LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2454 2679 91.6 %
Date: 2024-11-21 09:14:53 Functions: 80 80 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/inval.h"
      53             : #include "utils/spccache.h"
      54             : 
      55             : 
      56             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      57             :                                      TransactionId xid, CommandId cid, int options);
      58             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      59             :                                   Buffer newbuf, HeapTuple oldtup,
      60             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      61             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      62             : #ifdef USE_ASSERT_CHECKING
      63             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      64             :                                                  ItemPointer otid,
      65             :                                                  HeapTuple newtup);
      66             : static void check_inplace_rel_lock(HeapTuple oldtup);
      67             : #endif
      68             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      69             :                                            Bitmapset *interesting_cols,
      70             :                                            Bitmapset *external_cols,
      71             :                                            HeapTuple oldtup, HeapTuple newtup,
      72             :                                            bool *has_external);
      73             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      74             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      75             :                                  bool *have_tuple_lock);
      76             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      77             :                                                    BlockNumber block,
      78             :                                                    ScanDirection dir);
      79             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      80             :                                                         ScanDirection dir);
      81             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      82             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      83             :                                       LockTupleMode mode, bool is_update,
      84             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      85             :                                       uint16 *result_infomask2);
      86             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      87             :                                          ItemPointer ctid, TransactionId xid,
      88             :                                          LockTupleMode mode);
      89             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      90             :                                    uint16 *new_infomask2);
      91             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      92             :                                              uint16 t_infomask);
      93             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      94             :                                     LockTupleMode lockmode, bool *current_is_member);
      95             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      96             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      97             :                             int *remaining);
      98             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
      99             :                                        uint16 infomask, Relation rel, int *remaining);
     100             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     101             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     102             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     103             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     104             :                                         bool *copy);
     105             : 
     106             : 
     107             : /*
     108             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     109             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     110             :  * update them).  This table (and the macros below) helps us determine the
     111             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     112             :  * tuple lock strength.
     113             :  *
     114             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     115             :  *
     116             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     117             :  * instead.
     118             :  */
     119             : static const struct
     120             : {
     121             :     LOCKMODE    hwlock;
     122             :     int         lockstatus;
     123             :     int         updstatus;
     124             : }
     125             : 
     126             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     127             : {
     128             :     {                           /* LockTupleKeyShare */
     129             :         AccessShareLock,
     130             :         MultiXactStatusForKeyShare,
     131             :         -1                      /* KeyShare does not allow updating tuples */
     132             :     },
     133             :     {                           /* LockTupleShare */
     134             :         RowShareLock,
     135             :         MultiXactStatusForShare,
     136             :         -1                      /* Share does not allow updating tuples */
     137             :     },
     138             :     {                           /* LockTupleNoKeyExclusive */
     139             :         ExclusiveLock,
     140             :         MultiXactStatusForNoKeyUpdate,
     141             :         MultiXactStatusNoKeyUpdate
     142             :     },
     143             :     {                           /* LockTupleExclusive */
     144             :         AccessExclusiveLock,
     145             :         MultiXactStatusForUpdate,
     146             :         MultiXactStatusUpdate
     147             :     }
     148             : };
     149             : 
     150             : /* Get the LOCKMODE for a given MultiXactStatus */
     151             : #define LOCKMODE_from_mxstatus(status) \
     152             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     153             : 
     154             : /*
     155             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     156             :  * This is more readable than having every caller translate it to lock.h's
     157             :  * LOCKMODE.
     158             :  */
     159             : #define LockTupleTuplock(rel, tup, mode) \
     160             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     161             : #define UnlockTupleTuplock(rel, tup, mode) \
     162             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     163             : #define ConditionalLockTupleTuplock(rel, tup, mode) \
     164             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     165             : 
     166             : #ifdef USE_PREFETCH
     167             : /*
     168             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     169             :  * structure to coordinate prefetching activity
     170             :  */
     171             : typedef struct
     172             : {
     173             :     BlockNumber cur_hblkno;
     174             :     int         next_item;
     175             :     int         ndeltids;
     176             :     TM_IndexDelete *deltids;
     177             : } IndexDeletePrefetchState;
     178             : #endif
     179             : 
     180             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     181             : #define BOTTOMUP_MAX_NBLOCKS            6
     182             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     183             : 
     184             : /*
     185             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     186             :  * must visit to help its bottom-up index deletion caller
     187             :  */
     188             : typedef struct IndexDeleteCounts
     189             : {
     190             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     191             :     int16       ntids;          /* Number of TIDs in group */
     192             :     int16       ifirsttid;      /* Offset to group's first deltid */
     193             : } IndexDeleteCounts;
     194             : 
     195             : /*
     196             :  * This table maps tuple lock strength values for each particular
     197             :  * MultiXactStatus value.
     198             :  */
     199             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     200             : {
     201             :     LockTupleKeyShare,          /* ForKeyShare */
     202             :     LockTupleShare,             /* ForShare */
     203             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     204             :     LockTupleExclusive,         /* ForUpdate */
     205             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     206             :     LockTupleExclusive          /* Update */
     207             : };
     208             : 
     209             : /* Get the LockTupleMode for a given MultiXactStatus */
     210             : #define TUPLOCK_from_mxstatus(status) \
     211             :             (MultiXactStatusLock[(status)])
     212             : 
     213             : /* ----------------------------------------------------------------
     214             :  *                       heap support routines
     215             :  * ----------------------------------------------------------------
     216             :  */
     217             : 
     218             : /*
     219             :  * Streaming read API callback for parallel sequential scans. Returns the next
     220             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     221             :  */
     222             : static BlockNumber
     223      201250 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     224             :                                     void *callback_private_data,
     225             :                                     void *per_buffer_data)
     226             : {
     227      201250 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     228             : 
     229             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     230             :     Assert(scan->rs_base.rs_parallel);
     231             : 
     232      201250 :     if (unlikely(!scan->rs_inited))
     233             :     {
     234             :         /* parallel scan */
     235        2806 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     236        2806 :                                                  scan->rs_parallelworkerdata,
     237        2806 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     238             : 
     239             :         /* may return InvalidBlockNumber if there are no more blocks */
     240        5612 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     241        2806 :                                                                     scan->rs_parallelworkerdata,
     242        2806 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     243        2806 :         scan->rs_inited = true;
     244             :     }
     245             :     else
     246             :     {
     247      198444 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     248      198444 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     249      198444 :                                                                     scan->rs_base.rs_parallel);
     250             :     }
     251             : 
     252      201250 :     return scan->rs_prefetch_block;
     253             : }
     254             : 
     255             : /*
     256             :  * Streaming read API callback for serial sequential and TID range scans.
     257             :  * Returns the next block the caller wants from the read stream or
     258             :  * InvalidBlockNumber when done.
     259             :  */
     260             : static BlockNumber
     261     5919428 : heap_scan_stream_read_next_serial(ReadStream *stream,
     262             :                                   void *callback_private_data,
     263             :                                   void *per_buffer_data)
     264             : {
     265     5919428 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     266             : 
     267     5919428 :     if (unlikely(!scan->rs_inited))
     268             :     {
     269     1621832 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     270     1621832 :         scan->rs_inited = true;
     271             :     }
     272             :     else
     273     4297596 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     274             :                                                            scan->rs_prefetch_block,
     275             :                                                            scan->rs_dir);
     276             : 
     277     5919428 :     return scan->rs_prefetch_block;
     278             : }
     279             : 
     280             : /* ----------------
     281             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     282             :  * ----------------
     283             :  */
     284             : static void
     285     1660904 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     286             : {
     287     1660904 :     ParallelBlockTableScanDesc bpscan = NULL;
     288             :     bool        allow_strat;
     289             :     bool        allow_sync;
     290             : 
     291             :     /*
     292             :      * Determine the number of blocks we have to scan.
     293             :      *
     294             :      * It is sufficient to do this once at scan start, since any tuples added
     295             :      * while the scan is in progress will be invisible to my snapshot anyway.
     296             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     297             :      * guarantee to return tuples added after scan start anyway, since they
     298             :      * might go into pages we already scanned.  To guarantee consistent
     299             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     300             :      * lock that ensures the interesting tuple(s) won't change.)
     301             :      */
     302     1660904 :     if (scan->rs_base.rs_parallel != NULL)
     303             :     {
     304        4002 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     305        4002 :         scan->rs_nblocks = bpscan->phs_nblocks;
     306             :     }
     307             :     else
     308     1656902 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     309             : 
     310             :     /*
     311             :      * If the table is large relative to NBuffers, use a bulk-read access
     312             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     313             :      * the thresholds for these features could be different, we make them the
     314             :      * same so that there are only two behaviors to tune rather than four.
     315             :      * (However, some callers need to be able to disable one or both of these
     316             :      * behaviors, independently of the size of the table; also there is a GUC
     317             :      * variable that can disable synchronized scanning.)
     318             :      *
     319             :      * Note that table_block_parallelscan_initialize has a very similar test;
     320             :      * if you change this, consider changing that one, too.
     321             :      */
     322     1660900 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     323     1648912 :         scan->rs_nblocks > NBuffers / 4)
     324             :     {
     325       22242 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     326       22242 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     327             :     }
     328             :     else
     329     1638658 :         allow_strat = allow_sync = false;
     330             : 
     331     1660900 :     if (allow_strat)
     332             :     {
     333             :         /* During a rescan, keep the previous strategy object. */
     334       19770 :         if (scan->rs_strategy == NULL)
     335       19426 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     336             :     }
     337             :     else
     338             :     {
     339     1641130 :         if (scan->rs_strategy != NULL)
     340           0 :             FreeAccessStrategy(scan->rs_strategy);
     341     1641130 :         scan->rs_strategy = NULL;
     342             :     }
     343             : 
     344     1660900 :     if (scan->rs_base.rs_parallel != NULL)
     345             :     {
     346             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     347        4002 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     348           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     349             :         else
     350        3998 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     351             :     }
     352     1656898 :     else if (keep_startblock)
     353             :     {
     354             :         /*
     355             :          * When rescanning, we want to keep the previous startblock setting,
     356             :          * so that rewinding a cursor doesn't generate surprising results.
     357             :          * Reset the active syncscan setting, though.
     358             :          */
     359     1005012 :         if (allow_sync && synchronize_seqscans)
     360          40 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     361             :         else
     362     1004972 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     363             :     }
     364      651886 :     else if (allow_sync && synchronize_seqscans)
     365             :     {
     366         118 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     367         118 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     368             :     }
     369             :     else
     370             :     {
     371      651768 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     372      651768 :         scan->rs_startblock = 0;
     373             :     }
     374             : 
     375     1660900 :     scan->rs_numblocks = InvalidBlockNumber;
     376     1660900 :     scan->rs_inited = false;
     377     1660900 :     scan->rs_ctup.t_data = NULL;
     378     1660900 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     379     1660900 :     scan->rs_cbuf = InvalidBuffer;
     380     1660900 :     scan->rs_cblock = InvalidBlockNumber;
     381             : 
     382             :     /*
     383             :      * Initialize to ForwardScanDirection because it is most common and
     384             :      * because heap scans go forward before going backward (e.g. CURSORs).
     385             :      */
     386     1660900 :     scan->rs_dir = ForwardScanDirection;
     387     1660900 :     scan->rs_prefetch_block = InvalidBlockNumber;
     388             : 
     389             :     /* page-at-a-time fields are always invalid when not rs_inited */
     390             : 
     391             :     /*
     392             :      * copy the scan key, if appropriate
     393             :      */
     394     1660900 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     395      377504 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     396             : 
     397             :     /*
     398             :      * Currently, we only have a stats counter for sequential heap scans (but
     399             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     400             :      * and for sample scans we update stats for tuple fetches).
     401             :      */
     402     1660900 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     403     1625896 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     404     1660900 : }
     405             : 
     406             : /*
     407             :  * heap_setscanlimits - restrict range of a heapscan
     408             :  *
     409             :  * startBlk is the page to start at
     410             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     411             :  */
     412             : void
     413        3750 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     414             : {
     415        3750 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     416             : 
     417             :     Assert(!scan->rs_inited);    /* else too late to change */
     418             :     /* else rs_startblock is significant */
     419             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     420             : 
     421             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     422             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     423             : 
     424        3750 :     scan->rs_startblock = startBlk;
     425        3750 :     scan->rs_numblocks = numBlks;
     426        3750 : }
     427             : 
     428             : /*
     429             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     430             :  * multiple times, with constant arguments for all_visible,
     431             :  * check_serializable.
     432             :  */
     433             : pg_attribute_always_inline
     434             : static int
     435     4298758 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     436             :                     Page page, Buffer buffer,
     437             :                     BlockNumber block, int lines,
     438             :                     bool all_visible, bool check_serializable)
     439             : {
     440     4298758 :     int         ntup = 0;
     441             :     OffsetNumber lineoff;
     442             : 
     443   222382922 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     444             :     {
     445   218084180 :         ItemId      lpp = PageGetItemId(page, lineoff);
     446             :         HeapTupleData loctup;
     447             :         bool        valid;
     448             : 
     449   218084180 :         if (!ItemIdIsNormal(lpp))
     450    39880356 :             continue;
     451             : 
     452   178203824 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     453   178203824 :         loctup.t_len = ItemIdGetLength(lpp);
     454   178203824 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     455   178203824 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     456             : 
     457   178203824 :         if (all_visible)
     458    63675360 :             valid = true;
     459             :         else
     460   114528464 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     461             : 
     462   178203824 :         if (check_serializable)
     463        2810 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     464             :                                                 &loctup, buffer, snapshot);
     465             : 
     466   178203808 :         if (valid)
     467             :         {
     468   164925202 :             scan->rs_vistuples[ntup] = lineoff;
     469   164925202 :             ntup++;
     470             :         }
     471             :     }
     472             : 
     473             :     Assert(ntup <= MaxHeapTuplesPerPage);
     474             : 
     475     4298742 :     return ntup;
     476             : }
     477             : 
     478             : /*
     479             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     480             :  *
     481             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     482             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     483             :  */
     484             : void
     485     4298758 : heap_prepare_pagescan(TableScanDesc sscan)
     486             : {
     487     4298758 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     488     4298758 :     Buffer      buffer = scan->rs_cbuf;
     489     4298758 :     BlockNumber block = scan->rs_cblock;
     490             :     Snapshot    snapshot;
     491             :     Page        page;
     492             :     int         lines;
     493             :     bool        all_visible;
     494             :     bool        check_serializable;
     495             : 
     496             :     Assert(BufferGetBlockNumber(buffer) == block);
     497             : 
     498             :     /* ensure we're not accidentally being used when not in pagemode */
     499             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     500     4298758 :     snapshot = scan->rs_base.rs_snapshot;
     501             : 
     502             :     /*
     503             :      * Prune and repair fragmentation for the whole page, if possible.
     504             :      */
     505     4298758 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     506             : 
     507             :     /*
     508             :      * We must hold share lock on the buffer content while examining tuple
     509             :      * visibility.  Afterwards, however, the tuples we have found to be
     510             :      * visible are guaranteed good as long as we hold the buffer pin.
     511             :      */
     512     4298758 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     513             : 
     514     4298758 :     page = BufferGetPage(buffer);
     515     4298758 :     lines = PageGetMaxOffsetNumber(page);
     516             : 
     517             :     /*
     518             :      * If the all-visible flag indicates that all tuples on the page are
     519             :      * visible to everyone, we can skip the per-tuple visibility tests.
     520             :      *
     521             :      * Note: In hot standby, a tuple that's already visible to all
     522             :      * transactions on the primary might still be invisible to a read-only
     523             :      * transaction in the standby. We partly handle this problem by tracking
     524             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     525             :      * page all-visible on the primary and WAL log that along with the
     526             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     527             :      * all transactions that can potentially may not see one or more tuples on
     528             :      * the page. That's how index-only scans work fine in hot standby. A
     529             :      * crucial difference between index-only scans and heap scans is that the
     530             :      * index-only scan completely relies on the visibility map where as heap
     531             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     532             :      * the page-level flag can be trusted in the same way, because it might
     533             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     534             :      * full page write. Until we can prove that beyond doubt, let's check each
     535             :      * tuple for visibility the hard way.
     536             :      */
     537     4298758 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     538             :     check_serializable =
     539     4298758 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     540             : 
     541             :     /*
     542             :      * We call page_collect_tuples() with constant arguments, to get the
     543             :      * compiler to constant fold the constant arguments. Separate calls with
     544             :      * constant arguments, rather than variables, are needed on several
     545             :      * compilers to actually perform constant folding.
     546             :      */
     547     4298758 :     if (likely(all_visible))
     548             :     {
     549     1460506 :         if (likely(!check_serializable))
     550     1460506 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     551             :                                                    block, lines, true, false);
     552             :         else
     553           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     554             :                                                    block, lines, true, true);
     555             :     }
     556             :     else
     557             :     {
     558     2838252 :         if (likely(!check_serializable))
     559     2837014 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     560             :                                                    block, lines, false, false);
     561             :         else
     562        1238 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     563             :                                                    block, lines, false, true);
     564             :     }
     565             : 
     566     4298742 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     567     4298742 : }
     568             : 
     569             : /*
     570             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     571             :  *
     572             :  * Read the next block of the scan relation from the read stream and save it
     573             :  * in the scan descriptor.  It is already pinned.
     574             :  */
     575             : static inline void
     576     5828006 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     577             : {
     578             :     Assert(scan->rs_read_stream);
     579             : 
     580             :     /* release previous scan buffer, if any */
     581     5828006 :     if (BufferIsValid(scan->rs_cbuf))
     582             :     {
     583     4203366 :         ReleaseBuffer(scan->rs_cbuf);
     584     4203366 :         scan->rs_cbuf = InvalidBuffer;
     585             :     }
     586             : 
     587             :     /*
     588             :      * Be sure to check for interrupts at least once per page.  Checks at
     589             :      * higher code levels won't be able to stop a seqscan that encounters many
     590             :      * pages' worth of consecutive dead tuples.
     591             :      */
     592     5828006 :     CHECK_FOR_INTERRUPTS();
     593             : 
     594             :     /*
     595             :      * If the scan direction is changing, reset the prefetch block to the
     596             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     597             :      * between the prefetch block and the current block again before
     598             :      * prefetching blocks in the new, correct scan direction.
     599             :      */
     600     5828004 :     if (unlikely(scan->rs_dir != dir))
     601             :     {
     602         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     603         154 :         read_stream_reset(scan->rs_read_stream);
     604             :     }
     605             : 
     606     5828004 :     scan->rs_dir = dir;
     607             : 
     608     5828004 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     609     5828004 :     if (BufferIsValid(scan->rs_cbuf))
     610     4476074 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     611     5828004 : }
     612             : 
     613             : /*
     614             :  * heapgettup_initial_block - return the first BlockNumber to scan
     615             :  *
     616             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     617             :  * occur with empty tables and in parallel scans when parallel workers get all
     618             :  * of the pages before we can get a chance to get our first page.
     619             :  */
     620             : static pg_noinline BlockNumber
     621     1621832 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     622             : {
     623             :     Assert(!scan->rs_inited);
     624             :     Assert(scan->rs_base.rs_parallel == NULL);
     625             : 
     626             :     /* When there are no pages to scan, return InvalidBlockNumber */
     627     1621832 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     628      771608 :         return InvalidBlockNumber;
     629             : 
     630      850224 :     if (ScanDirectionIsForward(dir))
     631             :     {
     632      850160 :         return scan->rs_startblock;
     633             :     }
     634             :     else
     635             :     {
     636             :         /*
     637             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     638             :          * very likely anyone else is doing the same thing at the same time,
     639             :          * and much more likely that we'll just bollix things for forward
     640             :          * scanners.
     641             :          */
     642          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     643             : 
     644             :         /*
     645             :          * Start from last page of the scan.  Ensure we take into account
     646             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     647             :          */
     648          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     649           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     650             : 
     651          58 :         if (scan->rs_startblock > 0)
     652           0 :             return scan->rs_startblock - 1;
     653             : 
     654          58 :         return scan->rs_nblocks - 1;
     655             :     }
     656             : }
     657             : 
     658             : 
     659             : /*
     660             :  * heapgettup_start_page - helper function for heapgettup()
     661             :  *
     662             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     663             :  * to the number of tuples on this page.  Also set *lineoff to the first
     664             :  * offset to scan with forward scans getting the first offset and backward
     665             :  * getting the final offset on the page.
     666             :  */
     667             : static Page
     668      185866 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     669             :                       OffsetNumber *lineoff)
     670             : {
     671             :     Page        page;
     672             : 
     673             :     Assert(scan->rs_inited);
     674             :     Assert(BufferIsValid(scan->rs_cbuf));
     675             : 
     676             :     /* Caller is responsible for ensuring buffer is locked if needed */
     677      185866 :     page = BufferGetPage(scan->rs_cbuf);
     678             : 
     679      185866 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     680             : 
     681      185866 :     if (ScanDirectionIsForward(dir))
     682      185866 :         *lineoff = FirstOffsetNumber;
     683             :     else
     684           0 :         *lineoff = (OffsetNumber) (*linesleft);
     685             : 
     686             :     /* lineoff now references the physically previous or next tid */
     687      185866 :     return page;
     688             : }
     689             : 
     690             : 
     691             : /*
     692             :  * heapgettup_continue_page - helper function for heapgettup()
     693             :  *
     694             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     695             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     696             :  * the next offset to scan according to the ScanDirection in 'dir'.
     697             :  */
     698             : static inline Page
     699    15510962 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     700             :                          OffsetNumber *lineoff)
     701             : {
     702             :     Page        page;
     703             : 
     704             :     Assert(scan->rs_inited);
     705             :     Assert(BufferIsValid(scan->rs_cbuf));
     706             : 
     707             :     /* Caller is responsible for ensuring buffer is locked if needed */
     708    15510962 :     page = BufferGetPage(scan->rs_cbuf);
     709             : 
     710    15510962 :     if (ScanDirectionIsForward(dir))
     711             :     {
     712    15510962 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     713    15510962 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     714             :     }
     715             :     else
     716             :     {
     717             :         /*
     718             :          * The previous returned tuple may have been vacuumed since the
     719             :          * previous scan when we use a non-MVCC snapshot, so we must
     720             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     721             :          */
     722           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     723           0 :         *linesleft = *lineoff;
     724             :     }
     725             : 
     726             :     /* lineoff now references the physically previous or next tid */
     727    15510962 :     return page;
     728             : }
     729             : 
     730             : /*
     731             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     732             :  *
     733             :  * Given the current block number, the scan direction, and various information
     734             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     735             :  * and return it.  If there are no further blocks to scan, return
     736             :  * InvalidBlockNumber to indicate this fact to the caller.
     737             :  *
     738             :  * This should not be called to determine the initial block number -- only for
     739             :  * subsequent blocks.
     740             :  *
     741             :  * This also adjusts rs_numblocks when a limit has been imposed by
     742             :  * heap_setscanlimits().
     743             :  */
     744             : static inline BlockNumber
     745     4297596 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     746             : {
     747             :     Assert(scan->rs_base.rs_parallel == NULL);
     748             : 
     749     4297596 :     if (likely(ScanDirectionIsForward(dir)))
     750             :     {
     751     4297478 :         block++;
     752             : 
     753             :         /* wrap back to the start of the heap */
     754     4297478 :         if (block >= scan->rs_nblocks)
     755      683280 :             block = 0;
     756             : 
     757             :         /*
     758             :          * Report our new scan position for synchronization purposes. We don't
     759             :          * do that when moving backwards, however. That would just mess up any
     760             :          * other forward-moving scanners.
     761             :          *
     762             :          * Note: we do this before checking for end of scan so that the final
     763             :          * state of the position hint is back at the start of the rel.  That's
     764             :          * not strictly necessary, but otherwise when you run the same query
     765             :          * multiple times the starting position would shift a little bit
     766             :          * backwards on every invocation, which is confusing. We don't
     767             :          * guarantee any specific ordering in general, though.
     768             :          */
     769     4297478 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     770       17574 :             ss_report_location(scan->rs_base.rs_rd, block);
     771             : 
     772             :         /* we're done if we're back at where we started */
     773     4297478 :         if (block == scan->rs_startblock)
     774      683198 :             return InvalidBlockNumber;
     775             : 
     776             :         /* check if the limit imposed by heap_setscanlimits() is met */
     777     3614280 :         if (scan->rs_numblocks != InvalidBlockNumber)
     778             :         {
     779        3180 :             if (--scan->rs_numblocks == 0)
     780        3052 :                 return InvalidBlockNumber;
     781             :         }
     782             : 
     783     3611228 :         return block;
     784             :     }
     785             :     else
     786             :     {
     787             :         /* we're done if the last block is the start position */
     788         118 :         if (block == scan->rs_startblock)
     789         118 :             return InvalidBlockNumber;
     790             : 
     791             :         /* check if the limit imposed by heap_setscanlimits() is met */
     792           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     793             :         {
     794           0 :             if (--scan->rs_numblocks == 0)
     795           0 :                 return InvalidBlockNumber;
     796             :         }
     797             : 
     798             :         /* wrap to the end of the heap when the last page was page 0 */
     799           0 :         if (block == 0)
     800           0 :             block = scan->rs_nblocks;
     801             : 
     802           0 :         block--;
     803             : 
     804           0 :         return block;
     805             :     }
     806             : }
     807             : 
     808             : /* ----------------
     809             :  *      heapgettup - fetch next heap tuple
     810             :  *
     811             :  *      Initialize the scan if not already done; then advance to the next
     812             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     813             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     814             :  *
     815             :  * Note: the reason nkeys/key are passed separately, even though they are
     816             :  * kept in the scan descriptor, is that the caller may not want us to check
     817             :  * the scankeys.
     818             :  *
     819             :  * Note: when we fall off the end of the scan in either direction, we
     820             :  * reset rs_inited.  This means that a further request with the same
     821             :  * scan direction will restart the scan, which is a bit odd, but a
     822             :  * request with the opposite scan direction will start a fresh scan
     823             :  * in the proper direction.  The latter is required behavior for cursors,
     824             :  * while the former case is generally undefined behavior in Postgres
     825             :  * so we don't care too much.
     826             :  * ----------------
     827             :  */
     828             : static void
     829    15550082 : heapgettup(HeapScanDesc scan,
     830             :            ScanDirection dir,
     831             :            int nkeys,
     832             :            ScanKey key)
     833             : {
     834    15550082 :     HeapTuple   tuple = &(scan->rs_ctup);
     835             :     Page        page;
     836             :     OffsetNumber lineoff;
     837             :     int         linesleft;
     838             : 
     839    15550082 :     if (likely(scan->rs_inited))
     840             :     {
     841             :         /* continue from previously returned page/tuple */
     842    15510962 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     843    15510962 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     844    15510962 :         goto continue_page;
     845             :     }
     846             : 
     847             :     /*
     848             :      * advance the scan until we find a qualifying tuple or run out of stuff
     849             :      * to scan
     850             :      */
     851             :     while (true)
     852             :     {
     853      224688 :         heap_fetch_next_buffer(scan, dir);
     854             : 
     855             :         /* did we run out of blocks to scan? */
     856      224688 :         if (!BufferIsValid(scan->rs_cbuf))
     857       38822 :             break;
     858             : 
     859             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     860             : 
     861      185866 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     862      185866 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     863    15696828 : continue_page:
     864             : 
     865             :         /*
     866             :          * Only continue scanning the page while we have lines left.
     867             :          *
     868             :          * Note that this protects us from accessing line pointers past
     869             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     870             :          * table scan, and for when we start scanning a new page.
     871             :          */
     872    15791532 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     873             :         {
     874             :             bool        visible;
     875    15605964 :             ItemId      lpp = PageGetItemId(page, lineoff);
     876             : 
     877    15605964 :             if (!ItemIdIsNormal(lpp))
     878       84250 :                 continue;
     879             : 
     880    15521714 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     881    15521714 :             tuple->t_len = ItemIdGetLength(lpp);
     882    15521714 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     883             : 
     884    15521714 :             visible = HeapTupleSatisfiesVisibility(tuple,
     885             :                                                    scan->rs_base.rs_snapshot,
     886             :                                                    scan->rs_cbuf);
     887             : 
     888    15521714 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     889             :                                                 tuple, scan->rs_cbuf,
     890             :                                                 scan->rs_base.rs_snapshot);
     891             : 
     892             :             /* skip tuples not visible to this snapshot */
     893    15521714 :             if (!visible)
     894       10454 :                 continue;
     895             : 
     896             :             /* skip any tuples that don't match the scan key */
     897    15511260 :             if (key != NULL &&
     898           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     899             :                              nkeys, key))
     900           0 :                 continue;
     901             : 
     902    15511260 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     903    15511260 :             scan->rs_coffset = lineoff;
     904    15511260 :             return;
     905             :         }
     906             : 
     907             :         /*
     908             :          * if we get here, it means we've exhausted the items on this page and
     909             :          * it's time to move to the next.
     910             :          */
     911      185568 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     912             :     }
     913             : 
     914             :     /* end of scan */
     915       38822 :     if (BufferIsValid(scan->rs_cbuf))
     916           0 :         ReleaseBuffer(scan->rs_cbuf);
     917             : 
     918       38822 :     scan->rs_cbuf = InvalidBuffer;
     919       38822 :     scan->rs_cblock = InvalidBlockNumber;
     920       38822 :     scan->rs_prefetch_block = InvalidBlockNumber;
     921       38822 :     tuple->t_data = NULL;
     922       38822 :     scan->rs_inited = false;
     923             : }
     924             : 
     925             : /* ----------------
     926             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     927             :  *
     928             :  *      Same API as heapgettup, but used in page-at-a-time mode
     929             :  *
     930             :  * The internal logic is much the same as heapgettup's too, but there are some
     931             :  * differences: we do not take the buffer content lock (that only needs to
     932             :  * happen inside heap_prepare_pagescan), and we iterate through just the
     933             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
     934             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
     935             :  * heapgettup is 1-based.
     936             :  * ----------------
     937             :  */
     938             : static void
     939    81249682 : heapgettup_pagemode(HeapScanDesc scan,
     940             :                     ScanDirection dir,
     941             :                     int nkeys,
     942             :                     ScanKey key)
     943             : {
     944    81249682 :     HeapTuple   tuple = &(scan->rs_ctup);
     945             :     Page        page;
     946             :     int         lineindex;
     947             :     int         linesleft;
     948             : 
     949    81249682 :     if (likely(scan->rs_inited))
     950             :     {
     951             :         /* continue from previously returned page/tuple */
     952    79664162 :         page = BufferGetPage(scan->rs_cbuf);
     953             : 
     954    79664162 :         lineindex = scan->rs_cindex + dir;
     955    79664162 :         if (ScanDirectionIsForward(dir))
     956    79663504 :             linesleft = scan->rs_ntuples - lineindex;
     957             :         else
     958         658 :             linesleft = scan->rs_cindex;
     959             :         /* lineindex now references the next or previous visible tid */
     960             : 
     961    79664162 :         goto continue_page;
     962             :     }
     963             : 
     964             :     /*
     965             :      * advance the scan until we find a qualifying tuple or run out of stuff
     966             :      * to scan
     967             :      */
     968             :     while (true)
     969             :     {
     970     5603318 :         heap_fetch_next_buffer(scan, dir);
     971             : 
     972             :         /* did we run out of blocks to scan? */
     973     5603316 :         if (!BufferIsValid(scan->rs_cbuf))
     974     1313108 :             break;
     975             : 
     976             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     977             : 
     978             :         /* prune the page and determine visible tuple offsets */
     979     4290208 :         heap_prepare_pagescan((TableScanDesc) scan);
     980     4290192 :         page = BufferGetPage(scan->rs_cbuf);
     981     4290192 :         linesleft = scan->rs_ntuples;
     982     4290192 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
     983             : 
     984             :         /* lineindex now references the next or previous visible tid */
     985    83954354 : continue_page:
     986             : 
     987   163532646 :         for (; linesleft > 0; linesleft--, lineindex += dir)
     988             :         {
     989             :             ItemId      lpp;
     990             :             OffsetNumber lineoff;
     991             : 
     992   159514848 :             lineoff = scan->rs_vistuples[lineindex];
     993   159514848 :             lpp = PageGetItemId(page, lineoff);
     994             :             Assert(ItemIdIsNormal(lpp));
     995             : 
     996   159514848 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     997   159514848 :             tuple->t_len = ItemIdGetLength(lpp);
     998   159514848 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     999             : 
    1000             :             /* skip any tuples that don't match the scan key */
    1001   159514848 :             if (key != NULL &&
    1002    80165060 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1003             :                              nkeys, key))
    1004    79578292 :                 continue;
    1005             : 
    1006    79936556 :             scan->rs_cindex = lineindex;
    1007    79936556 :             return;
    1008             :         }
    1009             :     }
    1010             : 
    1011             :     /* end of scan */
    1012     1313108 :     if (BufferIsValid(scan->rs_cbuf))
    1013           0 :         ReleaseBuffer(scan->rs_cbuf);
    1014     1313108 :     scan->rs_cbuf = InvalidBuffer;
    1015     1313108 :     scan->rs_cblock = InvalidBlockNumber;
    1016     1313108 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1017     1313108 :     tuple->t_data = NULL;
    1018     1313108 :     scan->rs_inited = false;
    1019             : }
    1020             : 
    1021             : 
    1022             : /* ----------------------------------------------------------------
    1023             :  *                   heap access method interface
    1024             :  * ----------------------------------------------------------------
    1025             :  */
    1026             : 
    1027             : 
    1028             : TableScanDesc
    1029      655784 : heap_beginscan(Relation relation, Snapshot snapshot,
    1030             :                int nkeys, ScanKey key,
    1031             :                ParallelTableScanDesc parallel_scan,
    1032             :                uint32 flags)
    1033             : {
    1034             :     HeapScanDesc scan;
    1035             : 
    1036             :     /*
    1037             :      * increment relation ref count while scanning relation
    1038             :      *
    1039             :      * This is just to make really sure the relcache entry won't go away while
    1040             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1041             :      * anyway, so this is redundant in all normal scenarios...
    1042             :      */
    1043      655784 :     RelationIncrementReferenceCount(relation);
    1044             : 
    1045             :     /*
    1046             :      * allocate and initialize scan descriptor
    1047             :      */
    1048      655784 :     scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1049             : 
    1050      655784 :     scan->rs_base.rs_rd = relation;
    1051      655784 :     scan->rs_base.rs_snapshot = snapshot;
    1052      655784 :     scan->rs_base.rs_nkeys = nkeys;
    1053      655784 :     scan->rs_base.rs_flags = flags;
    1054      655784 :     scan->rs_base.rs_parallel = parallel_scan;
    1055      655784 :     scan->rs_strategy = NULL;    /* set in initscan */
    1056      655784 :     scan->rs_vmbuffer = InvalidBuffer;
    1057      655784 :     scan->rs_empty_tuples_pending = 0;
    1058             : 
    1059             :     /*
    1060             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1061             :      */
    1062      655784 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1063       53566 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1064             : 
    1065             :     /*
    1066             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1067             :      * predicate lock on the entire relation. This is required not only to
    1068             :      * lock all the matching tuples, but also to conflict with new insertions
    1069             :      * into the table. In an indexscan, we take page locks on the index pages
    1070             :      * covering the range specified in the scan qual, but in a heap scan there
    1071             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1072             :      * story, there we have already scanned the index and locked the index
    1073             :      * pages covering the predicate. But in that case we still have to lock
    1074             :      * any matching heap tuples. For sample scan we could optimize the locking
    1075             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1076             :      * locking for that.
    1077             :      */
    1078      655784 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1079             :     {
    1080             :         /*
    1081             :          * Ensure a missing snapshot is noticed reliably, even if the
    1082             :          * isolation mode means predicate locking isn't performed (and
    1083             :          * therefore the snapshot isn't used here).
    1084             :          */
    1085             :         Assert(snapshot);
    1086      625116 :         PredicateLockRelation(relation, snapshot);
    1087             :     }
    1088             : 
    1089             :     /* we only need to set this up once */
    1090      655784 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1091             : 
    1092             :     /*
    1093             :      * Allocate memory to keep track of page allocation for parallel workers
    1094             :      * when doing a parallel scan.
    1095             :      */
    1096      655784 :     if (parallel_scan != NULL)
    1097        3894 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1098             :     else
    1099      651890 :         scan->rs_parallelworkerdata = NULL;
    1100             : 
    1101             :     /*
    1102             :      * we do this here instead of in initscan() because heap_rescan also calls
    1103             :      * initscan() and we don't want to allocate memory again
    1104             :      */
    1105      655784 :     if (nkeys > 0)
    1106      377504 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1107             :     else
    1108      278280 :         scan->rs_base.rs_key = NULL;
    1109             : 
    1110      655784 :     initscan(scan, key, false);
    1111             : 
    1112      655780 :     scan->rs_read_stream = NULL;
    1113             : 
    1114             :     /*
    1115             :      * Set up a read stream for sequential scans and TID range scans. This
    1116             :      * should be done after initscan() because initscan() allocates the
    1117             :      * BufferAccessStrategy object passed to the read stream API.
    1118             :      */
    1119      655780 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1120       30814 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1121             :     {
    1122             :         ReadStreamBlockNumberCB cb;
    1123             : 
    1124      625078 :         if (scan->rs_base.rs_parallel)
    1125        3894 :             cb = heap_scan_stream_read_next_parallel;
    1126             :         else
    1127      621184 :             cb = heap_scan_stream_read_next_serial;
    1128             : 
    1129      625078 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL,
    1130             :                                                           scan->rs_strategy,
    1131             :                                                           scan->rs_base.rs_rd,
    1132             :                                                           MAIN_FORKNUM,
    1133             :                                                           cb,
    1134             :                                                           scan,
    1135             :                                                           0);
    1136             :     }
    1137             : 
    1138             : 
    1139      655780 :     return (TableScanDesc) scan;
    1140             : }
    1141             : 
    1142             : void
    1143     1005120 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1144             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1145             : {
    1146     1005120 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1147             : 
    1148     1005120 :     if (set_params)
    1149             :     {
    1150          30 :         if (allow_strat)
    1151          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1152             :         else
    1153           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1154             : 
    1155          30 :         if (allow_sync)
    1156          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1157             :         else
    1158          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1159             : 
    1160          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1161          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1162          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1163             :         else
    1164           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1165             :     }
    1166             : 
    1167             :     /*
    1168             :      * unpin scan buffers
    1169             :      */
    1170     1005120 :     if (BufferIsValid(scan->rs_cbuf))
    1171        5438 :         ReleaseBuffer(scan->rs_cbuf);
    1172             : 
    1173     1005120 :     if (BufferIsValid(scan->rs_vmbuffer))
    1174             :     {
    1175          54 :         ReleaseBuffer(scan->rs_vmbuffer);
    1176          54 :         scan->rs_vmbuffer = InvalidBuffer;
    1177             :     }
    1178             : 
    1179             :     /*
    1180             :      * Reset rs_empty_tuples_pending, a field only used by bitmap heap scan,
    1181             :      * to avoid incorrectly emitting NULL-filled tuples from a previous scan
    1182             :      * on rescan.
    1183             :      */
    1184     1005120 :     scan->rs_empty_tuples_pending = 0;
    1185             : 
    1186             :     /*
    1187             :      * The read stream is reset on rescan. This must be done before
    1188             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1189             :      * in initscan().
    1190             :      */
    1191     1005120 :     if (scan->rs_read_stream)
    1192     1000996 :         read_stream_reset(scan->rs_read_stream);
    1193             : 
    1194             :     /*
    1195             :      * reinitialize scan descriptor
    1196             :      */
    1197     1005120 :     initscan(scan, key, true);
    1198     1005120 : }
    1199             : 
    1200             : void
    1201      653070 : heap_endscan(TableScanDesc sscan)
    1202             : {
    1203      653070 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1204             : 
    1205             :     /* Note: no locking manipulations needed */
    1206             : 
    1207             :     /*
    1208             :      * unpin scan buffers
    1209             :      */
    1210      653070 :     if (BufferIsValid(scan->rs_cbuf))
    1211      280476 :         ReleaseBuffer(scan->rs_cbuf);
    1212             : 
    1213      653070 :     if (BufferIsValid(scan->rs_vmbuffer))
    1214          36 :         ReleaseBuffer(scan->rs_vmbuffer);
    1215             : 
    1216             :     /*
    1217             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1218             :      */
    1219      653070 :     if (scan->rs_read_stream)
    1220      622572 :         read_stream_end(scan->rs_read_stream);
    1221             : 
    1222             :     /*
    1223             :      * decrement relation reference count and free scan descriptor storage
    1224             :      */
    1225      653070 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1226             : 
    1227      653070 :     if (scan->rs_base.rs_key)
    1228      377448 :         pfree(scan->rs_base.rs_key);
    1229             : 
    1230      653070 :     if (scan->rs_strategy != NULL)
    1231       19408 :         FreeAccessStrategy(scan->rs_strategy);
    1232             : 
    1233      653070 :     if (scan->rs_parallelworkerdata != NULL)
    1234        3894 :         pfree(scan->rs_parallelworkerdata);
    1235             : 
    1236      653070 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1237       63640 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1238             : 
    1239      653070 :     pfree(scan);
    1240      653070 : }
    1241             : 
    1242             : HeapTuple
    1243    17705580 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1244             : {
    1245    17705580 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1246             : 
    1247             :     /*
    1248             :      * This is still widely used directly, without going through table AM, so
    1249             :      * add a safety check.  It's possible we should, at a later point,
    1250             :      * downgrade this to an assert. The reason for checking the AM routine,
    1251             :      * rather than the AM oid, is that this allows to write regression tests
    1252             :      * that create another AM reusing the heap handler.
    1253             :      */
    1254    17705580 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1255           0 :         ereport(ERROR,
    1256             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1257             :                  errmsg_internal("only heap AM is supported")));
    1258             : 
    1259             :     /*
    1260             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1261             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1262             :      * these variables are declared.  Normally we have such a check at tableam
    1263             :      * level API but this is called from many places so we need to ensure it
    1264             :      * here.
    1265             :      */
    1266    17705580 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1267           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1268             : 
    1269             :     /* Note: no locking manipulations needed */
    1270             : 
    1271    17705580 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1272     3128948 :         heapgettup_pagemode(scan, direction,
    1273     3128948 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1274             :     else
    1275    14576632 :         heapgettup(scan, direction,
    1276    14576632 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1277             : 
    1278    17705580 :     if (scan->rs_ctup.t_data == NULL)
    1279      112866 :         return NULL;
    1280             : 
    1281             :     /*
    1282             :      * if we get here it means we have a new current scan tuple, so point to
    1283             :      * the proper return buffer and return the tuple.
    1284             :      */
    1285             : 
    1286    17592714 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1287             : 
    1288    17592714 :     return &scan->rs_ctup;
    1289             : }
    1290             : 
    1291             : bool
    1292    79088058 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1293             : {
    1294    79088058 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1295             : 
    1296             :     /* Note: no locking manipulations needed */
    1297             : 
    1298    79088058 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1299    78114608 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1300             :     else
    1301      973450 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1302             : 
    1303    79088040 :     if (scan->rs_ctup.t_data == NULL)
    1304             :     {
    1305     1238970 :         ExecClearTuple(slot);
    1306     1238970 :         return false;
    1307             :     }
    1308             : 
    1309             :     /*
    1310             :      * if we get here it means we have a new current scan tuple, so point to
    1311             :      * the proper return buffer and return the tuple.
    1312             :      */
    1313             : 
    1314    77849070 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1315             : 
    1316    77849070 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1317             :                              scan->rs_cbuf);
    1318    77849070 :     return true;
    1319             : }
    1320             : 
    1321             : void
    1322         178 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1323             :                   ItemPointer maxtid)
    1324             : {
    1325         178 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1326             :     BlockNumber startBlk;
    1327             :     BlockNumber numBlks;
    1328             :     ItemPointerData highestItem;
    1329             :     ItemPointerData lowestItem;
    1330             : 
    1331             :     /*
    1332             :      * For relations without any pages, we can simply leave the TID range
    1333             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1334             :      * the given TID range.
    1335             :      */
    1336         178 :     if (scan->rs_nblocks == 0)
    1337          48 :         return;
    1338             : 
    1339             :     /*
    1340             :      * Set up some ItemPointers which point to the first and last possible
    1341             :      * tuples in the heap.
    1342             :      */
    1343         166 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1344         166 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1345             : 
    1346             :     /*
    1347             :      * If the given maximum TID is below the highest possible TID in the
    1348             :      * relation, then restrict the range to that, otherwise we scan to the end
    1349             :      * of the relation.
    1350             :      */
    1351         166 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1352         132 :         ItemPointerCopy(maxtid, &highestItem);
    1353             : 
    1354             :     /*
    1355             :      * If the given minimum TID is above the lowest possible TID in the
    1356             :      * relation, then restrict the range to only scan for TIDs above that.
    1357             :      */
    1358         166 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1359          52 :         ItemPointerCopy(mintid, &lowestItem);
    1360             : 
    1361             :     /*
    1362             :      * Check for an empty range and protect from would be negative results
    1363             :      * from the numBlks calculation below.
    1364             :      */
    1365         166 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1366             :     {
    1367             :         /* Set an empty range of blocks to scan */
    1368          36 :         heap_setscanlimits(sscan, 0, 0);
    1369          36 :         return;
    1370             :     }
    1371             : 
    1372             :     /*
    1373             :      * Calculate the first block and the number of blocks we must scan. We
    1374             :      * could be more aggressive here and perform some more validation to try
    1375             :      * and further narrow the scope of blocks to scan by checking if the
    1376             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1377             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1378             :      * we could scan one fewer blocks.  However, such an optimization does not
    1379             :      * seem worth troubling over, currently.
    1380             :      */
    1381         130 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1382             : 
    1383         130 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1384         130 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1385             : 
    1386             :     /* Set the start block and number of blocks to scan */
    1387         130 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1388             : 
    1389             :     /* Finally, set the TID range in sscan */
    1390         130 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1391         130 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1392             : }
    1393             : 
    1394             : bool
    1395        5940 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1396             :                           TupleTableSlot *slot)
    1397             : {
    1398        5940 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1399        5940 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1400        5940 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1401             : 
    1402             :     /* Note: no locking manipulations needed */
    1403             :     for (;;)
    1404             :     {
    1405        6126 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1406        6126 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1407             :         else
    1408           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1409             : 
    1410        6126 :         if (scan->rs_ctup.t_data == NULL)
    1411             :         {
    1412          94 :             ExecClearTuple(slot);
    1413          94 :             return false;
    1414             :         }
    1415             : 
    1416             :         /*
    1417             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1418             :          * range of pages we scan to only ones that can contain the TID range
    1419             :          * we're scanning for.  Here we must filter out any tuples from these
    1420             :          * pages that are outside of that range.
    1421             :          */
    1422        6032 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1423             :         {
    1424         186 :             ExecClearTuple(slot);
    1425             : 
    1426             :             /*
    1427             :              * When scanning backwards, the TIDs will be in descending order.
    1428             :              * Future tuples in this direction will be lower still, so we can
    1429             :              * just return false to indicate there will be no more tuples.
    1430             :              */
    1431         186 :             if (ScanDirectionIsBackward(direction))
    1432           0 :                 return false;
    1433             : 
    1434         186 :             continue;
    1435             :         }
    1436             : 
    1437             :         /*
    1438             :          * Likewise for the final page, we must filter out TIDs greater than
    1439             :          * maxtid.
    1440             :          */
    1441        5846 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1442             :         {
    1443          72 :             ExecClearTuple(slot);
    1444             : 
    1445             :             /*
    1446             :              * When scanning forward, the TIDs will be in ascending order.
    1447             :              * Future tuples in this direction will be higher still, so we can
    1448             :              * just return false to indicate there will be no more tuples.
    1449             :              */
    1450          72 :             if (ScanDirectionIsForward(direction))
    1451          72 :                 return false;
    1452           0 :             continue;
    1453             :         }
    1454             : 
    1455        5774 :         break;
    1456             :     }
    1457             : 
    1458             :     /*
    1459             :      * if we get here it means we have a new current scan tuple, so point to
    1460             :      * the proper return buffer and return the tuple.
    1461             :      */
    1462        5774 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1463             : 
    1464        5774 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1465        5774 :     return true;
    1466             : }
    1467             : 
    1468             : /*
    1469             :  *  heap_fetch      - retrieve tuple with given tid
    1470             :  *
    1471             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1472             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1473             :  * against the specified snapshot.
    1474             :  *
    1475             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1476             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1477             :  * must unpin the buffer when done with the tuple.
    1478             :  *
    1479             :  * If the tuple is not found (ie, item number references a deleted slot),
    1480             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1481             :  * and false is returned.
    1482             :  *
    1483             :  * If the tuple is found but fails the time qual check, then the behavior
    1484             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1485             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1486             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1487             :  * and again the caller must unpin the buffer; but false is returned.
    1488             :  *
    1489             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1490             :  * be fetched.
    1491             :  *
    1492             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1493             :  * return false on invalid item number.  There are a couple of reasons though.
    1494             :  * One is that the caller can relatively easily check the block number for
    1495             :  * validity, but cannot check the item number without reading the page
    1496             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1497             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1498             :  * truncate off the destination page without having killed the referencing
    1499             :  * tuple first), but the item number might well not be good.
    1500             :  */
    1501             : bool
    1502      345708 : heap_fetch(Relation relation,
    1503             :            Snapshot snapshot,
    1504             :            HeapTuple tuple,
    1505             :            Buffer *userbuf,
    1506             :            bool keep_buf)
    1507             : {
    1508      345708 :     ItemPointer tid = &(tuple->t_self);
    1509             :     ItemId      lp;
    1510             :     Buffer      buffer;
    1511             :     Page        page;
    1512             :     OffsetNumber offnum;
    1513             :     bool        valid;
    1514             : 
    1515             :     /*
    1516             :      * Fetch and pin the appropriate page of the relation.
    1517             :      */
    1518      345708 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1519             : 
    1520             :     /*
    1521             :      * Need share lock on buffer to examine tuple commit status.
    1522             :      */
    1523      345708 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1524      345708 :     page = BufferGetPage(buffer);
    1525             : 
    1526             :     /*
    1527             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1528             :      * TID was obtained.
    1529             :      */
    1530      345708 :     offnum = ItemPointerGetOffsetNumber(tid);
    1531      345708 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1532             :     {
    1533           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1534           6 :         ReleaseBuffer(buffer);
    1535           6 :         *userbuf = InvalidBuffer;
    1536           6 :         tuple->t_data = NULL;
    1537           6 :         return false;
    1538             :     }
    1539             : 
    1540             :     /*
    1541             :      * get the item line pointer corresponding to the requested tid
    1542             :      */
    1543      345702 :     lp = PageGetItemId(page, offnum);
    1544             : 
    1545             :     /*
    1546             :      * Must check for deleted tuple.
    1547             :      */
    1548      345702 :     if (!ItemIdIsNormal(lp))
    1549             :     {
    1550         652 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1551         652 :         ReleaseBuffer(buffer);
    1552         652 :         *userbuf = InvalidBuffer;
    1553         652 :         tuple->t_data = NULL;
    1554         652 :         return false;
    1555             :     }
    1556             : 
    1557             :     /*
    1558             :      * fill in *tuple fields
    1559             :      */
    1560      345050 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1561      345050 :     tuple->t_len = ItemIdGetLength(lp);
    1562      345050 :     tuple->t_tableOid = RelationGetRelid(relation);
    1563             : 
    1564             :     /*
    1565             :      * check tuple visibility, then release lock
    1566             :      */
    1567      345050 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1568             : 
    1569      345050 :     if (valid)
    1570      344960 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1571      344960 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1572             : 
    1573      345050 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1574             : 
    1575      345050 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1576             : 
    1577      345050 :     if (valid)
    1578             :     {
    1579             :         /*
    1580             :          * All checks passed, so return the tuple as valid. Caller is now
    1581             :          * responsible for releasing the buffer.
    1582             :          */
    1583      344960 :         *userbuf = buffer;
    1584             : 
    1585      344960 :         return true;
    1586             :     }
    1587             : 
    1588             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1589          90 :     if (keep_buf)
    1590          58 :         *userbuf = buffer;
    1591             :     else
    1592             :     {
    1593          32 :         ReleaseBuffer(buffer);
    1594          32 :         *userbuf = InvalidBuffer;
    1595          32 :         tuple->t_data = NULL;
    1596             :     }
    1597             : 
    1598          90 :     return false;
    1599             : }
    1600             : 
    1601             : /*
    1602             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1603             :  *
    1604             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1605             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1606             :  * for the first chain member satisfying the given snapshot.  If one is
    1607             :  * found, we update *tid to reference that tuple's offset number, and
    1608             :  * return true.  If no match, return false without modifying *tid.
    1609             :  *
    1610             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1611             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1612             :  * contents of this buffer on return are undefined.
    1613             :  *
    1614             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1615             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1616             :  * are vacuumable, false if not.
    1617             :  *
    1618             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1619             :  * lock on the buffer; it is still pinned/locked at exit.
    1620             :  */
    1621             : bool
    1622    39400728 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1623             :                        Snapshot snapshot, HeapTuple heapTuple,
    1624             :                        bool *all_dead, bool first_call)
    1625             : {
    1626    39400728 :     Page        page = BufferGetPage(buffer);
    1627    39400728 :     TransactionId prev_xmax = InvalidTransactionId;
    1628             :     BlockNumber blkno;
    1629             :     OffsetNumber offnum;
    1630             :     bool        at_chain_start;
    1631             :     bool        valid;
    1632             :     bool        skip;
    1633    39400728 :     GlobalVisState *vistest = NULL;
    1634             : 
    1635             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1636    39400728 :     if (all_dead)
    1637    33616244 :         *all_dead = first_call;
    1638             : 
    1639    39400728 :     blkno = ItemPointerGetBlockNumber(tid);
    1640    39400728 :     offnum = ItemPointerGetOffsetNumber(tid);
    1641    39400728 :     at_chain_start = first_call;
    1642    39400728 :     skip = !first_call;
    1643             : 
    1644             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1645             :     Assert(TransactionIdIsValid(RecentXmin));
    1646             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1647             : 
    1648             :     /* Scan through possible multiple members of HOT-chain */
    1649             :     for (;;)
    1650     2227288 :     {
    1651             :         ItemId      lp;
    1652             : 
    1653             :         /* check for bogus TID */
    1654    41628016 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1655             :             break;
    1656             : 
    1657    41628016 :         lp = PageGetItemId(page, offnum);
    1658             : 
    1659             :         /* check for unused, dead, or redirected items */
    1660    41628016 :         if (!ItemIdIsNormal(lp))
    1661             :         {
    1662             :             /* We should only see a redirect at start of chain */
    1663     1519550 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1664             :             {
    1665             :                 /* Follow the redirect */
    1666      742192 :                 offnum = ItemIdGetRedirect(lp);
    1667      742192 :                 at_chain_start = false;
    1668      742192 :                 continue;
    1669             :             }
    1670             :             /* else must be end of chain */
    1671      777358 :             break;
    1672             :         }
    1673             : 
    1674             :         /*
    1675             :          * Update heapTuple to point to the element of the HOT chain we're
    1676             :          * currently investigating. Having t_self set correctly is important
    1677             :          * because the SSI checks and the *Satisfies routine for historical
    1678             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1679             :          */
    1680    40108466 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1681    40108466 :         heapTuple->t_len = ItemIdGetLength(lp);
    1682    40108466 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1683    40108466 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1684             : 
    1685             :         /*
    1686             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1687             :          */
    1688    40108466 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1689           0 :             break;
    1690             : 
    1691             :         /*
    1692             :          * The xmin should match the previous xmax value, else chain is
    1693             :          * broken.
    1694             :          */
    1695    41593562 :         if (TransactionIdIsValid(prev_xmax) &&
    1696     1485096 :             !TransactionIdEquals(prev_xmax,
    1697             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1698           0 :             break;
    1699             : 
    1700             :         /*
    1701             :          * When first_call is true (and thus, skip is initially false) we'll
    1702             :          * return the first tuple we find.  But on later passes, heapTuple
    1703             :          * will initially be pointing to the tuple we returned last time.
    1704             :          * Returning it again would be incorrect (and would loop forever), so
    1705             :          * we skip it and return the next match we find.
    1706             :          */
    1707    40108466 :         if (!skip)
    1708             :         {
    1709             :             /* If it's visible per the snapshot, we must return it */
    1710    39954592 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1711    39954592 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1712             :                                                 buffer, snapshot);
    1713             : 
    1714    39954582 :             if (valid)
    1715             :             {
    1716    26334270 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1717    26334270 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1718    26334270 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1719    26334270 :                 if (all_dead)
    1720    21106530 :                     *all_dead = false;
    1721    26334270 :                 return true;
    1722             :             }
    1723             :         }
    1724    13774186 :         skip = false;
    1725             : 
    1726             :         /*
    1727             :          * If we can't see it, maybe no one else can either.  At caller
    1728             :          * request, check whether all chain members are dead to all
    1729             :          * transactions.
    1730             :          *
    1731             :          * Note: if you change the criterion here for what is "dead", fix the
    1732             :          * planner's get_actual_variable_range() function to match.
    1733             :          */
    1734    13774186 :         if (all_dead && *all_dead)
    1735             :         {
    1736    12704474 :             if (!vistest)
    1737    12454846 :                 vistest = GlobalVisTestFor(relation);
    1738             : 
    1739    12704474 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1740    12010224 :                 *all_dead = false;
    1741             :         }
    1742             : 
    1743             :         /*
    1744             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1745             :          * the next offnum and loop around.
    1746             :          */
    1747    13774186 :         if (HeapTupleIsHotUpdated(heapTuple))
    1748             :         {
    1749             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1750             :                    blkno);
    1751     1485096 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1752     1485096 :             at_chain_start = false;
    1753     1485096 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1754             :         }
    1755             :         else
    1756             :             break;              /* end of chain */
    1757             :     }
    1758             : 
    1759    13066448 :     return false;
    1760             : }
    1761             : 
    1762             : /*
    1763             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1764             :  *
    1765             :  * Actually, this gets the latest version that is visible according to the
    1766             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1767             :  * possibly uncommitted version.
    1768             :  *
    1769             :  * *tid is both an input and an output parameter: it is updated to
    1770             :  * show the latest version of the row.  Note that it will not be changed
    1771             :  * if no version of the row passes the snapshot test.
    1772             :  */
    1773             : void
    1774         300 : heap_get_latest_tid(TableScanDesc sscan,
    1775             :                     ItemPointer tid)
    1776             : {
    1777         300 :     Relation    relation = sscan->rs_rd;
    1778         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1779             :     ItemPointerData ctid;
    1780             :     TransactionId priorXmax;
    1781             : 
    1782             :     /*
    1783             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1784             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1785             :      * ones in the table.
    1786             :      */
    1787             :     Assert(ItemPointerIsValid(tid));
    1788             : 
    1789             :     /*
    1790             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1791             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1792             :      * to be bogus.
    1793             :      *
    1794             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1795             :      * Depending on the snapshot passed, there might be at most one visible
    1796             :      * version of the row, but we don't try to optimize for that.
    1797             :      */
    1798         300 :     ctid = *tid;
    1799         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1800             :     for (;;)
    1801          90 :     {
    1802             :         Buffer      buffer;
    1803             :         Page        page;
    1804             :         OffsetNumber offnum;
    1805             :         ItemId      lp;
    1806             :         HeapTupleData tp;
    1807             :         bool        valid;
    1808             : 
    1809             :         /*
    1810             :          * Read, pin, and lock the page.
    1811             :          */
    1812         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1813         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1814         390 :         page = BufferGetPage(buffer);
    1815             : 
    1816             :         /*
    1817             :          * Check for bogus item number.  This is not treated as an error
    1818             :          * condition because it can happen while following a t_ctid link. We
    1819             :          * just assume that the prior tid is OK and return it unchanged.
    1820             :          */
    1821         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1822         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1823             :         {
    1824           0 :             UnlockReleaseBuffer(buffer);
    1825           0 :             break;
    1826             :         }
    1827         390 :         lp = PageGetItemId(page, offnum);
    1828         390 :         if (!ItemIdIsNormal(lp))
    1829             :         {
    1830           0 :             UnlockReleaseBuffer(buffer);
    1831           0 :             break;
    1832             :         }
    1833             : 
    1834             :         /* OK to access the tuple */
    1835         390 :         tp.t_self = ctid;
    1836         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1837         390 :         tp.t_len = ItemIdGetLength(lp);
    1838         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1839             : 
    1840             :         /*
    1841             :          * After following a t_ctid link, we might arrive at an unrelated
    1842             :          * tuple.  Check for XMIN match.
    1843             :          */
    1844         480 :         if (TransactionIdIsValid(priorXmax) &&
    1845          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1846             :         {
    1847           0 :             UnlockReleaseBuffer(buffer);
    1848           0 :             break;
    1849             :         }
    1850             : 
    1851             :         /*
    1852             :          * Check tuple visibility; if visible, set it as the new result
    1853             :          * candidate.
    1854             :          */
    1855         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1856         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1857         390 :         if (valid)
    1858         276 :             *tid = ctid;
    1859             : 
    1860             :         /*
    1861             :          * If there's a valid t_ctid link, follow it, else we're done.
    1862             :          */
    1863         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1864         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1865         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1866         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1867             :         {
    1868         300 :             UnlockReleaseBuffer(buffer);
    1869         300 :             break;
    1870             :         }
    1871             : 
    1872          90 :         ctid = tp.t_data->t_ctid;
    1873          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1874          90 :         UnlockReleaseBuffer(buffer);
    1875             :     }                           /* end of loop */
    1876         300 : }
    1877             : 
    1878             : 
    1879             : /*
    1880             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1881             :  *
    1882             :  * This is called after we have waited for the XMAX transaction to terminate.
    1883             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1884             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1885             :  * hint bit if possible --- but beware that that may not yet be possible,
    1886             :  * if the transaction committed asynchronously.
    1887             :  *
    1888             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1889             :  * even if it commits.
    1890             :  *
    1891             :  * Hence callers should look only at XMAX_INVALID.
    1892             :  *
    1893             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1894             :  */
    1895             : static void
    1896         352 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    1897             : {
    1898             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    1899             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    1900             : 
    1901         352 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    1902             :     {
    1903         638 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    1904         286 :             TransactionIdDidCommit(xid))
    1905         234 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    1906             :                                  xid);
    1907             :         else
    1908         118 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    1909             :                                  InvalidTransactionId);
    1910             :     }
    1911         352 : }
    1912             : 
    1913             : 
    1914             : /*
    1915             :  * GetBulkInsertState - prepare status object for a bulk insert
    1916             :  */
    1917             : BulkInsertState
    1918        4238 : GetBulkInsertState(void)
    1919             : {
    1920             :     BulkInsertState bistate;
    1921             : 
    1922        4238 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    1923        4238 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    1924        4238 :     bistate->current_buf = InvalidBuffer;
    1925        4238 :     bistate->next_free = InvalidBlockNumber;
    1926        4238 :     bistate->last_free = InvalidBlockNumber;
    1927        4238 :     bistate->already_extended_by = 0;
    1928        4238 :     return bistate;
    1929             : }
    1930             : 
    1931             : /*
    1932             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    1933             :  */
    1934             : void
    1935        3990 : FreeBulkInsertState(BulkInsertState bistate)
    1936             : {
    1937        3990 :     if (bistate->current_buf != InvalidBuffer)
    1938        3260 :         ReleaseBuffer(bistate->current_buf);
    1939        3990 :     FreeAccessStrategy(bistate->strategy);
    1940        3990 :     pfree(bistate);
    1941        3990 : }
    1942             : 
    1943             : /*
    1944             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    1945             :  */
    1946             : void
    1947      161512 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    1948             : {
    1949      161512 :     if (bistate->current_buf != InvalidBuffer)
    1950       60042 :         ReleaseBuffer(bistate->current_buf);
    1951      161512 :     bistate->current_buf = InvalidBuffer;
    1952             : 
    1953             :     /*
    1954             :      * Despite the name, we also reset bulk relation extension state.
    1955             :      * Otherwise we can end up erroring out due to looking for free space in
    1956             :      * ->next_free of one partition, even though ->next_free was set when
    1957             :      * extending another partition. It could obviously also be bad for
    1958             :      * efficiency to look at existing blocks at offsets from another
    1959             :      * partition, even if we don't error out.
    1960             :      */
    1961      161512 :     bistate->next_free = InvalidBlockNumber;
    1962      161512 :     bistate->last_free = InvalidBlockNumber;
    1963      161512 : }
    1964             : 
    1965             : 
    1966             : /*
    1967             :  *  heap_insert     - insert tuple into a heap
    1968             :  *
    1969             :  * The new tuple is stamped with current transaction ID and the specified
    1970             :  * command ID.
    1971             :  *
    1972             :  * See table_tuple_insert for comments about most of the input flags, except
    1973             :  * that this routine directly takes a tuple rather than a slot.
    1974             :  *
    1975             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    1976             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    1977             :  * implement table_tuple_insert_speculative().
    1978             :  *
    1979             :  * On return the header fields of *tup are updated to match the stored tuple;
    1980             :  * in particular tup->t_self receives the actual TID where the tuple was
    1981             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    1982             :  * reflected into *tup.
    1983             :  */
    1984             : void
    1985    15504090 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    1986             :             int options, BulkInsertState bistate)
    1987             : {
    1988    15504090 :     TransactionId xid = GetCurrentTransactionId();
    1989             :     HeapTuple   heaptup;
    1990             :     Buffer      buffer;
    1991    15504080 :     Buffer      vmbuffer = InvalidBuffer;
    1992    15504080 :     bool        all_visible_cleared = false;
    1993             : 
    1994             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    1995             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    1996             :            RelationGetNumberOfAttributes(relation));
    1997             : 
    1998             :     /*
    1999             :      * Fill in tuple header fields and toast the tuple if necessary.
    2000             :      *
    2001             :      * Note: below this point, heaptup is the data we actually intend to store
    2002             :      * into the relation; tup is the caller's original untoasted data.
    2003             :      */
    2004    15504080 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2005             : 
    2006             :     /*
    2007             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2008             :      * this will also pin the requisite visibility map page.
    2009             :      */
    2010    15504080 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2011             :                                        InvalidBuffer, options, bistate,
    2012             :                                        &vmbuffer, NULL,
    2013             :                                        0);
    2014             : 
    2015             :     /*
    2016             :      * We're about to do the actual insert -- but check for conflict first, to
    2017             :      * avoid possibly having to roll back work we've just done.
    2018             :      *
    2019             :      * This is safe without a recheck as long as there is no possibility of
    2020             :      * another process scanning the page between this check and the insert
    2021             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2022             :      * continuously held from this point until the tuple insert is visible).
    2023             :      *
    2024             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2025             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2026             :      * page locks are only consolidated versions of tuple locks; they do not
    2027             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2028             :      * buffer when making the call, which makes for a faster check.
    2029             :      */
    2030    15504080 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2031             : 
    2032             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2033    15504056 :     START_CRIT_SECTION();
    2034             : 
    2035    15504056 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2036    15504056 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2037             : 
    2038    15504056 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2039             :     {
    2040       12706 :         all_visible_cleared = true;
    2041       12706 :         PageClearAllVisible(BufferGetPage(buffer));
    2042       12706 :         visibilitymap_clear(relation,
    2043       12706 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2044             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2045             :     }
    2046             : 
    2047             :     /*
    2048             :      * XXX Should we set PageSetPrunable on this page ?
    2049             :      *
    2050             :      * The inserting transaction may eventually abort thus making this tuple
    2051             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2052             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2053             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2054             :      *
    2055             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2056             :      */
    2057             : 
    2058    15504056 :     MarkBufferDirty(buffer);
    2059             : 
    2060             :     /* XLOG stuff */
    2061    15504056 :     if (RelationNeedsWAL(relation))
    2062             :     {
    2063             :         xl_heap_insert xlrec;
    2064             :         xl_heap_header xlhdr;
    2065             :         XLogRecPtr  recptr;
    2066    13487036 :         Page        page = BufferGetPage(buffer);
    2067    13487036 :         uint8       info = XLOG_HEAP_INSERT;
    2068    13487036 :         int         bufflags = 0;
    2069             : 
    2070             :         /*
    2071             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2072             :          * decode, so log that as well.
    2073             :          */
    2074    13487036 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2075        6038 :             log_heap_new_cid(relation, heaptup);
    2076             : 
    2077             :         /*
    2078             :          * If this is the single and first tuple on page, we can reinit the
    2079             :          * page instead of restoring the whole thing.  Set flag, and hide
    2080             :          * buffer references from XLogInsert.
    2081             :          */
    2082    13651910 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2083      164874 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2084             :         {
    2085      163780 :             info |= XLOG_HEAP_INIT_PAGE;
    2086      163780 :             bufflags |= REGBUF_WILL_INIT;
    2087             :         }
    2088             : 
    2089    13487036 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2090    13487036 :         xlrec.flags = 0;
    2091    13487036 :         if (all_visible_cleared)
    2092       12700 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2093    13487036 :         if (options & HEAP_INSERT_SPECULATIVE)
    2094        4110 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2095             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2096             : 
    2097             :         /*
    2098             :          * For logical decoding, we need the tuple even if we're doing a full
    2099             :          * page write, so make sure it's included even if we take a full-page
    2100             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2101             :          */
    2102    13487036 :         if (RelationIsLogicallyLogged(relation) &&
    2103      489636 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2104             :         {
    2105      489582 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2106      489582 :             bufflags |= REGBUF_KEEP_DATA;
    2107             : 
    2108      489582 :             if (IsToastRelation(relation))
    2109        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2110             :         }
    2111             : 
    2112    13487036 :         XLogBeginInsert();
    2113    13487036 :         XLogRegisterData((char *) &xlrec, SizeOfHeapInsert);
    2114             : 
    2115    13487036 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2116    13487036 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2117    13487036 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2118             : 
    2119             :         /*
    2120             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2121             :          * write the whole page to the xlog, we don't need to store
    2122             :          * xl_heap_header in the xlog.
    2123             :          */
    2124    13487036 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2125    13487036 :         XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);
    2126             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2127    13487036 :         XLogRegisterBufData(0,
    2128    13487036 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2129    13487036 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2130             : 
    2131             :         /* filtering by origin on a row level is much more efficient */
    2132    13487036 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2133             : 
    2134    13487036 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2135             : 
    2136    13487036 :         PageSetLSN(page, recptr);
    2137             :     }
    2138             : 
    2139    15504056 :     END_CRIT_SECTION();
    2140             : 
    2141    15504056 :     UnlockReleaseBuffer(buffer);
    2142    15504056 :     if (vmbuffer != InvalidBuffer)
    2143       13252 :         ReleaseBuffer(vmbuffer);
    2144             : 
    2145             :     /*
    2146             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2147             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2148             :      * the heaptup data structure is all in local memory, not in the shared
    2149             :      * buffer.
    2150             :      */
    2151    15504056 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2152             : 
    2153             :     /* Note: speculative insertions are counted too, even if aborted later */
    2154    15504056 :     pgstat_count_heap_insert(relation, 1);
    2155             : 
    2156             :     /*
    2157             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2158             :      * back to the caller's image, too.
    2159             :      */
    2160    15504056 :     if (heaptup != tup)
    2161             :     {
    2162       33462 :         tup->t_self = heaptup->t_self;
    2163       33462 :         heap_freetuple(heaptup);
    2164             :     }
    2165    15504056 : }
    2166             : 
    2167             : /*
    2168             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2169             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2170             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2171             :  * that in any case, the header fields are also set in the original tuple.
    2172             :  */
    2173             : static HeapTuple
    2174    18305072 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2175             :                     CommandId cid, int options)
    2176             : {
    2177             :     /*
    2178             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2179             :      * performed in workers. We have the infrastructure to allow parallel
    2180             :      * inserts in general except for the cases where inserts generate a new
    2181             :      * CommandId (eg. inserts into a table having a foreign key column).
    2182             :      */
    2183    18305072 :     if (IsParallelWorker())
    2184           0 :         ereport(ERROR,
    2185             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2186             :                  errmsg("cannot insert tuples in a parallel worker")));
    2187             : 
    2188    18305072 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2189    18305072 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2190    18305072 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2191    18305072 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2192    18305072 :     if (options & HEAP_INSERT_FROZEN)
    2193      204022 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2194             : 
    2195    18305072 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2196    18305072 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2197    18305072 :     tup->t_tableOid = RelationGetRelid(relation);
    2198             : 
    2199             :     /*
    2200             :      * If the new tuple is too big for storage or contains already toasted
    2201             :      * out-of-line attributes from some other relation, invoke the toaster.
    2202             :      */
    2203    18305072 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2204       56596 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2205             :     {
    2206             :         /* toast table entries should never be recursively toasted */
    2207             :         Assert(!HeapTupleHasExternal(tup));
    2208       56500 :         return tup;
    2209             :     }
    2210    18248572 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2211       33544 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2212             :     else
    2213    18215028 :         return tup;
    2214             : }
    2215             : 
    2216             : /*
    2217             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2218             :  * that inserting the remaining heaptuples requires. Used to determine how
    2219             :  * much the relation needs to be extended by.
    2220             :  */
    2221             : static int
    2222      659708 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2223             : {
    2224      659708 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2225      659708 :     int         npages = 1;
    2226             : 
    2227     4634096 :     for (int i = done; i < ntuples; i++)
    2228             :     {
    2229     3974388 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2230             : 
    2231     3974388 :         if (page_avail < tup_sz)
    2232             :         {
    2233       30972 :             npages++;
    2234       30972 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2235             :         }
    2236     3974388 :         page_avail -= tup_sz;
    2237             :     }
    2238             : 
    2239      659708 :     return npages;
    2240             : }
    2241             : 
    2242             : /*
    2243             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2244             :  *
    2245             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2246             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2247             :  * tuples can be inserted on a single page, we can write just a single WAL
    2248             :  * record covering all of them, and only need to lock/unlock the page once.
    2249             :  *
    2250             :  * Note: this leaks memory into the current memory context. You can create a
    2251             :  * temporary context before calling this, if that's a problem.
    2252             :  */
    2253             : void
    2254      647698 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2255             :                   CommandId cid, int options, BulkInsertState bistate)
    2256             : {
    2257      647698 :     TransactionId xid = GetCurrentTransactionId();
    2258             :     HeapTuple  *heaptuples;
    2259             :     int         i;
    2260             :     int         ndone;
    2261             :     PGAlignedBlock scratch;
    2262             :     Page        page;
    2263      647698 :     Buffer      vmbuffer = InvalidBuffer;
    2264             :     bool        needwal;
    2265             :     Size        saveFreeSpace;
    2266      647698 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2267      647698 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2268      647698 :     bool        starting_with_empty_page = false;
    2269      647698 :     int         npages = 0;
    2270      647698 :     int         npages_used = 0;
    2271             : 
    2272             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2273             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2274             : 
    2275      647698 :     needwal = RelationNeedsWAL(relation);
    2276      647698 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2277             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2278             : 
    2279             :     /* Toast and set header data in all the slots */
    2280      647698 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2281     3448690 :     for (i = 0; i < ntuples; i++)
    2282             :     {
    2283             :         HeapTuple   tuple;
    2284             : 
    2285     2800992 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2286     2800992 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2287     2800992 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2288     2800992 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2289             :                                             options);
    2290             :     }
    2291             : 
    2292             :     /*
    2293             :      * We're about to do the actual inserts -- but check for conflict first,
    2294             :      * to minimize the possibility of having to roll back work we've just
    2295             :      * done.
    2296             :      *
    2297             :      * A check here does not definitively prevent a serialization anomaly;
    2298             :      * that check MUST be done at least past the point of acquiring an
    2299             :      * exclusive buffer content lock on every buffer that will be affected,
    2300             :      * and MAY be done after all inserts are reflected in the buffers and
    2301             :      * those locks are released; otherwise there is a race condition.  Since
    2302             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2303             :      * would not be feasible to identify and lock all of those buffers before
    2304             :      * the loop, we must do a final check at the end.
    2305             :      *
    2306             :      * The check here could be omitted with no loss of correctness; it is
    2307             :      * present strictly as an optimization.
    2308             :      *
    2309             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2310             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2311             :      * page locks are only consolidated versions of tuple locks; they do not
    2312             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2313             :      * buffer when making the call, which makes for a faster check.
    2314             :      */
    2315      647698 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2316             : 
    2317      647698 :     ndone = 0;
    2318     1323636 :     while (ndone < ntuples)
    2319             :     {
    2320             :         Buffer      buffer;
    2321      675938 :         bool        all_visible_cleared = false;
    2322      675938 :         bool        all_frozen_set = false;
    2323             :         int         nthispage;
    2324             : 
    2325      675938 :         CHECK_FOR_INTERRUPTS();
    2326             : 
    2327             :         /*
    2328             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2329             :          * the worst case.  This will be used to determine how much to extend
    2330             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2331             :          * filled a prior page from scratch, we can just update our last
    2332             :          * computation, but if we started with a partially filled page,
    2333             :          * recompute from scratch, the number of potentially required pages
    2334             :          * can vary due to tuples needing to fit onto the page, page headers
    2335             :          * etc.
    2336             :          */
    2337      675938 :         if (ndone == 0 || !starting_with_empty_page)
    2338             :         {
    2339      659708 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2340             :                                              saveFreeSpace);
    2341      659708 :             npages_used = 0;
    2342             :         }
    2343             :         else
    2344       16230 :             npages_used++;
    2345             : 
    2346             :         /*
    2347             :          * Find buffer where at least the next tuple will fit.  If the page is
    2348             :          * all-visible, this will also pin the requisite visibility map page.
    2349             :          *
    2350             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2351             :          * empty page. See all_frozen_set below.
    2352             :          */
    2353      675938 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2354             :                                            InvalidBuffer, options, bistate,
    2355             :                                            &vmbuffer, NULL,
    2356             :                                            npages - npages_used);
    2357      675938 :         page = BufferGetPage(buffer);
    2358             : 
    2359      675938 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2360             : 
    2361      675938 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2362        3322 :             all_frozen_set = true;
    2363             : 
    2364             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2365      675938 :         START_CRIT_SECTION();
    2366             : 
    2367             :         /*
    2368             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2369             :          * Put that on the page, and then as many other tuples as fit.
    2370             :          */
    2371      675938 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2372             : 
    2373             :         /*
    2374             :          * For logical decoding we need combo CIDs to properly decode the
    2375             :          * catalog.
    2376             :          */
    2377      675938 :         if (needwal && need_cids)
    2378        8974 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2379             : 
    2380     2800992 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2381             :         {
    2382     2153294 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2383             : 
    2384     2153294 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2385       28240 :                 break;
    2386             : 
    2387     2125054 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2388             : 
    2389             :             /*
    2390             :              * For logical decoding we need combo CIDs to properly decode the
    2391             :              * catalog.
    2392             :              */
    2393     2125054 :             if (needwal && need_cids)
    2394        8604 :                 log_heap_new_cid(relation, heaptup);
    2395             :         }
    2396             : 
    2397             :         /*
    2398             :          * If the page is all visible, need to clear that, unless we're only
    2399             :          * going to add further frozen rows to it.
    2400             :          *
    2401             :          * If we're only adding already frozen rows to a previously empty
    2402             :          * page, mark it as all-visible.
    2403             :          */
    2404      675938 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2405             :         {
    2406        5144 :             all_visible_cleared = true;
    2407        5144 :             PageClearAllVisible(page);
    2408        5144 :             visibilitymap_clear(relation,
    2409             :                                 BufferGetBlockNumber(buffer),
    2410             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2411             :         }
    2412      670794 :         else if (all_frozen_set)
    2413        3322 :             PageSetAllVisible(page);
    2414             : 
    2415             :         /*
    2416             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2417             :          */
    2418             : 
    2419      675938 :         MarkBufferDirty(buffer);
    2420             : 
    2421             :         /* XLOG stuff */
    2422      675938 :         if (needwal)
    2423             :         {
    2424             :             XLogRecPtr  recptr;
    2425             :             xl_heap_multi_insert *xlrec;
    2426      668296 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2427             :             char       *tupledata;
    2428             :             int         totaldatalen;
    2429      668296 :             char       *scratchptr = scratch.data;
    2430             :             bool        init;
    2431      668296 :             int         bufflags = 0;
    2432             : 
    2433             :             /*
    2434             :              * If the page was previously empty, we can reinit the page
    2435             :              * instead of restoring the whole thing.
    2436             :              */
    2437      668296 :             init = starting_with_empty_page;
    2438             : 
    2439             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2440      668296 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2441      668296 :             scratchptr += SizeOfHeapMultiInsert;
    2442             : 
    2443             :             /*
    2444             :              * Allocate offsets array. Unless we're reinitializing the page,
    2445             :              * in that case the tuples are stored in order starting at
    2446             :              * FirstOffsetNumber and we don't need to store the offsets
    2447             :              * explicitly.
    2448             :              */
    2449      668296 :             if (!init)
    2450      643156 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2451             : 
    2452             :             /* the rest of the scratch space is used for tuple data */
    2453      668296 :             tupledata = scratchptr;
    2454             : 
    2455             :             /* check that the mutually exclusive flags are not both set */
    2456             :             Assert(!(all_visible_cleared && all_frozen_set));
    2457             : 
    2458      668296 :             xlrec->flags = 0;
    2459      668296 :             if (all_visible_cleared)
    2460        5144 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2461      668296 :             if (all_frozen_set)
    2462          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2463             : 
    2464      668296 :             xlrec->ntuples = nthispage;
    2465             : 
    2466             :             /*
    2467             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2468             :              * for each tuple.
    2469             :              */
    2470     3058486 :             for (i = 0; i < nthispage; i++)
    2471             :             {
    2472     2390190 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2473             :                 xl_multi_insert_tuple *tuphdr;
    2474             :                 int         datalen;
    2475             : 
    2476     2390190 :                 if (!init)
    2477     1359418 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2478             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2479     2390190 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2480     2390190 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2481             : 
    2482     2390190 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2483     2390190 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2484     2390190 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2485             : 
    2486             :                 /* write bitmap [+ padding] [+ oid] + data */
    2487     2390190 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2488     2390190 :                 memcpy(scratchptr,
    2489     2390190 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2490             :                        datalen);
    2491     2390190 :                 tuphdr->datalen = datalen;
    2492     2390190 :                 scratchptr += datalen;
    2493             :             }
    2494      668296 :             totaldatalen = scratchptr - tupledata;
    2495             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2496             : 
    2497      668296 :             if (need_tuple_data)
    2498         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2499             : 
    2500             :             /*
    2501             :              * Signal that this is the last xl_heap_multi_insert record
    2502             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2503             :              * decoding so it knows when to cleanup temporary data.
    2504             :              */
    2505      668296 :             if (ndone + nthispage == ntuples)
    2506      646874 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2507             : 
    2508      668296 :             if (init)
    2509             :             {
    2510       25140 :                 info |= XLOG_HEAP_INIT_PAGE;
    2511       25140 :                 bufflags |= REGBUF_WILL_INIT;
    2512             :             }
    2513             : 
    2514             :             /*
    2515             :              * If we're doing logical decoding, include the new tuple data
    2516             :              * even if we take a full-page image of the page.
    2517             :              */
    2518      668296 :             if (need_tuple_data)
    2519         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2520             : 
    2521      668296 :             XLogBeginInsert();
    2522      668296 :             XLogRegisterData((char *) xlrec, tupledata - scratch.data);
    2523      668296 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2524             : 
    2525      668296 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2526             : 
    2527             :             /* filtering by origin on a row level is much more efficient */
    2528      668296 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2529             : 
    2530      668296 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2531             : 
    2532      668296 :             PageSetLSN(page, recptr);
    2533             :         }
    2534             : 
    2535      675938 :         END_CRIT_SECTION();
    2536             : 
    2537             :         /*
    2538             :          * If we've frozen everything on the page, update the visibilitymap.
    2539             :          * We're already holding pin on the vmbuffer.
    2540             :          */
    2541      675938 :         if (all_frozen_set)
    2542             :         {
    2543             :             Assert(PageIsAllVisible(page));
    2544             :             Assert(visibilitymap_pin_ok(BufferGetBlockNumber(buffer), vmbuffer));
    2545             : 
    2546             :             /*
    2547             :              * It's fine to use InvalidTransactionId here - this is only used
    2548             :              * when HEAP_INSERT_FROZEN is specified, which intentionally
    2549             :              * violates visibility rules.
    2550             :              */
    2551        3322 :             visibilitymap_set(relation, BufferGetBlockNumber(buffer), buffer,
    2552             :                               InvalidXLogRecPtr, vmbuffer,
    2553             :                               InvalidTransactionId,
    2554             :                               VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
    2555             :         }
    2556             : 
    2557      675938 :         UnlockReleaseBuffer(buffer);
    2558      675938 :         ndone += nthispage;
    2559             : 
    2560             :         /*
    2561             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2562             :          * likely that we'll insert into subsequent heap pages that are likely
    2563             :          * to use the same vm page.
    2564             :          */
    2565             :     }
    2566             : 
    2567             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2568      647698 :     if (vmbuffer != InvalidBuffer)
    2569        5356 :         ReleaseBuffer(vmbuffer);
    2570             : 
    2571             :     /*
    2572             :      * We're done with the actual inserts.  Check for conflicts again, to
    2573             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2574             :      * this final check, a sequential scan of the heap may have locked the
    2575             :      * table after the "before" check, missing one opportunity to detect the
    2576             :      * conflict, and then scanned the table before the new tuples were there,
    2577             :      * missing the other chance to detect the conflict.
    2578             :      *
    2579             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2580             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2581             :      * page locks are only consolidated versions of tuple locks; they do not
    2582             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2583             :      * buffer when making the call.
    2584             :      */
    2585      647698 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2586             : 
    2587             :     /*
    2588             :      * If tuples are cachable, mark them for invalidation from the caches in
    2589             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2590             :      * because the heaptuples data structure is all in local memory, not in
    2591             :      * the shared buffer.
    2592             :      */
    2593      647698 :     if (IsCatalogRelation(relation))
    2594             :     {
    2595     2250852 :         for (i = 0; i < ntuples; i++)
    2596     1605508 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2597             :     }
    2598             : 
    2599             :     /* copy t_self fields back to the caller's slots */
    2600     3448690 :     for (i = 0; i < ntuples; i++)
    2601     2800992 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2602             : 
    2603      647698 :     pgstat_count_heap_insert(relation, ntuples);
    2604      647698 : }
    2605             : 
    2606             : /*
    2607             :  *  simple_heap_insert - insert a tuple
    2608             :  *
    2609             :  * Currently, this routine differs from heap_insert only in supplying
    2610             :  * a default command ID and not allowing access to the speedup options.
    2611             :  *
    2612             :  * This should be used rather than using heap_insert directly in most places
    2613             :  * where we are modifying system catalogs.
    2614             :  */
    2615             : void
    2616     1604242 : simple_heap_insert(Relation relation, HeapTuple tup)
    2617             : {
    2618     1604242 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2619     1604242 : }
    2620             : 
    2621             : /*
    2622             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2623             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2624             :  * xl_heap_lock_updated WAL records.
    2625             :  *
    2626             :  * See fix_infomask_from_infobits.
    2627             :  */
    2628             : static uint8
    2629     3747446 : compute_infobits(uint16 infomask, uint16 infomask2)
    2630             : {
    2631             :     return
    2632     3747446 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2633     3747446 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2634     3747446 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2635             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2636     7494892 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2637             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2638     3747446 :          XLHL_KEYS_UPDATED : 0);
    2639             : }
    2640             : 
    2641             : /*
    2642             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2643             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2644             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2645             :  * that the tuple state continues to be the same it was when we previously
    2646             :  * examined it.
    2647             :  *
    2648             :  * Note the Xmax field itself must be compared separately.
    2649             :  */
    2650             : static inline bool
    2651       10660 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2652             : {
    2653       10660 :     const uint16 interesting =
    2654             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2655             : 
    2656       10660 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2657          28 :         return true;
    2658             : 
    2659       10632 :     return false;
    2660             : }
    2661             : 
    2662             : /*
    2663             :  *  heap_delete - delete a tuple
    2664             :  *
    2665             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2666             :  * this routine directly takes a tuple rather than a slot.
    2667             :  *
    2668             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2669             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2670             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2671             :  * generated by another transaction).
    2672             :  */
    2673             : TM_Result
    2674     2896828 : heap_delete(Relation relation, ItemPointer tid,
    2675             :             CommandId cid, Snapshot crosscheck, bool wait,
    2676             :             TM_FailureData *tmfd, bool changingPart)
    2677             : {
    2678             :     TM_Result   result;
    2679     2896828 :     TransactionId xid = GetCurrentTransactionId();
    2680             :     ItemId      lp;
    2681             :     HeapTupleData tp;
    2682             :     Page        page;
    2683             :     BlockNumber block;
    2684             :     Buffer      buffer;
    2685     2896828 :     Buffer      vmbuffer = InvalidBuffer;
    2686             :     TransactionId new_xmax;
    2687             :     uint16      new_infomask,
    2688             :                 new_infomask2;
    2689     2896828 :     bool        have_tuple_lock = false;
    2690             :     bool        iscombo;
    2691     2896828 :     bool        all_visible_cleared = false;
    2692     2896828 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2693     2896828 :     bool        old_key_copied = false;
    2694             : 
    2695             :     Assert(ItemPointerIsValid(tid));
    2696             : 
    2697             :     /*
    2698             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2699             :      * Other workers might need that combo CID for visibility checks, and we
    2700             :      * have no provision for broadcasting it to them.
    2701             :      */
    2702     2896828 :     if (IsInParallelMode())
    2703           0 :         ereport(ERROR,
    2704             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2705             :                  errmsg("cannot delete tuples during a parallel operation")));
    2706             : 
    2707     2896828 :     block = ItemPointerGetBlockNumber(tid);
    2708     2896828 :     buffer = ReadBuffer(relation, block);
    2709     2896828 :     page = BufferGetPage(buffer);
    2710             : 
    2711             :     /*
    2712             :      * Before locking the buffer, pin the visibility map page if it appears to
    2713             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2714             :      * in the middle of changing this, so we'll need to recheck after we have
    2715             :      * the lock.
    2716             :      */
    2717     2896828 :     if (PageIsAllVisible(page))
    2718         902 :         visibilitymap_pin(relation, block, &vmbuffer);
    2719             : 
    2720     2896828 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2721             : 
    2722     2896828 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2723             :     Assert(ItemIdIsNormal(lp));
    2724             : 
    2725     2896828 :     tp.t_tableOid = RelationGetRelid(relation);
    2726     2896828 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2727     2896828 :     tp.t_len = ItemIdGetLength(lp);
    2728     2896828 :     tp.t_self = *tid;
    2729             : 
    2730     2896830 : l1:
    2731             : 
    2732             :     /*
    2733             :      * If we didn't pin the visibility map page and the page has become all
    2734             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2735             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2736             :      * unfortunate, but hopefully shouldn't happen often.
    2737             :      */
    2738     2896830 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2739             :     {
    2740           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2741           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2742           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2743             :     }
    2744             : 
    2745     2896830 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2746             : 
    2747     2896830 :     if (result == TM_Invisible)
    2748             :     {
    2749           0 :         UnlockReleaseBuffer(buffer);
    2750           0 :         ereport(ERROR,
    2751             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2752             :                  errmsg("attempted to delete invisible tuple")));
    2753             :     }
    2754     2896830 :     else if (result == TM_BeingModified && wait)
    2755             :     {
    2756             :         TransactionId xwait;
    2757             :         uint16      infomask;
    2758             : 
    2759             :         /* must copy state data before unlocking buffer */
    2760       81084 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2761       81084 :         infomask = tp.t_data->t_infomask;
    2762             : 
    2763             :         /*
    2764             :          * Sleep until concurrent transaction ends -- except when there's a
    2765             :          * single locker and it's our own transaction.  Note we don't care
    2766             :          * which lock mode the locker has, because we need the strongest one.
    2767             :          *
    2768             :          * Before sleeping, we need to acquire tuple lock to establish our
    2769             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2770             :          * release us when we are next-in-line for the tuple.
    2771             :          *
    2772             :          * If we are forced to "start over" below, we keep the tuple lock;
    2773             :          * this arranges that we stay at the head of the line while rechecking
    2774             :          * tuple state.
    2775             :          */
    2776       81084 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2777             :         {
    2778          16 :             bool        current_is_member = false;
    2779             : 
    2780          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2781             :                                         LockTupleExclusive, &current_is_member))
    2782             :             {
    2783          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2784             : 
    2785             :                 /*
    2786             :                  * Acquire the lock, if necessary (but skip it when we're
    2787             :                  * requesting a lock and already have one; avoids deadlock).
    2788             :                  */
    2789          16 :                 if (!current_is_member)
    2790          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2791             :                                          LockWaitBlock, &have_tuple_lock);
    2792             : 
    2793             :                 /* wait for multixact */
    2794          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2795             :                                 relation, &(tp.t_self), XLTW_Delete,
    2796             :                                 NULL);
    2797          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2798             : 
    2799             :                 /*
    2800             :                  * If xwait had just locked the tuple then some other xact
    2801             :                  * could update this tuple before we get to this point.  Check
    2802             :                  * for xmax change, and start over if so.
    2803             :                  *
    2804             :                  * We also must start over if we didn't pin the VM page, and
    2805             :                  * the page has become all visible.
    2806             :                  */
    2807          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2808          16 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2809          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2810             :                                          xwait))
    2811           0 :                     goto l1;
    2812             :             }
    2813             : 
    2814             :             /*
    2815             :              * You might think the multixact is necessarily done here, but not
    2816             :              * so: it could have surviving members, namely our own xact or
    2817             :              * other subxacts of this backend.  It is legal for us to delete
    2818             :              * the tuple in either case, however (the latter case is
    2819             :              * essentially a situation of upgrading our former shared lock to
    2820             :              * exclusive).  We don't bother changing the on-disk hint bits
    2821             :              * since we are about to overwrite the xmax altogether.
    2822             :              */
    2823             :         }
    2824       81068 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2825             :         {
    2826             :             /*
    2827             :              * Wait for regular transaction to end; but first, acquire tuple
    2828             :              * lock.
    2829             :              */
    2830          80 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2831          80 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2832             :                                  LockWaitBlock, &have_tuple_lock);
    2833          80 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2834          72 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2835             : 
    2836             :             /*
    2837             :              * xwait is done, but if xwait had just locked the tuple then some
    2838             :              * other xact could update this tuple before we get to this point.
    2839             :              * Check for xmax change, and start over if so.
    2840             :              *
    2841             :              * We also must start over if we didn't pin the VM page, and the
    2842             :              * page has become all visible.
    2843             :              */
    2844         144 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2845          72 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2846          70 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2847             :                                      xwait))
    2848           2 :                 goto l1;
    2849             : 
    2850             :             /* Otherwise check if it committed or aborted */
    2851          70 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2852             :         }
    2853             : 
    2854             :         /*
    2855             :          * We may overwrite if previous xmax aborted, or if it committed but
    2856             :          * only locked the tuple without updating it.
    2857             :          */
    2858       81074 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2859       81096 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2860          50 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2861       81032 :             result = TM_Ok;
    2862          42 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2863          34 :             result = TM_Updated;
    2864             :         else
    2865           8 :             result = TM_Deleted;
    2866             :     }
    2867             : 
    2868             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2869             :     if (result != TM_Ok)
    2870             :     {
    2871             :         Assert(result == TM_SelfModified ||
    2872             :                result == TM_Updated ||
    2873             :                result == TM_Deleted ||
    2874             :                result == TM_BeingModified);
    2875             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2876             :         Assert(result != TM_Updated ||
    2877             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2878             :     }
    2879             : 
    2880     2896820 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2881             :     {
    2882             :         /* Perform additional check for transaction-snapshot mode RI updates */
    2883           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    2884           2 :             result = TM_Updated;
    2885             :     }
    2886             : 
    2887     2896820 :     if (result != TM_Ok)
    2888             :     {
    2889         112 :         tmfd->ctid = tp.t_data->t_ctid;
    2890         112 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    2891         112 :         if (result == TM_SelfModified)
    2892          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    2893             :         else
    2894          70 :             tmfd->cmax = InvalidCommandId;
    2895         112 :         UnlockReleaseBuffer(buffer);
    2896         112 :         if (have_tuple_lock)
    2897          42 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    2898         112 :         if (vmbuffer != InvalidBuffer)
    2899           0 :             ReleaseBuffer(vmbuffer);
    2900         112 :         return result;
    2901             :     }
    2902             : 
    2903             :     /*
    2904             :      * We're about to do the actual delete -- check for conflict first, to
    2905             :      * avoid possibly having to roll back work we've just done.
    2906             :      *
    2907             :      * This is safe without a recheck as long as there is no possibility of
    2908             :      * another process scanning the page between this check and the delete
    2909             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2910             :      * continuously held from this point until the tuple delete is visible).
    2911             :      */
    2912     2896708 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    2913             : 
    2914             :     /* replace cid with a combo CID if necessary */
    2915     2896680 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    2916             : 
    2917             :     /*
    2918             :      * Compute replica identity tuple before entering the critical section so
    2919             :      * we don't PANIC upon a memory allocation failure.
    2920             :      */
    2921     2896680 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    2922             : 
    2923             :     /*
    2924             :      * If this is the first possibly-multixact-able operation in the current
    2925             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    2926             :      * certain that the transaction will never become a member of any older
    2927             :      * MultiXactIds than that.  (We have to do this even if we end up just
    2928             :      * using our own TransactionId below, since some other backend could
    2929             :      * incorporate our XID into a MultiXact immediately afterwards.)
    2930             :      */
    2931     2896680 :     MultiXactIdSetOldestMember();
    2932             : 
    2933     2896680 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    2934     2896680 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    2935             :                               xid, LockTupleExclusive, true,
    2936             :                               &new_xmax, &new_infomask, &new_infomask2);
    2937             : 
    2938     2896680 :     START_CRIT_SECTION();
    2939             : 
    2940             :     /*
    2941             :      * If this transaction commits, the tuple will become DEAD sooner or
    2942             :      * later.  Set flag that this page is a candidate for pruning once our xid
    2943             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    2944             :      * the subsequent page pruning will be a no-op and the hint will be
    2945             :      * cleared.
    2946             :      */
    2947     2896680 :     PageSetPrunable(page, xid);
    2948             : 
    2949     2896680 :     if (PageIsAllVisible(page))
    2950             :     {
    2951         902 :         all_visible_cleared = true;
    2952         902 :         PageClearAllVisible(page);
    2953         902 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    2954             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2955             :     }
    2956             : 
    2957             :     /* store transaction information of xact deleting the tuple */
    2958     2896680 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    2959     2896680 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    2960     2896680 :     tp.t_data->t_infomask |= new_infomask;
    2961     2896680 :     tp.t_data->t_infomask2 |= new_infomask2;
    2962     2896680 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    2963     2896680 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    2964     2896680 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    2965             :     /* Make sure there is no forward chain link in t_ctid */
    2966     2896680 :     tp.t_data->t_ctid = tp.t_self;
    2967             : 
    2968             :     /* Signal that this is actually a move into another partition */
    2969     2896680 :     if (changingPart)
    2970         916 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    2971             : 
    2972     2896680 :     MarkBufferDirty(buffer);
    2973             : 
    2974             :     /*
    2975             :      * XLOG stuff
    2976             :      *
    2977             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    2978             :      * routines.
    2979             :      */
    2980     2896680 :     if (RelationNeedsWAL(relation))
    2981             :     {
    2982             :         xl_heap_delete xlrec;
    2983             :         xl_heap_header xlhdr;
    2984             :         XLogRecPtr  recptr;
    2985             : 
    2986             :         /*
    2987             :          * For logical decode we need combo CIDs to properly decode the
    2988             :          * catalog
    2989             :          */
    2990     2775472 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2991       10948 :             log_heap_new_cid(relation, &tp);
    2992             : 
    2993     2775472 :         xlrec.flags = 0;
    2994     2775472 :         if (all_visible_cleared)
    2995         902 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    2996     2775472 :         if (changingPart)
    2997         916 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    2998     5550944 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    2999     2775472 :                                               tp.t_data->t_infomask2);
    3000     2775472 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3001     2775472 :         xlrec.xmax = new_xmax;
    3002             : 
    3003     2775472 :         if (old_key_tuple != NULL)
    3004             :         {
    3005       94016 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3006         250 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3007             :             else
    3008       93766 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3009             :         }
    3010             : 
    3011     2775472 :         XLogBeginInsert();
    3012     2775472 :         XLogRegisterData((char *) &xlrec, SizeOfHeapDelete);
    3013             : 
    3014     2775472 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3015             : 
    3016             :         /*
    3017             :          * Log replica identity of the deleted tuple if there is one
    3018             :          */
    3019     2775472 :         if (old_key_tuple != NULL)
    3020             :         {
    3021       94016 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3022       94016 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3023       94016 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3024             : 
    3025       94016 :             XLogRegisterData((char *) &xlhdr, SizeOfHeapHeader);
    3026       94016 :             XLogRegisterData((char *) old_key_tuple->t_data
    3027             :                              + SizeofHeapTupleHeader,
    3028       94016 :                              old_key_tuple->t_len
    3029             :                              - SizeofHeapTupleHeader);
    3030             :         }
    3031             : 
    3032             :         /* filtering by origin on a row level is much more efficient */
    3033     2775472 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3034             : 
    3035     2775472 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3036             : 
    3037     2775472 :         PageSetLSN(page, recptr);
    3038             :     }
    3039             : 
    3040     2896680 :     END_CRIT_SECTION();
    3041             : 
    3042     2896680 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3043             : 
    3044     2896680 :     if (vmbuffer != InvalidBuffer)
    3045         902 :         ReleaseBuffer(vmbuffer);
    3046             : 
    3047             :     /*
    3048             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3049             :      * those items too.  We have to do this before releasing the buffer
    3050             :      * because we need to look at the contents of the tuple, but it's OK to
    3051             :      * release the content lock on the buffer first.
    3052             :      */
    3053     2896680 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3054        4400 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3055             :     {
    3056             :         /* toast table entries should never be recursively toasted */
    3057             :         Assert(!HeapTupleHasExternal(&tp));
    3058             :     }
    3059     2892300 :     else if (HeapTupleHasExternal(&tp))
    3060         542 :         heap_toast_delete(relation, &tp, false);
    3061             : 
    3062             :     /*
    3063             :      * Mark tuple for invalidation from system caches at next command
    3064             :      * boundary. We have to do this before releasing the buffer because we
    3065             :      * need to look at the contents of the tuple.
    3066             :      */
    3067     2896680 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3068             : 
    3069             :     /* Now we can release the buffer */
    3070     2896680 :     ReleaseBuffer(buffer);
    3071             : 
    3072             :     /*
    3073             :      * Release the lmgr tuple lock, if we had it.
    3074             :      */
    3075     2896680 :     if (have_tuple_lock)
    3076          40 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3077             : 
    3078     2896680 :     pgstat_count_heap_delete(relation);
    3079             : 
    3080     2896680 :     if (old_key_tuple != NULL && old_key_copied)
    3081       93768 :         heap_freetuple(old_key_tuple);
    3082             : 
    3083     2896680 :     return TM_Ok;
    3084             : }
    3085             : 
    3086             : /*
    3087             :  *  simple_heap_delete - delete a tuple
    3088             :  *
    3089             :  * This routine may be used to delete a tuple when concurrent updates of
    3090             :  * the target tuple are not expected (for example, because we have a lock
    3091             :  * on the relation associated with the tuple).  Any failure is reported
    3092             :  * via ereport().
    3093             :  */
    3094             : void
    3095     1176558 : simple_heap_delete(Relation relation, ItemPointer tid)
    3096             : {
    3097             :     TM_Result   result;
    3098             :     TM_FailureData tmfd;
    3099             : 
    3100     1176558 :     result = heap_delete(relation, tid,
    3101             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3102             :                          true /* wait for commit */ ,
    3103             :                          &tmfd, false /* changingPart */ );
    3104     1176558 :     switch (result)
    3105             :     {
    3106           0 :         case TM_SelfModified:
    3107             :             /* Tuple was already updated in current command? */
    3108           0 :             elog(ERROR, "tuple already updated by self");
    3109             :             break;
    3110             : 
    3111     1176558 :         case TM_Ok:
    3112             :             /* done successfully */
    3113     1176558 :             break;
    3114             : 
    3115           0 :         case TM_Updated:
    3116           0 :             elog(ERROR, "tuple concurrently updated");
    3117             :             break;
    3118             : 
    3119           0 :         case TM_Deleted:
    3120           0 :             elog(ERROR, "tuple concurrently deleted");
    3121             :             break;
    3122             : 
    3123           0 :         default:
    3124           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3125             :             break;
    3126             :     }
    3127     1176558 : }
    3128             : 
    3129             : /*
    3130             :  *  heap_update - replace a tuple
    3131             :  *
    3132             :  * See table_tuple_update() for an explanation of the parameters, except that
    3133             :  * this routine directly takes a tuple rather than a slot.
    3134             :  *
    3135             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3136             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3137             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3138             :  * generated by another transaction).
    3139             :  */
    3140             : TM_Result
    3141      568752 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3142             :             CommandId cid, Snapshot crosscheck, bool wait,
    3143             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3144             :             TU_UpdateIndexes *update_indexes)
    3145             : {
    3146             :     TM_Result   result;
    3147      568752 :     TransactionId xid = GetCurrentTransactionId();
    3148             :     Bitmapset  *hot_attrs;
    3149             :     Bitmapset  *sum_attrs;
    3150             :     Bitmapset  *key_attrs;
    3151             :     Bitmapset  *id_attrs;
    3152             :     Bitmapset  *interesting_attrs;
    3153             :     Bitmapset  *modified_attrs;
    3154             :     ItemId      lp;
    3155             :     HeapTupleData oldtup;
    3156             :     HeapTuple   heaptup;
    3157      568752 :     HeapTuple   old_key_tuple = NULL;
    3158      568752 :     bool        old_key_copied = false;
    3159             :     Page        page;
    3160             :     BlockNumber block;
    3161             :     MultiXactStatus mxact_status;
    3162             :     Buffer      buffer,
    3163             :                 newbuf,
    3164      568752 :                 vmbuffer = InvalidBuffer,
    3165      568752 :                 vmbuffer_new = InvalidBuffer;
    3166             :     bool        need_toast;
    3167             :     Size        newtupsize,
    3168             :                 pagefree;
    3169      568752 :     bool        have_tuple_lock = false;
    3170             :     bool        iscombo;
    3171      568752 :     bool        use_hot_update = false;
    3172      568752 :     bool        summarized_update = false;
    3173             :     bool        key_intact;
    3174      568752 :     bool        all_visible_cleared = false;
    3175      568752 :     bool        all_visible_cleared_new = false;
    3176             :     bool        checked_lockers;
    3177             :     bool        locker_remains;
    3178      568752 :     bool        id_has_external = false;
    3179             :     TransactionId xmax_new_tuple,
    3180             :                 xmax_old_tuple;
    3181             :     uint16      infomask_old_tuple,
    3182             :                 infomask2_old_tuple,
    3183             :                 infomask_new_tuple,
    3184             :                 infomask2_new_tuple;
    3185             : 
    3186             :     Assert(ItemPointerIsValid(otid));
    3187             : 
    3188             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3189             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3190             :            RelationGetNumberOfAttributes(relation));
    3191             : 
    3192             :     /*
    3193             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3194             :      * Other workers might need that combo CID for visibility checks, and we
    3195             :      * have no provision for broadcasting it to them.
    3196             :      */
    3197      568752 :     if (IsInParallelMode())
    3198           0 :         ereport(ERROR,
    3199             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3200             :                  errmsg("cannot update tuples during a parallel operation")));
    3201             : 
    3202             : #ifdef USE_ASSERT_CHECKING
    3203             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3204             : #endif
    3205             : 
    3206             :     /*
    3207             :      * Fetch the list of attributes to be checked for various operations.
    3208             :      *
    3209             :      * For HOT considerations, this is wasted effort if we fail to update or
    3210             :      * have to put the new tuple on a different page.  But we must compute the
    3211             :      * list before obtaining buffer lock --- in the worst case, if we are
    3212             :      * doing an update on one of the relevant system catalogs, we could
    3213             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3214             :      * caches the data so this is usually pretty cheap.
    3215             :      *
    3216             :      * We also need columns used by the replica identity and columns that are
    3217             :      * considered the "key" of rows in the table.
    3218             :      *
    3219             :      * Note that we get copies of each bitmap, so we need not worry about
    3220             :      * relcache flush happening midway through.
    3221             :      */
    3222      568752 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3223             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3224      568752 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3225             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3226      568752 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3227      568752 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3228             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3229      568752 :     interesting_attrs = NULL;
    3230      568752 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3231      568752 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3232      568752 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3233      568752 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3234             : 
    3235      568752 :     block = ItemPointerGetBlockNumber(otid);
    3236      568752 :     buffer = ReadBuffer(relation, block);
    3237      568752 :     page = BufferGetPage(buffer);
    3238             : 
    3239             :     /*
    3240             :      * Before locking the buffer, pin the visibility map page if it appears to
    3241             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3242             :      * in the middle of changing this, so we'll need to recheck after we have
    3243             :      * the lock.
    3244             :      */
    3245      568752 :     if (PageIsAllVisible(page))
    3246        2462 :         visibilitymap_pin(relation, block, &vmbuffer);
    3247             : 
    3248      568752 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3249             : 
    3250      568752 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3251             :     Assert(ItemIdIsNormal(lp));
    3252             : 
    3253             :     /*
    3254             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3255             :      * properly.
    3256             :      */
    3257      568752 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3258      568752 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3259      568752 :     oldtup.t_len = ItemIdGetLength(lp);
    3260      568752 :     oldtup.t_self = *otid;
    3261             : 
    3262             :     /* the new tuple is ready, except for this: */
    3263      568752 :     newtup->t_tableOid = RelationGetRelid(relation);
    3264             : 
    3265             :     /*
    3266             :      * Determine columns modified by the update.  Additionally, identify
    3267             :      * whether any of the unmodified replica identity key attributes in the
    3268             :      * old tuple is externally stored or not.  This is required because for
    3269             :      * such attributes the flattened value won't be WAL logged as part of the
    3270             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3271             :      * ExtractReplicaIdentity.
    3272             :      */
    3273      568752 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3274             :                                               id_attrs, &oldtup,
    3275             :                                               newtup, &id_has_external);
    3276             : 
    3277             :     /*
    3278             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3279             :      * This allows for more concurrency when we are running simultaneously
    3280             :      * with foreign key checks.
    3281             :      *
    3282             :      * Note that if a column gets detoasted while executing the update, but
    3283             :      * the value ends up being the same, this test will fail and we will use
    3284             :      * the stronger lock.  This is acceptable; the important case to optimize
    3285             :      * is updates that don't manipulate key columns, not those that
    3286             :      * serendipitously arrive at the same key values.
    3287             :      */
    3288      568752 :     if (!bms_overlap(modified_attrs, key_attrs))
    3289             :     {
    3290      560634 :         *lockmode = LockTupleNoKeyExclusive;
    3291      560634 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3292      560634 :         key_intact = true;
    3293             : 
    3294             :         /*
    3295             :          * If this is the first possibly-multixact-able operation in the
    3296             :          * current transaction, set my per-backend OldestMemberMXactId
    3297             :          * setting. We can be certain that the transaction will never become a
    3298             :          * member of any older MultiXactIds than that.  (We have to do this
    3299             :          * even if we end up just using our own TransactionId below, since
    3300             :          * some other backend could incorporate our XID into a MultiXact
    3301             :          * immediately afterwards.)
    3302             :          */
    3303      560634 :         MultiXactIdSetOldestMember();
    3304             :     }
    3305             :     else
    3306             :     {
    3307        8118 :         *lockmode = LockTupleExclusive;
    3308        8118 :         mxact_status = MultiXactStatusUpdate;
    3309        8118 :         key_intact = false;
    3310             :     }
    3311             : 
    3312             :     /*
    3313             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3314             :      * otid may very well point at newtup->t_self, which we will overwrite
    3315             :      * with the new tuple's location, so there's great risk of confusion if we
    3316             :      * use otid anymore.
    3317             :      */
    3318             : 
    3319      568752 : l2:
    3320      568754 :     checked_lockers = false;
    3321      568754 :     locker_remains = false;
    3322      568754 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3323             : 
    3324             :     /* see below about the "no wait" case */
    3325             :     Assert(result != TM_BeingModified || wait);
    3326             : 
    3327      568754 :     if (result == TM_Invisible)
    3328             :     {
    3329           0 :         UnlockReleaseBuffer(buffer);
    3330           0 :         ereport(ERROR,
    3331             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3332             :                  errmsg("attempted to update invisible tuple")));
    3333             :     }
    3334      568754 :     else if (result == TM_BeingModified && wait)
    3335             :     {
    3336             :         TransactionId xwait;
    3337             :         uint16      infomask;
    3338       71798 :         bool        can_continue = false;
    3339             : 
    3340             :         /*
    3341             :          * XXX note that we don't consider the "no wait" case here.  This
    3342             :          * isn't a problem currently because no caller uses that case, but it
    3343             :          * should be fixed if such a caller is introduced.  It wasn't a
    3344             :          * problem previously because this code would always wait, but now
    3345             :          * that some tuple locks do not conflict with one of the lock modes we
    3346             :          * use, it is possible that this case is interesting to handle
    3347             :          * specially.
    3348             :          *
    3349             :          * This may cause failures with third-party code that calls
    3350             :          * heap_update directly.
    3351             :          */
    3352             : 
    3353             :         /* must copy state data before unlocking buffer */
    3354       71798 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3355       71798 :         infomask = oldtup.t_data->t_infomask;
    3356             : 
    3357             :         /*
    3358             :          * Now we have to do something about the existing locker.  If it's a
    3359             :          * multi, sleep on it; we might be awakened before it is completely
    3360             :          * gone (or even not sleep at all in some cases); we need to preserve
    3361             :          * it as locker, unless it is gone completely.
    3362             :          *
    3363             :          * If it's not a multi, we need to check for sleeping conditions
    3364             :          * before actually going to sleep.  If the update doesn't conflict
    3365             :          * with the locks, we just continue without sleeping (but making sure
    3366             :          * it is preserved).
    3367             :          *
    3368             :          * Before sleeping, we need to acquire tuple lock to establish our
    3369             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3370             :          * release us when we are next-in-line for the tuple.  Note we must
    3371             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3372             :          * otherwise we're open for race conditions with other transactions
    3373             :          * holding the tuple lock which sleep on us.
    3374             :          *
    3375             :          * If we are forced to "start over" below, we keep the tuple lock;
    3376             :          * this arranges that we stay at the head of the line while rechecking
    3377             :          * tuple state.
    3378             :          */
    3379       71798 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3380             :         {
    3381             :             TransactionId update_xact;
    3382             :             int         remain;
    3383         120 :             bool        current_is_member = false;
    3384             : 
    3385         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3386             :                                         *lockmode, &current_is_member))
    3387             :             {
    3388          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3389             : 
    3390             :                 /*
    3391             :                  * Acquire the lock, if necessary (but skip it when we're
    3392             :                  * requesting a lock and already have one; avoids deadlock).
    3393             :                  */
    3394          16 :                 if (!current_is_member)
    3395           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3396             :                                          LockWaitBlock, &have_tuple_lock);
    3397             : 
    3398             :                 /* wait for multixact */
    3399          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3400             :                                 relation, &oldtup.t_self, XLTW_Update,
    3401             :                                 &remain);
    3402          16 :                 checked_lockers = true;
    3403          16 :                 locker_remains = remain != 0;
    3404          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3405             : 
    3406             :                 /*
    3407             :                  * If xwait had just locked the tuple then some other xact
    3408             :                  * could update this tuple before we get to this point.  Check
    3409             :                  * for xmax change, and start over if so.
    3410             :                  */
    3411          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3412          16 :                                           infomask) ||
    3413          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3414             :                                          xwait))
    3415           0 :                     goto l2;
    3416             :             }
    3417             : 
    3418             :             /*
    3419             :              * Note that the multixact may not be done by now.  It could have
    3420             :              * surviving members; our own xact or other subxacts of this
    3421             :              * backend, and also any other concurrent transaction that locked
    3422             :              * the tuple with LockTupleKeyShare if we only got
    3423             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3424             :              * careful to mark the updated tuple with the surviving members in
    3425             :              * Xmax.
    3426             :              *
    3427             :              * Note that there could have been another update in the
    3428             :              * MultiXact. In that case, we need to check whether it committed
    3429             :              * or aborted. If it aborted we are safe to update it again;
    3430             :              * otherwise there is an update conflict, and we have to return
    3431             :              * TableTuple{Deleted, Updated} below.
    3432             :              *
    3433             :              * In the LockTupleExclusive case, we still need to preserve the
    3434             :              * surviving members: those would include the tuple locks we had
    3435             :              * before this one, which are important to keep in case this
    3436             :              * subxact aborts.
    3437             :              */
    3438         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3439          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3440             :             else
    3441         104 :                 update_xact = InvalidTransactionId;
    3442             : 
    3443             :             /*
    3444             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3445             :              * TransactionIdIsInProgress() call needed here, since we called
    3446             :              * MultiXactIdWait() above.
    3447             :              */
    3448         136 :             if (!TransactionIdIsValid(update_xact) ||
    3449          16 :                 TransactionIdDidAbort(update_xact))
    3450         106 :                 can_continue = true;
    3451             :         }
    3452       71678 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3453             :         {
    3454             :             /*
    3455             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3456             :              * lock here, but must preserve our locking information.
    3457             :              */
    3458       71492 :             checked_lockers = true;
    3459       71492 :             locker_remains = true;
    3460       71492 :             can_continue = true;
    3461             :         }
    3462         186 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3463             :         {
    3464             :             /*
    3465             :              * If it's just a key-share locker, and we're not changing the key
    3466             :              * columns, we don't need to wait for it to end; but we need to
    3467             :              * preserve it as locker.
    3468             :              */
    3469          58 :             checked_lockers = true;
    3470          58 :             locker_remains = true;
    3471          58 :             can_continue = true;
    3472             :         }
    3473             :         else
    3474             :         {
    3475             :             /*
    3476             :              * Wait for regular transaction to end; but first, acquire tuple
    3477             :              * lock.
    3478             :              */
    3479         128 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3480         128 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3481             :                                  LockWaitBlock, &have_tuple_lock);
    3482         128 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3483             :                               XLTW_Update);
    3484         128 :             checked_lockers = true;
    3485         128 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3486             : 
    3487             :             /*
    3488             :              * xwait is done, but if xwait had just locked the tuple then some
    3489             :              * other xact could update this tuple before we get to this point.
    3490             :              * Check for xmax change, and start over if so.
    3491             :              */
    3492         128 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3493         126 :                 !TransactionIdEquals(xwait,
    3494             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3495           2 :                 goto l2;
    3496             : 
    3497             :             /* Otherwise check if it committed or aborted */
    3498         126 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3499         126 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3500          30 :                 can_continue = true;
    3501             :         }
    3502             : 
    3503       71796 :         if (can_continue)
    3504       71686 :             result = TM_Ok;
    3505         110 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3506         100 :             result = TM_Updated;
    3507             :         else
    3508          10 :             result = TM_Deleted;
    3509             :     }
    3510             : 
    3511             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3512             :     if (result != TM_Ok)
    3513             :     {
    3514             :         Assert(result == TM_SelfModified ||
    3515             :                result == TM_Updated ||
    3516             :                result == TM_Deleted ||
    3517             :                result == TM_BeingModified);
    3518             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3519             :         Assert(result != TM_Updated ||
    3520             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3521             :     }
    3522             : 
    3523      568752 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3524             :     {
    3525             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3526           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3527           2 :             result = TM_Updated;
    3528             :     }
    3529             : 
    3530      568752 :     if (result != TM_Ok)
    3531             :     {
    3532         306 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3533         306 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3534         306 :         if (result == TM_SelfModified)
    3535         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3536             :         else
    3537         202 :             tmfd->cmax = InvalidCommandId;
    3538         306 :         UnlockReleaseBuffer(buffer);
    3539         306 :         if (have_tuple_lock)
    3540          96 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3541         306 :         if (vmbuffer != InvalidBuffer)
    3542           0 :             ReleaseBuffer(vmbuffer);
    3543         306 :         *update_indexes = TU_None;
    3544             : 
    3545         306 :         bms_free(hot_attrs);
    3546         306 :         bms_free(sum_attrs);
    3547         306 :         bms_free(key_attrs);
    3548         306 :         bms_free(id_attrs);
    3549         306 :         bms_free(modified_attrs);
    3550         306 :         bms_free(interesting_attrs);
    3551         306 :         return result;
    3552             :     }
    3553             : 
    3554             :     /*
    3555             :      * If we didn't pin the visibility map page and the page has become all
    3556             :      * visible while we were busy locking the buffer, or during some
    3557             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3558             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3559             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3560             :      * tuple has been locked or updated under us, but hopefully it won't
    3561             :      * happen very often.
    3562             :      */
    3563      568446 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3564             :     {
    3565           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3566           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3567           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3568           0 :         goto l2;
    3569             :     }
    3570             : 
    3571             :     /* Fill in transaction status data */
    3572             : 
    3573             :     /*
    3574             :      * If the tuple we're updating is locked, we need to preserve the locking
    3575             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3576             :      */
    3577      568446 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3578      568446 :                               oldtup.t_data->t_infomask,
    3579      568446 :                               oldtup.t_data->t_infomask2,
    3580             :                               xid, *lockmode, true,
    3581             :                               &xmax_old_tuple, &infomask_old_tuple,
    3582             :                               &infomask2_old_tuple);
    3583             : 
    3584             :     /*
    3585             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3586             :      * was no xmax previously, or there was one but all lockers are now gone,
    3587             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3588             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3589             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3590             :      */
    3591      568446 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3592       71656 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3593       71552 :         (checked_lockers && !locker_remains))
    3594      496790 :         xmax_new_tuple = InvalidTransactionId;
    3595             :     else
    3596       71656 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3597             : 
    3598      568446 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3599             :     {
    3600      496790 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3601      496790 :         infomask2_new_tuple = 0;
    3602             :     }
    3603             :     else
    3604             :     {
    3605             :         /*
    3606             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3607             :          * to use on the new tuple depend on what was there on the old one.
    3608             :          * Note that since we're doing an update, the only possibility is that
    3609             :          * the lockers had FOR KEY SHARE lock.
    3610             :          */
    3611       71656 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3612             :         {
    3613         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3614             :                                    &infomask2_new_tuple);
    3615             :         }
    3616             :         else
    3617             :         {
    3618       71550 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3619       71550 :             infomask2_new_tuple = 0;
    3620             :         }
    3621             :     }
    3622             : 
    3623             :     /*
    3624             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3625             :      * Xmax, as well as initial infomask bits as computed above.
    3626             :      */
    3627      568446 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3628      568446 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3629      568446 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3630      568446 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3631      568446 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3632      568446 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3633      568446 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3634             : 
    3635             :     /*
    3636             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3637             :      * the plain cid into the new tuple.
    3638             :      */
    3639      568446 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3640             : 
    3641             :     /*
    3642             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3643             :      * on the same page as the old, then we need to release the content lock
    3644             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3645             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3646             :      * show that it's locked, else other processes may try to update it
    3647             :      * themselves.
    3648             :      *
    3649             :      * We need to invoke the toaster if there are already any out-of-line
    3650             :      * toasted values present, or if the new tuple is over-threshold.
    3651             :      */
    3652      568446 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3653           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3654             :     {
    3655             :         /* toast table entries should never be recursively toasted */
    3656             :         Assert(!HeapTupleHasExternal(&oldtup));
    3657             :         Assert(!HeapTupleHasExternal(newtup));
    3658           0 :         need_toast = false;
    3659             :     }
    3660             :     else
    3661      568446 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3662     1136310 :                       HeapTupleHasExternal(newtup) ||
    3663      567864 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3664             : 
    3665      568446 :     pagefree = PageGetHeapFreeSpace(page);
    3666             : 
    3667      568446 :     newtupsize = MAXALIGN(newtup->t_len);
    3668             : 
    3669      568446 :     if (need_toast || newtupsize > pagefree)
    3670      280800 :     {
    3671             :         TransactionId xmax_lock_old_tuple;
    3672             :         uint16      infomask_lock_old_tuple,
    3673             :                     infomask2_lock_old_tuple;
    3674      280800 :         bool        cleared_all_frozen = false;
    3675             : 
    3676             :         /*
    3677             :          * To prevent concurrent sessions from updating the tuple, we have to
    3678             :          * temporarily mark it locked, while we release the page-level lock.
    3679             :          *
    3680             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3681             :          * written out to disk, we unfortunately have to WAL log this
    3682             :          * temporary modification.  We can reuse xl_heap_lock for this
    3683             :          * purpose.  If we crash/error before following through with the
    3684             :          * actual update, xmax will be of an aborted transaction, allowing
    3685             :          * other sessions to proceed.
    3686             :          */
    3687             : 
    3688             :         /*
    3689             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3690             :          * to be done separately from the combo that's going to be used for
    3691             :          * updating, because the potentially created multixact would otherwise
    3692             :          * be wrong.
    3693             :          */
    3694      280800 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3695      280800 :                                   oldtup.t_data->t_infomask,
    3696      280800 :                                   oldtup.t_data->t_infomask2,
    3697             :                                   xid, *lockmode, false,
    3698             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3699             :                                   &infomask2_lock_old_tuple);
    3700             : 
    3701             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3702             : 
    3703      280800 :         START_CRIT_SECTION();
    3704             : 
    3705             :         /* Clear obsolete visibility flags ... */
    3706      280800 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3707      280800 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3708      280800 :         HeapTupleClearHotUpdated(&oldtup);
    3709             :         /* ... and store info about transaction updating this tuple */
    3710             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3711      280800 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3712      280800 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3713      280800 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3714      280800 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3715             : 
    3716             :         /* temporarily make it look not-updated, but locked */
    3717      280800 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3718             : 
    3719             :         /*
    3720             :          * Clear all-frozen bit on visibility map if needed. We could
    3721             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3722             :          * overhead would be unchanged, that doesn't seem necessarily
    3723             :          * worthwhile.
    3724             :          */
    3725      282026 :         if (PageIsAllVisible(page) &&
    3726        1226 :             visibilitymap_clear(relation, block, vmbuffer,
    3727             :                                 VISIBILITYMAP_ALL_FROZEN))
    3728         918 :             cleared_all_frozen = true;
    3729             : 
    3730      280800 :         MarkBufferDirty(buffer);
    3731             : 
    3732      280800 :         if (RelationNeedsWAL(relation))
    3733             :         {
    3734             :             xl_heap_lock xlrec;
    3735             :             XLogRecPtr  recptr;
    3736             : 
    3737      260542 :             XLogBeginInsert();
    3738      260542 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3739             : 
    3740      260542 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3741      260542 :             xlrec.xmax = xmax_lock_old_tuple;
    3742      521084 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3743      260542 :                                                   oldtup.t_data->t_infomask2);
    3744      260542 :             xlrec.flags =
    3745      260542 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3746      260542 :             XLogRegisterData((char *) &xlrec, SizeOfHeapLock);
    3747      260542 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3748      260542 :             PageSetLSN(page, recptr);
    3749             :         }
    3750             : 
    3751      280800 :         END_CRIT_SECTION();
    3752             : 
    3753      280800 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3754             : 
    3755             :         /*
    3756             :          * Let the toaster do its thing, if needed.
    3757             :          *
    3758             :          * Note: below this point, heaptup is the data we actually intend to
    3759             :          * store into the relation; newtup is the caller's original untoasted
    3760             :          * data.
    3761             :          */
    3762      280800 :         if (need_toast)
    3763             :         {
    3764             :             /* Note we always use WAL and FSM during updates */
    3765        2218 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3766        2218 :             newtupsize = MAXALIGN(heaptup->t_len);
    3767             :         }
    3768             :         else
    3769      278582 :             heaptup = newtup;
    3770             : 
    3771             :         /*
    3772             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3773             :          * tricky since someone else could have added tuples to the page while
    3774             :          * we weren't looking.  We have to recheck the available space after
    3775             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3776             :          * former amount of free space is still not enough; it's unlikely
    3777             :          * there's more free now than before.
    3778             :          *
    3779             :          * What's more, if we need to get a new page, we will need to acquire
    3780             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3781             :          * some other backend trying to get the same two locks in the other
    3782             :          * order, we must be consistent about the order we get the locks in.
    3783             :          * We use the rule "lock the lower-numbered page of the relation
    3784             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3785             :          * while not holding the lock on the old page, and we must rely on it
    3786             :          * to get the locks on both pages in the correct order.
    3787             :          *
    3788             :          * Another consideration is that we need visibility map page pin(s) if
    3789             :          * we will have to clear the all-visible flag on either page.  If we
    3790             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3791             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3792             :          * a loop.
    3793             :          */
    3794             :         for (;;)
    3795             :         {
    3796      280800 :             if (newtupsize > pagefree)
    3797             :             {
    3798             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3799      280068 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3800             :                                                    buffer, 0, NULL,
    3801             :                                                    &vmbuffer_new, &vmbuffer,
    3802             :                                                    0);
    3803             :                 /* We're all done. */
    3804      280068 :                 break;
    3805             :             }
    3806             :             /* Acquire VM page pin if needed and we don't have it. */
    3807         732 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3808           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3809             :             /* Re-acquire the lock on the old tuple's page. */
    3810         732 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3811             :             /* Re-check using the up-to-date free space */
    3812         732 :             pagefree = PageGetHeapFreeSpace(page);
    3813         732 :             if (newtupsize > pagefree ||
    3814         732 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3815             :             {
    3816             :                 /*
    3817             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3818             :                  * all-visible flag.  We must now unlock and loop to avoid
    3819             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3820             :                  */
    3821           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3822             :             }
    3823             :             else
    3824             :             {
    3825             :                 /* We're all done. */
    3826         732 :                 newbuf = buffer;
    3827         732 :                 break;
    3828             :             }
    3829             :         }
    3830             :     }
    3831             :     else
    3832             :     {
    3833             :         /* No TOAST work needed, and it'll fit on same page */
    3834      287646 :         newbuf = buffer;
    3835      287646 :         heaptup = newtup;
    3836             :     }
    3837             : 
    3838             :     /*
    3839             :      * We're about to do the actual update -- check for conflict first, to
    3840             :      * avoid possibly having to roll back work we've just done.
    3841             :      *
    3842             :      * This is safe without a recheck as long as there is no possibility of
    3843             :      * another process scanning the pages between this check and the update
    3844             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    3845             :      * continuously held from this point until the tuple update is visible).
    3846             :      *
    3847             :      * For the new tuple the only check needed is at the relation level, but
    3848             :      * since both tuples are in the same relation and the check for oldtup
    3849             :      * will include checking the relation level, there is no benefit to a
    3850             :      * separate check for the new tuple.
    3851             :      */
    3852      568446 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    3853             :                                    BufferGetBlockNumber(buffer));
    3854             : 
    3855             :     /*
    3856             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    3857             :      * has enough space for the new tuple.  If they are the same buffer, only
    3858             :      * one pin is held.
    3859             :      */
    3860             : 
    3861      568422 :     if (newbuf == buffer)
    3862             :     {
    3863             :         /*
    3864             :          * Since the new tuple is going into the same page, we might be able
    3865             :          * to do a HOT update.  Check if any of the index columns have been
    3866             :          * changed.
    3867             :          */
    3868      288354 :         if (!bms_overlap(modified_attrs, hot_attrs))
    3869             :         {
    3870      264590 :             use_hot_update = true;
    3871             : 
    3872             :             /*
    3873             :              * If none of the columns that are used in hot-blocking indexes
    3874             :              * were updated, we can apply HOT, but we do still need to check
    3875             :              * if we need to update the summarizing indexes, and update those
    3876             :              * indexes if the columns were updated, or we may fail to detect
    3877             :              * e.g. value bound changes in BRIN minmax indexes.
    3878             :              */
    3879      264590 :             if (bms_overlap(modified_attrs, sum_attrs))
    3880        3282 :                 summarized_update = true;
    3881             :         }
    3882             :     }
    3883             :     else
    3884             :     {
    3885             :         /* Set a hint that the old page could use prune/defrag */
    3886      280068 :         PageSetFull(page);
    3887             :     }
    3888             : 
    3889             :     /*
    3890             :      * Compute replica identity tuple before entering the critical section so
    3891             :      * we don't PANIC upon a memory allocation failure.
    3892             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    3893             :      * logged.  Pass old key required as true only if the replica identity key
    3894             :      * columns are modified or it has external data.
    3895             :      */
    3896      568422 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    3897      568422 :                                            bms_overlap(modified_attrs, id_attrs) ||
    3898             :                                            id_has_external,
    3899             :                                            &old_key_copied);
    3900             : 
    3901             :     /* NO EREPORT(ERROR) from here till changes are logged */
    3902      568422 :     START_CRIT_SECTION();
    3903             : 
    3904             :     /*
    3905             :      * If this transaction commits, the old tuple will become DEAD sooner or
    3906             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3907             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3908             :      * the subsequent page pruning will be a no-op and the hint will be
    3909             :      * cleared.
    3910             :      *
    3911             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    3912             :      * there would be a prunable tuple in the newbuf; but for now we choose
    3913             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    3914             :      * sync if this decision changes.
    3915             :      */
    3916      568422 :     PageSetPrunable(page, xid);
    3917             : 
    3918      568422 :     if (use_hot_update)
    3919             :     {
    3920             :         /* Mark the old tuple as HOT-updated */
    3921      264590 :         HeapTupleSetHotUpdated(&oldtup);
    3922             :         /* And mark the new tuple as heap-only */
    3923      264590 :         HeapTupleSetHeapOnly(heaptup);
    3924             :         /* Mark the caller's copy too, in case different from heaptup */
    3925      264590 :         HeapTupleSetHeapOnly(newtup);
    3926             :     }
    3927             :     else
    3928             :     {
    3929             :         /* Make sure tuples are correctly marked as not-HOT */
    3930      303832 :         HeapTupleClearHotUpdated(&oldtup);
    3931      303832 :         HeapTupleClearHeapOnly(heaptup);
    3932      303832 :         HeapTupleClearHeapOnly(newtup);
    3933             :     }
    3934             : 
    3935      568422 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    3936             : 
    3937             : 
    3938             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    3939      568422 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3940      568422 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3941             :     /* ... and store info about transaction updating this tuple */
    3942             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    3943      568422 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    3944      568422 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    3945      568422 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    3946      568422 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3947             : 
    3948             :     /* record address of new tuple in t_ctid of old one */
    3949      568422 :     oldtup.t_data->t_ctid = heaptup->t_self;
    3950             : 
    3951             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    3952      568422 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    3953             :     {
    3954        2462 :         all_visible_cleared = true;
    3955        2462 :         PageClearAllVisible(BufferGetPage(buffer));
    3956        2462 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3957             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3958             :     }
    3959      568422 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    3960             :     {
    3961         964 :         all_visible_cleared_new = true;
    3962         964 :         PageClearAllVisible(BufferGetPage(newbuf));
    3963         964 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    3964             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    3965             :     }
    3966             : 
    3967      568422 :     if (newbuf != buffer)
    3968      280068 :         MarkBufferDirty(newbuf);
    3969      568422 :     MarkBufferDirty(buffer);
    3970             : 
    3971             :     /* XLOG stuff */
    3972      568422 :     if (RelationNeedsWAL(relation))
    3973             :     {
    3974             :         XLogRecPtr  recptr;
    3975             : 
    3976             :         /*
    3977             :          * For logical decoding we need combo CIDs to properly decode the
    3978             :          * catalog.
    3979             :          */
    3980      545812 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3981             :         {
    3982        4906 :             log_heap_new_cid(relation, &oldtup);
    3983        4906 :             log_heap_new_cid(relation, heaptup);
    3984             :         }
    3985             : 
    3986      545812 :         recptr = log_heap_update(relation, buffer,
    3987             :                                  newbuf, &oldtup, heaptup,
    3988             :                                  old_key_tuple,
    3989             :                                  all_visible_cleared,
    3990             :                                  all_visible_cleared_new);
    3991      545812 :         if (newbuf != buffer)
    3992             :         {
    3993      259822 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    3994             :         }
    3995      545812 :         PageSetLSN(BufferGetPage(buffer), recptr);
    3996             :     }
    3997             : 
    3998      568422 :     END_CRIT_SECTION();
    3999             : 
    4000      568422 :     if (newbuf != buffer)
    4001      280068 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4002      568422 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4003             : 
    4004             :     /*
    4005             :      * Mark old tuple for invalidation from system caches at next command
    4006             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4007             :      * have to do this before releasing the buffer because oldtup is in the
    4008             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4009             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4010             :      * sinval messages.)
    4011             :      */
    4012      568422 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4013             : 
    4014             :     /* Now we can release the buffer(s) */
    4015      568422 :     if (newbuf != buffer)
    4016      280068 :         ReleaseBuffer(newbuf);
    4017      568422 :     ReleaseBuffer(buffer);
    4018      568422 :     if (BufferIsValid(vmbuffer_new))
    4019         964 :         ReleaseBuffer(vmbuffer_new);
    4020      568422 :     if (BufferIsValid(vmbuffer))
    4021        2462 :         ReleaseBuffer(vmbuffer);
    4022             : 
    4023             :     /*
    4024             :      * Release the lmgr tuple lock, if we had it.
    4025             :      */
    4026      568422 :     if (have_tuple_lock)
    4027          30 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4028             : 
    4029      568422 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4030             : 
    4031             :     /*
    4032             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4033             :      * back to the caller's image, too.
    4034             :      */
    4035      568422 :     if (heaptup != newtup)
    4036             :     {
    4037        2124 :         newtup->t_self = heaptup->t_self;
    4038        2124 :         heap_freetuple(heaptup);
    4039             :     }
    4040             : 
    4041             :     /*
    4042             :      * If it is a HOT update, the update may still need to update summarized
    4043             :      * indexes, lest we fail to update those summaries and get incorrect
    4044             :      * results (for example, minmax bounds of the block may change with this
    4045             :      * update).
    4046             :      */
    4047      568422 :     if (use_hot_update)
    4048             :     {
    4049      264590 :         if (summarized_update)
    4050        3282 :             *update_indexes = TU_Summarizing;
    4051             :         else
    4052      261308 :             *update_indexes = TU_None;
    4053             :     }
    4054             :     else
    4055      303832 :         *update_indexes = TU_All;
    4056             : 
    4057      568422 :     if (old_key_tuple != NULL && old_key_copied)
    4058         164 :         heap_freetuple(old_key_tuple);
    4059             : 
    4060      568422 :     bms_free(hot_attrs);
    4061      568422 :     bms_free(sum_attrs);
    4062      568422 :     bms_free(key_attrs);
    4063      568422 :     bms_free(id_attrs);
    4064      568422 :     bms_free(modified_attrs);
    4065      568422 :     bms_free(interesting_attrs);
    4066             : 
    4067      568422 :     return TM_Ok;
    4068             : }
    4069             : 
    4070             : #ifdef USE_ASSERT_CHECKING
    4071             : /*
    4072             :  * Confirm adequate lock held during heap_update(), per rules from
    4073             :  * README.tuplock section "Locking to write inplace-updated tables".
    4074             :  */
    4075             : static void
    4076             : check_lock_if_inplace_updateable_rel(Relation relation,
    4077             :                                      ItemPointer otid,
    4078             :                                      HeapTuple newtup)
    4079             : {
    4080             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4081             :     switch (RelationGetRelid(relation))
    4082             :     {
    4083             :         case RelationRelationId:
    4084             :         case DatabaseRelationId:
    4085             :             {
    4086             :                 LOCKTAG     tuptag;
    4087             : 
    4088             :                 SET_LOCKTAG_TUPLE(tuptag,
    4089             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4090             :                                   relation->rd_lockInfo.lockRelId.relId,
    4091             :                                   ItemPointerGetBlockNumber(otid),
    4092             :                                   ItemPointerGetOffsetNumber(otid));
    4093             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4094             :                     return;
    4095             :             }
    4096             :             break;
    4097             :         default:
    4098             :             Assert(!IsInplaceUpdateRelation(relation));
    4099             :             return;
    4100             :     }
    4101             : 
    4102             :     switch (RelationGetRelid(relation))
    4103             :     {
    4104             :         case RelationRelationId:
    4105             :             {
    4106             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4107             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4108             :                 Oid         relid = classForm->oid;
    4109             :                 Oid         dbid;
    4110             :                 LOCKTAG     tag;
    4111             : 
    4112             :                 if (IsSharedRelation(relid))
    4113             :                     dbid = InvalidOid;
    4114             :                 else
    4115             :                     dbid = MyDatabaseId;
    4116             : 
    4117             :                 if (classForm->relkind == RELKIND_INDEX)
    4118             :                 {
    4119             :                     Relation    irel = index_open(relid, AccessShareLock);
    4120             : 
    4121             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4122             :                     index_close(irel, AccessShareLock);
    4123             :                 }
    4124             :                 else
    4125             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4126             : 
    4127             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4128             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4129             :                     elog(WARNING,
    4130             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4131             :                          NameStr(classForm->relname),
    4132             :                          relid,
    4133             :                          classForm->relkind,
    4134             :                          ItemPointerGetBlockNumber(otid),
    4135             :                          ItemPointerGetOffsetNumber(otid));
    4136             :             }
    4137             :             break;
    4138             :         case DatabaseRelationId:
    4139             :             {
    4140             :                 /* LOCKTAG_TUPLE required */
    4141             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4142             : 
    4143             :                 elog(WARNING,
    4144             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4145             :                      NameStr(dbForm->datname),
    4146             :                      dbForm->oid,
    4147             :                      ItemPointerGetBlockNumber(otid),
    4148             :                      ItemPointerGetOffsetNumber(otid));
    4149             :             }
    4150             :             break;
    4151             :     }
    4152             : }
    4153             : 
    4154             : /*
    4155             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4156             :  * "Locking to write inplace-updated tables".
    4157             :  */
    4158             : static void
    4159             : check_inplace_rel_lock(HeapTuple oldtup)
    4160             : {
    4161             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4162             :     Oid         relid = classForm->oid;
    4163             :     Oid         dbid;
    4164             :     LOCKTAG     tag;
    4165             : 
    4166             :     if (IsSharedRelation(relid))
    4167             :         dbid = InvalidOid;
    4168             :     else
    4169             :         dbid = MyDatabaseId;
    4170             : 
    4171             :     if (classForm->relkind == RELKIND_INDEX)
    4172             :     {
    4173             :         Relation    irel = index_open(relid, AccessShareLock);
    4174             : 
    4175             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4176             :         index_close(irel, AccessShareLock);
    4177             :     }
    4178             :     else
    4179             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4180             : 
    4181             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4182             :         elog(WARNING,
    4183             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4184             :              NameStr(classForm->relname),
    4185             :              relid,
    4186             :              classForm->relkind,
    4187             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4188             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4189             : }
    4190             : #endif
    4191             : 
    4192             : /*
    4193             :  * Check if the specified attribute's values are the same.  Subroutine for
    4194             :  * HeapDetermineColumnsInfo.
    4195             :  */
    4196             : static bool
    4197     1312894 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4198             :                  bool isnull1, bool isnull2)
    4199             : {
    4200             :     Form_pg_attribute att;
    4201             : 
    4202             :     /*
    4203             :      * If one value is NULL and other is not, then they are certainly not
    4204             :      * equal
    4205             :      */
    4206     1312894 :     if (isnull1 != isnull2)
    4207          90 :         return false;
    4208             : 
    4209             :     /*
    4210             :      * If both are NULL, they can be considered equal.
    4211             :      */
    4212     1312804 :     if (isnull1)
    4213        9982 :         return true;
    4214             : 
    4215             :     /*
    4216             :      * We do simple binary comparison of the two datums.  This may be overly
    4217             :      * strict because there can be multiple binary representations for the
    4218             :      * same logical value.  But we should be OK as long as there are no false
    4219             :      * positives.  Using a type-specific equality operator is messy because
    4220             :      * there could be multiple notions of equality in different operator
    4221             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4222             :      * while holding exclusive buffer lock.
    4223             :      */
    4224     1302822 :     if (attrnum <= 0)
    4225             :     {
    4226             :         /* The only allowed system columns are OIDs, so do this */
    4227           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4228             :     }
    4229             :     else
    4230             :     {
    4231             :         Assert(attrnum <= tupdesc->natts);
    4232     1302822 :         att = TupleDescAttr(tupdesc, attrnum - 1);
    4233     1302822 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4234             :     }
    4235             : }
    4236             : 
    4237             : /*
    4238             :  * Check which columns are being updated.
    4239             :  *
    4240             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4241             :  * from those listed as interesting, the set of columns that changed.
    4242             :  *
    4243             :  * has_external indicates if any of the unmodified attributes (from those
    4244             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4245             :  * stored externally.
    4246             :  */
    4247             : static Bitmapset *
    4248      568752 : HeapDetermineColumnsInfo(Relation relation,
    4249             :                          Bitmapset *interesting_cols,
    4250             :                          Bitmapset *external_cols,
    4251             :                          HeapTuple oldtup, HeapTuple newtup,
    4252             :                          bool *has_external)
    4253             : {
    4254             :     int         attidx;
    4255      568752 :     Bitmapset  *modified = NULL;
    4256      568752 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4257             : 
    4258      568752 :     attidx = -1;
    4259     1881646 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4260             :     {
    4261             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4262     1312894 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4263             :         Datum       value1,
    4264             :                     value2;
    4265             :         bool        isnull1,
    4266             :                     isnull2;
    4267             : 
    4268             :         /*
    4269             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4270             :          * worth supporting this case, since it could only succeed after a
    4271             :          * no-op update, which is hardly a case worth optimizing for.
    4272             :          */
    4273     1312894 :         if (attrnum == 0)
    4274             :         {
    4275           0 :             modified = bms_add_member(modified, attidx);
    4276     1251882 :             continue;
    4277             :         }
    4278             : 
    4279             :         /*
    4280             :          * Likewise, automatically say "not equal" for any system attribute
    4281             :          * other than tableOID; we cannot expect these to be consistent in a
    4282             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4283             :          */
    4284     1312894 :         if (attrnum < 0)
    4285             :         {
    4286           0 :             if (attrnum != TableOidAttributeNumber)
    4287             :             {
    4288           0 :                 modified = bms_add_member(modified, attidx);
    4289           0 :                 continue;
    4290             :             }
    4291             :         }
    4292             : 
    4293             :         /*
    4294             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4295             :          * if there are many indexed columns.  Should we do a single
    4296             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4297             :          * work for system columns ...
    4298             :          */
    4299     1312894 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4300     1312894 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4301             : 
    4302     1312894 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4303             :                               value2, isnull1, isnull2))
    4304             :         {
    4305       52936 :             modified = bms_add_member(modified, attidx);
    4306       52936 :             continue;
    4307             :         }
    4308             : 
    4309             :         /*
    4310             :          * No need to check attributes that can't be stored externally. Note
    4311             :          * that system attributes can't be stored externally.
    4312             :          */
    4313     1259958 :         if (attrnum < 0 || isnull1 ||
    4314     1249976 :             TupleDescAttr(tupdesc, attrnum - 1)->attlen != -1)
    4315     1198946 :             continue;
    4316             : 
    4317             :         /*
    4318             :          * Check if the old tuple's attribute is stored externally and is a
    4319             :          * member of external_cols.
    4320             :          */
    4321       61022 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4322          10 :             bms_is_member(attidx, external_cols))
    4323           4 :             *has_external = true;
    4324             :     }
    4325             : 
    4326      568752 :     return modified;
    4327             : }
    4328             : 
    4329             : /*
    4330             :  *  simple_heap_update - replace a tuple
    4331             :  *
    4332             :  * This routine may be used to update a tuple when concurrent updates of
    4333             :  * the target tuple are not expected (for example, because we have a lock
    4334             :  * on the relation associated with the tuple).  Any failure is reported
    4335             :  * via ereport().
    4336             :  */
    4337             : void
    4338      190398 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4339             :                    TU_UpdateIndexes *update_indexes)
    4340             : {
    4341             :     TM_Result   result;
    4342             :     TM_FailureData tmfd;
    4343             :     LockTupleMode lockmode;
    4344             : 
    4345      190398 :     result = heap_update(relation, otid, tup,
    4346             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4347             :                          true /* wait for commit */ ,
    4348             :                          &tmfd, &lockmode, update_indexes);
    4349      190398 :     switch (result)
    4350             :     {
    4351           0 :         case TM_SelfModified:
    4352             :             /* Tuple was already updated in current command? */
    4353           0 :             elog(ERROR, "tuple already updated by self");
    4354             :             break;
    4355             : 
    4356      190398 :         case TM_Ok:
    4357             :             /* done successfully */
    4358      190398 :             break;
    4359             : 
    4360           0 :         case TM_Updated:
    4361           0 :             elog(ERROR, "tuple concurrently updated");
    4362             :             break;
    4363             : 
    4364           0 :         case TM_Deleted:
    4365           0 :             elog(ERROR, "tuple concurrently deleted");
    4366             :             break;
    4367             : 
    4368           0 :         default:
    4369           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4370             :             break;
    4371             :     }
    4372      190398 : }
    4373             : 
    4374             : 
    4375             : /*
    4376             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4377             :  */
    4378             : static MultiXactStatus
    4379        2380 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4380             : {
    4381             :     int         retval;
    4382             : 
    4383        2380 :     if (is_update)
    4384         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4385             :     else
    4386        2188 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4387             : 
    4388        2380 :     if (retval == -1)
    4389           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4390             :              is_update ? "true" : "false");
    4391             : 
    4392        2380 :     return (MultiXactStatus) retval;
    4393             : }
    4394             : 
    4395             : /*
    4396             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4397             :  *
    4398             :  * Note that this acquires a buffer pin, which the caller must release.
    4399             :  *
    4400             :  * Input parameters:
    4401             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4402             :  *  tid: TID of tuple to lock
    4403             :  *  cid: current command ID (used for visibility test, and stored into
    4404             :  *      tuple's cmax if lock is successful)
    4405             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4406             :  *  wait_policy: what to do if tuple lock is not available
    4407             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4408             :  *      tuples.
    4409             :  *
    4410             :  * Output parameters:
    4411             :  *  *tuple: all fields filled in
    4412             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4413             :  *  *tmfd: filled in failure cases (see below)
    4414             :  *
    4415             :  * Function results are the same as the ones for table_tuple_lock().
    4416             :  *
    4417             :  * In the failure cases other than TM_Invisible, the routine fills
    4418             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4419             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4420             :  * since we cannot obtain cmax from a combo CID generated by another
    4421             :  * transaction).
    4422             :  * See comments for struct TM_FailureData for additional info.
    4423             :  *
    4424             :  * See README.tuplock for a thorough explanation of this mechanism.
    4425             :  */
    4426             : TM_Result
    4427      170034 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4428             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4429             :                 bool follow_updates,
    4430             :                 Buffer *buffer, TM_FailureData *tmfd)
    4431             : {
    4432             :     TM_Result   result;
    4433      170034 :     ItemPointer tid = &(tuple->t_self);
    4434             :     ItemId      lp;
    4435             :     Page        page;
    4436      170034 :     Buffer      vmbuffer = InvalidBuffer;
    4437             :     BlockNumber block;
    4438             :     TransactionId xid,
    4439             :                 xmax;
    4440             :     uint16      old_infomask,
    4441             :                 new_infomask,
    4442             :                 new_infomask2;
    4443      170034 :     bool        first_time = true;
    4444      170034 :     bool        skip_tuple_lock = false;
    4445      170034 :     bool        have_tuple_lock = false;
    4446      170034 :     bool        cleared_all_frozen = false;
    4447             : 
    4448      170034 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4449      170034 :     block = ItemPointerGetBlockNumber(tid);
    4450             : 
    4451             :     /*
    4452             :      * Before locking the buffer, pin the visibility map page if it appears to
    4453             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4454             :      * in the middle of changing this, so we'll need to recheck after we have
    4455             :      * the lock.
    4456             :      */
    4457      170034 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4458        3316 :         visibilitymap_pin(relation, block, &vmbuffer);
    4459             : 
    4460      170034 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4461             : 
    4462      170034 :     page = BufferGetPage(*buffer);
    4463      170034 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4464             :     Assert(ItemIdIsNormal(lp));
    4465             : 
    4466      170034 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4467      170034 :     tuple->t_len = ItemIdGetLength(lp);
    4468      170034 :     tuple->t_tableOid = RelationGetRelid(relation);
    4469             : 
    4470      170062 : l3:
    4471      170062 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4472             : 
    4473      170062 :     if (result == TM_Invisible)
    4474             :     {
    4475             :         /*
    4476             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4477             :          * UPDATE.  We return this value here rather than throwing an error in
    4478             :          * order to give that case the opportunity to throw a more specific
    4479             :          * error.
    4480             :          */
    4481          24 :         result = TM_Invisible;
    4482          24 :         goto out_locked;
    4483             :     }
    4484      170038 :     else if (result == TM_BeingModified ||
    4485      153950 :              result == TM_Updated ||
    4486             :              result == TM_Deleted)
    4487             :     {
    4488             :         TransactionId xwait;
    4489             :         uint16      infomask;
    4490             :         uint16      infomask2;
    4491             :         bool        require_sleep;
    4492             :         ItemPointerData t_ctid;
    4493             : 
    4494             :         /* must copy state data before unlocking buffer */
    4495       16090 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4496       16090 :         infomask = tuple->t_data->t_infomask;
    4497       16090 :         infomask2 = tuple->t_data->t_infomask2;
    4498       16090 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4499             : 
    4500       16090 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4501             : 
    4502             :         /*
    4503             :          * If any subtransaction of the current top transaction already holds
    4504             :          * a lock as strong as or stronger than what we're requesting, we
    4505             :          * effectively hold the desired lock already.  We *must* succeed
    4506             :          * without trying to take the tuple lock, else we will deadlock
    4507             :          * against anyone wanting to acquire a stronger lock.
    4508             :          *
    4509             :          * Note we only do this the first time we loop on the HTSU result;
    4510             :          * there is no point in testing in subsequent passes, because
    4511             :          * evidently our own transaction cannot have acquired a new lock after
    4512             :          * the first time we checked.
    4513             :          */
    4514       16090 :         if (first_time)
    4515             :         {
    4516       16072 :             first_time = false;
    4517             : 
    4518       16072 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4519             :             {
    4520             :                 int         i;
    4521             :                 int         nmembers;
    4522             :                 MultiXactMember *members;
    4523             : 
    4524             :                 /*
    4525             :                  * We don't need to allow old multixacts here; if that had
    4526             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4527             :                  * MayBeUpdated and we wouldn't be here.
    4528             :                  */
    4529             :                 nmembers =
    4530         160 :                     GetMultiXactIdMembers(xwait, &members, false,
    4531         160 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4532             : 
    4533         474 :                 for (i = 0; i < nmembers; i++)
    4534             :                 {
    4535             :                     /* only consider members of our own transaction */
    4536         342 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4537         244 :                         continue;
    4538             : 
    4539          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4540             :                     {
    4541          28 :                         pfree(members);
    4542          28 :                         result = TM_Ok;
    4543          28 :                         goto out_unlocked;
    4544             :                     }
    4545             :                     else
    4546             :                     {
    4547             :                         /*
    4548             :                          * Disable acquisition of the heavyweight tuple lock.
    4549             :                          * Otherwise, when promoting a weaker lock, we might
    4550             :                          * deadlock with another locker that has acquired the
    4551             :                          * heavyweight tuple lock and is waiting for our
    4552             :                          * transaction to finish.
    4553             :                          *
    4554             :                          * Note that in this case we still need to wait for
    4555             :                          * the multixact if required, to avoid acquiring
    4556             :                          * conflicting locks.
    4557             :                          */
    4558          70 :                         skip_tuple_lock = true;
    4559             :                     }
    4560             :                 }
    4561             : 
    4562         132 :                 if (members)
    4563         132 :                     pfree(members);
    4564             :             }
    4565       15912 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4566             :             {
    4567       13474 :                 switch (mode)
    4568             :                 {
    4569         296 :                     case LockTupleKeyShare:
    4570             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4571             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4572             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4573         296 :                         result = TM_Ok;
    4574         296 :                         goto out_unlocked;
    4575         232 :                     case LockTupleShare:
    4576         232 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4577          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4578             :                         {
    4579         220 :                             result = TM_Ok;
    4580         220 :                             goto out_unlocked;
    4581             :                         }
    4582          12 :                         break;
    4583         122 :                     case LockTupleNoKeyExclusive:
    4584         122 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4585             :                         {
    4586         100 :                             result = TM_Ok;
    4587         100 :                             goto out_unlocked;
    4588             :                         }
    4589          22 :                         break;
    4590       12824 :                     case LockTupleExclusive:
    4591       12824 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4592        2744 :                             infomask2 & HEAP_KEYS_UPDATED)
    4593             :                         {
    4594        2702 :                             result = TM_Ok;
    4595        2702 :                             goto out_unlocked;
    4596             :                         }
    4597       10122 :                         break;
    4598             :                 }
    4599        2456 :             }
    4600             :         }
    4601             : 
    4602             :         /*
    4603             :          * Initially assume that we will have to wait for the locking
    4604             :          * transaction(s) to finish.  We check various cases below in which
    4605             :          * this can be turned off.
    4606             :          */
    4607       12744 :         require_sleep = true;
    4608       12744 :         if (mode == LockTupleKeyShare)
    4609             :         {
    4610             :             /*
    4611             :              * If we're requesting KeyShare, and there's no update present, we
    4612             :              * don't need to wait.  Even if there is an update, we can still
    4613             :              * continue if the key hasn't been modified.
    4614             :              *
    4615             :              * However, if there are updates, we need to walk the update chain
    4616             :              * to mark future versions of the row as locked, too.  That way,
    4617             :              * if somebody deletes that future version, we're protected
    4618             :              * against the key going away.  This locking of future versions
    4619             :              * could block momentarily, if a concurrent transaction is
    4620             :              * deleting a key; or it could return a value to the effect that
    4621             :              * the transaction deleting the key has already committed.  So we
    4622             :              * do this before re-locking the buffer; otherwise this would be
    4623             :              * prone to deadlocks.
    4624             :              *
    4625             :              * Note that the TID we're locking was grabbed before we unlocked
    4626             :              * the buffer.  For it to change while we're not looking, the
    4627             :              * other properties we're testing for below after re-locking the
    4628             :              * buffer would also change, in which case we would restart this
    4629             :              * loop above.
    4630             :              */
    4631        1140 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4632             :             {
    4633             :                 bool        updated;
    4634             : 
    4635        1078 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4636             : 
    4637             :                 /*
    4638             :                  * If there are updates, follow the update chain; bail out if
    4639             :                  * that cannot be done.
    4640             :                  */
    4641        1078 :                 if (follow_updates && updated)
    4642             :                 {
    4643             :                     TM_Result   res;
    4644             : 
    4645         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4646             :                                                   GetCurrentTransactionId(),
    4647             :                                                   mode);
    4648         100 :                     if (res != TM_Ok)
    4649             :                     {
    4650          12 :                         result = res;
    4651             :                         /* recovery code expects to have buffer lock held */
    4652          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4653         362 :                         goto failed;
    4654             :                     }
    4655             :                 }
    4656             : 
    4657        1066 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4658             : 
    4659             :                 /*
    4660             :                  * Make sure it's still an appropriate lock, else start over.
    4661             :                  * Also, if it wasn't updated before we released the lock, but
    4662             :                  * is updated now, we start over too; the reason is that we
    4663             :                  * now need to follow the update chain to lock the new
    4664             :                  * versions.
    4665             :                  */
    4666        1066 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4667          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4668          86 :                      !updated))
    4669          28 :                     goto l3;
    4670             : 
    4671             :                 /* Things look okay, so we can skip sleeping */
    4672        1066 :                 require_sleep = false;
    4673             : 
    4674             :                 /*
    4675             :                  * Note we allow Xmax to change here; other updaters/lockers
    4676             :                  * could have modified it before we grabbed the buffer lock.
    4677             :                  * However, this is not a problem, because with the recheck we
    4678             :                  * just did we ensure that they still don't conflict with the
    4679             :                  * lock we want.
    4680             :                  */
    4681             :             }
    4682             :         }
    4683       11604 :         else if (mode == LockTupleShare)
    4684             :         {
    4685             :             /*
    4686             :              * If we're requesting Share, we can similarly avoid sleeping if
    4687             :              * there's no update and no exclusive lock present.
    4688             :              */
    4689         882 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4690         882 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4691             :             {
    4692         870 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4693             : 
    4694             :                 /*
    4695             :                  * Make sure it's still an appropriate lock, else start over.
    4696             :                  * See above about allowing xmax to change.
    4697             :                  */
    4698         870 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4699         870 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4700           0 :                     goto l3;
    4701         870 :                 require_sleep = false;
    4702             :             }
    4703             :         }
    4704       10722 :         else if (mode == LockTupleNoKeyExclusive)
    4705             :         {
    4706             :             /*
    4707             :              * If we're requesting NoKeyExclusive, we might also be able to
    4708             :              * avoid sleeping; just ensure that there no conflicting lock
    4709             :              * already acquired.
    4710             :              */
    4711         312 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4712             :             {
    4713          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4714             :                                              mode, NULL))
    4715             :                 {
    4716             :                     /*
    4717             :                      * No conflict, but if the xmax changed under us in the
    4718             :                      * meantime, start over.
    4719             :                      */
    4720          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4721          26 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4722          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4723             :                                              xwait))
    4724           0 :                         goto l3;
    4725             : 
    4726             :                     /* otherwise, we're good */
    4727          26 :                     require_sleep = false;
    4728             :                 }
    4729             :             }
    4730         260 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4731             :             {
    4732          34 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4733             : 
    4734             :                 /* if the xmax changed in the meantime, start over */
    4735          34 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4736          34 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4737             :                                          xwait))
    4738           0 :                     goto l3;
    4739             :                 /* otherwise, we're good */
    4740          34 :                 require_sleep = false;
    4741             :             }
    4742             :         }
    4743             : 
    4744             :         /*
    4745             :          * As a check independent from those above, we can also avoid sleeping
    4746             :          * if the current transaction is the sole locker of the tuple.  Note
    4747             :          * that the strength of the lock already held is irrelevant; this is
    4748             :          * not about recording the lock in Xmax (which will be done regardless
    4749             :          * of this optimization, below).  Also, note that the cases where we
    4750             :          * hold a lock stronger than we are requesting are already handled
    4751             :          * above by not doing anything.
    4752             :          *
    4753             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4754             :          * is well equipped to deal with this situation on its own.
    4755             :          */
    4756       23386 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4757       10654 :             TransactionIdIsCurrentTransactionId(xwait))
    4758             :         {
    4759             :             /* ... but if the xmax changed in the meantime, start over */
    4760       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4761       10122 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4762       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4763             :                                      xwait))
    4764           0 :                 goto l3;
    4765             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4766       10122 :             require_sleep = false;
    4767             :         }
    4768             : 
    4769             :         /*
    4770             :          * Time to sleep on the other transaction/multixact, if necessary.
    4771             :          *
    4772             :          * If the other transaction is an update/delete that's already
    4773             :          * committed, then sleeping cannot possibly do any good: if we're
    4774             :          * required to sleep, get out to raise an error instead.
    4775             :          *
    4776             :          * By here, we either have already acquired the buffer exclusive lock,
    4777             :          * or we must wait for the locking transaction or multixact; so below
    4778             :          * we ensure that we grab buffer lock after the sleep.
    4779             :          */
    4780       12732 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4781             :         {
    4782         274 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4783         274 :             goto failed;
    4784             :         }
    4785       12458 :         else if (require_sleep)
    4786             :         {
    4787             :             /*
    4788             :              * Acquire tuple lock to establish our priority for the tuple, or
    4789             :              * die trying.  LockTuple will release us when we are next-in-line
    4790             :              * for the tuple.  We must do this even if we are share-locking,
    4791             :              * but not if we already have a weaker lock on the tuple.
    4792             :              *
    4793             :              * If we are forced to "start over" below, we keep the tuple lock;
    4794             :              * this arranges that we stay at the head of the line while
    4795             :              * rechecking tuple state.
    4796             :              */
    4797         340 :             if (!skip_tuple_lock &&
    4798         308 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4799             :                                       &have_tuple_lock))
    4800             :             {
    4801             :                 /*
    4802             :                  * This can only happen if wait_policy is Skip and the lock
    4803             :                  * couldn't be obtained.
    4804             :                  */
    4805           2 :                 result = TM_WouldBlock;
    4806             :                 /* recovery code expects to have buffer lock held */
    4807           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4808           2 :                 goto failed;
    4809             :             }
    4810             : 
    4811         336 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4812             :             {
    4813          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4814             : 
    4815             :                 /* We only ever lock tuples, never update them */
    4816          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4817           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4818             : 
    4819             :                 /* wait for multixact to end, or die trying  */
    4820          80 :                 switch (wait_policy)
    4821             :                 {
    4822          72 :                     case LockWaitBlock:
    4823          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4824             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4825          72 :                         break;
    4826           4 :                     case LockWaitSkip:
    4827           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4828             :                                                         status, infomask, relation,
    4829             :                                                         NULL))
    4830             :                         {
    4831           4 :                             result = TM_WouldBlock;
    4832             :                             /* recovery code expects to have buffer lock held */
    4833           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4834           4 :                             goto failed;
    4835             :                         }
    4836           0 :                         break;
    4837           4 :                     case LockWaitError:
    4838           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4839             :                                                         status, infomask, relation,
    4840             :                                                         NULL))
    4841           4 :                             ereport(ERROR,
    4842             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4843             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4844             :                                             RelationGetRelationName(relation))));
    4845             : 
    4846           0 :                         break;
    4847             :                 }
    4848             : 
    4849             :                 /*
    4850             :                  * Of course, the multixact might not be done here: if we're
    4851             :                  * requesting a light lock mode, other transactions with light
    4852             :                  * locks could still be alive, as well as locks owned by our
    4853             :                  * own xact or other subxacts of this backend.  We need to
    4854             :                  * preserve the surviving MultiXact members.  Note that it
    4855             :                  * isn't absolutely necessary in the latter case, but doing so
    4856             :                  * is simpler.
    4857             :                  */
    4858          72 :             }
    4859             :             else
    4860             :             {
    4861             :                 /* wait for regular transaction to end, or die trying */
    4862         256 :                 switch (wait_policy)
    4863             :                 {
    4864         178 :                     case LockWaitBlock:
    4865         178 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    4866             :                                           XLTW_Lock);
    4867         178 :                         break;
    4868          66 :                     case LockWaitSkip:
    4869          66 :                         if (!ConditionalXactLockTableWait(xwait))
    4870             :                         {
    4871          66 :                             result = TM_WouldBlock;
    4872             :                             /* recovery code expects to have buffer lock held */
    4873          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4874          66 :                             goto failed;
    4875             :                         }
    4876           0 :                         break;
    4877          12 :                     case LockWaitError:
    4878          12 :                         if (!ConditionalXactLockTableWait(xwait))
    4879          12 :                             ereport(ERROR,
    4880             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4881             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4882             :                                             RelationGetRelationName(relation))));
    4883           0 :                         break;
    4884             :                 }
    4885         250 :             }
    4886             : 
    4887             :             /* if there are updates, follow the update chain */
    4888         250 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    4889             :             {
    4890             :                 TM_Result   res;
    4891             : 
    4892          80 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4893             :                                               GetCurrentTransactionId(),
    4894             :                                               mode);
    4895          80 :                 if (res != TM_Ok)
    4896             :                 {
    4897           4 :                     result = res;
    4898             :                     /* recovery code expects to have buffer lock held */
    4899           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4900           4 :                     goto failed;
    4901             :                 }
    4902             :             }
    4903             : 
    4904         246 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4905             : 
    4906             :             /*
    4907             :              * xwait is done, but if xwait had just locked the tuple then some
    4908             :              * other xact could update this tuple before we get to this point.
    4909             :              * Check for xmax change, and start over if so.
    4910             :              */
    4911         246 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4912         222 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4913             :                                      xwait))
    4914          28 :                 goto l3;
    4915             : 
    4916         218 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    4917             :             {
    4918             :                 /*
    4919             :                  * Otherwise check if it committed or aborted.  Note we cannot
    4920             :                  * be here if the tuple was only locked by somebody who didn't
    4921             :                  * conflict with us; that would have been handled above.  So
    4922             :                  * that transaction must necessarily be gone by now.  But
    4923             :                  * don't check for this in the multixact case, because some
    4924             :                  * locker transactions might still be running.
    4925             :                  */
    4926         156 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    4927             :             }
    4928             :         }
    4929             : 
    4930             :         /* By here, we're certain that we hold buffer exclusive lock again */
    4931             : 
    4932             :         /*
    4933             :          * We may lock if previous xmax aborted, or if it committed but only
    4934             :          * locked the tuple without updating it; or if we didn't have to wait
    4935             :          * at all for whatever reason.
    4936             :          */
    4937       12336 :         if (!require_sleep ||
    4938         218 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    4939         286 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4940         128 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    4941       12220 :             result = TM_Ok;
    4942         116 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    4943          92 :             result = TM_Updated;
    4944             :         else
    4945          24 :             result = TM_Deleted;
    4946             :     }
    4947             : 
    4948      153948 : failed:
    4949      166646 :     if (result != TM_Ok)
    4950             :     {
    4951             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    4952             :                result == TM_Deleted || result == TM_WouldBlock);
    4953             : 
    4954             :         /*
    4955             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    4956             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    4957             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    4958             :          * this assert is slightly different from the equivalent one in
    4959             :          * heap_delete and heap_update.
    4960             :          */
    4961             :         Assert((result == TM_WouldBlock) ||
    4962             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    4963             :         Assert(result != TM_Updated ||
    4964             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    4965         490 :         tmfd->ctid = tuple->t_data->t_ctid;
    4966         490 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    4967         490 :         if (result == TM_SelfModified)
    4968          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    4969             :         else
    4970         478 :             tmfd->cmax = InvalidCommandId;
    4971         490 :         goto out_locked;
    4972             :     }
    4973             : 
    4974             :     /*
    4975             :      * If we didn't pin the visibility map page and the page has become all
    4976             :      * visible while we were busy locking the buffer, or during some
    4977             :      * subsequent window during which we had it unlocked, we'll have to unlock
    4978             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    4979             :      * unfortunate, especially since we'll now have to recheck whether the
    4980             :      * tuple has been locked or updated under us, but hopefully it won't
    4981             :      * happen very often.
    4982             :      */
    4983      166156 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    4984             :     {
    4985           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4986           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    4987           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4988           0 :         goto l3;
    4989             :     }
    4990             : 
    4991      166156 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4992      166156 :     old_infomask = tuple->t_data->t_infomask;
    4993             : 
    4994             :     /*
    4995             :      * If this is the first possibly-multixact-able operation in the current
    4996             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    4997             :      * certain that the transaction will never become a member of any older
    4998             :      * MultiXactIds than that.  (We have to do this even if we end up just
    4999             :      * using our own TransactionId below, since some other backend could
    5000             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5001             :      */
    5002      166156 :     MultiXactIdSetOldestMember();
    5003             : 
    5004             :     /*
    5005             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5006             :      * not modify the tuple just yet, because that would leave it in the wrong
    5007             :      * state if multixact.c elogs.
    5008             :      */
    5009      166156 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5010             :                               GetCurrentTransactionId(), mode, false,
    5011             :                               &xid, &new_infomask, &new_infomask2);
    5012             : 
    5013      166156 :     START_CRIT_SECTION();
    5014             : 
    5015             :     /*
    5016             :      * Store transaction information of xact locking the tuple.
    5017             :      *
    5018             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5019             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5020             :      * previously updated tuple, it's important to preserve the Cmax.
    5021             :      *
    5022             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5023             :      * we would break the HOT chain.
    5024             :      */
    5025      166156 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5026      166156 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5027      166156 :     tuple->t_data->t_infomask |= new_infomask;
    5028      166156 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5029      166156 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5030      166078 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5031      166156 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5032             : 
    5033             :     /*
    5034             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5035             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5036             :      * because it was set by the updater.  Moreover, if the tuple has been
    5037             :      * updated, we need to follow the update chain to lock the new versions of
    5038             :      * the tuple as well.
    5039             :      */
    5040      166156 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5041      166078 :         tuple->t_data->t_ctid = *tid;
    5042             : 
    5043             :     /* Clear only the all-frozen bit on visibility map if needed */
    5044      169472 :     if (PageIsAllVisible(page) &&
    5045        3316 :         visibilitymap_clear(relation, block, vmbuffer,
    5046             :                             VISIBILITYMAP_ALL_FROZEN))
    5047          28 :         cleared_all_frozen = true;
    5048             : 
    5049             : 
    5050      166156 :     MarkBufferDirty(*buffer);
    5051             : 
    5052             :     /*
    5053             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5054             :      * there is no state change worth restoring after a crash.  You would be
    5055             :      * wrong however: we have just written either a TransactionId or a
    5056             :      * MultiXactId that may never have been seen on disk before, and we need
    5057             :      * to make sure that there are XLOG entries covering those ID numbers.
    5058             :      * Else the same IDs might be re-used after a crash, which would be
    5059             :      * disastrous if this page made it to disk before the crash.  Essentially
    5060             :      * we have to enforce the WAL log-before-data rule even in this case.
    5061             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5062             :      * entries for everything anyway.)
    5063             :      */
    5064      166156 :     if (RelationNeedsWAL(relation))
    5065             :     {
    5066             :         xl_heap_lock xlrec;
    5067             :         XLogRecPtr  recptr;
    5068             : 
    5069      165474 :         XLogBeginInsert();
    5070      165474 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5071             : 
    5072      165474 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5073      165474 :         xlrec.xmax = xid;
    5074      330948 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5075      165474 :                                               tuple->t_data->t_infomask2);
    5076      165474 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5077      165474 :         XLogRegisterData((char *) &xlrec, SizeOfHeapLock);
    5078             : 
    5079             :         /* we don't decode row locks atm, so no need to log the origin */
    5080             : 
    5081      165474 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5082             : 
    5083      165474 :         PageSetLSN(page, recptr);
    5084             :     }
    5085             : 
    5086      166156 :     END_CRIT_SECTION();
    5087             : 
    5088      166156 :     result = TM_Ok;
    5089             : 
    5090      166670 : out_locked:
    5091      166670 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5092             : 
    5093      170016 : out_unlocked:
    5094      170016 :     if (BufferIsValid(vmbuffer))
    5095        3316 :         ReleaseBuffer(vmbuffer);
    5096             : 
    5097             :     /*
    5098             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5099             :      * visibility info.
    5100             :      */
    5101             : 
    5102             :     /*
    5103             :      * Now that we have successfully marked the tuple as locked, we can
    5104             :      * release the lmgr tuple lock, if we had it.
    5105             :      */
    5106      170016 :     if (have_tuple_lock)
    5107         278 :         UnlockTupleTuplock(relation, tid, mode);
    5108             : 
    5109      170016 :     return result;
    5110             : }
    5111             : 
    5112             : /*
    5113             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5114             :  * its normal, Xmax-based tuple lock.
    5115             :  *
    5116             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5117             :  * whether the lock has previously been acquired (and this function does
    5118             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5119             :  * has been flipped to true.
    5120             :  *
    5121             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5122             :  * wait_policy is Skip.
    5123             :  */
    5124             : static bool
    5125         528 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5126             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5127             : {
    5128         528 :     if (*have_tuple_lock)
    5129          18 :         return true;
    5130             : 
    5131         510 :     switch (wait_policy)
    5132             :     {
    5133         428 :         case LockWaitBlock:
    5134         428 :             LockTupleTuplock(relation, tid, mode);
    5135         428 :             break;
    5136             : 
    5137          68 :         case LockWaitSkip:
    5138          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5139           2 :                 return false;
    5140          66 :             break;
    5141             : 
    5142          14 :         case LockWaitError:
    5143          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5144           2 :                 ereport(ERROR,
    5145             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5146             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5147             :                                 RelationGetRelationName(relation))));
    5148          12 :             break;
    5149             :     }
    5150         506 :     *have_tuple_lock = true;
    5151             : 
    5152         506 :     return true;
    5153             : }
    5154             : 
    5155             : /*
    5156             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5157             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5158             :  * corresponding infomasks to use on the tuple.
    5159             :  *
    5160             :  * Note that this might have side effects such as creating a new MultiXactId.
    5161             :  *
    5162             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5163             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5164             :  * but it was not running anymore. There is a race condition, which is that the
    5165             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5166             :  * either here, or within MultiXactIdExpand.
    5167             :  *
    5168             :  * There is a similar race condition possible when the old xmax was a regular
    5169             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5170             :  * window, but it's still possible to end up creating an unnecessary
    5171             :  * MultiXactId.  Fortunately this is harmless.
    5172             :  */
    5173             : static void
    5174     4119912 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5175             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5176             :                           LockTupleMode mode, bool is_update,
    5177             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5178             :                           uint16 *result_infomask2)
    5179             : {
    5180             :     TransactionId new_xmax;
    5181             :     uint16      new_infomask,
    5182             :                 new_infomask2;
    5183             : 
    5184             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5185             : 
    5186     4119912 : l5:
    5187     4119912 :     new_infomask = 0;
    5188     4119912 :     new_infomask2 = 0;
    5189     4119912 :     if (old_infomask & HEAP_XMAX_INVALID)
    5190             :     {
    5191             :         /*
    5192             :          * No previous locker; we just insert our own TransactionId.
    5193             :          *
    5194             :          * Note that it's critical that this case be the first one checked,
    5195             :          * because there are several blocks below that come back to this one
    5196             :          * to implement certain optimizations; old_infomask might contain
    5197             :          * other dirty bits in those cases, but we don't really care.
    5198             :          */
    5199     3909972 :         if (is_update)
    5200             :         {
    5201     3464934 :             new_xmax = add_to_xmax;
    5202     3464934 :             if (mode == LockTupleExclusive)
    5203     2968800 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5204             :         }
    5205             :         else
    5206             :         {
    5207      445038 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5208      445038 :             switch (mode)
    5209             :             {
    5210        5090 :                 case LockTupleKeyShare:
    5211        5090 :                     new_xmax = add_to_xmax;
    5212        5090 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5213        5090 :                     break;
    5214        1430 :                 case LockTupleShare:
    5215        1430 :                     new_xmax = add_to_xmax;
    5216        1430 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5217        1430 :                     break;
    5218      247438 :                 case LockTupleNoKeyExclusive:
    5219      247438 :                     new_xmax = add_to_xmax;
    5220      247438 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5221      247438 :                     break;
    5222      191080 :                 case LockTupleExclusive:
    5223      191080 :                     new_xmax = add_to_xmax;
    5224      191080 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5225      191080 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5226      191080 :                     break;
    5227           0 :                 default:
    5228           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5229           0 :                     elog(ERROR, "invalid lock mode");
    5230             :             }
    5231             :         }
    5232             :     }
    5233      209940 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5234             :     {
    5235             :         MultiXactStatus new_status;
    5236             : 
    5237             :         /*
    5238             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5239             :          * cross-check.
    5240             :          */
    5241             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5242             : 
    5243             :         /*
    5244             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5245             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5246             :          * anymore.  This check is critical for databases upgraded by
    5247             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5248             :          * that such multis are never passed.
    5249             :          */
    5250         232 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5251             :         {
    5252           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5253           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5254           0 :             goto l5;
    5255             :         }
    5256             : 
    5257             :         /*
    5258             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5259             :          * include add_to_xmax; but if all the members were lockers and are
    5260             :          * all gone, we can do away with the IS_MULTI bit and just set
    5261             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5262             :          * and we have an updater that aborted, we can also do without a
    5263             :          * multi.
    5264             :          *
    5265             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5266             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5267             :          * incurring extra work anyhow.
    5268             :          */
    5269         232 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5270             :         {
    5271          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5272          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5273             :                                                                 old_infomask)))
    5274             :             {
    5275             :                 /*
    5276             :                  * Reset these bits and restart; otherwise fall through to
    5277             :                  * create a new multi below.
    5278             :                  */
    5279          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5280          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5281          46 :                 goto l5;
    5282             :             }
    5283             :         }
    5284             : 
    5285         186 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5286             : 
    5287         186 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5288             :                                      new_status);
    5289         186 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5290             :     }
    5291      209708 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5292             :     {
    5293             :         /*
    5294             :          * It's a committed update, so we need to preserve him as updater of
    5295             :          * the tuple.
    5296             :          */
    5297             :         MultiXactStatus status;
    5298             :         MultiXactStatus new_status;
    5299             : 
    5300          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5301           0 :             status = MultiXactStatusUpdate;
    5302             :         else
    5303          26 :             status = MultiXactStatusNoKeyUpdate;
    5304             : 
    5305          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5306             : 
    5307             :         /*
    5308             :          * since it's not running, it's obviously impossible for the old
    5309             :          * updater to be identical to the current one, so we need not check
    5310             :          * for that case as we do in the block above.
    5311             :          */
    5312          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5313          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5314             :     }
    5315      209682 :     else if (TransactionIdIsInProgress(xmax))
    5316             :     {
    5317             :         /*
    5318             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5319             :          * create a new MultiXactId that includes both the old locker or
    5320             :          * updater and our own TransactionId.
    5321             :          */
    5322             :         MultiXactStatus new_status;
    5323             :         MultiXactStatus old_status;
    5324             :         LockTupleMode old_mode;
    5325             : 
    5326      209664 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5327             :         {
    5328      209612 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5329       11226 :                 old_status = MultiXactStatusForKeyShare;
    5330      198386 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5331         862 :                 old_status = MultiXactStatusForShare;
    5332      197524 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5333             :             {
    5334      197524 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5335      185316 :                     old_status = MultiXactStatusForUpdate;
    5336             :                 else
    5337       12208 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5338             :             }
    5339             :             else
    5340             :             {
    5341             :                 /*
    5342             :                  * LOCK_ONLY can be present alone only when a page has been
    5343             :                  * upgraded by pg_upgrade.  But in that case,
    5344             :                  * TransactionIdIsInProgress() should have returned false.  We
    5345             :                  * assume it's no longer locked in this case.
    5346             :                  */
    5347           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5348           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5349           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5350           0 :                 goto l5;
    5351             :             }
    5352             :         }
    5353             :         else
    5354             :         {
    5355             :             /* it's an update, but which kind? */
    5356          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5357           0 :                 old_status = MultiXactStatusUpdate;
    5358             :             else
    5359          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5360             :         }
    5361             : 
    5362      209664 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5363             : 
    5364             :         /*
    5365             :          * If the lock to be acquired is for the same TransactionId as the
    5366             :          * existing lock, there's an optimization possible: consider only the
    5367             :          * strongest of both locks as the only one present, and restart.
    5368             :          */
    5369      209664 :         if (xmax == add_to_xmax)
    5370             :         {
    5371             :             /*
    5372             :              * Note that it's not possible for the original tuple to be
    5373             :              * updated: we wouldn't be here because the tuple would have been
    5374             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5375             :              * this code can also run when traversing an update chain to lock
    5376             :              * future versions of a tuple.  But we wouldn't be here either,
    5377             :              * because the add_to_xmax would be different from the original
    5378             :              * updater.
    5379             :              */
    5380             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5381             : 
    5382             :             /* acquire the strongest of both */
    5383      207642 :             if (mode < old_mode)
    5384      104206 :                 mode = old_mode;
    5385             :             /* mustn't touch is_update */
    5386             : 
    5387      207642 :             old_infomask |= HEAP_XMAX_INVALID;
    5388      207642 :             goto l5;
    5389             :         }
    5390             : 
    5391             :         /* otherwise, just fall back to creating a new multixact */
    5392        2022 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5393        2022 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5394             :                                      add_to_xmax, new_status);
    5395        2022 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5396             :     }
    5397          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5398          10 :              TransactionIdDidCommit(xmax))
    5399           2 :     {
    5400             :         /*
    5401             :          * It's a committed update, so we gotta preserve him as updater of the
    5402             :          * tuple.
    5403             :          */
    5404             :         MultiXactStatus status;
    5405             :         MultiXactStatus new_status;
    5406             : 
    5407           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5408           0 :             status = MultiXactStatusUpdate;
    5409             :         else
    5410           2 :             status = MultiXactStatusNoKeyUpdate;
    5411             : 
    5412           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5413             : 
    5414             :         /*
    5415             :          * since it's not running, it's obviously impossible for the old
    5416             :          * updater to be identical to the current one, so we need not check
    5417             :          * for that case as we do in the block above.
    5418             :          */
    5419           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5420           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5421             :     }
    5422             :     else
    5423             :     {
    5424             :         /*
    5425             :          * Can get here iff the locking/updating transaction was running when
    5426             :          * the infomask was extracted from the tuple, but finished before
    5427             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5428             :          * no locker at all in the first place.
    5429             :          */
    5430          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5431          16 :         goto l5;
    5432             :     }
    5433             : 
    5434     3912208 :     *result_infomask = new_infomask;
    5435     3912208 :     *result_infomask2 = new_infomask2;
    5436     3912208 :     *result_xmax = new_xmax;
    5437     3912208 : }
    5438             : 
    5439             : /*
    5440             :  * Subroutine for heap_lock_updated_tuple_rec.
    5441             :  *
    5442             :  * Given a hypothetical multixact status held by the transaction identified
    5443             :  * with the given xid, does the current transaction need to wait, fail, or can
    5444             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5445             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5446             :  * returned.  If the lock is already held by the current transaction, return
    5447             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5448             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5449             :  *
    5450             :  * The held status is said to be hypothetical because it might correspond to a
    5451             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5452             :  * way for simplicity of API.
    5453             :  */
    5454             : static TM_Result
    5455          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5456             :                            LockTupleMode mode, HeapTuple tup,
    5457             :                            bool *needwait)
    5458             : {
    5459             :     MultiXactStatus wantedstatus;
    5460             : 
    5461          64 :     *needwait = false;
    5462          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5463             : 
    5464             :     /*
    5465             :      * Note: we *must* check TransactionIdIsInProgress before
    5466             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5467             :      * for an explanation.
    5468             :      */
    5469          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5470             :     {
    5471             :         /*
    5472             :          * The tuple has already been locked by our own transaction.  This is
    5473             :          * very rare but can happen if multiple transactions are trying to
    5474             :          * lock an ancient version of the same tuple.
    5475             :          */
    5476           0 :         return TM_SelfModified;
    5477             :     }
    5478          64 :     else if (TransactionIdIsInProgress(xid))
    5479             :     {
    5480             :         /*
    5481             :          * If the locking transaction is running, what we do depends on
    5482             :          * whether the lock modes conflict: if they do, then we must wait for
    5483             :          * it to finish; otherwise we can fall through to lock this tuple
    5484             :          * version without waiting.
    5485             :          */
    5486          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5487          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5488             :         {
    5489          16 :             *needwait = true;
    5490             :         }
    5491             : 
    5492             :         /*
    5493             :          * If we set needwait above, then this value doesn't matter;
    5494             :          * otherwise, this value signals to caller that it's okay to proceed.
    5495             :          */
    5496          32 :         return TM_Ok;
    5497             :     }
    5498          32 :     else if (TransactionIdDidAbort(xid))
    5499           6 :         return TM_Ok;
    5500          26 :     else if (TransactionIdDidCommit(xid))
    5501             :     {
    5502             :         /*
    5503             :          * The other transaction committed.  If it was only a locker, then the
    5504             :          * lock is completely gone now and we can return success; but if it
    5505             :          * was an update, then what we do depends on whether the two lock
    5506             :          * modes conflict.  If they conflict, then we must report error to
    5507             :          * caller. But if they don't, we can fall through to allow the current
    5508             :          * transaction to lock the tuple.
    5509             :          *
    5510             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5511             :          * a transaction ends, all its locks are gone and meaningless, and
    5512             :          * thus we can ignore them; whereas its updates persist.  In the
    5513             :          * TransactionIdIsInProgress case, above, we don't need to check
    5514             :          * because we know the lock is still "alive" and thus a conflict needs
    5515             :          * always be checked.
    5516             :          */
    5517          26 :         if (!ISUPDATE_from_mxstatus(status))
    5518           8 :             return TM_Ok;
    5519             : 
    5520          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5521          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5522             :         {
    5523             :             /* bummer */
    5524          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5525          12 :                 return TM_Updated;
    5526             :             else
    5527           4 :                 return TM_Deleted;
    5528             :         }
    5529             : 
    5530           2 :         return TM_Ok;
    5531             :     }
    5532             : 
    5533             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5534           0 :     return TM_Ok;
    5535             : }
    5536             : 
    5537             : 
    5538             : /*
    5539             :  * Recursive part of heap_lock_updated_tuple
    5540             :  *
    5541             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5542             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5543             :  * version as well.
    5544             :  */
    5545             : static TM_Result
    5546         162 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5547             :                             LockTupleMode mode)
    5548             : {
    5549             :     TM_Result   result;
    5550             :     ItemPointerData tupid;
    5551             :     HeapTupleData mytup;
    5552             :     Buffer      buf;
    5553             :     uint16      new_infomask,
    5554             :                 new_infomask2,
    5555             :                 old_infomask,
    5556             :                 old_infomask2;
    5557             :     TransactionId xmax,
    5558             :                 new_xmax;
    5559         162 :     TransactionId priorXmax = InvalidTransactionId;
    5560         162 :     bool        cleared_all_frozen = false;
    5561             :     bool        pinned_desired_page;
    5562         162 :     Buffer      vmbuffer = InvalidBuffer;
    5563             :     BlockNumber block;
    5564             : 
    5565         162 :     ItemPointerCopy(tid, &tupid);
    5566             : 
    5567             :     for (;;)
    5568             :     {
    5569         168 :         new_infomask = 0;
    5570         168 :         new_xmax = InvalidTransactionId;
    5571         168 :         block = ItemPointerGetBlockNumber(&tupid);
    5572         168 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5573             : 
    5574         168 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5575             :         {
    5576             :             /*
    5577             :              * if we fail to find the updated version of the tuple, it's
    5578             :              * because it was vacuumed/pruned away after its creator
    5579             :              * transaction aborted.  So behave as if we got to the end of the
    5580             :              * chain, and there's no further tuple to lock: return success to
    5581             :              * caller.
    5582             :              */
    5583           0 :             result = TM_Ok;
    5584           0 :             goto out_unlocked;
    5585             :         }
    5586             : 
    5587         168 : l4:
    5588         184 :         CHECK_FOR_INTERRUPTS();
    5589             : 
    5590             :         /*
    5591             :          * Before locking the buffer, pin the visibility map page if it
    5592             :          * appears to be necessary.  Since we haven't got the lock yet,
    5593             :          * someone else might be in the middle of changing this, so we'll need
    5594             :          * to recheck after we have the lock.
    5595             :          */
    5596         184 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5597             :         {
    5598           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5599           0 :             pinned_desired_page = true;
    5600             :         }
    5601             :         else
    5602         184 :             pinned_desired_page = false;
    5603             : 
    5604         184 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5605             : 
    5606             :         /*
    5607             :          * If we didn't pin the visibility map page and the page has become
    5608             :          * all visible while we were busy locking the buffer, we'll have to
    5609             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5610             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5611             :          *
    5612             :          * Note: in some paths through this function, we will reach here
    5613             :          * holding a pin on a vm page that may or may not be the one matching
    5614             :          * this page.  If this page isn't all-visible, we won't use the vm
    5615             :          * page, but we hold onto such a pin till the end of the function.
    5616             :          */
    5617         184 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5618             :         {
    5619           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5620           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5621           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5622             :         }
    5623             : 
    5624             :         /*
    5625             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5626             :          * end of the chain, we're done, so return success.
    5627             :          */
    5628         190 :         if (TransactionIdIsValid(priorXmax) &&
    5629           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5630             :                                  priorXmax))
    5631             :         {
    5632           0 :             result = TM_Ok;
    5633           0 :             goto out_locked;
    5634             :         }
    5635             : 
    5636             :         /*
    5637             :          * Also check Xmin: if this tuple was created by an aborted
    5638             :          * (sub)transaction, then we already locked the last live one in the
    5639             :          * chain, thus we're done, so return success.
    5640             :          */
    5641         184 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5642             :         {
    5643          26 :             result = TM_Ok;
    5644          26 :             goto out_locked;
    5645             :         }
    5646             : 
    5647         158 :         old_infomask = mytup.t_data->t_infomask;
    5648         158 :         old_infomask2 = mytup.t_data->t_infomask2;
    5649         158 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5650             : 
    5651             :         /*
    5652             :          * If this tuple version has been updated or locked by some concurrent
    5653             :          * transaction(s), what we do depends on whether our lock mode
    5654             :          * conflicts with what those other transactions hold, and also on the
    5655             :          * status of them.
    5656             :          */
    5657         158 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5658             :         {
    5659             :             TransactionId rawxmax;
    5660             :             bool        needwait;
    5661             : 
    5662          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5663          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5664             :             {
    5665             :                 int         nmembers;
    5666             :                 int         i;
    5667             :                 MultiXactMember *members;
    5668             : 
    5669             :                 /*
    5670             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5671             :                  * applied to tuples after the first in an update chain.  Said
    5672             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5673             :                  * pg_upgraded, but that one was already locked by our caller,
    5674             :                  * not us; and any subsequent ones cannot be because our
    5675             :                  * caller must necessarily have obtained a snapshot later than
    5676             :                  * the pg_upgrade itself.
    5677             :                  */
    5678             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5679             : 
    5680           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5681           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5682           8 :                 for (i = 0; i < nmembers; i++)
    5683             :                 {
    5684           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5685           6 :                                                         members[i].xid,
    5686             :                                                         mode,
    5687             :                                                         &mytup,
    5688             :                                                         &needwait);
    5689             : 
    5690             :                     /*
    5691             :                      * If the tuple was already locked by ourselves in a
    5692             :                      * previous iteration of this (say heap_lock_tuple was
    5693             :                      * forced to restart the locking loop because of a change
    5694             :                      * in xmax), then we hold the lock already on this tuple
    5695             :                      * version and we don't need to do anything; and this is
    5696             :                      * not an error condition either.  We just need to skip
    5697             :                      * this tuple and continue locking the next version in the
    5698             :                      * update chain.
    5699             :                      */
    5700           6 :                     if (result == TM_SelfModified)
    5701             :                     {
    5702           0 :                         pfree(members);
    5703           0 :                         goto next;
    5704             :                     }
    5705             : 
    5706           6 :                     if (needwait)
    5707             :                     {
    5708           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5709           0 :                         XactLockTableWait(members[i].xid, rel,
    5710             :                                           &mytup.t_self,
    5711             :                                           XLTW_LockUpdated);
    5712           0 :                         pfree(members);
    5713           0 :                         goto l4;
    5714             :                     }
    5715           6 :                     if (result != TM_Ok)
    5716             :                     {
    5717           0 :                         pfree(members);
    5718           0 :                         goto out_locked;
    5719             :                     }
    5720             :                 }
    5721           2 :                 if (members)
    5722           2 :                     pfree(members);
    5723             :             }
    5724             :             else
    5725             :             {
    5726             :                 MultiXactStatus status;
    5727             : 
    5728             :                 /*
    5729             :                  * For a non-multi Xmax, we first need to compute the
    5730             :                  * corresponding MultiXactStatus by using the infomask bits.
    5731             :                  */
    5732          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5733             :                 {
    5734          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5735          20 :                         status = MultiXactStatusForKeyShare;
    5736           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5737           0 :                         status = MultiXactStatusForShare;
    5738           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5739             :                     {
    5740           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5741           0 :                             status = MultiXactStatusForUpdate;
    5742             :                         else
    5743           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5744             :                     }
    5745             :                     else
    5746             :                     {
    5747             :                         /*
    5748             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5749             :                          * as share-locked in the old cluster) shouldn't be
    5750             :                          * seen in the middle of an update chain.
    5751             :                          */
    5752           0 :                         elog(ERROR, "invalid lock status in tuple");
    5753             :                     }
    5754             :                 }
    5755             :                 else
    5756             :                 {
    5757             :                     /* it's an update, but which kind? */
    5758          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5759          28 :                         status = MultiXactStatusUpdate;
    5760             :                     else
    5761          10 :                         status = MultiXactStatusNoKeyUpdate;
    5762             :                 }
    5763             : 
    5764          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5765             :                                                     &mytup, &needwait);
    5766             : 
    5767             :                 /*
    5768             :                  * If the tuple was already locked by ourselves in a previous
    5769             :                  * iteration of this (say heap_lock_tuple was forced to
    5770             :                  * restart the locking loop because of a change in xmax), then
    5771             :                  * we hold the lock already on this tuple version and we don't
    5772             :                  * need to do anything; and this is not an error condition
    5773             :                  * either.  We just need to skip this tuple and continue
    5774             :                  * locking the next version in the update chain.
    5775             :                  */
    5776          58 :                 if (result == TM_SelfModified)
    5777           0 :                     goto next;
    5778             : 
    5779          58 :                 if (needwait)
    5780             :                 {
    5781          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5782          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5783             :                                       XLTW_LockUpdated);
    5784          16 :                     goto l4;
    5785             :                 }
    5786          42 :                 if (result != TM_Ok)
    5787             :                 {
    5788          16 :                     goto out_locked;
    5789             :                 }
    5790             :             }
    5791             :         }
    5792             : 
    5793             :         /* compute the new Xmax and infomask values for the tuple ... */
    5794         126 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5795             :                                   xid, mode, false,
    5796             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5797             : 
    5798         126 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5799           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5800             :                                 VISIBILITYMAP_ALL_FROZEN))
    5801           0 :             cleared_all_frozen = true;
    5802             : 
    5803         126 :         START_CRIT_SECTION();
    5804             : 
    5805             :         /* ... and set them */
    5806         126 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5807         126 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5808         126 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5809         126 :         mytup.t_data->t_infomask |= new_infomask;
    5810         126 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5811             : 
    5812         126 :         MarkBufferDirty(buf);
    5813             : 
    5814             :         /* XLOG stuff */
    5815         126 :         if (RelationNeedsWAL(rel))
    5816             :         {
    5817             :             xl_heap_lock_updated xlrec;
    5818             :             XLogRecPtr  recptr;
    5819         126 :             Page        page = BufferGetPage(buf);
    5820             : 
    5821         126 :             XLogBeginInsert();
    5822         126 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5823             : 
    5824         126 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5825         126 :             xlrec.xmax = new_xmax;
    5826         126 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5827         126 :             xlrec.flags =
    5828         126 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5829             : 
    5830         126 :             XLogRegisterData((char *) &xlrec, SizeOfHeapLockUpdated);
    5831             : 
    5832         126 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5833             : 
    5834         126 :             PageSetLSN(page, recptr);
    5835             :         }
    5836             : 
    5837         126 :         END_CRIT_SECTION();
    5838             : 
    5839         126 : next:
    5840             :         /* if we find the end of update chain, we're done. */
    5841         252 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    5842         252 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    5843         134 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    5844           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    5845             :         {
    5846         120 :             result = TM_Ok;
    5847         120 :             goto out_locked;
    5848             :         }
    5849             : 
    5850             :         /* tail recursion */
    5851           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    5852           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    5853           6 :         UnlockReleaseBuffer(buf);
    5854             :     }
    5855             : 
    5856             :     result = TM_Ok;
    5857             : 
    5858         162 : out_locked:
    5859         162 :     UnlockReleaseBuffer(buf);
    5860             : 
    5861         162 : out_unlocked:
    5862         162 :     if (vmbuffer != InvalidBuffer)
    5863           0 :         ReleaseBuffer(vmbuffer);
    5864             : 
    5865         162 :     return result;
    5866             : }
    5867             : 
    5868             : /*
    5869             :  * heap_lock_updated_tuple
    5870             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    5871             :  *      marks) on the updated versions.
    5872             :  *
    5873             :  * The initial tuple is assumed to be already locked.
    5874             :  *
    5875             :  * This function doesn't check visibility, it just unconditionally marks the
    5876             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    5877             :  * concurrently (or updated with the key being modified), sleep until the
    5878             :  * transaction doing it is finished.
    5879             :  *
    5880             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    5881             :  * when we have to wait for other transactions to release them, as opposed to
    5882             :  * what heap_lock_tuple does.  The reason is that having more than one
    5883             :  * transaction walking the chain is probably uncommon enough that risk of
    5884             :  * starvation is not likely: one of the preconditions for being here is that
    5885             :  * the snapshot in use predates the update that created this tuple (because we
    5886             :  * started at an earlier version of the tuple), but at the same time such a
    5887             :  * transaction cannot be using repeatable read or serializable isolation
    5888             :  * levels, because that would lead to a serializability failure.
    5889             :  */
    5890             : static TM_Result
    5891         180 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    5892             :                         TransactionId xid, LockTupleMode mode)
    5893             : {
    5894             :     /*
    5895             :      * If the tuple has not been updated, or has moved into another partition
    5896             :      * (effectively a delete) stop here.
    5897             :      */
    5898         180 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    5899         176 :         !ItemPointerEquals(&tuple->t_self, ctid))
    5900             :     {
    5901             :         /*
    5902             :          * If this is the first possibly-multixact-able operation in the
    5903             :          * current transaction, set my per-backend OldestMemberMXactId
    5904             :          * setting. We can be certain that the transaction will never become a
    5905             :          * member of any older MultiXactIds than that.  (We have to do this
    5906             :          * even if we end up just using our own TransactionId below, since
    5907             :          * some other backend could incorporate our XID into a MultiXact
    5908             :          * immediately afterwards.)
    5909             :          */
    5910         162 :         MultiXactIdSetOldestMember();
    5911             : 
    5912         162 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    5913             :     }
    5914             : 
    5915             :     /* nothing to lock */
    5916          18 :     return TM_Ok;
    5917             : }
    5918             : 
    5919             : /*
    5920             :  *  heap_finish_speculative - mark speculative insertion as successful
    5921             :  *
    5922             :  * To successfully finish a speculative insertion we have to clear speculative
    5923             :  * token from tuple.  To do so the t_ctid field, which will contain a
    5924             :  * speculative token value, is modified in place to point to the tuple itself,
    5925             :  * which is characteristic of a newly inserted ordinary tuple.
    5926             :  *
    5927             :  * NB: It is not ok to commit without either finishing or aborting a
    5928             :  * speculative insertion.  We could treat speculative tuples of committed
    5929             :  * transactions implicitly as completed, but then we would have to be prepared
    5930             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    5931             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    5932             :  * but clearing the token at completion isn't very expensive either.
    5933             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    5934             :  */
    5935             : void
    5936        4106 : heap_finish_speculative(Relation relation, ItemPointer tid)
    5937             : {
    5938             :     Buffer      buffer;
    5939             :     Page        page;
    5940             :     OffsetNumber offnum;
    5941        4106 :     ItemId      lp = NULL;
    5942             :     HeapTupleHeader htup;
    5943             : 
    5944        4106 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    5945        4106 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    5946        4106 :     page = (Page) BufferGetPage(buffer);
    5947             : 
    5948        4106 :     offnum = ItemPointerGetOffsetNumber(tid);
    5949        4106 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    5950        4106 :         lp = PageGetItemId(page, offnum);
    5951             : 
    5952        4106 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    5953           0 :         elog(ERROR, "invalid lp");
    5954             : 
    5955        4106 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    5956             : 
    5957             :     /* NO EREPORT(ERROR) from here till changes are logged */
    5958        4106 :     START_CRIT_SECTION();
    5959             : 
    5960             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    5961             : 
    5962        4106 :     MarkBufferDirty(buffer);
    5963             : 
    5964             :     /*
    5965             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    5966             :      * itself like it does on regular tuples.
    5967             :      */
    5968        4106 :     htup->t_ctid = *tid;
    5969             : 
    5970             :     /* XLOG stuff */
    5971        4106 :     if (RelationNeedsWAL(relation))
    5972             :     {
    5973             :         xl_heap_confirm xlrec;
    5974             :         XLogRecPtr  recptr;
    5975             : 
    5976        4094 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    5977             : 
    5978        4094 :         XLogBeginInsert();
    5979             : 
    5980             :         /* We want the same filtering on this as on a plain insert */
    5981        4094 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    5982             : 
    5983        4094 :         XLogRegisterData((char *) &xlrec, SizeOfHeapConfirm);
    5984        4094 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    5985             : 
    5986        4094 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    5987             : 
    5988        4094 :         PageSetLSN(page, recptr);
    5989             :     }
    5990             : 
    5991        4106 :     END_CRIT_SECTION();
    5992             : 
    5993        4106 :     UnlockReleaseBuffer(buffer);
    5994        4106 : }
    5995             : 
    5996             : /*
    5997             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    5998             :  *
    5999             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6000             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6001             :  * to all transactions, including our own.  In particular, it makes
    6002             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6003             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6004             :  * transaction to finish (it'll just wait for our speculative insertion to
    6005             :  * finish).
    6006             :  *
    6007             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6008             :  * that arise due to a mutual dependency that is not user visible.  By
    6009             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6010             :  * reordering lock acquisition in client code, because the implementation level
    6011             :  * lock acquisitions are not under the user's direct control.  If speculative
    6012             :  * inserters did not take this precaution, then under high concurrency they
    6013             :  * could deadlock with each other, which would not be acceptable.
    6014             :  *
    6015             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6016             :  * dedicated routine with stripped down requirements.  Note that this is also
    6017             :  * used to delete the TOAST tuples created during speculative insertion.
    6018             :  *
    6019             :  * This routine does not affect logical decoding as it only looks at
    6020             :  * confirmation records.
    6021             :  */
    6022             : void
    6023          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6024             : {
    6025          20 :     TransactionId xid = GetCurrentTransactionId();
    6026             :     ItemId      lp;
    6027             :     HeapTupleData tp;
    6028             :     Page        page;
    6029             :     BlockNumber block;
    6030             :     Buffer      buffer;
    6031             : 
    6032             :     Assert(ItemPointerIsValid(tid));
    6033             : 
    6034          20 :     block = ItemPointerGetBlockNumber(tid);
    6035          20 :     buffer = ReadBuffer(relation, block);
    6036          20 :     page = BufferGetPage(buffer);
    6037             : 
    6038          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6039             : 
    6040             :     /*
    6041             :      * Page can't be all visible, we just inserted into it, and are still
    6042             :      * running.
    6043             :      */
    6044             :     Assert(!PageIsAllVisible(page));
    6045             : 
    6046          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6047             :     Assert(ItemIdIsNormal(lp));
    6048             : 
    6049          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6050          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6051          20 :     tp.t_len = ItemIdGetLength(lp);
    6052          20 :     tp.t_self = *tid;
    6053             : 
    6054             :     /*
    6055             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6056             :      * inserted by us.
    6057             :      */
    6058          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6059           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6060          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6061           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6062             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6063             : 
    6064             :     /*
    6065             :      * No need to check for serializable conflicts here.  There is never a
    6066             :      * need for a combo CID, either.  No need to extract replica identity, or
    6067             :      * do anything special with infomask bits.
    6068             :      */
    6069             : 
    6070          20 :     START_CRIT_SECTION();
    6071             : 
    6072             :     /*
    6073             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6074             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6075             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6076             :      * that's safe against wraparound / being older than the table's
    6077             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6078             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6079             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6080             :      * TransactionXmin, so there's no race here).
    6081             :      */
    6082             :     Assert(TransactionIdIsValid(TransactionXmin));
    6083             :     {
    6084          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6085             :         TransactionId prune_xid;
    6086             : 
    6087          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6088           0 :             prune_xid = relfrozenxid;
    6089             :         else
    6090          20 :             prune_xid = TransactionXmin;
    6091          20 :         PageSetPrunable(page, prune_xid);
    6092             :     }
    6093             : 
    6094             :     /* store transaction information of xact deleting the tuple */
    6095          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6096          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6097             : 
    6098             :     /*
    6099             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6100             :      * tuple immediately invisible everyone.  (In particular, to any
    6101             :      * transactions waiting on the speculative token, woken up later.)
    6102             :      */
    6103          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6104             : 
    6105             :     /* Clear the speculative insertion token too */
    6106          20 :     tp.t_data->t_ctid = tp.t_self;
    6107             : 
    6108          20 :     MarkBufferDirty(buffer);
    6109             : 
    6110             :     /*
    6111             :      * XLOG stuff
    6112             :      *
    6113             :      * The WAL records generated here match heap_delete().  The same recovery
    6114             :      * routines are used.
    6115             :      */
    6116          20 :     if (RelationNeedsWAL(relation))
    6117             :     {
    6118             :         xl_heap_delete xlrec;
    6119             :         XLogRecPtr  recptr;
    6120             : 
    6121          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6122          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6123          20 :                                               tp.t_data->t_infomask2);
    6124          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6125          20 :         xlrec.xmax = xid;
    6126             : 
    6127          20 :         XLogBeginInsert();
    6128          20 :         XLogRegisterData((char *) &xlrec, SizeOfHeapDelete);
    6129          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6130             : 
    6131             :         /* No replica identity & replication origin logged */
    6132             : 
    6133          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6134             : 
    6135          20 :         PageSetLSN(page, recptr);
    6136             :     }
    6137             : 
    6138          20 :     END_CRIT_SECTION();
    6139             : 
    6140          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6141             : 
    6142          20 :     if (HeapTupleHasExternal(&tp))
    6143             :     {
    6144             :         Assert(!IsToastRelation(relation));
    6145           2 :         heap_toast_delete(relation, &tp, true);
    6146             :     }
    6147             : 
    6148             :     /*
    6149             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6150             :      * speculative insertion
    6151             :      */
    6152             : 
    6153             :     /* Now we can release the buffer */
    6154          20 :     ReleaseBuffer(buffer);
    6155             : 
    6156             :     /* count deletion, as we counted the insertion too */
    6157          20 :     pgstat_count_heap_delete(relation);
    6158          20 : }
    6159             : 
    6160             : /*
    6161             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6162             :  *
    6163             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6164             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6165             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6166             :  * and the caller must release that by calling
    6167             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6168             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6169             :  * transactions to end, and return false.
    6170             :  *
    6171             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6172             :  * DDL, this doesn't guarantee any particular predicate locking.
    6173             :  *
    6174             :  * One could modify this to return true for tuples with delete in progress,
    6175             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6176             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6177             :  * update.
    6178             :  *
    6179             :  * Readers of inplace-updated fields expect changes to those fields are
    6180             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6181             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6182             :  * return a lower datfrozenxid for the same database OID (lower in the
    6183             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6184             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6185             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6186             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6187             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6188             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6189             :  * committed tuple.)
    6190             :  *
    6191             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6192             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6193             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6194             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6195             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6196             :  * in one critical section or (b) accepting a chance of partial completion.
    6197             :  * Partial completion of a relfrozenxid update would have the weird
    6198             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6199             :  * move forward between vacuum_get_cutoffs() and finishing.
    6200             :  */
    6201             : bool
    6202      239666 : heap_inplace_lock(Relation relation,
    6203             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6204             :                   void (*release_callback) (void *), void *arg)
    6205             : {
    6206      239666 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6207             :     TM_Result   result;
    6208             :     bool        ret;
    6209             : 
    6210             : #ifdef USE_ASSERT_CHECKING
    6211             :     if (RelationGetRelid(relation) == RelationRelationId)
    6212             :         check_inplace_rel_lock(oldtup_ptr);
    6213             : #endif
    6214             : 
    6215             :     Assert(BufferIsValid(buffer));
    6216             : 
    6217             :     /*
    6218             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6219             :      * version without our own inplace changes or inplace changes other
    6220             :      * sessions complete while we wait for locks, inplace update mustn't
    6221             :      * change catcache lookup keys.  But we aren't bothering with index
    6222             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6223             :      * would be too late, because this might reach a
    6224             :      * CatalogCacheInitializeCache() that locks "buffer".
    6225             :      */
    6226      239666 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6227             : 
    6228      239666 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6229      239666 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6230             : 
    6231             :     /*----------
    6232             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6233             :      *
    6234             :      * - wait unconditionally
    6235             :      * - already locked tuple above, since inplace needs that unconditionally
    6236             :      * - don't recheck header after wait: simpler to defer to next iteration
    6237             :      * - don't try to continue even if the updater aborts: likewise
    6238             :      * - no crosscheck
    6239             :      */
    6240      239666 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6241             :                                       buffer);
    6242             : 
    6243      239666 :     if (result == TM_Invisible)
    6244             :     {
    6245             :         /* no known way this can happen */
    6246           0 :         ereport(ERROR,
    6247             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6248             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6249             :     }
    6250      239666 :     else if (result == TM_SelfModified)
    6251             :     {
    6252             :         /*
    6253             :          * CREATE INDEX might reach this if an expression is silly enough to
    6254             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6255             :          * statements might get here after a heap_update() of the same row, in
    6256             :          * the absence of an intervening CommandCounterIncrement().
    6257             :          */
    6258           0 :         ereport(ERROR,
    6259             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6260             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6261             :     }
    6262      239666 :     else if (result == TM_BeingModified)
    6263             :     {
    6264             :         TransactionId xwait;
    6265             :         uint16      infomask;
    6266             : 
    6267          28 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6268          28 :         infomask = oldtup.t_data->t_infomask;
    6269             : 
    6270          28 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6271             :         {
    6272          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6273          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6274             :             int         remain;
    6275             : 
    6276          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6277             :                                         lockmode, NULL))
    6278             :             {
    6279           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6280           4 :                 release_callback(arg);
    6281           4 :                 ret = false;
    6282           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6283             :                                 relation, &oldtup.t_self, XLTW_Update,
    6284             :                                 &remain);
    6285             :             }
    6286             :             else
    6287           6 :                 ret = true;
    6288             :         }
    6289          18 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6290           2 :             ret = true;
    6291          16 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6292           2 :             ret = true;
    6293             :         else
    6294             :         {
    6295          14 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6296          14 :             release_callback(arg);
    6297          14 :             ret = false;
    6298          14 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6299             :                               XLTW_Update);
    6300             :         }
    6301             :     }
    6302             :     else
    6303             :     {
    6304      239638 :         ret = (result == TM_Ok);
    6305      239638 :         if (!ret)
    6306             :         {
    6307          10 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6308          10 :             release_callback(arg);
    6309             :         }
    6310             :     }
    6311             : 
    6312             :     /*
    6313             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6314             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6315             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6316             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6317             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6318             :      * don't bother optimizing that.
    6319             :      */
    6320      239666 :     if (!ret)
    6321             :     {
    6322          28 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6323          28 :         ForgetInplace_Inval();
    6324          28 :         InvalidateCatalogSnapshot();
    6325             :     }
    6326      239666 :     return ret;
    6327             : }
    6328             : 
    6329             : /*
    6330             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6331             :  *
    6332             :  * The tuple cannot change size, and therefore its header fields and null
    6333             :  * bitmap (if any) don't change either.
    6334             :  *
    6335             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6336             :  */
    6337             : void
    6338      146968 : heap_inplace_update_and_unlock(Relation relation,
    6339             :                                HeapTuple oldtup, HeapTuple tuple,
    6340             :                                Buffer buffer)
    6341             : {
    6342      146968 :     HeapTupleHeader htup = oldtup->t_data;
    6343             :     uint32      oldlen;
    6344             :     uint32      newlen;
    6345             :     char       *dst;
    6346             :     char       *src;
    6347      146968 :     int         nmsgs = 0;
    6348      146968 :     SharedInvalidationMessage *invalMessages = NULL;
    6349      146968 :     bool        RelcacheInitFileInval = false;
    6350             : 
    6351             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6352      146968 :     oldlen = oldtup->t_len - htup->t_hoff;
    6353      146968 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6354      146968 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6355           0 :         elog(ERROR, "wrong tuple length");
    6356             : 
    6357      146968 :     dst = (char *) htup + htup->t_hoff;
    6358      146968 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6359             : 
    6360             :     /* Like RecordTransactionCommit(), log only if needed */
    6361      146968 :     if (XLogStandbyInfoActive())
    6362       90834 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6363             :                                                &RelcacheInitFileInval);
    6364             : 
    6365             :     /*
    6366             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6367             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6368             :      * in advance, if we checkpoint and then crash between inplace
    6369             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6370             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6371             :      * neglect to PANIC on EIO.
    6372             :      */
    6373      146968 :     PreInplace_Inval();
    6374             : 
    6375             :     /*----------
    6376             :      * NO EREPORT(ERROR) from here till changes are complete
    6377             :      *
    6378             :      * Our buffer lock won't stop a reader having already pinned and checked
    6379             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6380             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6381             :      * checkpoint delay makes that acceptable.  With the usual order of
    6382             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6383             :      * datfrozenxid to overtake relfrozenxid:
    6384             :      *
    6385             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6386             :      * ["R" is a VACUUM tbl]
    6387             :      * D: vac_update_datfrozenid() -> systable_beginscan(pg_class)
    6388             :      * D: systable_getnext() returns pg_class tuple of tbl
    6389             :      * R: memcpy() into pg_class tuple of tbl
    6390             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6391             :      * [crash]
    6392             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6393             :      *
    6394             :      * Like in MarkBufferDirtyHint() subroutine XLogSaveBufferForHint(), copy
    6395             :      * the buffer to the stack before logging.  Here, that facilitates a FPI
    6396             :      * of the post-mutation block before we accept other sessions seeing it.
    6397             :      */
    6398             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6399      146968 :     START_CRIT_SECTION();
    6400      146968 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6401             : 
    6402             :     /* XLOG stuff */
    6403      146968 :     if (RelationNeedsWAL(relation))
    6404             :     {
    6405             :         xl_heap_inplace xlrec;
    6406             :         PGAlignedBlock copied_buffer;
    6407      146952 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6408      146952 :         Page        page = BufferGetPage(buffer);
    6409      146952 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6410      146952 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6411             :         uintptr_t   dst_offset_in_block;
    6412             :         RelFileLocator rlocator;
    6413             :         ForkNumber  forkno;
    6414             :         BlockNumber blkno;
    6415             :         XLogRecPtr  recptr;
    6416             : 
    6417      146952 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6418      146952 :         xlrec.dbId = MyDatabaseId;
    6419      146952 :         xlrec.tsId = MyDatabaseTableSpace;
    6420      146952 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6421      146952 :         xlrec.nmsgs = nmsgs;
    6422             : 
    6423      146952 :         XLogBeginInsert();
    6424      146952 :         XLogRegisterData((char *) &xlrec, MinSizeOfHeapInplace);
    6425      146952 :         if (nmsgs != 0)
    6426       64194 :             XLogRegisterData((char *) invalMessages,
    6427             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6428             : 
    6429             :         /* register block matching what buffer will look like after changes */
    6430      146952 :         memcpy(copied_buffer.data, origdata, lower);
    6431      146952 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6432      146952 :         dst_offset_in_block = dst - origdata;
    6433      146952 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6434      146952 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6435             :         Assert(forkno == MAIN_FORKNUM);
    6436      146952 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6437             :                           REGBUF_STANDARD);
    6438      146952 :         XLogRegisterBufData(0, src, newlen);
    6439             : 
    6440             :         /* inplace updates aren't decoded atm, don't log the origin */
    6441             : 
    6442      146952 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6443             : 
    6444      146952 :         PageSetLSN(page, recptr);
    6445             :     }
    6446             : 
    6447      146968 :     memcpy(dst, src, newlen);
    6448             : 
    6449      146968 :     MarkBufferDirty(buffer);
    6450             : 
    6451      146968 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6452             : 
    6453             :     /*
    6454             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6455             :      * do this before UnlockTuple().
    6456             :      *
    6457             :      * If we're mutating a tuple visible only to this transaction, there's an
    6458             :      * equivalent transactional inval from the action that created the tuple,
    6459             :      * and this inval is superfluous.
    6460             :      */
    6461      146968 :     AtInplace_Inval();
    6462             : 
    6463      146968 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6464      146968 :     END_CRIT_SECTION();
    6465      146968 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6466             : 
    6467      146968 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6468             : 
    6469             :     /*
    6470             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6471             :      * is the only one known to be necessary.  To reduce risk from the
    6472             :      * transition to immediate invalidation, continue sending a transactional
    6473             :      * invalidation like we've long done.  Third-party code might rely on it.
    6474             :      */
    6475      146968 :     if (!IsBootstrapProcessingMode())
    6476      120328 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6477      146968 : }
    6478             : 
    6479             : /*
    6480             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6481             :  */
    6482             : void
    6483       92670 : heap_inplace_unlock(Relation relation,
    6484             :                     HeapTuple oldtup, Buffer buffer)
    6485             : {
    6486       92670 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6487       92670 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6488       92670 :     ForgetInplace_Inval();
    6489       92670 : }
    6490             : 
    6491             : #define     FRM_NOOP                0x0001
    6492             : #define     FRM_INVALIDATE_XMAX     0x0002
    6493             : #define     FRM_RETURN_IS_XID       0x0004
    6494             : #define     FRM_RETURN_IS_MULTI     0x0008
    6495             : #define     FRM_MARK_COMMITTED      0x0010
    6496             : 
    6497             : /*
    6498             :  * FreezeMultiXactId
    6499             :  *      Determine what to do during freezing when a tuple is marked by a
    6500             :  *      MultiXactId.
    6501             :  *
    6502             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6503             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6504             :  *
    6505             :  * Possible values that we can set in "flags":
    6506             :  * FRM_NOOP
    6507             :  *      don't do anything -- keep existing Xmax
    6508             :  * FRM_INVALIDATE_XMAX
    6509             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6510             :  * FRM_RETURN_IS_XID
    6511             :  *      The Xid return value is a single update Xid to set as xmax.
    6512             :  * FRM_MARK_COMMITTED
    6513             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6514             :  * FRM_RETURN_IS_MULTI
    6515             :  *      The return value is a new MultiXactId to set as new Xmax.
    6516             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6517             :  *
    6518             :  * Caller delegates control of page freezing to us.  In practice we always
    6519             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6520             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6521             :  * can never be left behind.  We freely choose when and how to process each
    6522             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6523             :  *
    6524             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6525             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6526             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6527             :  * misses through eager processing.
    6528             :  *
    6529             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6530             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6531             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6532             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6533             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6534             :  * its own special risks.
    6535             :  *
    6536             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6537             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6538             :  *
    6539             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6540             :  * have already forced page-level freezing, since that might incur the same
    6541             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6542             :  */
    6543             : static TransactionId
    6544          14 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6545             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6546             :                   HeapPageFreeze *pagefrz)
    6547             : {
    6548             :     TransactionId newxmax;
    6549             :     MultiXactMember *members;
    6550             :     int         nmembers;
    6551             :     bool        need_replace;
    6552             :     int         nnewmembers;
    6553             :     MultiXactMember *newmembers;
    6554             :     bool        has_lockers;
    6555             :     TransactionId update_xid;
    6556             :     bool        update_committed;
    6557             :     TransactionId FreezePageRelfrozenXid;
    6558             : 
    6559          14 :     *flags = 0;
    6560             : 
    6561             :     /* We should only be called in Multis */
    6562             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6563             : 
    6564          14 :     if (!MultiXactIdIsValid(multi) ||
    6565          14 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6566             :     {
    6567           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6568           0 :         pagefrz->freeze_required = true;
    6569           0 :         return InvalidTransactionId;
    6570             :     }
    6571          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6572           0 :         ereport(ERROR,
    6573             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6574             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6575             :                                  multi, cutoffs->relminmxid)));
    6576          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6577             :     {
    6578             :         TransactionId update_xact;
    6579             : 
    6580             :         /*
    6581             :          * This old multi cannot possibly have members still running, but
    6582             :          * verify just in case.  If it was a locker only, it can be removed
    6583             :          * without any further consideration; but if it contained an update,
    6584             :          * we might need to preserve it.
    6585             :          */
    6586          10 :         if (MultiXactIdIsRunning(multi,
    6587          10 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6588           0 :             ereport(ERROR,
    6589             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6590             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6591             :                                      multi, cutoffs->OldestMxact)));
    6592             : 
    6593          10 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6594             :         {
    6595          10 :             *flags |= FRM_INVALIDATE_XMAX;
    6596          10 :             pagefrz->freeze_required = true;
    6597          10 :             return InvalidTransactionId;
    6598             :         }
    6599             : 
    6600             :         /* replace multi with single XID for its updater? */
    6601           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6602           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6603           0 :             ereport(ERROR,
    6604             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6605             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6606             :                                      multi, update_xact,
    6607             :                                      cutoffs->relfrozenxid)));
    6608           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6609             :         {
    6610             :             /*
    6611             :              * Updater XID has to have aborted (otherwise the tuple would have
    6612             :              * been pruned away instead, since updater XID is < OldestXmin).
    6613             :              * Just remove xmax.
    6614             :              */
    6615           0 :             if (TransactionIdDidCommit(update_xact))
    6616           0 :                 ereport(ERROR,
    6617             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6618             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6619             :                                          multi, update_xact,
    6620             :                                          cutoffs->OldestXmin)));
    6621           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6622           0 :             pagefrz->freeze_required = true;
    6623           0 :             return InvalidTransactionId;
    6624             :         }
    6625             : 
    6626             :         /* Have to keep updater XID as new xmax */
    6627           0 :         *flags |= FRM_RETURN_IS_XID;
    6628           0 :         pagefrz->freeze_required = true;
    6629           0 :         return update_xact;
    6630             :     }
    6631             : 
    6632             :     /*
    6633             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6634             :      * need to walk the whole members array to figure out what to do, if
    6635             :      * anything.
    6636             :      */
    6637             :     nmembers =
    6638           4 :         GetMultiXactIdMembers(multi, &members, false,
    6639           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6640           4 :     if (nmembers <= 0)
    6641             :     {
    6642             :         /* Nothing worth keeping */
    6643           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6644           0 :         pagefrz->freeze_required = true;
    6645           0 :         return InvalidTransactionId;
    6646             :     }
    6647             : 
    6648             :     /*
    6649             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6650             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6651             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6652             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6653             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6654             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6655             :      * required to make it safe to leave xmax undisturbed, independent of
    6656             :      * whether or not page freezing is triggered somewhere else.
    6657             :      *
    6658             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6659             :      * which obviates the need to maintain either set of trackers, anywhere.
    6660             :      * Every other case will reliably execute a freeze plan for xmax that
    6661             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6662             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6663             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6664             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6665             :      */
    6666           4 :     need_replace = false;
    6667           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6668           8 :     for (int i = 0; i < nmembers; i++)
    6669             :     {
    6670           6 :         TransactionId xid = members[i].xid;
    6671             : 
    6672             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6673             : 
    6674           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6675             :         {
    6676             :             /* Can't violate the FreezeLimit postcondition */
    6677           2 :             need_replace = true;
    6678           2 :             break;
    6679             :         }
    6680           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6681           0 :             FreezePageRelfrozenXid = xid;
    6682             :     }
    6683             : 
    6684             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6685           4 :     if (!need_replace)
    6686           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6687             : 
    6688           4 :     if (!need_replace)
    6689             :     {
    6690             :         /*
    6691             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6692             :          * both together to make it safe to retain this particular multi after
    6693             :          * freezing its page
    6694             :          */
    6695           2 :         *flags |= FRM_NOOP;
    6696           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6697           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6698           0 :             pagefrz->FreezePageRelminMxid = multi;
    6699           2 :         pfree(members);
    6700           2 :         return multi;
    6701             :     }
    6702             : 
    6703             :     /*
    6704             :      * Do a more thorough second pass over the multi to figure out which
    6705             :      * member XIDs actually need to be kept.  Checking the precise status of
    6706             :      * individual members might even show that we don't need to keep anything.
    6707             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6708             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6709             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6710             :      */
    6711           2 :     nnewmembers = 0;
    6712           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6713           2 :     has_lockers = false;
    6714           2 :     update_xid = InvalidTransactionId;
    6715           2 :     update_committed = false;
    6716             : 
    6717             :     /*
    6718             :      * Determine whether to keep each member xid, or to ignore it instead
    6719             :      */
    6720           6 :     for (int i = 0; i < nmembers; i++)
    6721             :     {
    6722           4 :         TransactionId xid = members[i].xid;
    6723           4 :         MultiXactStatus mstatus = members[i].status;
    6724             : 
    6725             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6726             : 
    6727           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6728             :         {
    6729             :             /*
    6730             :              * Locker XID (not updater XID).  We only keep lockers that are
    6731             :              * still running.
    6732             :              */
    6733           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6734           4 :                 TransactionIdIsInProgress(xid))
    6735             :             {
    6736           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6737           0 :                     ereport(ERROR,
    6738             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6739             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6740             :                                              multi, xid,
    6741             :                                              cutoffs->OldestXmin)));
    6742           2 :                 newmembers[nnewmembers++] = members[i];
    6743           2 :                 has_lockers = true;
    6744             :             }
    6745             : 
    6746           4 :             continue;
    6747             :         }
    6748             : 
    6749             :         /*
    6750             :          * Updater XID (not locker XID).  Should we keep it?
    6751             :          *
    6752             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6753             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6754             :          * the updater XID aborted.  If the updater transaction is known
    6755             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6756             :          *
    6757             :          * In any case the Multi should never contain two updaters, whatever
    6758             :          * their individual commit status.  Check for that first, in passing.
    6759             :          */
    6760           0 :         if (TransactionIdIsValid(update_xid))
    6761           0 :             ereport(ERROR,
    6762             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6763             :                      errmsg_internal("multixact %u has two or more updating members",
    6764             :                                      multi),
    6765             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6766             :                                         update_xid, xid)));
    6767             : 
    6768             :         /*
    6769             :          * As with all tuple visibility routines, it's critical to test
    6770             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6771             :          * race conditions explained in detail in heapam_visibility.c.
    6772             :          */
    6773           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6774           0 :             TransactionIdIsInProgress(xid))
    6775           0 :             update_xid = xid;
    6776           0 :         else if (TransactionIdDidCommit(xid))
    6777             :         {
    6778             :             /*
    6779             :              * The transaction committed, so we can tell caller to set
    6780             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6781             :              * transaction is not running.)
    6782             :              */
    6783           0 :             update_committed = true;
    6784           0 :             update_xid = xid;
    6785             :         }
    6786             :         else
    6787             :         {
    6788             :             /*
    6789             :              * Not in progress, not committed -- must be aborted or crashed;
    6790             :              * we can ignore it.
    6791             :              */
    6792           0 :             continue;
    6793             :         }
    6794             : 
    6795             :         /*
    6796             :          * We determined that updater must be kept -- add it to pending new
    6797             :          * members list
    6798             :          */
    6799           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6800           0 :             ereport(ERROR,
    6801             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6802             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6803             :                                      multi, xid, cutoffs->OldestXmin)));
    6804           0 :         newmembers[nnewmembers++] = members[i];
    6805             :     }
    6806             : 
    6807           2 :     pfree(members);
    6808             : 
    6809             :     /*
    6810             :      * Determine what to do with caller's multi based on information gathered
    6811             :      * during our second pass
    6812             :      */
    6813           2 :     if (nnewmembers == 0)
    6814             :     {
    6815             :         /* Nothing worth keeping */
    6816           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6817           0 :         newxmax = InvalidTransactionId;
    6818             :     }
    6819           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6820             :     {
    6821             :         /*
    6822             :          * If there's a single member and it's an update, pass it back alone
    6823             :          * without creating a new Multi.  (XXX we could do this when there's a
    6824             :          * single remaining locker, too, but that would complicate the API too
    6825             :          * much; moreover, the case with the single updater is more
    6826             :          * interesting, because those are longer-lived.)
    6827             :          */
    6828             :         Assert(nnewmembers == 1);
    6829           0 :         *flags |= FRM_RETURN_IS_XID;
    6830           0 :         if (update_committed)
    6831           0 :             *flags |= FRM_MARK_COMMITTED;
    6832           0 :         newxmax = update_xid;
    6833             :     }
    6834             :     else
    6835             :     {
    6836             :         /*
    6837             :          * Create a new multixact with the surviving members of the previous
    6838             :          * one, to set as new Xmax in the tuple
    6839             :          */
    6840           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    6841           2 :         *flags |= FRM_RETURN_IS_MULTI;
    6842             :     }
    6843             : 
    6844           2 :     pfree(newmembers);
    6845             : 
    6846           2 :     pagefrz->freeze_required = true;
    6847           2 :     return newxmax;
    6848             : }
    6849             : 
    6850             : /*
    6851             :  * heap_prepare_freeze_tuple
    6852             :  *
    6853             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    6854             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    6855             :  * setup enough state (in the *frz output argument) to enable caller to
    6856             :  * process this tuple as part of freezing its page, and return true.  Return
    6857             :  * false if nothing can be changed about the tuple right now.
    6858             :  *
    6859             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    6860             :  * caller executes returned freeze plan (or if the tuple was already totally
    6861             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    6862             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    6863             :  *
    6864             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    6865             :  * tuple that we returned true for, and then execute freezing.  Caller must
    6866             :  * initialize pagefrz fields for page as a whole before first call here for
    6867             :  * each heap page.
    6868             :  *
    6869             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    6870             :  * We'll often prepare freeze plans for a page that caller just discards.
    6871             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    6872             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    6873             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    6874             :  * that VACUUM always follows that rule.
    6875             :  *
    6876             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    6877             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    6878             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    6879             :  * and it's convenient to make that happen by piggy-backing it on the "force
    6880             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    6881             :  * because it is expensive right now (though only when it's still possible to
    6882             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    6883             :  *
    6884             :  * It is assumed that the caller has checked the tuple with
    6885             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    6886             :  * (else we should be removing the tuple, not freezing it).
    6887             :  *
    6888             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    6889             :  * It will be set as tuple's new xmax when our *frz output is processed within
    6890             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    6891             :  * then caller had better have an exclusive lock on it already.
    6892             :  */
    6893             : bool
    6894    19792296 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    6895             :                           const struct VacuumCutoffs *cutoffs,
    6896             :                           HeapPageFreeze *pagefrz,
    6897             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    6898             : {
    6899    19792296 :     bool        xmin_already_frozen = false,
    6900    19792296 :                 xmax_already_frozen = false;
    6901    19792296 :     bool        freeze_xmin = false,
    6902    19792296 :                 replace_xvac = false,
    6903    19792296 :                 replace_xmax = false,
    6904    19792296 :                 freeze_xmax = false;
    6905             :     TransactionId xid;
    6906             : 
    6907    19792296 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    6908    19792296 :     frz->t_infomask2 = tuple->t_infomask2;
    6909    19792296 :     frz->t_infomask = tuple->t_infomask;
    6910    19792296 :     frz->frzflags = 0;
    6911    19792296 :     frz->checkflags = 0;
    6912             : 
    6913             :     /*
    6914             :      * Process xmin, while keeping track of whether it's already frozen, or
    6915             :      * will become frozen iff our freeze plan is executed by caller (could be
    6916             :      * neither).
    6917             :      */
    6918    19792296 :     xid = HeapTupleHeaderGetXmin(tuple);
    6919    19792296 :     if (!TransactionIdIsNormal(xid))
    6920    15209686 :         xmin_already_frozen = true;
    6921             :     else
    6922             :     {
    6923     4582610 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    6924           0 :             ereport(ERROR,
    6925             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6926             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    6927             :                                      xid, cutoffs->relfrozenxid)));
    6928             : 
    6929             :         /* Will set freeze_xmin flags in freeze plan below */
    6930     4582610 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    6931             : 
    6932             :         /* Verify that xmin committed if and when freeze plan is executed */
    6933     4582610 :         if (freeze_xmin)
    6934     3605194 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    6935             :     }
    6936             : 
    6937             :     /*
    6938             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    6939             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    6940             :      */
    6941    19792296 :     xid = HeapTupleHeaderGetXvac(tuple);
    6942    19792296 :     if (TransactionIdIsNormal(xid))
    6943             :     {
    6944             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    6945             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    6946             : 
    6947             :         /*
    6948             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    6949             :          * tracking to ignore xvac.
    6950             :          */
    6951           0 :         replace_xvac = pagefrz->freeze_required = true;
    6952             : 
    6953             :         /* Will set replace_xvac flags in freeze plan below */
    6954             :     }
    6955             : 
    6956             :     /* Now process xmax */
    6957    19792296 :     xid = frz->xmax;
    6958    19792296 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    6959             :     {
    6960             :         /* Raw xmax is a MultiXactId */
    6961             :         TransactionId newxmax;
    6962             :         uint16      flags;
    6963             : 
    6964             :         /*
    6965             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    6966             :          * process xmax by replacing it (in the "replace_xmax" path), or
    6967             :          * perform no-op xmax processing.  The only constraint is that the
    6968             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    6969             :          */
    6970          14 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    6971             :                                     &flags, pagefrz);
    6972             : 
    6973          14 :         if (flags & FRM_NOOP)
    6974             :         {
    6975             :             /*
    6976             :              * xmax is a MultiXactId, and nothing about it changes for now.
    6977             :              * This is the only case where 'freeze_required' won't have been
    6978             :              * set for us by FreezeMultiXactId, as well as the only case where
    6979             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    6980             :              *
    6981             :              * This is a no-op, but the call to FreezeMultiXactId might have
    6982             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    6983             :              * for us (the "freeze page" variants, specifically).  That'll
    6984             :              * make it safe for our caller to freeze the page later on, while
    6985             :              * leaving this particular xmax undisturbed.
    6986             :              *
    6987             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    6988             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    6989             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    6990             :              * will take place below if 'freeze_required' isn't set already.
    6991             :              * (This repeats work from FreezeMultiXactId, but allows "no
    6992             :              * freeze" tracker maintenance to happen in only one place.)
    6993             :              */
    6994             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    6995             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    6996             :         }
    6997          12 :         else if (flags & FRM_RETURN_IS_XID)
    6998             :         {
    6999             :             /*
    7000             :              * xmax will become an updater Xid (original MultiXact's updater
    7001             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7002             :              */
    7003             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7004             : 
    7005             :             /*
    7006             :              * NB -- some of these transformations are only valid because we
    7007             :              * know the return Xid is a tuple updater (i.e. not merely a
    7008             :              * locker.) Also note that the only reason we don't explicitly
    7009             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7010             :              * t_infomask2 rather than t_infomask.
    7011             :              */
    7012           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7013           0 :             frz->xmax = newxmax;
    7014           0 :             if (flags & FRM_MARK_COMMITTED)
    7015           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7016           0 :             replace_xmax = true;
    7017             :         }
    7018          12 :         else if (flags & FRM_RETURN_IS_MULTI)
    7019             :         {
    7020             :             uint16      newbits;
    7021             :             uint16      newbits2;
    7022             : 
    7023             :             /*
    7024             :              * xmax is an old MultiXactId that we have to replace with a new
    7025             :              * MultiXactId, to carry forward two or more original member XIDs.
    7026             :              */
    7027             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7028             : 
    7029             :             /*
    7030             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7031             :              * here; that routine initializes the masks to all zeroes, which
    7032             :              * would lose other bits we need.  Doing it this way ensures all
    7033             :              * unrelated bits remain untouched.
    7034             :              */
    7035           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7036           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7037           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7038           2 :             frz->t_infomask |= newbits;
    7039           2 :             frz->t_infomask2 |= newbits2;
    7040           2 :             frz->xmax = newxmax;
    7041           2 :             replace_xmax = true;
    7042             :         }
    7043             :         else
    7044             :         {
    7045             :             /*
    7046             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7047             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7048             :              */
    7049             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7050             :             Assert(!TransactionIdIsValid(newxmax));
    7051             : 
    7052             :             /* Will set freeze_xmax flags in freeze plan below */
    7053          10 :             freeze_xmax = true;
    7054             :         }
    7055             : 
    7056             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7057             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7058             :     }
    7059    19792282 :     else if (TransactionIdIsNormal(xid))
    7060             :     {
    7061             :         /* Raw xmax is normal XID */
    7062     5156500 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7063           0 :             ereport(ERROR,
    7064             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7065             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7066             :                                      xid, cutoffs->relfrozenxid)));
    7067             : 
    7068             :         /* Will set freeze_xmax flags in freeze plan below */
    7069     5156500 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7070             : 
    7071             :         /*
    7072             :          * Verify that xmax aborted if and when freeze plan is executed,
    7073             :          * provided it's from an update. (A lock-only xmax can be removed
    7074             :          * independent of this, since the lock is released at xact end.)
    7075             :          */
    7076     5156500 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7077         410 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7078             :     }
    7079    14635782 :     else if (!TransactionIdIsValid(xid))
    7080             :     {
    7081             :         /* Raw xmax is InvalidTransactionId XID */
    7082             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7083    14635782 :         xmax_already_frozen = true;
    7084             :     }
    7085             :     else
    7086           0 :         ereport(ERROR,
    7087             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7088             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7089             :                                  xid, tuple->t_infomask)));
    7090             : 
    7091    19792296 :     if (freeze_xmin)
    7092             :     {
    7093             :         Assert(!xmin_already_frozen);
    7094             : 
    7095     3605194 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7096             :     }
    7097    19792296 :     if (replace_xvac)
    7098             :     {
    7099             :         /*
    7100             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7101             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7102             :          * transaction succeeded.
    7103             :          */
    7104             :         Assert(pagefrz->freeze_required);
    7105           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7106           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7107             :         else
    7108           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7109             :     }
    7110             :     if (replace_xmax)
    7111             :     {
    7112             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7113             :         Assert(pagefrz->freeze_required);
    7114             : 
    7115             :         /* Already set replace_xmax flags in freeze plan earlier */
    7116             :     }
    7117    19792296 :     if (freeze_xmax)
    7118             :     {
    7119             :         Assert(!xmax_already_frozen && !replace_xmax);
    7120             : 
    7121        1948 :         frz->xmax = InvalidTransactionId;
    7122             : 
    7123             :         /*
    7124             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7125             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7126             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7127             :          */
    7128        1948 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7129        1948 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7130        1948 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7131        1948 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7132             :     }
    7133             : 
    7134             :     /*
    7135             :      * Determine if this tuple is already totally frozen, or will become
    7136             :      * totally frozen (provided caller executes freeze plans for the page)
    7137             :      */
    7138    38605228 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7139    18812932 :                        (freeze_xmax || xmax_already_frozen));
    7140             : 
    7141    19792296 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7142             :                                        xmax_already_frozen))
    7143             :     {
    7144             :         /*
    7145             :          * So far no previous tuple from the page made freezing mandatory.
    7146             :          * Does this tuple force caller to freeze the entire page?
    7147             :          */
    7148     7353782 :         pagefrz->freeze_required =
    7149     7353782 :             heap_tuple_should_freeze(tuple, cutoffs,
    7150             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7151             :                                      &pagefrz->NoFreezePageRelminMxid);
    7152             :     }
    7153             : 
    7154             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7155    19792296 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7156             : }
    7157             : 
    7158             : /*
    7159             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7160             :  * plans.
    7161             :  *
    7162             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7163             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7164             :  * successive VACUUMs that each decide against freezing the same page.
    7165             :  */
    7166             : void
    7167       31970 : heap_pre_freeze_checks(Buffer buffer,
    7168             :                        HeapTupleFreeze *tuples, int ntuples)
    7169             : {
    7170       31970 :     Page        page = BufferGetPage(buffer);
    7171             : 
    7172     1372028 :     for (int i = 0; i < ntuples; i++)
    7173             :     {
    7174     1340058 :         HeapTupleFreeze *frz = tuples + i;
    7175     1340058 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7176             :         HeapTupleHeader htup;
    7177             : 
    7178     1340058 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7179             : 
    7180             :         /* Deliberately avoid relying on tuple hint bits here */
    7181     1340058 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7182             :         {
    7183     1340056 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7184             : 
    7185             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7186     1340056 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7187           0 :                 ereport(ERROR,
    7188             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7189             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7190             :                                          xmin)));
    7191             :         }
    7192             : 
    7193             :         /*
    7194             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7195             :          * left behind by transactions that were in progress during a crash,
    7196             :          * so we can only check that xmax didn't commit
    7197             :          */
    7198     1340058 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7199             :         {
    7200          78 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7201             : 
    7202             :             Assert(TransactionIdIsNormal(xmax));
    7203          78 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7204           0 :                 ereport(ERROR,
    7205             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7206             :                          errmsg_internal("cannot freeze committed xmax %u",
    7207             :                                          xmax)));
    7208             :         }
    7209             :     }
    7210       31970 : }
    7211             : 
    7212             : /*
    7213             :  * Helper which executes freezing of one or more heap tuples on a page on
    7214             :  * behalf of caller.  Caller passes an array of tuple plans from
    7215             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7216             :  * Must be called in a critical section that also marks the buffer dirty and,
    7217             :  * if needed, emits WAL.
    7218             :  */
    7219             : void
    7220       31970 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7221             : {
    7222       31970 :     Page        page = BufferGetPage(buffer);
    7223             : 
    7224     1372028 :     for (int i = 0; i < ntuples; i++)
    7225             :     {
    7226     1340058 :         HeapTupleFreeze *frz = tuples + i;
    7227     1340058 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7228             :         HeapTupleHeader htup;
    7229             : 
    7230     1340058 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7231     1340058 :         heap_execute_freeze_tuple(htup, frz);
    7232             :     }
    7233       31970 : }
    7234             : 
    7235             : /*
    7236             :  * heap_freeze_tuple
    7237             :  *      Freeze tuple in place, without WAL logging.
    7238             :  *
    7239             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7240             :  */
    7241             : bool
    7242      735484 : heap_freeze_tuple(HeapTupleHeader tuple,
    7243             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7244             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7245             : {
    7246             :     HeapTupleFreeze frz;
    7247             :     bool        do_freeze;
    7248             :     bool        totally_frozen;
    7249             :     struct VacuumCutoffs cutoffs;
    7250             :     HeapPageFreeze pagefrz;
    7251             : 
    7252      735484 :     cutoffs.relfrozenxid = relfrozenxid;
    7253      735484 :     cutoffs.relminmxid = relminmxid;
    7254      735484 :     cutoffs.OldestXmin = FreezeLimit;
    7255      735484 :     cutoffs.OldestMxact = MultiXactCutoff;
    7256      735484 :     cutoffs.FreezeLimit = FreezeLimit;
    7257      735484 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7258             : 
    7259      735484 :     pagefrz.freeze_required = true;
    7260      735484 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7261      735484 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7262      735484 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7263      735484 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7264             : 
    7265      735484 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7266             :                                           &pagefrz, &frz, &totally_frozen);
    7267             : 
    7268             :     /*
    7269             :      * Note that because this is not a WAL-logged operation, we don't need to
    7270             :      * fill in the offset in the freeze record.
    7271             :      */
    7272             : 
    7273      735484 :     if (do_freeze)
    7274      524228 :         heap_execute_freeze_tuple(tuple, &frz);
    7275      735484 :     return do_freeze;
    7276             : }
    7277             : 
    7278             : /*
    7279             :  * For a given MultiXactId, return the hint bits that should be set in the
    7280             :  * tuple's infomask.
    7281             :  *
    7282             :  * Normally this should be called for a multixact that was just created, and
    7283             :  * so is on our local cache, so the GetMembers call is fast.
    7284             :  */
    7285             : static void
    7286        2344 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7287             :                        uint16 *new_infomask2)
    7288             : {
    7289             :     int         nmembers;
    7290             :     MultiXactMember *members;
    7291             :     int         i;
    7292        2344 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7293        2344 :     uint16      bits2 = 0;
    7294        2344 :     bool        has_update = false;
    7295        2344 :     LockTupleMode strongest = LockTupleKeyShare;
    7296             : 
    7297             :     /*
    7298             :      * We only use this in multis we just created, so they cannot be values
    7299             :      * pre-pg_upgrade.
    7300             :      */
    7301        2344 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7302             : 
    7303        7164 :     for (i = 0; i < nmembers; i++)
    7304             :     {
    7305             :         LockTupleMode mode;
    7306             : 
    7307             :         /*
    7308             :          * Remember the strongest lock mode held by any member of the
    7309             :          * multixact.
    7310             :          */
    7311        4820 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7312        4820 :         if (mode > strongest)
    7313        1318 :             strongest = mode;
    7314             : 
    7315             :         /* See what other bits we need */
    7316        4820 :         switch (members[i].status)
    7317             :         {
    7318        4438 :             case MultiXactStatusForKeyShare:
    7319             :             case MultiXactStatusForShare:
    7320             :             case MultiXactStatusForNoKeyUpdate:
    7321        4438 :                 break;
    7322             : 
    7323         104 :             case MultiXactStatusForUpdate:
    7324         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7325         104 :                 break;
    7326             : 
    7327         258 :             case MultiXactStatusNoKeyUpdate:
    7328         258 :                 has_update = true;
    7329         258 :                 break;
    7330             : 
    7331          20 :             case MultiXactStatusUpdate:
    7332          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7333          20 :                 has_update = true;
    7334          20 :                 break;
    7335             :         }
    7336        4820 :     }
    7337             : 
    7338        2344 :     if (strongest == LockTupleExclusive ||
    7339             :         strongest == LockTupleNoKeyExclusive)
    7340         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7341        1906 :     else if (strongest == LockTupleShare)
    7342         874 :         bits |= HEAP_XMAX_SHR_LOCK;
    7343        1032 :     else if (strongest == LockTupleKeyShare)
    7344        1032 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7345             : 
    7346        2344 :     if (!has_update)
    7347        2066 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7348             : 
    7349        2344 :     if (nmembers > 0)
    7350        2344 :         pfree(members);
    7351             : 
    7352        2344 :     *new_infomask = bits;
    7353        2344 :     *new_infomask2 = bits2;
    7354        2344 : }
    7355             : 
    7356             : /*
    7357             :  * MultiXactIdGetUpdateXid
    7358             :  *
    7359             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7360             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7361             :  * transaction.
    7362             :  *
    7363             :  * Caller is expected to check the status of the updating transaction, if
    7364             :  * necessary.
    7365             :  */
    7366             : static TransactionId
    7367        1094 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7368             : {
    7369        1094 :     TransactionId update_xact = InvalidTransactionId;
    7370             :     MultiXactMember *members;
    7371             :     int         nmembers;
    7372             : 
    7373             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7374             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7375             : 
    7376             :     /*
    7377             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7378             :      * pre-pg_upgrade.
    7379             :      */
    7380        1094 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7381             : 
    7382        1094 :     if (nmembers > 0)
    7383             :     {
    7384             :         int         i;
    7385             : 
    7386        2890 :         for (i = 0; i < nmembers; i++)
    7387             :         {
    7388             :             /* Ignore lockers */
    7389        2890 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7390        1796 :                 continue;
    7391             : 
    7392             :             /* there can be at most one updater */
    7393             :             Assert(update_xact == InvalidTransactionId);
    7394        1094 :             update_xact = members[i].xid;
    7395             : #ifndef USE_ASSERT_CHECKING
    7396             : 
    7397             :             /*
    7398             :              * in an assert-enabled build, walk the whole array to ensure
    7399             :              * there's no other updater.
    7400             :              */
    7401        1094 :             break;
    7402             : #endif
    7403             :         }
    7404             : 
    7405        1094 :         pfree(members);
    7406             :     }
    7407             : 
    7408        1094 :     return update_xact;
    7409             : }
    7410             : 
    7411             : /*
    7412             :  * HeapTupleGetUpdateXid
    7413             :  *      As above, but use a HeapTupleHeader
    7414             :  *
    7415             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7416             :  * checking the hint bits.
    7417             :  */
    7418             : TransactionId
    7419        1078 : HeapTupleGetUpdateXid(HeapTupleHeader tuple)
    7420             : {
    7421        2156 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tuple),
    7422        1078 :                                    tuple->t_infomask);
    7423             : }
    7424             : 
    7425             : /*
    7426             :  * Does the given multixact conflict with the current transaction grabbing a
    7427             :  * tuple lock of the given strength?
    7428             :  *
    7429             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7430             :  *
    7431             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7432             :  * transaction is a member of the given multixact.
    7433             :  */
    7434             : static bool
    7435         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7436             :                         LockTupleMode lockmode, bool *current_is_member)
    7437             : {
    7438             :     int         nmembers;
    7439             :     MultiXactMember *members;
    7440         198 :     bool        result = false;
    7441         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7442             : 
    7443         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7444           0 :         return false;
    7445             : 
    7446         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7447         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7448         198 :     if (nmembers >= 0)
    7449             :     {
    7450             :         int         i;
    7451             : 
    7452         618 :         for (i = 0; i < nmembers; i++)
    7453             :         {
    7454             :             TransactionId memxid;
    7455             :             LOCKMODE    memlockmode;
    7456             : 
    7457         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7458             :                 break;
    7459             : 
    7460         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7461             : 
    7462             :             /* ignore members from current xact (but track their presence) */
    7463         420 :             memxid = members[i].xid;
    7464         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7465             :             {
    7466         184 :                 if (current_is_member != NULL)
    7467         156 :                     *current_is_member = true;
    7468         184 :                 continue;
    7469             :             }
    7470         236 :             else if (result)
    7471          16 :                 continue;
    7472             : 
    7473             :             /* ignore members that don't conflict with the lock we want */
    7474         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7475         142 :                 continue;
    7476             : 
    7477          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7478             :             {
    7479             :                 /* ignore aborted updaters */
    7480          34 :                 if (TransactionIdDidAbort(memxid))
    7481           2 :                     continue;
    7482             :             }
    7483             :             else
    7484             :             {
    7485             :                 /* ignore lockers-only that are no longer in progress */
    7486          44 :                 if (!TransactionIdIsInProgress(memxid))
    7487          14 :                     continue;
    7488             :             }
    7489             : 
    7490             :             /*
    7491             :              * Whatever remains are either live lockers that conflict with our
    7492             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7493             :              * with what we want.  Set up to return true, but keep going to
    7494             :              * look for the current transaction among the multixact members,
    7495             :              * if needed.
    7496             :              */
    7497          62 :             result = true;
    7498             :         }
    7499         198 :         pfree(members);
    7500             :     }
    7501             : 
    7502         198 :     return result;
    7503             : }
    7504             : 
    7505             : /*
    7506             :  * Do_MultiXactIdWait
    7507             :  *      Actual implementation for the two functions below.
    7508             :  *
    7509             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7510             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7511             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7512             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7513             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7514             :  * context information for error messages.  'remaining', if not NULL, receives
    7515             :  * the number of members that are still running, including any (non-aborted)
    7516             :  * subtransactions of our own transaction.
    7517             :  *
    7518             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7519             :  * members that belong to the current backend are *not* waited for, however;
    7520             :  * this would not merely be useless but would lead to Assert failure inside
    7521             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7522             :  * transactions *of other backends* that were members of the MultiXactId
    7523             :  * that conflict with the requested status are dead (and no new ones can have
    7524             :  * been added, since it is not legal to add members to an existing
    7525             :  * MultiXactId).
    7526             :  *
    7527             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7528             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7529             :  *
    7530             :  * Note that in case we return false, the number of remaining members is
    7531             :  * not to be trusted.
    7532             :  */
    7533             : static bool
    7534         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7535             :                    uint16 infomask, bool nowait,
    7536             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7537             :                    int *remaining)
    7538             : {
    7539         116 :     bool        result = true;
    7540             :     MultiXactMember *members;
    7541             :     int         nmembers;
    7542         116 :     int         remain = 0;
    7543             : 
    7544             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7545         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7546         116 :         GetMultiXactIdMembers(multi, &members, false,
    7547         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7548             : 
    7549         116 :     if (nmembers >= 0)
    7550             :     {
    7551             :         int         i;
    7552             : 
    7553         374 :         for (i = 0; i < nmembers; i++)
    7554             :         {
    7555         266 :             TransactionId memxid = members[i].xid;
    7556         266 :             MultiXactStatus memstatus = members[i].status;
    7557             : 
    7558         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7559             :             {
    7560          48 :                 remain++;
    7561          48 :                 continue;
    7562             :             }
    7563             : 
    7564         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7565         218 :                                      LOCKMODE_from_mxstatus(status)))
    7566             :             {
    7567          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7568          16 :                     remain++;
    7569          44 :                 continue;
    7570             :             }
    7571             : 
    7572             :             /*
    7573             :              * This member conflicts with our multi, so we have to sleep (or
    7574             :              * return failure, if asked to avoid waiting.)
    7575             :              *
    7576             :              * Note that we don't set up an error context callback ourselves,
    7577             :              * but instead we pass the info down to XactLockTableWait.  This
    7578             :              * might seem a bit wasteful because the context is set up and
    7579             :              * tore down for each member of the multixact, but in reality it
    7580             :              * should be barely noticeable, and it avoids duplicate code.
    7581             :              */
    7582         174 :             if (nowait)
    7583             :             {
    7584           8 :                 result = ConditionalXactLockTableWait(memxid);
    7585           8 :                 if (!result)
    7586           8 :                     break;
    7587             :             }
    7588             :             else
    7589         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7590             :         }
    7591             : 
    7592         116 :         pfree(members);
    7593             :     }
    7594             : 
    7595         116 :     if (remaining)
    7596          20 :         *remaining = remain;
    7597             : 
    7598         116 :     return result;
    7599             : }
    7600             : 
    7601             : /*
    7602             :  * MultiXactIdWait
    7603             :  *      Sleep on a MultiXactId.
    7604             :  *
    7605             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7606             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7607             :  *
    7608             :  * We return (in *remaining, if not NULL) the number of members that are still
    7609             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7610             :  */
    7611             : static void
    7612         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7613             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7614             :                 int *remaining)
    7615             : {
    7616         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7617             :                               rel, ctid, oper, remaining);
    7618         108 : }
    7619             : 
    7620             : /*
    7621             :  * ConditionalMultiXactIdWait
    7622             :  *      As above, but only lock if we can get the lock without blocking.
    7623             :  *
    7624             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7625             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7626             :  *
    7627             :  * If the multixact is now all gone, return true.  Returns false if some
    7628             :  * transactions might still be running.
    7629             :  *
    7630             :  * We return (in *remaining, if not NULL) the number of members that are still
    7631             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7632             :  */
    7633             : static bool
    7634           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7635             :                            uint16 infomask, Relation rel, int *remaining)
    7636             : {
    7637           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7638             :                               rel, NULL, XLTW_None, remaining);
    7639             : }
    7640             : 
    7641             : /*
    7642             :  * heap_tuple_needs_eventual_freeze
    7643             :  *
    7644             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7645             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7646             :  */
    7647             : bool
    7648      209528 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7649             : {
    7650             :     TransactionId xid;
    7651             : 
    7652             :     /*
    7653             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7654             :      * frozen.
    7655             :      */
    7656      209528 :     xid = HeapTupleHeaderGetXmin(tuple);
    7657      209528 :     if (TransactionIdIsNormal(xid))
    7658        3966 :         return true;
    7659             : 
    7660             :     /*
    7661             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7662             :      */
    7663      205562 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7664             :     {
    7665             :         MultiXactId multi;
    7666             : 
    7667           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7668           0 :         if (MultiXactIdIsValid(multi))
    7669           0 :             return true;
    7670             :     }
    7671             :     else
    7672             :     {
    7673      205562 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7674      205562 :         if (TransactionIdIsNormal(xid))
    7675          14 :             return true;
    7676             :     }
    7677             : 
    7678      205548 :     if (tuple->t_infomask & HEAP_MOVED)
    7679             :     {
    7680           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7681           0 :         if (TransactionIdIsNormal(xid))
    7682           0 :             return true;
    7683             :     }
    7684             : 
    7685      205548 :     return false;
    7686             : }
    7687             : 
    7688             : /*
    7689             :  * heap_tuple_should_freeze
    7690             :  *
    7691             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7692             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7693             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7694             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7695             :  *
    7696             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7697             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7698             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7699             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7700             :  * point that it fully commits to not freezing the tuple/page in question.
    7701             :  */
    7702             : bool
    7703     7354284 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7704             :                          const struct VacuumCutoffs *cutoffs,
    7705             :                          TransactionId *NoFreezePageRelfrozenXid,
    7706             :                          MultiXactId *NoFreezePageRelminMxid)
    7707             : {
    7708             :     TransactionId xid;
    7709             :     MultiXactId multi;
    7710     7354284 :     bool        freeze = false;
    7711             : 
    7712             :     /* First deal with xmin */
    7713     7354284 :     xid = HeapTupleHeaderGetXmin(tuple);
    7714     7354284 :     if (TransactionIdIsNormal(xid))
    7715             :     {
    7716             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7717     2753096 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7718       33058 :             *NoFreezePageRelfrozenXid = xid;
    7719     2753096 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7720       30014 :             freeze = true;
    7721             :     }
    7722             : 
    7723             :     /* Now deal with xmax */
    7724     7354284 :     xid = InvalidTransactionId;
    7725     7354284 :     multi = InvalidMultiXactId;
    7726     7354284 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7727           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7728             :     else
    7729     7354280 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7730             : 
    7731     7354284 :     if (TransactionIdIsNormal(xid))
    7732             :     {
    7733             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7734             :         /* xmax is a non-permanent XID */
    7735     5000002 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7736           4 :             *NoFreezePageRelfrozenXid = xid;
    7737     5000002 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7738           8 :             freeze = true;
    7739             :     }
    7740     2354282 :     else if (!MultiXactIdIsValid(multi))
    7741             :     {
    7742             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7743             :     }
    7744           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7745             :     {
    7746             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7747           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7748           0 :             *NoFreezePageRelminMxid = multi;
    7749             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7750           0 :         freeze = true;
    7751             :     }
    7752             :     else
    7753             :     {
    7754             :         /* xmax is a MultiXactId that may have an updater XID */
    7755             :         MultiXactMember *members;
    7756             :         int         nmembers;
    7757             : 
    7758             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7759           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7760           4 :             *NoFreezePageRelminMxid = multi;
    7761           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7762           4 :             freeze = true;
    7763             : 
    7764             :         /* need to check whether any member of the mxact is old */
    7765           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7766           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7767             : 
    7768          10 :         for (int i = 0; i < nmembers; i++)
    7769             :         {
    7770           6 :             xid = members[i].xid;
    7771             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7772           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7773           0 :                 *NoFreezePageRelfrozenXid = xid;
    7774           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7775           0 :                 freeze = true;
    7776             :         }
    7777           4 :         if (nmembers > 0)
    7778           2 :             pfree(members);
    7779             :     }
    7780             : 
    7781     7354284 :     if (tuple->t_infomask & HEAP_MOVED)
    7782             :     {
    7783           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7784           0 :         if (TransactionIdIsNormal(xid))
    7785             :         {
    7786             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7787           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7788           0 :                 *NoFreezePageRelfrozenXid = xid;
    7789             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7790           0 :             freeze = true;
    7791             :         }
    7792             :     }
    7793             : 
    7794     7354284 :     return freeze;
    7795             : }
    7796             : 
    7797             : /*
    7798             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7799             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7800             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7801             :  * or index deletion.
    7802             :  *
    7803             :  * Caller must initialize its value to InvalidTransactionId, which is
    7804             :  * generally interpreted as "definitely no need for a recovery conflict".
    7805             :  * Final value must reflect all heap tuples that caller will physically remove
    7806             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7807             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7808             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7809             :  */
    7810             : void
    7811     2984214 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7812             :                                       TransactionId *snapshotConflictHorizon)
    7813             : {
    7814     2984214 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7815     2984214 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7816     2984214 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7817             : 
    7818     2984214 :     if (tuple->t_infomask & HEAP_MOVED)
    7819             :     {
    7820           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7821           0 :             *snapshotConflictHorizon = xvac;
    7822             :     }
    7823             : 
    7824             :     /*
    7825             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7826             :      * updated/deleted by the inserting transaction.
    7827             :      *
    7828             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    7829             :      */
    7830     2984214 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    7831      200548 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    7832             :     {
    7833     5342412 :         if (xmax != xmin &&
    7834     2502936 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    7835      177288 :             *snapshotConflictHorizon = xmax;
    7836             :     }
    7837     2984214 : }
    7838             : 
    7839             : #ifdef USE_PREFETCH
    7840             : /*
    7841             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    7842             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    7843             :  * we can prefetch, and which have already been prefetched; each call to this
    7844             :  * function picks up where the previous call left off.
    7845             :  *
    7846             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    7847             :  * by heap block, with all TIDs for each block appearing together in exactly
    7848             :  * one group.
    7849             :  */
    7850             : static void
    7851       35456 : index_delete_prefetch_buffer(Relation rel,
    7852             :                              IndexDeletePrefetchState *prefetch_state,
    7853             :                              int prefetch_count)
    7854             : {
    7855       35456 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    7856       35456 :     int         count = 0;
    7857             :     int         i;
    7858       35456 :     int         ndeltids = prefetch_state->ndeltids;
    7859       35456 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    7860             : 
    7861     1260362 :     for (i = prefetch_state->next_item;
    7862     1232352 :          i < ndeltids && count < prefetch_count;
    7863     1224906 :          i++)
    7864             :     {
    7865     1224906 :         ItemPointer htid = &deltids[i].tid;
    7866             : 
    7867     2439216 :         if (cur_hblkno == InvalidBlockNumber ||
    7868     1214310 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    7869             :         {
    7870       31732 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    7871       31732 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    7872       31732 :             count++;
    7873             :         }
    7874             :     }
    7875             : 
    7876             :     /*
    7877             :      * Save the prefetch position so that next time we can continue from that
    7878             :      * position.
    7879             :      */
    7880       35456 :     prefetch_state->next_item = i;
    7881       35456 :     prefetch_state->cur_hblkno = cur_hblkno;
    7882       35456 : }
    7883             : #endif
    7884             : 
    7885             : /*
    7886             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    7887             :  * involving an invalid TID in index AM caller's index page.
    7888             :  *
    7889             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    7890             :  * lock on the index page containing the TIDs we examine here, so we don't
    7891             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    7892             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    7893             :  * heap-only tuple, which is not the case during standard index scans.
    7894             :  */
    7895             : static inline void
    7896     1033604 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    7897             :                         Page page, OffsetNumber maxoff,
    7898             :                         ItemPointer htid, TM_IndexStatus *istatus)
    7899             : {
    7900     1033604 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    7901             :     ItemId      iid;
    7902             : 
    7903             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    7904             : 
    7905     1033604 :     if (unlikely(indexpagehoffnum > maxoff))
    7906           0 :         ereport(ERROR,
    7907             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7908             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    7909             :                                  ItemPointerGetBlockNumber(htid),
    7910             :                                  indexpagehoffnum,
    7911             :                                  istatus->idxoffnum, delstate->iblknum,
    7912             :                                  RelationGetRelationName(delstate->irel))));
    7913             : 
    7914     1033604 :     iid = PageGetItemId(page, indexpagehoffnum);
    7915     1033604 :     if (unlikely(!ItemIdIsUsed(iid)))
    7916           0 :         ereport(ERROR,
    7917             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7918             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    7919             :                                  ItemPointerGetBlockNumber(htid),
    7920             :                                  indexpagehoffnum,
    7921             :                                  istatus->idxoffnum, delstate->iblknum,
    7922             :                                  RelationGetRelationName(delstate->irel))));
    7923             : 
    7924     1033604 :     if (ItemIdHasStorage(iid))
    7925             :     {
    7926             :         HeapTupleHeader htup;
    7927             : 
    7928             :         Assert(ItemIdIsNormal(iid));
    7929      603128 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    7930             : 
    7931      603128 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    7932           0 :             ereport(ERROR,
    7933             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    7934             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    7935             :                                      ItemPointerGetBlockNumber(htid),
    7936             :                                      indexpagehoffnum,
    7937             :                                      istatus->idxoffnum, delstate->iblknum,
    7938             :                                      RelationGetRelationName(delstate->irel))));
    7939             :     }
    7940     1033604 : }
    7941             : 
    7942             : /*
    7943             :  * heapam implementation of tableam's index_delete_tuples interface.
    7944             :  *
    7945             :  * This helper function is called by index AMs during index tuple deletion.
    7946             :  * See tableam header comments for an explanation of the interface implemented
    7947             :  * here and a general theory of operation.  Note that each call here is either
    7948             :  * a simple index deletion call, or a bottom-up index deletion call.
    7949             :  *
    7950             :  * It's possible for this to generate a fair amount of I/O, since we may be
    7951             :  * deleting hundreds of tuples from a single index block.  To amortize that
    7952             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    7953             :  * the same heap block.
    7954             :  */
    7955             : TransactionId
    7956       10596 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    7957             : {
    7958             :     /* Initial assumption is that earlier pruning took care of conflict */
    7959       10596 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    7960       10596 :     BlockNumber blkno = InvalidBlockNumber;
    7961       10596 :     Buffer      buf = InvalidBuffer;
    7962       10596 :     Page        page = NULL;
    7963       10596 :     OffsetNumber maxoff = InvalidOffsetNumber;
    7964             :     TransactionId priorXmax;
    7965             : #ifdef USE_PREFETCH
    7966             :     IndexDeletePrefetchState prefetch_state;
    7967             :     int         prefetch_distance;
    7968             : #endif
    7969             :     SnapshotData SnapshotNonVacuumable;
    7970       10596 :     int         finalndeltids = 0,
    7971       10596 :                 nblocksaccessed = 0;
    7972             : 
    7973             :     /* State that's only used in bottom-up index deletion case */
    7974       10596 :     int         nblocksfavorable = 0;
    7975       10596 :     int         curtargetfreespace = delstate->bottomupfreespace,
    7976       10596 :                 lastfreespace = 0,
    7977       10596 :                 actualfreespace = 0;
    7978       10596 :     bool        bottomup_final_block = false;
    7979             : 
    7980       10596 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    7981             : 
    7982             :     /* Sort caller's deltids array by TID for further processing */
    7983       10596 :     index_delete_sort(delstate);
    7984             : 
    7985             :     /*
    7986             :      * Bottom-up case: resort deltids array in an order attuned to where the
    7987             :      * greatest number of promising TIDs are to be found, and determine how
    7988             :      * many blocks from the start of sorted array should be considered
    7989             :      * favorable.  This will also shrink the deltids array in order to
    7990             :      * eliminate completely unfavorable blocks up front.
    7991             :      */
    7992       10596 :     if (delstate->bottomup)
    7993        3554 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    7994             : 
    7995             : #ifdef USE_PREFETCH
    7996             :     /* Initialize prefetch state. */
    7997       10596 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    7998       10596 :     prefetch_state.next_item = 0;
    7999       10596 :     prefetch_state.ndeltids = delstate->ndeltids;
    8000       10596 :     prefetch_state.deltids = delstate->deltids;
    8001             : 
    8002             :     /*
    8003             :      * Determine the prefetch distance that we will attempt to maintain.
    8004             :      *
    8005             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8006             :      * sure that isn't a catalog relation before we call code that does
    8007             :      * syscache lookups, to avoid risk of deadlock.
    8008             :      */
    8009       10596 :     if (IsCatalogRelation(rel))
    8010        7312 :         prefetch_distance = maintenance_io_concurrency;
    8011             :     else
    8012             :         prefetch_distance =
    8013        3284 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8014             : 
    8015             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8016       10596 :     if (delstate->bottomup)
    8017             :     {
    8018             :         Assert(nblocksfavorable >= 1);
    8019             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8020        3554 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8021             :     }
    8022             : 
    8023             :     /* Start prefetching. */
    8024       10596 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8025             : #endif
    8026             : 
    8027             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8028             :     Assert(delstate->ndeltids > 0);
    8029     1044200 :     for (int i = 0; i < delstate->ndeltids; i++)
    8030             :     {
    8031     1037158 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8032     1037158 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8033     1037158 :         ItemPointer htid = &ideltid->tid;
    8034             :         OffsetNumber offnum;
    8035             : 
    8036             :         /*
    8037             :          * Read buffer, and perform required extra steps each time a new block
    8038             :          * is encountered.  Avoid refetching if it's the same block as the one
    8039             :          * from the last htid.
    8040             :          */
    8041     2063720 :         if (blkno == InvalidBlockNumber ||
    8042     1026562 :             ItemPointerGetBlockNumber(htid) != blkno)
    8043             :         {
    8044             :             /*
    8045             :              * Consider giving up early for bottom-up index deletion caller
    8046             :              * first. (Only prefetch next-next block afterwards, when it
    8047             :              * becomes clear that we're at least going to access the next
    8048             :              * block in line.)
    8049             :              *
    8050             :              * Sometimes the first block frees so much space for bottom-up
    8051             :              * caller that the deletion process can end without accessing any
    8052             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8053             :              * per bottom-up deletion operation, though.
    8054             :              */
    8055       28414 :             if (delstate->bottomup)
    8056             :             {
    8057             :                 /*
    8058             :                  * We often allow caller to delete a few additional items
    8059             :                  * whose entries we reached after the point that space target
    8060             :                  * from caller was satisfied.  The cost of accessing the page
    8061             :                  * was already paid at that point, so it made sense to finish
    8062             :                  * it off.  When that happened, we finalize everything here
    8063             :                  * (by finishing off the whole bottom-up deletion operation
    8064             :                  * without needlessly paying the cost of accessing any more
    8065             :                  * blocks).
    8066             :                  */
    8067        7748 :                 if (bottomup_final_block)
    8068         338 :                     break;
    8069             : 
    8070             :                 /*
    8071             :                  * Give up when we didn't enable our caller to free any
    8072             :                  * additional space as a result of processing the page that we
    8073             :                  * just finished up with.  This rule is the main way in which
    8074             :                  * we keep the cost of bottom-up deletion under control.
    8075             :                  */
    8076        7410 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8077        3216 :                     break;
    8078        4194 :                 lastfreespace = actualfreespace;    /* for next time */
    8079             : 
    8080             :                 /*
    8081             :                  * Deletion operation (which is bottom-up) will definitely
    8082             :                  * access the next block in line.  Prepare for that now.
    8083             :                  *
    8084             :                  * Decay target free space so that we don't hang on for too
    8085             :                  * long with a marginal case. (Space target is only truly
    8086             :                  * helpful when it allows us to recognize that we don't need
    8087             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8088             :                  * agreeable workload characteristics.)
    8089             :                  *
    8090             :                  * We are a bit more patient when we encounter contiguous
    8091             :                  * blocks, though: these are treated as favorable blocks.  The
    8092             :                  * decay process is only applied when the next block in line
    8093             :                  * is not a favorable/contiguous block.  This is not an
    8094             :                  * exception to the general rule; we still insist on finding
    8095             :                  * at least one deletable item per block accessed.  See
    8096             :                  * bottomup_nblocksfavorable() for full details of the theory
    8097             :                  * behind favorable blocks and heap block locality in general.
    8098             :                  *
    8099             :                  * Note: The first block in line is always treated as a
    8100             :                  * favorable block, so the earliest possible point that the
    8101             :                  * decay can be applied is just before we access the second
    8102             :                  * block in line.  The Assert() verifies this for us.
    8103             :                  */
    8104             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8105        4194 :                 if (nblocksfavorable > 0)
    8106        3872 :                     nblocksfavorable--;
    8107             :                 else
    8108         322 :                     curtargetfreespace /= 2;
    8109             :             }
    8110             : 
    8111             :             /* release old buffer */
    8112       24860 :             if (BufferIsValid(buf))
    8113       14264 :                 UnlockReleaseBuffer(buf);
    8114             : 
    8115       24860 :             blkno = ItemPointerGetBlockNumber(htid);
    8116       24860 :             buf = ReadBuffer(rel, blkno);
    8117       24860 :             nblocksaccessed++;
    8118             :             Assert(!delstate->bottomup ||
    8119             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8120             : 
    8121             : #ifdef USE_PREFETCH
    8122             : 
    8123             :             /*
    8124             :              * To maintain the prefetch distance, prefetch one more page for
    8125             :              * each page we read.
    8126             :              */
    8127       24860 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8128             : #endif
    8129             : 
    8130       24860 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8131             : 
    8132       24860 :             page = BufferGetPage(buf);
    8133       24860 :             maxoff = PageGetMaxOffsetNumber(page);
    8134             :         }
    8135             : 
    8136             :         /*
    8137             :          * In passing, detect index corruption involving an index page with a
    8138             :          * TID that points to a location in the heap that couldn't possibly be
    8139             :          * correct.  We only do this with actual TIDs from caller's index page
    8140             :          * (not items reached by traversing through a HOT chain).
    8141             :          */
    8142     1033604 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8143             : 
    8144     1033604 :         if (istatus->knowndeletable)
    8145             :             Assert(!delstate->bottomup && !istatus->promising);
    8146             :         else
    8147             :         {
    8148      771854 :             ItemPointerData tmp = *htid;
    8149             :             HeapTupleData heapTuple;
    8150             : 
    8151             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8152      771854 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8153             :                                        &heapTuple, NULL, true))
    8154      454856 :                 continue;       /* can't delete entry */
    8155             : 
    8156             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8157      316998 :             istatus->knowndeletable = true;
    8158             : 
    8159             :             /* Maintain index free space info for bottom-up deletion case */
    8160      316998 :             if (delstate->bottomup)
    8161             :             {
    8162             :                 Assert(istatus->freespace > 0);
    8163       18692 :                 actualfreespace += istatus->freespace;
    8164       18692 :                 if (actualfreespace >= curtargetfreespace)
    8165        5452 :                     bottomup_final_block = true;
    8166             :             }
    8167             :         }
    8168             : 
    8169             :         /*
    8170             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8171             :          * whole by advancing current value using heap tuple headers.  This is
    8172             :          * loosely based on the logic for pruning a HOT chain.
    8173             :          */
    8174      578748 :         offnum = ItemPointerGetOffsetNumber(htid);
    8175      578748 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8176             :         for (;;)
    8177       39744 :         {
    8178             :             ItemId      lp;
    8179             :             HeapTupleHeader htup;
    8180             : 
    8181             :             /* Sanity check (pure paranoia) */
    8182      618492 :             if (offnum < FirstOffsetNumber)
    8183           0 :                 break;
    8184             : 
    8185             :             /*
    8186             :              * An offset past the end of page's line pointer array is possible
    8187             :              * when the array was truncated
    8188             :              */
    8189      618492 :             if (offnum > maxoff)
    8190           0 :                 break;
    8191             : 
    8192      618492 :             lp = PageGetItemId(page, offnum);
    8193      618492 :             if (ItemIdIsRedirected(lp))
    8194             :             {
    8195       18122 :                 offnum = ItemIdGetRedirect(lp);
    8196       18122 :                 continue;
    8197             :             }
    8198             : 
    8199             :             /*
    8200             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8201             :              * entry marked knowndeletable by our caller up front).  No heap
    8202             :              * tuple headers get examined for an htid that leads us to an
    8203             :              * LP_DEAD item.  This is okay because the earlier pruning
    8204             :              * operation that made the line pointer LP_DEAD in the first place
    8205             :              * must have considered the original tuple header as part of
    8206             :              * generating its own snapshotConflictHorizon value.
    8207             :              *
    8208             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8209             :              * the same strategy that index vacuuming uses in all cases. Index
    8210             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8211             :              * field of their own for this reason.
    8212             :              */
    8213      600370 :             if (!ItemIdIsNormal(lp))
    8214      385974 :                 break;
    8215             : 
    8216      214396 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8217             : 
    8218             :             /*
    8219             :              * Check the tuple XMIN against prior XMAX, if any
    8220             :              */
    8221      236018 :             if (TransactionIdIsValid(priorXmax) &&
    8222       21622 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8223           0 :                 break;
    8224             : 
    8225      214396 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8226             :                                                   &snapshotConflictHorizon);
    8227             : 
    8228             :             /*
    8229             :              * If the tuple is not HOT-updated, then we are at the end of this
    8230             :              * HOT-chain.  No need to visit later tuples from the same update
    8231             :              * chain (they get their own index entries) -- just move on to
    8232             :              * next htid from index AM caller.
    8233             :              */
    8234      214396 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8235             :                 break;
    8236             : 
    8237             :             /* Advance to next HOT chain member */
    8238             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8239       21622 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8240       21622 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8241             :         }
    8242             : 
    8243             :         /* Enable further/final shrinking of deltids for caller */
    8244      578748 :         finalndeltids = i + 1;
    8245             :     }
    8246             : 
    8247       10596 :     UnlockReleaseBuffer(buf);
    8248             : 
    8249             :     /*
    8250             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8251             :      * is not just a minor optimization.  Final deltids array size might be
    8252             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8253             :      * ndeltids being zero in all cases with zero total deletable entries.
    8254             :      */
    8255             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8256       10596 :     delstate->ndeltids = finalndeltids;
    8257             : 
    8258       10596 :     return snapshotConflictHorizon;
    8259             : }
    8260             : 
    8261             : /*
    8262             :  * Specialized inlineable comparison function for index_delete_sort()
    8263             :  */
    8264             : static inline int
    8265    24522590 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8266             : {
    8267    24522590 :     ItemPointer tid1 = &deltid1->tid;
    8268    24522590 :     ItemPointer tid2 = &deltid2->tid;
    8269             : 
    8270             :     {
    8271    24522590 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8272    24522590 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8273             : 
    8274    24522590 :         if (blk1 != blk2)
    8275    10060934 :             return (blk1 < blk2) ? -1 : 1;
    8276             :     }
    8277             :     {
    8278    14461656 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8279    14461656 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8280             : 
    8281    14461656 :         if (pos1 != pos2)
    8282    14461656 :             return (pos1 < pos2) ? -1 : 1;
    8283             :     }
    8284             : 
    8285             :     Assert(false);
    8286             : 
    8287           0 :     return 0;
    8288             : }
    8289             : 
    8290             : /*
    8291             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8292             :  * processing by heap_index_delete_tuples().
    8293             :  *
    8294             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8295             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8296             :  * We use shellsort for this because it's easy to specialize, compiles to
    8297             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8298             :  * (which are typical here).
    8299             :  */
    8300             : static void
    8301       10596 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8302             : {
    8303       10596 :     TM_IndexDelete *deltids = delstate->deltids;
    8304       10596 :     int         ndeltids = delstate->ndeltids;
    8305             : 
    8306             :     /*
    8307             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8308             :      *
    8309             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8310             :      * all supported BLCKSZ values.
    8311             :      */
    8312       10596 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8313             : 
    8314             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8315             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8316             :                      "element size exceeds 8 bytes");
    8317             : 
    8318      105960 :     for (int g = 0; g < lengthof(gaps); g++)
    8319             :     {
    8320    14686004 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8321             :         {
    8322    14590640 :             TM_IndexDelete d = deltids[i];
    8323    14590640 :             int         j = i;
    8324             : 
    8325    25221942 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8326             :             {
    8327    10631302 :                 deltids[j] = deltids[j - hi];
    8328    10631302 :                 j -= hi;
    8329             :             }
    8330    14590640 :             deltids[j] = d;
    8331             :         }
    8332             :     }
    8333       10596 : }
    8334             : 
    8335             : /*
    8336             :  * Returns how many blocks should be considered favorable/contiguous for a
    8337             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8338             :  * from and includes the first block in line.
    8339             :  *
    8340             :  * There is always at least one favorable block during bottom-up index
    8341             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8342             :  * first block in line (the only favorable block) can be thought of as a
    8343             :  * degenerate array of contiguous blocks that consists of a single block.
    8344             :  * heap_index_delete_tuples() will expect this.
    8345             :  *
    8346             :  * Caller passes blockgroups, a description of the final order that deltids
    8347             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8348             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8349             :  * only passes deltids to us so that we can interpret blockgroups).
    8350             :  *
    8351             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8352             :  * since in general the main factor that determines which blocks we visit is
    8353             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8354             :  * We're not really targeting the general case, though -- the actual goal is
    8355             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8356             :  * The effects of most of the heuristics we apply are only noticeable in the
    8357             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8358             :  * passes.
    8359             :  *
    8360             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8361             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8362             :  * accessed contiguously, in the sense that each newly visited block is the
    8363             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8364             :  * close enough to it).  It will likely be cheaper to access more favorable
    8365             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8366             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8367             :  * (or a matter of further correlated version churn) before all blocks that
    8368             :  * appear together as a single large batch of favorable blocks get accessed by
    8369             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8370             :  * appear almost constantly or not even once (it all depends on per-index
    8371             :  * workload characteristics).
    8372             :  *
    8373             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8374             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8375             :  * batched together, at least with workloads that are naturally amenable to
    8376             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8377             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8378             :  * enables temporal locality of access, since sorting by heap block number
    8379             :  * naturally tends to make the bottom-up processing order deterministic.
    8380             :  *
    8381             :  * Consider the following example to get a sense of how temporal locality
    8382             :  * might matter: There is a heap relation with several indexes, each of which
    8383             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8384             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8385             :  * the indexes are logically modified by the UPDATE statements (if they were
    8386             :  * then bottom-up index deletion would not be triggered in the first place).
    8387             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8388             :  * heap_update() call) will have the same heap TID in each and every index.
    8389             :  * Since these indexes are low cardinality and never get logically modified,
    8390             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8391             :  * in approximately sequential order.  Temporal locality of access occurs due
    8392             :  * to bottom-up deletion passes behaving very similarly across each of the
    8393             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8394             :  * to visit heap blocks to a minimum.
    8395             :  */
    8396             : static int
    8397        3554 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8398             :                           TM_IndexDelete *deltids)
    8399             : {
    8400        3554 :     int64       lastblock = -1;
    8401        3554 :     int         nblocksfavorable = 0;
    8402             : 
    8403             :     Assert(nblockgroups >= 1);
    8404             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8405             : 
    8406             :     /*
    8407             :      * We tolerate heap blocks that will be accessed only slightly out of
    8408             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8409             :      * blocks happen to fall into different buckets (perhaps due only to a
    8410             :      * small difference in npromisingtids that the bucketing scheme didn't
    8411             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8412             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8413             :      * but it works well enough in practice.
    8414             :      */
    8415       11000 :     for (int b = 0; b < nblockgroups; b++)
    8416             :     {
    8417       10544 :         IndexDeleteCounts *group = blockgroups + b;
    8418       10544 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8419       10544 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8420             : 
    8421       10544 :         if (lastblock != -1 &&
    8422        6990 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8423        6064 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8424             :             break;
    8425             : 
    8426        7446 :         nblocksfavorable++;
    8427        7446 :         lastblock = block;
    8428             :     }
    8429             : 
    8430             :     /* Always indicate that there is at least 1 favorable block */
    8431             :     Assert(nblocksfavorable >= 1);
    8432             : 
    8433        3554 :     return nblocksfavorable;
    8434             : }
    8435             : 
    8436             : /*
    8437             :  * qsort comparison function for bottomup_sort_and_shrink()
    8438             :  */
    8439             : static int
    8440      364186 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8441             : {
    8442      364186 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8443      364186 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8444             : 
    8445             :     /*
    8446             :      * Most significant field is npromisingtids (which we invert the order of
    8447             :      * so as to sort in desc order).
    8448             :      *
    8449             :      * Caller should have already normalized npromisingtids fields into
    8450             :      * power-of-two values (buckets).
    8451             :      */
    8452      364186 :     if (group1->npromisingtids > group2->npromisingtids)
    8453       17342 :         return -1;
    8454      346844 :     if (group1->npromisingtids < group2->npromisingtids)
    8455       21456 :         return 1;
    8456             : 
    8457             :     /*
    8458             :      * Tiebreak: desc ntids sort order.
    8459             :      *
    8460             :      * We cannot expect power-of-two values for ntids fields.  We should
    8461             :      * behave as if they were already rounded up for us instead.
    8462             :      */
    8463      325388 :     if (group1->ntids != group2->ntids)
    8464             :     {
    8465      236024 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8466      236024 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8467             : 
    8468      236024 :         if (ntids1 > ntids2)
    8469       33856 :             return -1;
    8470      202168 :         if (ntids1 < ntids2)
    8471       35152 :             return 1;
    8472             :     }
    8473             : 
    8474             :     /*
    8475             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8476             :      * block in deltids array) order.
    8477             :      *
    8478             :      * This is equivalent to sorting in ascending heap block number order
    8479             :      * (among otherwise equal subsets of the array).  This approach allows us
    8480             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8481             :      * that the deltids array was sorted in ascending heap TID order when
    8482             :      * these offsets to the first TID from each heap block group were formed.)
    8483             :      */
    8484      256380 :     if (group1->ifirsttid > group2->ifirsttid)
    8485      126302 :         return 1;
    8486      130078 :     if (group1->ifirsttid < group2->ifirsttid)
    8487      130078 :         return -1;
    8488             : 
    8489           0 :     pg_unreachable();
    8490             : 
    8491             :     return 0;
    8492             : }
    8493             : 
    8494             : /*
    8495             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8496             :  *
    8497             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8498             :  * deletion.  The array should already be sorted in TID order when we're
    8499             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8500             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8501             :  * known to have the most "promising" TIDs.
    8502             :  *
    8503             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8504             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8505             :  * return.  This often means that deltids will be shrunk to a small fraction
    8506             :  * of its original size (we eliminate many heap blocks from consideration for
    8507             :  * caller up front).
    8508             :  *
    8509             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8510             :  * for a definition and full details.
    8511             :  */
    8512             : static int
    8513        3554 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8514             : {
    8515             :     IndexDeleteCounts *blockgroups;
    8516             :     TM_IndexDelete *reordereddeltids;
    8517        3554 :     BlockNumber curblock = InvalidBlockNumber;
    8518        3554 :     int         nblockgroups = 0;
    8519        3554 :     int         ncopied = 0;
    8520        3554 :     int         nblocksfavorable = 0;
    8521             : 
    8522             :     Assert(delstate->bottomup);
    8523             :     Assert(delstate->ndeltids > 0);
    8524             : 
    8525             :     /* Calculate per-heap-block count of TIDs */
    8526        3554 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8527     1805484 :     for (int i = 0; i < delstate->ndeltids; i++)
    8528             :     {
    8529     1801930 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8530     1801930 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8531     1801930 :         ItemPointer htid = &ideltid->tid;
    8532     1801930 :         bool        promising = istatus->promising;
    8533             : 
    8534     1801930 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8535             :         {
    8536             :             /* New block group */
    8537       69102 :             nblockgroups++;
    8538             : 
    8539             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8540             :                    !BlockNumberIsValid(curblock));
    8541             : 
    8542       69102 :             curblock = ItemPointerGetBlockNumber(htid);
    8543       69102 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8544       69102 :             blockgroups[nblockgroups - 1].ntids = 1;
    8545       69102 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8546             :         }
    8547             :         else
    8548             :         {
    8549     1732828 :             blockgroups[nblockgroups - 1].ntids++;
    8550             :         }
    8551             : 
    8552     1801930 :         if (promising)
    8553      229402 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8554             :     }
    8555             : 
    8556             :     /*
    8557             :      * We're about ready to sort block groups to determine the optimal order
    8558             :      * for visiting heap blocks.  But before we do, round the number of
    8559             :      * promising tuples for each block group up to the next power-of-two,
    8560             :      * unless it is very low (less than 4), in which case we round up to 4.
    8561             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8562             :      * of block groups that both have very low values.
    8563             :      *
    8564             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8565             :      * contains blocks that have _approximately_ the same number of promising
    8566             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8567             :      * in the total number of promising entries, so that the whole process can
    8568             :      * give a little weight to heapam factors (like heap block locality)
    8569             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8570             :      * would be foolish to interpret small differences in npromisingtids
    8571             :      * values as anything more than noise.
    8572             :      *
    8573             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8574             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8575             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8576             :      * only reason that we don't fix nhtids in the same way here too is that
    8577             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8578             :      * bucketization dynamically instead (in the sort comparator).
    8579             :      *
    8580             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8581             :      * heap locality/favorable blocks can significantly influence when and how
    8582             :      * heap blocks are accessed.
    8583             :      */
    8584       72656 :     for (int b = 0; b < nblockgroups; b++)
    8585             :     {
    8586       69102 :         IndexDeleteCounts *group = blockgroups + b;
    8587             : 
    8588             :         /* Better off falling back on nhtids with low npromisingtids */
    8589       69102 :         if (group->npromisingtids <= 4)
    8590       58450 :             group->npromisingtids = 4;
    8591             :         else
    8592       10652 :             group->npromisingtids =
    8593       10652 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8594             :     }
    8595             : 
    8596             :     /* Sort groups and rearrange caller's deltids array */
    8597        3554 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8598             :           bottomup_sort_and_shrink_cmp);
    8599        3554 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8600             : 
    8601        3554 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8602             :     /* Determine number of favorable blocks at the start of final deltids */
    8603        3554 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8604             :                                                  delstate->deltids);
    8605             : 
    8606       23658 :     for (int b = 0; b < nblockgroups; b++)
    8607             :     {
    8608       20104 :         IndexDeleteCounts *group = blockgroups + b;
    8609       20104 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8610             : 
    8611       20104 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8612       20104 :                sizeof(TM_IndexDelete) * group->ntids);
    8613       20104 :         ncopied += group->ntids;
    8614             :     }
    8615             : 
    8616             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8617        3554 :     memcpy(delstate->deltids, reordereddeltids,
    8618             :            sizeof(TM_IndexDelete) * ncopied);
    8619        3554 :     delstate->ndeltids = ncopied;
    8620             : 
    8621        3554 :     pfree(reordereddeltids);
    8622        3554 :     pfree(blockgroups);
    8623             : 
    8624        3554 :     return nblocksfavorable;
    8625             : }
    8626             : 
    8627             : /*
    8628             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8629             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8630             :  * corresponding visibility map block.  Both should have already been modified
    8631             :  * and dirtied.
    8632             :  *
    8633             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8634             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8635             :  *
    8636             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8637             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8638             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8639             :  * update the heap page's LSN.
    8640             :  */
    8641             : XLogRecPtr
    8642       70822 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8643             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8644             : {
    8645             :     xl_heap_visible xlrec;
    8646             :     XLogRecPtr  recptr;
    8647             :     uint8       flags;
    8648             : 
    8649             :     Assert(BufferIsValid(heap_buffer));
    8650             :     Assert(BufferIsValid(vm_buffer));
    8651             : 
    8652       70822 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8653       70822 :     xlrec.flags = vmflags;
    8654       70822 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8655         254 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8656       70822 :     XLogBeginInsert();
    8657       70822 :     XLogRegisterData((char *) &xlrec, SizeOfHeapVisible);
    8658             : 
    8659       70822 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8660             : 
    8661       70822 :     flags = REGBUF_STANDARD;
    8662       70822 :     if (!XLogHintBitIsNeeded())
    8663        5834 :         flags |= REGBUF_NO_IMAGE;
    8664       70822 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8665             : 
    8666       70822 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8667             : 
    8668       70822 :     return recptr;
    8669             : }
    8670             : 
    8671             : /*
    8672             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8673             :  * have modified the buffer(s) and marked them dirty.
    8674             :  */
    8675             : static XLogRecPtr
    8676      545812 : log_heap_update(Relation reln, Buffer oldbuf,
    8677             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8678             :                 HeapTuple old_key_tuple,
    8679             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8680             : {
    8681             :     xl_heap_update xlrec;
    8682             :     xl_heap_header xlhdr;
    8683             :     xl_heap_header xlhdr_idx;
    8684             :     uint8       info;
    8685             :     uint16      prefix_suffix[2];
    8686      545812 :     uint16      prefixlen = 0,
    8687      545812 :                 suffixlen = 0;
    8688             :     XLogRecPtr  recptr;
    8689      545812 :     Page        page = BufferGetPage(newbuf);
    8690      545812 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8691             :     bool        init;
    8692             :     int         bufflags;
    8693             : 
    8694             :     /* Caller should not call me on a non-WAL-logged relation */
    8695             :     Assert(RelationNeedsWAL(reln));
    8696             : 
    8697      545812 :     XLogBeginInsert();
    8698             : 
    8699      545812 :     if (HeapTupleIsHeapOnly(newtup))
    8700      262336 :         info = XLOG_HEAP_HOT_UPDATE;
    8701             :     else
    8702      283476 :         info = XLOG_HEAP_UPDATE;
    8703             : 
    8704             :     /*
    8705             :      * If the old and new tuple are on the same page, we only need to log the
    8706             :      * parts of the new tuple that were changed.  That saves on the amount of
    8707             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8708             :      * the beginning and end of the tuple.  That's quick to check, and
    8709             :      * perfectly covers the common case that only one field is updated.
    8710             :      *
    8711             :      * We could do this even if the old and new tuple are on different pages,
    8712             :      * but only if we don't make a full-page image of the old page, which is
    8713             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8714             :      * some reason, it would allow the corruption to propagate the new page,
    8715             :      * so it seems best to avoid.  Under the general assumption that most
    8716             :      * updates tend to create the new tuple version on the same page, there
    8717             :      * isn't much to be gained by doing this across pages anyway.
    8718             :      *
    8719             :      * Skip this if we're taking a full-page image of the new page, as we
    8720             :      * don't include the new tuple in the WAL record in that case.  Also
    8721             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8722             :      * read the new tuple in whole from the WAL record alone.
    8723             :      */
    8724      545812 :     if (oldbuf == newbuf && !need_tuple_data &&
    8725      262118 :         !XLogCheckBufferNeedsBackup(newbuf))
    8726             :     {
    8727      261248 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8728      261248 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8729      261248 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8730      261248 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8731             : 
    8732             :         /* Check for common prefix between old and new tuple */
    8733    20373932 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8734             :         {
    8735    20329182 :             if (newp[prefixlen] != oldp[prefixlen])
    8736      216498 :                 break;
    8737             :         }
    8738             : 
    8739             :         /*
    8740             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8741             :          * at least 3 bytes or there's no point.
    8742             :          */
    8743      261248 :         if (prefixlen < 3)
    8744       44130 :             prefixlen = 0;
    8745             : 
    8746             :         /* Same for suffix */
    8747     8567206 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8748             :         {
    8749     8522026 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8750      216068 :                 break;
    8751             :         }
    8752      261248 :         if (suffixlen < 3)
    8753       62636 :             suffixlen = 0;
    8754             :     }
    8755             : 
    8756             :     /* Prepare main WAL data chain */
    8757      545812 :     xlrec.flags = 0;
    8758      545812 :     if (all_visible_cleared)
    8759        2460 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8760      545812 :     if (new_all_visible_cleared)
    8761         964 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8762      545812 :     if (prefixlen > 0)
    8763      217118 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8764      545812 :     if (suffixlen > 0)
    8765      198612 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8766      545812 :     if (need_tuple_data)
    8767             :     {
    8768       94032 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8769       94032 :         if (old_key_tuple)
    8770             :         {
    8771         280 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8772         122 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8773             :             else
    8774         158 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8775             :         }
    8776             :     }
    8777             : 
    8778             :     /* If new tuple is the single and first tuple on page... */
    8779      551956 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8780        6144 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8781             :     {
    8782        6008 :         info |= XLOG_HEAP_INIT_PAGE;
    8783        6008 :         init = true;
    8784             :     }
    8785             :     else
    8786      539804 :         init = false;
    8787             : 
    8788             :     /* Prepare WAL data for the old page */
    8789      545812 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8790      545812 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8791     1091624 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8792      545812 :                                               oldtup->t_data->t_infomask2);
    8793             : 
    8794             :     /* Prepare WAL data for the new page */
    8795      545812 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8796      545812 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8797             : 
    8798      545812 :     bufflags = REGBUF_STANDARD;
    8799      545812 :     if (init)
    8800        6008 :         bufflags |= REGBUF_WILL_INIT;
    8801      545812 :     if (need_tuple_data)
    8802       94032 :         bufflags |= REGBUF_KEEP_DATA;
    8803             : 
    8804      545812 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8805      545812 :     if (oldbuf != newbuf)
    8806      259822 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8807             : 
    8808      545812 :     XLogRegisterData((char *) &xlrec, SizeOfHeapUpdate);
    8809             : 
    8810             :     /*
    8811             :      * Prepare WAL data for the new tuple.
    8812             :      */
    8813      545812 :     if (prefixlen > 0 || suffixlen > 0)
    8814             :     {
    8815      260378 :         if (prefixlen > 0 && suffixlen > 0)
    8816             :         {
    8817      155352 :             prefix_suffix[0] = prefixlen;
    8818      155352 :             prefix_suffix[1] = suffixlen;
    8819      155352 :             XLogRegisterBufData(0, (char *) &prefix_suffix, sizeof(uint16) * 2);
    8820             :         }
    8821      105026 :         else if (prefixlen > 0)
    8822             :         {
    8823       61766 :             XLogRegisterBufData(0, (char *) &prefixlen, sizeof(uint16));
    8824             :         }
    8825             :         else
    8826             :         {
    8827       43260 :             XLogRegisterBufData(0, (char *) &suffixlen, sizeof(uint16));
    8828             :         }
    8829             :     }
    8830             : 
    8831      545812 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    8832      545812 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    8833      545812 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    8834             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    8835             : 
    8836             :     /*
    8837             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    8838             :      *
    8839             :      * The 'data' doesn't include the common prefix or suffix.
    8840             :      */
    8841      545812 :     XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);
    8842      545812 :     if (prefixlen == 0)
    8843             :     {
    8844      328694 :         XLogRegisterBufData(0,
    8845      328694 :                             ((char *) newtup->t_data) + SizeofHeapTupleHeader,
    8846      328694 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    8847             :     }
    8848             :     else
    8849             :     {
    8850             :         /*
    8851             :          * Have to write the null bitmap and data after the common prefix as
    8852             :          * two separate rdata entries.
    8853             :          */
    8854             :         /* bitmap [+ padding] [+ oid] */
    8855      217118 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    8856             :         {
    8857      217118 :             XLogRegisterBufData(0,
    8858      217118 :                                 ((char *) newtup->t_data) + SizeofHeapTupleHeader,
    8859      217118 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    8860             :         }
    8861             : 
    8862             :         /* data after common prefix */
    8863      217118 :         XLogRegisterBufData(0,
    8864      217118 :                             ((char *) newtup->t_data) + newtup->t_data->t_hoff + prefixlen,
    8865      217118 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    8866             :     }
    8867             : 
    8868             :     /* We need to log a tuple identity */
    8869      545812 :     if (need_tuple_data && old_key_tuple)
    8870             :     {
    8871             :         /* don't really need this, but its more comfy to decode */
    8872         280 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    8873         280 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    8874         280 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    8875             : 
    8876         280 :         XLogRegisterData((char *) &xlhdr_idx, SizeOfHeapHeader);
    8877             : 
    8878             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    8879         280 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    8880         280 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    8881             :     }
    8882             : 
    8883             :     /* filtering by origin on a row level is much more efficient */
    8884      545812 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    8885             : 
    8886      545812 :     recptr = XLogInsert(RM_HEAP_ID, info);
    8887             : 
    8888      545812 :     return recptr;
    8889             : }
    8890             : 
    8891             : /*
    8892             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    8893             :  *
    8894             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    8895             :  * tuples.
    8896             :  */
    8897             : static XLogRecPtr
    8898       44376 : log_heap_new_cid(Relation relation, HeapTuple tup)
    8899             : {
    8900             :     xl_heap_new_cid xlrec;
    8901             : 
    8902             :     XLogRecPtr  recptr;
    8903       44376 :     HeapTupleHeader hdr = tup->t_data;
    8904             : 
    8905             :     Assert(ItemPointerIsValid(&tup->t_self));
    8906             :     Assert(tup->t_tableOid != InvalidOid);
    8907             : 
    8908       44376 :     xlrec.top_xid = GetTopTransactionId();
    8909       44376 :     xlrec.target_locator = relation->rd_locator;
    8910       44376 :     xlrec.target_tid = tup->t_self;
    8911             : 
    8912             :     /*
    8913             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    8914             :      * combo CID, set cmin and cmax.
    8915             :      */
    8916       44376 :     if (hdr->t_infomask & HEAP_COMBOCID)
    8917             :     {
    8918             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    8919             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    8920        3978 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    8921        3978 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    8922        3978 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    8923             :     }
    8924             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    8925             :     else
    8926             :     {
    8927             :         /*
    8928             :          * Tuple inserted.
    8929             :          *
    8930             :          * We need to check for LOCK ONLY because multixacts might be
    8931             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    8932             :          * which case there will be an xmax, although the tuple just got
    8933             :          * inserted.
    8934             :          */
    8935       40398 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    8936       11878 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    8937             :         {
    8938       28522 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    8939       28522 :             xlrec.cmax = InvalidCommandId;
    8940             :         }
    8941             :         /* Tuple from a different tx updated or deleted. */
    8942             :         else
    8943             :         {
    8944       11876 :             xlrec.cmin = InvalidCommandId;
    8945       11876 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    8946             :         }
    8947       40398 :         xlrec.combocid = InvalidCommandId;
    8948             :     }
    8949             : 
    8950             :     /*
    8951             :      * Note that we don't need to register the buffer here, because this
    8952             :      * operation does not modify the page. The insert/update/delete that
    8953             :      * called us certainly did, but that's WAL-logged separately.
    8954             :      */
    8955       44376 :     XLogBeginInsert();
    8956       44376 :     XLogRegisterData((char *) &xlrec, SizeOfHeapNewCid);
    8957             : 
    8958             :     /* will be looked at irrespective of origin */
    8959             : 
    8960       44376 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    8961             : 
    8962       44376 :     return recptr;
    8963             : }
    8964             : 
    8965             : /*
    8966             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    8967             :  * the old tuple in an UPDATE or DELETE.
    8968             :  *
    8969             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    8970             :  * key defined.
    8971             :  *
    8972             :  * Pass key_required true if any replica identity columns changed value, or if
    8973             :  * any of them have any external data.  Delete must always pass true.
    8974             :  *
    8975             :  * *copy is set to true if the returned tuple is a modified copy rather than
    8976             :  * the same tuple that was passed in.
    8977             :  */
    8978             : static HeapTuple
    8979     3465102 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    8980             :                        bool *copy)
    8981             : {
    8982     3465102 :     TupleDesc   desc = RelationGetDescr(relation);
    8983     3465102 :     char        replident = relation->rd_rel->relreplident;
    8984             :     Bitmapset  *idattrs;
    8985             :     HeapTuple   key_tuple;
    8986             :     bool        nulls[MaxHeapAttributeNumber];
    8987             :     Datum       values[MaxHeapAttributeNumber];
    8988             : 
    8989     3465102 :     *copy = false;
    8990             : 
    8991     3465102 :     if (!RelationIsLogicallyLogged(relation))
    8992     3264550 :         return NULL;
    8993             : 
    8994      200552 :     if (replident == REPLICA_IDENTITY_NOTHING)
    8995         462 :         return NULL;
    8996             : 
    8997      200090 :     if (replident == REPLICA_IDENTITY_FULL)
    8998             :     {
    8999             :         /*
    9000             :          * When logging the entire old tuple, it very well could contain
    9001             :          * toasted columns. If so, force them to be inlined.
    9002             :          */
    9003         372 :         if (HeapTupleHasExternal(tp))
    9004             :         {
    9005           8 :             *copy = true;
    9006           8 :             tp = toast_flatten_tuple(tp, desc);
    9007             :         }
    9008         372 :         return tp;
    9009             :     }
    9010             : 
    9011             :     /* if the key isn't required and we're only logging the key, we're done */
    9012      199718 :     if (!key_required)
    9013       93752 :         return NULL;
    9014             : 
    9015             :     /* find out the replica identity columns */
    9016      105966 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9017             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9018             : 
    9019             :     /*
    9020             :      * If there's no defined replica identity columns, treat as !key_required.
    9021             :      * (This case should not be reachable from heap_update, since that should
    9022             :      * calculate key_required accurately.  But heap_delete just passes
    9023             :      * constant true for key_required, so we can hit this case in deletes.)
    9024             :      */
    9025      105966 :     if (bms_is_empty(idattrs))
    9026       12042 :         return NULL;
    9027             : 
    9028             :     /*
    9029             :      * Construct a new tuple containing only the replica identity columns,
    9030             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9031             :      * identity columns aren't null.
    9032             :      */
    9033       93924 :     heap_deform_tuple(tp, desc, values, nulls);
    9034             : 
    9035      301746 :     for (int i = 0; i < desc->natts; i++)
    9036             :     {
    9037      207822 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9038             :                           idattrs))
    9039             :             Assert(!nulls[i]);
    9040             :         else
    9041      113880 :             nulls[i] = true;
    9042             :     }
    9043             : 
    9044       93924 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9045       93924 :     *copy = true;
    9046             : 
    9047       93924 :     bms_free(idattrs);
    9048             : 
    9049             :     /*
    9050             :      * If the tuple, which by here only contains indexed columns, still has
    9051             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9052             :      * since there's limits on the size of indexed columns, so we don't
    9053             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9054             :      * the indexed columns, even if it would be more efficient.
    9055             :      */
    9056       93924 :     if (HeapTupleHasExternal(key_tuple))
    9057             :     {
    9058           8 :         HeapTuple   oldtup = key_tuple;
    9059             : 
    9060           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9061           8 :         heap_freetuple(oldtup);
    9062             :     }
    9063             : 
    9064       93924 :     return key_tuple;
    9065             : }
    9066             : 
    9067             : /*
    9068             :  * HeapCheckForSerializableConflictOut
    9069             :  *      We are reading a tuple.  If it's not visible, there may be a
    9070             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9071             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9072             :  *
    9073             :  * We will determine the top level xid of the writing transaction with which
    9074             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9075             :  * for overlap with our own transaction.
    9076             :  *
    9077             :  * This function should be called just about anywhere in heapam.c where a
    9078             :  * tuple has been read. The caller must hold at least a shared lock on the
    9079             :  * buffer, because this function might set hint bits on the tuple. There is
    9080             :  * currently no known reason to call this function from an index AM.
    9081             :  */
    9082             : void
    9083    56878252 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9084             :                                     HeapTuple tuple, Buffer buffer,
    9085             :                                     Snapshot snapshot)
    9086             : {
    9087             :     TransactionId xid;
    9088             :     HTSV_Result htsvResult;
    9089             : 
    9090    56878252 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9091    56827582 :         return;
    9092             : 
    9093             :     /*
    9094             :      * Check to see whether the tuple has been written to by a concurrent
    9095             :      * transaction, either to create it not visible to us, or to delete it
    9096             :      * while it is visible to us.  The "visible" bool indicates whether the
    9097             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9098             :      * is going on with it.
    9099             :      *
    9100             :      * In the event of a concurrently inserted tuple that also happens to have
    9101             :      * been concurrently updated (by a separate transaction), the xmin of the
    9102             :      * tuple will be used -- not the updater's xid.
    9103             :      */
    9104       50670 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9105       50670 :     switch (htsvResult)
    9106             :     {
    9107       49066 :         case HEAPTUPLE_LIVE:
    9108       49066 :             if (visible)
    9109       49040 :                 return;
    9110          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9111          26 :             break;
    9112         704 :         case HEAPTUPLE_RECENTLY_DEAD:
    9113             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9114         704 :             if (visible)
    9115         562 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9116             :             else
    9117         142 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9118             : 
    9119         704 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9120             :             {
    9121             :                 /* This is like the HEAPTUPLE_DEAD case */
    9122             :                 Assert(!visible);
    9123         134 :                 return;
    9124             :             }
    9125         570 :             break;
    9126         652 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9127         652 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9128         652 :             break;
    9129         248 :         case HEAPTUPLE_DEAD:
    9130             :             Assert(!visible);
    9131         248 :             return;
    9132           0 :         default:
    9133             : 
    9134             :             /*
    9135             :              * The only way to get to this default clause is if a new value is
    9136             :              * added to the enum type without adding it to this switch
    9137             :              * statement.  That's a bug, so elog.
    9138             :              */
    9139           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9140             : 
    9141             :             /*
    9142             :              * In spite of having all enum values covered and calling elog on
    9143             :              * this default, some compilers think this is a code path which
    9144             :              * allows xid to be used below without initialization. Silence
    9145             :              * that warning.
    9146             :              */
    9147             :             xid = InvalidTransactionId;
    9148             :     }
    9149             : 
    9150             :     Assert(TransactionIdIsValid(xid));
    9151             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9152             : 
    9153             :     /*
    9154             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9155             :      * if it's our own xid.
    9156             :      */
    9157        1248 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9158         124 :         return;
    9159        1124 :     xid = SubTransGetTopmostTransaction(xid);
    9160        1124 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9161           0 :         return;
    9162             : 
    9163        1124 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9164             : }

Generated by: LCOV version 1.14