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8555             :  * (or a matter of further correlated version churn) before all blocks that
    8556             :  * appear together as a single large batch of favorable blocks get accessed by
    8557             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8558             :  * appear almost constantly or not even once (it all depends on per-index
    8559             :  * workload characteristics).
    8560             :  *
    8561             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8562             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8563             :  * batched together, at least with workloads that are naturally amenable to
    8564             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8565             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8566             :  * enables temporal locality of access, since sorting by heap block number
    8567             :  * naturally tends to make the bottom-up processing order deterministic.
    8568             :  *
    8569             :  * Consider the following example to get a sense of how temporal locality
    8570             :  * might matter: There is a heap relation with several indexes, each of which
    8571             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8572             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8573             :  * the indexes are logically modified by the UPDATE statements (if they were
    8574             :  * then bottom-up index deletion would not be triggered in the first place).
    8575             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8576             :  * heap_update() call) will have the same heap TID in each and every index.
    8577             :  * Since these indexes are low cardinality and never get logically modified,
    8578             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8579             :  * in approximately sequential order.  Temporal locality of access occurs due
    8580             :  * to bottom-up deletion passes behaving very similarly across each of the
    8581             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8582             :  * to visit heap blocks to a minimum.
    8583             :  */
    8584             : static int
    8585        3866 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8586             :                           TM_IndexDelete *deltids)
    8587             : {
    8588        3866 :     int64       lastblock = -1;
    8589        3866 :     int         nblocksfavorable = 0;
    8590             : 
    8591             :     Assert(nblockgroups >= 1);
    8592             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8593             : 
    8594             :     /*
    8595             :      * We tolerate heap blocks that will be accessed only slightly out of
    8596             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8597             :      * blocks happen to fall into different buckets (perhaps due only to a
    8598             :      * small difference in npromisingtids that the bucketing scheme didn't
    8599             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8600             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8601             :      * but it works well enough in practice.
    8602             :      */
    8603       12416 :     for (int b = 0; b < nblockgroups; b++)
    8604             :     {
    8605       11868 :         IndexDeleteCounts *group = blockgroups + b;
    8606       11868 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8607       11868 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8608             : 
    8609       11868 :         if (lastblock != -1 &&
    8610        8002 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8611        7000 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8612             :             break;
    8613             : 
    8614        8550 :         nblocksfavorable++;
    8615        8550 :         lastblock = block;
    8616             :     }
    8617             : 
    8618             :     /* Always indicate that there is at least 1 favorable block */
    8619             :     Assert(nblocksfavorable >= 1);
    8620             : 
    8621        3866 :     return nblocksfavorable;
    8622             : }
    8623             : 
    8624             : /*
    8625             :  * qsort comparison function for bottomup_sort_and_shrink()
    8626             :  */
    8627             : static int
    8628      386732 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8629             : {
    8630      386732 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8631      386732 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8632             : 
    8633             :     /*
    8634             :      * Most significant field is npromisingtids (which we invert the order of
    8635             :      * so as to sort in desc order).
    8636             :      *
    8637             :      * Caller should have already normalized npromisingtids fields into
    8638             :      * power-of-two values (buckets).
    8639             :      */
    8640      386732 :     if (group1->npromisingtids > group2->npromisingtids)
    8641       18008 :         return -1;
    8642      368724 :     if (group1->npromisingtids < group2->npromisingtids)
    8643       21250 :         return 1;
    8644             : 
    8645             :     /*
    8646             :      * Tiebreak: desc ntids sort order.
    8647             :      *
    8648             :      * We cannot expect power-of-two values for ntids fields.  We should
    8649             :      * behave as if they were already rounded up for us instead.
    8650             :      */
    8651      347474 :     if (group1->ntids != group2->ntids)
    8652             :     {
    8653      240704 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8654      240704 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8655             : 
    8656      240704 :         if (ntids1 > ntids2)
    8657       36556 :             return -1;
    8658      204148 :         if (ntids1 < ntids2)
    8659       45258 :             return 1;
    8660             :     }
    8661             : 
    8662             :     /*
    8663             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8664             :      * block in deltids array) order.
    8665             :      *
    8666             :      * This is equivalent to sorting in ascending heap block number order
    8667             :      * (among otherwise equal subsets of the array).  This approach allows us
    8668             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8669             :      * that the deltids array was sorted in ascending heap TID order when
    8670             :      * these offsets to the first TID from each heap block group were formed.)
    8671             :      */
    8672      265660 :     if (group1->ifirsttid > group2->ifirsttid)
    8673      131516 :         return 1;
    8674      134144 :     if (group1->ifirsttid < group2->ifirsttid)
    8675      134144 :         return -1;
    8676             : 
    8677           0 :     pg_unreachable();
    8678             : 
    8679             :     return 0;
    8680             : }
    8681             : 
    8682             : /*
    8683             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8684             :  *
    8685             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8686             :  * deletion.  The array should already be sorted in TID order when we're
    8687             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8688             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8689             :  * known to have the most "promising" TIDs.
    8690             :  *
    8691             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8692             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8693             :  * return.  This often means that deltids will be shrunk to a small fraction
    8694             :  * of its original size (we eliminate many heap blocks from consideration for
    8695             :  * caller up front).
    8696             :  *
    8697             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8698             :  * for a definition and full details.
    8699             :  */
    8700             : static int
    8701        3866 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8702             : {
    8703             :     IndexDeleteCounts *blockgroups;
    8704             :     TM_IndexDelete *reordereddeltids;
    8705        3866 :     BlockNumber curblock = InvalidBlockNumber;
    8706        3866 :     int         nblockgroups = 0;
    8707        3866 :     int         ncopied = 0;
    8708        3866 :     int         nblocksfavorable = 0;
    8709             : 
    8710             :     Assert(delstate->bottomup);
    8711             :     Assert(delstate->ndeltids > 0);
    8712             : 
    8713             :     /* Calculate per-heap-block count of TIDs */
    8714        3866 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8715     1853906 :     for (int i = 0; i < delstate->ndeltids; i++)
    8716             :     {
    8717     1850040 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8718     1850040 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8719     1850040 :         ItemPointer htid = &ideltid->tid;
    8720     1850040 :         bool        promising = istatus->promising;
    8721             : 
    8722     1850040 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8723             :         {
    8724             :             /* New block group */
    8725       75558 :             nblockgroups++;
    8726             : 
    8727             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8728             :                    !BlockNumberIsValid(curblock));
    8729             : 
    8730       75558 :             curblock = ItemPointerGetBlockNumber(htid);
    8731       75558 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8732       75558 :             blockgroups[nblockgroups - 1].ntids = 1;
    8733       75558 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8734             :         }
    8735             :         else
    8736             :         {
    8737     1774482 :             blockgroups[nblockgroups - 1].ntids++;
    8738             :         }
    8739             : 
    8740     1850040 :         if (promising)
    8741      238290 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8742             :     }
    8743             : 
    8744             :     /*
    8745             :      * We're about ready to sort block groups to determine the optimal order
    8746             :      * for visiting heap blocks.  But before we do, round the number of
    8747             :      * promising tuples for each block group up to the next power-of-two,
    8748             :      * unless it is very low (less than 4), in which case we round up to 4.
    8749             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8750             :      * of block groups that both have very low values.
    8751             :      *
    8752             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8753             :      * contains blocks that have _approximately_ the same number of promising
    8754             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8755             :      * in the total number of promising entries, so that the whole process can
    8756             :      * give a little weight to heapam factors (like heap block locality)
    8757             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8758             :      * would be foolish to interpret small differences in npromisingtids
    8759             :      * values as anything more than noise.
    8760             :      *
    8761             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8762             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8763             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8764             :      * only reason that we don't fix nhtids in the same way here too is that
    8765             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8766             :      * bucketization dynamically instead (in the sort comparator).
    8767             :      *
    8768             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8769             :      * heap locality/favorable blocks can significantly influence when and how
    8770             :      * heap blocks are accessed.
    8771             :      */
    8772       79424 :     for (int b = 0; b < nblockgroups; b++)
    8773             :     {
    8774       75558 :         IndexDeleteCounts *group = blockgroups + b;
    8775             : 
    8776             :         /* Better off falling back on nhtids with low npromisingtids */
    8777       75558 :         if (group->npromisingtids <= 4)
    8778       64748 :             group->npromisingtids = 4;
    8779             :         else
    8780       10810 :             group->npromisingtids =
    8781       10810 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8782             :     }
    8783             : 
    8784             :     /* Sort groups and rearrange caller's deltids array */
    8785        3866 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8786             :           bottomup_sort_and_shrink_cmp);
    8787        3866 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8788             : 
    8789        3866 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8790             :     /* Determine number of favorable blocks at the start of final deltids */
    8791        3866 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8792             :                                                  delstate->deltids);
    8793             : 
    8794       25840 :     for (int b = 0; b < nblockgroups; b++)
    8795             :     {
    8796       21974 :         IndexDeleteCounts *group = blockgroups + b;
    8797       21974 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8798             : 
    8799       21974 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8800       21974 :                sizeof(TM_IndexDelete) * group->ntids);
    8801       21974 :         ncopied += group->ntids;
    8802             :     }
    8803             : 
    8804             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8805        3866 :     memcpy(delstate->deltids, reordereddeltids,
    8806             :            sizeof(TM_IndexDelete) * ncopied);
    8807        3866 :     delstate->ndeltids = ncopied;
    8808             : 
    8809        3866 :     pfree(reordereddeltids);
    8810        3866 :     pfree(blockgroups);
    8811             : 
    8812        3866 :     return nblocksfavorable;
    8813             : }
    8814             : 
    8815             : /*
    8816             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8817             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8818             :  * corresponding visibility map block.  Both should have already been modified
    8819             :  * and dirtied.
    8820             :  *
    8821             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8822             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8823             :  *
    8824             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8825             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8826             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8827             :  * update the heap page's LSN.
    8828             :  */
    8829             : XLogRecPtr
    8830       66842 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8831             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8832             : {
    8833             :     xl_heap_visible xlrec;
    8834             :     XLogRecPtr  recptr;
    8835             :     uint8       flags;
    8836             : 
    8837             :     Assert(BufferIsValid(heap_buffer));
    8838             :     Assert(BufferIsValid(vm_buffer));
    8839             : 
    8840       66842 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8841       66842 :     xlrec.flags = vmflags;
    8842       66842 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8843         108 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8844       66842 :     XLogBeginInsert();
    8845       66842 :     XLogRegisterData(&xlrec, SizeOfHeapVisible);
    8846             : 
    8847       66842 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8848             : 
    8849       66842 :     flags = REGBUF_STANDARD;
    8850       66842 :     if (!XLogHintBitIsNeeded())
    8851        6132 :         flags |= REGBUF_NO_IMAGE;
    8852       66842 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8853             : 
    8854       66842 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8855             : 
    8856       66842 :     return recptr;
    8857             : }
    8858             : 
    8859             : /*
    8860             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8861             :  * have modified the buffer(s) and marked them dirty.
    8862             :  */
    8863             : static XLogRecPtr
    8864      584584 : log_heap_update(Relation reln, Buffer oldbuf,
    8865             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8866             :                 HeapTuple old_key_tuple,
    8867             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8868             : {
    8869             :     xl_heap_update xlrec;
    8870             :     xl_heap_header xlhdr;
    8871             :     xl_heap_header xlhdr_idx;
    8872             :     uint8       info;
    8873             :     uint16      prefix_suffix[2];
    8874      584584 :     uint16      prefixlen = 0,
    8875      584584 :                 suffixlen = 0;
    8876             :     XLogRecPtr  recptr;
    8877      584584 :     Page        page = BufferGetPage(newbuf);
    8878      584584 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8879             :     bool        init;
    8880             :     int         bufflags;
    8881             : 
    8882             :     /* Caller should not call me on a non-WAL-logged relation */
    8883             :     Assert(RelationNeedsWAL(reln));
    8884             : 
    8885      584584 :     XLogBeginInsert();
    8886             : 
    8887      584584 :     if (HeapTupleIsHeapOnly(newtup))
    8888      282772 :         info = XLOG_HEAP_HOT_UPDATE;
    8889             :     else
    8890      301812 :         info = XLOG_HEAP_UPDATE;
    8891             : 
    8892             :     /*
    8893             :      * If the old and new tuple are on the same page, we only need to log the
    8894             :      * parts of the new tuple that were changed.  That saves on the amount of
    8895             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8896             :      * the beginning and end of the tuple.  That's quick to check, and
    8897             :      * perfectly covers the common case that only one field is updated.
    8898             :      *
    8899             :      * We could do this even if the old and new tuple are on different pages,
    8900             :      * but only if we don't make a full-page image of the old page, which is
    8901             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8902             :      * some reason, it would allow the corruption to propagate the new page,
    8903             :      * so it seems best to avoid.  Under the general assumption that most
    8904             :      * updates tend to create the new tuple version on the same page, there
    8905             :      * isn't much to be gained by doing this across pages anyway.
    8906             :      *
    8907             :      * Skip this if we're taking a full-page image of the new page, as we
    8908             :      * don't include the new tuple in the WAL record in that case.  Also
    8909             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8910             :      * read the new tuple in whole from the WAL record alone.
    8911             :      */
    8912      584584 :     if (oldbuf == newbuf && !need_tuple_data &&
    8913      283148 :         !XLogCheckBufferNeedsBackup(newbuf))
    8914             :     {
    8915      282014 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8916      282014 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8917      282014 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8918      282014 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8919             : 
    8920             :         /* Check for common prefix between old and new tuple */
    8921    23263836 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8922             :         {
    8923    23212738 :             if (newp[prefixlen] != oldp[prefixlen])
    8924      230916 :                 break;
    8925             :         }
    8926             : 
    8927             :         /*
    8928             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8929             :          * at least 3 bytes or there's no point.
    8930             :          */
    8931      282014 :         if (prefixlen < 3)
    8932       44226 :             prefixlen = 0;
    8933             : 
    8934             :         /* Same for suffix */
    8935     9114258 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8936             :         {
    8937     9062648 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8938      230404 :                 break;
    8939             :         }
    8940      282014 :         if (suffixlen < 3)
    8941       70580 :             suffixlen = 0;
    8942             :     }
    8943             : 
    8944             :     /* Prepare main WAL data chain */
    8945      584584 :     xlrec.flags = 0;
    8946      584584 :     if (all_visible_cleared)
    8947        2840 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8948      584584 :     if (new_all_visible_cleared)
    8949        1660 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8950      584584 :     if (prefixlen > 0)
    8951      237788 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8952      584584 :     if (suffixlen > 0)
    8953      211434 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8954      584584 :     if (need_tuple_data)
    8955             :     {
    8956       94052 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8957       94052 :         if (old_key_tuple)
    8958             :         {
    8959         292 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8960         130 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8961             :             else
    8962         162 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8963             :         }
    8964             :     }
    8965             : 
    8966             :     /* If new tuple is the single and first tuple on page... */
    8967      591394 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8968        6810 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8969             :     {
    8970        6364 :         info |= XLOG_HEAP_INIT_PAGE;
    8971        6364 :         init = true;
    8972             :     }
    8973             :     else
    8974      578220 :         init = false;
    8975             : 
    8976             :     /* Prepare WAL data for the old page */
    8977      584584 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8978      584584 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8979     1169168 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8980      584584 :                                               oldtup->t_data->t_infomask2);
    8981             : 
    8982             :     /* Prepare WAL data for the new page */
    8983      584584 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8984      584584 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8985             : 
    8986      584584 :     bufflags = REGBUF_STANDARD;
    8987      584584 :     if (init)
    8988        6364 :         bufflags |= REGBUF_WILL_INIT;
    8989      584584 :     if (need_tuple_data)
    8990       94052 :         bufflags |= REGBUF_KEEP_DATA;
    8991             : 
    8992      584584 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8993      584584 :     if (oldbuf != newbuf)
    8994      277544 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8995             : 
    8996      584584 :     XLogRegisterData(&xlrec, SizeOfHeapUpdate);
    8997             : 
    8998             :     /*
    8999             :      * Prepare WAL data for the new tuple.
    9000             :      */
    9001      584584 :     if (prefixlen > 0 || suffixlen > 0)
    9002             :     {
    9003      281084 :         if (prefixlen > 0 && suffixlen > 0)
    9004             :         {
    9005      168138 :             prefix_suffix[0] = prefixlen;
    9006      168138 :             prefix_suffix[1] = suffixlen;
    9007      168138 :             XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
    9008             :         }
    9009      112946 :         else if (prefixlen > 0)
    9010             :         {
    9011       69650 :             XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
    9012             :         }
    9013             :         else
    9014             :         {
    9015       43296 :             XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
    9016             :         }
    9017             :     }
    9018             : 
    9019      584584 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    9020      584584 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    9021      584584 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    9022             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    9023             : 
    9024             :     /*
    9025             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    9026             :      *
    9027             :      * The 'data' doesn't include the common prefix or suffix.
    9028             :      */
    9029      584584 :     XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    9030      584584 :     if (prefixlen == 0)
    9031             :     {
    9032      346796 :         XLogRegisterBufData(0,
    9033      346796 :                             (char *) newtup->t_data + SizeofHeapTupleHeader,
    9034      346796 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    9035             :     }
    9036             :     else
    9037             :     {
    9038             :         /*
    9039             :          * Have to write the null bitmap and data after the common prefix as
    9040             :          * two separate rdata entries.
    9041             :          */
    9042             :         /* bitmap [+ padding] [+ oid] */
    9043      237788 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    9044             :         {
    9045      237788 :             XLogRegisterBufData(0,
    9046      237788 :                                 (char *) newtup->t_data + SizeofHeapTupleHeader,
    9047      237788 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    9048             :         }
    9049             : 
    9050             :         /* data after common prefix */
    9051      237788 :         XLogRegisterBufData(0,
    9052      237788 :                             (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
    9053      237788 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    9054             :     }
    9055             : 
    9056             :     /* We need to log a tuple identity */
    9057      584584 :     if (need_tuple_data && old_key_tuple)
    9058             :     {
    9059             :         /* don't really need this, but its more comfy to decode */
    9060         292 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    9061         292 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    9062         292 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    9063             : 
    9064         292 :         XLogRegisterData(&xlhdr_idx, SizeOfHeapHeader);
    9065             : 
    9066             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    9067         292 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    9068         292 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    9069             :     }
    9070             : 
    9071             :     /* filtering by origin on a row level is much more efficient */
    9072      584584 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    9073             : 
    9074      584584 :     recptr = XLogInsert(RM_HEAP_ID, info);
    9075             : 
    9076      584584 :     return recptr;
    9077             : }
    9078             : 
    9079             : /*
    9080             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    9081             :  *
    9082             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    9083             :  * tuples.
    9084             :  */
    9085             : static XLogRecPtr
    9086       49176 : log_heap_new_cid(Relation relation, HeapTuple tup)
    9087             : {
    9088             :     xl_heap_new_cid xlrec;
    9089             : 
    9090             :     XLogRecPtr  recptr;
    9091       49176 :     HeapTupleHeader hdr = tup->t_data;
    9092             : 
    9093             :     Assert(ItemPointerIsValid(&tup->t_self));
    9094             :     Assert(tup->t_tableOid != InvalidOid);
    9095             : 
    9096       49176 :     xlrec.top_xid = GetTopTransactionId();
    9097       49176 :     xlrec.target_locator = relation->rd_locator;
    9098       49176 :     xlrec.target_tid = tup->t_self;
    9099             : 
    9100             :     /*
    9101             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    9102             :      * combo CID, set cmin and cmax.
    9103             :      */
    9104       49176 :     if (hdr->t_infomask & HEAP_COMBOCID)
    9105             :     {
    9106             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    9107             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    9108        4048 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    9109        4048 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    9110        4048 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    9111             :     }
    9112             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    9113             :     else
    9114             :     {
    9115             :         /*
    9116             :          * Tuple inserted.
    9117             :          *
    9118             :          * We need to check for LOCK ONLY because multixacts might be
    9119             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    9120             :          * which case there will be an xmax, although the tuple just got
    9121             :          * inserted.
    9122             :          */
    9123       58740 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    9124       13612 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    9125             :         {
    9126       31518 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    9127       31518 :             xlrec.cmax = InvalidCommandId;
    9128             :         }
    9129             :         /* Tuple from a different tx updated or deleted. */
    9130             :         else
    9131             :         {
    9132       13610 :             xlrec.cmin = InvalidCommandId;
    9133       13610 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    9134             :         }
    9135       45128 :         xlrec.combocid = InvalidCommandId;
    9136             :     }
    9137             : 
    9138             :     /*
    9139             :      * Note that we don't need to register the buffer here, because this
    9140             :      * operation does not modify the page. The insert/update/delete that
    9141             :      * called us certainly did, but that's WAL-logged separately.
    9142             :      */
    9143       49176 :     XLogBeginInsert();
    9144       49176 :     XLogRegisterData(&xlrec, SizeOfHeapNewCid);
    9145             : 
    9146             :     /* will be looked at irrespective of origin */
    9147             : 
    9148       49176 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    9149             : 
    9150       49176 :     return recptr;
    9151             : }
    9152             : 
    9153             : /*
    9154             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    9155             :  * the old tuple in an UPDATE or DELETE.
    9156             :  *
    9157             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    9158             :  * key defined.
    9159             :  *
    9160             :  * Pass key_required true if any replica identity columns changed value, or if
    9161             :  * any of them have any external data.  Delete must always pass true.
    9162             :  *
    9163             :  * *copy is set to true if the returned tuple is a modified copy rather than
    9164             :  * the same tuple that was passed in.
    9165             :  */
    9166             : static HeapTuple
    9167     3607192 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9168             :                        bool *copy)
    9169             : {
    9170     3607192 :     TupleDesc   desc = RelationGetDescr(relation);
    9171     3607192 :     char        replident = relation->rd_rel->relreplident;
    9172             :     Bitmapset  *idattrs;
    9173             :     HeapTuple   key_tuple;
    9174             :     bool        nulls[MaxHeapAttributeNumber];
    9175             :     Datum       values[MaxHeapAttributeNumber];
    9176             : 
    9177     3607192 :     *copy = false;
    9178             : 
    9179     3607192 :     if (!RelationIsLogicallyLogged(relation))
    9180     3406596 :         return NULL;
    9181             : 
    9182      200596 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9183         462 :         return NULL;
    9184             : 
    9185      200134 :     if (replident == REPLICA_IDENTITY_FULL)
    9186             :     {
    9187             :         /*
    9188             :          * When logging the entire old tuple, it very well could contain
    9189             :          * toasted columns. If so, force them to be inlined.
    9190             :          */
    9191         394 :         if (HeapTupleHasExternal(tp))
    9192             :         {
    9193           8 :             *copy = true;
    9194           8 :             tp = toast_flatten_tuple(tp, desc);
    9195             :         }
    9196         394 :         return tp;
    9197             :     }
    9198             : 
    9199             :     /* if the key isn't required and we're only logging the key, we're done */
    9200      199740 :     if (!key_required)
    9201       93760 :         return NULL;
    9202             : 
    9203             :     /* find out the replica identity columns */
    9204      105980 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9205             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9206             : 
    9207             :     /*
    9208             :      * If there's no defined replica identity columns, treat as !key_required.
    9209             :      * (This case should not be reachable from heap_update, since that should
    9210             :      * calculate key_required accurately.  But heap_delete just passes
    9211             :      * constant true for key_required, so we can hit this case in deletes.)
    9212             :      */
    9213      105980 :     if (bms_is_empty(idattrs))
    9214       12042 :         return NULL;
    9215             : 
    9216             :     /*
    9217             :      * Construct a new tuple containing only the replica identity columns,
    9218             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9219             :      * identity columns aren't null.
    9220             :      */
    9221       93938 :     heap_deform_tuple(tp, desc, values, nulls);
    9222             : 
    9223      301802 :     for (int i = 0; i < desc->natts; i++)
    9224             :     {
    9225      207864 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9226             :                           idattrs))
    9227             :             Assert(!nulls[i]);
    9228             :         else
    9229      113902 :             nulls[i] = true;
    9230             :     }
    9231             : 
    9232       93938 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9233       93938 :     *copy = true;
    9234             : 
    9235       93938 :     bms_free(idattrs);
    9236             : 
    9237             :     /*
    9238             :      * If the tuple, which by here only contains indexed columns, still has
    9239             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9240             :      * since there's limits on the size of indexed columns, so we don't
    9241             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9242             :      * the indexed columns, even if it would be more efficient.
    9243             :      */
    9244       93938 :     if (HeapTupleHasExternal(key_tuple))
    9245             :     {
    9246           8 :         HeapTuple   oldtup = key_tuple;
    9247             : 
    9248           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9249           8 :         heap_freetuple(oldtup);
    9250             :     }
    9251             : 
    9252       93938 :     return key_tuple;
    9253             : }
    9254             : 
    9255             : /*
    9256             :  * HeapCheckForSerializableConflictOut
    9257             :  *      We are reading a tuple.  If it's not visible, there may be a
    9258             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9259             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9260             :  *
    9261             :  * We will determine the top level xid of the writing transaction with which
    9262             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9263             :  * for overlap with our own transaction.
    9264             :  *
    9265             :  * This function should be called just about anywhere in heapam.c where a
    9266             :  * tuple has been read. The caller must hold at least a shared lock on the
    9267             :  * buffer, because this function might set hint bits on the tuple. There is
    9268             :  * currently no known reason to call this function from an index AM.
    9269             :  */
    9270             : void
    9271    62771000 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9272             :                                     HeapTuple tuple, Buffer buffer,
    9273             :                                     Snapshot snapshot)
    9274             : {
    9275             :     TransactionId xid;
    9276             :     HTSV_Result htsvResult;
    9277             : 
    9278    62771000 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9279    62720276 :         return;
    9280             : 
    9281             :     /*
    9282             :      * Check to see whether the tuple has been written to by a concurrent
    9283             :      * transaction, either to create it not visible to us, or to delete it
    9284             :      * while it is visible to us.  The "visible" bool indicates whether the
    9285             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9286             :      * is going on with it.
    9287             :      *
    9288             :      * In the event of a concurrently inserted tuple that also happens to have
    9289             :      * been concurrently updated (by a separate transaction), the xmin of the
    9290             :      * tuple will be used -- not the updater's xid.
    9291             :      */
    9292       50724 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9293       50724 :     switch (htsvResult)
    9294             :     {
    9295       49098 :         case HEAPTUPLE_LIVE:
    9296       49098 :             if (visible)
    9297       49072 :                 return;
    9298          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9299          26 :             break;
    9300         722 :         case HEAPTUPLE_RECENTLY_DEAD:
    9301             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9302         722 :             if (visible)
    9303         570 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9304             :             else
    9305         152 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9306             : 
    9307         722 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9308             :             {
    9309             :                 /* This is like the HEAPTUPLE_DEAD case */
    9310             :                 Assert(!visible);
    9311         138 :                 return;
    9312             :             }
    9313         584 :             break;
    9314         656 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9315         656 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9316         656 :             break;
    9317         248 :         case HEAPTUPLE_DEAD:
    9318             :             Assert(!visible);
    9319         248 :             return;
    9320           0 :         default:
    9321             : 
    9322             :             /*
    9323             :              * The only way to get to this default clause is if a new value is
    9324             :              * added to the enum type without adding it to this switch
    9325             :              * statement.  That's a bug, so elog.
    9326             :              */
    9327           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9328             : 
    9329             :             /*
    9330             :              * In spite of having all enum values covered and calling elog on
    9331             :              * this default, some compilers think this is a code path which
    9332             :              * allows xid to be used below without initialization. Silence
    9333             :              * that warning.
    9334             :              */
    9335             :             xid = InvalidTransactionId;
    9336             :     }
    9337             : 
    9338             :     Assert(TransactionIdIsValid(xid));
    9339             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9340             : 
    9341             :     /*
    9342             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9343             :      * if it's our own xid.
    9344             :      */
    9345        1266 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9346         128 :         return;
    9347        1138 :     xid = SubTransGetTopmostTransaction(xid);
    9348        1138 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9349           0 :         return;
    9350             : 
    9351        1138 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9352             : }

Generated by: LCOV version 1.16