LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 2490 2717 91.6 %
Date: 2025-09-04 04:17:39 Functions: 82 82 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/injection_point.h"
      53             : #include "utils/inval.h"
      54             : #include "utils/spccache.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : 
      58             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      59             :                                      TransactionId xid, CommandId cid, int options);
      60             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      61             :                                   Buffer newbuf, HeapTuple oldtup,
      62             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      63             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      64             : #ifdef USE_ASSERT_CHECKING
      65             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      66             :                                                  ItemPointer otid,
      67             :                                                  HeapTuple newtup);
      68             : static void check_inplace_rel_lock(HeapTuple oldtup);
      69             : #endif
      70             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      71             :                                            Bitmapset *interesting_cols,
      72             :                                            Bitmapset *external_cols,
      73             :                                            HeapTuple oldtup, HeapTuple newtup,
      74             :                                            bool *has_external);
      75             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      76             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      77             :                                  bool *have_tuple_lock);
      78             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      79             :                                                    BlockNumber block,
      80             :                                                    ScanDirection dir);
      81             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      82             :                                                         ScanDirection dir);
      83             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      84             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      85             :                                       LockTupleMode mode, bool is_update,
      86             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      87             :                                       uint16 *result_infomask2);
      88             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      89             :                                          ItemPointer ctid, TransactionId xid,
      90             :                                          LockTupleMode mode);
      91             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      92             :                                    uint16 *new_infomask2);
      93             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      94             :                                              uint16 t_infomask);
      95             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      96             :                                     LockTupleMode lockmode, bool *current_is_member);
      97             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      98             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      99             :                             int *remaining);
     100             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
     101             :                                        uint16 infomask, Relation rel, int *remaining,
     102             :                                        bool logLockFailure);
     103             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     104             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     105             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     106             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     107             :                                         bool *copy);
     108             : 
     109             : 
     110             : /*
     111             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     112             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     113             :  * update them).  This table (and the macros below) helps us determine the
     114             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     115             :  * tuple lock strength.
     116             :  *
     117             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     118             :  *
     119             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     120             :  * instead.
     121             :  */
     122             : static const struct
     123             : {
     124             :     LOCKMODE    hwlock;
     125             :     int         lockstatus;
     126             :     int         updstatus;
     127             : }
     128             : 
     129             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     130             : {
     131             :     {                           /* LockTupleKeyShare */
     132             :         AccessShareLock,
     133             :         MultiXactStatusForKeyShare,
     134             :         -1                      /* KeyShare does not allow updating tuples */
     135             :     },
     136             :     {                           /* LockTupleShare */
     137             :         RowShareLock,
     138             :         MultiXactStatusForShare,
     139             :         -1                      /* Share does not allow updating tuples */
     140             :     },
     141             :     {                           /* LockTupleNoKeyExclusive */
     142             :         ExclusiveLock,
     143             :         MultiXactStatusForNoKeyUpdate,
     144             :         MultiXactStatusNoKeyUpdate
     145             :     },
     146             :     {                           /* LockTupleExclusive */
     147             :         AccessExclusiveLock,
     148             :         MultiXactStatusForUpdate,
     149             :         MultiXactStatusUpdate
     150             :     }
     151             : };
     152             : 
     153             : /* Get the LOCKMODE for a given MultiXactStatus */
     154             : #define LOCKMODE_from_mxstatus(status) \
     155             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     156             : 
     157             : /*
     158             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     159             :  * This is more readable than having every caller translate it to lock.h's
     160             :  * LOCKMODE.
     161             :  */
     162             : #define LockTupleTuplock(rel, tup, mode) \
     163             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     164             : #define UnlockTupleTuplock(rel, tup, mode) \
     165             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     166             : #define ConditionalLockTupleTuplock(rel, tup, mode, log) \
     167             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock, (log))
     168             : 
     169             : #ifdef USE_PREFETCH
     170             : /*
     171             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     172             :  * structure to coordinate prefetching activity
     173             :  */
     174             : typedef struct
     175             : {
     176             :     BlockNumber cur_hblkno;
     177             :     int         next_item;
     178             :     int         ndeltids;
     179             :     TM_IndexDelete *deltids;
     180             : } IndexDeletePrefetchState;
     181             : #endif
     182             : 
     183             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     184             : #define BOTTOMUP_MAX_NBLOCKS            6
     185             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     186             : 
     187             : /*
     188             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     189             :  * must visit to help its bottom-up index deletion caller
     190             :  */
     191             : typedef struct IndexDeleteCounts
     192             : {
     193             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     194             :     int16       ntids;          /* Number of TIDs in group */
     195             :     int16       ifirsttid;      /* Offset to group's first deltid */
     196             : } IndexDeleteCounts;
     197             : 
     198             : /*
     199             :  * This table maps tuple lock strength values for each particular
     200             :  * MultiXactStatus value.
     201             :  */
     202             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     203             : {
     204             :     LockTupleKeyShare,          /* ForKeyShare */
     205             :     LockTupleShare,             /* ForShare */
     206             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     207             :     LockTupleExclusive,         /* ForUpdate */
     208             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     209             :     LockTupleExclusive          /* Update */
     210             : };
     211             : 
     212             : /* Get the LockTupleMode for a given MultiXactStatus */
     213             : #define TUPLOCK_from_mxstatus(status) \
     214             :             (MultiXactStatusLock[(status)])
     215             : 
     216             : /*
     217             :  * Check that we have a valid snapshot if we might need TOAST access.
     218             :  */
     219             : static inline void
     220    20926062 : AssertHasSnapshotForToast(Relation rel)
     221             : {
     222             : #ifdef USE_ASSERT_CHECKING
     223             : 
     224             :     /* bootstrap mode in particular breaks this rule */
     225             :     if (!IsNormalProcessingMode())
     226             :         return;
     227             : 
     228             :     /* if the relation doesn't have a TOAST table, we are good */
     229             :     if (!OidIsValid(rel->rd_rel->reltoastrelid))
     230             :         return;
     231             : 
     232             :     Assert(HaveRegisteredOrActiveSnapshot());
     233             : 
     234             : #endif                          /* USE_ASSERT_CHECKING */
     235    20926062 : }
     236             : 
     237             : /* ----------------------------------------------------------------
     238             :  *                       heap support routines
     239             :  * ----------------------------------------------------------------
     240             :  */
     241             : 
     242             : /*
     243             :  * Streaming read API callback for parallel sequential scans. Returns the next
     244             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     245             :  */
     246             : static BlockNumber
     247      201580 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     248             :                                     void *callback_private_data,
     249             :                                     void *per_buffer_data)
     250             : {
     251      201580 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     252             : 
     253             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     254             :     Assert(scan->rs_base.rs_parallel);
     255             : 
     256      201580 :     if (unlikely(!scan->rs_inited))
     257             :     {
     258             :         /* parallel scan */
     259        2998 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     260        2998 :                                                  scan->rs_parallelworkerdata,
     261        2998 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     262             : 
     263             :         /* may return InvalidBlockNumber if there are no more blocks */
     264        5996 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     265        2998 :                                                                     scan->rs_parallelworkerdata,
     266        2998 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     267        2998 :         scan->rs_inited = true;
     268             :     }
     269             :     else
     270             :     {
     271      198582 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     272      198582 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     273      198582 :                                                                     scan->rs_base.rs_parallel);
     274             :     }
     275             : 
     276      201580 :     return scan->rs_prefetch_block;
     277             : }
     278             : 
     279             : /*
     280             :  * Streaming read API callback for serial sequential and TID range scans.
     281             :  * Returns the next block the caller wants from the read stream or
     282             :  * InvalidBlockNumber when done.
     283             :  */
     284             : static BlockNumber
     285     7502362 : heap_scan_stream_read_next_serial(ReadStream *stream,
     286             :                                   void *callback_private_data,
     287             :                                   void *per_buffer_data)
     288             : {
     289     7502362 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     290             : 
     291     7502362 :     if (unlikely(!scan->rs_inited))
     292             :     {
     293     1913890 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     294     1913890 :         scan->rs_inited = true;
     295             :     }
     296             :     else
     297     5588472 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     298             :                                                            scan->rs_prefetch_block,
     299             :                                                            scan->rs_dir);
     300             : 
     301     7502362 :     return scan->rs_prefetch_block;
     302             : }
     303             : 
     304             : /*
     305             :  * Read stream API callback for bitmap heap scans.
     306             :  * Returns the next block the caller wants from the read stream or
     307             :  * InvalidBlockNumber when done.
     308             :  */
     309             : static BlockNumber
     310      421086 : bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data,
     311             :                             void *per_buffer_data)
     312             : {
     313      421086 :     TBMIterateResult *tbmres = per_buffer_data;
     314      421086 :     BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) private_data;
     315      421086 :     HeapScanDesc hscan = (HeapScanDesc) bscan;
     316      421086 :     TableScanDesc sscan = &hscan->rs_base;
     317             : 
     318             :     for (;;)
     319             :     {
     320      421086 :         CHECK_FOR_INTERRUPTS();
     321             : 
     322             :         /* no more entries in the bitmap */
     323      421086 :         if (!tbm_iterate(&sscan->st.rs_tbmiterator, tbmres))
     324       20396 :             return InvalidBlockNumber;
     325             : 
     326             :         /*
     327             :          * Ignore any claimed entries past what we think is the end of the
     328             :          * relation. It may have been extended after the start of our scan (we
     329             :          * only hold an AccessShareLock, and it could be inserts from this
     330             :          * backend).  We don't take this optimization in SERIALIZABLE
     331             :          * isolation though, as we need to examine all invisible tuples
     332             :          * reachable by the index.
     333             :          */
     334      400690 :         if (!IsolationIsSerializable() &&
     335      400484 :             tbmres->blockno >= hscan->rs_nblocks)
     336           0 :             continue;
     337             : 
     338      400690 :         return tbmres->blockno;
     339             :     }
     340             : 
     341             :     /* not reachable */
     342             :     Assert(false);
     343             : }
     344             : 
     345             : /* ----------------
     346             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     347             :  * ----------------
     348             :  */
     349             : static void
     350     1956462 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     351             : {
     352     1956462 :     ParallelBlockTableScanDesc bpscan = NULL;
     353             :     bool        allow_strat;
     354             :     bool        allow_sync;
     355             : 
     356             :     /*
     357             :      * Determine the number of blocks we have to scan.
     358             :      *
     359             :      * It is sufficient to do this once at scan start, since any tuples added
     360             :      * while the scan is in progress will be invisible to my snapshot anyway.
     361             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     362             :      * guarantee to return tuples added after scan start anyway, since they
     363             :      * might go into pages we already scanned.  To guarantee consistent
     364             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     365             :      * lock that ensures the interesting tuple(s) won't change.)
     366             :      */
     367     1956462 :     if (scan->rs_base.rs_parallel != NULL)
     368             :     {
     369        4016 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     370        4016 :         scan->rs_nblocks = bpscan->phs_nblocks;
     371             :     }
     372             :     else
     373     1952446 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     374             : 
     375             :     /*
     376             :      * If the table is large relative to NBuffers, use a bulk-read access
     377             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     378             :      * the thresholds for these features could be different, we make them the
     379             :      * same so that there are only two behaviors to tune rather than four.
     380             :      * (However, some callers need to be able to disable one or both of these
     381             :      * behaviors, independently of the size of the table; also there is a GUC
     382             :      * variable that can disable synchronized scanning.)
     383             :      *
     384             :      * Note that table_block_parallelscan_initialize has a very similar test;
     385             :      * if you change this, consider changing that one, too.
     386             :      */
     387     1956458 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     388     1942086 :         scan->rs_nblocks > NBuffers / 4)
     389             :     {
     390       27558 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     391       27558 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     392             :     }
     393             :     else
     394     1928900 :         allow_strat = allow_sync = false;
     395             : 
     396     1956458 :     if (allow_strat)
     397             :     {
     398             :         /* During a rescan, keep the previous strategy object. */
     399       24972 :         if (scan->rs_strategy == NULL)
     400       24568 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     401             :     }
     402             :     else
     403             :     {
     404     1931486 :         if (scan->rs_strategy != NULL)
     405           0 :             FreeAccessStrategy(scan->rs_strategy);
     406     1931486 :         scan->rs_strategy = NULL;
     407             :     }
     408             : 
     409     1956458 :     if (scan->rs_base.rs_parallel != NULL)
     410             :     {
     411             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     412        4016 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     413           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     414             :         else
     415        4012 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     416             :     }
     417     1952442 :     else if (keep_startblock)
     418             :     {
     419             :         /*
     420             :          * When rescanning, we want to keep the previous startblock setting,
     421             :          * so that rewinding a cursor doesn't generate surprising results.
     422             :          * Reset the active syncscan setting, though.
     423             :          */
     424     1196266 :         if (allow_sync && synchronize_seqscans)
     425         100 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     426             :         else
     427     1196166 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     428             :     }
     429      756176 :     else if (allow_sync && synchronize_seqscans)
     430             :     {
     431         144 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     432         144 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     433             :     }
     434             :     else
     435             :     {
     436      756032 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     437      756032 :         scan->rs_startblock = 0;
     438             :     }
     439             : 
     440     1956458 :     scan->rs_numblocks = InvalidBlockNumber;
     441     1956458 :     scan->rs_inited = false;
     442     1956458 :     scan->rs_ctup.t_data = NULL;
     443     1956458 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     444     1956458 :     scan->rs_cbuf = InvalidBuffer;
     445     1956458 :     scan->rs_cblock = InvalidBlockNumber;
     446     1956458 :     scan->rs_ntuples = 0;
     447     1956458 :     scan->rs_cindex = 0;
     448             : 
     449             :     /*
     450             :      * Initialize to ForwardScanDirection because it is most common and
     451             :      * because heap scans go forward before going backward (e.g. CURSORs).
     452             :      */
     453     1956458 :     scan->rs_dir = ForwardScanDirection;
     454     1956458 :     scan->rs_prefetch_block = InvalidBlockNumber;
     455             : 
     456             :     /* page-at-a-time fields are always invalid when not rs_inited */
     457             : 
     458             :     /*
     459             :      * copy the scan key, if appropriate
     460             :      */
     461     1956458 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     462      437950 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     463             : 
     464             :     /*
     465             :      * Currently, we only have a stats counter for sequential heap scans (but
     466             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     467             :      * and for sample scans we update stats for tuple fetches).
     468             :      */
     469     1956458 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     470     1916234 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     471     1956458 : }
     472             : 
     473             : /*
     474             :  * heap_setscanlimits - restrict range of a heapscan
     475             :  *
     476             :  * startBlk is the page to start at
     477             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     478             :  */
     479             : void
     480        5618 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     481             : {
     482        5618 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     483             : 
     484             :     Assert(!scan->rs_inited);    /* else too late to change */
     485             :     /* else rs_startblock is significant */
     486             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     487             : 
     488             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     489             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     490             : 
     491        5618 :     scan->rs_startblock = startBlk;
     492        5618 :     scan->rs_numblocks = numBlks;
     493        5618 : }
     494             : 
     495             : /*
     496             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     497             :  * multiple times, with constant arguments for all_visible,
     498             :  * check_serializable.
     499             :  */
     500             : pg_attribute_always_inline
     501             : static int
     502     5564534 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     503             :                     Page page, Buffer buffer,
     504             :                     BlockNumber block, int lines,
     505             :                     bool all_visible, bool check_serializable)
     506             : {
     507     5564534 :     int         ntup = 0;
     508             :     OffsetNumber lineoff;
     509             : 
     510   280707538 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     511             :     {
     512   275143020 :         ItemId      lpp = PageGetItemId(page, lineoff);
     513             :         HeapTupleData loctup;
     514             :         bool        valid;
     515             : 
     516   275143020 :         if (!ItemIdIsNormal(lpp))
     517    58339050 :             continue;
     518             : 
     519   216803970 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     520   216803970 :         loctup.t_len = ItemIdGetLength(lpp);
     521   216803970 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     522   216803970 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     523             : 
     524   216803970 :         if (all_visible)
     525    85727218 :             valid = true;
     526             :         else
     527   131076752 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     528             : 
     529   216803970 :         if (check_serializable)
     530        2810 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     531             :                                                 &loctup, buffer, snapshot);
     532             : 
     533   216803954 :         if (valid)
     534             :         {
     535   199953100 :             scan->rs_vistuples[ntup] = lineoff;
     536   199953100 :             ntup++;
     537             :         }
     538             :     }
     539             : 
     540             :     Assert(ntup <= MaxHeapTuplesPerPage);
     541             : 
     542     5564518 :     return ntup;
     543             : }
     544             : 
     545             : /*
     546             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     547             :  *
     548             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     549             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     550             :  */
     551             : void
     552     5564534 : heap_prepare_pagescan(TableScanDesc sscan)
     553             : {
     554     5564534 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     555     5564534 :     Buffer      buffer = scan->rs_cbuf;
     556     5564534 :     BlockNumber block = scan->rs_cblock;
     557             :     Snapshot    snapshot;
     558             :     Page        page;
     559             :     int         lines;
     560             :     bool        all_visible;
     561             :     bool        check_serializable;
     562             : 
     563             :     Assert(BufferGetBlockNumber(buffer) == block);
     564             : 
     565             :     /* ensure we're not accidentally being used when not in pagemode */
     566             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     567     5564534 :     snapshot = scan->rs_base.rs_snapshot;
     568             : 
     569             :     /*
     570             :      * Prune and repair fragmentation for the whole page, if possible.
     571             :      */
     572     5564534 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     573             : 
     574             :     /*
     575             :      * We must hold share lock on the buffer content while examining tuple
     576             :      * visibility.  Afterwards, however, the tuples we have found to be
     577             :      * visible are guaranteed good as long as we hold the buffer pin.
     578             :      */
     579     5564534 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     580             : 
     581     5564534 :     page = BufferGetPage(buffer);
     582     5564534 :     lines = PageGetMaxOffsetNumber(page);
     583             : 
     584             :     /*
     585             :      * If the all-visible flag indicates that all tuples on the page are
     586             :      * visible to everyone, we can skip the per-tuple visibility tests.
     587             :      *
     588             :      * Note: In hot standby, a tuple that's already visible to all
     589             :      * transactions on the primary might still be invisible to a read-only
     590             :      * transaction in the standby. We partly handle this problem by tracking
     591             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     592             :      * page all-visible on the primary and WAL log that along with the
     593             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     594             :      * all transactions that can potentially may not see one or more tuples on
     595             :      * the page. That's how index-only scans work fine in hot standby. A
     596             :      * crucial difference between index-only scans and heap scans is that the
     597             :      * index-only scan completely relies on the visibility map where as heap
     598             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     599             :      * the page-level flag can be trusted in the same way, because it might
     600             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     601             :      * full page write. Until we can prove that beyond doubt, let's check each
     602             :      * tuple for visibility the hard way.
     603             :      */
     604     5564534 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     605             :     check_serializable =
     606     5564534 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     607             : 
     608             :     /*
     609             :      * We call page_collect_tuples() with constant arguments, to get the
     610             :      * compiler to constant fold the constant arguments. Separate calls with
     611             :      * constant arguments, rather than variables, are needed on several
     612             :      * compilers to actually perform constant folding.
     613             :      */
     614     5564534 :     if (likely(all_visible))
     615             :     {
     616     1990932 :         if (likely(!check_serializable))
     617     1990932 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     618             :                                                    block, lines, true, false);
     619             :         else
     620           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     621             :                                                    block, lines, true, true);
     622             :     }
     623             :     else
     624             :     {
     625     3573602 :         if (likely(!check_serializable))
     626     3572364 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     627             :                                                    block, lines, false, false);
     628             :         else
     629        1238 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     630             :                                                    block, lines, false, true);
     631             :     }
     632             : 
     633     5564518 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     634     5564518 : }
     635             : 
     636             : /*
     637             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     638             :  *
     639             :  * Read the next block of the scan relation from the read stream and save it
     640             :  * in the scan descriptor.  It is already pinned.
     641             :  */
     642             : static inline void
     643     7337236 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     644             : {
     645             :     Assert(scan->rs_read_stream);
     646             : 
     647             :     /* release previous scan buffer, if any */
     648     7337236 :     if (BufferIsValid(scan->rs_cbuf))
     649             :     {
     650     5420348 :         ReleaseBuffer(scan->rs_cbuf);
     651     5420348 :         scan->rs_cbuf = InvalidBuffer;
     652             :     }
     653             : 
     654             :     /*
     655             :      * Be sure to check for interrupts at least once per page.  Checks at
     656             :      * higher code levels won't be able to stop a seqscan that encounters many
     657             :      * pages' worth of consecutive dead tuples.
     658             :      */
     659     7337236 :     CHECK_FOR_INTERRUPTS();
     660             : 
     661             :     /*
     662             :      * If the scan direction is changing, reset the prefetch block to the
     663             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     664             :      * between the prefetch block and the current block again before
     665             :      * prefetching blocks in the new, correct scan direction.
     666             :      */
     667     7337236 :     if (unlikely(scan->rs_dir != dir))
     668             :     {
     669         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     670         154 :         read_stream_reset(scan->rs_read_stream);
     671             :     }
     672             : 
     673     7337236 :     scan->rs_dir = dir;
     674             : 
     675     7337236 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     676     7337186 :     if (BufferIsValid(scan->rs_cbuf))
     677     5745702 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     678     7337186 : }
     679             : 
     680             : /*
     681             :  * heapgettup_initial_block - return the first BlockNumber to scan
     682             :  *
     683             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     684             :  * occur with empty tables and in parallel scans when parallel workers get all
     685             :  * of the pages before we can get a chance to get our first page.
     686             :  */
     687             : static pg_noinline BlockNumber
     688     1913890 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     689             : {
     690             :     Assert(!scan->rs_inited);
     691             :     Assert(scan->rs_base.rs_parallel == NULL);
     692             : 
     693             :     /* When there are no pages to scan, return InvalidBlockNumber */
     694     1913890 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     695      931834 :         return InvalidBlockNumber;
     696             : 
     697      982056 :     if (ScanDirectionIsForward(dir))
     698             :     {
     699      981992 :         return scan->rs_startblock;
     700             :     }
     701             :     else
     702             :     {
     703             :         /*
     704             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     705             :          * very likely anyone else is doing the same thing at the same time,
     706             :          * and much more likely that we'll just bollix things for forward
     707             :          * scanners.
     708             :          */
     709          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     710             : 
     711             :         /*
     712             :          * Start from last page of the scan.  Ensure we take into account
     713             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     714             :          */
     715          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     716           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     717             : 
     718          58 :         if (scan->rs_startblock > 0)
     719           0 :             return scan->rs_startblock - 1;
     720             : 
     721          58 :         return scan->rs_nblocks - 1;
     722             :     }
     723             : }
     724             : 
     725             : 
     726             : /*
     727             :  * heapgettup_start_page - helper function for heapgettup()
     728             :  *
     729             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     730             :  * to the number of tuples on this page.  Also set *lineoff to the first
     731             :  * offset to scan with forward scans getting the first offset and backward
     732             :  * getting the final offset on the page.
     733             :  */
     734             : static Page
     735      189720 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     736             :                       OffsetNumber *lineoff)
     737             : {
     738             :     Page        page;
     739             : 
     740             :     Assert(scan->rs_inited);
     741             :     Assert(BufferIsValid(scan->rs_cbuf));
     742             : 
     743             :     /* Caller is responsible for ensuring buffer is locked if needed */
     744      189720 :     page = BufferGetPage(scan->rs_cbuf);
     745             : 
     746      189720 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     747             : 
     748      189720 :     if (ScanDirectionIsForward(dir))
     749      189720 :         *lineoff = FirstOffsetNumber;
     750             :     else
     751           0 :         *lineoff = (OffsetNumber) (*linesleft);
     752             : 
     753             :     /* lineoff now references the physically previous or next tid */
     754      189720 :     return page;
     755             : }
     756             : 
     757             : 
     758             : /*
     759             :  * heapgettup_continue_page - helper function for heapgettup()
     760             :  *
     761             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     762             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     763             :  * the next offset to scan according to the ScanDirection in 'dir'.
     764             :  */
     765             : static inline Page
     766    15696020 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     767             :                          OffsetNumber *lineoff)
     768             : {
     769             :     Page        page;
     770             : 
     771             :     Assert(scan->rs_inited);
     772             :     Assert(BufferIsValid(scan->rs_cbuf));
     773             : 
     774             :     /* Caller is responsible for ensuring buffer is locked if needed */
     775    15696020 :     page = BufferGetPage(scan->rs_cbuf);
     776             : 
     777    15696020 :     if (ScanDirectionIsForward(dir))
     778             :     {
     779    15696020 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     780    15696020 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     781             :     }
     782             :     else
     783             :     {
     784             :         /*
     785             :          * The previous returned tuple may have been vacuumed since the
     786             :          * previous scan when we use a non-MVCC snapshot, so we must
     787             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     788             :          */
     789           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     790           0 :         *linesleft = *lineoff;
     791             :     }
     792             : 
     793             :     /* lineoff now references the physically previous or next tid */
     794    15696020 :     return page;
     795             : }
     796             : 
     797             : /*
     798             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     799             :  *
     800             :  * Given the current block number, the scan direction, and various information
     801             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     802             :  * and return it.  If there are no further blocks to scan, return
     803             :  * InvalidBlockNumber to indicate this fact to the caller.
     804             :  *
     805             :  * This should not be called to determine the initial block number -- only for
     806             :  * subsequent blocks.
     807             :  *
     808             :  * This also adjusts rs_numblocks when a limit has been imposed by
     809             :  * heap_setscanlimits().
     810             :  */
     811             : static inline BlockNumber
     812     5588472 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     813             : {
     814             :     Assert(scan->rs_base.rs_parallel == NULL);
     815             : 
     816     5588472 :     if (likely(ScanDirectionIsForward(dir)))
     817             :     {
     818     5588354 :         block++;
     819             : 
     820             :         /* wrap back to the start of the heap */
     821     5588354 :         if (block >= scan->rs_nblocks)
     822      781456 :             block = 0;
     823             : 
     824             :         /*
     825             :          * Report our new scan position for synchronization purposes. We don't
     826             :          * do that when moving backwards, however. That would just mess up any
     827             :          * other forward-moving scanners.
     828             :          *
     829             :          * Note: we do this before checking for end of scan so that the final
     830             :          * state of the position hint is back at the start of the rel.  That's
     831             :          * not strictly necessary, but otherwise when you run the same query
     832             :          * multiple times the starting position would shift a little bit
     833             :          * backwards on every invocation, which is confusing. We don't
     834             :          * guarantee any specific ordering in general, though.
     835             :          */
     836     5588354 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     837       22530 :             ss_report_location(scan->rs_base.rs_rd, block);
     838             : 
     839             :         /* we're done if we're back at where we started */
     840     5588354 :         if (block == scan->rs_startblock)
     841      781374 :             return InvalidBlockNumber;
     842             : 
     843             :         /* check if the limit imposed by heap_setscanlimits() is met */
     844     4806980 :         if (scan->rs_numblocks != InvalidBlockNumber)
     845             :         {
     846        4932 :             if (--scan->rs_numblocks == 0)
     847        3056 :                 return InvalidBlockNumber;
     848             :         }
     849             : 
     850     4803924 :         return block;
     851             :     }
     852             :     else
     853             :     {
     854             :         /* we're done if the last block is the start position */
     855         118 :         if (block == scan->rs_startblock)
     856         118 :             return InvalidBlockNumber;
     857             : 
     858             :         /* check if the limit imposed by heap_setscanlimits() is met */
     859           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     860             :         {
     861           0 :             if (--scan->rs_numblocks == 0)
     862           0 :                 return InvalidBlockNumber;
     863             :         }
     864             : 
     865             :         /* wrap to the end of the heap when the last page was page 0 */
     866           0 :         if (block == 0)
     867           0 :             block = scan->rs_nblocks;
     868             : 
     869           0 :         block--;
     870             : 
     871           0 :         return block;
     872             :     }
     873             : }
     874             : 
     875             : /* ----------------
     876             :  *      heapgettup - fetch next heap tuple
     877             :  *
     878             :  *      Initialize the scan if not already done; then advance to the next
     879             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     880             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     881             :  *
     882             :  * Note: the reason nkeys/key are passed separately, even though they are
     883             :  * kept in the scan descriptor, is that the caller may not want us to check
     884             :  * the scankeys.
     885             :  *
     886             :  * Note: when we fall off the end of the scan in either direction, we
     887             :  * reset rs_inited.  This means that a further request with the same
     888             :  * scan direction will restart the scan, which is a bit odd, but a
     889             :  * request with the opposite scan direction will start a fresh scan
     890             :  * in the proper direction.  The latter is required behavior for cursors,
     891             :  * while the former case is generally undefined behavior in Postgres
     892             :  * so we don't care too much.
     893             :  * ----------------
     894             :  */
     895             : static void
     896    15736478 : heapgettup(HeapScanDesc scan,
     897             :            ScanDirection dir,
     898             :            int nkeys,
     899             :            ScanKey key)
     900             : {
     901    15736478 :     HeapTuple   tuple = &(scan->rs_ctup);
     902             :     Page        page;
     903             :     OffsetNumber lineoff;
     904             :     int         linesleft;
     905             : 
     906    15736478 :     if (likely(scan->rs_inited))
     907             :     {
     908             :         /* continue from previously returned page/tuple */
     909    15696020 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     910    15696020 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     911    15696020 :         goto continue_page;
     912             :     }
     913             : 
     914             :     /*
     915             :      * advance the scan until we find a qualifying tuple or run out of stuff
     916             :      * to scan
     917             :      */
     918             :     while (true)
     919             :     {
     920      229878 :         heap_fetch_next_buffer(scan, dir);
     921             : 
     922             :         /* did we run out of blocks to scan? */
     923      229878 :         if (!BufferIsValid(scan->rs_cbuf))
     924       40158 :             break;
     925             : 
     926             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     927             : 
     928      189720 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     929      189720 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     930    15885740 : continue_page:
     931             : 
     932             :         /*
     933             :          * Only continue scanning the page while we have lines left.
     934             :          *
     935             :          * Note that this protects us from accessing line pointers past
     936             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     937             :          * table scan, and for when we start scanning a new page.
     938             :          */
     939    15969660 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     940             :         {
     941             :             bool        visible;
     942    15780240 :             ItemId      lpp = PageGetItemId(page, lineoff);
     943             : 
     944    15780240 :             if (!ItemIdIsNormal(lpp))
     945       73462 :                 continue;
     946             : 
     947    15706778 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     948    15706778 :             tuple->t_len = ItemIdGetLength(lpp);
     949    15706778 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     950             : 
     951    15706778 :             visible = HeapTupleSatisfiesVisibility(tuple,
     952             :                                                    scan->rs_base.rs_snapshot,
     953             :                                                    scan->rs_cbuf);
     954             : 
     955    15706778 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     956             :                                                 tuple, scan->rs_cbuf,
     957             :                                                 scan->rs_base.rs_snapshot);
     958             : 
     959             :             /* skip tuples not visible to this snapshot */
     960    15706778 :             if (!visible)
     961       10458 :                 continue;
     962             : 
     963             :             /* skip any tuples that don't match the scan key */
     964    15696320 :             if (key != NULL &&
     965           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     966             :                              nkeys, key))
     967           0 :                 continue;
     968             : 
     969    15696320 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     970    15696320 :             scan->rs_coffset = lineoff;
     971    15696320 :             return;
     972             :         }
     973             : 
     974             :         /*
     975             :          * if we get here, it means we've exhausted the items on this page and
     976             :          * it's time to move to the next.
     977             :          */
     978      189420 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     979             :     }
     980             : 
     981             :     /* end of scan */
     982       40158 :     if (BufferIsValid(scan->rs_cbuf))
     983           0 :         ReleaseBuffer(scan->rs_cbuf);
     984             : 
     985       40158 :     scan->rs_cbuf = InvalidBuffer;
     986       40158 :     scan->rs_cblock = InvalidBlockNumber;
     987       40158 :     scan->rs_prefetch_block = InvalidBlockNumber;
     988       40158 :     tuple->t_data = NULL;
     989       40158 :     scan->rs_inited = false;
     990             : }
     991             : 
     992             : /* ----------------
     993             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     994             :  *
     995             :  *      Same API as heapgettup, but used in page-at-a-time mode
     996             :  *
     997             :  * The internal logic is much the same as heapgettup's too, but there are some
     998             :  * differences: we do not take the buffer content lock (that only needs to
     999             :  * happen inside heap_prepare_pagescan), and we iterate through just the
    1000             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
    1001             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
    1002             :  * heapgettup is 1-based.
    1003             :  * ----------------
    1004             :  */
    1005             : static void
    1006    99258218 : heapgettup_pagemode(HeapScanDesc scan,
    1007             :                     ScanDirection dir,
    1008             :                     int nkeys,
    1009             :                     ScanKey key)
    1010             : {
    1011    99258218 :     HeapTuple   tuple = &(scan->rs_ctup);
    1012             :     Page        page;
    1013             :     uint32      lineindex;
    1014             :     uint32      linesleft;
    1015             : 
    1016    99258218 :     if (likely(scan->rs_inited))
    1017             :     {
    1018             :         /* continue from previously returned page/tuple */
    1019    97381788 :         page = BufferGetPage(scan->rs_cbuf);
    1020             : 
    1021    97381788 :         lineindex = scan->rs_cindex + dir;
    1022    97381788 :         if (ScanDirectionIsForward(dir))
    1023    97381130 :             linesleft = scan->rs_ntuples - lineindex;
    1024             :         else
    1025         658 :             linesleft = scan->rs_cindex;
    1026             :         /* lineindex now references the next or previous visible tid */
    1027             : 
    1028    97381788 :         goto continue_page;
    1029             :     }
    1030             : 
    1031             :     /*
    1032             :      * advance the scan until we find a qualifying tuple or run out of stuff
    1033             :      * to scan
    1034             :      */
    1035             :     while (true)
    1036             :     {
    1037     7107358 :         heap_fetch_next_buffer(scan, dir);
    1038             : 
    1039             :         /* did we run out of blocks to scan? */
    1040     7107308 :         if (!BufferIsValid(scan->rs_cbuf))
    1041     1551326 :             break;
    1042             : 
    1043             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
    1044             : 
    1045             :         /* prune the page and determine visible tuple offsets */
    1046     5555982 :         heap_prepare_pagescan((TableScanDesc) scan);
    1047     5555966 :         page = BufferGetPage(scan->rs_cbuf);
    1048     5555966 :         linesleft = scan->rs_ntuples;
    1049     5555966 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
    1050             : 
    1051             :         /* block is the same for all tuples, set it once outside the loop */
    1052     5555966 :         ItemPointerSetBlockNumber(&tuple->t_self, scan->rs_cblock);
    1053             : 
    1054             :         /* lineindex now references the next or previous visible tid */
    1055   102937754 : continue_page:
    1056             : 
    1057   198764816 :         for (; linesleft > 0; linesleft--, lineindex += dir)
    1058             :         {
    1059             :             ItemId      lpp;
    1060             :             OffsetNumber lineoff;
    1061             : 
    1062             :             Assert(lineindex <= scan->rs_ntuples);
    1063   193533888 :             lineoff = scan->rs_vistuples[lineindex];
    1064   193533888 :             lpp = PageGetItemId(page, lineoff);
    1065             :             Assert(ItemIdIsNormal(lpp));
    1066             : 
    1067   193533888 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1068   193533888 :             tuple->t_len = ItemIdGetLength(lpp);
    1069   193533888 :             ItemPointerSetOffsetNumber(&tuple->t_self, lineoff);
    1070             : 
    1071             :             /* skip any tuples that don't match the scan key */
    1072   193533888 :             if (key != NULL &&
    1073    96657826 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1074             :                              nkeys, key))
    1075    95827062 :                 continue;
    1076             : 
    1077    97706826 :             scan->rs_cindex = lineindex;
    1078    97706826 :             return;
    1079             :         }
    1080             :     }
    1081             : 
    1082             :     /* end of scan */
    1083     1551326 :     if (BufferIsValid(scan->rs_cbuf))
    1084           0 :         ReleaseBuffer(scan->rs_cbuf);
    1085     1551326 :     scan->rs_cbuf = InvalidBuffer;
    1086     1551326 :     scan->rs_cblock = InvalidBlockNumber;
    1087     1551326 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1088     1551326 :     tuple->t_data = NULL;
    1089     1551326 :     scan->rs_inited = false;
    1090             : }
    1091             : 
    1092             : 
    1093             : /* ----------------------------------------------------------------
    1094             :  *                   heap access method interface
    1095             :  * ----------------------------------------------------------------
    1096             :  */
    1097             : 
    1098             : 
    1099             : TableScanDesc
    1100      760088 : heap_beginscan(Relation relation, Snapshot snapshot,
    1101             :                int nkeys, ScanKey key,
    1102             :                ParallelTableScanDesc parallel_scan,
    1103             :                uint32 flags)
    1104             : {
    1105             :     HeapScanDesc scan;
    1106             : 
    1107             :     /*
    1108             :      * increment relation ref count while scanning relation
    1109             :      *
    1110             :      * This is just to make really sure the relcache entry won't go away while
    1111             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1112             :      * anyway, so this is redundant in all normal scenarios...
    1113             :      */
    1114      760088 :     RelationIncrementReferenceCount(relation);
    1115             : 
    1116             :     /*
    1117             :      * allocate and initialize scan descriptor
    1118             :      */
    1119      760088 :     if (flags & SO_TYPE_BITMAPSCAN)
    1120             :     {
    1121       16198 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1122             : 
    1123             :         /*
    1124             :          * Bitmap Heap scans do not have any fields that a normal Heap Scan
    1125             :          * does not have, so no special initializations required here.
    1126             :          */
    1127       16198 :         scan = (HeapScanDesc) bscan;
    1128             :     }
    1129             :     else
    1130      743890 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1131             : 
    1132      760088 :     scan->rs_base.rs_rd = relation;
    1133      760088 :     scan->rs_base.rs_snapshot = snapshot;
    1134      760088 :     scan->rs_base.rs_nkeys = nkeys;
    1135      760088 :     scan->rs_base.rs_flags = flags;
    1136      760088 :     scan->rs_base.rs_parallel = parallel_scan;
    1137      760088 :     scan->rs_strategy = NULL;    /* set in initscan */
    1138      760088 :     scan->rs_cbuf = InvalidBuffer;
    1139             : 
    1140             :     /*
    1141             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1142             :      */
    1143      760088 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1144       57386 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1145             : 
    1146             :     /* Check that a historic snapshot is not used for non-catalog tables */
    1147      760088 :     if (snapshot &&
    1148      743164 :         IsHistoricMVCCSnapshot(snapshot) &&
    1149        1300 :         !RelationIsAccessibleInLogicalDecoding(relation))
    1150             :     {
    1151           0 :         ereport(ERROR,
    1152             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    1153             :                  errmsg("cannot query non-catalog table \"%s\" during logical decoding",
    1154             :                         RelationGetRelationName(relation))));
    1155             :     }
    1156             : 
    1157             :     /*
    1158             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1159             :      * predicate lock on the entire relation. This is required not only to
    1160             :      * lock all the matching tuples, but also to conflict with new insertions
    1161             :      * into the table. In an indexscan, we take page locks on the index pages
    1162             :      * covering the range specified in the scan qual, but in a heap scan there
    1163             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1164             :      * story, there we have already scanned the index and locked the index
    1165             :      * pages covering the predicate. But in that case we still have to lock
    1166             :      * any matching heap tuples. For sample scan we could optimize the locking
    1167             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1168             :      * locking for that.
    1169             :      */
    1170      760088 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1171             :     {
    1172             :         /*
    1173             :          * Ensure a missing snapshot is noticed reliably, even if the
    1174             :          * isolation mode means predicate locking isn't performed (and
    1175             :          * therefore the snapshot isn't used here).
    1176             :          */
    1177             :         Assert(snapshot);
    1178      724346 :         PredicateLockRelation(relation, snapshot);
    1179             :     }
    1180             : 
    1181             :     /* we only need to set this up once */
    1182      760088 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1183             : 
    1184             :     /*
    1185             :      * Allocate memory to keep track of page allocation for parallel workers
    1186             :      * when doing a parallel scan.
    1187             :      */
    1188      760088 :     if (parallel_scan != NULL)
    1189        3908 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1190             :     else
    1191      756180 :         scan->rs_parallelworkerdata = NULL;
    1192             : 
    1193             :     /*
    1194             :      * we do this here instead of in initscan() because heap_rescan also calls
    1195             :      * initscan() and we don't want to allocate memory again
    1196             :      */
    1197      760088 :     if (nkeys > 0)
    1198      437950 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1199             :     else
    1200      322138 :         scan->rs_base.rs_key = NULL;
    1201             : 
    1202      760088 :     initscan(scan, key, false);
    1203             : 
    1204      760084 :     scan->rs_read_stream = NULL;
    1205             : 
    1206             :     /*
    1207             :      * Set up a read stream for sequential scans and TID range scans. This
    1208             :      * should be done after initscan() because initscan() allocates the
    1209             :      * BufferAccessStrategy object passed to the read stream API.
    1210             :      */
    1211      760084 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1212       35888 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1213      726046 :     {
    1214             :         ReadStreamBlockNumberCB cb;
    1215             : 
    1216      726046 :         if (scan->rs_base.rs_parallel)
    1217        3908 :             cb = heap_scan_stream_read_next_parallel;
    1218             :         else
    1219      722138 :             cb = heap_scan_stream_read_next_serial;
    1220             : 
    1221             :         /* ---
    1222             :          * It is safe to use batchmode as the only locks taken by `cb`
    1223             :          * are never taken while waiting for IO:
    1224             :          * - SyncScanLock is used in the non-parallel case
    1225             :          * - in the parallel case, only spinlocks and atomics are used
    1226             :          * ---
    1227             :          */
    1228      726046 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL |
    1229             :                                                           READ_STREAM_USE_BATCHING,
    1230             :                                                           scan->rs_strategy,
    1231             :                                                           scan->rs_base.rs_rd,
    1232             :                                                           MAIN_FORKNUM,
    1233             :                                                           cb,
    1234             :                                                           scan,
    1235             :                                                           0);
    1236             :     }
    1237       34038 :     else if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1238             :     {
    1239       16198 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_DEFAULT |
    1240             :                                                           READ_STREAM_USE_BATCHING,
    1241             :                                                           scan->rs_strategy,
    1242             :                                                           scan->rs_base.rs_rd,
    1243             :                                                           MAIN_FORKNUM,
    1244             :                                                           bitmapheap_stream_read_next,
    1245             :                                                           scan,
    1246             :                                                           sizeof(TBMIterateResult));
    1247             :     }
    1248             : 
    1249             : 
    1250      760084 :     return (TableScanDesc) scan;
    1251             : }
    1252             : 
    1253             : void
    1254     1196374 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1255             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1256             : {
    1257     1196374 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1258             : 
    1259     1196374 :     if (set_params)
    1260             :     {
    1261          30 :         if (allow_strat)
    1262          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1263             :         else
    1264           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1265             : 
    1266          30 :         if (allow_sync)
    1267          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1268             :         else
    1269          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1270             : 
    1271          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1272          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1273          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1274             :         else
    1275           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1276             :     }
    1277             : 
    1278             :     /*
    1279             :      * unpin scan buffers
    1280             :      */
    1281     1196374 :     if (BufferIsValid(scan->rs_cbuf))
    1282             :     {
    1283        3038 :         ReleaseBuffer(scan->rs_cbuf);
    1284        3038 :         scan->rs_cbuf = InvalidBuffer;
    1285             :     }
    1286             : 
    1287             :     /*
    1288             :      * SO_TYPE_BITMAPSCAN would be cleaned up here, but it does not hold any
    1289             :      * additional data vs a normal HeapScan
    1290             :      */
    1291             : 
    1292             :     /*
    1293             :      * The read stream is reset on rescan. This must be done before
    1294             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1295             :      * in initscan().
    1296             :      */
    1297     1196374 :     if (scan->rs_read_stream)
    1298     1196338 :         read_stream_reset(scan->rs_read_stream);
    1299             : 
    1300             :     /*
    1301             :      * reinitialize scan descriptor
    1302             :      */
    1303     1196374 :     initscan(scan, key, true);
    1304     1196374 : }
    1305             : 
    1306             : void
    1307      755440 : heap_endscan(TableScanDesc sscan)
    1308             : {
    1309      755440 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1310             : 
    1311             :     /* Note: no locking manipulations needed */
    1312             : 
    1313             :     /*
    1314             :      * unpin scan buffers
    1315             :      */
    1316      755440 :     if (BufferIsValid(scan->rs_cbuf))
    1317      319106 :         ReleaseBuffer(scan->rs_cbuf);
    1318             : 
    1319             :     /*
    1320             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1321             :      */
    1322      755440 :     if (scan->rs_read_stream)
    1323      737706 :         read_stream_end(scan->rs_read_stream);
    1324             : 
    1325             :     /*
    1326             :      * decrement relation reference count and free scan descriptor storage
    1327             :      */
    1328      755440 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1329             : 
    1330      755440 :     if (scan->rs_base.rs_key)
    1331      437896 :         pfree(scan->rs_base.rs_key);
    1332             : 
    1333      755440 :     if (scan->rs_strategy != NULL)
    1334       24550 :         FreeAccessStrategy(scan->rs_strategy);
    1335             : 
    1336      755440 :     if (scan->rs_parallelworkerdata != NULL)
    1337        3908 :         pfree(scan->rs_parallelworkerdata);
    1338             : 
    1339      755440 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1340       80114 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1341             : 
    1342      755440 :     pfree(scan);
    1343      755440 : }
    1344             : 
    1345             : HeapTuple
    1346    20182878 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1347             : {
    1348    20182878 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1349             : 
    1350             :     /*
    1351             :      * This is still widely used directly, without going through table AM, so
    1352             :      * add a safety check.  It's possible we should, at a later point,
    1353             :      * downgrade this to an assert. The reason for checking the AM routine,
    1354             :      * rather than the AM oid, is that this allows to write regression tests
    1355             :      * that create another AM reusing the heap handler.
    1356             :      */
    1357    20182878 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1358           0 :         ereport(ERROR,
    1359             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1360             :                  errmsg_internal("only heap AM is supported")));
    1361             : 
    1362             :     /*
    1363             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1364             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1365             :      * these variables are declared.  Normally we have such a check at tableam
    1366             :      * level API but this is called from many places so we need to ensure it
    1367             :      * here.
    1368             :      */
    1369    20182878 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1370           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1371             : 
    1372             :     /* Note: no locking manipulations needed */
    1373             : 
    1374    20182878 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1375     5421980 :         heapgettup_pagemode(scan, direction,
    1376     5421980 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1377             :     else
    1378    14760898 :         heapgettup(scan, direction,
    1379    14760898 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1380             : 
    1381    20182878 :     if (scan->rs_ctup.t_data == NULL)
    1382      132282 :         return NULL;
    1383             : 
    1384             :     /*
    1385             :      * if we get here it means we have a new current scan tuple, so point to
    1386             :      * the proper return buffer and return the tuple.
    1387             :      */
    1388             : 
    1389    20050596 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1390             : 
    1391    20050596 :     return &scan->rs_ctup;
    1392             : }
    1393             : 
    1394             : bool
    1395    94803038 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1396             : {
    1397    94803038 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1398             : 
    1399             :     /* Note: no locking manipulations needed */
    1400             : 
    1401    94803038 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1402    93827458 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1403             :     else
    1404      975580 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1405             : 
    1406    94802988 :     if (scan->rs_ctup.t_data == NULL)
    1407             :     {
    1408     1459108 :         ExecClearTuple(slot);
    1409     1459108 :         return false;
    1410             :     }
    1411             : 
    1412             :     /*
    1413             :      * if we get here it means we have a new current scan tuple, so point to
    1414             :      * the proper return buffer and return the tuple.
    1415             :      */
    1416             : 
    1417    93343880 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1418             : 
    1419    93343880 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1420             :                              scan->rs_cbuf);
    1421    93343880 :     return true;
    1422             : }
    1423             : 
    1424             : void
    1425        1916 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1426             :                   ItemPointer maxtid)
    1427             : {
    1428        1916 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1429             :     BlockNumber startBlk;
    1430             :     BlockNumber numBlks;
    1431             :     ItemPointerData highestItem;
    1432             :     ItemPointerData lowestItem;
    1433             : 
    1434             :     /*
    1435             :      * For relations without any pages, we can simply leave the TID range
    1436             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1437             :      * the given TID range.
    1438             :      */
    1439        1916 :     if (scan->rs_nblocks == 0)
    1440          48 :         return;
    1441             : 
    1442             :     /*
    1443             :      * Set up some ItemPointers which point to the first and last possible
    1444             :      * tuples in the heap.
    1445             :      */
    1446        1904 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1447        1904 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1448             : 
    1449             :     /*
    1450             :      * If the given maximum TID is below the highest possible TID in the
    1451             :      * relation, then restrict the range to that, otherwise we scan to the end
    1452             :      * of the relation.
    1453             :      */
    1454        1904 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1455         136 :         ItemPointerCopy(maxtid, &highestItem);
    1456             : 
    1457             :     /*
    1458             :      * If the given minimum TID is above the lowest possible TID in the
    1459             :      * relation, then restrict the range to only scan for TIDs above that.
    1460             :      */
    1461        1904 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1462        1762 :         ItemPointerCopy(mintid, &lowestItem);
    1463             : 
    1464             :     /*
    1465             :      * Check for an empty range and protect from would be negative results
    1466             :      * from the numBlks calculation below.
    1467             :      */
    1468        1904 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1469             :     {
    1470             :         /* Set an empty range of blocks to scan */
    1471          36 :         heap_setscanlimits(sscan, 0, 0);
    1472          36 :         return;
    1473             :     }
    1474             : 
    1475             :     /*
    1476             :      * Calculate the first block and the number of blocks we must scan. We
    1477             :      * could be more aggressive here and perform some more validation to try
    1478             :      * and further narrow the scope of blocks to scan by checking if the
    1479             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1480             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1481             :      * we could scan one fewer blocks.  However, such an optimization does not
    1482             :      * seem worth troubling over, currently.
    1483             :      */
    1484        1868 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1485             : 
    1486        1868 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1487        1868 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1488             : 
    1489             :     /* Set the start block and number of blocks to scan */
    1490        1868 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1491             : 
    1492             :     /* Finally, set the TID range in sscan */
    1493        1868 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1494        1868 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1495             : }
    1496             : 
    1497             : bool
    1498        8594 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1499             :                           TupleTableSlot *slot)
    1500             : {
    1501        8594 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1502        8594 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1503        8594 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1504             : 
    1505             :     /* Note: no locking manipulations needed */
    1506             :     for (;;)
    1507             :     {
    1508        8780 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1509        8780 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1510             :         else
    1511           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1512             : 
    1513        8764 :         if (scan->rs_ctup.t_data == NULL)
    1514             :         {
    1515          94 :             ExecClearTuple(slot);
    1516          94 :             return false;
    1517             :         }
    1518             : 
    1519             :         /*
    1520             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1521             :          * range of pages we scan to only ones that can contain the TID range
    1522             :          * we're scanning for.  Here we must filter out any tuples from these
    1523             :          * pages that are outside of that range.
    1524             :          */
    1525        8670 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1526             :         {
    1527         186 :             ExecClearTuple(slot);
    1528             : 
    1529             :             /*
    1530             :              * When scanning backwards, the TIDs will be in descending order.
    1531             :              * Future tuples in this direction will be lower still, so we can
    1532             :              * just return false to indicate there will be no more tuples.
    1533             :              */
    1534         186 :             if (ScanDirectionIsBackward(direction))
    1535           0 :                 return false;
    1536             : 
    1537         186 :             continue;
    1538             :         }
    1539             : 
    1540             :         /*
    1541             :          * Likewise for the final page, we must filter out TIDs greater than
    1542             :          * maxtid.
    1543             :          */
    1544        8484 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1545             :         {
    1546          72 :             ExecClearTuple(slot);
    1547             : 
    1548             :             /*
    1549             :              * When scanning forward, the TIDs will be in ascending order.
    1550             :              * Future tuples in this direction will be higher still, so we can
    1551             :              * just return false to indicate there will be no more tuples.
    1552             :              */
    1553          72 :             if (ScanDirectionIsForward(direction))
    1554          72 :                 return false;
    1555           0 :             continue;
    1556             :         }
    1557             : 
    1558        8412 :         break;
    1559             :     }
    1560             : 
    1561             :     /*
    1562             :      * if we get here it means we have a new current scan tuple, so point to
    1563             :      * the proper return buffer and return the tuple.
    1564             :      */
    1565        8412 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1566             : 
    1567        8412 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1568        8412 :     return true;
    1569             : }
    1570             : 
    1571             : /*
    1572             :  *  heap_fetch      - retrieve tuple with given tid
    1573             :  *
    1574             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1575             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1576             :  * against the specified snapshot.
    1577             :  *
    1578             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1579             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1580             :  * must unpin the buffer when done with the tuple.
    1581             :  *
    1582             :  * If the tuple is not found (ie, item number references a deleted slot),
    1583             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1584             :  * and false is returned.
    1585             :  *
    1586             :  * If the tuple is found but fails the time qual check, then the behavior
    1587             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1588             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1589             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1590             :  * and again the caller must unpin the buffer; but false is returned.
    1591             :  *
    1592             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1593             :  * be fetched.
    1594             :  *
    1595             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1596             :  * return false on invalid item number.  There are a couple of reasons though.
    1597             :  * One is that the caller can relatively easily check the block number for
    1598             :  * validity, but cannot check the item number without reading the page
    1599             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1600             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1601             :  * truncate off the destination page without having killed the referencing
    1602             :  * tuple first), but the item number might well not be good.
    1603             :  */
    1604             : bool
    1605      355320 : heap_fetch(Relation relation,
    1606             :            Snapshot snapshot,
    1607             :            HeapTuple tuple,
    1608             :            Buffer *userbuf,
    1609             :            bool keep_buf)
    1610             : {
    1611      355320 :     ItemPointer tid = &(tuple->t_self);
    1612             :     ItemId      lp;
    1613             :     Buffer      buffer;
    1614             :     Page        page;
    1615             :     OffsetNumber offnum;
    1616             :     bool        valid;
    1617             : 
    1618             :     /*
    1619             :      * Fetch and pin the appropriate page of the relation.
    1620             :      */
    1621      355320 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1622             : 
    1623             :     /*
    1624             :      * Need share lock on buffer to examine tuple commit status.
    1625             :      */
    1626      355304 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1627      355304 :     page = BufferGetPage(buffer);
    1628             : 
    1629             :     /*
    1630             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1631             :      * TID was obtained.
    1632             :      */
    1633      355304 :     offnum = ItemPointerGetOffsetNumber(tid);
    1634      355304 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1635             :     {
    1636           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1637           6 :         ReleaseBuffer(buffer);
    1638           6 :         *userbuf = InvalidBuffer;
    1639           6 :         tuple->t_data = NULL;
    1640           6 :         return false;
    1641             :     }
    1642             : 
    1643             :     /*
    1644             :      * get the item line pointer corresponding to the requested tid
    1645             :      */
    1646      355298 :     lp = PageGetItemId(page, offnum);
    1647             : 
    1648             :     /*
    1649             :      * Must check for deleted tuple.
    1650             :      */
    1651      355298 :     if (!ItemIdIsNormal(lp))
    1652             :     {
    1653         690 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1654         690 :         ReleaseBuffer(buffer);
    1655         690 :         *userbuf = InvalidBuffer;
    1656         690 :         tuple->t_data = NULL;
    1657         690 :         return false;
    1658             :     }
    1659             : 
    1660             :     /*
    1661             :      * fill in *tuple fields
    1662             :      */
    1663      354608 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1664      354608 :     tuple->t_len = ItemIdGetLength(lp);
    1665      354608 :     tuple->t_tableOid = RelationGetRelid(relation);
    1666             : 
    1667             :     /*
    1668             :      * check tuple visibility, then release lock
    1669             :      */
    1670      354608 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1671             : 
    1672      354608 :     if (valid)
    1673      354514 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1674      354514 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1675             : 
    1676      354608 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1677             : 
    1678      354608 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1679             : 
    1680      354608 :     if (valid)
    1681             :     {
    1682             :         /*
    1683             :          * All checks passed, so return the tuple as valid. Caller is now
    1684             :          * responsible for releasing the buffer.
    1685             :          */
    1686      354514 :         *userbuf = buffer;
    1687             : 
    1688      354514 :         return true;
    1689             :     }
    1690             : 
    1691             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1692          94 :     if (keep_buf)
    1693          58 :         *userbuf = buffer;
    1694             :     else
    1695             :     {
    1696          36 :         ReleaseBuffer(buffer);
    1697          36 :         *userbuf = InvalidBuffer;
    1698          36 :         tuple->t_data = NULL;
    1699             :     }
    1700             : 
    1701          94 :     return false;
    1702             : }
    1703             : 
    1704             : /*
    1705             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1706             :  *
    1707             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1708             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1709             :  * for the first chain member satisfying the given snapshot.  If one is
    1710             :  * found, we update *tid to reference that tuple's offset number, and
    1711             :  * return true.  If no match, return false without modifying *tid.
    1712             :  *
    1713             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1714             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1715             :  * contents of this buffer on return are undefined.
    1716             :  *
    1717             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1718             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1719             :  * are vacuumable, false if not.
    1720             :  *
    1721             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1722             :  * lock on the buffer; it is still pinned/locked at exit.
    1723             :  */
    1724             : bool
    1725    44873364 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1726             :                        Snapshot snapshot, HeapTuple heapTuple,
    1727             :                        bool *all_dead, bool first_call)
    1728             : {
    1729    44873364 :     Page        page = BufferGetPage(buffer);
    1730    44873364 :     TransactionId prev_xmax = InvalidTransactionId;
    1731             :     BlockNumber blkno;
    1732             :     OffsetNumber offnum;
    1733             :     bool        at_chain_start;
    1734             :     bool        valid;
    1735             :     bool        skip;
    1736    44873364 :     GlobalVisState *vistest = NULL;
    1737             : 
    1738             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1739    44873364 :     if (all_dead)
    1740    38386900 :         *all_dead = first_call;
    1741             : 
    1742    44873364 :     blkno = ItemPointerGetBlockNumber(tid);
    1743    44873364 :     offnum = ItemPointerGetOffsetNumber(tid);
    1744    44873364 :     at_chain_start = first_call;
    1745    44873364 :     skip = !first_call;
    1746             : 
    1747             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1748             :     Assert(TransactionIdIsValid(RecentXmin));
    1749             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1750             : 
    1751             :     /* Scan through possible multiple members of HOT-chain */
    1752             :     for (;;)
    1753     2910478 :     {
    1754             :         ItemId      lp;
    1755             : 
    1756             :         /* check for bogus TID */
    1757    47783842 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1758             :             break;
    1759             : 
    1760    47783842 :         lp = PageGetItemId(page, offnum);
    1761             : 
    1762             :         /* check for unused, dead, or redirected items */
    1763    47783842 :         if (!ItemIdIsNormal(lp))
    1764             :         {
    1765             :             /* We should only see a redirect at start of chain */
    1766     1773530 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1767             :             {
    1768             :                 /* Follow the redirect */
    1769     1012250 :                 offnum = ItemIdGetRedirect(lp);
    1770     1012250 :                 at_chain_start = false;
    1771     1012250 :                 continue;
    1772             :             }
    1773             :             /* else must be end of chain */
    1774      761280 :             break;
    1775             :         }
    1776             : 
    1777             :         /*
    1778             :          * Update heapTuple to point to the element of the HOT chain we're
    1779             :          * currently investigating. Having t_self set correctly is important
    1780             :          * because the SSI checks and the *Satisfies routine for historical
    1781             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1782             :          */
    1783    46010312 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1784    46010312 :         heapTuple->t_len = ItemIdGetLength(lp);
    1785    46010312 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1786    46010312 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1787             : 
    1788             :         /*
    1789             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1790             :          */
    1791    46010312 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1792           0 :             break;
    1793             : 
    1794             :         /*
    1795             :          * The xmin should match the previous xmax value, else chain is
    1796             :          * broken.
    1797             :          */
    1798    47908540 :         if (TransactionIdIsValid(prev_xmax) &&
    1799     1898228 :             !TransactionIdEquals(prev_xmax,
    1800             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1801           0 :             break;
    1802             : 
    1803             :         /*
    1804             :          * When first_call is true (and thus, skip is initially false) we'll
    1805             :          * return the first tuple we find.  But on later passes, heapTuple
    1806             :          * will initially be pointing to the tuple we returned last time.
    1807             :          * Returning it again would be incorrect (and would loop forever), so
    1808             :          * we skip it and return the next match we find.
    1809             :          */
    1810    46010312 :         if (!skip)
    1811             :         {
    1812             :             /* If it's visible per the snapshot, we must return it */
    1813    45847498 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1814    45847498 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1815             :                                                 buffer, snapshot);
    1816             : 
    1817    45847488 :             if (valid)
    1818             :             {
    1819    31677526 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1820    31677526 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1821    31677526 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1822    31677526 :                 if (all_dead)
    1823    25764152 :                     *all_dead = false;
    1824    31677526 :                 return true;
    1825             :             }
    1826             :         }
    1827    14332776 :         skip = false;
    1828             : 
    1829             :         /*
    1830             :          * If we can't see it, maybe no one else can either.  At caller
    1831             :          * request, check whether all chain members are dead to all
    1832             :          * transactions.
    1833             :          *
    1834             :          * Note: if you change the criterion here for what is "dead", fix the
    1835             :          * planner's get_actual_variable_range() function to match.
    1836             :          */
    1837    14332776 :         if (all_dead && *all_dead)
    1838             :         {
    1839    12898178 :             if (!vistest)
    1840    12643720 :                 vistest = GlobalVisTestFor(relation);
    1841             : 
    1842    12898178 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1843    12182534 :                 *all_dead = false;
    1844             :         }
    1845             : 
    1846             :         /*
    1847             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1848             :          * the next offnum and loop around.
    1849             :          */
    1850    14332776 :         if (HeapTupleIsHotUpdated(heapTuple))
    1851             :         {
    1852             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1853             :                    blkno);
    1854     1898228 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1855     1898228 :             at_chain_start = false;
    1856     1898228 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1857             :         }
    1858             :         else
    1859    12434548 :             break;              /* end of chain */
    1860             :     }
    1861             : 
    1862    13195828 :     return false;
    1863             : }
    1864             : 
    1865             : /*
    1866             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1867             :  *
    1868             :  * Actually, this gets the latest version that is visible according to the
    1869             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1870             :  * possibly uncommitted version.
    1871             :  *
    1872             :  * *tid is both an input and an output parameter: it is updated to
    1873             :  * show the latest version of the row.  Note that it will not be changed
    1874             :  * if no version of the row passes the snapshot test.
    1875             :  */
    1876             : void
    1877         300 : heap_get_latest_tid(TableScanDesc sscan,
    1878             :                     ItemPointer tid)
    1879             : {
    1880         300 :     Relation    relation = sscan->rs_rd;
    1881         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1882             :     ItemPointerData ctid;
    1883             :     TransactionId priorXmax;
    1884             : 
    1885             :     /*
    1886             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1887             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1888             :      * ones in the table.
    1889             :      */
    1890             :     Assert(ItemPointerIsValid(tid));
    1891             : 
    1892             :     /*
    1893             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1894             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1895             :      * to be bogus.
    1896             :      *
    1897             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1898             :      * Depending on the snapshot passed, there might be at most one visible
    1899             :      * version of the row, but we don't try to optimize for that.
    1900             :      */
    1901         300 :     ctid = *tid;
    1902         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1903             :     for (;;)
    1904          90 :     {
    1905             :         Buffer      buffer;
    1906             :         Page        page;
    1907             :         OffsetNumber offnum;
    1908             :         ItemId      lp;
    1909             :         HeapTupleData tp;
    1910             :         bool        valid;
    1911             : 
    1912             :         /*
    1913             :          * Read, pin, and lock the page.
    1914             :          */
    1915         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1916         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1917         390 :         page = BufferGetPage(buffer);
    1918             : 
    1919             :         /*
    1920             :          * Check for bogus item number.  This is not treated as an error
    1921             :          * condition because it can happen while following a t_ctid link. We
    1922             :          * just assume that the prior tid is OK and return it unchanged.
    1923             :          */
    1924         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1925         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1926             :         {
    1927           0 :             UnlockReleaseBuffer(buffer);
    1928           0 :             break;
    1929             :         }
    1930         390 :         lp = PageGetItemId(page, offnum);
    1931         390 :         if (!ItemIdIsNormal(lp))
    1932             :         {
    1933           0 :             UnlockReleaseBuffer(buffer);
    1934           0 :             break;
    1935             :         }
    1936             : 
    1937             :         /* OK to access the tuple */
    1938         390 :         tp.t_self = ctid;
    1939         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1940         390 :         tp.t_len = ItemIdGetLength(lp);
    1941         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1942             : 
    1943             :         /*
    1944             :          * After following a t_ctid link, we might arrive at an unrelated
    1945             :          * tuple.  Check for XMIN match.
    1946             :          */
    1947         480 :         if (TransactionIdIsValid(priorXmax) &&
    1948          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1949             :         {
    1950           0 :             UnlockReleaseBuffer(buffer);
    1951           0 :             break;
    1952             :         }
    1953             : 
    1954             :         /*
    1955             :          * Check tuple visibility; if visible, set it as the new result
    1956             :          * candidate.
    1957             :          */
    1958         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1959         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1960         390 :         if (valid)
    1961         276 :             *tid = ctid;
    1962             : 
    1963             :         /*
    1964             :          * If there's a valid t_ctid link, follow it, else we're done.
    1965             :          */
    1966         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1967         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1968         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1969         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1970             :         {
    1971         300 :             UnlockReleaseBuffer(buffer);
    1972         300 :             break;
    1973             :         }
    1974             : 
    1975          90 :         ctid = tp.t_data->t_ctid;
    1976          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1977          90 :         UnlockReleaseBuffer(buffer);
    1978             :     }                           /* end of loop */
    1979         300 : }
    1980             : 
    1981             : 
    1982             : /*
    1983             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1984             :  *
    1985             :  * This is called after we have waited for the XMAX transaction to terminate.
    1986             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1987             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1988             :  * hint bit if possible --- but beware that that may not yet be possible,
    1989             :  * if the transaction committed asynchronously.
    1990             :  *
    1991             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1992             :  * even if it commits.
    1993             :  *
    1994             :  * Hence callers should look only at XMAX_INVALID.
    1995             :  *
    1996             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1997             :  */
    1998             : static void
    1999         350 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    2000             : {
    2001             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    2002             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    2003             : 
    2004         350 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    2005             :     {
    2006         634 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    2007         284 :             TransactionIdDidCommit(xid))
    2008         232 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    2009             :                                  xid);
    2010             :         else
    2011         118 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    2012             :                                  InvalidTransactionId);
    2013             :     }
    2014         350 : }
    2015             : 
    2016             : 
    2017             : /*
    2018             :  * GetBulkInsertState - prepare status object for a bulk insert
    2019             :  */
    2020             : BulkInsertState
    2021        4650 : GetBulkInsertState(void)
    2022             : {
    2023             :     BulkInsertState bistate;
    2024             : 
    2025        4650 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    2026        4650 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    2027        4650 :     bistate->current_buf = InvalidBuffer;
    2028        4650 :     bistate->next_free = InvalidBlockNumber;
    2029        4650 :     bistate->last_free = InvalidBlockNumber;
    2030        4650 :     bistate->already_extended_by = 0;
    2031        4650 :     return bistate;
    2032             : }
    2033             : 
    2034             : /*
    2035             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    2036             :  */
    2037             : void
    2038        4364 : FreeBulkInsertState(BulkInsertState bistate)
    2039             : {
    2040        4364 :     if (bistate->current_buf != InvalidBuffer)
    2041        3482 :         ReleaseBuffer(bistate->current_buf);
    2042        4364 :     FreeAccessStrategy(bistate->strategy);
    2043        4364 :     pfree(bistate);
    2044        4364 : }
    2045             : 
    2046             : /*
    2047             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    2048             :  */
    2049             : void
    2050      161516 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    2051             : {
    2052      161516 :     if (bistate->current_buf != InvalidBuffer)
    2053       60042 :         ReleaseBuffer(bistate->current_buf);
    2054      161516 :     bistate->current_buf = InvalidBuffer;
    2055             : 
    2056             :     /*
    2057             :      * Despite the name, we also reset bulk relation extension state.
    2058             :      * Otherwise we can end up erroring out due to looking for free space in
    2059             :      * ->next_free of one partition, even though ->next_free was set when
    2060             :      * extending another partition. It could obviously also be bad for
    2061             :      * efficiency to look at existing blocks at offsets from another
    2062             :      * partition, even if we don't error out.
    2063             :      */
    2064      161516 :     bistate->next_free = InvalidBlockNumber;
    2065      161516 :     bistate->last_free = InvalidBlockNumber;
    2066      161516 : }
    2067             : 
    2068             : 
    2069             : /*
    2070             :  *  heap_insert     - insert tuple into a heap
    2071             :  *
    2072             :  * The new tuple is stamped with current transaction ID and the specified
    2073             :  * command ID.
    2074             :  *
    2075             :  * See table_tuple_insert for comments about most of the input flags, except
    2076             :  * that this routine directly takes a tuple rather than a slot.
    2077             :  *
    2078             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    2079             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    2080             :  * implement table_tuple_insert_speculative().
    2081             :  *
    2082             :  * On return the header fields of *tup are updated to match the stored tuple;
    2083             :  * in particular tup->t_self receives the actual TID where the tuple was
    2084             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2085             :  * reflected into *tup.
    2086             :  */
    2087             : void
    2088    16634354 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2089             :             int options, BulkInsertState bistate)
    2090             : {
    2091    16634354 :     TransactionId xid = GetCurrentTransactionId();
    2092             :     HeapTuple   heaptup;
    2093             :     Buffer      buffer;
    2094    16634342 :     Buffer      vmbuffer = InvalidBuffer;
    2095    16634342 :     bool        all_visible_cleared = false;
    2096             : 
    2097             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2098             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2099             :            RelationGetNumberOfAttributes(relation));
    2100             : 
    2101    16634342 :     AssertHasSnapshotForToast(relation);
    2102             : 
    2103             :     /*
    2104             :      * Fill in tuple header fields and toast the tuple if necessary.
    2105             :      *
    2106             :      * Note: below this point, heaptup is the data we actually intend to store
    2107             :      * into the relation; tup is the caller's original untoasted data.
    2108             :      */
    2109    16634342 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2110             : 
    2111             :     /*
    2112             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2113             :      * this will also pin the requisite visibility map page.
    2114             :      */
    2115    16634342 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2116             :                                        InvalidBuffer, options, bistate,
    2117             :                                        &vmbuffer, NULL,
    2118             :                                        0);
    2119             : 
    2120             :     /*
    2121             :      * We're about to do the actual insert -- but check for conflict first, to
    2122             :      * avoid possibly having to roll back work we've just done.
    2123             :      *
    2124             :      * This is safe without a recheck as long as there is no possibility of
    2125             :      * another process scanning the page between this check and the insert
    2126             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2127             :      * continuously held from this point until the tuple insert is visible).
    2128             :      *
    2129             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2130             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2131             :      * page locks are only consolidated versions of tuple locks; they do not
    2132             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2133             :      * buffer when making the call, which makes for a faster check.
    2134             :      */
    2135    16634342 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2136             : 
    2137             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2138    16634318 :     START_CRIT_SECTION();
    2139             : 
    2140    16634318 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2141    16634318 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2142             : 
    2143    16634318 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2144             :     {
    2145       14178 :         all_visible_cleared = true;
    2146       14178 :         PageClearAllVisible(BufferGetPage(buffer));
    2147       14178 :         visibilitymap_clear(relation,
    2148       14178 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2149             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2150             :     }
    2151             : 
    2152             :     /*
    2153             :      * XXX Should we set PageSetPrunable on this page ?
    2154             :      *
    2155             :      * The inserting transaction may eventually abort thus making this tuple
    2156             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2157             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2158             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2159             :      *
    2160             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2161             :      */
    2162             : 
    2163    16634318 :     MarkBufferDirty(buffer);
    2164             : 
    2165             :     /* XLOG stuff */
    2166    16634318 :     if (RelationNeedsWAL(relation))
    2167             :     {
    2168             :         xl_heap_insert xlrec;
    2169             :         xl_heap_header xlhdr;
    2170             :         XLogRecPtr  recptr;
    2171    14132374 :         Page        page = BufferGetPage(buffer);
    2172    14132374 :         uint8       info = XLOG_HEAP_INSERT;
    2173    14132374 :         int         bufflags = 0;
    2174             : 
    2175             :         /*
    2176             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2177             :          * decode, so log that as well.
    2178             :          */
    2179    14132374 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2180        6756 :             log_heap_new_cid(relation, heaptup);
    2181             : 
    2182             :         /*
    2183             :          * If this is the single and first tuple on page, we can reinit the
    2184             :          * page instead of restoring the whole thing.  Set flag, and hide
    2185             :          * buffer references from XLogInsert.
    2186             :          */
    2187    14314528 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2188      182154 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2189             :         {
    2190      180260 :             info |= XLOG_HEAP_INIT_PAGE;
    2191      180260 :             bufflags |= REGBUF_WILL_INIT;
    2192             :         }
    2193             : 
    2194    14132374 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2195    14132374 :         xlrec.flags = 0;
    2196    14132374 :         if (all_visible_cleared)
    2197       14172 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2198    14132374 :         if (options & HEAP_INSERT_SPECULATIVE)
    2199        4110 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2200             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2201             : 
    2202             :         /*
    2203             :          * For logical decoding, we need the tuple even if we're doing a full
    2204             :          * page write, so make sure it's included even if we take a full-page
    2205             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2206             :          */
    2207    14132374 :         if (RelationIsLogicallyLogged(relation) &&
    2208      499816 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2209             :         {
    2210      499762 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2211      499762 :             bufflags |= REGBUF_KEEP_DATA;
    2212             : 
    2213      499762 :             if (IsToastRelation(relation))
    2214        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2215             :         }
    2216             : 
    2217    14132374 :         XLogBeginInsert();
    2218    14132374 :         XLogRegisterData(&xlrec, SizeOfHeapInsert);
    2219             : 
    2220    14132374 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2221    14132374 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2222    14132374 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2223             : 
    2224             :         /*
    2225             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2226             :          * write the whole page to the xlog, we don't need to store
    2227             :          * xl_heap_header in the xlog.
    2228             :          */
    2229    14132374 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2230    14132374 :         XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    2231             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2232    14132374 :         XLogRegisterBufData(0,
    2233    14132374 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2234    14132374 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2235             : 
    2236             :         /* filtering by origin on a row level is much more efficient */
    2237    14132374 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2238             : 
    2239    14132374 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2240             : 
    2241    14132374 :         PageSetLSN(page, recptr);
    2242             :     }
    2243             : 
    2244    16634318 :     END_CRIT_SECTION();
    2245             : 
    2246    16634318 :     UnlockReleaseBuffer(buffer);
    2247    16634318 :     if (vmbuffer != InvalidBuffer)
    2248       14738 :         ReleaseBuffer(vmbuffer);
    2249             : 
    2250             :     /*
    2251             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2252             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2253             :      * the heaptup data structure is all in local memory, not in the shared
    2254             :      * buffer.
    2255             :      */
    2256    16634318 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2257             : 
    2258             :     /* Note: speculative insertions are counted too, even if aborted later */
    2259    16634318 :     pgstat_count_heap_insert(relation, 1);
    2260             : 
    2261             :     /*
    2262             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2263             :      * back to the caller's image, too.
    2264             :      */
    2265    16634318 :     if (heaptup != tup)
    2266             :     {
    2267       36304 :         tup->t_self = heaptup->t_self;
    2268       36304 :         heap_freetuple(heaptup);
    2269             :     }
    2270    16634318 : }
    2271             : 
    2272             : /*
    2273             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2274             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2275             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2276             :  * that in any case, the header fields are also set in the original tuple.
    2277             :  */
    2278             : static HeapTuple
    2279    19566522 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2280             :                     CommandId cid, int options)
    2281             : {
    2282             :     /*
    2283             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2284             :      * performed in workers. We have the infrastructure to allow parallel
    2285             :      * inserts in general except for the cases where inserts generate a new
    2286             :      * CommandId (eg. inserts into a table having a foreign key column).
    2287             :      */
    2288    19566522 :     if (IsParallelWorker())
    2289           0 :         ereport(ERROR,
    2290             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2291             :                  errmsg("cannot insert tuples in a parallel worker")));
    2292             : 
    2293    19566522 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2294    19566522 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2295    19566522 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2296    19566522 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2297    19566522 :     if (options & HEAP_INSERT_FROZEN)
    2298      204192 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2299             : 
    2300    19566522 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2301    19566522 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2302    19566522 :     tup->t_tableOid = RelationGetRelid(relation);
    2303             : 
    2304             :     /*
    2305             :      * If the new tuple is too big for storage or contains already toasted
    2306             :      * out-of-line attributes from some other relation, invoke the toaster.
    2307             :      */
    2308    19566522 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2309       61284 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2310             :     {
    2311             :         /* toast table entries should never be recursively toasted */
    2312             :         Assert(!HeapTupleHasExternal(tup));
    2313       61188 :         return tup;
    2314             :     }
    2315    19505334 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2316       36392 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2317             :     else
    2318    19468942 :         return tup;
    2319             : }
    2320             : 
    2321             : /*
    2322             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2323             :  * that inserting the remaining heaptuples requires. Used to determine how
    2324             :  * much the relation needs to be extended by.
    2325             :  */
    2326             : static int
    2327      723296 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2328             : {
    2329      723296 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2330      723296 :     int         npages = 1;
    2331             : 
    2332     4831830 :     for (int i = done; i < ntuples; i++)
    2333             :     {
    2334     4108534 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2335             : 
    2336     4108534 :         if (page_avail < tup_sz)
    2337             :         {
    2338       31064 :             npages++;
    2339       31064 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2340             :         }
    2341     4108534 :         page_avail -= tup_sz;
    2342             :     }
    2343             : 
    2344      723296 :     return npages;
    2345             : }
    2346             : 
    2347             : /*
    2348             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2349             :  *
    2350             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2351             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2352             :  * tuples can be inserted on a single page, we can write just a single WAL
    2353             :  * record covering all of them, and only need to lock/unlock the page once.
    2354             :  *
    2355             :  * Note: this leaks memory into the current memory context. You can create a
    2356             :  * temporary context before calling this, if that's a problem.
    2357             :  */
    2358             : void
    2359      710188 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2360             :                   CommandId cid, int options, BulkInsertState bistate)
    2361             : {
    2362      710188 :     TransactionId xid = GetCurrentTransactionId();
    2363             :     HeapTuple  *heaptuples;
    2364             :     int         i;
    2365             :     int         ndone;
    2366             :     PGAlignedBlock scratch;
    2367             :     Page        page;
    2368      710188 :     Buffer      vmbuffer = InvalidBuffer;
    2369             :     bool        needwal;
    2370             :     Size        saveFreeSpace;
    2371      710188 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2372      710188 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2373      710188 :     bool        starting_with_empty_page = false;
    2374      710188 :     int         npages = 0;
    2375      710188 :     int         npages_used = 0;
    2376             : 
    2377             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2378             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2379             : 
    2380      710188 :     AssertHasSnapshotForToast(relation);
    2381             : 
    2382      710188 :     needwal = RelationNeedsWAL(relation);
    2383      710188 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2384             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2385             : 
    2386             :     /* Toast and set header data in all the slots */
    2387      710188 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2388     3642368 :     for (i = 0; i < ntuples; i++)
    2389             :     {
    2390             :         HeapTuple   tuple;
    2391             : 
    2392     2932180 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2393     2932180 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2394     2932180 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2395     2932180 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2396             :                                             options);
    2397             :     }
    2398             : 
    2399             :     /*
    2400             :      * We're about to do the actual inserts -- but check for conflict first,
    2401             :      * to minimize the possibility of having to roll back work we've just
    2402             :      * done.
    2403             :      *
    2404             :      * A check here does not definitively prevent a serialization anomaly;
    2405             :      * that check MUST be done at least past the point of acquiring an
    2406             :      * exclusive buffer content lock on every buffer that will be affected,
    2407             :      * and MAY be done after all inserts are reflected in the buffers and
    2408             :      * those locks are released; otherwise there is a race condition.  Since
    2409             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2410             :      * would not be feasible to identify and lock all of those buffers before
    2411             :      * the loop, we must do a final check at the end.
    2412             :      *
    2413             :      * The check here could be omitted with no loss of correctness; it is
    2414             :      * present strictly as an optimization.
    2415             :      *
    2416             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2417             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2418             :      * page locks are only consolidated versions of tuple locks; they do not
    2419             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2420             :      * buffer when making the call, which makes for a faster check.
    2421             :      */
    2422      710188 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2423             : 
    2424      710188 :     ndone = 0;
    2425     1449786 :     while (ndone < ntuples)
    2426             :     {
    2427             :         Buffer      buffer;
    2428      739598 :         bool        all_visible_cleared = false;
    2429      739598 :         bool        all_frozen_set = false;
    2430             :         int         nthispage;
    2431             : 
    2432      739598 :         CHECK_FOR_INTERRUPTS();
    2433             : 
    2434             :         /*
    2435             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2436             :          * the worst case.  This will be used to determine how much to extend
    2437             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2438             :          * filled a prior page from scratch, we can just update our last
    2439             :          * computation, but if we started with a partially filled page,
    2440             :          * recompute from scratch, the number of potentially required pages
    2441             :          * can vary due to tuples needing to fit onto the page, page headers
    2442             :          * etc.
    2443             :          */
    2444      739598 :         if (ndone == 0 || !starting_with_empty_page)
    2445             :         {
    2446      723296 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2447             :                                              saveFreeSpace);
    2448      723296 :             npages_used = 0;
    2449             :         }
    2450             :         else
    2451       16302 :             npages_used++;
    2452             : 
    2453             :         /*
    2454             :          * Find buffer where at least the next tuple will fit.  If the page is
    2455             :          * all-visible, this will also pin the requisite visibility map page.
    2456             :          *
    2457             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2458             :          * empty page. See all_frozen_set below.
    2459             :          */
    2460      739598 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2461             :                                            InvalidBuffer, options, bistate,
    2462             :                                            &vmbuffer, NULL,
    2463             :                                            npages - npages_used);
    2464      739598 :         page = BufferGetPage(buffer);
    2465             : 
    2466      739598 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2467             : 
    2468      739598 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2469        3322 :             all_frozen_set = true;
    2470             : 
    2471             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2472      739598 :         START_CRIT_SECTION();
    2473             : 
    2474             :         /*
    2475             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2476             :          * Put that on the page, and then as many other tuples as fit.
    2477             :          */
    2478      739598 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2479             : 
    2480             :         /*
    2481             :          * For logical decoding we need combo CIDs to properly decode the
    2482             :          * catalog.
    2483             :          */
    2484      739598 :         if (needwal && need_cids)
    2485        9912 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2486             : 
    2487     2932180 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2488             :         {
    2489     2221992 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2490             : 
    2491     2221992 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2492       29410 :                 break;
    2493             : 
    2494     2192582 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2495             : 
    2496             :             /*
    2497             :              * For logical decoding we need combo CIDs to properly decode the
    2498             :              * catalog.
    2499             :              */
    2500     2192582 :             if (needwal && need_cids)
    2501        9354 :                 log_heap_new_cid(relation, heaptup);
    2502             :         }
    2503             : 
    2504             :         /*
    2505             :          * If the page is all visible, need to clear that, unless we're only
    2506             :          * going to add further frozen rows to it.
    2507             :          *
    2508             :          * If we're only adding already frozen rows to a previously empty
    2509             :          * page, mark it as all-visible.
    2510             :          */
    2511      739598 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2512             :         {
    2513        5712 :             all_visible_cleared = true;
    2514        5712 :             PageClearAllVisible(page);
    2515        5712 :             visibilitymap_clear(relation,
    2516             :                                 BufferGetBlockNumber(buffer),
    2517             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2518             :         }
    2519      733886 :         else if (all_frozen_set)
    2520        3322 :             PageSetAllVisible(page);
    2521             : 
    2522             :         /*
    2523             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2524             :          */
    2525             : 
    2526      739598 :         MarkBufferDirty(buffer);
    2527             : 
    2528             :         /* XLOG stuff */
    2529      739598 :         if (needwal)
    2530             :         {
    2531             :             XLogRecPtr  recptr;
    2532             :             xl_heap_multi_insert *xlrec;
    2533      731950 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2534             :             char       *tupledata;
    2535             :             int         totaldatalen;
    2536      731950 :             char       *scratchptr = scratch.data;
    2537             :             bool        init;
    2538      731950 :             int         bufflags = 0;
    2539             : 
    2540             :             /*
    2541             :              * If the page was previously empty, we can reinit the page
    2542             :              * instead of restoring the whole thing.
    2543             :              */
    2544      731950 :             init = starting_with_empty_page;
    2545             : 
    2546             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2547      731950 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2548      731950 :             scratchptr += SizeOfHeapMultiInsert;
    2549             : 
    2550             :             /*
    2551             :              * Allocate offsets array. Unless we're reinitializing the page,
    2552             :              * in that case the tuples are stored in order starting at
    2553             :              * FirstOffsetNumber and we don't need to store the offsets
    2554             :              * explicitly.
    2555             :              */
    2556      731950 :             if (!init)
    2557      705818 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2558             : 
    2559             :             /* the rest of the scratch space is used for tuple data */
    2560      731950 :             tupledata = scratchptr;
    2561             : 
    2562             :             /* check that the mutually exclusive flags are not both set */
    2563             :             Assert(!(all_visible_cleared && all_frozen_set));
    2564             : 
    2565      731950 :             xlrec->flags = 0;
    2566      731950 :             if (all_visible_cleared)
    2567        5712 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2568      731950 :             if (all_frozen_set)
    2569          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2570             : 
    2571      731950 :             xlrec->ntuples = nthispage;
    2572             : 
    2573             :             /*
    2574             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2575             :              * for each tuple.
    2576             :              */
    2577     3253316 :             for (i = 0; i < nthispage; i++)
    2578             :             {
    2579     2521366 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2580             :                 xl_multi_insert_tuple *tuphdr;
    2581             :                 int         datalen;
    2582             : 
    2583     2521366 :                 if (!init)
    2584     1481282 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2585             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2586     2521366 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2587     2521366 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2588             : 
    2589     2521366 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2590     2521366 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2591     2521366 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2592             : 
    2593             :                 /* write bitmap [+ padding] [+ oid] + data */
    2594     2521366 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2595     2521366 :                 memcpy(scratchptr,
    2596     2521366 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2597             :                        datalen);
    2598     2521366 :                 tuphdr->datalen = datalen;
    2599     2521366 :                 scratchptr += datalen;
    2600             :             }
    2601      731950 :             totaldatalen = scratchptr - tupledata;
    2602             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2603             : 
    2604      731950 :             if (need_tuple_data)
    2605         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2606             : 
    2607             :             /*
    2608             :              * Signal that this is the last xl_heap_multi_insert record
    2609             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2610             :              * decoding so it knows when to cleanup temporary data.
    2611             :              */
    2612      731950 :             if (ndone + nthispage == ntuples)
    2613      709358 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2614             : 
    2615      731950 :             if (init)
    2616             :             {
    2617       26132 :                 info |= XLOG_HEAP_INIT_PAGE;
    2618       26132 :                 bufflags |= REGBUF_WILL_INIT;
    2619             :             }
    2620             : 
    2621             :             /*
    2622             :              * If we're doing logical decoding, include the new tuple data
    2623             :              * even if we take a full-page image of the page.
    2624             :              */
    2625      731950 :             if (need_tuple_data)
    2626         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2627             : 
    2628      731950 :             XLogBeginInsert();
    2629      731950 :             XLogRegisterData(xlrec, tupledata - scratch.data);
    2630      731950 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2631             : 
    2632      731950 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2633             : 
    2634             :             /* filtering by origin on a row level is much more efficient */
    2635      731950 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2636             : 
    2637      731950 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2638             : 
    2639      731950 :             PageSetLSN(page, recptr);
    2640             :         }
    2641             : 
    2642      739598 :         END_CRIT_SECTION();
    2643             : 
    2644             :         /*
    2645             :          * If we've frozen everything on the page, update the visibilitymap.
    2646             :          * We're already holding pin on the vmbuffer.
    2647             :          */
    2648      739598 :         if (all_frozen_set)
    2649             :         {
    2650             :             Assert(PageIsAllVisible(page));
    2651             :             Assert(visibilitymap_pin_ok(BufferGetBlockNumber(buffer), vmbuffer));
    2652             : 
    2653             :             /*
    2654             :              * It's fine to use InvalidTransactionId here - this is only used
    2655             :              * when HEAP_INSERT_FROZEN is specified, which intentionally
    2656             :              * violates visibility rules.
    2657             :              */
    2658        3322 :             visibilitymap_set(relation, BufferGetBlockNumber(buffer), buffer,
    2659             :                               InvalidXLogRecPtr, vmbuffer,
    2660             :                               InvalidTransactionId,
    2661             :                               VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
    2662             :         }
    2663             : 
    2664      739598 :         UnlockReleaseBuffer(buffer);
    2665      739598 :         ndone += nthispage;
    2666             : 
    2667             :         /*
    2668             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2669             :          * likely that we'll insert into subsequent heap pages that are likely
    2670             :          * to use the same vm page.
    2671             :          */
    2672             :     }
    2673             : 
    2674             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2675      710188 :     if (vmbuffer != InvalidBuffer)
    2676        5924 :         ReleaseBuffer(vmbuffer);
    2677             : 
    2678             :     /*
    2679             :      * We're done with the actual inserts.  Check for conflicts again, to
    2680             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2681             :      * this final check, a sequential scan of the heap may have locked the
    2682             :      * table after the "before" check, missing one opportunity to detect the
    2683             :      * conflict, and then scanned the table before the new tuples were there,
    2684             :      * missing the other chance to detect the conflict.
    2685             :      *
    2686             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2687             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2688             :      * page locks are only consolidated versions of tuple locks; they do not
    2689             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2690             :      * buffer when making the call.
    2691             :      */
    2692      710188 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2693             : 
    2694             :     /*
    2695             :      * If tuples are cachable, mark them for invalidation from the caches in
    2696             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2697             :      * because the heaptuples data structure is all in local memory, not in
    2698             :      * the shared buffer.
    2699             :      */
    2700      710188 :     if (IsCatalogRelation(relation))
    2701             :     {
    2702     2436828 :         for (i = 0; i < ntuples; i++)
    2703     1729066 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2704             :     }
    2705             : 
    2706             :     /* copy t_self fields back to the caller's slots */
    2707     3642368 :     for (i = 0; i < ntuples; i++)
    2708     2932180 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2709             : 
    2710      710188 :     pgstat_count_heap_insert(relation, ntuples);
    2711      710188 : }
    2712             : 
    2713             : /*
    2714             :  *  simple_heap_insert - insert a tuple
    2715             :  *
    2716             :  * Currently, this routine differs from heap_insert only in supplying
    2717             :  * a default command ID and not allowing access to the speedup options.
    2718             :  *
    2719             :  * This should be used rather than using heap_insert directly in most places
    2720             :  * where we are modifying system catalogs.
    2721             :  */
    2722             : void
    2723     1794260 : simple_heap_insert(Relation relation, HeapTuple tup)
    2724             : {
    2725     1794260 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2726     1794260 : }
    2727             : 
    2728             : /*
    2729             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2730             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2731             :  * xl_heap_lock_updated WAL records.
    2732             :  *
    2733             :  * See fix_infomask_from_infobits.
    2734             :  */
    2735             : static uint8
    2736     3876316 : compute_infobits(uint16 infomask, uint16 infomask2)
    2737             : {
    2738             :     return
    2739     3876316 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2740     3876316 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2741     3876316 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2742             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2743     7752632 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2744             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2745     3876316 :          XLHL_KEYS_UPDATED : 0);
    2746             : }
    2747             : 
    2748             : /*
    2749             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2750             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2751             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2752             :  * that the tuple state continues to be the same it was when we previously
    2753             :  * examined it.
    2754             :  *
    2755             :  * Note the Xmax field itself must be compared separately.
    2756             :  */
    2757             : static inline bool
    2758       10658 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2759             : {
    2760       10658 :     const uint16 interesting =
    2761             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2762             : 
    2763       10658 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2764          28 :         return true;
    2765             : 
    2766       10630 :     return false;
    2767             : }
    2768             : 
    2769             : /*
    2770             :  *  heap_delete - delete a tuple
    2771             :  *
    2772             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2773             :  * this routine directly takes a tuple rather than a slot.
    2774             :  *
    2775             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2776             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2777             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2778             :  * generated by another transaction).
    2779             :  */
    2780             : TM_Result
    2781     2974976 : heap_delete(Relation relation, ItemPointer tid,
    2782             :             CommandId cid, Snapshot crosscheck, bool wait,
    2783             :             TM_FailureData *tmfd, bool changingPart)
    2784             : {
    2785             :     TM_Result   result;
    2786     2974976 :     TransactionId xid = GetCurrentTransactionId();
    2787             :     ItemId      lp;
    2788             :     HeapTupleData tp;
    2789             :     Page        page;
    2790             :     BlockNumber block;
    2791             :     Buffer      buffer;
    2792     2974976 :     Buffer      vmbuffer = InvalidBuffer;
    2793             :     TransactionId new_xmax;
    2794             :     uint16      new_infomask,
    2795             :                 new_infomask2;
    2796     2974976 :     bool        have_tuple_lock = false;
    2797             :     bool        iscombo;
    2798     2974976 :     bool        all_visible_cleared = false;
    2799     2974976 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2800     2974976 :     bool        old_key_copied = false;
    2801             : 
    2802             :     Assert(ItemPointerIsValid(tid));
    2803             : 
    2804     2974976 :     AssertHasSnapshotForToast(relation);
    2805             : 
    2806             :     /*
    2807             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2808             :      * Other workers might need that combo CID for visibility checks, and we
    2809             :      * have no provision for broadcasting it to them.
    2810             :      */
    2811     2974976 :     if (IsInParallelMode())
    2812           0 :         ereport(ERROR,
    2813             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2814             :                  errmsg("cannot delete tuples during a parallel operation")));
    2815             : 
    2816     2974976 :     block = ItemPointerGetBlockNumber(tid);
    2817     2974976 :     buffer = ReadBuffer(relation, block);
    2818     2974976 :     page = BufferGetPage(buffer);
    2819             : 
    2820             :     /*
    2821             :      * Before locking the buffer, pin the visibility map page if it appears to
    2822             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2823             :      * in the middle of changing this, so we'll need to recheck after we have
    2824             :      * the lock.
    2825             :      */
    2826     2974976 :     if (PageIsAllVisible(page))
    2827         362 :         visibilitymap_pin(relation, block, &vmbuffer);
    2828             : 
    2829     2974976 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2830             : 
    2831     2974976 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2832             :     Assert(ItemIdIsNormal(lp));
    2833             : 
    2834     2974976 :     tp.t_tableOid = RelationGetRelid(relation);
    2835     2974976 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2836     2974976 :     tp.t_len = ItemIdGetLength(lp);
    2837     2974976 :     tp.t_self = *tid;
    2838             : 
    2839           2 : l1:
    2840             : 
    2841             :     /*
    2842             :      * If we didn't pin the visibility map page and the page has become all
    2843             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2844             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2845             :      * unfortunate, but hopefully shouldn't happen often.
    2846             :      */
    2847     2974978 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2848             :     {
    2849           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2850           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2851           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2852             :     }
    2853             : 
    2854     2974978 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2855             : 
    2856     2974978 :     if (result == TM_Invisible)
    2857             :     {
    2858           0 :         UnlockReleaseBuffer(buffer);
    2859           0 :         ereport(ERROR,
    2860             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2861             :                  errmsg("attempted to delete invisible tuple")));
    2862             :     }
    2863     2974978 :     else if (result == TM_BeingModified && wait)
    2864             :     {
    2865             :         TransactionId xwait;
    2866             :         uint16      infomask;
    2867             : 
    2868             :         /* must copy state data before unlocking buffer */
    2869       81088 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2870       81088 :         infomask = tp.t_data->t_infomask;
    2871             : 
    2872             :         /*
    2873             :          * Sleep until concurrent transaction ends -- except when there's a
    2874             :          * single locker and it's our own transaction.  Note we don't care
    2875             :          * which lock mode the locker has, because we need the strongest one.
    2876             :          *
    2877             :          * Before sleeping, we need to acquire tuple lock to establish our
    2878             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2879             :          * release us when we are next-in-line for the tuple.
    2880             :          *
    2881             :          * If we are forced to "start over" below, we keep the tuple lock;
    2882             :          * this arranges that we stay at the head of the line while rechecking
    2883             :          * tuple state.
    2884             :          */
    2885       81088 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2886             :         {
    2887          16 :             bool        current_is_member = false;
    2888             : 
    2889          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2890             :                                         LockTupleExclusive, &current_is_member))
    2891             :             {
    2892          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2893             : 
    2894             :                 /*
    2895             :                  * Acquire the lock, if necessary (but skip it when we're
    2896             :                  * requesting a lock and already have one; avoids deadlock).
    2897             :                  */
    2898          16 :                 if (!current_is_member)
    2899          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2900             :                                          LockWaitBlock, &have_tuple_lock);
    2901             : 
    2902             :                 /* wait for multixact */
    2903          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2904             :                                 relation, &(tp.t_self), XLTW_Delete,
    2905             :                                 NULL);
    2906          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2907             : 
    2908             :                 /*
    2909             :                  * If xwait had just locked the tuple then some other xact
    2910             :                  * could update this tuple before we get to this point.  Check
    2911             :                  * for xmax change, and start over if so.
    2912             :                  *
    2913             :                  * We also must start over if we didn't pin the VM page, and
    2914             :                  * the page has become all visible.
    2915             :                  */
    2916          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2917          32 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2918          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2919             :                                          xwait))
    2920           0 :                     goto l1;
    2921             :             }
    2922             : 
    2923             :             /*
    2924             :              * You might think the multixact is necessarily done here, but not
    2925             :              * so: it could have surviving members, namely our own xact or
    2926             :              * other subxacts of this backend.  It is legal for us to delete
    2927             :              * the tuple in either case, however (the latter case is
    2928             :              * essentially a situation of upgrading our former shared lock to
    2929             :              * exclusive).  We don't bother changing the on-disk hint bits
    2930             :              * since we are about to overwrite the xmax altogether.
    2931             :              */
    2932             :         }
    2933       81072 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2934             :         {
    2935             :             /*
    2936             :              * Wait for regular transaction to end; but first, acquire tuple
    2937             :              * lock.
    2938             :              */
    2939          80 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2940          80 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2941             :                                  LockWaitBlock, &have_tuple_lock);
    2942          80 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2943          72 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2944             : 
    2945             :             /*
    2946             :              * xwait is done, but if xwait had just locked the tuple then some
    2947             :              * other xact could update this tuple before we get to this point.
    2948             :              * Check for xmax change, and start over if so.
    2949             :              *
    2950             :              * We also must start over if we didn't pin the VM page, and the
    2951             :              * page has become all visible.
    2952             :              */
    2953         144 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2954         142 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2955          70 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2956             :                                      xwait))
    2957           2 :                 goto l1;
    2958             : 
    2959             :             /* Otherwise check if it committed or aborted */
    2960          70 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2961             :         }
    2962             : 
    2963             :         /*
    2964             :          * We may overwrite if previous xmax aborted, or if it committed but
    2965             :          * only locked the tuple without updating it.
    2966             :          */
    2967      162128 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2968       81100 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2969          50 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2970       81036 :             result = TM_Ok;
    2971          42 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2972          34 :             result = TM_Updated;
    2973             :         else
    2974           8 :             result = TM_Deleted;
    2975             :     }
    2976             : 
    2977             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2978             :     if (result != TM_Ok)
    2979             :     {
    2980             :         Assert(result == TM_SelfModified ||
    2981             :                result == TM_Updated ||
    2982             :                result == TM_Deleted ||
    2983             :                result == TM_BeingModified);
    2984             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2985             :         Assert(result != TM_Updated ||
    2986             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2987             :     }
    2988             : 
    2989     2974968 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2990             :     {
    2991             :         /* Perform additional check for transaction-snapshot mode RI updates */
    2992           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    2993           2 :             result = TM_Updated;
    2994             :     }
    2995             : 
    2996     2974968 :     if (result != TM_Ok)
    2997             :     {
    2998         112 :         tmfd->ctid = tp.t_data->t_ctid;
    2999         112 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    3000         112 :         if (result == TM_SelfModified)
    3001          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    3002             :         else
    3003          70 :             tmfd->cmax = InvalidCommandId;
    3004         112 :         UnlockReleaseBuffer(buffer);
    3005         112 :         if (have_tuple_lock)
    3006          42 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3007         112 :         if (vmbuffer != InvalidBuffer)
    3008           0 :             ReleaseBuffer(vmbuffer);
    3009         112 :         return result;
    3010             :     }
    3011             : 
    3012             :     /*
    3013             :      * We're about to do the actual delete -- check for conflict first, to
    3014             :      * avoid possibly having to roll back work we've just done.
    3015             :      *
    3016             :      * This is safe without a recheck as long as there is no possibility of
    3017             :      * another process scanning the page between this check and the delete
    3018             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    3019             :      * continuously held from this point until the tuple delete is visible).
    3020             :      */
    3021     2974856 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    3022             : 
    3023             :     /* replace cid with a combo CID if necessary */
    3024     2974828 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    3025             : 
    3026             :     /*
    3027             :      * Compute replica identity tuple before entering the critical section so
    3028             :      * we don't PANIC upon a memory allocation failure.
    3029             :      */
    3030     2974828 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    3031             : 
    3032             :     /*
    3033             :      * If this is the first possibly-multixact-able operation in the current
    3034             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    3035             :      * certain that the transaction will never become a member of any older
    3036             :      * MultiXactIds than that.  (We have to do this even if we end up just
    3037             :      * using our own TransactionId below, since some other backend could
    3038             :      * incorporate our XID into a MultiXact immediately afterwards.)
    3039             :      */
    3040     2974828 :     MultiXactIdSetOldestMember();
    3041             : 
    3042     2974828 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    3043     2974828 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    3044             :                               xid, LockTupleExclusive, true,
    3045             :                               &new_xmax, &new_infomask, &new_infomask2);
    3046             : 
    3047     2974828 :     START_CRIT_SECTION();
    3048             : 
    3049             :     /*
    3050             :      * If this transaction commits, the tuple will become DEAD sooner or
    3051             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3052             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3053             :      * the subsequent page pruning will be a no-op and the hint will be
    3054             :      * cleared.
    3055             :      */
    3056     2974828 :     PageSetPrunable(page, xid);
    3057             : 
    3058     2974828 :     if (PageIsAllVisible(page))
    3059             :     {
    3060         362 :         all_visible_cleared = true;
    3061         362 :         PageClearAllVisible(page);
    3062         362 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3063             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3064             :     }
    3065             : 
    3066             :     /* store transaction information of xact deleting the tuple */
    3067     2974828 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3068     2974828 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3069     2974828 :     tp.t_data->t_infomask |= new_infomask;
    3070     2974828 :     tp.t_data->t_infomask2 |= new_infomask2;
    3071     2974828 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    3072     2974828 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    3073     2974828 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    3074             :     /* Make sure there is no forward chain link in t_ctid */
    3075     2974828 :     tp.t_data->t_ctid = tp.t_self;
    3076             : 
    3077             :     /* Signal that this is actually a move into another partition */
    3078     2974828 :     if (changingPart)
    3079         964 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    3080             : 
    3081     2974828 :     MarkBufferDirty(buffer);
    3082             : 
    3083             :     /*
    3084             :      * XLOG stuff
    3085             :      *
    3086             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    3087             :      * routines.
    3088             :      */
    3089     2974828 :     if (RelationNeedsWAL(relation))
    3090             :     {
    3091             :         xl_heap_delete xlrec;
    3092             :         xl_heap_header xlhdr;
    3093             :         XLogRecPtr  recptr;
    3094             : 
    3095             :         /*
    3096             :          * For logical decode we need combo CIDs to properly decode the
    3097             :          * catalog
    3098             :          */
    3099     2849590 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3100       12484 :             log_heap_new_cid(relation, &tp);
    3101             : 
    3102     2849590 :         xlrec.flags = 0;
    3103     2849590 :         if (all_visible_cleared)
    3104         362 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3105     2849590 :         if (changingPart)
    3106         964 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3107     5699180 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3108     2849590 :                                               tp.t_data->t_infomask2);
    3109     2849590 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3110     2849590 :         xlrec.xmax = new_xmax;
    3111             : 
    3112     2849590 :         if (old_key_tuple != NULL)
    3113             :         {
    3114       94036 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3115         260 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3116             :             else
    3117       93776 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3118             :         }
    3119             : 
    3120     2849590 :         XLogBeginInsert();
    3121     2849590 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    3122             : 
    3123     2849590 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3124             : 
    3125             :         /*
    3126             :          * Log replica identity of the deleted tuple if there is one
    3127             :          */
    3128     2849590 :         if (old_key_tuple != NULL)
    3129             :         {
    3130       94036 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3131       94036 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3132       94036 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3133             : 
    3134       94036 :             XLogRegisterData(&xlhdr, SizeOfHeapHeader);
    3135       94036 :             XLogRegisterData((char *) old_key_tuple->t_data
    3136             :                              + SizeofHeapTupleHeader,
    3137       94036 :                              old_key_tuple->t_len
    3138             :                              - SizeofHeapTupleHeader);
    3139             :         }
    3140             : 
    3141             :         /* filtering by origin on a row level is much more efficient */
    3142     2849590 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3143             : 
    3144     2849590 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3145             : 
    3146     2849590 :         PageSetLSN(page, recptr);
    3147             :     }
    3148             : 
    3149     2974828 :     END_CRIT_SECTION();
    3150             : 
    3151     2974828 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3152             : 
    3153     2974828 :     if (vmbuffer != InvalidBuffer)
    3154         362 :         ReleaseBuffer(vmbuffer);
    3155             : 
    3156             :     /*
    3157             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3158             :      * those items too.  We have to do this before releasing the buffer
    3159             :      * because we need to look at the contents of the tuple, but it's OK to
    3160             :      * release the content lock on the buffer first.
    3161             :      */
    3162     2974828 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3163        4806 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3164             :     {
    3165             :         /* toast table entries should never be recursively toasted */
    3166             :         Assert(!HeapTupleHasExternal(&tp));
    3167             :     }
    3168     2970042 :     else if (HeapTupleHasExternal(&tp))
    3169         598 :         heap_toast_delete(relation, &tp, false);
    3170             : 
    3171             :     /*
    3172             :      * Mark tuple for invalidation from system caches at next command
    3173             :      * boundary. We have to do this before releasing the buffer because we
    3174             :      * need to look at the contents of the tuple.
    3175             :      */
    3176     2974828 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3177             : 
    3178             :     /* Now we can release the buffer */
    3179     2974828 :     ReleaseBuffer(buffer);
    3180             : 
    3181             :     /*
    3182             :      * Release the lmgr tuple lock, if we had it.
    3183             :      */
    3184     2974828 :     if (have_tuple_lock)
    3185          40 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3186             : 
    3187     2974828 :     pgstat_count_heap_delete(relation);
    3188             : 
    3189     2974828 :     if (old_key_tuple != NULL && old_key_copied)
    3190       93778 :         heap_freetuple(old_key_tuple);
    3191             : 
    3192     2974828 :     return TM_Ok;
    3193             : }
    3194             : 
    3195             : /*
    3196             :  *  simple_heap_delete - delete a tuple
    3197             :  *
    3198             :  * This routine may be used to delete a tuple when concurrent updates of
    3199             :  * the target tuple are not expected (for example, because we have a lock
    3200             :  * on the relation associated with the tuple).  Any failure is reported
    3201             :  * via ereport().
    3202             :  */
    3203             : void
    3204     1243120 : simple_heap_delete(Relation relation, ItemPointer tid)
    3205             : {
    3206             :     TM_Result   result;
    3207             :     TM_FailureData tmfd;
    3208             : 
    3209     1243120 :     result = heap_delete(relation, tid,
    3210             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3211             :                          true /* wait for commit */ ,
    3212             :                          &tmfd, false /* changingPart */ );
    3213     1243120 :     switch (result)
    3214             :     {
    3215           0 :         case TM_SelfModified:
    3216             :             /* Tuple was already updated in current command? */
    3217           0 :             elog(ERROR, "tuple already updated by self");
    3218             :             break;
    3219             : 
    3220     1243120 :         case TM_Ok:
    3221             :             /* done successfully */
    3222     1243120 :             break;
    3223             : 
    3224           0 :         case TM_Updated:
    3225           0 :             elog(ERROR, "tuple concurrently updated");
    3226             :             break;
    3227             : 
    3228           0 :         case TM_Deleted:
    3229           0 :             elog(ERROR, "tuple concurrently deleted");
    3230             :             break;
    3231             : 
    3232           0 :         default:
    3233           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3234             :             break;
    3235             :     }
    3236     1243120 : }
    3237             : 
    3238             : /*
    3239             :  *  heap_update - replace a tuple
    3240             :  *
    3241             :  * See table_tuple_update() for an explanation of the parameters, except that
    3242             :  * this routine directly takes a tuple rather than a slot.
    3243             :  *
    3244             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3245             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3246             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3247             :  * generated by another transaction).
    3248             :  */
    3249             : TM_Result
    3250      606556 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3251             :             CommandId cid, Snapshot crosscheck, bool wait,
    3252             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3253             :             TU_UpdateIndexes *update_indexes)
    3254             : {
    3255             :     TM_Result   result;
    3256      606556 :     TransactionId xid = GetCurrentTransactionId();
    3257             :     Bitmapset  *hot_attrs;
    3258             :     Bitmapset  *sum_attrs;
    3259             :     Bitmapset  *key_attrs;
    3260             :     Bitmapset  *id_attrs;
    3261             :     Bitmapset  *interesting_attrs;
    3262             :     Bitmapset  *modified_attrs;
    3263             :     ItemId      lp;
    3264             :     HeapTupleData oldtup;
    3265             :     HeapTuple   heaptup;
    3266      606556 :     HeapTuple   old_key_tuple = NULL;
    3267      606556 :     bool        old_key_copied = false;
    3268             :     Page        page;
    3269             :     BlockNumber block;
    3270             :     MultiXactStatus mxact_status;
    3271             :     Buffer      buffer,
    3272             :                 newbuf,
    3273      606556 :                 vmbuffer = InvalidBuffer,
    3274      606556 :                 vmbuffer_new = InvalidBuffer;
    3275             :     bool        need_toast;
    3276             :     Size        newtupsize,
    3277             :                 pagefree;
    3278      606556 :     bool        have_tuple_lock = false;
    3279             :     bool        iscombo;
    3280      606556 :     bool        use_hot_update = false;
    3281      606556 :     bool        summarized_update = false;
    3282             :     bool        key_intact;
    3283      606556 :     bool        all_visible_cleared = false;
    3284      606556 :     bool        all_visible_cleared_new = false;
    3285             :     bool        checked_lockers;
    3286             :     bool        locker_remains;
    3287      606556 :     bool        id_has_external = false;
    3288             :     TransactionId xmax_new_tuple,
    3289             :                 xmax_old_tuple;
    3290             :     uint16      infomask_old_tuple,
    3291             :                 infomask2_old_tuple,
    3292             :                 infomask_new_tuple,
    3293             :                 infomask2_new_tuple;
    3294             : 
    3295             :     Assert(ItemPointerIsValid(otid));
    3296             : 
    3297             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3298             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3299             :            RelationGetNumberOfAttributes(relation));
    3300             : 
    3301      606556 :     AssertHasSnapshotForToast(relation);
    3302             : 
    3303             :     /*
    3304             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3305             :      * Other workers might need that combo CID for visibility checks, and we
    3306             :      * have no provision for broadcasting it to them.
    3307             :      */
    3308      606556 :     if (IsInParallelMode())
    3309           0 :         ereport(ERROR,
    3310             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3311             :                  errmsg("cannot update tuples during a parallel operation")));
    3312             : 
    3313             : #ifdef USE_ASSERT_CHECKING
    3314             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3315             : #endif
    3316             : 
    3317             :     /*
    3318             :      * Fetch the list of attributes to be checked for various operations.
    3319             :      *
    3320             :      * For HOT considerations, this is wasted effort if we fail to update or
    3321             :      * have to put the new tuple on a different page.  But we must compute the
    3322             :      * list before obtaining buffer lock --- in the worst case, if we are
    3323             :      * doing an update on one of the relevant system catalogs, we could
    3324             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3325             :      * caches the data so this is usually pretty cheap.
    3326             :      *
    3327             :      * We also need columns used by the replica identity and columns that are
    3328             :      * considered the "key" of rows in the table.
    3329             :      *
    3330             :      * Note that we get copies of each bitmap, so we need not worry about
    3331             :      * relcache flush happening midway through.
    3332             :      */
    3333      606556 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3334             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3335      606556 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3336             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3337      606556 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3338      606556 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3339             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3340      606556 :     interesting_attrs = NULL;
    3341      606556 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3342      606556 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3343      606556 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3344      606556 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3345             : 
    3346      606556 :     block = ItemPointerGetBlockNumber(otid);
    3347      606556 :     INJECTION_POINT("heap_update-before-pin", NULL);
    3348      606556 :     buffer = ReadBuffer(relation, block);
    3349      606556 :     page = BufferGetPage(buffer);
    3350             : 
    3351             :     /*
    3352             :      * Before locking the buffer, pin the visibility map page if it appears to
    3353             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3354             :      * in the middle of changing this, so we'll need to recheck after we have
    3355             :      * the lock.
    3356             :      */
    3357      606556 :     if (PageIsAllVisible(page))
    3358        3054 :         visibilitymap_pin(relation, block, &vmbuffer);
    3359             : 
    3360      606556 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3361             : 
    3362      606556 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3363             : 
    3364             :     /*
    3365             :      * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
    3366             :      * we see LP_NORMAL here.  When the otid origin is a syscache, we may have
    3367             :      * neither a pin nor a snapshot.  Hence, we may see other LP_ states, each
    3368             :      * of which indicates concurrent pruning.
    3369             :      *
    3370             :      * Failing with TM_Updated would be most accurate.  However, unlike other
    3371             :      * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
    3372             :      * LP_DEAD cases.  While the distinction between TM_Updated and TM_Deleted
    3373             :      * does matter to SQL statements UPDATE and MERGE, those SQL statements
    3374             :      * hold a snapshot that ensures LP_NORMAL.  Hence, the choice between
    3375             :      * TM_Updated and TM_Deleted affects only the wording of error messages.
    3376             :      * Settle on TM_Deleted, for two reasons.  First, it avoids complicating
    3377             :      * the specification of when tmfd->ctid is valid.  Second, it creates
    3378             :      * error log evidence that we took this branch.
    3379             :      *
    3380             :      * Since it's possible to see LP_UNUSED at otid, it's also possible to see
    3381             :      * LP_NORMAL for a tuple that replaced LP_UNUSED.  If it's a tuple for an
    3382             :      * unrelated row, we'll fail with "duplicate key value violates unique".
    3383             :      * XXX if otid is the live, newer version of the newtup row, we'll discard
    3384             :      * changes originating in versions of this catalog row after the version
    3385             :      * the caller got from syscache.  See syscache-update-pruned.spec.
    3386             :      */
    3387      606556 :     if (!ItemIdIsNormal(lp))
    3388             :     {
    3389             :         Assert(RelationSupportsSysCache(RelationGetRelid(relation)));
    3390             : 
    3391           2 :         UnlockReleaseBuffer(buffer);
    3392             :         Assert(!have_tuple_lock);
    3393           2 :         if (vmbuffer != InvalidBuffer)
    3394           2 :             ReleaseBuffer(vmbuffer);
    3395           2 :         tmfd->ctid = *otid;
    3396           2 :         tmfd->xmax = InvalidTransactionId;
    3397           2 :         tmfd->cmax = InvalidCommandId;
    3398           2 :         *update_indexes = TU_None;
    3399             : 
    3400           2 :         bms_free(hot_attrs);
    3401           2 :         bms_free(sum_attrs);
    3402           2 :         bms_free(key_attrs);
    3403           2 :         bms_free(id_attrs);
    3404             :         /* modified_attrs not yet initialized */
    3405           2 :         bms_free(interesting_attrs);
    3406           2 :         return TM_Deleted;
    3407             :     }
    3408             : 
    3409             :     /*
    3410             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3411             :      * properly.
    3412             :      */
    3413      606554 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3414      606554 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3415      606554 :     oldtup.t_len = ItemIdGetLength(lp);
    3416      606554 :     oldtup.t_self = *otid;
    3417             : 
    3418             :     /* the new tuple is ready, except for this: */
    3419      606554 :     newtup->t_tableOid = RelationGetRelid(relation);
    3420             : 
    3421             :     /*
    3422             :      * Determine columns modified by the update.  Additionally, identify
    3423             :      * whether any of the unmodified replica identity key attributes in the
    3424             :      * old tuple is externally stored or not.  This is required because for
    3425             :      * such attributes the flattened value won't be WAL logged as part of the
    3426             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3427             :      * ExtractReplicaIdentity.
    3428             :      */
    3429      606554 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3430             :                                               id_attrs, &oldtup,
    3431             :                                               newtup, &id_has_external);
    3432             : 
    3433             :     /*
    3434             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3435             :      * This allows for more concurrency when we are running simultaneously
    3436             :      * with foreign key checks.
    3437             :      *
    3438             :      * Note that if a column gets detoasted while executing the update, but
    3439             :      * the value ends up being the same, this test will fail and we will use
    3440             :      * the stronger lock.  This is acceptable; the important case to optimize
    3441             :      * is updates that don't manipulate key columns, not those that
    3442             :      * serendipitously arrive at the same key values.
    3443             :      */
    3444      606554 :     if (!bms_overlap(modified_attrs, key_attrs))
    3445             :     {
    3446      598202 :         *lockmode = LockTupleNoKeyExclusive;
    3447      598202 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3448      598202 :         key_intact = true;
    3449             : 
    3450             :         /*
    3451             :          * If this is the first possibly-multixact-able operation in the
    3452             :          * current transaction, set my per-backend OldestMemberMXactId
    3453             :          * setting. We can be certain that the transaction will never become a
    3454             :          * member of any older MultiXactIds than that.  (We have to do this
    3455             :          * even if we end up just using our own TransactionId below, since
    3456             :          * some other backend could incorporate our XID into a MultiXact
    3457             :          * immediately afterwards.)
    3458             :          */
    3459      598202 :         MultiXactIdSetOldestMember();
    3460             :     }
    3461             :     else
    3462             :     {
    3463        8352 :         *lockmode = LockTupleExclusive;
    3464        8352 :         mxact_status = MultiXactStatusUpdate;
    3465        8352 :         key_intact = false;
    3466             :     }
    3467             : 
    3468             :     /*
    3469             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3470             :      * otid may very well point at newtup->t_self, which we will overwrite
    3471             :      * with the new tuple's location, so there's great risk of confusion if we
    3472             :      * use otid anymore.
    3473             :      */
    3474             : 
    3475      606554 : l2:
    3476      606556 :     checked_lockers = false;
    3477      606556 :     locker_remains = false;
    3478      606556 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3479             : 
    3480             :     /* see below about the "no wait" case */
    3481             :     Assert(result != TM_BeingModified || wait);
    3482             : 
    3483      606556 :     if (result == TM_Invisible)
    3484             :     {
    3485           0 :         UnlockReleaseBuffer(buffer);
    3486           0 :         ereport(ERROR,
    3487             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3488             :                  errmsg("attempted to update invisible tuple")));
    3489             :     }
    3490      606556 :     else if (result == TM_BeingModified && wait)
    3491             :     {
    3492             :         TransactionId xwait;
    3493             :         uint16      infomask;
    3494       71856 :         bool        can_continue = false;
    3495             : 
    3496             :         /*
    3497             :          * XXX note that we don't consider the "no wait" case here.  This
    3498             :          * isn't a problem currently because no caller uses that case, but it
    3499             :          * should be fixed if such a caller is introduced.  It wasn't a
    3500             :          * problem previously because this code would always wait, but now
    3501             :          * that some tuple locks do not conflict with one of the lock modes we
    3502             :          * use, it is possible that this case is interesting to handle
    3503             :          * specially.
    3504             :          *
    3505             :          * This may cause failures with third-party code that calls
    3506             :          * heap_update directly.
    3507             :          */
    3508             : 
    3509             :         /* must copy state data before unlocking buffer */
    3510       71856 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3511       71856 :         infomask = oldtup.t_data->t_infomask;
    3512             : 
    3513             :         /*
    3514             :          * Now we have to do something about the existing locker.  If it's a
    3515             :          * multi, sleep on it; we might be awakened before it is completely
    3516             :          * gone (or even not sleep at all in some cases); we need to preserve
    3517             :          * it as locker, unless it is gone completely.
    3518             :          *
    3519             :          * If it's not a multi, we need to check for sleeping conditions
    3520             :          * before actually going to sleep.  If the update doesn't conflict
    3521             :          * with the locks, we just continue without sleeping (but making sure
    3522             :          * it is preserved).
    3523             :          *
    3524             :          * Before sleeping, we need to acquire tuple lock to establish our
    3525             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3526             :          * release us when we are next-in-line for the tuple.  Note we must
    3527             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3528             :          * otherwise we're open for race conditions with other transactions
    3529             :          * holding the tuple lock which sleep on us.
    3530             :          *
    3531             :          * If we are forced to "start over" below, we keep the tuple lock;
    3532             :          * this arranges that we stay at the head of the line while rechecking
    3533             :          * tuple state.
    3534             :          */
    3535       71856 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3536             :         {
    3537             :             TransactionId update_xact;
    3538             :             int         remain;
    3539         120 :             bool        current_is_member = false;
    3540             : 
    3541         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3542             :                                         *lockmode, &current_is_member))
    3543             :             {
    3544          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3545             : 
    3546             :                 /*
    3547             :                  * Acquire the lock, if necessary (but skip it when we're
    3548             :                  * requesting a lock and already have one; avoids deadlock).
    3549             :                  */
    3550          16 :                 if (!current_is_member)
    3551           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3552             :                                          LockWaitBlock, &have_tuple_lock);
    3553             : 
    3554             :                 /* wait for multixact */
    3555          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3556             :                                 relation, &oldtup.t_self, XLTW_Update,
    3557             :                                 &remain);
    3558          16 :                 checked_lockers = true;
    3559          16 :                 locker_remains = remain != 0;
    3560          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3561             : 
    3562             :                 /*
    3563             :                  * If xwait had just locked the tuple then some other xact
    3564             :                  * could update this tuple before we get to this point.  Check
    3565             :                  * for xmax change, and start over if so.
    3566             :                  */
    3567          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3568          16 :                                           infomask) ||
    3569          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3570             :                                          xwait))
    3571           0 :                     goto l2;
    3572             :             }
    3573             : 
    3574             :             /*
    3575             :              * Note that the multixact may not be done by now.  It could have
    3576             :              * surviving members; our own xact or other subxacts of this
    3577             :              * backend, and also any other concurrent transaction that locked
    3578             :              * the tuple with LockTupleKeyShare if we only got
    3579             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3580             :              * careful to mark the updated tuple with the surviving members in
    3581             :              * Xmax.
    3582             :              *
    3583             :              * Note that there could have been another update in the
    3584             :              * MultiXact. In that case, we need to check whether it committed
    3585             :              * or aborted. If it aborted we are safe to update it again;
    3586             :              * otherwise there is an update conflict, and we have to return
    3587             :              * TableTuple{Deleted, Updated} below.
    3588             :              *
    3589             :              * In the LockTupleExclusive case, we still need to preserve the
    3590             :              * surviving members: those would include the tuple locks we had
    3591             :              * before this one, which are important to keep in case this
    3592             :              * subxact aborts.
    3593             :              */
    3594         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3595          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3596             :             else
    3597         104 :                 update_xact = InvalidTransactionId;
    3598             : 
    3599             :             /*
    3600             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3601             :              * TransactionIdIsInProgress() call needed here, since we called
    3602             :              * MultiXactIdWait() above.
    3603             :              */
    3604         136 :             if (!TransactionIdIsValid(update_xact) ||
    3605          16 :                 TransactionIdDidAbort(update_xact))
    3606         106 :                 can_continue = true;
    3607             :         }
    3608       71736 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3609             :         {
    3610             :             /*
    3611             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3612             :              * lock here, but must preserve our locking information.
    3613             :              */
    3614       71552 :             checked_lockers = true;
    3615       71552 :             locker_remains = true;
    3616       71552 :             can_continue = true;
    3617             :         }
    3618         184 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3619             :         {
    3620             :             /*
    3621             :              * If it's just a key-share locker, and we're not changing the key
    3622             :              * columns, we don't need to wait for it to end; but we need to
    3623             :              * preserve it as locker.
    3624             :              */
    3625          58 :             checked_lockers = true;
    3626          58 :             locker_remains = true;
    3627          58 :             can_continue = true;
    3628             :         }
    3629             :         else
    3630             :         {
    3631             :             /*
    3632             :              * Wait for regular transaction to end; but first, acquire tuple
    3633             :              * lock.
    3634             :              */
    3635         126 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3636         126 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3637             :                                  LockWaitBlock, &have_tuple_lock);
    3638         126 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3639             :                               XLTW_Update);
    3640         126 :             checked_lockers = true;
    3641         126 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3642             : 
    3643             :             /*
    3644             :              * xwait is done, but if xwait had just locked the tuple then some
    3645             :              * other xact could update this tuple before we get to this point.
    3646             :              * Check for xmax change, and start over if so.
    3647             :              */
    3648         250 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3649         124 :                 !TransactionIdEquals(xwait,
    3650             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3651           2 :                 goto l2;
    3652             : 
    3653             :             /* Otherwise check if it committed or aborted */
    3654         124 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3655         124 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3656          30 :                 can_continue = true;
    3657             :         }
    3658             : 
    3659       71854 :         if (can_continue)
    3660       71746 :             result = TM_Ok;
    3661         108 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3662          98 :             result = TM_Updated;
    3663             :         else
    3664          10 :             result = TM_Deleted;
    3665             :     }
    3666             : 
    3667             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3668             :     if (result != TM_Ok)
    3669             :     {
    3670             :         Assert(result == TM_SelfModified ||
    3671             :                result == TM_Updated ||
    3672             :                result == TM_Deleted ||
    3673             :                result == TM_BeingModified);
    3674             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3675             :         Assert(result != TM_Updated ||
    3676             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3677             :     }
    3678             : 
    3679      606554 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3680             :     {
    3681             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3682           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3683           2 :             result = TM_Updated;
    3684             :     }
    3685             : 
    3686      606554 :     if (result != TM_Ok)
    3687             :     {
    3688         302 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3689         302 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3690         302 :         if (result == TM_SelfModified)
    3691         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3692             :         else
    3693         198 :             tmfd->cmax = InvalidCommandId;
    3694         302 :         UnlockReleaseBuffer(buffer);
    3695         302 :         if (have_tuple_lock)
    3696          94 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3697         302 :         if (vmbuffer != InvalidBuffer)
    3698           0 :             ReleaseBuffer(vmbuffer);
    3699         302 :         *update_indexes = TU_None;
    3700             : 
    3701         302 :         bms_free(hot_attrs);
    3702         302 :         bms_free(sum_attrs);
    3703         302 :         bms_free(key_attrs);
    3704         302 :         bms_free(id_attrs);
    3705         302 :         bms_free(modified_attrs);
    3706         302 :         bms_free(interesting_attrs);
    3707         302 :         return result;
    3708             :     }
    3709             : 
    3710             :     /*
    3711             :      * If we didn't pin the visibility map page and the page has become all
    3712             :      * visible while we were busy locking the buffer, or during some
    3713             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3714             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3715             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3716             :      * tuple has been locked or updated under us, but hopefully it won't
    3717             :      * happen very often.
    3718             :      */
    3719      606252 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3720             :     {
    3721           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3722           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3723           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3724           0 :         goto l2;
    3725             :     }
    3726             : 
    3727             :     /* Fill in transaction status data */
    3728             : 
    3729             :     /*
    3730             :      * If the tuple we're updating is locked, we need to preserve the locking
    3731             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3732             :      */
    3733      606252 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3734      606252 :                               oldtup.t_data->t_infomask,
    3735      606252 :                               oldtup.t_data->t_infomask2,
    3736             :                               xid, *lockmode, true,
    3737             :                               &xmax_old_tuple, &infomask_old_tuple,
    3738             :                               &infomask2_old_tuple);
    3739             : 
    3740             :     /*
    3741             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3742             :      * was no xmax previously, or there was one but all lockers are now gone,
    3743             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3744             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3745             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3746             :      */
    3747      677968 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3748      143432 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3749       71612 :         (checked_lockers && !locker_remains))
    3750      534536 :         xmax_new_tuple = InvalidTransactionId;
    3751             :     else
    3752       71716 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3753             : 
    3754      606252 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3755             :     {
    3756      534536 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3757      534536 :         infomask2_new_tuple = 0;
    3758             :     }
    3759             :     else
    3760             :     {
    3761             :         /*
    3762             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3763             :          * to use on the new tuple depend on what was there on the old one.
    3764             :          * Note that since we're doing an update, the only possibility is that
    3765             :          * the lockers had FOR KEY SHARE lock.
    3766             :          */
    3767       71716 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3768             :         {
    3769         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3770             :                                    &infomask2_new_tuple);
    3771             :         }
    3772             :         else
    3773             :         {
    3774       71610 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3775       71610 :             infomask2_new_tuple = 0;
    3776             :         }
    3777             :     }
    3778             : 
    3779             :     /*
    3780             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3781             :      * Xmax, as well as initial infomask bits as computed above.
    3782             :      */
    3783      606252 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3784      606252 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3785      606252 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3786      606252 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3787      606252 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3788      606252 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3789      606252 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3790             : 
    3791             :     /*
    3792             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3793             :      * the plain cid into the new tuple.
    3794             :      */
    3795      606252 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3796             : 
    3797             :     /*
    3798             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3799             :      * on the same page as the old, then we need to release the content lock
    3800             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3801             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3802             :      * show that it's locked, else other processes may try to update it
    3803             :      * themselves.
    3804             :      *
    3805             :      * We need to invoke the toaster if there are already any out-of-line
    3806             :      * toasted values present, or if the new tuple is over-threshold.
    3807             :      */
    3808      606252 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3809           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3810             :     {
    3811             :         /* toast table entries should never be recursively toasted */
    3812             :         Assert(!HeapTupleHasExternal(&oldtup));
    3813             :         Assert(!HeapTupleHasExternal(newtup));
    3814           0 :         need_toast = false;
    3815             :     }
    3816             :     else
    3817     1818054 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3818     1211802 :                       HeapTupleHasExternal(newtup) ||
    3819      605502 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3820             : 
    3821      606252 :     pagefree = PageGetHeapFreeSpace(page);
    3822             : 
    3823      606252 :     newtupsize = MAXALIGN(newtup->t_len);
    3824             : 
    3825      606252 :     if (need_toast || newtupsize > pagefree)
    3826      297710 :     {
    3827             :         TransactionId xmax_lock_old_tuple;
    3828             :         uint16      infomask_lock_old_tuple,
    3829             :                     infomask2_lock_old_tuple;
    3830      297710 :         bool        cleared_all_frozen = false;
    3831             : 
    3832             :         /*
    3833             :          * To prevent concurrent sessions from updating the tuple, we have to
    3834             :          * temporarily mark it locked, while we release the page-level lock.
    3835             :          *
    3836             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3837             :          * written out to disk, we unfortunately have to WAL log this
    3838             :          * temporary modification.  We can reuse xl_heap_lock for this
    3839             :          * purpose.  If we crash/error before following through with the
    3840             :          * actual update, xmax will be of an aborted transaction, allowing
    3841             :          * other sessions to proceed.
    3842             :          */
    3843             : 
    3844             :         /*
    3845             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3846             :          * to be done separately from the combo that's going to be used for
    3847             :          * updating, because the potentially created multixact would otherwise
    3848             :          * be wrong.
    3849             :          */
    3850      297710 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3851      297710 :                                   oldtup.t_data->t_infomask,
    3852      297710 :                                   oldtup.t_data->t_infomask2,
    3853             :                                   xid, *lockmode, false,
    3854             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3855             :                                   &infomask2_lock_old_tuple);
    3856             : 
    3857             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3858             : 
    3859      297710 :         START_CRIT_SECTION();
    3860             : 
    3861             :         /* Clear obsolete visibility flags ... */
    3862      297710 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3863      297710 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3864      297710 :         HeapTupleClearHotUpdated(&oldtup);
    3865             :         /* ... and store info about transaction updating this tuple */
    3866             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3867      297710 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3868      297710 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3869      297710 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3870      297710 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3871             : 
    3872             :         /* temporarily make it look not-updated, but locked */
    3873      297710 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3874             : 
    3875             :         /*
    3876             :          * Clear all-frozen bit on visibility map if needed. We could
    3877             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3878             :          * overhead would be unchanged, that doesn't seem necessarily
    3879             :          * worthwhile.
    3880             :          */
    3881      299444 :         if (PageIsAllVisible(page) &&
    3882        1734 :             visibilitymap_clear(relation, block, vmbuffer,
    3883             :                                 VISIBILITYMAP_ALL_FROZEN))
    3884        1384 :             cleared_all_frozen = true;
    3885             : 
    3886      297710 :         MarkBufferDirty(buffer);
    3887             : 
    3888      297710 :         if (RelationNeedsWAL(relation))
    3889             :         {
    3890             :             xl_heap_lock xlrec;
    3891             :             XLogRecPtr  recptr;
    3892             : 
    3893      277448 :             XLogBeginInsert();
    3894      277448 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3895             : 
    3896      277448 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3897      277448 :             xlrec.xmax = xmax_lock_old_tuple;
    3898      554896 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3899      277448 :                                                   oldtup.t_data->t_infomask2);
    3900      277448 :             xlrec.flags =
    3901      277448 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3902      277448 :             XLogRegisterData(&xlrec, SizeOfHeapLock);
    3903      277448 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3904      277448 :             PageSetLSN(page, recptr);
    3905             :         }
    3906             : 
    3907      297710 :         END_CRIT_SECTION();
    3908             : 
    3909      297710 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3910             : 
    3911             :         /*
    3912             :          * Let the toaster do its thing, if needed.
    3913             :          *
    3914             :          * Note: below this point, heaptup is the data we actually intend to
    3915             :          * store into the relation; newtup is the caller's original untoasted
    3916             :          * data.
    3917             :          */
    3918      297710 :         if (need_toast)
    3919             :         {
    3920             :             /* Note we always use WAL and FSM during updates */
    3921        3170 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3922        3170 :             newtupsize = MAXALIGN(heaptup->t_len);
    3923             :         }
    3924             :         else
    3925      294540 :             heaptup = newtup;
    3926             : 
    3927             :         /*
    3928             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3929             :          * tricky since someone else could have added tuples to the page while
    3930             :          * we weren't looking.  We have to recheck the available space after
    3931             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3932             :          * former amount of free space is still not enough; it's unlikely
    3933             :          * there's more free now than before.
    3934             :          *
    3935             :          * What's more, if we need to get a new page, we will need to acquire
    3936             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3937             :          * some other backend trying to get the same two locks in the other
    3938             :          * order, we must be consistent about the order we get the locks in.
    3939             :          * We use the rule "lock the lower-numbered page of the relation
    3940             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3941             :          * while not holding the lock on the old page, and we must rely on it
    3942             :          * to get the locks on both pages in the correct order.
    3943             :          *
    3944             :          * Another consideration is that we need visibility map page pin(s) if
    3945             :          * we will have to clear the all-visible flag on either page.  If we
    3946             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3947             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3948             :          * a loop.
    3949             :          */
    3950             :         for (;;)
    3951             :         {
    3952      297710 :             if (newtupsize > pagefree)
    3953             :             {
    3954             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3955      296648 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3956             :                                                    buffer, 0, NULL,
    3957             :                                                    &vmbuffer_new, &vmbuffer,
    3958             :                                                    0);
    3959             :                 /* We're all done. */
    3960      296648 :                 break;
    3961             :             }
    3962             :             /* Acquire VM page pin if needed and we don't have it. */
    3963        1062 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3964           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3965             :             /* Re-acquire the lock on the old tuple's page. */
    3966        1062 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3967             :             /* Re-check using the up-to-date free space */
    3968        1062 :             pagefree = PageGetHeapFreeSpace(page);
    3969        1062 :             if (newtupsize > pagefree ||
    3970        1062 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3971             :             {
    3972             :                 /*
    3973             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3974             :                  * all-visible flag.  We must now unlock and loop to avoid
    3975             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3976             :                  */
    3977           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3978             :             }
    3979             :             else
    3980             :             {
    3981             :                 /* We're all done. */
    3982        1062 :                 newbuf = buffer;
    3983        1062 :                 break;
    3984             :             }
    3985             :         }
    3986             :     }
    3987             :     else
    3988             :     {
    3989             :         /* No TOAST work needed, and it'll fit on same page */
    3990      308542 :         newbuf = buffer;
    3991      308542 :         heaptup = newtup;
    3992             :     }
    3993             : 
    3994             :     /*
    3995             :      * We're about to do the actual update -- check for conflict first, to
    3996             :      * avoid possibly having to roll back work we've just done.
    3997             :      *
    3998             :      * This is safe without a recheck as long as there is no possibility of
    3999             :      * another process scanning the pages between this check and the update
    4000             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    4001             :      * continuously held from this point until the tuple update is visible).
    4002             :      *
    4003             :      * For the new tuple the only check needed is at the relation level, but
    4004             :      * since both tuples are in the same relation and the check for oldtup
    4005             :      * will include checking the relation level, there is no benefit to a
    4006             :      * separate check for the new tuple.
    4007             :      */
    4008      606252 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    4009             :                                    BufferGetBlockNumber(buffer));
    4010             : 
    4011             :     /*
    4012             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    4013             :      * has enough space for the new tuple.  If they are the same buffer, only
    4014             :      * one pin is held.
    4015             :      */
    4016             : 
    4017      606228 :     if (newbuf == buffer)
    4018             :     {
    4019             :         /*
    4020             :          * Since the new tuple is going into the same page, we might be able
    4021             :          * to do a HOT update.  Check if any of the index columns have been
    4022             :          * changed.
    4023             :          */
    4024      309580 :         if (!bms_overlap(modified_attrs, hot_attrs))
    4025             :         {
    4026      285734 :             use_hot_update = true;
    4027             : 
    4028             :             /*
    4029             :              * If none of the columns that are used in hot-blocking indexes
    4030             :              * were updated, we can apply HOT, but we do still need to check
    4031             :              * if we need to update the summarizing indexes, and update those
    4032             :              * indexes if the columns were updated, or we may fail to detect
    4033             :              * e.g. value bound changes in BRIN minmax indexes.
    4034             :              */
    4035      285734 :             if (bms_overlap(modified_attrs, sum_attrs))
    4036        3282 :                 summarized_update = true;
    4037             :         }
    4038             :     }
    4039             :     else
    4040             :     {
    4041             :         /* Set a hint that the old page could use prune/defrag */
    4042      296648 :         PageSetFull(page);
    4043             :     }
    4044             : 
    4045             :     /*
    4046             :      * Compute replica identity tuple before entering the critical section so
    4047             :      * we don't PANIC upon a memory allocation failure.
    4048             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    4049             :      * logged.  Pass old key required as true only if the replica identity key
    4050             :      * columns are modified or it has external data.
    4051             :      */
    4052      606228 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    4053      606228 :                                            bms_overlap(modified_attrs, id_attrs) ||
    4054             :                                            id_has_external,
    4055             :                                            &old_key_copied);
    4056             : 
    4057             :     /* NO EREPORT(ERROR) from here till changes are logged */
    4058      606228 :     START_CRIT_SECTION();
    4059             : 
    4060             :     /*
    4061             :      * If this transaction commits, the old tuple will become DEAD sooner or
    4062             :      * later.  Set flag that this page is a candidate for pruning once our xid
    4063             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    4064             :      * the subsequent page pruning will be a no-op and the hint will be
    4065             :      * cleared.
    4066             :      *
    4067             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    4068             :      * there would be a prunable tuple in the newbuf; but for now we choose
    4069             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    4070             :      * sync if this decision changes.
    4071             :      */
    4072      606228 :     PageSetPrunable(page, xid);
    4073             : 
    4074      606228 :     if (use_hot_update)
    4075             :     {
    4076             :         /* Mark the old tuple as HOT-updated */
    4077      285734 :         HeapTupleSetHotUpdated(&oldtup);
    4078             :         /* And mark the new tuple as heap-only */
    4079      285734 :         HeapTupleSetHeapOnly(heaptup);
    4080             :         /* Mark the caller's copy too, in case different from heaptup */
    4081      285734 :         HeapTupleSetHeapOnly(newtup);
    4082             :     }
    4083             :     else
    4084             :     {
    4085             :         /* Make sure tuples are correctly marked as not-HOT */
    4086      320494 :         HeapTupleClearHotUpdated(&oldtup);
    4087      320494 :         HeapTupleClearHeapOnly(heaptup);
    4088      320494 :         HeapTupleClearHeapOnly(newtup);
    4089             :     }
    4090             : 
    4091      606228 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    4092             : 
    4093             : 
    4094             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    4095      606228 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    4096      606228 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    4097             :     /* ... and store info about transaction updating this tuple */
    4098             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    4099      606228 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    4100      606228 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    4101      606228 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    4102      606228 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    4103             : 
    4104             :     /* record address of new tuple in t_ctid of old one */
    4105      606228 :     oldtup.t_data->t_ctid = heaptup->t_self;
    4106             : 
    4107             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    4108      606228 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    4109             :     {
    4110        3052 :         all_visible_cleared = true;
    4111        3052 :         PageClearAllVisible(BufferGetPage(buffer));
    4112        3052 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    4113             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    4114             :     }
    4115      606228 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    4116             :     {
    4117        1536 :         all_visible_cleared_new = true;
    4118        1536 :         PageClearAllVisible(BufferGetPage(newbuf));
    4119        1536 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    4120             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    4121             :     }
    4122             : 
    4123      606228 :     if (newbuf != buffer)
    4124      296648 :         MarkBufferDirty(newbuf);
    4125      606228 :     MarkBufferDirty(buffer);
    4126             : 
    4127             :     /* XLOG stuff */
    4128      606228 :     if (RelationNeedsWAL(relation))
    4129             :     {
    4130             :         XLogRecPtr  recptr;
    4131             : 
    4132             :         /*
    4133             :          * For logical decoding we need combo CIDs to properly decode the
    4134             :          * catalog.
    4135             :          */
    4136      583504 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4137             :         {
    4138        5086 :             log_heap_new_cid(relation, &oldtup);
    4139        5086 :             log_heap_new_cid(relation, heaptup);
    4140             :         }
    4141             : 
    4142      583504 :         recptr = log_heap_update(relation, buffer,
    4143             :                                  newbuf, &oldtup, heaptup,
    4144             :                                  old_key_tuple,
    4145             :                                  all_visible_cleared,
    4146             :                                  all_visible_cleared_new);
    4147      583504 :         if (newbuf != buffer)
    4148             :         {
    4149      276398 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4150             :         }
    4151      583504 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4152             :     }
    4153             : 
    4154      606228 :     END_CRIT_SECTION();
    4155             : 
    4156      606228 :     if (newbuf != buffer)
    4157      296648 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4158      606228 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4159             : 
    4160             :     /*
    4161             :      * Mark old tuple for invalidation from system caches at next command
    4162             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4163             :      * have to do this before releasing the buffer because oldtup is in the
    4164             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4165             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4166             :      * sinval messages.)
    4167             :      */
    4168      606228 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4169             : 
    4170             :     /* Now we can release the buffer(s) */
    4171      606228 :     if (newbuf != buffer)
    4172      296648 :         ReleaseBuffer(newbuf);
    4173      606228 :     ReleaseBuffer(buffer);
    4174      606228 :     if (BufferIsValid(vmbuffer_new))
    4175        1536 :         ReleaseBuffer(vmbuffer_new);
    4176      606228 :     if (BufferIsValid(vmbuffer))
    4177        3052 :         ReleaseBuffer(vmbuffer);
    4178             : 
    4179             :     /*
    4180             :      * Release the lmgr tuple lock, if we had it.
    4181             :      */
    4182      606228 :     if (have_tuple_lock)
    4183          30 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4184             : 
    4185      606228 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4186             : 
    4187             :     /*
    4188             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4189             :      * back to the caller's image, too.
    4190             :      */
    4191      606228 :     if (heaptup != newtup)
    4192             :     {
    4193        3074 :         newtup->t_self = heaptup->t_self;
    4194        3074 :         heap_freetuple(heaptup);
    4195             :     }
    4196             : 
    4197             :     /*
    4198             :      * If it is a HOT update, the update may still need to update summarized
    4199             :      * indexes, lest we fail to update those summaries and get incorrect
    4200             :      * results (for example, minmax bounds of the block may change with this
    4201             :      * update).
    4202             :      */
    4203      606228 :     if (use_hot_update)
    4204             :     {
    4205      285734 :         if (summarized_update)
    4206        3282 :             *update_indexes = TU_Summarizing;
    4207             :         else
    4208      282452 :             *update_indexes = TU_None;
    4209             :     }
    4210             :     else
    4211      320494 :         *update_indexes = TU_All;
    4212             : 
    4213      606228 :     if (old_key_tuple != NULL && old_key_copied)
    4214         168 :         heap_freetuple(old_key_tuple);
    4215             : 
    4216      606228 :     bms_free(hot_attrs);
    4217      606228 :     bms_free(sum_attrs);
    4218      606228 :     bms_free(key_attrs);
    4219      606228 :     bms_free(id_attrs);
    4220      606228 :     bms_free(modified_attrs);
    4221      606228 :     bms_free(interesting_attrs);
    4222             : 
    4223      606228 :     return TM_Ok;
    4224             : }
    4225             : 
    4226             : #ifdef USE_ASSERT_CHECKING
    4227             : /*
    4228             :  * Confirm adequate lock held during heap_update(), per rules from
    4229             :  * README.tuplock section "Locking to write inplace-updated tables".
    4230             :  */
    4231             : static void
    4232             : check_lock_if_inplace_updateable_rel(Relation relation,
    4233             :                                      ItemPointer otid,
    4234             :                                      HeapTuple newtup)
    4235             : {
    4236             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4237             :     switch (RelationGetRelid(relation))
    4238             :     {
    4239             :         case RelationRelationId:
    4240             :         case DatabaseRelationId:
    4241             :             {
    4242             :                 LOCKTAG     tuptag;
    4243             : 
    4244             :                 SET_LOCKTAG_TUPLE(tuptag,
    4245             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4246             :                                   relation->rd_lockInfo.lockRelId.relId,
    4247             :                                   ItemPointerGetBlockNumber(otid),
    4248             :                                   ItemPointerGetOffsetNumber(otid));
    4249             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4250             :                     return;
    4251             :             }
    4252             :             break;
    4253             :         default:
    4254             :             Assert(!IsInplaceUpdateRelation(relation));
    4255             :             return;
    4256             :     }
    4257             : 
    4258             :     switch (RelationGetRelid(relation))
    4259             :     {
    4260             :         case RelationRelationId:
    4261             :             {
    4262             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4263             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4264             :                 Oid         relid = classForm->oid;
    4265             :                 Oid         dbid;
    4266             :                 LOCKTAG     tag;
    4267             : 
    4268             :                 if (IsSharedRelation(relid))
    4269             :                     dbid = InvalidOid;
    4270             :                 else
    4271             :                     dbid = MyDatabaseId;
    4272             : 
    4273             :                 if (classForm->relkind == RELKIND_INDEX)
    4274             :                 {
    4275             :                     Relation    irel = index_open(relid, AccessShareLock);
    4276             : 
    4277             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4278             :                     index_close(irel, AccessShareLock);
    4279             :                 }
    4280             :                 else
    4281             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4282             : 
    4283             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4284             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4285             :                     elog(WARNING,
    4286             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4287             :                          NameStr(classForm->relname),
    4288             :                          relid,
    4289             :                          classForm->relkind,
    4290             :                          ItemPointerGetBlockNumber(otid),
    4291             :                          ItemPointerGetOffsetNumber(otid));
    4292             :             }
    4293             :             break;
    4294             :         case DatabaseRelationId:
    4295             :             {
    4296             :                 /* LOCKTAG_TUPLE required */
    4297             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4298             : 
    4299             :                 elog(WARNING,
    4300             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4301             :                      NameStr(dbForm->datname),
    4302             :                      dbForm->oid,
    4303             :                      ItemPointerGetBlockNumber(otid),
    4304             :                      ItemPointerGetOffsetNumber(otid));
    4305             :             }
    4306             :             break;
    4307             :     }
    4308             : }
    4309             : 
    4310             : /*
    4311             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4312             :  * "Locking to write inplace-updated tables".
    4313             :  */
    4314             : static void
    4315             : check_inplace_rel_lock(HeapTuple oldtup)
    4316             : {
    4317             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4318             :     Oid         relid = classForm->oid;
    4319             :     Oid         dbid;
    4320             :     LOCKTAG     tag;
    4321             : 
    4322             :     if (IsSharedRelation(relid))
    4323             :         dbid = InvalidOid;
    4324             :     else
    4325             :         dbid = MyDatabaseId;
    4326             : 
    4327             :     if (classForm->relkind == RELKIND_INDEX)
    4328             :     {
    4329             :         Relation    irel = index_open(relid, AccessShareLock);
    4330             : 
    4331             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4332             :         index_close(irel, AccessShareLock);
    4333             :     }
    4334             :     else
    4335             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4336             : 
    4337             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4338             :         elog(WARNING,
    4339             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4340             :              NameStr(classForm->relname),
    4341             :              relid,
    4342             :              classForm->relkind,
    4343             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4344             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4345             : }
    4346             : #endif
    4347             : 
    4348             : /*
    4349             :  * Check if the specified attribute's values are the same.  Subroutine for
    4350             :  * HeapDetermineColumnsInfo.
    4351             :  */
    4352             : static bool
    4353     1464396 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4354             :                  bool isnull1, bool isnull2)
    4355             : {
    4356             :     /*
    4357             :      * If one value is NULL and other is not, then they are certainly not
    4358             :      * equal
    4359             :      */
    4360     1464396 :     if (isnull1 != isnull2)
    4361          90 :         return false;
    4362             : 
    4363             :     /*
    4364             :      * If both are NULL, they can be considered equal.
    4365             :      */
    4366     1464306 :     if (isnull1)
    4367        9982 :         return true;
    4368             : 
    4369             :     /*
    4370             :      * We do simple binary comparison of the two datums.  This may be overly
    4371             :      * strict because there can be multiple binary representations for the
    4372             :      * same logical value.  But we should be OK as long as there are no false
    4373             :      * positives.  Using a type-specific equality operator is messy because
    4374             :      * there could be multiple notions of equality in different operator
    4375             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4376             :      * while holding exclusive buffer lock.
    4377             :      */
    4378     1454324 :     if (attrnum <= 0)
    4379             :     {
    4380             :         /* The only allowed system columns are OIDs, so do this */
    4381           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4382             :     }
    4383             :     else
    4384             :     {
    4385             :         CompactAttribute *att;
    4386             : 
    4387             :         Assert(attrnum <= tupdesc->natts);
    4388     1454324 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4389     1454324 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4390             :     }
    4391             : }
    4392             : 
    4393             : /*
    4394             :  * Check which columns are being updated.
    4395             :  *
    4396             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4397             :  * from those listed as interesting, the set of columns that changed.
    4398             :  *
    4399             :  * has_external indicates if any of the unmodified attributes (from those
    4400             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4401             :  * stored externally.
    4402             :  */
    4403             : static Bitmapset *
    4404      606554 : HeapDetermineColumnsInfo(Relation relation,
    4405             :                          Bitmapset *interesting_cols,
    4406             :                          Bitmapset *external_cols,
    4407             :                          HeapTuple oldtup, HeapTuple newtup,
    4408             :                          bool *has_external)
    4409             : {
    4410             :     int         attidx;
    4411      606554 :     Bitmapset  *modified = NULL;
    4412      606554 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4413             : 
    4414      606554 :     attidx = -1;
    4415     2070950 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4416             :     {
    4417             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4418     1464396 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4419             :         Datum       value1,
    4420             :                     value2;
    4421             :         bool        isnull1,
    4422             :                     isnull2;
    4423             : 
    4424             :         /*
    4425             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4426             :          * worth supporting this case, since it could only succeed after a
    4427             :          * no-op update, which is hardly a case worth optimizing for.
    4428             :          */
    4429     1464396 :         if (attrnum == 0)
    4430             :         {
    4431           0 :             modified = bms_add_member(modified, attidx);
    4432     1400202 :             continue;
    4433             :         }
    4434             : 
    4435             :         /*
    4436             :          * Likewise, automatically say "not equal" for any system attribute
    4437             :          * other than tableOID; we cannot expect these to be consistent in a
    4438             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4439             :          */
    4440     1464396 :         if (attrnum < 0)
    4441             :         {
    4442           0 :             if (attrnum != TableOidAttributeNumber)
    4443             :             {
    4444           0 :                 modified = bms_add_member(modified, attidx);
    4445           0 :                 continue;
    4446             :             }
    4447             :         }
    4448             : 
    4449             :         /*
    4450             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4451             :          * if there are many indexed columns.  Should we do a single
    4452             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4453             :          * work for system columns ...
    4454             :          */
    4455     1464396 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4456     1464396 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4457             : 
    4458     1464396 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4459             :                               value2, isnull1, isnull2))
    4460             :         {
    4461       53628 :             modified = bms_add_member(modified, attidx);
    4462       53628 :             continue;
    4463             :         }
    4464             : 
    4465             :         /*
    4466             :          * No need to check attributes that can't be stored externally. Note
    4467             :          * that system attributes can't be stored externally.
    4468             :          */
    4469     1410768 :         if (attrnum < 0 || isnull1 ||
    4470     1400786 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4471     1346574 :             continue;
    4472             : 
    4473             :         /*
    4474             :          * Check if the old tuple's attribute is stored externally and is a
    4475             :          * member of external_cols.
    4476             :          */
    4477       64204 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4478          10 :             bms_is_member(attidx, external_cols))
    4479           4 :             *has_external = true;
    4480             :     }
    4481             : 
    4482      606554 :     return modified;
    4483             : }
    4484             : 
    4485             : /*
    4486             :  *  simple_heap_update - replace a tuple
    4487             :  *
    4488             :  * This routine may be used to update a tuple when concurrent updates of
    4489             :  * the target tuple are not expected (for example, because we have a lock
    4490             :  * on the relation associated with the tuple).  Any failure is reported
    4491             :  * via ereport().
    4492             :  */
    4493             : void
    4494      219592 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4495             :                    TU_UpdateIndexes *update_indexes)
    4496             : {
    4497             :     TM_Result   result;
    4498             :     TM_FailureData tmfd;
    4499             :     LockTupleMode lockmode;
    4500             : 
    4501      219592 :     result = heap_update(relation, otid, tup,
    4502             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4503             :                          true /* wait for commit */ ,
    4504             :                          &tmfd, &lockmode, update_indexes);
    4505      219592 :     switch (result)
    4506             :     {
    4507           0 :         case TM_SelfModified:
    4508             :             /* Tuple was already updated in current command? */
    4509           0 :             elog(ERROR, "tuple already updated by self");
    4510             :             break;
    4511             : 
    4512      219590 :         case TM_Ok:
    4513             :             /* done successfully */
    4514      219590 :             break;
    4515             : 
    4516           0 :         case TM_Updated:
    4517           0 :             elog(ERROR, "tuple concurrently updated");
    4518             :             break;
    4519             : 
    4520           2 :         case TM_Deleted:
    4521           2 :             elog(ERROR, "tuple concurrently deleted");
    4522             :             break;
    4523             : 
    4524           0 :         default:
    4525           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4526             :             break;
    4527             :     }
    4528      219590 : }
    4529             : 
    4530             : 
    4531             : /*
    4532             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4533             :  */
    4534             : static MultiXactStatus
    4535        2432 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4536             : {
    4537             :     int         retval;
    4538             : 
    4539        2432 :     if (is_update)
    4540         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4541             :     else
    4542        2240 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4543             : 
    4544        2432 :     if (retval == -1)
    4545           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4546             :              is_update ? "true" : "false");
    4547             : 
    4548        2432 :     return (MultiXactStatus) retval;
    4549             : }
    4550             : 
    4551             : /*
    4552             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4553             :  *
    4554             :  * Note that this acquires a buffer pin, which the caller must release.
    4555             :  *
    4556             :  * Input parameters:
    4557             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4558             :  *  tid: TID of tuple to lock
    4559             :  *  cid: current command ID (used for visibility test, and stored into
    4560             :  *      tuple's cmax if lock is successful)
    4561             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4562             :  *  wait_policy: what to do if tuple lock is not available
    4563             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4564             :  *      tuples.
    4565             :  *
    4566             :  * Output parameters:
    4567             :  *  *tuple: all fields filled in
    4568             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4569             :  *  *tmfd: filled in failure cases (see below)
    4570             :  *
    4571             :  * Function results are the same as the ones for table_tuple_lock().
    4572             :  *
    4573             :  * In the failure cases other than TM_Invisible, the routine fills
    4574             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4575             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4576             :  * since we cannot obtain cmax from a combo CID generated by another
    4577             :  * transaction).
    4578             :  * See comments for struct TM_FailureData for additional info.
    4579             :  *
    4580             :  * See README.tuplock for a thorough explanation of this mechanism.
    4581             :  */
    4582             : TM_Result
    4583      169794 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4584             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4585             :                 bool follow_updates,
    4586             :                 Buffer *buffer, TM_FailureData *tmfd)
    4587             : {
    4588             :     TM_Result   result;
    4589      169794 :     ItemPointer tid = &(tuple->t_self);
    4590             :     ItemId      lp;
    4591             :     Page        page;
    4592      169794 :     Buffer      vmbuffer = InvalidBuffer;
    4593             :     BlockNumber block;
    4594             :     TransactionId xid,
    4595             :                 xmax;
    4596             :     uint16      old_infomask,
    4597             :                 new_infomask,
    4598             :                 new_infomask2;
    4599      169794 :     bool        first_time = true;
    4600      169794 :     bool        skip_tuple_lock = false;
    4601      169794 :     bool        have_tuple_lock = false;
    4602      169794 :     bool        cleared_all_frozen = false;
    4603             : 
    4604      169794 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4605      169794 :     block = ItemPointerGetBlockNumber(tid);
    4606             : 
    4607             :     /*
    4608             :      * Before locking the buffer, pin the visibility map page if it appears to
    4609             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4610             :      * in the middle of changing this, so we'll need to recheck after we have
    4611             :      * the lock.
    4612             :      */
    4613      169794 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4614        3324 :         visibilitymap_pin(relation, block, &vmbuffer);
    4615             : 
    4616      169794 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4617             : 
    4618      169794 :     page = BufferGetPage(*buffer);
    4619      169794 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4620             :     Assert(ItemIdIsNormal(lp));
    4621             : 
    4622      169794 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4623      169794 :     tuple->t_len = ItemIdGetLength(lp);
    4624      169794 :     tuple->t_tableOid = RelationGetRelid(relation);
    4625             : 
    4626          28 : l3:
    4627      169822 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4628             : 
    4629      169822 :     if (result == TM_Invisible)
    4630             :     {
    4631             :         /*
    4632             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4633             :          * UPDATE.  We return this value here rather than throwing an error in
    4634             :          * order to give that case the opportunity to throw a more specific
    4635             :          * error.
    4636             :          */
    4637          24 :         result = TM_Invisible;
    4638          24 :         goto out_locked;
    4639             :     }
    4640      169798 :     else if (result == TM_BeingModified ||
    4641      154058 :              result == TM_Updated ||
    4642             :              result == TM_Deleted)
    4643             :     {
    4644             :         TransactionId xwait;
    4645             :         uint16      infomask;
    4646             :         uint16      infomask2;
    4647             :         bool        require_sleep;
    4648             :         ItemPointerData t_ctid;
    4649             : 
    4650             :         /* must copy state data before unlocking buffer */
    4651       15742 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4652       15742 :         infomask = tuple->t_data->t_infomask;
    4653       15742 :         infomask2 = tuple->t_data->t_infomask2;
    4654       15742 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4655             : 
    4656       15742 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4657             : 
    4658             :         /*
    4659             :          * If any subtransaction of the current top transaction already holds
    4660             :          * a lock as strong as or stronger than what we're requesting, we
    4661             :          * effectively hold the desired lock already.  We *must* succeed
    4662             :          * without trying to take the tuple lock, else we will deadlock
    4663             :          * against anyone wanting to acquire a stronger lock.
    4664             :          *
    4665             :          * Note we only do this the first time we loop on the HTSU result;
    4666             :          * there is no point in testing in subsequent passes, because
    4667             :          * evidently our own transaction cannot have acquired a new lock after
    4668             :          * the first time we checked.
    4669             :          */
    4670       15742 :         if (first_time)
    4671             :         {
    4672       15724 :             first_time = false;
    4673             : 
    4674       15724 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4675             :             {
    4676             :                 int         i;
    4677             :                 int         nmembers;
    4678             :                 MultiXactMember *members;
    4679             : 
    4680             :                 /*
    4681             :                  * We don't need to allow old multixacts here; if that had
    4682             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4683             :                  * MayBeUpdated and we wouldn't be here.
    4684             :                  */
    4685             :                 nmembers =
    4686         182 :                     GetMultiXactIdMembers(xwait, &members, false,
    4687         182 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4688             : 
    4689         554 :                 for (i = 0; i < nmembers; i++)
    4690             :                 {
    4691             :                     /* only consider members of our own transaction */
    4692         400 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4693         302 :                         continue;
    4694             : 
    4695          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4696             :                     {
    4697          28 :                         pfree(members);
    4698          28 :                         result = TM_Ok;
    4699          28 :                         goto out_unlocked;
    4700             :                     }
    4701             :                     else
    4702             :                     {
    4703             :                         /*
    4704             :                          * Disable acquisition of the heavyweight tuple lock.
    4705             :                          * Otherwise, when promoting a weaker lock, we might
    4706             :                          * deadlock with another locker that has acquired the
    4707             :                          * heavyweight tuple lock and is waiting for our
    4708             :                          * transaction to finish.
    4709             :                          *
    4710             :                          * Note that in this case we still need to wait for
    4711             :                          * the multixact if required, to avoid acquiring
    4712             :                          * conflicting locks.
    4713             :                          */
    4714          70 :                         skip_tuple_lock = true;
    4715             :                     }
    4716             :                 }
    4717             : 
    4718         154 :                 if (members)
    4719         154 :                     pfree(members);
    4720             :             }
    4721       15542 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4722             :             {
    4723       13078 :                 switch (mode)
    4724             :                 {
    4725         324 :                     case LockTupleKeyShare:
    4726             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4727             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4728             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4729         324 :                         result = TM_Ok;
    4730         324 :                         goto out_unlocked;
    4731          30 :                     case LockTupleShare:
    4732          42 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4733          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4734             :                         {
    4735          18 :                             result = TM_Ok;
    4736          18 :                             goto out_unlocked;
    4737             :                         }
    4738          12 :                         break;
    4739         122 :                     case LockTupleNoKeyExclusive:
    4740         122 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4741             :                         {
    4742         100 :                             result = TM_Ok;
    4743         100 :                             goto out_unlocked;
    4744             :                         }
    4745          22 :                         break;
    4746       12602 :                     case LockTupleExclusive:
    4747       12602 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4748        2522 :                             infomask2 & HEAP_KEYS_UPDATED)
    4749             :                         {
    4750        2480 :                             result = TM_Ok;
    4751        2480 :                             goto out_unlocked;
    4752             :                         }
    4753       10122 :                         break;
    4754             :                 }
    4755             :             }
    4756             :         }
    4757             : 
    4758             :         /*
    4759             :          * Initially assume that we will have to wait for the locking
    4760             :          * transaction(s) to finish.  We check various cases below in which
    4761             :          * this can be turned off.
    4762             :          */
    4763       12792 :         require_sleep = true;
    4764       12792 :         if (mode == LockTupleKeyShare)
    4765             :         {
    4766             :             /*
    4767             :              * If we're requesting KeyShare, and there's no update present, we
    4768             :              * don't need to wait.  Even if there is an update, we can still
    4769             :              * continue if the key hasn't been modified.
    4770             :              *
    4771             :              * However, if there are updates, we need to walk the update chain
    4772             :              * to mark future versions of the row as locked, too.  That way,
    4773             :              * if somebody deletes that future version, we're protected
    4774             :              * against the key going away.  This locking of future versions
    4775             :              * could block momentarily, if a concurrent transaction is
    4776             :              * deleting a key; or it could return a value to the effect that
    4777             :              * the transaction deleting the key has already committed.  So we
    4778             :              * do this before re-locking the buffer; otherwise this would be
    4779             :              * prone to deadlocks.
    4780             :              *
    4781             :              * Note that the TID we're locking was grabbed before we unlocked
    4782             :              * the buffer.  For it to change while we're not looking, the
    4783             :              * other properties we're testing for below after re-locking the
    4784             :              * buffer would also change, in which case we would restart this
    4785             :              * loop above.
    4786             :              */
    4787        1190 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4788             :             {
    4789             :                 bool        updated;
    4790             : 
    4791        1128 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4792             : 
    4793             :                 /*
    4794             :                  * If there are updates, follow the update chain; bail out if
    4795             :                  * that cannot be done.
    4796             :                  */
    4797        1128 :                 if (follow_updates && updated)
    4798             :                 {
    4799             :                     TM_Result   res;
    4800             : 
    4801         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4802             :                                                   GetCurrentTransactionId(),
    4803             :                                                   mode);
    4804         100 :                     if (res != TM_Ok)
    4805             :                     {
    4806          12 :                         result = res;
    4807             :                         /* recovery code expects to have buffer lock held */
    4808          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4809         358 :                         goto failed;
    4810             :                     }
    4811             :                 }
    4812             : 
    4813        1116 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4814             : 
    4815             :                 /*
    4816             :                  * Make sure it's still an appropriate lock, else start over.
    4817             :                  * Also, if it wasn't updated before we released the lock, but
    4818             :                  * is updated now, we start over too; the reason is that we
    4819             :                  * now need to follow the update chain to lock the new
    4820             :                  * versions.
    4821             :                  */
    4822        1116 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4823          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4824          86 :                      !updated))
    4825          28 :                     goto l3;
    4826             : 
    4827             :                 /* Things look okay, so we can skip sleeping */
    4828        1116 :                 require_sleep = false;
    4829             : 
    4830             :                 /*
    4831             :                  * Note we allow Xmax to change here; other updaters/lockers
    4832             :                  * could have modified it before we grabbed the buffer lock.
    4833             :                  * However, this is not a problem, because with the recheck we
    4834             :                  * just did we ensure that they still don't conflict with the
    4835             :                  * lock we want.
    4836             :                  */
    4837             :             }
    4838             :         }
    4839       11602 :         else if (mode == LockTupleShare)
    4840             :         {
    4841             :             /*
    4842             :              * If we're requesting Share, we can similarly avoid sleeping if
    4843             :              * there's no update and no exclusive lock present.
    4844             :              */
    4845         884 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4846         884 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4847             :             {
    4848         872 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4849             : 
    4850             :                 /*
    4851             :                  * Make sure it's still an appropriate lock, else start over.
    4852             :                  * See above about allowing xmax to change.
    4853             :                  */
    4854        1744 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4855         872 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4856           0 :                     goto l3;
    4857         872 :                 require_sleep = false;
    4858             :             }
    4859             :         }
    4860       10718 :         else if (mode == LockTupleNoKeyExclusive)
    4861             :         {
    4862             :             /*
    4863             :              * If we're requesting NoKeyExclusive, we might also be able to
    4864             :              * avoid sleeping; just ensure that there no conflicting lock
    4865             :              * already acquired.
    4866             :              */
    4867         308 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4868             :             {
    4869          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4870             :                                              mode, NULL))
    4871             :                 {
    4872             :                     /*
    4873             :                      * No conflict, but if the xmax changed under us in the
    4874             :                      * meantime, start over.
    4875             :                      */
    4876          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4877          52 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4878          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4879             :                                              xwait))
    4880           0 :                         goto l3;
    4881             : 
    4882             :                     /* otherwise, we're good */
    4883          26 :                     require_sleep = false;
    4884             :                 }
    4885             :             }
    4886         256 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4887             :             {
    4888          34 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4889             : 
    4890             :                 /* if the xmax changed in the meantime, start over */
    4891          68 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4892          34 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4893             :                                          xwait))
    4894           0 :                     goto l3;
    4895             :                 /* otherwise, we're good */
    4896          34 :                 require_sleep = false;
    4897             :             }
    4898             :         }
    4899             : 
    4900             :         /*
    4901             :          * As a check independent from those above, we can also avoid sleeping
    4902             :          * if the current transaction is the sole locker of the tuple.  Note
    4903             :          * that the strength of the lock already held is irrelevant; this is
    4904             :          * not about recording the lock in Xmax (which will be done regardless
    4905             :          * of this optimization, below).  Also, note that the cases where we
    4906             :          * hold a lock stronger than we are requesting are already handled
    4907             :          * above by not doing anything.
    4908             :          *
    4909             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4910             :          * is well equipped to deal with this situation on its own.
    4911             :          */
    4912       23430 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4913       10650 :             TransactionIdIsCurrentTransactionId(xwait))
    4914             :         {
    4915             :             /* ... but if the xmax changed in the meantime, start over */
    4916       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4917       20244 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4918       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4919             :                                      xwait))
    4920           0 :                 goto l3;
    4921             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4922       10122 :             require_sleep = false;
    4923             :         }
    4924             : 
    4925             :         /*
    4926             :          * Time to sleep on the other transaction/multixact, if necessary.
    4927             :          *
    4928             :          * If the other transaction is an update/delete that's already
    4929             :          * committed, then sleeping cannot possibly do any good: if we're
    4930             :          * required to sleep, get out to raise an error instead.
    4931             :          *
    4932             :          * By here, we either have already acquired the buffer exclusive lock,
    4933             :          * or we must wait for the locking transaction or multixact; so below
    4934             :          * we ensure that we grab buffer lock after the sleep.
    4935             :          */
    4936       12780 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4937             :         {
    4938         270 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4939         270 :             goto failed;
    4940             :         }
    4941       12510 :         else if (require_sleep)
    4942             :         {
    4943             :             /*
    4944             :              * Acquire tuple lock to establish our priority for the tuple, or
    4945             :              * die trying.  LockTuple will release us when we are next-in-line
    4946             :              * for the tuple.  We must do this even if we are share-locking,
    4947             :              * but not if we already have a weaker lock on the tuple.
    4948             :              *
    4949             :              * If we are forced to "start over" below, we keep the tuple lock;
    4950             :              * this arranges that we stay at the head of the line while
    4951             :              * rechecking tuple state.
    4952             :              */
    4953         340 :             if (!skip_tuple_lock &&
    4954         308 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4955             :                                       &have_tuple_lock))
    4956             :             {
    4957             :                 /*
    4958             :                  * This can only happen if wait_policy is Skip and the lock
    4959             :                  * couldn't be obtained.
    4960             :                  */
    4961           2 :                 result = TM_WouldBlock;
    4962             :                 /* recovery code expects to have buffer lock held */
    4963           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4964           2 :                 goto failed;
    4965             :             }
    4966             : 
    4967         336 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4968             :             {
    4969          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4970             : 
    4971             :                 /* We only ever lock tuples, never update them */
    4972          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4973           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4974             : 
    4975             :                 /* wait for multixact to end, or die trying  */
    4976          80 :                 switch (wait_policy)
    4977             :                 {
    4978          72 :                     case LockWaitBlock:
    4979          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4980             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4981          72 :                         break;
    4982           4 :                     case LockWaitSkip:
    4983           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4984             :                                                         status, infomask, relation,
    4985             :                                                         NULL, false))
    4986             :                         {
    4987           4 :                             result = TM_WouldBlock;
    4988             :                             /* recovery code expects to have buffer lock held */
    4989           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4990           4 :                             goto failed;
    4991             :                         }
    4992           0 :                         break;
    4993           4 :                     case LockWaitError:
    4994           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4995             :                                                         status, infomask, relation,
    4996             :                                                         NULL, log_lock_failures))
    4997           4 :                             ereport(ERROR,
    4998             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4999             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5000             :                                             RelationGetRelationName(relation))));
    5001             : 
    5002           0 :                         break;
    5003             :                 }
    5004             : 
    5005             :                 /*
    5006             :                  * Of course, the multixact might not be done here: if we're
    5007             :                  * requesting a light lock mode, other transactions with light
    5008             :                  * locks could still be alive, as well as locks owned by our
    5009             :                  * own xact or other subxacts of this backend.  We need to
    5010             :                  * preserve the surviving MultiXact members.  Note that it
    5011             :                  * isn't absolutely necessary in the latter case, but doing so
    5012             :                  * is simpler.
    5013             :                  */
    5014             :             }
    5015             :             else
    5016             :             {
    5017             :                 /* wait for regular transaction to end, or die trying */
    5018         256 :                 switch (wait_policy)
    5019             :                 {
    5020         178 :                     case LockWaitBlock:
    5021         178 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    5022             :                                           XLTW_Lock);
    5023         178 :                         break;
    5024          66 :                     case LockWaitSkip:
    5025          66 :                         if (!ConditionalXactLockTableWait(xwait, false))
    5026             :                         {
    5027          66 :                             result = TM_WouldBlock;
    5028             :                             /* recovery code expects to have buffer lock held */
    5029          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5030          66 :                             goto failed;
    5031             :                         }
    5032           0 :                         break;
    5033          12 :                     case LockWaitError:
    5034          12 :                         if (!ConditionalXactLockTableWait(xwait, log_lock_failures))
    5035          12 :                             ereport(ERROR,
    5036             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5037             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5038             :                                             RelationGetRelationName(relation))));
    5039           0 :                         break;
    5040             :                 }
    5041             :             }
    5042             : 
    5043             :             /* if there are updates, follow the update chain */
    5044         250 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    5045             :             {
    5046             :                 TM_Result   res;
    5047             : 
    5048          80 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    5049             :                                               GetCurrentTransactionId(),
    5050             :                                               mode);
    5051          80 :                 if (res != TM_Ok)
    5052             :                 {
    5053           4 :                     result = res;
    5054             :                     /* recovery code expects to have buffer lock held */
    5055           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5056           4 :                     goto failed;
    5057             :                 }
    5058             :             }
    5059             : 
    5060         246 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5061             : 
    5062             :             /*
    5063             :              * xwait is done, but if xwait had just locked the tuple then some
    5064             :              * other xact could update this tuple before we get to this point.
    5065             :              * Check for xmax change, and start over if so.
    5066             :              */
    5067         468 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    5068         222 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    5069             :                                      xwait))
    5070          28 :                 goto l3;
    5071             : 
    5072         218 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    5073             :             {
    5074             :                 /*
    5075             :                  * Otherwise check if it committed or aborted.  Note we cannot
    5076             :                  * be here if the tuple was only locked by somebody who didn't
    5077             :                  * conflict with us; that would have been handled above.  So
    5078             :                  * that transaction must necessarily be gone by now.  But
    5079             :                  * don't check for this in the multixact case, because some
    5080             :                  * locker transactions might still be running.
    5081             :                  */
    5082         156 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    5083             :             }
    5084             :         }
    5085             : 
    5086             :         /* By here, we're certain that we hold buffer exclusive lock again */
    5087             : 
    5088             :         /*
    5089             :          * We may lock if previous xmax aborted, or if it committed but only
    5090             :          * locked the tuple without updating it; or if we didn't have to wait
    5091             :          * at all for whatever reason.
    5092             :          */
    5093       12388 :         if (!require_sleep ||
    5094         376 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    5095         286 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    5096         128 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    5097       12272 :             result = TM_Ok;
    5098         116 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    5099          92 :             result = TM_Updated;
    5100             :         else
    5101          24 :             result = TM_Deleted;
    5102             :     }
    5103             : 
    5104      154056 : failed:
    5105      166802 :     if (result != TM_Ok)
    5106             :     {
    5107             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    5108             :                result == TM_Deleted || result == TM_WouldBlock);
    5109             : 
    5110             :         /*
    5111             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    5112             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    5113             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    5114             :          * this assert is slightly different from the equivalent one in
    5115             :          * heap_delete and heap_update.
    5116             :          */
    5117             :         Assert((result == TM_WouldBlock) ||
    5118             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    5119             :         Assert(result != TM_Updated ||
    5120             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    5121         486 :         tmfd->ctid = tuple->t_data->t_ctid;
    5122         486 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    5123         486 :         if (result == TM_SelfModified)
    5124          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    5125             :         else
    5126         474 :             tmfd->cmax = InvalidCommandId;
    5127         486 :         goto out_locked;
    5128             :     }
    5129             : 
    5130             :     /*
    5131             :      * If we didn't pin the visibility map page and the page has become all
    5132             :      * visible while we were busy locking the buffer, or during some
    5133             :      * subsequent window during which we had it unlocked, we'll have to unlock
    5134             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5135             :      * unfortunate, especially since we'll now have to recheck whether the
    5136             :      * tuple has been locked or updated under us, but hopefully it won't
    5137             :      * happen very often.
    5138             :      */
    5139      166316 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5140             :     {
    5141           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5142           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5143           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5144           0 :         goto l3;
    5145             :     }
    5146             : 
    5147      166316 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5148      166316 :     old_infomask = tuple->t_data->t_infomask;
    5149             : 
    5150             :     /*
    5151             :      * If this is the first possibly-multixact-able operation in the current
    5152             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5153             :      * certain that the transaction will never become a member of any older
    5154             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5155             :      * using our own TransactionId below, since some other backend could
    5156             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5157             :      */
    5158      166316 :     MultiXactIdSetOldestMember();
    5159             : 
    5160             :     /*
    5161             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5162             :      * not modify the tuple just yet, because that would leave it in the wrong
    5163             :      * state if multixact.c elogs.
    5164             :      */
    5165      166316 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5166             :                               GetCurrentTransactionId(), mode, false,
    5167             :                               &xid, &new_infomask, &new_infomask2);
    5168             : 
    5169      166316 :     START_CRIT_SECTION();
    5170             : 
    5171             :     /*
    5172             :      * Store transaction information of xact locking the tuple.
    5173             :      *
    5174             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5175             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5176             :      * previously updated tuple, it's important to preserve the Cmax.
    5177             :      *
    5178             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5179             :      * we would break the HOT chain.
    5180             :      */
    5181      166316 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5182      166316 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5183      166316 :     tuple->t_data->t_infomask |= new_infomask;
    5184      166316 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5185      166316 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5186      166238 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5187      166316 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5188             : 
    5189             :     /*
    5190             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5191             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5192             :      * because it was set by the updater.  Moreover, if the tuple has been
    5193             :      * updated, we need to follow the update chain to lock the new versions of
    5194             :      * the tuple as well.
    5195             :      */
    5196      166316 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5197      166238 :         tuple->t_data->t_ctid = *tid;
    5198             : 
    5199             :     /* Clear only the all-frozen bit on visibility map if needed */
    5200      169640 :     if (PageIsAllVisible(page) &&
    5201        3324 :         visibilitymap_clear(relation, block, vmbuffer,
    5202             :                             VISIBILITYMAP_ALL_FROZEN))
    5203          28 :         cleared_all_frozen = true;
    5204             : 
    5205             : 
    5206      166316 :     MarkBufferDirty(*buffer);
    5207             : 
    5208             :     /*
    5209             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5210             :      * there is no state change worth restoring after a crash.  You would be
    5211             :      * wrong however: we have just written either a TransactionId or a
    5212             :      * MultiXactId that may never have been seen on disk before, and we need
    5213             :      * to make sure that there are XLOG entries covering those ID numbers.
    5214             :      * Else the same IDs might be re-used after a crash, which would be
    5215             :      * disastrous if this page made it to disk before the crash.  Essentially
    5216             :      * we have to enforce the WAL log-before-data rule even in this case.
    5217             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5218             :      * entries for everything anyway.)
    5219             :      */
    5220      166316 :     if (RelationNeedsWAL(relation))
    5221             :     {
    5222             :         xl_heap_lock xlrec;
    5223             :         XLogRecPtr  recptr;
    5224             : 
    5225      165628 :         XLogBeginInsert();
    5226      165628 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5227             : 
    5228      165628 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5229      165628 :         xlrec.xmax = xid;
    5230      331256 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5231      165628 :                                               tuple->t_data->t_infomask2);
    5232      165628 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5233      165628 :         XLogRegisterData(&xlrec, SizeOfHeapLock);
    5234             : 
    5235             :         /* we don't decode row locks atm, so no need to log the origin */
    5236             : 
    5237      165628 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5238             : 
    5239      165628 :         PageSetLSN(page, recptr);
    5240             :     }
    5241             : 
    5242      166316 :     END_CRIT_SECTION();
    5243             : 
    5244      166316 :     result = TM_Ok;
    5245             : 
    5246      166826 : out_locked:
    5247      166826 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5248             : 
    5249      169776 : out_unlocked:
    5250      169776 :     if (BufferIsValid(vmbuffer))
    5251        3324 :         ReleaseBuffer(vmbuffer);
    5252             : 
    5253             :     /*
    5254             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5255             :      * visibility info.
    5256             :      */
    5257             : 
    5258             :     /*
    5259             :      * Now that we have successfully marked the tuple as locked, we can
    5260             :      * release the lmgr tuple lock, if we had it.
    5261             :      */
    5262      169776 :     if (have_tuple_lock)
    5263         278 :         UnlockTupleTuplock(relation, tid, mode);
    5264             : 
    5265      169776 :     return result;
    5266             : }
    5267             : 
    5268             : /*
    5269             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5270             :  * its normal, Xmax-based tuple lock.
    5271             :  *
    5272             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5273             :  * whether the lock has previously been acquired (and this function does
    5274             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5275             :  * has been flipped to true.
    5276             :  *
    5277             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5278             :  * wait_policy is Skip.
    5279             :  */
    5280             : static bool
    5281         526 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5282             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5283             : {
    5284         526 :     if (*have_tuple_lock)
    5285          18 :         return true;
    5286             : 
    5287         508 :     switch (wait_policy)
    5288             :     {
    5289         426 :         case LockWaitBlock:
    5290         426 :             LockTupleTuplock(relation, tid, mode);
    5291         426 :             break;
    5292             : 
    5293          68 :         case LockWaitSkip:
    5294          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, false))
    5295           2 :                 return false;
    5296          66 :             break;
    5297             : 
    5298          14 :         case LockWaitError:
    5299          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, log_lock_failures))
    5300           2 :                 ereport(ERROR,
    5301             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5302             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5303             :                                 RelationGetRelationName(relation))));
    5304          12 :             break;
    5305             :     }
    5306         504 :     *have_tuple_lock = true;
    5307             : 
    5308         504 :     return true;
    5309             : }
    5310             : 
    5311             : /*
    5312             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5313             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5314             :  * corresponding infomasks to use on the tuple.
    5315             :  *
    5316             :  * Note that this might have side effects such as creating a new MultiXactId.
    5317             :  *
    5318             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5319             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5320             :  * but it was not running anymore. There is a race condition, which is that the
    5321             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5322             :  * either here, or within MultiXactIdExpand.
    5323             :  *
    5324             :  * There is a similar race condition possible when the old xmax was a regular
    5325             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5326             :  * window, but it's still possible to end up creating an unnecessary
    5327             :  * MultiXactId.  Fortunately this is harmless.
    5328             :  */
    5329             : static void
    5330     4045232 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5331             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5332             :                           LockTupleMode mode, bool is_update,
    5333             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5334             :                           uint16 *result_infomask2)
    5335             : {
    5336             :     TransactionId new_xmax;
    5337             :     uint16      new_infomask,
    5338             :                 new_infomask2;
    5339             : 
    5340             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5341             : 
    5342      207786 : l5:
    5343     4253018 :     new_infomask = 0;
    5344     4253018 :     new_infomask2 = 0;
    5345     4253018 :     if (old_infomask & HEAP_XMAX_INVALID)
    5346             :     {
    5347             :         /*
    5348             :          * No previous locker; we just insert our own TransactionId.
    5349             :          *
    5350             :          * Note that it's critical that this case be the first one checked,
    5351             :          * because there are several blocks below that come back to this one
    5352             :          * to implement certain optimizations; old_infomask might contain
    5353             :          * other dirty bits in those cases, but we don't really care.
    5354             :          */
    5355     4042944 :         if (is_update)
    5356             :         {
    5357     3580888 :             new_xmax = add_to_xmax;
    5358     3580888 :             if (mode == LockTupleExclusive)
    5359     3047254 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5360             :         }
    5361             :         else
    5362             :         {
    5363      462056 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5364      462056 :             switch (mode)
    5365             :             {
    5366        5034 :                 case LockTupleKeyShare:
    5367        5034 :                     new_xmax = add_to_xmax;
    5368        5034 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5369        5034 :                     break;
    5370        1462 :                 case LockTupleShare:
    5371        1462 :                     new_xmax = add_to_xmax;
    5372        1462 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5373        1462 :                     break;
    5374      264342 :                 case LockTupleNoKeyExclusive:
    5375      264342 :                     new_xmax = add_to_xmax;
    5376      264342 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5377      264342 :                     break;
    5378      191218 :                 case LockTupleExclusive:
    5379      191218 :                     new_xmax = add_to_xmax;
    5380      191218 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5381      191218 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5382      191218 :                     break;
    5383           0 :                 default:
    5384           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5385           0 :                     elog(ERROR, "invalid lock mode");
    5386             :             }
    5387             :         }
    5388             :     }
    5389      210074 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5390             :     {
    5391             :         MultiXactStatus new_status;
    5392             : 
    5393             :         /*
    5394             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5395             :          * cross-check.
    5396             :          */
    5397             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5398             : 
    5399             :         /*
    5400             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5401             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5402             :          * anymore.  This check is critical for databases upgraded by
    5403             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5404             :          * that such multis are never passed.
    5405             :          */
    5406         254 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5407             :         {
    5408           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5409           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5410           0 :             goto l5;
    5411             :         }
    5412             : 
    5413             :         /*
    5414             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5415             :          * include add_to_xmax; but if all the members were lockers and are
    5416             :          * all gone, we can do away with the IS_MULTI bit and just set
    5417             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5418             :          * and we have an updater that aborted, we can also do without a
    5419             :          * multi.
    5420             :          *
    5421             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5422             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5423             :          * incurring extra work anyhow.
    5424             :          */
    5425         254 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5426             :         {
    5427          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5428          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5429             :                                                                 old_infomask)))
    5430             :             {
    5431             :                 /*
    5432             :                  * Reset these bits and restart; otherwise fall through to
    5433             :                  * create a new multi below.
    5434             :                  */
    5435          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5436          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5437          46 :                 goto l5;
    5438             :             }
    5439             :         }
    5440             : 
    5441         208 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5442             : 
    5443         208 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5444             :                                      new_status);
    5445         208 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5446             :     }
    5447      209820 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5448             :     {
    5449             :         /*
    5450             :          * It's a committed update, so we need to preserve him as updater of
    5451             :          * the tuple.
    5452             :          */
    5453             :         MultiXactStatus status;
    5454             :         MultiXactStatus new_status;
    5455             : 
    5456          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5457           0 :             status = MultiXactStatusUpdate;
    5458             :         else
    5459          26 :             status = MultiXactStatusNoKeyUpdate;
    5460             : 
    5461          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5462             : 
    5463             :         /*
    5464             :          * since it's not running, it's obviously impossible for the old
    5465             :          * updater to be identical to the current one, so we need not check
    5466             :          * for that case as we do in the block above.
    5467             :          */
    5468          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5469          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5470             :     }
    5471      209794 :     else if (TransactionIdIsInProgress(xmax))
    5472             :     {
    5473             :         /*
    5474             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5475             :          * create a new MultiXactId that includes both the old locker or
    5476             :          * updater and our own TransactionId.
    5477             :          */
    5478             :         MultiXactStatus new_status;
    5479             :         MultiXactStatus old_status;
    5480             :         LockTupleMode old_mode;
    5481             : 
    5482      209776 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5483             :         {
    5484      209724 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5485       11254 :                 old_status = MultiXactStatusForKeyShare;
    5486      198470 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5487         864 :                 old_status = MultiXactStatusForShare;
    5488      197606 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5489             :             {
    5490      197606 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5491      185338 :                     old_status = MultiXactStatusForUpdate;
    5492             :                 else
    5493       12268 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5494             :             }
    5495             :             else
    5496             :             {
    5497             :                 /*
    5498             :                  * LOCK_ONLY can be present alone only when a page has been
    5499             :                  * upgraded by pg_upgrade.  But in that case,
    5500             :                  * TransactionIdIsInProgress() should have returned false.  We
    5501             :                  * assume it's no longer locked in this case.
    5502             :                  */
    5503           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5504           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5505           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5506           0 :                 goto l5;
    5507             :             }
    5508             :         }
    5509             :         else
    5510             :         {
    5511             :             /* it's an update, but which kind? */
    5512          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5513           0 :                 old_status = MultiXactStatusUpdate;
    5514             :             else
    5515          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5516             :         }
    5517             : 
    5518      209776 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5519             : 
    5520             :         /*
    5521             :          * If the lock to be acquired is for the same TransactionId as the
    5522             :          * existing lock, there's an optimization possible: consider only the
    5523             :          * strongest of both locks as the only one present, and restart.
    5524             :          */
    5525      209776 :         if (xmax == add_to_xmax)
    5526             :         {
    5527             :             /*
    5528             :              * Note that it's not possible for the original tuple to be
    5529             :              * updated: we wouldn't be here because the tuple would have been
    5530             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5531             :              * this code can also run when traversing an update chain to lock
    5532             :              * future versions of a tuple.  But we wouldn't be here either,
    5533             :              * because the add_to_xmax would be different from the original
    5534             :              * updater.
    5535             :              */
    5536             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5537             : 
    5538             :             /* acquire the strongest of both */
    5539      207724 :             if (mode < old_mode)
    5540      104220 :                 mode = old_mode;
    5541             :             /* mustn't touch is_update */
    5542             : 
    5543      207724 :             old_infomask |= HEAP_XMAX_INVALID;
    5544      207724 :             goto l5;
    5545             :         }
    5546             : 
    5547             :         /* otherwise, just fall back to creating a new multixact */
    5548        2052 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5549        2052 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5550             :                                      add_to_xmax, new_status);
    5551        2052 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5552             :     }
    5553          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5554          10 :              TransactionIdDidCommit(xmax))
    5555           2 :     {
    5556             :         /*
    5557             :          * It's a committed update, so we gotta preserve him as updater of the
    5558             :          * tuple.
    5559             :          */
    5560             :         MultiXactStatus status;
    5561             :         MultiXactStatus new_status;
    5562             : 
    5563           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5564           0 :             status = MultiXactStatusUpdate;
    5565             :         else
    5566           2 :             status = MultiXactStatusNoKeyUpdate;
    5567             : 
    5568           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5569             : 
    5570             :         /*
    5571             :          * since it's not running, it's obviously impossible for the old
    5572             :          * updater to be identical to the current one, so we need not check
    5573             :          * for that case as we do in the block above.
    5574             :          */
    5575           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5576           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5577             :     }
    5578             :     else
    5579             :     {
    5580             :         /*
    5581             :          * Can get here iff the locking/updating transaction was running when
    5582             :          * the infomask was extracted from the tuple, but finished before
    5583             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5584             :          * no locker at all in the first place.
    5585             :          */
    5586          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5587          16 :         goto l5;
    5588             :     }
    5589             : 
    5590     4045232 :     *result_infomask = new_infomask;
    5591     4045232 :     *result_infomask2 = new_infomask2;
    5592     4045232 :     *result_xmax = new_xmax;
    5593     4045232 : }
    5594             : 
    5595             : /*
    5596             :  * Subroutine for heap_lock_updated_tuple_rec.
    5597             :  *
    5598             :  * Given a hypothetical multixact status held by the transaction identified
    5599             :  * with the given xid, does the current transaction need to wait, fail, or can
    5600             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5601             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5602             :  * returned.  If the lock is already held by the current transaction, return
    5603             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5604             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5605             :  *
    5606             :  * The held status is said to be hypothetical because it might correspond to a
    5607             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5608             :  * way for simplicity of API.
    5609             :  */
    5610             : static TM_Result
    5611          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5612             :                            LockTupleMode mode, HeapTuple tup,
    5613             :                            bool *needwait)
    5614             : {
    5615             :     MultiXactStatus wantedstatus;
    5616             : 
    5617          64 :     *needwait = false;
    5618          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5619             : 
    5620             :     /*
    5621             :      * Note: we *must* check TransactionIdIsInProgress before
    5622             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5623             :      * for an explanation.
    5624             :      */
    5625          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5626             :     {
    5627             :         /*
    5628             :          * The tuple has already been locked by our own transaction.  This is
    5629             :          * very rare but can happen if multiple transactions are trying to
    5630             :          * lock an ancient version of the same tuple.
    5631             :          */
    5632           0 :         return TM_SelfModified;
    5633             :     }
    5634          64 :     else if (TransactionIdIsInProgress(xid))
    5635             :     {
    5636             :         /*
    5637             :          * If the locking transaction is running, what we do depends on
    5638             :          * whether the lock modes conflict: if they do, then we must wait for
    5639             :          * it to finish; otherwise we can fall through to lock this tuple
    5640             :          * version without waiting.
    5641             :          */
    5642          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5643          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5644             :         {
    5645          16 :             *needwait = true;
    5646             :         }
    5647             : 
    5648             :         /*
    5649             :          * If we set needwait above, then this value doesn't matter;
    5650             :          * otherwise, this value signals to caller that it's okay to proceed.
    5651             :          */
    5652          32 :         return TM_Ok;
    5653             :     }
    5654          32 :     else if (TransactionIdDidAbort(xid))
    5655           6 :         return TM_Ok;
    5656          26 :     else if (TransactionIdDidCommit(xid))
    5657             :     {
    5658             :         /*
    5659             :          * The other transaction committed.  If it was only a locker, then the
    5660             :          * lock is completely gone now and we can return success; but if it
    5661             :          * was an update, then what we do depends on whether the two lock
    5662             :          * modes conflict.  If they conflict, then we must report error to
    5663             :          * caller. But if they don't, we can fall through to allow the current
    5664             :          * transaction to lock the tuple.
    5665             :          *
    5666             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5667             :          * a transaction ends, all its locks are gone and meaningless, and
    5668             :          * thus we can ignore them; whereas its updates persist.  In the
    5669             :          * TransactionIdIsInProgress case, above, we don't need to check
    5670             :          * because we know the lock is still "alive" and thus a conflict needs
    5671             :          * always be checked.
    5672             :          */
    5673          26 :         if (!ISUPDATE_from_mxstatus(status))
    5674           8 :             return TM_Ok;
    5675             : 
    5676          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5677          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5678             :         {
    5679             :             /* bummer */
    5680          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5681          12 :                 return TM_Updated;
    5682             :             else
    5683           4 :                 return TM_Deleted;
    5684             :         }
    5685             : 
    5686           2 :         return TM_Ok;
    5687             :     }
    5688             : 
    5689             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5690           0 :     return TM_Ok;
    5691             : }
    5692             : 
    5693             : 
    5694             : /*
    5695             :  * Recursive part of heap_lock_updated_tuple
    5696             :  *
    5697             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5698             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5699             :  * version as well.
    5700             :  */
    5701             : static TM_Result
    5702         162 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5703             :                             LockTupleMode mode)
    5704             : {
    5705             :     TM_Result   result;
    5706             :     ItemPointerData tupid;
    5707             :     HeapTupleData mytup;
    5708             :     Buffer      buf;
    5709             :     uint16      new_infomask,
    5710             :                 new_infomask2,
    5711             :                 old_infomask,
    5712             :                 old_infomask2;
    5713             :     TransactionId xmax,
    5714             :                 new_xmax;
    5715         162 :     TransactionId priorXmax = InvalidTransactionId;
    5716         162 :     bool        cleared_all_frozen = false;
    5717             :     bool        pinned_desired_page;
    5718         162 :     Buffer      vmbuffer = InvalidBuffer;
    5719             :     BlockNumber block;
    5720             : 
    5721         162 :     ItemPointerCopy(tid, &tupid);
    5722             : 
    5723             :     for (;;)
    5724             :     {
    5725         168 :         new_infomask = 0;
    5726         168 :         new_xmax = InvalidTransactionId;
    5727         168 :         block = ItemPointerGetBlockNumber(&tupid);
    5728         168 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5729             : 
    5730         168 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5731             :         {
    5732             :             /*
    5733             :              * if we fail to find the updated version of the tuple, it's
    5734             :              * because it was vacuumed/pruned away after its creator
    5735             :              * transaction aborted.  So behave as if we got to the end of the
    5736             :              * chain, and there's no further tuple to lock: return success to
    5737             :              * caller.
    5738             :              */
    5739           0 :             result = TM_Ok;
    5740           0 :             goto out_unlocked;
    5741             :         }
    5742             : 
    5743         168 : l4:
    5744         184 :         CHECK_FOR_INTERRUPTS();
    5745             : 
    5746             :         /*
    5747             :          * Before locking the buffer, pin the visibility map page if it
    5748             :          * appears to be necessary.  Since we haven't got the lock yet,
    5749             :          * someone else might be in the middle of changing this, so we'll need
    5750             :          * to recheck after we have the lock.
    5751             :          */
    5752         184 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5753             :         {
    5754           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5755           0 :             pinned_desired_page = true;
    5756             :         }
    5757             :         else
    5758         184 :             pinned_desired_page = false;
    5759             : 
    5760         184 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5761             : 
    5762             :         /*
    5763             :          * If we didn't pin the visibility map page and the page has become
    5764             :          * all visible while we were busy locking the buffer, we'll have to
    5765             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5766             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5767             :          *
    5768             :          * Note: in some paths through this function, we will reach here
    5769             :          * holding a pin on a vm page that may or may not be the one matching
    5770             :          * this page.  If this page isn't all-visible, we won't use the vm
    5771             :          * page, but we hold onto such a pin till the end of the function.
    5772             :          */
    5773         184 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5774             :         {
    5775           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5776           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5777           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5778             :         }
    5779             : 
    5780             :         /*
    5781             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5782             :          * end of the chain, we're done, so return success.
    5783             :          */
    5784         190 :         if (TransactionIdIsValid(priorXmax) &&
    5785           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5786             :                                  priorXmax))
    5787             :         {
    5788           0 :             result = TM_Ok;
    5789           0 :             goto out_locked;
    5790             :         }
    5791             : 
    5792             :         /*
    5793             :          * Also check Xmin: if this tuple was created by an aborted
    5794             :          * (sub)transaction, then we already locked the last live one in the
    5795             :          * chain, thus we're done, so return success.
    5796             :          */
    5797         184 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5798             :         {
    5799          26 :             result = TM_Ok;
    5800          26 :             goto out_locked;
    5801             :         }
    5802             : 
    5803         158 :         old_infomask = mytup.t_data->t_infomask;
    5804         158 :         old_infomask2 = mytup.t_data->t_infomask2;
    5805         158 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5806             : 
    5807             :         /*
    5808             :          * If this tuple version has been updated or locked by some concurrent
    5809             :          * transaction(s), what we do depends on whether our lock mode
    5810             :          * conflicts with what those other transactions hold, and also on the
    5811             :          * status of them.
    5812             :          */
    5813         158 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5814             :         {
    5815             :             TransactionId rawxmax;
    5816             :             bool        needwait;
    5817             : 
    5818          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5819          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5820             :             {
    5821             :                 int         nmembers;
    5822             :                 int         i;
    5823             :                 MultiXactMember *members;
    5824             : 
    5825             :                 /*
    5826             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5827             :                  * applied to tuples after the first in an update chain.  Said
    5828             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5829             :                  * pg_upgraded, but that one was already locked by our caller,
    5830             :                  * not us; and any subsequent ones cannot be because our
    5831             :                  * caller must necessarily have obtained a snapshot later than
    5832             :                  * the pg_upgrade itself.
    5833             :                  */
    5834             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5835             : 
    5836           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5837           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5838           8 :                 for (i = 0; i < nmembers; i++)
    5839             :                 {
    5840           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5841           6 :                                                         members[i].xid,
    5842             :                                                         mode,
    5843             :                                                         &mytup,
    5844             :                                                         &needwait);
    5845             : 
    5846             :                     /*
    5847             :                      * If the tuple was already locked by ourselves in a
    5848             :                      * previous iteration of this (say heap_lock_tuple was
    5849             :                      * forced to restart the locking loop because of a change
    5850             :                      * in xmax), then we hold the lock already on this tuple
    5851             :                      * version and we don't need to do anything; and this is
    5852             :                      * not an error condition either.  We just need to skip
    5853             :                      * this tuple and continue locking the next version in the
    5854             :                      * update chain.
    5855             :                      */
    5856           6 :                     if (result == TM_SelfModified)
    5857             :                     {
    5858           0 :                         pfree(members);
    5859           0 :                         goto next;
    5860             :                     }
    5861             : 
    5862           6 :                     if (needwait)
    5863             :                     {
    5864           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5865           0 :                         XactLockTableWait(members[i].xid, rel,
    5866             :                                           &mytup.t_self,
    5867             :                                           XLTW_LockUpdated);
    5868           0 :                         pfree(members);
    5869           0 :                         goto l4;
    5870             :                     }
    5871           6 :                     if (result != TM_Ok)
    5872             :                     {
    5873           0 :                         pfree(members);
    5874           0 :                         goto out_locked;
    5875             :                     }
    5876             :                 }
    5877           2 :                 if (members)
    5878           2 :                     pfree(members);
    5879             :             }
    5880             :             else
    5881             :             {
    5882             :                 MultiXactStatus status;
    5883             : 
    5884             :                 /*
    5885             :                  * For a non-multi Xmax, we first need to compute the
    5886             :                  * corresponding MultiXactStatus by using the infomask bits.
    5887             :                  */
    5888          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5889             :                 {
    5890          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5891          20 :                         status = MultiXactStatusForKeyShare;
    5892           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5893           0 :                         status = MultiXactStatusForShare;
    5894           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5895             :                     {
    5896           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5897           0 :                             status = MultiXactStatusForUpdate;
    5898             :                         else
    5899           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5900             :                     }
    5901             :                     else
    5902             :                     {
    5903             :                         /*
    5904             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5905             :                          * as share-locked in the old cluster) shouldn't be
    5906             :                          * seen in the middle of an update chain.
    5907             :                          */
    5908           0 :                         elog(ERROR, "invalid lock status in tuple");
    5909             :                     }
    5910             :                 }
    5911             :                 else
    5912             :                 {
    5913             :                     /* it's an update, but which kind? */
    5914          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5915          28 :                         status = MultiXactStatusUpdate;
    5916             :                     else
    5917          10 :                         status = MultiXactStatusNoKeyUpdate;
    5918             :                 }
    5919             : 
    5920          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5921             :                                                     &mytup, &needwait);
    5922             : 
    5923             :                 /*
    5924             :                  * If the tuple was already locked by ourselves in a previous
    5925             :                  * iteration of this (say heap_lock_tuple was forced to
    5926             :                  * restart the locking loop because of a change in xmax), then
    5927             :                  * we hold the lock already on this tuple version and we don't
    5928             :                  * need to do anything; and this is not an error condition
    5929             :                  * either.  We just need to skip this tuple and continue
    5930             :                  * locking the next version in the update chain.
    5931             :                  */
    5932          58 :                 if (result == TM_SelfModified)
    5933           0 :                     goto next;
    5934             : 
    5935          58 :                 if (needwait)
    5936             :                 {
    5937          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5938          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5939             :                                       XLTW_LockUpdated);
    5940          16 :                     goto l4;
    5941             :                 }
    5942          42 :                 if (result != TM_Ok)
    5943             :                 {
    5944          16 :                     goto out_locked;
    5945             :                 }
    5946             :             }
    5947             :         }
    5948             : 
    5949             :         /* compute the new Xmax and infomask values for the tuple ... */
    5950         126 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5951             :                                   xid, mode, false,
    5952             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5953             : 
    5954         126 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5955           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5956             :                                 VISIBILITYMAP_ALL_FROZEN))
    5957           0 :             cleared_all_frozen = true;
    5958             : 
    5959         126 :         START_CRIT_SECTION();
    5960             : 
    5961             :         /* ... and set them */
    5962         126 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5963         126 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5964         126 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5965         126 :         mytup.t_data->t_infomask |= new_infomask;
    5966         126 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5967             : 
    5968         126 :         MarkBufferDirty(buf);
    5969             : 
    5970             :         /* XLOG stuff */
    5971         126 :         if (RelationNeedsWAL(rel))
    5972             :         {
    5973             :             xl_heap_lock_updated xlrec;
    5974             :             XLogRecPtr  recptr;
    5975         126 :             Page        page = BufferGetPage(buf);
    5976             : 
    5977         126 :             XLogBeginInsert();
    5978         126 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5979             : 
    5980         126 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5981         126 :             xlrec.xmax = new_xmax;
    5982         126 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5983         126 :             xlrec.flags =
    5984         126 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5985             : 
    5986         126 :             XLogRegisterData(&xlrec, SizeOfHeapLockUpdated);
    5987             : 
    5988         126 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5989             : 
    5990         126 :             PageSetLSN(page, recptr);
    5991             :         }
    5992             : 
    5993         126 :         END_CRIT_SECTION();
    5994             : 
    5995         126 : next:
    5996             :         /* if we find the end of update chain, we're done. */
    5997         252 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    5998         252 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    5999         134 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    6000           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    6001             :         {
    6002         120 :             result = TM_Ok;
    6003         120 :             goto out_locked;
    6004             :         }
    6005             : 
    6006             :         /* tail recursion */
    6007           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    6008           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    6009           6 :         UnlockReleaseBuffer(buf);
    6010             :     }
    6011             : 
    6012             :     result = TM_Ok;
    6013             : 
    6014         162 : out_locked:
    6015         162 :     UnlockReleaseBuffer(buf);
    6016             : 
    6017         162 : out_unlocked:
    6018         162 :     if (vmbuffer != InvalidBuffer)
    6019           0 :         ReleaseBuffer(vmbuffer);
    6020             : 
    6021         162 :     return result;
    6022             : }
    6023             : 
    6024             : /*
    6025             :  * heap_lock_updated_tuple
    6026             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    6027             :  *      marks) on the updated versions.
    6028             :  *
    6029             :  * The initial tuple is assumed to be already locked.
    6030             :  *
    6031             :  * This function doesn't check visibility, it just unconditionally marks the
    6032             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    6033             :  * concurrently (or updated with the key being modified), sleep until the
    6034             :  * transaction doing it is finished.
    6035             :  *
    6036             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    6037             :  * when we have to wait for other transactions to release them, as opposed to
    6038             :  * what heap_lock_tuple does.  The reason is that having more than one
    6039             :  * transaction walking the chain is probably uncommon enough that risk of
    6040             :  * starvation is not likely: one of the preconditions for being here is that
    6041             :  * the snapshot in use predates the update that created this tuple (because we
    6042             :  * started at an earlier version of the tuple), but at the same time such a
    6043             :  * transaction cannot be using repeatable read or serializable isolation
    6044             :  * levels, because that would lead to a serializability failure.
    6045             :  */
    6046             : static TM_Result
    6047         180 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    6048             :                         TransactionId xid, LockTupleMode mode)
    6049             : {
    6050             :     /*
    6051             :      * If the tuple has not been updated, or has moved into another partition
    6052             :      * (effectively a delete) stop here.
    6053             :      */
    6054         180 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    6055         176 :         !ItemPointerEquals(&tuple->t_self, ctid))
    6056             :     {
    6057             :         /*
    6058             :          * If this is the first possibly-multixact-able operation in the
    6059             :          * current transaction, set my per-backend OldestMemberMXactId
    6060             :          * setting. We can be certain that the transaction will never become a
    6061             :          * member of any older MultiXactIds than that.  (We have to do this
    6062             :          * even if we end up just using our own TransactionId below, since
    6063             :          * some other backend could incorporate our XID into a MultiXact
    6064             :          * immediately afterwards.)
    6065             :          */
    6066         162 :         MultiXactIdSetOldestMember();
    6067             : 
    6068         162 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    6069             :     }
    6070             : 
    6071             :     /* nothing to lock */
    6072          18 :     return TM_Ok;
    6073             : }
    6074             : 
    6075             : /*
    6076             :  *  heap_finish_speculative - mark speculative insertion as successful
    6077             :  *
    6078             :  * To successfully finish a speculative insertion we have to clear speculative
    6079             :  * token from tuple.  To do so the t_ctid field, which will contain a
    6080             :  * speculative token value, is modified in place to point to the tuple itself,
    6081             :  * which is characteristic of a newly inserted ordinary tuple.
    6082             :  *
    6083             :  * NB: It is not ok to commit without either finishing or aborting a
    6084             :  * speculative insertion.  We could treat speculative tuples of committed
    6085             :  * transactions implicitly as completed, but then we would have to be prepared
    6086             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    6087             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    6088             :  * but clearing the token at completion isn't very expensive either.
    6089             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    6090             :  */
    6091             : void
    6092        4112 : heap_finish_speculative(Relation relation, ItemPointer tid)
    6093             : {
    6094             :     Buffer      buffer;
    6095             :     Page        page;
    6096             :     OffsetNumber offnum;
    6097        4112 :     ItemId      lp = NULL;
    6098             :     HeapTupleHeader htup;
    6099             : 
    6100        4112 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    6101        4112 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6102        4112 :     page = BufferGetPage(buffer);
    6103             : 
    6104        4112 :     offnum = ItemPointerGetOffsetNumber(tid);
    6105        4112 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    6106        4112 :         lp = PageGetItemId(page, offnum);
    6107             : 
    6108        4112 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    6109           0 :         elog(ERROR, "invalid lp");
    6110             : 
    6111        4112 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    6112             : 
    6113             :     /* NO EREPORT(ERROR) from here till changes are logged */
    6114        4112 :     START_CRIT_SECTION();
    6115             : 
    6116             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    6117             : 
    6118        4112 :     MarkBufferDirty(buffer);
    6119             : 
    6120             :     /*
    6121             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    6122             :      * itself like it does on regular tuples.
    6123             :      */
    6124        4112 :     htup->t_ctid = *tid;
    6125             : 
    6126             :     /* XLOG stuff */
    6127        4112 :     if (RelationNeedsWAL(relation))
    6128             :     {
    6129             :         xl_heap_confirm xlrec;
    6130             :         XLogRecPtr  recptr;
    6131             : 
    6132        4094 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    6133             : 
    6134        4094 :         XLogBeginInsert();
    6135             : 
    6136             :         /* We want the same filtering on this as on a plain insert */
    6137        4094 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6138             : 
    6139        4094 :         XLogRegisterData(&xlrec, SizeOfHeapConfirm);
    6140        4094 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6141             : 
    6142        4094 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6143             : 
    6144        4094 :         PageSetLSN(page, recptr);
    6145             :     }
    6146             : 
    6147        4112 :     END_CRIT_SECTION();
    6148             : 
    6149        4112 :     UnlockReleaseBuffer(buffer);
    6150        4112 : }
    6151             : 
    6152             : /*
    6153             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6154             :  *
    6155             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6156             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6157             :  * to all transactions, including our own.  In particular, it makes
    6158             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6159             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6160             :  * transaction to finish (it'll just wait for our speculative insertion to
    6161             :  * finish).
    6162             :  *
    6163             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6164             :  * that arise due to a mutual dependency that is not user visible.  By
    6165             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6166             :  * reordering lock acquisition in client code, because the implementation level
    6167             :  * lock acquisitions are not under the user's direct control.  If speculative
    6168             :  * inserters did not take this precaution, then under high concurrency they
    6169             :  * could deadlock with each other, which would not be acceptable.
    6170             :  *
    6171             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6172             :  * dedicated routine with stripped down requirements.  Note that this is also
    6173             :  * used to delete the TOAST tuples created during speculative insertion.
    6174             :  *
    6175             :  * This routine does not affect logical decoding as it only looks at
    6176             :  * confirmation records.
    6177             :  */
    6178             : void
    6179          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6180             : {
    6181          20 :     TransactionId xid = GetCurrentTransactionId();
    6182             :     ItemId      lp;
    6183             :     HeapTupleData tp;
    6184             :     Page        page;
    6185             :     BlockNumber block;
    6186             :     Buffer      buffer;
    6187             : 
    6188             :     Assert(ItemPointerIsValid(tid));
    6189             : 
    6190          20 :     block = ItemPointerGetBlockNumber(tid);
    6191          20 :     buffer = ReadBuffer(relation, block);
    6192          20 :     page = BufferGetPage(buffer);
    6193             : 
    6194          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6195             : 
    6196             :     /*
    6197             :      * Page can't be all visible, we just inserted into it, and are still
    6198             :      * running.
    6199             :      */
    6200             :     Assert(!PageIsAllVisible(page));
    6201             : 
    6202          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6203             :     Assert(ItemIdIsNormal(lp));
    6204             : 
    6205          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6206          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6207          20 :     tp.t_len = ItemIdGetLength(lp);
    6208          20 :     tp.t_self = *tid;
    6209             : 
    6210             :     /*
    6211             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6212             :      * inserted by us.
    6213             :      */
    6214          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6215           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6216          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6217           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6218             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6219             : 
    6220             :     /*
    6221             :      * No need to check for serializable conflicts here.  There is never a
    6222             :      * need for a combo CID, either.  No need to extract replica identity, or
    6223             :      * do anything special with infomask bits.
    6224             :      */
    6225             : 
    6226          20 :     START_CRIT_SECTION();
    6227             : 
    6228             :     /*
    6229             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6230             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6231             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6232             :      * that's safe against wraparound / being older than the table's
    6233             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6234             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6235             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6236             :      * TransactionXmin, so there's no race here).
    6237             :      */
    6238             :     Assert(TransactionIdIsValid(TransactionXmin));
    6239             :     {
    6240          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6241             :         TransactionId prune_xid;
    6242             : 
    6243          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6244           0 :             prune_xid = relfrozenxid;
    6245             :         else
    6246          20 :             prune_xid = TransactionXmin;
    6247          20 :         PageSetPrunable(page, prune_xid);
    6248             :     }
    6249             : 
    6250             :     /* store transaction information of xact deleting the tuple */
    6251          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6252          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6253             : 
    6254             :     /*
    6255             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6256             :      * tuple immediately invisible everyone.  (In particular, to any
    6257             :      * transactions waiting on the speculative token, woken up later.)
    6258             :      */
    6259          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6260             : 
    6261             :     /* Clear the speculative insertion token too */
    6262          20 :     tp.t_data->t_ctid = tp.t_self;
    6263             : 
    6264          20 :     MarkBufferDirty(buffer);
    6265             : 
    6266             :     /*
    6267             :      * XLOG stuff
    6268             :      *
    6269             :      * The WAL records generated here match heap_delete().  The same recovery
    6270             :      * routines are used.
    6271             :      */
    6272          20 :     if (RelationNeedsWAL(relation))
    6273             :     {
    6274             :         xl_heap_delete xlrec;
    6275             :         XLogRecPtr  recptr;
    6276             : 
    6277          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6278          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6279          20 :                                               tp.t_data->t_infomask2);
    6280          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6281          20 :         xlrec.xmax = xid;
    6282             : 
    6283          20 :         XLogBeginInsert();
    6284          20 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    6285          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6286             : 
    6287             :         /* No replica identity & replication origin logged */
    6288             : 
    6289          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6290             : 
    6291          20 :         PageSetLSN(page, recptr);
    6292             :     }
    6293             : 
    6294          20 :     END_CRIT_SECTION();
    6295             : 
    6296          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6297             : 
    6298          20 :     if (HeapTupleHasExternal(&tp))
    6299             :     {
    6300             :         Assert(!IsToastRelation(relation));
    6301           2 :         heap_toast_delete(relation, &tp, true);
    6302             :     }
    6303             : 
    6304             :     /*
    6305             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6306             :      * speculative insertion
    6307             :      */
    6308             : 
    6309             :     /* Now we can release the buffer */
    6310          20 :     ReleaseBuffer(buffer);
    6311             : 
    6312             :     /* count deletion, as we counted the insertion too */
    6313          20 :     pgstat_count_heap_delete(relation);
    6314          20 : }
    6315             : 
    6316             : /*
    6317             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6318             :  *
    6319             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6320             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6321             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6322             :  * and the caller must release that by calling
    6323             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6324             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6325             :  * transactions to end, and return false.
    6326             :  *
    6327             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6328             :  * DDL, this doesn't guarantee any particular predicate locking.
    6329             :  *
    6330             :  * One could modify this to return true for tuples with delete in progress,
    6331             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6332             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6333             :  * update.
    6334             :  *
    6335             :  * Readers of inplace-updated fields expect changes to those fields are
    6336             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6337             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6338             :  * return a lower datfrozenxid for the same database OID (lower in the
    6339             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6340             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6341             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6342             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6343             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6344             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6345             :  * committed tuple.)
    6346             :  *
    6347             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6348             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6349             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6350             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6351             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6352             :  * in one critical section or (b) accepting a chance of partial completion.
    6353             :  * Partial completion of a relfrozenxid update would have the weird
    6354             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6355             :  * move forward between vacuum_get_cutoffs() and finishing.
    6356             :  */
    6357             : bool
    6358      416242 : heap_inplace_lock(Relation relation,
    6359             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6360             :                   void (*release_callback) (void *), void *arg)
    6361             : {
    6362      416242 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6363             :     TM_Result   result;
    6364             :     bool        ret;
    6365             : 
    6366             : #ifdef USE_ASSERT_CHECKING
    6367             :     if (RelationGetRelid(relation) == RelationRelationId)
    6368             :         check_inplace_rel_lock(oldtup_ptr);
    6369             : #endif
    6370             : 
    6371             :     Assert(BufferIsValid(buffer));
    6372             : 
    6373             :     /*
    6374             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6375             :      * version without our own inplace changes or inplace changes other
    6376             :      * sessions complete while we wait for locks, inplace update mustn't
    6377             :      * change catcache lookup keys.  But we aren't bothering with index
    6378             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6379             :      * would be too late, because this might reach a
    6380             :      * CatalogCacheInitializeCache() that locks "buffer".
    6381             :      */
    6382      416242 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6383             : 
    6384      416242 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6385      416242 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6386             : 
    6387             :     /*----------
    6388             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6389             :      *
    6390             :      * - wait unconditionally
    6391             :      * - already locked tuple above, since inplace needs that unconditionally
    6392             :      * - don't recheck header after wait: simpler to defer to next iteration
    6393             :      * - don't try to continue even if the updater aborts: likewise
    6394             :      * - no crosscheck
    6395             :      */
    6396      416242 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6397             :                                       buffer);
    6398             : 
    6399      416242 :     if (result == TM_Invisible)
    6400             :     {
    6401             :         /* no known way this can happen */
    6402           0 :         ereport(ERROR,
    6403             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6404             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6405             :     }
    6406      416242 :     else if (result == TM_SelfModified)
    6407             :     {
    6408             :         /*
    6409             :          * CREATE INDEX might reach this if an expression is silly enough to
    6410             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6411             :          * statements might get here after a heap_update() of the same row, in
    6412             :          * the absence of an intervening CommandCounterIncrement().
    6413             :          */
    6414           0 :         ereport(ERROR,
    6415             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6416             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6417             :     }
    6418      416242 :     else if (result == TM_BeingModified)
    6419             :     {
    6420             :         TransactionId xwait;
    6421             :         uint16      infomask;
    6422             : 
    6423          78 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6424          78 :         infomask = oldtup.t_data->t_infomask;
    6425             : 
    6426          78 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6427             :         {
    6428          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6429          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6430             :             int         remain;
    6431             : 
    6432          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6433             :                                         lockmode, NULL))
    6434             :             {
    6435           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6436           4 :                 release_callback(arg);
    6437           4 :                 ret = false;
    6438           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6439             :                                 relation, &oldtup.t_self, XLTW_Update,
    6440             :                                 &remain);
    6441             :             }
    6442             :             else
    6443           6 :                 ret = true;
    6444             :         }
    6445          68 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6446           2 :             ret = true;
    6447          66 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6448           2 :             ret = true;
    6449             :         else
    6450             :         {
    6451          64 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6452          64 :             release_callback(arg);
    6453          64 :             ret = false;
    6454          64 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6455             :                               XLTW_Update);
    6456             :         }
    6457             :     }
    6458             :     else
    6459             :     {
    6460      416164 :         ret = (result == TM_Ok);
    6461      416164 :         if (!ret)
    6462             :         {
    6463           0 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6464           0 :             release_callback(arg);
    6465             :         }
    6466             :     }
    6467             : 
    6468             :     /*
    6469             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6470             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6471             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6472             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6473             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6474             :      * don't bother optimizing that.
    6475             :      */
    6476      416242 :     if (!ret)
    6477             :     {
    6478          68 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6479          68 :         ForgetInplace_Inval();
    6480          68 :         InvalidateCatalogSnapshot();
    6481             :     }
    6482      416242 :     return ret;
    6483             : }
    6484             : 
    6485             : /*
    6486             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6487             :  *
    6488             :  * The tuple cannot change size, and therefore its header fields and null
    6489             :  * bitmap (if any) don't change either.
    6490             :  *
    6491             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6492             :  */
    6493             : void
    6494      161362 : heap_inplace_update_and_unlock(Relation relation,
    6495             :                                HeapTuple oldtup, HeapTuple tuple,
    6496             :                                Buffer buffer)
    6497             : {
    6498      161362 :     HeapTupleHeader htup = oldtup->t_data;
    6499             :     uint32      oldlen;
    6500             :     uint32      newlen;
    6501             :     char       *dst;
    6502             :     char       *src;
    6503      161362 :     int         nmsgs = 0;
    6504      161362 :     SharedInvalidationMessage *invalMessages = NULL;
    6505      161362 :     bool        RelcacheInitFileInval = false;
    6506             : 
    6507             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6508      161362 :     oldlen = oldtup->t_len - htup->t_hoff;
    6509      161362 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6510      161362 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6511           0 :         elog(ERROR, "wrong tuple length");
    6512             : 
    6513      161362 :     dst = (char *) htup + htup->t_hoff;
    6514      161362 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6515             : 
    6516             :     /* Like RecordTransactionCommit(), log only if needed */
    6517      161362 :     if (XLogStandbyInfoActive())
    6518       98614 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6519             :                                                &RelcacheInitFileInval);
    6520             : 
    6521             :     /*
    6522             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6523             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6524             :      * in advance, if we checkpoint and then crash between inplace
    6525             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6526             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6527             :      * neglect to PANIC on EIO.
    6528             :      */
    6529      161362 :     PreInplace_Inval();
    6530             : 
    6531             :     /*----------
    6532             :      * NO EREPORT(ERROR) from here till changes are complete
    6533             :      *
    6534             :      * Our buffer lock won't stop a reader having already pinned and checked
    6535             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6536             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6537             :      * checkpoint delay makes that acceptable.  With the usual order of
    6538             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6539             :      * datfrozenxid to overtake relfrozenxid:
    6540             :      *
    6541             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6542             :      * ["R" is a VACUUM tbl]
    6543             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6544             :      * D: systable_getnext() returns pg_class tuple of tbl
    6545             :      * R: memcpy() into pg_class tuple of tbl
    6546             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6547             :      * [crash]
    6548             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6549             :      *
    6550             :      * Mimic MarkBufferDirtyHint() subroutine XLogSaveBufferForHint().
    6551             :      * Specifically, use DELAY_CHKPT_START, and copy the buffer to the stack.
    6552             :      * The stack copy facilitates a FPI of the post-mutation block before we
    6553             :      * accept other sessions seeing it.  DELAY_CHKPT_START allows us to
    6554             :      * XLogInsert() before MarkBufferDirty().  Since XLogSaveBufferForHint()
    6555             :      * can operate under BUFFER_LOCK_SHARED, it can't avoid DELAY_CHKPT_START.
    6556             :      * This function, however, likely could avoid it with the following order
    6557             :      * of operations: MarkBufferDirty(), XLogInsert(), memcpy().  Opt to use
    6558             :      * DELAY_CHKPT_START here, too, as a way to have fewer distinct code
    6559             :      * patterns to analyze.  Inplace update isn't so frequent that it should
    6560             :      * pursue the small optimization of skipping DELAY_CHKPT_START.
    6561             :      */
    6562             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6563      161362 :     START_CRIT_SECTION();
    6564      161362 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6565             : 
    6566             :     /* XLOG stuff */
    6567      161362 :     if (RelationNeedsWAL(relation))
    6568             :     {
    6569             :         xl_heap_inplace xlrec;
    6570             :         PGAlignedBlock copied_buffer;
    6571      161346 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6572      161346 :         Page        page = BufferGetPage(buffer);
    6573      161346 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6574      161346 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6575             :         uintptr_t   dst_offset_in_block;
    6576             :         RelFileLocator rlocator;
    6577             :         ForkNumber  forkno;
    6578             :         BlockNumber blkno;
    6579             :         XLogRecPtr  recptr;
    6580             : 
    6581      161346 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6582      161346 :         xlrec.dbId = MyDatabaseId;
    6583      161346 :         xlrec.tsId = MyDatabaseTableSpace;
    6584      161346 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6585      161346 :         xlrec.nmsgs = nmsgs;
    6586             : 
    6587      161346 :         XLogBeginInsert();
    6588      161346 :         XLogRegisterData(&xlrec, MinSizeOfHeapInplace);
    6589      161346 :         if (nmsgs != 0)
    6590       69314 :             XLogRegisterData(invalMessages,
    6591             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6592             : 
    6593             :         /* register block matching what buffer will look like after changes */
    6594      161346 :         memcpy(copied_buffer.data, origdata, lower);
    6595      161346 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6596      161346 :         dst_offset_in_block = dst - origdata;
    6597      161346 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6598      161346 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6599             :         Assert(forkno == MAIN_FORKNUM);
    6600      161346 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6601             :                           REGBUF_STANDARD);
    6602      161346 :         XLogRegisterBufData(0, src, newlen);
    6603             : 
    6604             :         /* inplace updates aren't decoded atm, don't log the origin */
    6605             : 
    6606      161346 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6607             : 
    6608      161346 :         PageSetLSN(page, recptr);
    6609             :     }
    6610             : 
    6611      161362 :     memcpy(dst, src, newlen);
    6612             : 
    6613      161362 :     MarkBufferDirty(buffer);
    6614             : 
    6615      161362 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6616             : 
    6617             :     /*
    6618             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6619             :      * do this before UnlockTuple().
    6620             :      *
    6621             :      * If we're mutating a tuple visible only to this transaction, there's an
    6622             :      * equivalent transactional inval from the action that created the tuple,
    6623             :      * and this inval is superfluous.
    6624             :      */
    6625      161362 :     AtInplace_Inval();
    6626             : 
    6627      161362 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6628      161362 :     END_CRIT_SECTION();
    6629      161362 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6630             : 
    6631      161362 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6632             : 
    6633             :     /*
    6634             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6635             :      * is the only one known to be necessary.  To reduce risk from the
    6636             :      * transition to immediate invalidation, continue sending a transactional
    6637             :      * invalidation like we've long done.  Third-party code might rely on it.
    6638             :      */
    6639      161362 :     if (!IsBootstrapProcessingMode())
    6640      132062 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6641      161362 : }
    6642             : 
    6643             : /*
    6644             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6645             :  */
    6646             : void
    6647      254812 : heap_inplace_unlock(Relation relation,
    6648             :                     HeapTuple oldtup, Buffer buffer)
    6649             : {
    6650      254812 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6651      254812 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6652      254812 :     ForgetInplace_Inval();
    6653      254812 : }
    6654             : 
    6655             : #define     FRM_NOOP                0x0001
    6656             : #define     FRM_INVALIDATE_XMAX     0x0002
    6657             : #define     FRM_RETURN_IS_XID       0x0004
    6658             : #define     FRM_RETURN_IS_MULTI     0x0008
    6659             : #define     FRM_MARK_COMMITTED      0x0010
    6660             : 
    6661             : /*
    6662             :  * FreezeMultiXactId
    6663             :  *      Determine what to do during freezing when a tuple is marked by a
    6664             :  *      MultiXactId.
    6665             :  *
    6666             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6667             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6668             :  *
    6669             :  * Possible values that we can set in "flags":
    6670             :  * FRM_NOOP
    6671             :  *      don't do anything -- keep existing Xmax
    6672             :  * FRM_INVALIDATE_XMAX
    6673             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6674             :  * FRM_RETURN_IS_XID
    6675             :  *      The Xid return value is a single update Xid to set as xmax.
    6676             :  * FRM_MARK_COMMITTED
    6677             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6678             :  * FRM_RETURN_IS_MULTI
    6679             :  *      The return value is a new MultiXactId to set as new Xmax.
    6680             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6681             :  *
    6682             :  * Caller delegates control of page freezing to us.  In practice we always
    6683             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6684             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6685             :  * can never be left behind.  We freely choose when and how to process each
    6686             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6687             :  *
    6688             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6689             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6690             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6691             :  * misses through eager processing.
    6692             :  *
    6693             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6694             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6695             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6696             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6697             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6698             :  * its own special risks.
    6699             :  *
    6700             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6701             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6702             :  *
    6703             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6704             :  * have already forced page-level freezing, since that might incur the same
    6705             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6706             :  */
    6707             : static TransactionId
    6708          14 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6709             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6710             :                   HeapPageFreeze *pagefrz)
    6711             : {
    6712             :     TransactionId newxmax;
    6713             :     MultiXactMember *members;
    6714             :     int         nmembers;
    6715             :     bool        need_replace;
    6716             :     int         nnewmembers;
    6717             :     MultiXactMember *newmembers;
    6718             :     bool        has_lockers;
    6719             :     TransactionId update_xid;
    6720             :     bool        update_committed;
    6721             :     TransactionId FreezePageRelfrozenXid;
    6722             : 
    6723          14 :     *flags = 0;
    6724             : 
    6725             :     /* We should only be called in Multis */
    6726             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6727             : 
    6728          28 :     if (!MultiXactIdIsValid(multi) ||
    6729          14 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6730             :     {
    6731           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6732           0 :         pagefrz->freeze_required = true;
    6733           0 :         return InvalidTransactionId;
    6734             :     }
    6735          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6736           0 :         ereport(ERROR,
    6737             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6738             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6739             :                                  multi, cutoffs->relminmxid)));
    6740          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6741             :     {
    6742             :         TransactionId update_xact;
    6743             : 
    6744             :         /*
    6745             :          * This old multi cannot possibly have members still running, but
    6746             :          * verify just in case.  If it was a locker only, it can be removed
    6747             :          * without any further consideration; but if it contained an update,
    6748             :          * we might need to preserve it.
    6749             :          */
    6750          10 :         if (MultiXactIdIsRunning(multi,
    6751          10 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6752           0 :             ereport(ERROR,
    6753             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6754             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6755             :                                      multi, cutoffs->OldestMxact)));
    6756             : 
    6757          10 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6758             :         {
    6759          10 :             *flags |= FRM_INVALIDATE_XMAX;
    6760          10 :             pagefrz->freeze_required = true;
    6761          10 :             return InvalidTransactionId;
    6762             :         }
    6763             : 
    6764             :         /* replace multi with single XID for its updater? */
    6765           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6766           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6767           0 :             ereport(ERROR,
    6768             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6769             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6770             :                                      multi, update_xact,
    6771             :                                      cutoffs->relfrozenxid)));
    6772           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6773             :         {
    6774             :             /*
    6775             :              * Updater XID has to have aborted (otherwise the tuple would have
    6776             :              * been pruned away instead, since updater XID is < OldestXmin).
    6777             :              * Just remove xmax.
    6778             :              */
    6779           0 :             if (TransactionIdDidCommit(update_xact))
    6780           0 :                 ereport(ERROR,
    6781             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6782             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6783             :                                          multi, update_xact,
    6784             :                                          cutoffs->OldestXmin)));
    6785           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6786           0 :             pagefrz->freeze_required = true;
    6787           0 :             return InvalidTransactionId;
    6788             :         }
    6789             : 
    6790             :         /* Have to keep updater XID as new xmax */
    6791           0 :         *flags |= FRM_RETURN_IS_XID;
    6792           0 :         pagefrz->freeze_required = true;
    6793           0 :         return update_xact;
    6794             :     }
    6795             : 
    6796             :     /*
    6797             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6798             :      * need to walk the whole members array to figure out what to do, if
    6799             :      * anything.
    6800             :      */
    6801             :     nmembers =
    6802           4 :         GetMultiXactIdMembers(multi, &members, false,
    6803           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6804           4 :     if (nmembers <= 0)
    6805             :     {
    6806             :         /* Nothing worth keeping */
    6807           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6808           0 :         pagefrz->freeze_required = true;
    6809           0 :         return InvalidTransactionId;
    6810             :     }
    6811             : 
    6812             :     /*
    6813             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6814             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6815             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6816             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6817             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6818             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6819             :      * required to make it safe to leave xmax undisturbed, independent of
    6820             :      * whether or not page freezing is triggered somewhere else.
    6821             :      *
    6822             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6823             :      * which obviates the need to maintain either set of trackers, anywhere.
    6824             :      * Every other case will reliably execute a freeze plan for xmax that
    6825             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6826             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6827             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6828             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6829             :      */
    6830           4 :     need_replace = false;
    6831           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6832           8 :     for (int i = 0; i < nmembers; i++)
    6833             :     {
    6834           6 :         TransactionId xid = members[i].xid;
    6835             : 
    6836             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6837             : 
    6838           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6839             :         {
    6840             :             /* Can't violate the FreezeLimit postcondition */
    6841           2 :             need_replace = true;
    6842           2 :             break;
    6843             :         }
    6844           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6845           0 :             FreezePageRelfrozenXid = xid;
    6846             :     }
    6847             : 
    6848             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6849           4 :     if (!need_replace)
    6850           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6851             : 
    6852           4 :     if (!need_replace)
    6853             :     {
    6854             :         /*
    6855             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6856             :          * both together to make it safe to retain this particular multi after
    6857             :          * freezing its page
    6858             :          */
    6859           2 :         *flags |= FRM_NOOP;
    6860           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6861           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6862           0 :             pagefrz->FreezePageRelminMxid = multi;
    6863           2 :         pfree(members);
    6864           2 :         return multi;
    6865             :     }
    6866             : 
    6867             :     /*
    6868             :      * Do a more thorough second pass over the multi to figure out which
    6869             :      * member XIDs actually need to be kept.  Checking the precise status of
    6870             :      * individual members might even show that we don't need to keep anything.
    6871             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6872             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6873             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6874             :      */
    6875           2 :     nnewmembers = 0;
    6876           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6877           2 :     has_lockers = false;
    6878           2 :     update_xid = InvalidTransactionId;
    6879           2 :     update_committed = false;
    6880             : 
    6881             :     /*
    6882             :      * Determine whether to keep each member xid, or to ignore it instead
    6883             :      */
    6884           6 :     for (int i = 0; i < nmembers; i++)
    6885             :     {
    6886           4 :         TransactionId xid = members[i].xid;
    6887           4 :         MultiXactStatus mstatus = members[i].status;
    6888             : 
    6889             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6890             : 
    6891           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6892             :         {
    6893             :             /*
    6894             :              * Locker XID (not updater XID).  We only keep lockers that are
    6895             :              * still running.
    6896             :              */
    6897           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6898           4 :                 TransactionIdIsInProgress(xid))
    6899             :             {
    6900           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6901           0 :                     ereport(ERROR,
    6902             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6903             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6904             :                                              multi, xid,
    6905             :                                              cutoffs->OldestXmin)));
    6906           2 :                 newmembers[nnewmembers++] = members[i];
    6907           2 :                 has_lockers = true;
    6908             :             }
    6909             : 
    6910           4 :             continue;
    6911             :         }
    6912             : 
    6913             :         /*
    6914             :          * Updater XID (not locker XID).  Should we keep it?
    6915             :          *
    6916             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6917             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6918             :          * the updater XID aborted.  If the updater transaction is known
    6919             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6920             :          *
    6921             :          * In any case the Multi should never contain two updaters, whatever
    6922             :          * their individual commit status.  Check for that first, in passing.
    6923             :          */
    6924           0 :         if (TransactionIdIsValid(update_xid))
    6925           0 :             ereport(ERROR,
    6926             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6927             :                      errmsg_internal("multixact %u has two or more updating members",
    6928             :                                      multi),
    6929             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6930             :                                         update_xid, xid)));
    6931             : 
    6932             :         /*
    6933             :          * As with all tuple visibility routines, it's critical to test
    6934             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6935             :          * race conditions explained in detail in heapam_visibility.c.
    6936             :          */
    6937           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6938           0 :             TransactionIdIsInProgress(xid))
    6939           0 :             update_xid = xid;
    6940           0 :         else if (TransactionIdDidCommit(xid))
    6941             :         {
    6942             :             /*
    6943             :              * The transaction committed, so we can tell caller to set
    6944             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6945             :              * transaction is not running.)
    6946             :              */
    6947           0 :             update_committed = true;
    6948           0 :             update_xid = xid;
    6949             :         }
    6950             :         else
    6951             :         {
    6952             :             /*
    6953             :              * Not in progress, not committed -- must be aborted or crashed;
    6954             :              * we can ignore it.
    6955             :              */
    6956           0 :             continue;
    6957             :         }
    6958             : 
    6959             :         /*
    6960             :          * We determined that updater must be kept -- add it to pending new
    6961             :          * members list
    6962             :          */
    6963           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6964           0 :             ereport(ERROR,
    6965             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6966             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6967             :                                      multi, xid, cutoffs->OldestXmin)));
    6968           0 :         newmembers[nnewmembers++] = members[i];
    6969             :     }
    6970             : 
    6971           2 :     pfree(members);
    6972             : 
    6973             :     /*
    6974             :      * Determine what to do with caller's multi based on information gathered
    6975             :      * during our second pass
    6976             :      */
    6977           2 :     if (nnewmembers == 0)
    6978             :     {
    6979             :         /* Nothing worth keeping */
    6980           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6981           0 :         newxmax = InvalidTransactionId;
    6982             :     }
    6983           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6984             :     {
    6985             :         /*
    6986             :          * If there's a single member and it's an update, pass it back alone
    6987             :          * without creating a new Multi.  (XXX we could do this when there's a
    6988             :          * single remaining locker, too, but that would complicate the API too
    6989             :          * much; moreover, the case with the single updater is more
    6990             :          * interesting, because those are longer-lived.)
    6991             :          */
    6992             :         Assert(nnewmembers == 1);
    6993           0 :         *flags |= FRM_RETURN_IS_XID;
    6994           0 :         if (update_committed)
    6995           0 :             *flags |= FRM_MARK_COMMITTED;
    6996           0 :         newxmax = update_xid;
    6997             :     }
    6998             :     else
    6999             :     {
    7000             :         /*
    7001             :          * Create a new multixact with the surviving members of the previous
    7002             :          * one, to set as new Xmax in the tuple
    7003             :          */
    7004           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    7005           2 :         *flags |= FRM_RETURN_IS_MULTI;
    7006             :     }
    7007             : 
    7008           2 :     pfree(newmembers);
    7009             : 
    7010           2 :     pagefrz->freeze_required = true;
    7011           2 :     return newxmax;
    7012             : }
    7013             : 
    7014             : /*
    7015             :  * heap_prepare_freeze_tuple
    7016             :  *
    7017             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7018             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    7019             :  * setup enough state (in the *frz output argument) to enable caller to
    7020             :  * process this tuple as part of freezing its page, and return true.  Return
    7021             :  * false if nothing can be changed about the tuple right now.
    7022             :  *
    7023             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    7024             :  * caller executes returned freeze plan (or if the tuple was already totally
    7025             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    7026             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    7027             :  *
    7028             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    7029             :  * tuple that we returned true for, and then execute freezing.  Caller must
    7030             :  * initialize pagefrz fields for page as a whole before first call here for
    7031             :  * each heap page.
    7032             :  *
    7033             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    7034             :  * We'll often prepare freeze plans for a page that caller just discards.
    7035             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    7036             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    7037             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    7038             :  * that VACUUM always follows that rule.
    7039             :  *
    7040             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    7041             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    7042             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    7043             :  * and it's convenient to make that happen by piggy-backing it on the "force
    7044             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    7045             :  * because it is expensive right now (though only when it's still possible to
    7046             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    7047             :  *
    7048             :  * It is assumed that the caller has checked the tuple with
    7049             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    7050             :  * (else we should be removing the tuple, not freezing it).
    7051             :  *
    7052             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    7053             :  * It will be set as tuple's new xmax when our *frz output is processed within
    7054             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    7055             :  * then caller had better have an exclusive lock on it already.
    7056             :  */
    7057             : bool
    7058    52459928 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    7059             :                           const struct VacuumCutoffs *cutoffs,
    7060             :                           HeapPageFreeze *pagefrz,
    7061             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    7062             : {
    7063    52459928 :     bool        xmin_already_frozen = false,
    7064    52459928 :                 xmax_already_frozen = false;
    7065    52459928 :     bool        freeze_xmin = false,
    7066    52459928 :                 replace_xvac = false,
    7067    52459928 :                 replace_xmax = false,
    7068    52459928 :                 freeze_xmax = false;
    7069             :     TransactionId xid;
    7070             : 
    7071    52459928 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    7072    52459928 :     frz->t_infomask2 = tuple->t_infomask2;
    7073    52459928 :     frz->t_infomask = tuple->t_infomask;
    7074    52459928 :     frz->frzflags = 0;
    7075    52459928 :     frz->checkflags = 0;
    7076             : 
    7077             :     /*
    7078             :      * Process xmin, while keeping track of whether it's already frozen, or
    7079             :      * will become frozen iff our freeze plan is executed by caller (could be
    7080             :      * neither).
    7081             :      */
    7082    52459928 :     xid = HeapTupleHeaderGetXmin(tuple);
    7083    52459928 :     if (!TransactionIdIsNormal(xid))
    7084    46530426 :         xmin_already_frozen = true;
    7085             :     else
    7086             :     {
    7087     5929502 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7088           0 :             ereport(ERROR,
    7089             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7090             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    7091             :                                      xid, cutoffs->relfrozenxid)));
    7092             : 
    7093             :         /* Will set freeze_xmin flags in freeze plan below */
    7094     5929502 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7095             : 
    7096             :         /* Verify that xmin committed if and when freeze plan is executed */
    7097     5929502 :         if (freeze_xmin)
    7098     4657900 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    7099             :     }
    7100             : 
    7101             :     /*
    7102             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    7103             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    7104             :      */
    7105    52459928 :     xid = HeapTupleHeaderGetXvac(tuple);
    7106    52459928 :     if (TransactionIdIsNormal(xid))
    7107             :     {
    7108             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7109             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    7110             : 
    7111             :         /*
    7112             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    7113             :          * tracking to ignore xvac.
    7114             :          */
    7115           0 :         replace_xvac = pagefrz->freeze_required = true;
    7116             : 
    7117             :         /* Will set replace_xvac flags in freeze plan below */
    7118             :     }
    7119             : 
    7120             :     /* Now process xmax */
    7121    52459928 :     xid = frz->xmax;
    7122    52459928 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7123             :     {
    7124             :         /* Raw xmax is a MultiXactId */
    7125             :         TransactionId newxmax;
    7126             :         uint16      flags;
    7127             : 
    7128             :         /*
    7129             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    7130             :          * process xmax by replacing it (in the "replace_xmax" path), or
    7131             :          * perform no-op xmax processing.  The only constraint is that the
    7132             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    7133             :          */
    7134          14 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    7135             :                                     &flags, pagefrz);
    7136             : 
    7137          14 :         if (flags & FRM_NOOP)
    7138             :         {
    7139             :             /*
    7140             :              * xmax is a MultiXactId, and nothing about it changes for now.
    7141             :              * This is the only case where 'freeze_required' won't have been
    7142             :              * set for us by FreezeMultiXactId, as well as the only case where
    7143             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7144             :              *
    7145             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7146             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7147             :              * for us (the "freeze page" variants, specifically).  That'll
    7148             :              * make it safe for our caller to freeze the page later on, while
    7149             :              * leaving this particular xmax undisturbed.
    7150             :              *
    7151             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7152             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7153             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7154             :              * will take place below if 'freeze_required' isn't set already.
    7155             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7156             :              * freeze" tracker maintenance to happen in only one place.)
    7157             :              */
    7158             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7159             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7160             :         }
    7161          12 :         else if (flags & FRM_RETURN_IS_XID)
    7162             :         {
    7163             :             /*
    7164             :              * xmax will become an updater Xid (original MultiXact's updater
    7165             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7166             :              */
    7167             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7168             : 
    7169             :             /*
    7170             :              * NB -- some of these transformations are only valid because we
    7171             :              * know the return Xid is a tuple updater (i.e. not merely a
    7172             :              * locker.) Also note that the only reason we don't explicitly
    7173             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7174             :              * t_infomask2 rather than t_infomask.
    7175             :              */
    7176           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7177           0 :             frz->xmax = newxmax;
    7178           0 :             if (flags & FRM_MARK_COMMITTED)
    7179           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7180           0 :             replace_xmax = true;
    7181             :         }
    7182          12 :         else if (flags & FRM_RETURN_IS_MULTI)
    7183             :         {
    7184             :             uint16      newbits;
    7185             :             uint16      newbits2;
    7186             : 
    7187             :             /*
    7188             :              * xmax is an old MultiXactId that we have to replace with a new
    7189             :              * MultiXactId, to carry forward two or more original member XIDs.
    7190             :              */
    7191             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7192             : 
    7193             :             /*
    7194             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7195             :              * here; that routine initializes the masks to all zeroes, which
    7196             :              * would lose other bits we need.  Doing it this way ensures all
    7197             :              * unrelated bits remain untouched.
    7198             :              */
    7199           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7200           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7201           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7202           2 :             frz->t_infomask |= newbits;
    7203           2 :             frz->t_infomask2 |= newbits2;
    7204           2 :             frz->xmax = newxmax;
    7205           2 :             replace_xmax = true;
    7206             :         }
    7207             :         else
    7208             :         {
    7209             :             /*
    7210             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7211             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7212             :              */
    7213             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7214             :             Assert(!TransactionIdIsValid(newxmax));
    7215             : 
    7216             :             /* Will set freeze_xmax flags in freeze plan below */
    7217          10 :             freeze_xmax = true;
    7218             :         }
    7219             : 
    7220             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7221             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7222             :     }
    7223    52459914 :     else if (TransactionIdIsNormal(xid))
    7224             :     {
    7225             :         /* Raw xmax is normal XID */
    7226    17419258 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7227           0 :             ereport(ERROR,
    7228             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7229             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7230             :                                      xid, cutoffs->relfrozenxid)));
    7231             : 
    7232             :         /* Will set freeze_xmax flags in freeze plan below */
    7233    17419258 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7234             : 
    7235             :         /*
    7236             :          * Verify that xmax aborted if and when freeze plan is executed,
    7237             :          * provided it's from an update. (A lock-only xmax can be removed
    7238             :          * independent of this, since the lock is released at xact end.)
    7239             :          */
    7240    17419258 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7241        1476 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7242             :     }
    7243    35040656 :     else if (!TransactionIdIsValid(xid))
    7244             :     {
    7245             :         /* Raw xmax is InvalidTransactionId XID */
    7246             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7247    35040656 :         xmax_already_frozen = true;
    7248             :     }
    7249             :     else
    7250           0 :         ereport(ERROR,
    7251             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7252             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7253             :                                  xid, tuple->t_infomask)));
    7254             : 
    7255    52459928 :     if (freeze_xmin)
    7256             :     {
    7257             :         Assert(!xmin_already_frozen);
    7258             : 
    7259     4657900 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7260             :     }
    7261    52459928 :     if (replace_xvac)
    7262             :     {
    7263             :         /*
    7264             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7265             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7266             :          * transaction succeeded.
    7267             :          */
    7268             :         Assert(pagefrz->freeze_required);
    7269           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7270           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7271             :         else
    7272           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7273             :     }
    7274             :     if (replace_xmax)
    7275             :     {
    7276             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7277             :         Assert(pagefrz->freeze_required);
    7278             : 
    7279             :         /* Already set replace_xmax flags in freeze plan earlier */
    7280             :     }
    7281    52459928 :     if (freeze_xmax)
    7282             :     {
    7283             :         Assert(!xmax_already_frozen && !replace_xmax);
    7284             : 
    7285        3226 :         frz->xmax = InvalidTransactionId;
    7286             : 
    7287             :         /*
    7288             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7289             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7290             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7291             :          */
    7292        3226 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7293        3226 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7294        3226 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7295        3226 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7296             :     }
    7297             : 
    7298             :     /*
    7299             :      * Determine if this tuple is already totally frozen, or will become
    7300             :      * totally frozen (provided caller executes freeze plans for the page)
    7301             :      */
    7302   103645028 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7303    51185100 :                        (freeze_xmax || xmax_already_frozen));
    7304             : 
    7305    52459928 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7306             :                                        xmax_already_frozen))
    7307             :     {
    7308             :         /*
    7309             :          * So far no previous tuple from the page made freezing mandatory.
    7310             :          * Does this tuple force caller to freeze the entire page?
    7311             :          */
    7312    20183830 :         pagefrz->freeze_required =
    7313    20183830 :             heap_tuple_should_freeze(tuple, cutoffs,
    7314             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7315             :                                      &pagefrz->NoFreezePageRelminMxid);
    7316             :     }
    7317             : 
    7318             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7319    52459928 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7320             : }
    7321             : 
    7322             : /*
    7323             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7324             :  * plans.
    7325             :  *
    7326             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7327             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7328             :  * successive VACUUMs that each decide against freezing the same page.
    7329             :  */
    7330             : void
    7331       45052 : heap_pre_freeze_checks(Buffer buffer,
    7332             :                        HeapTupleFreeze *tuples, int ntuples)
    7333             : {
    7334       45052 :     Page        page = BufferGetPage(buffer);
    7335             : 
    7336     1938064 :     for (int i = 0; i < ntuples; i++)
    7337             :     {
    7338     1893012 :         HeapTupleFreeze *frz = tuples + i;
    7339     1893012 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7340             :         HeapTupleHeader htup;
    7341             : 
    7342     1893012 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7343             : 
    7344             :         /* Deliberately avoid relying on tuple hint bits here */
    7345     1893012 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7346             :         {
    7347     1893010 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7348             : 
    7349             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7350     1893010 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7351           0 :                 ereport(ERROR,
    7352             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7353             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7354             :                                          xmin)));
    7355             :         }
    7356             : 
    7357             :         /*
    7358             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7359             :          * left behind by transactions that were in progress during a crash,
    7360             :          * so we can only check that xmax didn't commit
    7361             :          */
    7362     1893012 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7363             :         {
    7364         358 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7365             : 
    7366             :             Assert(TransactionIdIsNormal(xmax));
    7367         358 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7368           0 :                 ereport(ERROR,
    7369             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7370             :                          errmsg_internal("cannot freeze committed xmax %u",
    7371             :                                          xmax)));
    7372             :         }
    7373             :     }
    7374       45052 : }
    7375             : 
    7376             : /*
    7377             :  * Helper which executes freezing of one or more heap tuples on a page on
    7378             :  * behalf of caller.  Caller passes an array of tuple plans from
    7379             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7380             :  * Must be called in a critical section that also marks the buffer dirty and,
    7381             :  * if needed, emits WAL.
    7382             :  */
    7383             : void
    7384       45052 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7385             : {
    7386       45052 :     Page        page = BufferGetPage(buffer);
    7387             : 
    7388     1938064 :     for (int i = 0; i < ntuples; i++)
    7389             :     {
    7390     1893012 :         HeapTupleFreeze *frz = tuples + i;
    7391     1893012 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7392             :         HeapTupleHeader htup;
    7393             : 
    7394     1893012 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7395     1893012 :         heap_execute_freeze_tuple(htup, frz);
    7396             :     }
    7397       45052 : }
    7398             : 
    7399             : /*
    7400             :  * heap_freeze_tuple
    7401             :  *      Freeze tuple in place, without WAL logging.
    7402             :  *
    7403             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7404             :  */
    7405             : bool
    7406      731946 : heap_freeze_tuple(HeapTupleHeader tuple,
    7407             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7408             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7409             : {
    7410             :     HeapTupleFreeze frz;
    7411             :     bool        do_freeze;
    7412             :     bool        totally_frozen;
    7413             :     struct VacuumCutoffs cutoffs;
    7414             :     HeapPageFreeze pagefrz;
    7415             : 
    7416      731946 :     cutoffs.relfrozenxid = relfrozenxid;
    7417      731946 :     cutoffs.relminmxid = relminmxid;
    7418      731946 :     cutoffs.OldestXmin = FreezeLimit;
    7419      731946 :     cutoffs.OldestMxact = MultiXactCutoff;
    7420      731946 :     cutoffs.FreezeLimit = FreezeLimit;
    7421      731946 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7422             : 
    7423      731946 :     pagefrz.freeze_required = true;
    7424      731946 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7425      731946 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7426      731946 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7427      731946 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7428             : 
    7429      731946 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7430             :                                           &pagefrz, &frz, &totally_frozen);
    7431             : 
    7432             :     /*
    7433             :      * Note that because this is not a WAL-logged operation, we don't need to
    7434             :      * fill in the offset in the freeze record.
    7435             :      */
    7436             : 
    7437      731946 :     if (do_freeze)
    7438      501504 :         heap_execute_freeze_tuple(tuple, &frz);
    7439      731946 :     return do_freeze;
    7440             : }
    7441             : 
    7442             : /*
    7443             :  * For a given MultiXactId, return the hint bits that should be set in the
    7444             :  * tuple's infomask.
    7445             :  *
    7446             :  * Normally this should be called for a multixact that was just created, and
    7447             :  * so is on our local cache, so the GetMembers call is fast.
    7448             :  */
    7449             : static void
    7450        2396 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7451             :                        uint16 *new_infomask2)
    7452             : {
    7453             :     int         nmembers;
    7454             :     MultiXactMember *members;
    7455             :     int         i;
    7456        2396 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7457        2396 :     uint16      bits2 = 0;
    7458        2396 :     bool        has_update = false;
    7459        2396 :     LockTupleMode strongest = LockTupleKeyShare;
    7460             : 
    7461             :     /*
    7462             :      * We only use this in multis we just created, so they cannot be values
    7463             :      * pre-pg_upgrade.
    7464             :      */
    7465        2396 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7466             : 
    7467        7344 :     for (i = 0; i < nmembers; i++)
    7468             :     {
    7469             :         LockTupleMode mode;
    7470             : 
    7471             :         /*
    7472             :          * Remember the strongest lock mode held by any member of the
    7473             :          * multixact.
    7474             :          */
    7475        4948 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7476        4948 :         if (mode > strongest)
    7477        1320 :             strongest = mode;
    7478             : 
    7479             :         /* See what other bits we need */
    7480        4948 :         switch (members[i].status)
    7481             :         {
    7482        4566 :             case MultiXactStatusForKeyShare:
    7483             :             case MultiXactStatusForShare:
    7484             :             case MultiXactStatusForNoKeyUpdate:
    7485        4566 :                 break;
    7486             : 
    7487         104 :             case MultiXactStatusForUpdate:
    7488         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7489         104 :                 break;
    7490             : 
    7491         258 :             case MultiXactStatusNoKeyUpdate:
    7492         258 :                 has_update = true;
    7493         258 :                 break;
    7494             : 
    7495          20 :             case MultiXactStatusUpdate:
    7496          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7497          20 :                 has_update = true;
    7498          20 :                 break;
    7499             :         }
    7500             :     }
    7501             : 
    7502        2396 :     if (strongest == LockTupleExclusive ||
    7503             :         strongest == LockTupleNoKeyExclusive)
    7504         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7505        1958 :     else if (strongest == LockTupleShare)
    7506         876 :         bits |= HEAP_XMAX_SHR_LOCK;
    7507        1082 :     else if (strongest == LockTupleKeyShare)
    7508        1082 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7509             : 
    7510        2396 :     if (!has_update)
    7511        2118 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7512             : 
    7513        2396 :     if (nmembers > 0)
    7514        2396 :         pfree(members);
    7515             : 
    7516        2396 :     *new_infomask = bits;
    7517        2396 :     *new_infomask2 = bits2;
    7518        2396 : }
    7519             : 
    7520             : /*
    7521             :  * MultiXactIdGetUpdateXid
    7522             :  *
    7523             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7524             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7525             :  * transaction.
    7526             :  *
    7527             :  * Caller is expected to check the status of the updating transaction, if
    7528             :  * necessary.
    7529             :  */
    7530             : static TransactionId
    7531         980 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7532             : {
    7533         980 :     TransactionId update_xact = InvalidTransactionId;
    7534             :     MultiXactMember *members;
    7535             :     int         nmembers;
    7536             : 
    7537             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7538             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7539             : 
    7540             :     /*
    7541             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7542             :      * pre-pg_upgrade.
    7543             :      */
    7544         980 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7545             : 
    7546         980 :     if (nmembers > 0)
    7547             :     {
    7548             :         int         i;
    7549             : 
    7550        2548 :         for (i = 0; i < nmembers; i++)
    7551             :         {
    7552             :             /* Ignore lockers */
    7553        2548 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7554        1568 :                 continue;
    7555             : 
    7556             :             /* there can be at most one updater */
    7557             :             Assert(update_xact == InvalidTransactionId);
    7558         980 :             update_xact = members[i].xid;
    7559             : #ifndef USE_ASSERT_CHECKING
    7560             : 
    7561             :             /*
    7562             :              * in an assert-enabled build, walk the whole array to ensure
    7563             :              * there's no other updater.
    7564             :              */
    7565         980 :             break;
    7566             : #endif
    7567             :         }
    7568             : 
    7569         980 :         pfree(members);
    7570             :     }
    7571             : 
    7572         980 :     return update_xact;
    7573             : }
    7574             : 
    7575             : /*
    7576             :  * HeapTupleGetUpdateXid
    7577             :  *      As above, but use a HeapTupleHeader
    7578             :  *
    7579             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7580             :  * checking the hint bits.
    7581             :  */
    7582             : TransactionId
    7583         964 : HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
    7584             : {
    7585         964 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tup),
    7586         964 :                                    tup->t_infomask);
    7587             : }
    7588             : 
    7589             : /*
    7590             :  * Does the given multixact conflict with the current transaction grabbing a
    7591             :  * tuple lock of the given strength?
    7592             :  *
    7593             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7594             :  *
    7595             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7596             :  * transaction is a member of the given multixact.
    7597             :  */
    7598             : static bool
    7599         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7600             :                         LockTupleMode lockmode, bool *current_is_member)
    7601             : {
    7602             :     int         nmembers;
    7603             :     MultiXactMember *members;
    7604         198 :     bool        result = false;
    7605         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7606             : 
    7607         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7608           0 :         return false;
    7609             : 
    7610         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7611         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7612         198 :     if (nmembers >= 0)
    7613             :     {
    7614             :         int         i;
    7615             : 
    7616         618 :         for (i = 0; i < nmembers; i++)
    7617             :         {
    7618             :             TransactionId memxid;
    7619             :             LOCKMODE    memlockmode;
    7620             : 
    7621         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7622             :                 break;
    7623             : 
    7624         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7625             : 
    7626             :             /* ignore members from current xact (but track their presence) */
    7627         420 :             memxid = members[i].xid;
    7628         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7629             :             {
    7630         184 :                 if (current_is_member != NULL)
    7631         156 :                     *current_is_member = true;
    7632         184 :                 continue;
    7633             :             }
    7634         236 :             else if (result)
    7635          16 :                 continue;
    7636             : 
    7637             :             /* ignore members that don't conflict with the lock we want */
    7638         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7639         142 :                 continue;
    7640             : 
    7641          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7642             :             {
    7643             :                 /* ignore aborted updaters */
    7644          34 :                 if (TransactionIdDidAbort(memxid))
    7645           2 :                     continue;
    7646             :             }
    7647             :             else
    7648             :             {
    7649             :                 /* ignore lockers-only that are no longer in progress */
    7650          44 :                 if (!TransactionIdIsInProgress(memxid))
    7651          14 :                     continue;
    7652             :             }
    7653             : 
    7654             :             /*
    7655             :              * Whatever remains are either live lockers that conflict with our
    7656             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7657             :              * with what we want.  Set up to return true, but keep going to
    7658             :              * look for the current transaction among the multixact members,
    7659             :              * if needed.
    7660             :              */
    7661          62 :             result = true;
    7662             :         }
    7663         198 :         pfree(members);
    7664             :     }
    7665             : 
    7666         198 :     return result;
    7667             : }
    7668             : 
    7669             : /*
    7670             :  * Do_MultiXactIdWait
    7671             :  *      Actual implementation for the two functions below.
    7672             :  *
    7673             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7674             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7675             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7676             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7677             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7678             :  * context information for error messages.  'remaining', if not NULL, receives
    7679             :  * the number of members that are still running, including any (non-aborted)
    7680             :  * subtransactions of our own transaction.  'logLockFailure' indicates whether
    7681             :  * to log details when a lock acquisition fails with 'nowait' enabled.
    7682             :  *
    7683             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7684             :  * members that belong to the current backend are *not* waited for, however;
    7685             :  * this would not merely be useless but would lead to Assert failure inside
    7686             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7687             :  * transactions *of other backends* that were members of the MultiXactId
    7688             :  * that conflict with the requested status are dead (and no new ones can have
    7689             :  * been added, since it is not legal to add members to an existing
    7690             :  * MultiXactId).
    7691             :  *
    7692             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7693             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7694             :  *
    7695             :  * Note that in case we return false, the number of remaining members is
    7696             :  * not to be trusted.
    7697             :  */
    7698             : static bool
    7699         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7700             :                    uint16 infomask, bool nowait,
    7701             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7702             :                    int *remaining, bool logLockFailure)
    7703             : {
    7704         116 :     bool        result = true;
    7705             :     MultiXactMember *members;
    7706             :     int         nmembers;
    7707         116 :     int         remain = 0;
    7708             : 
    7709             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7710         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7711         116 :         GetMultiXactIdMembers(multi, &members, false,
    7712         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7713             : 
    7714         116 :     if (nmembers >= 0)
    7715             :     {
    7716             :         int         i;
    7717             : 
    7718         374 :         for (i = 0; i < nmembers; i++)
    7719             :         {
    7720         266 :             TransactionId memxid = members[i].xid;
    7721         266 :             MultiXactStatus memstatus = members[i].status;
    7722             : 
    7723         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7724             :             {
    7725          48 :                 remain++;
    7726          48 :                 continue;
    7727             :             }
    7728             : 
    7729         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7730         218 :                                      LOCKMODE_from_mxstatus(status)))
    7731             :             {
    7732          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7733          16 :                     remain++;
    7734          44 :                 continue;
    7735             :             }
    7736             : 
    7737             :             /*
    7738             :              * This member conflicts with our multi, so we have to sleep (or
    7739             :              * return failure, if asked to avoid waiting.)
    7740             :              *
    7741             :              * Note that we don't set up an error context callback ourselves,
    7742             :              * but instead we pass the info down to XactLockTableWait.  This
    7743             :              * might seem a bit wasteful because the context is set up and
    7744             :              * tore down for each member of the multixact, but in reality it
    7745             :              * should be barely noticeable, and it avoids duplicate code.
    7746             :              */
    7747         174 :             if (nowait)
    7748             :             {
    7749           8 :                 result = ConditionalXactLockTableWait(memxid, logLockFailure);
    7750           8 :                 if (!result)
    7751           8 :                     break;
    7752             :             }
    7753             :             else
    7754         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7755             :         }
    7756             : 
    7757         116 :         pfree(members);
    7758             :     }
    7759             : 
    7760         116 :     if (remaining)
    7761          20 :         *remaining = remain;
    7762             : 
    7763         116 :     return result;
    7764             : }
    7765             : 
    7766             : /*
    7767             :  * MultiXactIdWait
    7768             :  *      Sleep on a MultiXactId.
    7769             :  *
    7770             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7771             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7772             :  *
    7773             :  * We return (in *remaining, if not NULL) the number of members that are still
    7774             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7775             :  */
    7776             : static void
    7777         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7778             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7779             :                 int *remaining)
    7780             : {
    7781         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7782             :                               rel, ctid, oper, remaining, false);
    7783         108 : }
    7784             : 
    7785             : /*
    7786             :  * ConditionalMultiXactIdWait
    7787             :  *      As above, but only lock if we can get the lock without blocking.
    7788             :  *
    7789             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7790             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7791             :  *
    7792             :  * If the multixact is now all gone, return true.  Returns false if some
    7793             :  * transactions might still be running.
    7794             :  *
    7795             :  * We return (in *remaining, if not NULL) the number of members that are still
    7796             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7797             :  */
    7798             : static bool
    7799           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7800             :                            uint16 infomask, Relation rel, int *remaining,
    7801             :                            bool logLockFailure)
    7802             : {
    7803           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7804             :                               rel, NULL, XLTW_None, remaining, logLockFailure);
    7805             : }
    7806             : 
    7807             : /*
    7808             :  * heap_tuple_needs_eventual_freeze
    7809             :  *
    7810             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7811             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7812             :  */
    7813             : bool
    7814      259940 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7815             : {
    7816             :     TransactionId xid;
    7817             : 
    7818             :     /*
    7819             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7820             :      * frozen.
    7821             :      */
    7822      259940 :     xid = HeapTupleHeaderGetXmin(tuple);
    7823      259940 :     if (TransactionIdIsNormal(xid))
    7824        4734 :         return true;
    7825             : 
    7826             :     /*
    7827             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7828             :      */
    7829      255206 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7830             :     {
    7831             :         MultiXactId multi;
    7832             : 
    7833           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7834           0 :         if (MultiXactIdIsValid(multi))
    7835           0 :             return true;
    7836             :     }
    7837             :     else
    7838             :     {
    7839      255206 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7840      255206 :         if (TransactionIdIsNormal(xid))
    7841          10 :             return true;
    7842             :     }
    7843             : 
    7844      255196 :     if (tuple->t_infomask & HEAP_MOVED)
    7845             :     {
    7846           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7847           0 :         if (TransactionIdIsNormal(xid))
    7848           0 :             return true;
    7849             :     }
    7850             : 
    7851      255196 :     return false;
    7852             : }
    7853             : 
    7854             : /*
    7855             :  * heap_tuple_should_freeze
    7856             :  *
    7857             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7858             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7859             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7860             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7861             :  *
    7862             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7863             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7864             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7865             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7866             :  * point that it fully commits to not freezing the tuple/page in question.
    7867             :  */
    7868             : bool
    7869    20188922 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7870             :                          const struct VacuumCutoffs *cutoffs,
    7871             :                          TransactionId *NoFreezePageRelfrozenXid,
    7872             :                          MultiXactId *NoFreezePageRelminMxid)
    7873             : {
    7874             :     TransactionId xid;
    7875             :     MultiXactId multi;
    7876    20188922 :     bool        freeze = false;
    7877             : 
    7878             :     /* First deal with xmin */
    7879    20188922 :     xid = HeapTupleHeaderGetXmin(tuple);
    7880    20188922 :     if (TransactionIdIsNormal(xid))
    7881             :     {
    7882             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7883     3572390 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7884       45822 :             *NoFreezePageRelfrozenXid = xid;
    7885     3572390 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7886       42084 :             freeze = true;
    7887             :     }
    7888             : 
    7889             :     /* Now deal with xmax */
    7890    20188922 :     xid = InvalidTransactionId;
    7891    20188922 :     multi = InvalidMultiXactId;
    7892    20188922 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7893           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7894             :     else
    7895    20188918 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7896             : 
    7897    20188922 :     if (TransactionIdIsNormal(xid))
    7898             :     {
    7899             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7900             :         /* xmax is a non-permanent XID */
    7901    17270980 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7902           4 :             *NoFreezePageRelfrozenXid = xid;
    7903    17270980 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7904          52 :             freeze = true;
    7905             :     }
    7906     2917942 :     else if (!MultiXactIdIsValid(multi))
    7907             :     {
    7908             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7909             :     }
    7910           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7911             :     {
    7912             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7913           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7914           0 :             *NoFreezePageRelminMxid = multi;
    7915             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7916           0 :         freeze = true;
    7917             :     }
    7918             :     else
    7919             :     {
    7920             :         /* xmax is a MultiXactId that may have an updater XID */
    7921             :         MultiXactMember *members;
    7922             :         int         nmembers;
    7923             : 
    7924             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7925           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7926           4 :             *NoFreezePageRelminMxid = multi;
    7927           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7928           4 :             freeze = true;
    7929             : 
    7930             :         /* need to check whether any member of the mxact is old */
    7931           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7932           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7933             : 
    7934          10 :         for (int i = 0; i < nmembers; i++)
    7935             :         {
    7936           6 :             xid = members[i].xid;
    7937             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7938           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7939           0 :                 *NoFreezePageRelfrozenXid = xid;
    7940           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7941           0 :                 freeze = true;
    7942             :         }
    7943           4 :         if (nmembers > 0)
    7944           2 :             pfree(members);
    7945             :     }
    7946             : 
    7947    20188922 :     if (tuple->t_infomask & HEAP_MOVED)
    7948             :     {
    7949           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7950           0 :         if (TransactionIdIsNormal(xid))
    7951             :         {
    7952             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7953           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7954           0 :                 *NoFreezePageRelfrozenXid = xid;
    7955             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7956           0 :             freeze = true;
    7957             :         }
    7958             :     }
    7959             : 
    7960    20188922 :     return freeze;
    7961             : }
    7962             : 
    7963             : /*
    7964             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7965             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7966             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7967             :  * or index deletion.
    7968             :  *
    7969             :  * Caller must initialize its value to InvalidTransactionId, which is
    7970             :  * generally interpreted as "definitely no need for a recovery conflict".
    7971             :  * Final value must reflect all heap tuples that caller will physically remove
    7972             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7973             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7974             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7975             :  */
    7976             : void
    7977     3002676 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7978             :                                       TransactionId *snapshotConflictHorizon)
    7979             : {
    7980     3002676 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7981     3002676 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7982     3002676 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7983             : 
    7984     3002676 :     if (tuple->t_infomask & HEAP_MOVED)
    7985             :     {
    7986           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7987           0 :             *snapshotConflictHorizon = xvac;
    7988             :     }
    7989             : 
    7990             :     /*
    7991             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7992             :      * updated/deleted by the inserting transaction.
    7993             :      *
    7994             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    7995             :      */
    7996     3002676 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    7997      209776 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    7998             :     {
    7999     5426788 :         if (xmax != xmin &&
    8000     2578646 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    8001      190258 :             *snapshotConflictHorizon = xmax;
    8002             :     }
    8003     3002676 : }
    8004             : 
    8005             : #ifdef USE_PREFETCH
    8006             : /*
    8007             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    8008             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    8009             :  * we can prefetch, and which have already been prefetched; each call to this
    8010             :  * function picks up where the previous call left off.
    8011             :  *
    8012             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    8013             :  * by heap block, with all TIDs for each block appearing together in exactly
    8014             :  * one group.
    8015             :  */
    8016             : static void
    8017       37408 : index_delete_prefetch_buffer(Relation rel,
    8018             :                              IndexDeletePrefetchState *prefetch_state,
    8019             :                              int prefetch_count)
    8020             : {
    8021       37408 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    8022       37408 :     int         count = 0;
    8023             :     int         i;
    8024       37408 :     int         ndeltids = prefetch_state->ndeltids;
    8025       37408 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    8026             : 
    8027       37408 :     for (i = prefetch_state->next_item;
    8028     1299788 :          i < ndeltids && count < prefetch_count;
    8029     1262380 :          i++)
    8030             :     {
    8031     1262380 :         ItemPointer htid = &deltids[i].tid;
    8032             : 
    8033     2513518 :         if (cur_hblkno == InvalidBlockNumber ||
    8034     1251138 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    8035             :         {
    8036       33846 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    8037       33846 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    8038       33846 :             count++;
    8039             :         }
    8040             :     }
    8041             : 
    8042             :     /*
    8043             :      * Save the prefetch position so that next time we can continue from that
    8044             :      * position.
    8045             :      */
    8046       37408 :     prefetch_state->next_item = i;
    8047       37408 :     prefetch_state->cur_hblkno = cur_hblkno;
    8048       37408 : }
    8049             : #endif
    8050             : 
    8051             : /*
    8052             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    8053             :  * involving an invalid TID in index AM caller's index page.
    8054             :  *
    8055             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    8056             :  * lock on the index page containing the TIDs we examine here, so we don't
    8057             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    8058             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    8059             :  * heap-only tuple, which is not the case during standard index scans.
    8060             :  */
    8061             : static inline void
    8062     1055998 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    8063             :                         Page page, OffsetNumber maxoff,
    8064             :                         ItemPointer htid, TM_IndexStatus *istatus)
    8065             : {
    8066     1055998 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    8067             :     ItemId      iid;
    8068             : 
    8069             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    8070             : 
    8071     1055998 :     if (unlikely(indexpagehoffnum > maxoff))
    8072           0 :         ereport(ERROR,
    8073             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8074             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    8075             :                                  ItemPointerGetBlockNumber(htid),
    8076             :                                  indexpagehoffnum,
    8077             :                                  istatus->idxoffnum, delstate->iblknum,
    8078             :                                  RelationGetRelationName(delstate->irel))));
    8079             : 
    8080     1055998 :     iid = PageGetItemId(page, indexpagehoffnum);
    8081     1055998 :     if (unlikely(!ItemIdIsUsed(iid)))
    8082           0 :         ereport(ERROR,
    8083             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8084             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    8085             :                                  ItemPointerGetBlockNumber(htid),
    8086             :                                  indexpagehoffnum,
    8087             :                                  istatus->idxoffnum, delstate->iblknum,
    8088             :                                  RelationGetRelationName(delstate->irel))));
    8089             : 
    8090     1055998 :     if (ItemIdHasStorage(iid))
    8091             :     {
    8092             :         HeapTupleHeader htup;
    8093             : 
    8094             :         Assert(ItemIdIsNormal(iid));
    8095      630180 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    8096             : 
    8097      630180 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    8098           0 :             ereport(ERROR,
    8099             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    8100             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    8101             :                                      ItemPointerGetBlockNumber(htid),
    8102             :                                      indexpagehoffnum,
    8103             :                                      istatus->idxoffnum, delstate->iblknum,
    8104             :                                      RelationGetRelationName(delstate->irel))));
    8105             :     }
    8106     1055998 : }
    8107             : 
    8108             : /*
    8109             :  * heapam implementation of tableam's index_delete_tuples interface.
    8110             :  *
    8111             :  * This helper function is called by index AMs during index tuple deletion.
    8112             :  * See tableam header comments for an explanation of the interface implemented
    8113             :  * here and a general theory of operation.  Note that each call here is either
    8114             :  * a simple index deletion call, or a bottom-up index deletion call.
    8115             :  *
    8116             :  * It's possible for this to generate a fair amount of I/O, since we may be
    8117             :  * deleting hundreds of tuples from a single index block.  To amortize that
    8118             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    8119             :  * the same heap block.
    8120             :  */
    8121             : TransactionId
    8122       11242 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    8123             : {
    8124             :     /* Initial assumption is that earlier pruning took care of conflict */
    8125       11242 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    8126       11242 :     BlockNumber blkno = InvalidBlockNumber;
    8127       11242 :     Buffer      buf = InvalidBuffer;
    8128       11242 :     Page        page = NULL;
    8129       11242 :     OffsetNumber maxoff = InvalidOffsetNumber;
    8130             :     TransactionId priorXmax;
    8131             : #ifdef USE_PREFETCH
    8132             :     IndexDeletePrefetchState prefetch_state;
    8133             :     int         prefetch_distance;
    8134             : #endif
    8135             :     SnapshotData SnapshotNonVacuumable;
    8136       11242 :     int         finalndeltids = 0,
    8137       11242 :                 nblocksaccessed = 0;
    8138             : 
    8139             :     /* State that's only used in bottom-up index deletion case */
    8140       11242 :     int         nblocksfavorable = 0;
    8141       11242 :     int         curtargetfreespace = delstate->bottomupfreespace,
    8142       11242 :                 lastfreespace = 0,
    8143       11242 :                 actualfreespace = 0;
    8144       11242 :     bool        bottomup_final_block = false;
    8145             : 
    8146       11242 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8147             : 
    8148             :     /* Sort caller's deltids array by TID for further processing */
    8149       11242 :     index_delete_sort(delstate);
    8150             : 
    8151             :     /*
    8152             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8153             :      * greatest number of promising TIDs are to be found, and determine how
    8154             :      * many blocks from the start of sorted array should be considered
    8155             :      * favorable.  This will also shrink the deltids array in order to
    8156             :      * eliminate completely unfavorable blocks up front.
    8157             :      */
    8158       11242 :     if (delstate->bottomup)
    8159        3914 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8160             : 
    8161             : #ifdef USE_PREFETCH
    8162             :     /* Initialize prefetch state. */
    8163       11242 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8164       11242 :     prefetch_state.next_item = 0;
    8165       11242 :     prefetch_state.ndeltids = delstate->ndeltids;
    8166       11242 :     prefetch_state.deltids = delstate->deltids;
    8167             : 
    8168             :     /*
    8169             :      * Determine the prefetch distance that we will attempt to maintain.
    8170             :      *
    8171             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8172             :      * sure that isn't a catalog relation before we call code that does
    8173             :      * syscache lookups, to avoid risk of deadlock.
    8174             :      */
    8175       11242 :     if (IsCatalogRelation(rel))
    8176        8032 :         prefetch_distance = maintenance_io_concurrency;
    8177             :     else
    8178             :         prefetch_distance =
    8179        3210 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8180             : 
    8181             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8182       11242 :     if (delstate->bottomup)
    8183             :     {
    8184             :         Assert(nblocksfavorable >= 1);
    8185             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8186        3914 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8187             :     }
    8188             : 
    8189             :     /* Start prefetching. */
    8190       11242 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8191             : #endif
    8192             : 
    8193             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8194             :     Assert(delstate->ndeltids > 0);
    8195     1067240 :     for (int i = 0; i < delstate->ndeltids; i++)
    8196             :     {
    8197     1059912 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8198     1059912 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8199     1059912 :         ItemPointer htid = &ideltid->tid;
    8200             :         OffsetNumber offnum;
    8201             : 
    8202             :         /*
    8203             :          * Read buffer, and perform required extra steps each time a new block
    8204             :          * is encountered.  Avoid refetching if it's the same block as the one
    8205             :          * from the last htid.
    8206             :          */
    8207     2108582 :         if (blkno == InvalidBlockNumber ||
    8208     1048670 :             ItemPointerGetBlockNumber(htid) != blkno)
    8209             :         {
    8210             :             /*
    8211             :              * Consider giving up early for bottom-up index deletion caller
    8212             :              * first. (Only prefetch next-next block afterwards, when it
    8213             :              * becomes clear that we're at least going to access the next
    8214             :              * block in line.)
    8215             :              *
    8216             :              * Sometimes the first block frees so much space for bottom-up
    8217             :              * caller that the deletion process can end without accessing any
    8218             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8219             :              * per bottom-up deletion operation, though.
    8220             :              */
    8221       30080 :             if (delstate->bottomup)
    8222             :             {
    8223             :                 /*
    8224             :                  * We often allow caller to delete a few additional items
    8225             :                  * whose entries we reached after the point that space target
    8226             :                  * from caller was satisfied.  The cost of accessing the page
    8227             :                  * was already paid at that point, so it made sense to finish
    8228             :                  * it off.  When that happened, we finalize everything here
    8229             :                  * (by finishing off the whole bottom-up deletion operation
    8230             :                  * without needlessly paying the cost of accessing any more
    8231             :                  * blocks).
    8232             :                  */
    8233        8358 :                 if (bottomup_final_block)
    8234         294 :                     break;
    8235             : 
    8236             :                 /*
    8237             :                  * Give up when we didn't enable our caller to free any
    8238             :                  * additional space as a result of processing the page that we
    8239             :                  * just finished up with.  This rule is the main way in which
    8240             :                  * we keep the cost of bottom-up deletion under control.
    8241             :                  */
    8242        8064 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8243        3620 :                     break;
    8244        4444 :                 lastfreespace = actualfreespace;    /* for next time */
    8245             : 
    8246             :                 /*
    8247             :                  * Deletion operation (which is bottom-up) will definitely
    8248             :                  * access the next block in line.  Prepare for that now.
    8249             :                  *
    8250             :                  * Decay target free space so that we don't hang on for too
    8251             :                  * long with a marginal case. (Space target is only truly
    8252             :                  * helpful when it allows us to recognize that we don't need
    8253             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8254             :                  * agreeable workload characteristics.)
    8255             :                  *
    8256             :                  * We are a bit more patient when we encounter contiguous
    8257             :                  * blocks, though: these are treated as favorable blocks.  The
    8258             :                  * decay process is only applied when the next block in line
    8259             :                  * is not a favorable/contiguous block.  This is not an
    8260             :                  * exception to the general rule; we still insist on finding
    8261             :                  * at least one deletable item per block accessed.  See
    8262             :                  * bottomup_nblocksfavorable() for full details of the theory
    8263             :                  * behind favorable blocks and heap block locality in general.
    8264             :                  *
    8265             :                  * Note: The first block in line is always treated as a
    8266             :                  * favorable block, so the earliest possible point that the
    8267             :                  * decay can be applied is just before we access the second
    8268             :                  * block in line.  The Assert() verifies this for us.
    8269             :                  */
    8270             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8271        4444 :                 if (nblocksfavorable > 0)
    8272        4242 :                     nblocksfavorable--;
    8273             :                 else
    8274         202 :                     curtargetfreespace /= 2;
    8275             :             }
    8276             : 
    8277             :             /* release old buffer */
    8278       26166 :             if (BufferIsValid(buf))
    8279       14924 :                 UnlockReleaseBuffer(buf);
    8280             : 
    8281       26166 :             blkno = ItemPointerGetBlockNumber(htid);
    8282       26166 :             buf = ReadBuffer(rel, blkno);
    8283       26166 :             nblocksaccessed++;
    8284             :             Assert(!delstate->bottomup ||
    8285             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8286             : 
    8287             : #ifdef USE_PREFETCH
    8288             : 
    8289             :             /*
    8290             :              * To maintain the prefetch distance, prefetch one more page for
    8291             :              * each page we read.
    8292             :              */
    8293       26166 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8294             : #endif
    8295             : 
    8296       26166 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8297             : 
    8298       26166 :             page = BufferGetPage(buf);
    8299       26166 :             maxoff = PageGetMaxOffsetNumber(page);
    8300             :         }
    8301             : 
    8302             :         /*
    8303             :          * In passing, detect index corruption involving an index page with a
    8304             :          * TID that points to a location in the heap that couldn't possibly be
    8305             :          * correct.  We only do this with actual TIDs from caller's index page
    8306             :          * (not items reached by traversing through a HOT chain).
    8307             :          */
    8308     1055998 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8309             : 
    8310     1055998 :         if (istatus->knowndeletable)
    8311             :             Assert(!delstate->bottomup && !istatus->promising);
    8312             :         else
    8313             :         {
    8314      793442 :             ItemPointerData tmp = *htid;
    8315             :             HeapTupleData heapTuple;
    8316             : 
    8317             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8318      793442 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8319             :                                        &heapTuple, NULL, true))
    8320      475348 :                 continue;       /* can't delete entry */
    8321             : 
    8322             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8323      318094 :             istatus->knowndeletable = true;
    8324             : 
    8325             :             /* Maintain index free space info for bottom-up deletion case */
    8326      318094 :             if (delstate->bottomup)
    8327             :             {
    8328             :                 Assert(istatus->freespace > 0);
    8329       14598 :                 actualfreespace += istatus->freespace;
    8330       14598 :                 if (actualfreespace >= curtargetfreespace)
    8331        4850 :                     bottomup_final_block = true;
    8332             :             }
    8333             :         }
    8334             : 
    8335             :         /*
    8336             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8337             :          * whole by advancing current value using heap tuple headers.  This is
    8338             :          * loosely based on the logic for pruning a HOT chain.
    8339             :          */
    8340      580650 :         offnum = ItemPointerGetOffsetNumber(htid);
    8341      580650 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8342             :         for (;;)
    8343       40446 :         {
    8344             :             ItemId      lp;
    8345             :             HeapTupleHeader htup;
    8346             : 
    8347             :             /* Sanity check (pure paranoia) */
    8348      621096 :             if (offnum < FirstOffsetNumber)
    8349           0 :                 break;
    8350             : 
    8351             :             /*
    8352             :              * An offset past the end of page's line pointer array is possible
    8353             :              * when the array was truncated
    8354             :              */
    8355      621096 :             if (offnum > maxoff)
    8356           0 :                 break;
    8357             : 
    8358      621096 :             lp = PageGetItemId(page, offnum);
    8359      621096 :             if (ItemIdIsRedirected(lp))
    8360             :             {
    8361       18216 :                 offnum = ItemIdGetRedirect(lp);
    8362       18216 :                 continue;
    8363             :             }
    8364             : 
    8365             :             /*
    8366             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8367             :              * entry marked knowndeletable by our caller up front).  No heap
    8368             :              * tuple headers get examined for an htid that leads us to an
    8369             :              * LP_DEAD item.  This is okay because the earlier pruning
    8370             :              * operation that made the line pointer LP_DEAD in the first place
    8371             :              * must have considered the original tuple header as part of
    8372             :              * generating its own snapshotConflictHorizon value.
    8373             :              *
    8374             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8375             :              * the same strategy that index vacuuming uses in all cases. Index
    8376             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8377             :              * field of their own for this reason.
    8378             :              */
    8379      602880 :             if (!ItemIdIsNormal(lp))
    8380      381734 :                 break;
    8381             : 
    8382      221146 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8383             : 
    8384             :             /*
    8385             :              * Check the tuple XMIN against prior XMAX, if any
    8386             :              */
    8387      243376 :             if (TransactionIdIsValid(priorXmax) &&
    8388       22230 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8389           0 :                 break;
    8390             : 
    8391      221146 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8392             :                                                   &snapshotConflictHorizon);
    8393             : 
    8394             :             /*
    8395             :              * If the tuple is not HOT-updated, then we are at the end of this
    8396             :              * HOT-chain.  No need to visit later tuples from the same update
    8397             :              * chain (they get their own index entries) -- just move on to
    8398             :              * next htid from index AM caller.
    8399             :              */
    8400      221146 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8401      198916 :                 break;
    8402             : 
    8403             :             /* Advance to next HOT chain member */
    8404             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8405       22230 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8406       22230 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8407             :         }
    8408             : 
    8409             :         /* Enable further/final shrinking of deltids for caller */
    8410      580650 :         finalndeltids = i + 1;
    8411             :     }
    8412             : 
    8413       11242 :     UnlockReleaseBuffer(buf);
    8414             : 
    8415             :     /*
    8416             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8417             :      * is not just a minor optimization.  Final deltids array size might be
    8418             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8419             :      * ndeltids being zero in all cases with zero total deletable entries.
    8420             :      */
    8421             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8422       11242 :     delstate->ndeltids = finalndeltids;
    8423             : 
    8424       11242 :     return snapshotConflictHorizon;
    8425             : }
    8426             : 
    8427             : /*
    8428             :  * Specialized inlineable comparison function for index_delete_sort()
    8429             :  */
    8430             : static inline int
    8431    24784032 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8432             : {
    8433    24784032 :     ItemPointer tid1 = &deltid1->tid;
    8434    24784032 :     ItemPointer tid2 = &deltid2->tid;
    8435             : 
    8436             :     {
    8437    24784032 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8438    24784032 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8439             : 
    8440    24784032 :         if (blk1 != blk2)
    8441    10139394 :             return (blk1 < blk2) ? -1 : 1;
    8442             :     }
    8443             :     {
    8444    14644638 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8445    14644638 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8446             : 
    8447    14644638 :         if (pos1 != pos2)
    8448    14644638 :             return (pos1 < pos2) ? -1 : 1;
    8449             :     }
    8450             : 
    8451             :     Assert(false);
    8452             : 
    8453           0 :     return 0;
    8454             : }
    8455             : 
    8456             : /*
    8457             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8458             :  * processing by heap_index_delete_tuples().
    8459             :  *
    8460             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8461             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8462             :  * We use shellsort for this because it's easy to specialize, compiles to
    8463             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8464             :  * (which are typical here).
    8465             :  */
    8466             : static void
    8467       11242 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8468             : {
    8469       11242 :     TM_IndexDelete *deltids = delstate->deltids;
    8470       11242 :     int         ndeltids = delstate->ndeltids;
    8471             : 
    8472             :     /*
    8473             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8474             :      *
    8475             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8476             :      * all supported BLCKSZ values.
    8477             :      */
    8478       11242 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8479             : 
    8480             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8481             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8482             :                      "element size exceeds 8 bytes");
    8483             : 
    8484      112420 :     for (int g = 0; g < lengthof(gaps); g++)
    8485             :     {
    8486    14820382 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8487             :         {
    8488    14719204 :             TM_IndexDelete d = deltids[i];
    8489    14719204 :             int         j = i;
    8490             : 
    8491    25493500 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8492             :             {
    8493    10774296 :                 deltids[j] = deltids[j - hi];
    8494    10774296 :                 j -= hi;
    8495             :             }
    8496    14719204 :             deltids[j] = d;
    8497             :         }
    8498             :     }
    8499       11242 : }
    8500             : 
    8501             : /*
    8502             :  * Returns how many blocks should be considered favorable/contiguous for a
    8503             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8504             :  * from and includes the first block in line.
    8505             :  *
    8506             :  * There is always at least one favorable block during bottom-up index
    8507             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8508             :  * first block in line (the only favorable block) can be thought of as a
    8509             :  * degenerate array of contiguous blocks that consists of a single block.
    8510             :  * heap_index_delete_tuples() will expect this.
    8511             :  *
    8512             :  * Caller passes blockgroups, a description of the final order that deltids
    8513             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8514             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8515             :  * only passes deltids to us so that we can interpret blockgroups).
    8516             :  *
    8517             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8518             :  * since in general the main factor that determines which blocks we visit is
    8519             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8520             :  * We're not really targeting the general case, though -- the actual goal is
    8521             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8522             :  * The effects of most of the heuristics we apply are only noticeable in the
    8523             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8524             :  * passes.
    8525             :  *
    8526             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8527             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8528             :  * accessed contiguously, in the sense that each newly visited block is the
    8529             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8530             :  * close enough to it).  It will likely be cheaper to access more favorable
    8531             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8532             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8533             :  * (or a matter of further correlated version churn) before all blocks that
    8534             :  * appear together as a single large batch of favorable blocks get accessed by
    8535             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8536             :  * appear almost constantly or not even once (it all depends on per-index
    8537             :  * workload characteristics).
    8538             :  *
    8539             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8540             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8541             :  * batched together, at least with workloads that are naturally amenable to
    8542             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8543             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8544             :  * enables temporal locality of access, since sorting by heap block number
    8545             :  * naturally tends to make the bottom-up processing order deterministic.
    8546             :  *
    8547             :  * Consider the following example to get a sense of how temporal locality
    8548             :  * might matter: There is a heap relation with several indexes, each of which
    8549             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8550             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8551             :  * the indexes are logically modified by the UPDATE statements (if they were
    8552             :  * then bottom-up index deletion would not be triggered in the first place).
    8553             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8554             :  * heap_update() call) will have the same heap TID in each and every index.
    8555             :  * Since these indexes are low cardinality and never get logically modified,
    8556             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8557             :  * in approximately sequential order.  Temporal locality of access occurs due
    8558             :  * to bottom-up deletion passes behaving very similarly across each of the
    8559             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8560             :  * to visit heap blocks to a minimum.
    8561             :  */
    8562             : static int
    8563        3914 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8564             :                           TM_IndexDelete *deltids)
    8565             : {
    8566        3914 :     int64       lastblock = -1;
    8567        3914 :     int         nblocksfavorable = 0;
    8568             : 
    8569             :     Assert(nblockgroups >= 1);
    8570             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8571             : 
    8572             :     /*
    8573             :      * We tolerate heap blocks that will be accessed only slightly out of
    8574             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8575             :      * blocks happen to fall into different buckets (perhaps due only to a
    8576             :      * small difference in npromisingtids that the bucketing scheme didn't
    8577             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8578             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8579             :      * but it works well enough in practice.
    8580             :      */
    8581       12270 :     for (int b = 0; b < nblockgroups; b++)
    8582             :     {
    8583       11766 :         IndexDeleteCounts *group = blockgroups + b;
    8584       11766 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8585       11766 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8586             : 
    8587       11766 :         if (lastblock != -1 &&
    8588        7852 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8589        6694 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8590             :             break;
    8591             : 
    8592        8356 :         nblocksfavorable++;
    8593        8356 :         lastblock = block;
    8594             :     }
    8595             : 
    8596             :     /* Always indicate that there is at least 1 favorable block */
    8597             :     Assert(nblocksfavorable >= 1);
    8598             : 
    8599        3914 :     return nblocksfavorable;
    8600             : }
    8601             : 
    8602             : /*
    8603             :  * qsort comparison function for bottomup_sort_and_shrink()
    8604             :  */
    8605             : static int
    8606      416224 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8607             : {
    8608      416224 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8609      416224 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8610             : 
    8611             :     /*
    8612             :      * Most significant field is npromisingtids (which we invert the order of
    8613             :      * so as to sort in desc order).
    8614             :      *
    8615             :      * Caller should have already normalized npromisingtids fields into
    8616             :      * power-of-two values (buckets).
    8617             :      */
    8618      416224 :     if (group1->npromisingtids > group2->npromisingtids)
    8619       19536 :         return -1;
    8620      396688 :     if (group1->npromisingtids < group2->npromisingtids)
    8621       21832 :         return 1;
    8622             : 
    8623             :     /*
    8624             :      * Tiebreak: desc ntids sort order.
    8625             :      *
    8626             :      * We cannot expect power-of-two values for ntids fields.  We should
    8627             :      * behave as if they were already rounded up for us instead.
    8628             :      */
    8629      374856 :     if (group1->ntids != group2->ntids)
    8630             :     {
    8631      260502 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8632      260502 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8633             : 
    8634      260502 :         if (ntids1 > ntids2)
    8635       42264 :             return -1;
    8636      218238 :         if (ntids1 < ntids2)
    8637       54774 :             return 1;
    8638             :     }
    8639             : 
    8640             :     /*
    8641             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8642             :      * block in deltids array) order.
    8643             :      *
    8644             :      * This is equivalent to sorting in ascending heap block number order
    8645             :      * (among otherwise equal subsets of the array).  This approach allows us
    8646             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8647             :      * that the deltids array was sorted in ascending heap TID order when
    8648             :      * these offsets to the first TID from each heap block group were formed.)
    8649             :      */
    8650      277818 :     if (group1->ifirsttid > group2->ifirsttid)
    8651      138230 :         return 1;
    8652      139588 :     if (group1->ifirsttid < group2->ifirsttid)
    8653      139588 :         return -1;
    8654             : 
    8655           0 :     pg_unreachable();
    8656             : 
    8657             :     return 0;
    8658             : }
    8659             : 
    8660             : /*
    8661             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8662             :  *
    8663             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8664             :  * deletion.  The array should already be sorted in TID order when we're
    8665             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8666             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8667             :  * known to have the most "promising" TIDs.
    8668             :  *
    8669             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8670             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8671             :  * return.  This often means that deltids will be shrunk to a small fraction
    8672             :  * of its original size (we eliminate many heap blocks from consideration for
    8673             :  * caller up front).
    8674             :  *
    8675             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8676             :  * for a definition and full details.
    8677             :  */
    8678             : static int
    8679        3914 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8680             : {
    8681             :     IndexDeleteCounts *blockgroups;
    8682             :     TM_IndexDelete *reordereddeltids;
    8683        3914 :     BlockNumber curblock = InvalidBlockNumber;
    8684        3914 :     int         nblockgroups = 0;
    8685        3914 :     int         ncopied = 0;
    8686        3914 :     int         nblocksfavorable = 0;
    8687             : 
    8688             :     Assert(delstate->bottomup);
    8689             :     Assert(delstate->ndeltids > 0);
    8690             : 
    8691             :     /* Calculate per-heap-block count of TIDs */
    8692        3914 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8693     1835968 :     for (int i = 0; i < delstate->ndeltids; i++)
    8694             :     {
    8695     1832054 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8696     1832054 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8697     1832054 :         ItemPointer htid = &ideltid->tid;
    8698     1832054 :         bool        promising = istatus->promising;
    8699             : 
    8700     1832054 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8701             :         {
    8702             :             /* New block group */
    8703       79712 :             nblockgroups++;
    8704             : 
    8705             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8706             :                    !BlockNumberIsValid(curblock));
    8707             : 
    8708       79712 :             curblock = ItemPointerGetBlockNumber(htid);
    8709       79712 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8710       79712 :             blockgroups[nblockgroups - 1].ntids = 1;
    8711       79712 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8712             :         }
    8713             :         else
    8714             :         {
    8715     1752342 :             blockgroups[nblockgroups - 1].ntids++;
    8716             :         }
    8717             : 
    8718     1832054 :         if (promising)
    8719      236440 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8720             :     }
    8721             : 
    8722             :     /*
    8723             :      * We're about ready to sort block groups to determine the optimal order
    8724             :      * for visiting heap blocks.  But before we do, round the number of
    8725             :      * promising tuples for each block group up to the next power-of-two,
    8726             :      * unless it is very low (less than 4), in which case we round up to 4.
    8727             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8728             :      * of block groups that both have very low values.
    8729             :      *
    8730             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8731             :      * contains blocks that have _approximately_ the same number of promising
    8732             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8733             :      * in the total number of promising entries, so that the whole process can
    8734             :      * give a little weight to heapam factors (like heap block locality)
    8735             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8736             :      * would be foolish to interpret small differences in npromisingtids
    8737             :      * values as anything more than noise.
    8738             :      *
    8739             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8740             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8741             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8742             :      * only reason that we don't fix nhtids in the same way here too is that
    8743             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8744             :      * bucketization dynamically instead (in the sort comparator).
    8745             :      *
    8746             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8747             :      * heap locality/favorable blocks can significantly influence when and how
    8748             :      * heap blocks are accessed.
    8749             :      */
    8750       83626 :     for (int b = 0; b < nblockgroups; b++)
    8751             :     {
    8752       79712 :         IndexDeleteCounts *group = blockgroups + b;
    8753             : 
    8754             :         /* Better off falling back on nhtids with low npromisingtids */
    8755       79712 :         if (group->npromisingtids <= 4)
    8756       68816 :             group->npromisingtids = 4;
    8757             :         else
    8758       10896 :             group->npromisingtids =
    8759       10896 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8760             :     }
    8761             : 
    8762             :     /* Sort groups and rearrange caller's deltids array */
    8763        3914 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8764             :           bottomup_sort_and_shrink_cmp);
    8765        3914 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8766             : 
    8767        3914 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8768             :     /* Determine number of favorable blocks at the start of final deltids */
    8769        3914 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8770             :                                                  delstate->deltids);
    8771             : 
    8772       26176 :     for (int b = 0; b < nblockgroups; b++)
    8773             :     {
    8774       22262 :         IndexDeleteCounts *group = blockgroups + b;
    8775       22262 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8776             : 
    8777       22262 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8778       22262 :                sizeof(TM_IndexDelete) * group->ntids);
    8779       22262 :         ncopied += group->ntids;
    8780             :     }
    8781             : 
    8782             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8783        3914 :     memcpy(delstate->deltids, reordereddeltids,
    8784             :            sizeof(TM_IndexDelete) * ncopied);
    8785        3914 :     delstate->ndeltids = ncopied;
    8786             : 
    8787        3914 :     pfree(reordereddeltids);
    8788        3914 :     pfree(blockgroups);
    8789             : 
    8790        3914 :     return nblocksfavorable;
    8791             : }
    8792             : 
    8793             : /*
    8794             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8795             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8796             :  * corresponding visibility map block.  Both should have already been modified
    8797             :  * and dirtied.
    8798             :  *
    8799             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8800             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8801             :  *
    8802             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8803             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8804             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8805             :  * update the heap page's LSN.
    8806             :  */
    8807             : XLogRecPtr
    8808       89254 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8809             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8810             : {
    8811             :     xl_heap_visible xlrec;
    8812             :     XLogRecPtr  recptr;
    8813             :     uint8       flags;
    8814             : 
    8815             :     Assert(BufferIsValid(heap_buffer));
    8816             :     Assert(BufferIsValid(vm_buffer));
    8817             : 
    8818       89254 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8819       89254 :     xlrec.flags = vmflags;
    8820       89254 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8821         250 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8822       89254 :     XLogBeginInsert();
    8823       89254 :     XLogRegisterData(&xlrec, SizeOfHeapVisible);
    8824             : 
    8825       89254 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8826             : 
    8827       89254 :     flags = REGBUF_STANDARD;
    8828       89254 :     if (!XLogHintBitIsNeeded())
    8829        6788 :         flags |= REGBUF_NO_IMAGE;
    8830       89254 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8831             : 
    8832       89254 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8833             : 
    8834       89254 :     return recptr;
    8835             : }
    8836             : 
    8837             : /*
    8838             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8839             :  * have modified the buffer(s) and marked them dirty.
    8840             :  */
    8841             : static XLogRecPtr
    8842      583504 : log_heap_update(Relation reln, Buffer oldbuf,
    8843             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8844             :                 HeapTuple old_key_tuple,
    8845             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8846             : {
    8847             :     xl_heap_update xlrec;
    8848             :     xl_heap_header xlhdr;
    8849             :     xl_heap_header xlhdr_idx;
    8850             :     uint8       info;
    8851             :     uint16      prefix_suffix[2];
    8852      583504 :     uint16      prefixlen = 0,
    8853      583504 :                 suffixlen = 0;
    8854             :     XLogRecPtr  recptr;
    8855      583504 :     Page        page = BufferGetPage(newbuf);
    8856      583504 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8857             :     bool        init;
    8858             :     int         bufflags;
    8859             : 
    8860             :     /* Caller should not call me on a non-WAL-logged relation */
    8861             :     Assert(RelationNeedsWAL(reln));
    8862             : 
    8863      583504 :     XLogBeginInsert();
    8864             : 
    8865      583504 :     if (HeapTupleIsHeapOnly(newtup))
    8866      283376 :         info = XLOG_HEAP_HOT_UPDATE;
    8867             :     else
    8868      300128 :         info = XLOG_HEAP_UPDATE;
    8869             : 
    8870             :     /*
    8871             :      * If the old and new tuple are on the same page, we only need to log the
    8872             :      * parts of the new tuple that were changed.  That saves on the amount of
    8873             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8874             :      * the beginning and end of the tuple.  That's quick to check, and
    8875             :      * perfectly covers the common case that only one field is updated.
    8876             :      *
    8877             :      * We could do this even if the old and new tuple are on different pages,
    8878             :      * but only if we don't make a full-page image of the old page, which is
    8879             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8880             :      * some reason, it would allow the corruption to propagate the new page,
    8881             :      * so it seems best to avoid.  Under the general assumption that most
    8882             :      * updates tend to create the new tuple version on the same page, there
    8883             :      * isn't much to be gained by doing this across pages anyway.
    8884             :      *
    8885             :      * Skip this if we're taking a full-page image of the new page, as we
    8886             :      * don't include the new tuple in the WAL record in that case.  Also
    8887             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8888             :      * read the new tuple in whole from the WAL record alone.
    8889             :      */
    8890      583504 :     if (oldbuf == newbuf && !need_tuple_data &&
    8891      283216 :         !XLogCheckBufferNeedsBackup(newbuf))
    8892             :     {
    8893      282048 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8894      282048 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8895      282048 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8896      282048 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8897             : 
    8898             :         /* Check for common prefix between old and new tuple */
    8899    23318950 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8900             :         {
    8901    23268302 :             if (newp[prefixlen] != oldp[prefixlen])
    8902      231400 :                 break;
    8903             :         }
    8904             : 
    8905             :         /*
    8906             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8907             :          * at least 3 bytes or there's no point.
    8908             :          */
    8909      282048 :         if (prefixlen < 3)
    8910       44166 :             prefixlen = 0;
    8911             : 
    8912             :         /* Same for suffix */
    8913     9071456 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8914             :         {
    8915     9020320 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8916      230912 :                 break;
    8917             :         }
    8918      282048 :         if (suffixlen < 3)
    8919       69906 :             suffixlen = 0;
    8920             :     }
    8921             : 
    8922             :     /* Prepare main WAL data chain */
    8923      583504 :     xlrec.flags = 0;
    8924      583504 :     if (all_visible_cleared)
    8925        3050 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8926      583504 :     if (new_all_visible_cleared)
    8927        1536 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8928      583504 :     if (prefixlen > 0)
    8929      237882 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8930      583504 :     if (suffixlen > 0)
    8931      212142 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8932      583504 :     if (need_tuple_data)
    8933             :     {
    8934       94050 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8935       94050 :         if (old_key_tuple)
    8936             :         {
    8937         290 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8938         128 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8939             :             else
    8940         162 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8941             :         }
    8942             :     }
    8943             : 
    8944             :     /* If new tuple is the single and first tuple on page... */
    8945      590346 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8946        6842 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8947             :     {
    8948        6514 :         info |= XLOG_HEAP_INIT_PAGE;
    8949        6514 :         init = true;
    8950             :     }
    8951             :     else
    8952      576990 :         init = false;
    8953             : 
    8954             :     /* Prepare WAL data for the old page */
    8955      583504 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8956      583504 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8957     1167008 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8958      583504 :                                               oldtup->t_data->t_infomask2);
    8959             : 
    8960             :     /* Prepare WAL data for the new page */
    8961      583504 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8962      583504 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8963             : 
    8964      583504 :     bufflags = REGBUF_STANDARD;
    8965      583504 :     if (init)
    8966        6514 :         bufflags |= REGBUF_WILL_INIT;
    8967      583504 :     if (need_tuple_data)
    8968       94050 :         bufflags |= REGBUF_KEEP_DATA;
    8969             : 
    8970      583504 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8971      583504 :     if (oldbuf != newbuf)
    8972      276398 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8973             : 
    8974      583504 :     XLogRegisterData(&xlrec, SizeOfHeapUpdate);
    8975             : 
    8976             :     /*
    8977             :      * Prepare WAL data for the new tuple.
    8978             :      */
    8979      583504 :     if (prefixlen > 0 || suffixlen > 0)
    8980             :     {
    8981      281130 :         if (prefixlen > 0 && suffixlen > 0)
    8982             :         {
    8983      168894 :             prefix_suffix[0] = prefixlen;
    8984      168894 :             prefix_suffix[1] = suffixlen;
    8985      168894 :             XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
    8986             :         }
    8987      112236 :         else if (prefixlen > 0)
    8988             :         {
    8989       68988 :             XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
    8990             :         }
    8991             :         else
    8992             :         {
    8993       43248 :             XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
    8994             :         }
    8995             :     }
    8996             : 
    8997      583504 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    8998      583504 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    8999      583504 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    9000             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    9001             : 
    9002             :     /*
    9003             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    9004             :      *
    9005             :      * The 'data' doesn't include the common prefix or suffix.
    9006             :      */
    9007      583504 :     XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    9008      583504 :     if (prefixlen == 0)
    9009             :     {
    9010      345622 :         XLogRegisterBufData(0,
    9011      345622 :                             (char *) newtup->t_data + SizeofHeapTupleHeader,
    9012      345622 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    9013             :     }
    9014             :     else
    9015             :     {
    9016             :         /*
    9017             :          * Have to write the null bitmap and data after the common prefix as
    9018             :          * two separate rdata entries.
    9019             :          */
    9020             :         /* bitmap [+ padding] [+ oid] */
    9021      237882 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    9022             :         {
    9023      237882 :             XLogRegisterBufData(0,
    9024      237882 :                                 (char *) newtup->t_data + SizeofHeapTupleHeader,
    9025      237882 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    9026             :         }
    9027             : 
    9028             :         /* data after common prefix */
    9029      237882 :         XLogRegisterBufData(0,
    9030      237882 :                             (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
    9031      237882 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    9032             :     }
    9033             : 
    9034             :     /* We need to log a tuple identity */
    9035      583504 :     if (need_tuple_data && old_key_tuple)
    9036             :     {
    9037             :         /* don't really need this, but its more comfy to decode */
    9038         290 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    9039         290 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    9040         290 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    9041             : 
    9042         290 :         XLogRegisterData(&xlhdr_idx, SizeOfHeapHeader);
    9043             : 
    9044             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    9045         290 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    9046         290 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    9047             :     }
    9048             : 
    9049             :     /* filtering by origin on a row level is much more efficient */
    9050      583504 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    9051             : 
    9052      583504 :     recptr = XLogInsert(RM_HEAP_ID, info);
    9053             : 
    9054      583504 :     return recptr;
    9055             : }
    9056             : 
    9057             : /*
    9058             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    9059             :  *
    9060             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    9061             :  * tuples.
    9062             :  */
    9063             : static XLogRecPtr
    9064       48678 : log_heap_new_cid(Relation relation, HeapTuple tup)
    9065             : {
    9066             :     xl_heap_new_cid xlrec;
    9067             : 
    9068             :     XLogRecPtr  recptr;
    9069       48678 :     HeapTupleHeader hdr = tup->t_data;
    9070             : 
    9071             :     Assert(ItemPointerIsValid(&tup->t_self));
    9072             :     Assert(tup->t_tableOid != InvalidOid);
    9073             : 
    9074       48678 :     xlrec.top_xid = GetTopTransactionId();
    9075       48678 :     xlrec.target_locator = relation->rd_locator;
    9076       48678 :     xlrec.target_tid = tup->t_self;
    9077             : 
    9078             :     /*
    9079             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    9080             :      * combo CID, set cmin and cmax.
    9081             :      */
    9082       48678 :     if (hdr->t_infomask & HEAP_COMBOCID)
    9083             :     {
    9084             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    9085             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    9086        4040 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    9087        4040 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    9088        4040 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    9089             :     }
    9090             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    9091             :     else
    9092             :     {
    9093             :         /*
    9094             :          * Tuple inserted.
    9095             :          *
    9096             :          * We need to check for LOCK ONLY because multixacts might be
    9097             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    9098             :          * which case there will be an xmax, although the tuple just got
    9099             :          * inserted.
    9100             :          */
    9101       58170 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    9102       13532 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    9103             :         {
    9104       31108 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    9105       31108 :             xlrec.cmax = InvalidCommandId;
    9106             :         }
    9107             :         /* Tuple from a different tx updated or deleted. */
    9108             :         else
    9109             :         {
    9110       13530 :             xlrec.cmin = InvalidCommandId;
    9111       13530 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    9112             :         }
    9113       44638 :         xlrec.combocid = InvalidCommandId;
    9114             :     }
    9115             : 
    9116             :     /*
    9117             :      * Note that we don't need to register the buffer here, because this
    9118             :      * operation does not modify the page. The insert/update/delete that
    9119             :      * called us certainly did, but that's WAL-logged separately.
    9120             :      */
    9121       48678 :     XLogBeginInsert();
    9122       48678 :     XLogRegisterData(&xlrec, SizeOfHeapNewCid);
    9123             : 
    9124             :     /* will be looked at irrespective of origin */
    9125             : 
    9126       48678 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    9127             : 
    9128       48678 :     return recptr;
    9129             : }
    9130             : 
    9131             : /*
    9132             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    9133             :  * the old tuple in an UPDATE or DELETE.
    9134             :  *
    9135             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    9136             :  * key defined.
    9137             :  *
    9138             :  * Pass key_required true if any replica identity columns changed value, or if
    9139             :  * any of them have any external data.  Delete must always pass true.
    9140             :  *
    9141             :  * *copy is set to true if the returned tuple is a modified copy rather than
    9142             :  * the same tuple that was passed in.
    9143             :  */
    9144             : static HeapTuple
    9145     3581056 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9146             :                        bool *copy)
    9147             : {
    9148     3581056 :     TupleDesc   desc = RelationGetDescr(relation);
    9149     3581056 :     char        replident = relation->rd_rel->relreplident;
    9150             :     Bitmapset  *idattrs;
    9151             :     HeapTuple   key_tuple;
    9152             :     bool        nulls[MaxHeapAttributeNumber];
    9153             :     Datum       values[MaxHeapAttributeNumber];
    9154             : 
    9155     3581056 :     *copy = false;
    9156             : 
    9157     3581056 :     if (!RelationIsLogicallyLogged(relation))
    9158     3380466 :         return NULL;
    9159             : 
    9160      200590 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9161         462 :         return NULL;
    9162             : 
    9163      200128 :     if (replident == REPLICA_IDENTITY_FULL)
    9164             :     {
    9165             :         /*
    9166             :          * When logging the entire old tuple, it very well could contain
    9167             :          * toasted columns. If so, force them to be inlined.
    9168             :          */
    9169         388 :         if (HeapTupleHasExternal(tp))
    9170             :         {
    9171           8 :             *copy = true;
    9172           8 :             tp = toast_flatten_tuple(tp, desc);
    9173             :         }
    9174         388 :         return tp;
    9175             :     }
    9176             : 
    9177             :     /* if the key isn't required and we're only logging the key, we're done */
    9178      199740 :     if (!key_required)
    9179       93760 :         return NULL;
    9180             : 
    9181             :     /* find out the replica identity columns */
    9182      105980 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9183             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9184             : 
    9185             :     /*
    9186             :      * If there's no defined replica identity columns, treat as !key_required.
    9187             :      * (This case should not be reachable from heap_update, since that should
    9188             :      * calculate key_required accurately.  But heap_delete just passes
    9189             :      * constant true for key_required, so we can hit this case in deletes.)
    9190             :      */
    9191      105980 :     if (bms_is_empty(idattrs))
    9192       12042 :         return NULL;
    9193             : 
    9194             :     /*
    9195             :      * Construct a new tuple containing only the replica identity columns,
    9196             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9197             :      * identity columns aren't null.
    9198             :      */
    9199       93938 :     heap_deform_tuple(tp, desc, values, nulls);
    9200             : 
    9201      301802 :     for (int i = 0; i < desc->natts; i++)
    9202             :     {
    9203      207864 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9204             :                           idattrs))
    9205             :             Assert(!nulls[i]);
    9206             :         else
    9207      113902 :             nulls[i] = true;
    9208             :     }
    9209             : 
    9210       93938 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9211       93938 :     *copy = true;
    9212             : 
    9213       93938 :     bms_free(idattrs);
    9214             : 
    9215             :     /*
    9216             :      * If the tuple, which by here only contains indexed columns, still has
    9217             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9218             :      * since there's limits on the size of indexed columns, so we don't
    9219             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9220             :      * the indexed columns, even if it would be more efficient.
    9221             :      */
    9222       93938 :     if (HeapTupleHasExternal(key_tuple))
    9223             :     {
    9224           8 :         HeapTuple   oldtup = key_tuple;
    9225             : 
    9226           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9227           8 :         heap_freetuple(oldtup);
    9228             :     }
    9229             : 
    9230       93938 :     return key_tuple;
    9231             : }
    9232             : 
    9233             : /*
    9234             :  * HeapCheckForSerializableConflictOut
    9235             :  *      We are reading a tuple.  If it's not visible, there may be a
    9236             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9237             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9238             :  *
    9239             :  * We will determine the top level xid of the writing transaction with which
    9240             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9241             :  * for overlap with our own transaction.
    9242             :  *
    9243             :  * This function should be called just about anywhere in heapam.c where a
    9244             :  * tuple has been read. The caller must hold at least a shared lock on the
    9245             :  * buffer, because this function might set hint bits on the tuple. There is
    9246             :  * currently no known reason to call this function from an index AM.
    9247             :  */
    9248             : void
    9249    63136180 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9250             :                                     HeapTuple tuple, Buffer buffer,
    9251             :                                     Snapshot snapshot)
    9252             : {
    9253             :     TransactionId xid;
    9254             :     HTSV_Result htsvResult;
    9255             : 
    9256    63136180 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9257    63085510 :         return;
    9258             : 
    9259             :     /*
    9260             :      * Check to see whether the tuple has been written to by a concurrent
    9261             :      * transaction, either to create it not visible to us, or to delete it
    9262             :      * while it is visible to us.  The "visible" bool indicates whether the
    9263             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9264             :      * is going on with it.
    9265             :      *
    9266             :      * In the event of a concurrently inserted tuple that also happens to have
    9267             :      * been concurrently updated (by a separate transaction), the xmin of the
    9268             :      * tuple will be used -- not the updater's xid.
    9269             :      */
    9270       50670 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9271       50670 :     switch (htsvResult)
    9272             :     {
    9273       49066 :         case HEAPTUPLE_LIVE:
    9274       49066 :             if (visible)
    9275       49040 :                 return;
    9276          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9277          26 :             break;
    9278         704 :         case HEAPTUPLE_RECENTLY_DEAD:
    9279             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9280         704 :             if (visible)
    9281         562 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9282             :             else
    9283         142 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9284             : 
    9285         704 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9286             :             {
    9287             :                 /* This is like the HEAPTUPLE_DEAD case */
    9288             :                 Assert(!visible);
    9289         124 :                 return;
    9290             :             }
    9291         580 :             break;
    9292         652 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9293         652 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9294         652 :             break;
    9295         248 :         case HEAPTUPLE_DEAD:
    9296             :             Assert(!visible);
    9297         248 :             return;
    9298           0 :         default:
    9299             : 
    9300             :             /*
    9301             :              * The only way to get to this default clause is if a new value is
    9302             :              * added to the enum type without adding it to this switch
    9303             :              * statement.  That's a bug, so elog.
    9304             :              */
    9305           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9306             : 
    9307             :             /*
    9308             :              * In spite of having all enum values covered and calling elog on
    9309             :              * this default, some compilers think this is a code path which
    9310             :              * allows xid to be used below without initialization. Silence
    9311             :              * that warning.
    9312             :              */
    9313             :             xid = InvalidTransactionId;
    9314             :     }
    9315             : 
    9316             :     Assert(TransactionIdIsValid(xid));
    9317             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9318             : 
    9319             :     /*
    9320             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9321             :      * if it's our own xid.
    9322             :      */
    9323        1258 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9324         124 :         return;
    9325        1134 :     xid = SubTransGetTopmostTransaction(xid);
    9326        1134 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9327           0 :         return;
    9328             : 
    9329        1134 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9330             : }

Generated by: LCOV version 1.16