LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2485 2711 91.7 %
Date: 2025-04-24 12:15:10 Functions: 81 81 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/injection_point.h"
      53             : #include "utils/inval.h"
      54             : #include "utils/spccache.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : 
      58             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      59             :                                      TransactionId xid, CommandId cid, int options);
      60             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      61             :                                   Buffer newbuf, HeapTuple oldtup,
      62             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      63             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      64             : #ifdef USE_ASSERT_CHECKING
      65             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      66             :                                                  ItemPointer otid,
      67             :                                                  HeapTuple newtup);
      68             : static void check_inplace_rel_lock(HeapTuple oldtup);
      69             : #endif
      70             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      71             :                                            Bitmapset *interesting_cols,
      72             :                                            Bitmapset *external_cols,
      73             :                                            HeapTuple oldtup, HeapTuple newtup,
      74             :                                            bool *has_external);
      75             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      76             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      77             :                                  bool *have_tuple_lock);
      78             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      79             :                                                    BlockNumber block,
      80             :                                                    ScanDirection dir);
      81             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      82             :                                                         ScanDirection dir);
      83             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      84             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      85             :                                       LockTupleMode mode, bool is_update,
      86             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      87             :                                       uint16 *result_infomask2);
      88             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      89             :                                          ItemPointer ctid, TransactionId xid,
      90             :                                          LockTupleMode mode);
      91             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      92             :                                    uint16 *new_infomask2);
      93             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      94             :                                              uint16 t_infomask);
      95             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      96             :                                     LockTupleMode lockmode, bool *current_is_member);
      97             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      98             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      99             :                             int *remaining);
     100             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
     101             :                                        uint16 infomask, Relation rel, int *remaining,
     102             :                                        bool logLockFailure);
     103             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     104             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     105             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     106             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     107             :                                         bool *copy);
     108             : 
     109             : 
     110             : /*
     111             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     112             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     113             :  * update them).  This table (and the macros below) helps us determine the
     114             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     115             :  * tuple lock strength.
     116             :  *
     117             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     118             :  *
     119             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     120             :  * instead.
     121             :  */
     122             : static const struct
     123             : {
     124             :     LOCKMODE    hwlock;
     125             :     int         lockstatus;
     126             :     int         updstatus;
     127             : }
     128             : 
     129             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     130             : {
     131             :     {                           /* LockTupleKeyShare */
     132             :         AccessShareLock,
     133             :         MultiXactStatusForKeyShare,
     134             :         -1                      /* KeyShare does not allow updating tuples */
     135             :     },
     136             :     {                           /* LockTupleShare */
     137             :         RowShareLock,
     138             :         MultiXactStatusForShare,
     139             :         -1                      /* Share does not allow updating tuples */
     140             :     },
     141             :     {                           /* LockTupleNoKeyExclusive */
     142             :         ExclusiveLock,
     143             :         MultiXactStatusForNoKeyUpdate,
     144             :         MultiXactStatusNoKeyUpdate
     145             :     },
     146             :     {                           /* LockTupleExclusive */
     147             :         AccessExclusiveLock,
     148             :         MultiXactStatusForUpdate,
     149             :         MultiXactStatusUpdate
     150             :     }
     151             : };
     152             : 
     153             : /* Get the LOCKMODE for a given MultiXactStatus */
     154             : #define LOCKMODE_from_mxstatus(status) \
     155             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     156             : 
     157             : /*
     158             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     159             :  * This is more readable than having every caller translate it to lock.h's
     160             :  * LOCKMODE.
     161             :  */
     162             : #define LockTupleTuplock(rel, tup, mode) \
     163             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     164             : #define UnlockTupleTuplock(rel, tup, mode) \
     165             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     166             : #define ConditionalLockTupleTuplock(rel, tup, mode, log) \
     167             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock, (log))
     168             : 
     169             : #ifdef USE_PREFETCH
     170             : /*
     171             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     172             :  * structure to coordinate prefetching activity
     173             :  */
     174             : typedef struct
     175             : {
     176             :     BlockNumber cur_hblkno;
     177             :     int         next_item;
     178             :     int         ndeltids;
     179             :     TM_IndexDelete *deltids;
     180             : } IndexDeletePrefetchState;
     181             : #endif
     182             : 
     183             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     184             : #define BOTTOMUP_MAX_NBLOCKS            6
     185             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     186             : 
     187             : /*
     188             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     189             :  * must visit to help its bottom-up index deletion caller
     190             :  */
     191             : typedef struct IndexDeleteCounts
     192             : {
     193             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     194             :     int16       ntids;          /* Number of TIDs in group */
     195             :     int16       ifirsttid;      /* Offset to group's first deltid */
     196             : } IndexDeleteCounts;
     197             : 
     198             : /*
     199             :  * This table maps tuple lock strength values for each particular
     200             :  * MultiXactStatus value.
     201             :  */
     202             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     203             : {
     204             :     LockTupleKeyShare,          /* ForKeyShare */
     205             :     LockTupleShare,             /* ForShare */
     206             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     207             :     LockTupleExclusive,         /* ForUpdate */
     208             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     209             :     LockTupleExclusive          /* Update */
     210             : };
     211             : 
     212             : /* Get the LockTupleMode for a given MultiXactStatus */
     213             : #define TUPLOCK_from_mxstatus(status) \
     214             :             (MultiXactStatusLock[(status)])
     215             : 
     216             : /* ----------------------------------------------------------------
     217             :  *                       heap support routines
     218             :  * ----------------------------------------------------------------
     219             :  */
     220             : 
     221             : /*
     222             :  * Streaming read API callback for parallel sequential scans. Returns the next
     223             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     224             :  */
     225             : static BlockNumber
     226      201400 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     227             :                                     void *callback_private_data,
     228             :                                     void *per_buffer_data)
     229             : {
     230      201400 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     231             : 
     232             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     233             :     Assert(scan->rs_base.rs_parallel);
     234             : 
     235      201400 :     if (unlikely(!scan->rs_inited))
     236             :     {
     237             :         /* parallel scan */
     238        2818 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     239        2818 :                                                  scan->rs_parallelworkerdata,
     240        2818 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     241             : 
     242             :         /* may return InvalidBlockNumber if there are no more blocks */
     243        5636 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     244        2818 :                                                                     scan->rs_parallelworkerdata,
     245        2818 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     246        2818 :         scan->rs_inited = true;
     247             :     }
     248             :     else
     249             :     {
     250      198582 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     251      198582 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     252      198582 :                                                                     scan->rs_base.rs_parallel);
     253             :     }
     254             : 
     255      201400 :     return scan->rs_prefetch_block;
     256             : }
     257             : 
     258             : /*
     259             :  * Streaming read API callback for serial sequential and TID range scans.
     260             :  * Returns the next block the caller wants from the read stream or
     261             :  * InvalidBlockNumber when done.
     262             :  */
     263             : static BlockNumber
     264     7727386 : heap_scan_stream_read_next_serial(ReadStream *stream,
     265             :                                   void *callback_private_data,
     266             :                                   void *per_buffer_data)
     267             : {
     268     7727386 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     269             : 
     270     7727386 :     if (unlikely(!scan->rs_inited))
     271             :     {
     272     2245114 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     273     2245114 :         scan->rs_inited = true;
     274             :     }
     275             :     else
     276     5482272 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     277             :                                                            scan->rs_prefetch_block,
     278             :                                                            scan->rs_dir);
     279             : 
     280     7727386 :     return scan->rs_prefetch_block;
     281             : }
     282             : 
     283             : /*
     284             :  * Read stream API callback for bitmap heap scans.
     285             :  * Returns the next block the caller wants from the read stream or
     286             :  * InvalidBlockNumber when done.
     287             :  */
     288             : static BlockNumber
     289      425314 : bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data,
     290             :                             void *per_buffer_data)
     291             : {
     292      425314 :     TBMIterateResult *tbmres = per_buffer_data;
     293      425314 :     BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) private_data;
     294      425314 :     HeapScanDesc hscan = (HeapScanDesc) bscan;
     295      425314 :     TableScanDesc sscan = &hscan->rs_base;
     296             : 
     297             :     for (;;)
     298             :     {
     299      425314 :         CHECK_FOR_INTERRUPTS();
     300             : 
     301             :         /* no more entries in the bitmap */
     302      425314 :         if (!tbm_iterate(&sscan->st.rs_tbmiterator, tbmres))
     303       21078 :             return InvalidBlockNumber;
     304             : 
     305             :         /*
     306             :          * Ignore any claimed entries past what we think is the end of the
     307             :          * relation. It may have been extended after the start of our scan (we
     308             :          * only hold an AccessShareLock, and it could be inserts from this
     309             :          * backend).  We don't take this optimization in SERIALIZABLE
     310             :          * isolation though, as we need to examine all invisible tuples
     311             :          * reachable by the index.
     312             :          */
     313      404236 :         if (!IsolationIsSerializable() &&
     314      404030 :             tbmres->blockno >= hscan->rs_nblocks)
     315           0 :             continue;
     316             : 
     317      404236 :         return tbmres->blockno;
     318             :     }
     319             : 
     320             :     /* not reachable */
     321             :     Assert(false);
     322             : }
     323             : 
     324             : /* ----------------
     325             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     326             :  * ----------------
     327             :  */
     328             : static void
     329     2288152 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     330             : {
     331     2288152 :     ParallelBlockTableScanDesc bpscan = NULL;
     332             :     bool        allow_strat;
     333             :     bool        allow_sync;
     334             : 
     335             :     /*
     336             :      * Determine the number of blocks we have to scan.
     337             :      *
     338             :      * It is sufficient to do this once at scan start, since any tuples added
     339             :      * while the scan is in progress will be invisible to my snapshot anyway.
     340             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     341             :      * guarantee to return tuples added after scan start anyway, since they
     342             :      * might go into pages we already scanned.  To guarantee consistent
     343             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     344             :      * lock that ensures the interesting tuple(s) won't change.)
     345             :      */
     346     2288152 :     if (scan->rs_base.rs_parallel != NULL)
     347             :     {
     348        4020 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     349        4020 :         scan->rs_nblocks = bpscan->phs_nblocks;
     350             :     }
     351             :     else
     352     2284132 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     353             : 
     354             :     /*
     355             :      * If the table is large relative to NBuffers, use a bulk-read access
     356             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     357             :      * the thresholds for these features could be different, we make them the
     358             :      * same so that there are only two behaviors to tune rather than four.
     359             :      * (However, some callers need to be able to disable one or both of these
     360             :      * behaviors, independently of the size of the table; also there is a GUC
     361             :      * variable that can disable synchronized scanning.)
     362             :      *
     363             :      * Note that table_block_parallelscan_initialize has a very similar test;
     364             :      * if you change this, consider changing that one, too.
     365             :      */
     366     2288148 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     367     2273886 :         scan->rs_nblocks > NBuffers / 4)
     368             :     {
     369       24722 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     370       24722 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     371             :     }
     372             :     else
     373     2263426 :         allow_strat = allow_sync = false;
     374             : 
     375     2288148 :     if (allow_strat)
     376             :     {
     377             :         /* During a rescan, keep the previous strategy object. */
     378       22190 :         if (scan->rs_strategy == NULL)
     379       21908 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     380             :     }
     381             :     else
     382             :     {
     383     2265958 :         if (scan->rs_strategy != NULL)
     384           0 :             FreeAccessStrategy(scan->rs_strategy);
     385     2265958 :         scan->rs_strategy = NULL;
     386             :     }
     387             : 
     388     2288148 :     if (scan->rs_base.rs_parallel != NULL)
     389             :     {
     390             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     391        4020 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     392           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     393             :         else
     394        4016 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     395             :     }
     396     2284128 :     else if (keep_startblock)
     397             :     {
     398             :         /*
     399             :          * When rescanning, we want to keep the previous startblock setting,
     400             :          * so that rewinding a cursor doesn't generate surprising results.
     401             :          * Reset the active syncscan setting, though.
     402             :          */
     403     1541176 :         if (allow_sync && synchronize_seqscans)
     404          40 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     405             :         else
     406     1541136 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     407             :     }
     408      742952 :     else if (allow_sync && synchronize_seqscans)
     409             :     {
     410         118 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     411         118 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     412             :     }
     413             :     else
     414             :     {
     415      742834 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     416      742834 :         scan->rs_startblock = 0;
     417             :     }
     418             : 
     419     2288148 :     scan->rs_numblocks = InvalidBlockNumber;
     420     2288148 :     scan->rs_inited = false;
     421     2288148 :     scan->rs_ctup.t_data = NULL;
     422     2288148 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     423     2288148 :     scan->rs_cbuf = InvalidBuffer;
     424     2288148 :     scan->rs_cblock = InvalidBlockNumber;
     425     2288148 :     scan->rs_ntuples = 0;
     426     2288148 :     scan->rs_cindex = 0;
     427             : 
     428             :     /*
     429             :      * Initialize to ForwardScanDirection because it is most common and
     430             :      * because heap scans go forward before going backward (e.g. CURSORs).
     431             :      */
     432     2288148 :     scan->rs_dir = ForwardScanDirection;
     433     2288148 :     scan->rs_prefetch_block = InvalidBlockNumber;
     434             : 
     435             :     /* page-at-a-time fields are always invalid when not rs_inited */
     436             : 
     437             :     /*
     438             :      * copy the scan key, if appropriate
     439             :      */
     440     2288148 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     441      420506 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     442             : 
     443             :     /*
     444             :      * Currently, we only have a stats counter for sequential heap scans (but
     445             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     446             :      * and for sample scans we update stats for tuple fetches).
     447             :      */
     448     2288148 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     449     2247460 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     450     2288148 : }
     451             : 
     452             : /*
     453             :  * heap_setscanlimits - restrict range of a heapscan
     454             :  *
     455             :  * startBlk is the page to start at
     456             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     457             :  */
     458             : void
     459        5620 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     460             : {
     461        5620 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     462             : 
     463             :     Assert(!scan->rs_inited);    /* else too late to change */
     464             :     /* else rs_startblock is significant */
     465             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     466             : 
     467             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     468             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     469             : 
     470        5620 :     scan->rs_startblock = startBlk;
     471        5620 :     scan->rs_numblocks = numBlks;
     472        5620 : }
     473             : 
     474             : /*
     475             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     476             :  * multiple times, with constant arguments for all_visible,
     477             :  * check_serializable.
     478             :  */
     479             : pg_attribute_always_inline
     480             : static int
     481     5442976 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     482             :                     Page page, Buffer buffer,
     483             :                     BlockNumber block, int lines,
     484             :                     bool all_visible, bool check_serializable)
     485             : {
     486     5442976 :     int         ntup = 0;
     487             :     OffsetNumber lineoff;
     488             : 
     489   276531432 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     490             :     {
     491   271088472 :         ItemId      lpp = PageGetItemId(page, lineoff);
     492             :         HeapTupleData loctup;
     493             :         bool        valid;
     494             : 
     495   271088472 :         if (!ItemIdIsNormal(lpp))
     496    58733582 :             continue;
     497             : 
     498   212354890 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     499   212354890 :         loctup.t_len = ItemIdGetLength(lpp);
     500   212354890 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     501   212354890 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     502             : 
     503   212354890 :         if (all_visible)
     504    81193926 :             valid = true;
     505             :         else
     506   131160964 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     507             : 
     508   212354890 :         if (check_serializable)
     509        2810 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     510             :                                                 &loctup, buffer, snapshot);
     511             : 
     512   212354874 :         if (valid)
     513             :         {
     514   196209290 :             scan->rs_vistuples[ntup] = lineoff;
     515   196209290 :             ntup++;
     516             :         }
     517             :     }
     518             : 
     519             :     Assert(ntup <= MaxHeapTuplesPerPage);
     520             : 
     521     5442960 :     return ntup;
     522             : }
     523             : 
     524             : /*
     525             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     526             :  *
     527             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     528             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     529             :  */
     530             : void
     531     5442976 : heap_prepare_pagescan(TableScanDesc sscan)
     532             : {
     533     5442976 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     534     5442976 :     Buffer      buffer = scan->rs_cbuf;
     535     5442976 :     BlockNumber block = scan->rs_cblock;
     536             :     Snapshot    snapshot;
     537             :     Page        page;
     538             :     int         lines;
     539             :     bool        all_visible;
     540             :     bool        check_serializable;
     541             : 
     542             :     Assert(BufferGetBlockNumber(buffer) == block);
     543             : 
     544             :     /* ensure we're not accidentally being used when not in pagemode */
     545             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     546     5442976 :     snapshot = scan->rs_base.rs_snapshot;
     547             : 
     548             :     /*
     549             :      * Prune and repair fragmentation for the whole page, if possible.
     550             :      */
     551     5442976 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     552             : 
     553             :     /*
     554             :      * We must hold share lock on the buffer content while examining tuple
     555             :      * visibility.  Afterwards, however, the tuples we have found to be
     556             :      * visible are guaranteed good as long as we hold the buffer pin.
     557             :      */
     558     5442976 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     559             : 
     560     5442976 :     page = BufferGetPage(buffer);
     561     5442976 :     lines = PageGetMaxOffsetNumber(page);
     562             : 
     563             :     /*
     564             :      * If the all-visible flag indicates that all tuples on the page are
     565             :      * visible to everyone, we can skip the per-tuple visibility tests.
     566             :      *
     567             :      * Note: In hot standby, a tuple that's already visible to all
     568             :      * transactions on the primary might still be invisible to a read-only
     569             :      * transaction in the standby. We partly handle this problem by tracking
     570             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     571             :      * page all-visible on the primary and WAL log that along with the
     572             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     573             :      * all transactions that can potentially may not see one or more tuples on
     574             :      * the page. That's how index-only scans work fine in hot standby. A
     575             :      * crucial difference between index-only scans and heap scans is that the
     576             :      * index-only scan completely relies on the visibility map where as heap
     577             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     578             :      * the page-level flag can be trusted in the same way, because it might
     579             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     580             :      * full page write. Until we can prove that beyond doubt, let's check each
     581             :      * tuple for visibility the hard way.
     582             :      */
     583     5442976 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     584             :     check_serializable =
     585     5442976 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     586             : 
     587             :     /*
     588             :      * We call page_collect_tuples() with constant arguments, to get the
     589             :      * compiler to constant fold the constant arguments. Separate calls with
     590             :      * constant arguments, rather than variables, are needed on several
     591             :      * compilers to actually perform constant folding.
     592             :      */
     593     5442976 :     if (likely(all_visible))
     594             :     {
     595     1884256 :         if (likely(!check_serializable))
     596     1884256 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     597             :                                                    block, lines, true, false);
     598             :         else
     599           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     600             :                                                    block, lines, true, true);
     601             :     }
     602             :     else
     603             :     {
     604     3558720 :         if (likely(!check_serializable))
     605     3557482 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     606             :                                                    block, lines, false, false);
     607             :         else
     608        1238 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     609             :                                                    block, lines, false, true);
     610             :     }
     611             : 
     612     5442960 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     613     5442960 : }
     614             : 
     615             : /*
     616             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     617             :  *
     618             :  * Read the next block of the scan relation from the read stream and save it
     619             :  * in the scan descriptor.  It is already pinned.
     620             :  */
     621             : static inline void
     622     7570796 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     623             : {
     624             :     Assert(scan->rs_read_stream);
     625             : 
     626             :     /* release previous scan buffer, if any */
     627     7570796 :     if (BufferIsValid(scan->rs_cbuf))
     628             :     {
     629     5322862 :         ReleaseBuffer(scan->rs_cbuf);
     630     5322862 :         scan->rs_cbuf = InvalidBuffer;
     631             :     }
     632             : 
     633             :     /*
     634             :      * Be sure to check for interrupts at least once per page.  Checks at
     635             :      * higher code levels won't be able to stop a seqscan that encounters many
     636             :      * pages' worth of consecutive dead tuples.
     637             :      */
     638     7570796 :     CHECK_FOR_INTERRUPTS();
     639             : 
     640             :     /*
     641             :      * If the scan direction is changing, reset the prefetch block to the
     642             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     643             :      * between the prefetch block and the current block again before
     644             :      * prefetching blocks in the new, correct scan direction.
     645             :      */
     646     7570790 :     if (unlikely(scan->rs_dir != dir))
     647             :     {
     648         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     649         154 :         read_stream_reset(scan->rs_read_stream);
     650             :     }
     651             : 
     652     7570790 :     scan->rs_dir = dir;
     653             : 
     654     7570790 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     655     7570740 :     if (BufferIsValid(scan->rs_cbuf))
     656     5637310 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     657     7570740 : }
     658             : 
     659             : /*
     660             :  * heapgettup_initial_block - return the first BlockNumber to scan
     661             :  *
     662             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     663             :  * occur with empty tables and in parallel scans when parallel workers get all
     664             :  * of the pages before we can get a chance to get our first page.
     665             :  */
     666             : static pg_noinline BlockNumber
     667     2245114 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     668             : {
     669             :     Assert(!scan->rs_inited);
     670             :     Assert(scan->rs_base.rs_parallel == NULL);
     671             : 
     672             :     /* When there are no pages to scan, return InvalidBlockNumber */
     673     2245114 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     674     1252190 :         return InvalidBlockNumber;
     675             : 
     676      992924 :     if (ScanDirectionIsForward(dir))
     677             :     {
     678      992860 :         return scan->rs_startblock;
     679             :     }
     680             :     else
     681             :     {
     682             :         /*
     683             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     684             :          * very likely anyone else is doing the same thing at the same time,
     685             :          * and much more likely that we'll just bollix things for forward
     686             :          * scanners.
     687             :          */
     688          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     689             : 
     690             :         /*
     691             :          * Start from last page of the scan.  Ensure we take into account
     692             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     693             :          */
     694          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     695           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     696             : 
     697          58 :         if (scan->rs_startblock > 0)
     698           0 :             return scan->rs_startblock - 1;
     699             : 
     700          58 :         return scan->rs_nblocks - 1;
     701             :     }
     702             : }
     703             : 
     704             : 
     705             : /*
     706             :  * heapgettup_start_page - helper function for heapgettup()
     707             :  *
     708             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     709             :  * to the number of tuples on this page.  Also set *lineoff to the first
     710             :  * offset to scan with forward scans getting the first offset and backward
     711             :  * getting the final offset on the page.
     712             :  */
     713             : static Page
     714      202888 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     715             :                       OffsetNumber *lineoff)
     716             : {
     717             :     Page        page;
     718             : 
     719             :     Assert(scan->rs_inited);
     720             :     Assert(BufferIsValid(scan->rs_cbuf));
     721             : 
     722             :     /* Caller is responsible for ensuring buffer is locked if needed */
     723      202888 :     page = BufferGetPage(scan->rs_cbuf);
     724             : 
     725      202888 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     726             : 
     727      202888 :     if (ScanDirectionIsForward(dir))
     728      202888 :         *lineoff = FirstOffsetNumber;
     729             :     else
     730           0 :         *lineoff = (OffsetNumber) (*linesleft);
     731             : 
     732             :     /* lineoff now references the physically previous or next tid */
     733      202888 :     return page;
     734             : }
     735             : 
     736             : 
     737             : /*
     738             :  * heapgettup_continue_page - helper function for heapgettup()
     739             :  *
     740             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     741             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     742             :  * the next offset to scan according to the ScanDirection in 'dir'.
     743             :  */
     744             : static inline Page
     745    16461302 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     746             :                          OffsetNumber *lineoff)
     747             : {
     748             :     Page        page;
     749             : 
     750             :     Assert(scan->rs_inited);
     751             :     Assert(BufferIsValid(scan->rs_cbuf));
     752             : 
     753             :     /* Caller is responsible for ensuring buffer is locked if needed */
     754    16461302 :     page = BufferGetPage(scan->rs_cbuf);
     755             : 
     756    16461302 :     if (ScanDirectionIsForward(dir))
     757             :     {
     758    16461302 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     759    16461302 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     760             :     }
     761             :     else
     762             :     {
     763             :         /*
     764             :          * The previous returned tuple may have been vacuumed since the
     765             :          * previous scan when we use a non-MVCC snapshot, so we must
     766             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     767             :          */
     768           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     769           0 :         *linesleft = *lineoff;
     770             :     }
     771             : 
     772             :     /* lineoff now references the physically previous or next tid */
     773    16461302 :     return page;
     774             : }
     775             : 
     776             : /*
     777             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     778             :  *
     779             :  * Given the current block number, the scan direction, and various information
     780             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     781             :  * and return it.  If there are no further blocks to scan, return
     782             :  * InvalidBlockNumber to indicate this fact to the caller.
     783             :  *
     784             :  * This should not be called to determine the initial block number -- only for
     785             :  * subsequent blocks.
     786             :  *
     787             :  * This also adjusts rs_numblocks when a limit has been imposed by
     788             :  * heap_setscanlimits().
     789             :  */
     790             : static inline BlockNumber
     791     5482272 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     792             : {
     793             :     Assert(scan->rs_base.rs_parallel == NULL);
     794             : 
     795     5482272 :     if (likely(ScanDirectionIsForward(dir)))
     796             :     {
     797     5482154 :         block++;
     798             : 
     799             :         /* wrap back to the start of the heap */
     800     5482154 :         if (block >= scan->rs_nblocks)
     801      801642 :             block = 0;
     802             : 
     803             :         /*
     804             :          * Report our new scan position for synchronization purposes. We don't
     805             :          * do that when moving backwards, however. That would just mess up any
     806             :          * other forward-moving scanners.
     807             :          *
     808             :          * Note: we do this before checking for end of scan so that the final
     809             :          * state of the position hint is back at the start of the rel.  That's
     810             :          * not strictly necessary, but otherwise when you run the same query
     811             :          * multiple times the starting position would shift a little bit
     812             :          * backwards on every invocation, which is confusing. We don't
     813             :          * guarantee any specific ordering in general, though.
     814             :          */
     815     5482154 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     816       17630 :             ss_report_location(scan->rs_base.rs_rd, block);
     817             : 
     818             :         /* we're done if we're back at where we started */
     819     5482154 :         if (block == scan->rs_startblock)
     820      801560 :             return InvalidBlockNumber;
     821             : 
     822             :         /* check if the limit imposed by heap_setscanlimits() is met */
     823     4680594 :         if (scan->rs_numblocks != InvalidBlockNumber)
     824             :         {
     825        4932 :             if (--scan->rs_numblocks == 0)
     826        3056 :                 return InvalidBlockNumber;
     827             :         }
     828             : 
     829     4677538 :         return block;
     830             :     }
     831             :     else
     832             :     {
     833             :         /* we're done if the last block is the start position */
     834         118 :         if (block == scan->rs_startblock)
     835         118 :             return InvalidBlockNumber;
     836             : 
     837             :         /* check if the limit imposed by heap_setscanlimits() is met */
     838           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     839             :         {
     840           0 :             if (--scan->rs_numblocks == 0)
     841           0 :                 return InvalidBlockNumber;
     842             :         }
     843             : 
     844             :         /* wrap to the end of the heap when the last page was page 0 */
     845           0 :         if (block == 0)
     846           0 :             block = scan->rs_nblocks;
     847             : 
     848           0 :         block--;
     849             : 
     850           0 :         return block;
     851             :     }
     852             : }
     853             : 
     854             : /* ----------------
     855             :  *      heapgettup - fetch next heap tuple
     856             :  *
     857             :  *      Initialize the scan if not already done; then advance to the next
     858             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     859             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     860             :  *
     861             :  * Note: the reason nkeys/key are passed separately, even though they are
     862             :  * kept in the scan descriptor, is that the caller may not want us to check
     863             :  * the scankeys.
     864             :  *
     865             :  * Note: when we fall off the end of the scan in either direction, we
     866             :  * reset rs_inited.  This means that a further request with the same
     867             :  * scan direction will restart the scan, which is a bit odd, but a
     868             :  * request with the opposite scan direction will start a fresh scan
     869             :  * in the proper direction.  The latter is required behavior for cursors,
     870             :  * while the former case is generally undefined behavior in Postgres
     871             :  * so we don't care too much.
     872             :  * ----------------
     873             :  */
     874             : static void
     875    16503100 : heapgettup(HeapScanDesc scan,
     876             :            ScanDirection dir,
     877             :            int nkeys,
     878             :            ScanKey key)
     879             : {
     880    16503100 :     HeapTuple   tuple = &(scan->rs_ctup);
     881             :     Page        page;
     882             :     OffsetNumber lineoff;
     883             :     int         linesleft;
     884             : 
     885    16503100 :     if (likely(scan->rs_inited))
     886             :     {
     887             :         /* continue from previously returned page/tuple */
     888    16461302 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     889    16461302 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     890    16461302 :         goto continue_page;
     891             :     }
     892             : 
     893             :     /*
     894             :      * advance the scan until we find a qualifying tuple or run out of stuff
     895             :      * to scan
     896             :      */
     897             :     while (true)
     898             :     {
     899      244386 :         heap_fetch_next_buffer(scan, dir);
     900             : 
     901             :         /* did we run out of blocks to scan? */
     902      244386 :         if (!BufferIsValid(scan->rs_cbuf))
     903       41498 :             break;
     904             : 
     905             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     906             : 
     907      202888 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     908      202888 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     909    16664190 : continue_page:
     910             : 
     911             :         /*
     912             :          * Only continue scanning the page while we have lines left.
     913             :          *
     914             :          * Note that this protects us from accessing line pointers past
     915             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     916             :          * table scan, and for when we start scanning a new page.
     917             :          */
     918    16750172 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     919             :         {
     920             :             bool        visible;
     921    16547584 :             ItemId      lpp = PageGetItemId(page, lineoff);
     922             : 
     923    16547584 :             if (!ItemIdIsNormal(lpp))
     924       75526 :                 continue;
     925             : 
     926    16472058 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     927    16472058 :             tuple->t_len = ItemIdGetLength(lpp);
     928    16472058 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     929             : 
     930    16472058 :             visible = HeapTupleSatisfiesVisibility(tuple,
     931             :                                                    scan->rs_base.rs_snapshot,
     932             :                                                    scan->rs_cbuf);
     933             : 
     934    16472058 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     935             :                                                 tuple, scan->rs_cbuf,
     936             :                                                 scan->rs_base.rs_snapshot);
     937             : 
     938             :             /* skip tuples not visible to this snapshot */
     939    16472058 :             if (!visible)
     940       10456 :                 continue;
     941             : 
     942             :             /* skip any tuples that don't match the scan key */
     943    16461602 :             if (key != NULL &&
     944           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     945             :                              nkeys, key))
     946           0 :                 continue;
     947             : 
     948    16461602 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     949    16461602 :             scan->rs_coffset = lineoff;
     950    16461602 :             return;
     951             :         }
     952             : 
     953             :         /*
     954             :          * if we get here, it means we've exhausted the items on this page and
     955             :          * it's time to move to the next.
     956             :          */
     957      202588 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     958             :     }
     959             : 
     960             :     /* end of scan */
     961       41498 :     if (BufferIsValid(scan->rs_cbuf))
     962           0 :         ReleaseBuffer(scan->rs_cbuf);
     963             : 
     964       41498 :     scan->rs_cbuf = InvalidBuffer;
     965       41498 :     scan->rs_cblock = InvalidBlockNumber;
     966       41498 :     scan->rs_prefetch_block = InvalidBlockNumber;
     967       41498 :     tuple->t_data = NULL;
     968       41498 :     scan->rs_inited = false;
     969             : }
     970             : 
     971             : /* ----------------
     972             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     973             :  *
     974             :  *      Same API as heapgettup, but used in page-at-a-time mode
     975             :  *
     976             :  * The internal logic is much the same as heapgettup's too, but there are some
     977             :  * differences: we do not take the buffer content lock (that only needs to
     978             :  * happen inside heap_prepare_pagescan), and we iterate through just the
     979             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
     980             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
     981             :  * heapgettup is 1-based.
     982             :  * ----------------
     983             :  */
     984             : static void
     985   100579788 : heapgettup_pagemode(HeapScanDesc scan,
     986             :                     ScanDirection dir,
     987             :                     int nkeys,
     988             :                     ScanKey key)
     989             : {
     990   100579788 :     HeapTuple   tuple = &(scan->rs_ctup);
     991             :     Page        page;
     992             :     uint32      lineindex;
     993             :     uint32      linesleft;
     994             : 
     995   100579788 :     if (likely(scan->rs_inited))
     996             :     {
     997             :         /* continue from previously returned page/tuple */
     998    98373652 :         page = BufferGetPage(scan->rs_cbuf);
     999             : 
    1000    98373652 :         lineindex = scan->rs_cindex + dir;
    1001    98373652 :         if (ScanDirectionIsForward(dir))
    1002    98372994 :             linesleft = scan->rs_ntuples - lineindex;
    1003             :         else
    1004         658 :             linesleft = scan->rs_cindex;
    1005             :         /* lineindex now references the next or previous visible tid */
    1006             : 
    1007    98373652 :         goto continue_page;
    1008             :     }
    1009             : 
    1010             :     /*
    1011             :      * advance the scan until we find a qualifying tuple or run out of stuff
    1012             :      * to scan
    1013             :      */
    1014             :     while (true)
    1015             :     {
    1016     7326410 :         heap_fetch_next_buffer(scan, dir);
    1017             : 
    1018             :         /* did we run out of blocks to scan? */
    1019     7326354 :         if (!BufferIsValid(scan->rs_cbuf))
    1020     1891932 :             break;
    1021             : 
    1022             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
    1023             : 
    1024             :         /* prune the page and determine visible tuple offsets */
    1025     5434422 :         heap_prepare_pagescan((TableScanDesc) scan);
    1026     5434406 :         page = BufferGetPage(scan->rs_cbuf);
    1027     5434406 :         linesleft = scan->rs_ntuples;
    1028     5434406 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
    1029             : 
    1030             :         /* block is the same for all tuples, set it once outside the loop */
    1031     5434406 :         ItemPointerSetBlockNumber(&tuple->t_self, scan->rs_cblock);
    1032             : 
    1033             :         /* lineindex now references the next or previous visible tid */
    1034   103808058 : continue_page:
    1035             : 
    1036   195054004 :         for (; linesleft > 0; linesleft--, lineindex += dir)
    1037             :         {
    1038             :             ItemId      lpp;
    1039             :             OffsetNumber lineoff;
    1040             : 
    1041             :             Assert(lineindex <= scan->rs_ntuples);
    1042   189933730 :             lineoff = scan->rs_vistuples[lineindex];
    1043   189933730 :             lpp = PageGetItemId(page, lineoff);
    1044             :             Assert(ItemIdIsNormal(lpp));
    1045             : 
    1046   189933730 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1047   189933730 :             tuple->t_len = ItemIdGetLength(lpp);
    1048   189933730 :             ItemPointerSetOffsetNumber(&tuple->t_self, lineoff);
    1049             : 
    1050             :             /* skip any tuples that don't match the scan key */
    1051   189933730 :             if (key != NULL &&
    1052    91966282 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1053             :                              nkeys, key))
    1054    91245946 :                 continue;
    1055             : 
    1056    98687784 :             scan->rs_cindex = lineindex;
    1057    98687784 :             return;
    1058             :         }
    1059             :     }
    1060             : 
    1061             :     /* end of scan */
    1062     1891932 :     if (BufferIsValid(scan->rs_cbuf))
    1063           0 :         ReleaseBuffer(scan->rs_cbuf);
    1064     1891932 :     scan->rs_cbuf = InvalidBuffer;
    1065     1891932 :     scan->rs_cblock = InvalidBlockNumber;
    1066     1891932 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1067     1891932 :     tuple->t_data = NULL;
    1068     1891932 :     scan->rs_inited = false;
    1069             : }
    1070             : 
    1071             : 
    1072             : /* ----------------------------------------------------------------
    1073             :  *                   heap access method interface
    1074             :  * ----------------------------------------------------------------
    1075             :  */
    1076             : 
    1077             : 
    1078             : TableScanDesc
    1079      746868 : heap_beginscan(Relation relation, Snapshot snapshot,
    1080             :                int nkeys, ScanKey key,
    1081             :                ParallelTableScanDesc parallel_scan,
    1082             :                uint32 flags)
    1083             : {
    1084             :     HeapScanDesc scan;
    1085             : 
    1086             :     /*
    1087             :      * increment relation ref count while scanning relation
    1088             :      *
    1089             :      * This is just to make really sure the relcache entry won't go away while
    1090             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1091             :      * anyway, so this is redundant in all normal scenarios...
    1092             :      */
    1093      746868 :     RelationIncrementReferenceCount(relation);
    1094             : 
    1095             :     /*
    1096             :      * allocate and initialize scan descriptor
    1097             :      */
    1098      746868 :     if (flags & SO_TYPE_BITMAPSCAN)
    1099             :     {
    1100       16812 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1101             : 
    1102             :         /*
    1103             :          * Bitmap Heap scans do not have any fields that a normal Heap Scan
    1104             :          * does not have, so no special initializations required here.
    1105             :          */
    1106       16812 :         scan = (HeapScanDesc) bscan;
    1107             :     }
    1108             :     else
    1109      730056 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1110             : 
    1111      746868 :     scan->rs_base.rs_rd = relation;
    1112      746868 :     scan->rs_base.rs_snapshot = snapshot;
    1113      746868 :     scan->rs_base.rs_nkeys = nkeys;
    1114      746868 :     scan->rs_base.rs_flags = flags;
    1115      746868 :     scan->rs_base.rs_parallel = parallel_scan;
    1116      746868 :     scan->rs_strategy = NULL;    /* set in initscan */
    1117      746868 :     scan->rs_cbuf = InvalidBuffer;
    1118             : 
    1119             :     /*
    1120             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1121             :      */
    1122      746868 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1123       58518 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1124             : 
    1125             :     /*
    1126             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1127             :      * predicate lock on the entire relation. This is required not only to
    1128             :      * lock all the matching tuples, but also to conflict with new insertions
    1129             :      * into the table. In an indexscan, we take page locks on the index pages
    1130             :      * covering the range specified in the scan qual, but in a heap scan there
    1131             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1132             :      * story, there we have already scanned the index and locked the index
    1133             :      * pages covering the predicate. But in that case we still have to lock
    1134             :      * any matching heap tuples. For sample scan we could optimize the locking
    1135             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1136             :      * locking for that.
    1137             :      */
    1138      746868 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1139             :     {
    1140             :         /*
    1141             :          * Ensure a missing snapshot is noticed reliably, even if the
    1142             :          * isolation mode means predicate locking isn't performed (and
    1143             :          * therefore the snapshot isn't used here).
    1144             :          */
    1145             :         Assert(snapshot);
    1146      710728 :         PredicateLockRelation(relation, snapshot);
    1147             :     }
    1148             : 
    1149             :     /* we only need to set this up once */
    1150      746868 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1151             : 
    1152             :     /*
    1153             :      * Allocate memory to keep track of page allocation for parallel workers
    1154             :      * when doing a parallel scan.
    1155             :      */
    1156      746868 :     if (parallel_scan != NULL)
    1157        3912 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1158             :     else
    1159      742956 :         scan->rs_parallelworkerdata = NULL;
    1160             : 
    1161             :     /*
    1162             :      * we do this here instead of in initscan() because heap_rescan also calls
    1163             :      * initscan() and we don't want to allocate memory again
    1164             :      */
    1165      746868 :     if (nkeys > 0)
    1166      420506 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1167             :     else
    1168      326362 :         scan->rs_base.rs_key = NULL;
    1169             : 
    1170      746868 :     initscan(scan, key, false);
    1171             : 
    1172      746864 :     scan->rs_read_stream = NULL;
    1173             : 
    1174             :     /*
    1175             :      * Set up a read stream for sequential scans and TID range scans. This
    1176             :      * should be done after initscan() because initscan() allocates the
    1177             :      * BufferAccessStrategy object passed to the read stream API.
    1178             :      */
    1179      746864 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1180       36286 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1181      712428 :     {
    1182             :         ReadStreamBlockNumberCB cb;
    1183             : 
    1184      712428 :         if (scan->rs_base.rs_parallel)
    1185        3912 :             cb = heap_scan_stream_read_next_parallel;
    1186             :         else
    1187      708516 :             cb = heap_scan_stream_read_next_serial;
    1188             : 
    1189             :         /* ---
    1190             :          * It is safe to use batchmode as the only locks taken by `cb`
    1191             :          * are never taken while waiting for IO:
    1192             :          * - SyncScanLock is used in the non-parallel case
    1193             :          * - in the parallel case, only spinlocks and atomics are used
    1194             :          * ---
    1195             :          */
    1196      712428 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL |
    1197             :                                                           READ_STREAM_USE_BATCHING,
    1198             :                                                           scan->rs_strategy,
    1199             :                                                           scan->rs_base.rs_rd,
    1200             :                                                           MAIN_FORKNUM,
    1201             :                                                           cb,
    1202             :                                                           scan,
    1203             :                                                           0);
    1204             :     }
    1205       34436 :     else if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1206             :     {
    1207       16812 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_DEFAULT |
    1208             :                                                           READ_STREAM_USE_BATCHING,
    1209             :                                                           scan->rs_strategy,
    1210             :                                                           scan->rs_base.rs_rd,
    1211             :                                                           MAIN_FORKNUM,
    1212             :                                                           bitmapheap_stream_read_next,
    1213             :                                                           scan,
    1214             :                                                           sizeof(TBMIterateResult));
    1215             :     }
    1216             : 
    1217             : 
    1218      746864 :     return (TableScanDesc) scan;
    1219             : }
    1220             : 
    1221             : void
    1222     1541284 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1223             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1224             : {
    1225     1541284 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1226             : 
    1227     1541284 :     if (set_params)
    1228             :     {
    1229          30 :         if (allow_strat)
    1230          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1231             :         else
    1232           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1233             : 
    1234          30 :         if (allow_sync)
    1235          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1236             :         else
    1237          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1238             : 
    1239          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1240          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1241          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1242             :         else
    1243           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1244             :     }
    1245             : 
    1246             :     /*
    1247             :      * unpin scan buffers
    1248             :      */
    1249     1541284 :     if (BufferIsValid(scan->rs_cbuf))
    1250             :     {
    1251        4990 :         ReleaseBuffer(scan->rs_cbuf);
    1252        4990 :         scan->rs_cbuf = InvalidBuffer;
    1253             :     }
    1254             : 
    1255             :     /*
    1256             :      * SO_TYPE_BITMAPSCAN would be cleaned up here, but it does not hold any
    1257             :      * additional data vs a normal HeapScan
    1258             :      */
    1259             : 
    1260             :     /*
    1261             :      * The read stream is reset on rescan. This must be done before
    1262             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1263             :      * in initscan().
    1264             :      */
    1265     1541284 :     if (scan->rs_read_stream)
    1266     1541248 :         read_stream_reset(scan->rs_read_stream);
    1267             : 
    1268             :     /*
    1269             :      * reinitialize scan descriptor
    1270             :      */
    1271     1541284 :     initscan(scan, key, true);
    1272     1541284 : }
    1273             : 
    1274             : void
    1275      742236 : heap_endscan(TableScanDesc sscan)
    1276             : {
    1277      742236 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1278             : 
    1279             :     /* Note: no locking manipulations needed */
    1280             : 
    1281             :     /*
    1282             :      * unpin scan buffers
    1283             :      */
    1284      742236 :     if (BufferIsValid(scan->rs_cbuf))
    1285      306254 :         ReleaseBuffer(scan->rs_cbuf);
    1286             : 
    1287             :     /*
    1288             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1289             :      */
    1290      742236 :     if (scan->rs_read_stream)
    1291      724718 :         read_stream_end(scan->rs_read_stream);
    1292             : 
    1293             :     /*
    1294             :      * decrement relation reference count and free scan descriptor storage
    1295             :      */
    1296      742236 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1297             : 
    1298      742236 :     if (scan->rs_base.rs_key)
    1299      420446 :         pfree(scan->rs_base.rs_key);
    1300             : 
    1301      742236 :     if (scan->rs_strategy != NULL)
    1302       21888 :         FreeAccessStrategy(scan->rs_strategy);
    1303             : 
    1304      742236 :     if (scan->rs_parallelworkerdata != NULL)
    1305        3912 :         pfree(scan->rs_parallelworkerdata);
    1306             : 
    1307      742236 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1308       71302 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1309             : 
    1310      742236 :     pfree(scan);
    1311      742236 : }
    1312             : 
    1313             : HeapTuple
    1314    19965080 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1315             : {
    1316    19965080 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1317             : 
    1318             :     /*
    1319             :      * This is still widely used directly, without going through table AM, so
    1320             :      * add a safety check.  It's possible we should, at a later point,
    1321             :      * downgrade this to an assert. The reason for checking the AM routine,
    1322             :      * rather than the AM oid, is that this allows to write regression tests
    1323             :      * that create another AM reusing the heap handler.
    1324             :      */
    1325    19965080 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1326           0 :         ereport(ERROR,
    1327             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1328             :                  errmsg_internal("only heap AM is supported")));
    1329             : 
    1330             :     /*
    1331             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1332             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1333             :      * these variables are declared.  Normally we have such a check at tableam
    1334             :      * level API but this is called from many places so we need to ensure it
    1335             :      * here.
    1336             :      */
    1337    19965080 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1338           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1339             : 
    1340             :     /* Note: no locking manipulations needed */
    1341             : 
    1342    19965080 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1343     4408120 :         heapgettup_pagemode(scan, direction,
    1344     4408120 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1345             :     else
    1346    15556960 :         heapgettup(scan, direction,
    1347    15556960 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1348             : 
    1349    19965080 :     if (scan->rs_ctup.t_data == NULL)
    1350      124574 :         return NULL;
    1351             : 
    1352             :     /*
    1353             :      * if we get here it means we have a new current scan tuple, so point to
    1354             :      * the proper return buffer and return the tuple.
    1355             :      */
    1356             : 
    1357    19840506 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1358             : 
    1359    19840506 :     return &scan->rs_ctup;
    1360             : }
    1361             : 
    1362             : bool
    1363    97109028 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1364             : {
    1365    97109028 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1366             : 
    1367             :     /* Note: no locking manipulations needed */
    1368             : 
    1369    97109028 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1370    96162888 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1371             :     else
    1372      946140 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1373             : 
    1374    97108972 :     if (scan->rs_ctup.t_data == NULL)
    1375             :     {
    1376     1808762 :         ExecClearTuple(slot);
    1377     1808762 :         return false;
    1378             :     }
    1379             : 
    1380             :     /*
    1381             :      * if we get here it means we have a new current scan tuple, so point to
    1382             :      * the proper return buffer and return the tuple.
    1383             :      */
    1384             : 
    1385    95300210 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1386             : 
    1387    95300210 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1388             :                              scan->rs_cbuf);
    1389    95300210 :     return true;
    1390             : }
    1391             : 
    1392             : void
    1393        1916 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1394             :                   ItemPointer maxtid)
    1395             : {
    1396        1916 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1397             :     BlockNumber startBlk;
    1398             :     BlockNumber numBlks;
    1399             :     ItemPointerData highestItem;
    1400             :     ItemPointerData lowestItem;
    1401             : 
    1402             :     /*
    1403             :      * For relations without any pages, we can simply leave the TID range
    1404             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1405             :      * the given TID range.
    1406             :      */
    1407        1916 :     if (scan->rs_nblocks == 0)
    1408          48 :         return;
    1409             : 
    1410             :     /*
    1411             :      * Set up some ItemPointers which point to the first and last possible
    1412             :      * tuples in the heap.
    1413             :      */
    1414        1904 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1415        1904 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1416             : 
    1417             :     /*
    1418             :      * If the given maximum TID is below the highest possible TID in the
    1419             :      * relation, then restrict the range to that, otherwise we scan to the end
    1420             :      * of the relation.
    1421             :      */
    1422        1904 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1423         136 :         ItemPointerCopy(maxtid, &highestItem);
    1424             : 
    1425             :     /*
    1426             :      * If the given minimum TID is above the lowest possible TID in the
    1427             :      * relation, then restrict the range to only scan for TIDs above that.
    1428             :      */
    1429        1904 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1430        1762 :         ItemPointerCopy(mintid, &lowestItem);
    1431             : 
    1432             :     /*
    1433             :      * Check for an empty range and protect from would be negative results
    1434             :      * from the numBlks calculation below.
    1435             :      */
    1436        1904 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1437             :     {
    1438             :         /* Set an empty range of blocks to scan */
    1439          36 :         heap_setscanlimits(sscan, 0, 0);
    1440          36 :         return;
    1441             :     }
    1442             : 
    1443             :     /*
    1444             :      * Calculate the first block and the number of blocks we must scan. We
    1445             :      * could be more aggressive here and perform some more validation to try
    1446             :      * and further narrow the scope of blocks to scan by checking if the
    1447             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1448             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1449             :      * we could scan one fewer blocks.  However, such an optimization does not
    1450             :      * seem worth troubling over, currently.
    1451             :      */
    1452        1868 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1453             : 
    1454        1868 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1455        1868 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1456             : 
    1457             :     /* Set the start block and number of blocks to scan */
    1458        1868 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1459             : 
    1460             :     /* Finally, set the TID range in sscan */
    1461        1868 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1462        1868 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1463             : }
    1464             : 
    1465             : bool
    1466        8594 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1467             :                           TupleTableSlot *slot)
    1468             : {
    1469        8594 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1470        8594 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1471        8594 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1472             : 
    1473             :     /* Note: no locking manipulations needed */
    1474             :     for (;;)
    1475             :     {
    1476        8780 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1477        8780 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1478             :         else
    1479           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1480             : 
    1481        8764 :         if (scan->rs_ctup.t_data == NULL)
    1482             :         {
    1483          94 :             ExecClearTuple(slot);
    1484          94 :             return false;
    1485             :         }
    1486             : 
    1487             :         /*
    1488             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1489             :          * range of pages we scan to only ones that can contain the TID range
    1490             :          * we're scanning for.  Here we must filter out any tuples from these
    1491             :          * pages that are outside of that range.
    1492             :          */
    1493        8670 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1494             :         {
    1495         186 :             ExecClearTuple(slot);
    1496             : 
    1497             :             /*
    1498             :              * When scanning backwards, the TIDs will be in descending order.
    1499             :              * Future tuples in this direction will be lower still, so we can
    1500             :              * just return false to indicate there will be no more tuples.
    1501             :              */
    1502         186 :             if (ScanDirectionIsBackward(direction))
    1503           0 :                 return false;
    1504             : 
    1505         186 :             continue;
    1506             :         }
    1507             : 
    1508             :         /*
    1509             :          * Likewise for the final page, we must filter out TIDs greater than
    1510             :          * maxtid.
    1511             :          */
    1512        8484 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1513             :         {
    1514          72 :             ExecClearTuple(slot);
    1515             : 
    1516             :             /*
    1517             :              * When scanning forward, the TIDs will be in ascending order.
    1518             :              * Future tuples in this direction will be higher still, so we can
    1519             :              * just return false to indicate there will be no more tuples.
    1520             :              */
    1521          72 :             if (ScanDirectionIsForward(direction))
    1522          72 :                 return false;
    1523           0 :             continue;
    1524             :         }
    1525             : 
    1526        8412 :         break;
    1527             :     }
    1528             : 
    1529             :     /*
    1530             :      * if we get here it means we have a new current scan tuple, so point to
    1531             :      * the proper return buffer and return the tuple.
    1532             :      */
    1533        8412 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1534             : 
    1535        8412 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1536        8412 :     return true;
    1537             : }
    1538             : 
    1539             : /*
    1540             :  *  heap_fetch      - retrieve tuple with given tid
    1541             :  *
    1542             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1543             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1544             :  * against the specified snapshot.
    1545             :  *
    1546             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1547             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1548             :  * must unpin the buffer when done with the tuple.
    1549             :  *
    1550             :  * If the tuple is not found (ie, item number references a deleted slot),
    1551             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1552             :  * and false is returned.
    1553             :  *
    1554             :  * If the tuple is found but fails the time qual check, then the behavior
    1555             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1556             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1557             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1558             :  * and again the caller must unpin the buffer; but false is returned.
    1559             :  *
    1560             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1561             :  * be fetched.
    1562             :  *
    1563             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1564             :  * return false on invalid item number.  There are a couple of reasons though.
    1565             :  * One is that the caller can relatively easily check the block number for
    1566             :  * validity, but cannot check the item number without reading the page
    1567             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1568             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1569             :  * truncate off the destination page without having killed the referencing
    1570             :  * tuple first), but the item number might well not be good.
    1571             :  */
    1572             : bool
    1573      354844 : heap_fetch(Relation relation,
    1574             :            Snapshot snapshot,
    1575             :            HeapTuple tuple,
    1576             :            Buffer *userbuf,
    1577             :            bool keep_buf)
    1578             : {
    1579      354844 :     ItemPointer tid = &(tuple->t_self);
    1580             :     ItemId      lp;
    1581             :     Buffer      buffer;
    1582             :     Page        page;
    1583             :     OffsetNumber offnum;
    1584             :     bool        valid;
    1585             : 
    1586             :     /*
    1587             :      * Fetch and pin the appropriate page of the relation.
    1588             :      */
    1589      354844 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1590             : 
    1591             :     /*
    1592             :      * Need share lock on buffer to examine tuple commit status.
    1593             :      */
    1594      354828 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1595      354828 :     page = BufferGetPage(buffer);
    1596             : 
    1597             :     /*
    1598             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1599             :      * TID was obtained.
    1600             :      */
    1601      354828 :     offnum = ItemPointerGetOffsetNumber(tid);
    1602      354828 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1603             :     {
    1604           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1605           6 :         ReleaseBuffer(buffer);
    1606           6 :         *userbuf = InvalidBuffer;
    1607           6 :         tuple->t_data = NULL;
    1608           6 :         return false;
    1609             :     }
    1610             : 
    1611             :     /*
    1612             :      * get the item line pointer corresponding to the requested tid
    1613             :      */
    1614      354822 :     lp = PageGetItemId(page, offnum);
    1615             : 
    1616             :     /*
    1617             :      * Must check for deleted tuple.
    1618             :      */
    1619      354822 :     if (!ItemIdIsNormal(lp))
    1620             :     {
    1621         658 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1622         658 :         ReleaseBuffer(buffer);
    1623         658 :         *userbuf = InvalidBuffer;
    1624         658 :         tuple->t_data = NULL;
    1625         658 :         return false;
    1626             :     }
    1627             : 
    1628             :     /*
    1629             :      * fill in *tuple fields
    1630             :      */
    1631      354164 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1632      354164 :     tuple->t_len = ItemIdGetLength(lp);
    1633      354164 :     tuple->t_tableOid = RelationGetRelid(relation);
    1634             : 
    1635             :     /*
    1636             :      * check tuple visibility, then release lock
    1637             :      */
    1638      354164 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1639             : 
    1640      354164 :     if (valid)
    1641      354070 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1642      354070 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1643             : 
    1644      354164 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1645             : 
    1646      354164 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1647             : 
    1648      354164 :     if (valid)
    1649             :     {
    1650             :         /*
    1651             :          * All checks passed, so return the tuple as valid. Caller is now
    1652             :          * responsible for releasing the buffer.
    1653             :          */
    1654      354070 :         *userbuf = buffer;
    1655             : 
    1656      354070 :         return true;
    1657             :     }
    1658             : 
    1659             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1660          94 :     if (keep_buf)
    1661          58 :         *userbuf = buffer;
    1662             :     else
    1663             :     {
    1664          36 :         ReleaseBuffer(buffer);
    1665          36 :         *userbuf = InvalidBuffer;
    1666          36 :         tuple->t_data = NULL;
    1667             :     }
    1668             : 
    1669          94 :     return false;
    1670             : }
    1671             : 
    1672             : /*
    1673             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1674             :  *
    1675             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1676             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1677             :  * for the first chain member satisfying the given snapshot.  If one is
    1678             :  * found, we update *tid to reference that tuple's offset number, and
    1679             :  * return true.  If no match, return false without modifying *tid.
    1680             :  *
    1681             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1682             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1683             :  * contents of this buffer on return are undefined.
    1684             :  *
    1685             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1686             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1687             :  * are vacuumable, false if not.
    1688             :  *
    1689             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1690             :  * lock on the buffer; it is still pinned/locked at exit.
    1691             :  */
    1692             : bool
    1693    44040794 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1694             :                        Snapshot snapshot, HeapTuple heapTuple,
    1695             :                        bool *all_dead, bool first_call)
    1696             : {
    1697    44040794 :     Page        page = BufferGetPage(buffer);
    1698    44040794 :     TransactionId prev_xmax = InvalidTransactionId;
    1699             :     BlockNumber blkno;
    1700             :     OffsetNumber offnum;
    1701             :     bool        at_chain_start;
    1702             :     bool        valid;
    1703             :     bool        skip;
    1704    44040794 :     GlobalVisState *vistest = NULL;
    1705             : 
    1706             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1707    44040794 :     if (all_dead)
    1708    37426710 :         *all_dead = first_call;
    1709             : 
    1710    44040794 :     blkno = ItemPointerGetBlockNumber(tid);
    1711    44040794 :     offnum = ItemPointerGetOffsetNumber(tid);
    1712    44040794 :     at_chain_start = first_call;
    1713    44040794 :     skip = !first_call;
    1714             : 
    1715             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1716             :     Assert(TransactionIdIsValid(RecentXmin));
    1717             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1718             : 
    1719             :     /* Scan through possible multiple members of HOT-chain */
    1720             :     for (;;)
    1721     2734786 :     {
    1722             :         ItemId      lp;
    1723             : 
    1724             :         /* check for bogus TID */
    1725    46775580 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1726             :             break;
    1727             : 
    1728    46775580 :         lp = PageGetItemId(page, offnum);
    1729             : 
    1730             :         /* check for unused, dead, or redirected items */
    1731    46775580 :         if (!ItemIdIsNormal(lp))
    1732             :         {
    1733             :             /* We should only see a redirect at start of chain */
    1734     1757530 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1735             :             {
    1736             :                 /* Follow the redirect */
    1737      953798 :                 offnum = ItemIdGetRedirect(lp);
    1738      953798 :                 at_chain_start = false;
    1739      953798 :                 continue;
    1740             :             }
    1741             :             /* else must be end of chain */
    1742      803732 :             break;
    1743             :         }
    1744             : 
    1745             :         /*
    1746             :          * Update heapTuple to point to the element of the HOT chain we're
    1747             :          * currently investigating. Having t_self set correctly is important
    1748             :          * because the SSI checks and the *Satisfies routine for historical
    1749             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1750             :          */
    1751    45018050 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1752    45018050 :         heapTuple->t_len = ItemIdGetLength(lp);
    1753    45018050 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1754    45018050 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1755             : 
    1756             :         /*
    1757             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1758             :          */
    1759    45018050 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1760           0 :             break;
    1761             : 
    1762             :         /*
    1763             :          * The xmin should match the previous xmax value, else chain is
    1764             :          * broken.
    1765             :          */
    1766    46799038 :         if (TransactionIdIsValid(prev_xmax) &&
    1767     1780988 :             !TransactionIdEquals(prev_xmax,
    1768             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1769           0 :             break;
    1770             : 
    1771             :         /*
    1772             :          * When first_call is true (and thus, skip is initially false) we'll
    1773             :          * return the first tuple we find.  But on later passes, heapTuple
    1774             :          * will initially be pointing to the tuple we returned last time.
    1775             :          * Returning it again would be incorrect (and would loop forever), so
    1776             :          * we skip it and return the next match we find.
    1777             :          */
    1778    45018050 :         if (!skip)
    1779             :         {
    1780             :             /* If it's visible per the snapshot, we must return it */
    1781    44854250 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1782    44854250 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1783             :                                                 buffer, snapshot);
    1784             : 
    1785    44854240 :             if (valid)
    1786             :             {
    1787    30852510 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1788    30852510 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1789    30852510 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1790    30852510 :                 if (all_dead)
    1791    24837868 :                     *all_dead = false;
    1792    30852510 :                 return true;
    1793             :             }
    1794             :         }
    1795    14165530 :         skip = false;
    1796             : 
    1797             :         /*
    1798             :          * If we can't see it, maybe no one else can either.  At caller
    1799             :          * request, check whether all chain members are dead to all
    1800             :          * transactions.
    1801             :          *
    1802             :          * Note: if you change the criterion here for what is "dead", fix the
    1803             :          * planner's get_actual_variable_range() function to match.
    1804             :          */
    1805    14165530 :         if (all_dead && *all_dead)
    1806             :         {
    1807    12834772 :             if (!vistest)
    1808    12588412 :                 vistest = GlobalVisTestFor(relation);
    1809             : 
    1810    12834772 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1811    12108720 :                 *all_dead = false;
    1812             :         }
    1813             : 
    1814             :         /*
    1815             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1816             :          * the next offnum and loop around.
    1817             :          */
    1818    14165530 :         if (HeapTupleIsHotUpdated(heapTuple))
    1819             :         {
    1820             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1821             :                    blkno);
    1822     1780988 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1823     1780988 :             at_chain_start = false;
    1824     1780988 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1825             :         }
    1826             :         else
    1827    12384542 :             break;              /* end of chain */
    1828             :     }
    1829             : 
    1830    13188274 :     return false;
    1831             : }
    1832             : 
    1833             : /*
    1834             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1835             :  *
    1836             :  * Actually, this gets the latest version that is visible according to the
    1837             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1838             :  * possibly uncommitted version.
    1839             :  *
    1840             :  * *tid is both an input and an output parameter: it is updated to
    1841             :  * show the latest version of the row.  Note that it will not be changed
    1842             :  * if no version of the row passes the snapshot test.
    1843             :  */
    1844             : void
    1845         300 : heap_get_latest_tid(TableScanDesc sscan,
    1846             :                     ItemPointer tid)
    1847             : {
    1848         300 :     Relation    relation = sscan->rs_rd;
    1849         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1850             :     ItemPointerData ctid;
    1851             :     TransactionId priorXmax;
    1852             : 
    1853             :     /*
    1854             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1855             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1856             :      * ones in the table.
    1857             :      */
    1858             :     Assert(ItemPointerIsValid(tid));
    1859             : 
    1860             :     /*
    1861             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1862             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1863             :      * to be bogus.
    1864             :      *
    1865             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1866             :      * Depending on the snapshot passed, there might be at most one visible
    1867             :      * version of the row, but we don't try to optimize for that.
    1868             :      */
    1869         300 :     ctid = *tid;
    1870         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1871             :     for (;;)
    1872          90 :     {
    1873             :         Buffer      buffer;
    1874             :         Page        page;
    1875             :         OffsetNumber offnum;
    1876             :         ItemId      lp;
    1877             :         HeapTupleData tp;
    1878             :         bool        valid;
    1879             : 
    1880             :         /*
    1881             :          * Read, pin, and lock the page.
    1882             :          */
    1883         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1884         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1885         390 :         page = BufferGetPage(buffer);
    1886             : 
    1887             :         /*
    1888             :          * Check for bogus item number.  This is not treated as an error
    1889             :          * condition because it can happen while following a t_ctid link. We
    1890             :          * just assume that the prior tid is OK and return it unchanged.
    1891             :          */
    1892         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1893         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1894             :         {
    1895           0 :             UnlockReleaseBuffer(buffer);
    1896           0 :             break;
    1897             :         }
    1898         390 :         lp = PageGetItemId(page, offnum);
    1899         390 :         if (!ItemIdIsNormal(lp))
    1900             :         {
    1901           0 :             UnlockReleaseBuffer(buffer);
    1902           0 :             break;
    1903             :         }
    1904             : 
    1905             :         /* OK to access the tuple */
    1906         390 :         tp.t_self = ctid;
    1907         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1908         390 :         tp.t_len = ItemIdGetLength(lp);
    1909         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1910             : 
    1911             :         /*
    1912             :          * After following a t_ctid link, we might arrive at an unrelated
    1913             :          * tuple.  Check for XMIN match.
    1914             :          */
    1915         480 :         if (TransactionIdIsValid(priorXmax) &&
    1916          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1917             :         {
    1918           0 :             UnlockReleaseBuffer(buffer);
    1919           0 :             break;
    1920             :         }
    1921             : 
    1922             :         /*
    1923             :          * Check tuple visibility; if visible, set it as the new result
    1924             :          * candidate.
    1925             :          */
    1926         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1927         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1928         390 :         if (valid)
    1929         276 :             *tid = ctid;
    1930             : 
    1931             :         /*
    1932             :          * If there's a valid t_ctid link, follow it, else we're done.
    1933             :          */
    1934         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1935         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1936         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1937         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1938             :         {
    1939         300 :             UnlockReleaseBuffer(buffer);
    1940         300 :             break;
    1941             :         }
    1942             : 
    1943          90 :         ctid = tp.t_data->t_ctid;
    1944          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1945          90 :         UnlockReleaseBuffer(buffer);
    1946             :     }                           /* end of loop */
    1947         300 : }
    1948             : 
    1949             : 
    1950             : /*
    1951             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1952             :  *
    1953             :  * This is called after we have waited for the XMAX transaction to terminate.
    1954             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1955             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1956             :  * hint bit if possible --- but beware that that may not yet be possible,
    1957             :  * if the transaction committed asynchronously.
    1958             :  *
    1959             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1960             :  * even if it commits.
    1961             :  *
    1962             :  * Hence callers should look only at XMAX_INVALID.
    1963             :  *
    1964             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1965             :  */
    1966             : static void
    1967         350 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    1968             : {
    1969             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    1970             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    1971             : 
    1972         350 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    1973             :     {
    1974         630 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    1975         282 :             TransactionIdDidCommit(xid))
    1976         230 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    1977             :                                  xid);
    1978             :         else
    1979         118 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    1980             :                                  InvalidTransactionId);
    1981             :     }
    1982         350 : }
    1983             : 
    1984             : 
    1985             : /*
    1986             :  * GetBulkInsertState - prepare status object for a bulk insert
    1987             :  */
    1988             : BulkInsertState
    1989        5778 : GetBulkInsertState(void)
    1990             : {
    1991             :     BulkInsertState bistate;
    1992             : 
    1993        5778 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    1994        5778 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    1995        5778 :     bistate->current_buf = InvalidBuffer;
    1996        5778 :     bistate->next_free = InvalidBlockNumber;
    1997        5778 :     bistate->last_free = InvalidBlockNumber;
    1998        5778 :     bistate->already_extended_by = 0;
    1999        5778 :     return bistate;
    2000             : }
    2001             : 
    2002             : /*
    2003             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    2004             :  */
    2005             : void
    2006        5494 : FreeBulkInsertState(BulkInsertState bistate)
    2007             : {
    2008        5494 :     if (bistate->current_buf != InvalidBuffer)
    2009        4356 :         ReleaseBuffer(bistate->current_buf);
    2010        5494 :     FreeAccessStrategy(bistate->strategy);
    2011        5494 :     pfree(bistate);
    2012        5494 : }
    2013             : 
    2014             : /*
    2015             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    2016             :  */
    2017             : void
    2018      161512 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    2019             : {
    2020      161512 :     if (bistate->current_buf != InvalidBuffer)
    2021       60042 :         ReleaseBuffer(bistate->current_buf);
    2022      161512 :     bistate->current_buf = InvalidBuffer;
    2023             : 
    2024             :     /*
    2025             :      * Despite the name, we also reset bulk relation extension state.
    2026             :      * Otherwise we can end up erroring out due to looking for free space in
    2027             :      * ->next_free of one partition, even though ->next_free was set when
    2028             :      * extending another partition. It could obviously also be bad for
    2029             :      * efficiency to look at existing blocks at offsets from another
    2030             :      * partition, even if we don't error out.
    2031             :      */
    2032      161512 :     bistate->next_free = InvalidBlockNumber;
    2033      161512 :     bistate->last_free = InvalidBlockNumber;
    2034      161512 : }
    2035             : 
    2036             : 
    2037             : /*
    2038             :  *  heap_insert     - insert tuple into a heap
    2039             :  *
    2040             :  * The new tuple is stamped with current transaction ID and the specified
    2041             :  * command ID.
    2042             :  *
    2043             :  * See table_tuple_insert for comments about most of the input flags, except
    2044             :  * that this routine directly takes a tuple rather than a slot.
    2045             :  *
    2046             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    2047             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    2048             :  * implement table_tuple_insert_speculative().
    2049             :  *
    2050             :  * On return the header fields of *tup are updated to match the stored tuple;
    2051             :  * in particular tup->t_self receives the actual TID where the tuple was
    2052             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2053             :  * reflected into *tup.
    2054             :  */
    2055             : void
    2056    16556612 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2057             :             int options, BulkInsertState bistate)
    2058             : {
    2059    16556612 :     TransactionId xid = GetCurrentTransactionId();
    2060             :     HeapTuple   heaptup;
    2061             :     Buffer      buffer;
    2062    16556598 :     Buffer      vmbuffer = InvalidBuffer;
    2063    16556598 :     bool        all_visible_cleared = false;
    2064             : 
    2065             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2066             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2067             :            RelationGetNumberOfAttributes(relation));
    2068             : 
    2069             :     /*
    2070             :      * Fill in tuple header fields and toast the tuple if necessary.
    2071             :      *
    2072             :      * Note: below this point, heaptup is the data we actually intend to store
    2073             :      * into the relation; tup is the caller's original untoasted data.
    2074             :      */
    2075    16556598 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2076             : 
    2077             :     /*
    2078             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2079             :      * this will also pin the requisite visibility map page.
    2080             :      */
    2081    16556598 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2082             :                                        InvalidBuffer, options, bistate,
    2083             :                                        &vmbuffer, NULL,
    2084             :                                        0);
    2085             : 
    2086             :     /*
    2087             :      * We're about to do the actual insert -- but check for conflict first, to
    2088             :      * avoid possibly having to roll back work we've just done.
    2089             :      *
    2090             :      * This is safe without a recheck as long as there is no possibility of
    2091             :      * another process scanning the page between this check and the insert
    2092             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2093             :      * continuously held from this point until the tuple insert is visible).
    2094             :      *
    2095             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2096             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2097             :      * page locks are only consolidated versions of tuple locks; they do not
    2098             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2099             :      * buffer when making the call, which makes for a faster check.
    2100             :      */
    2101    16556598 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2102             : 
    2103             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2104    16556574 :     START_CRIT_SECTION();
    2105             : 
    2106    16556574 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2107    16556574 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2108             : 
    2109    16556574 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2110             :     {
    2111       14120 :         all_visible_cleared = true;
    2112       14120 :         PageClearAllVisible(BufferGetPage(buffer));
    2113       14120 :         visibilitymap_clear(relation,
    2114       14120 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2115             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2116             :     }
    2117             : 
    2118             :     /*
    2119             :      * XXX Should we set PageSetPrunable on this page ?
    2120             :      *
    2121             :      * The inserting transaction may eventually abort thus making this tuple
    2122             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2123             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2124             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2125             :      *
    2126             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2127             :      */
    2128             : 
    2129    16556574 :     MarkBufferDirty(buffer);
    2130             : 
    2131             :     /* XLOG stuff */
    2132    16556574 :     if (RelationNeedsWAL(relation))
    2133             :     {
    2134             :         xl_heap_insert xlrec;
    2135             :         xl_heap_header xlhdr;
    2136             :         XLogRecPtr  recptr;
    2137    14056720 :         Page        page = BufferGetPage(buffer);
    2138    14056720 :         uint8       info = XLOG_HEAP_INSERT;
    2139    14056720 :         int         bufflags = 0;
    2140             : 
    2141             :         /*
    2142             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2143             :          * decode, so log that as well.
    2144             :          */
    2145    14056720 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2146        6542 :             log_heap_new_cid(relation, heaptup);
    2147             : 
    2148             :         /*
    2149             :          * If this is the single and first tuple on page, we can reinit the
    2150             :          * page instead of restoring the whole thing.  Set flag, and hide
    2151             :          * buffer references from XLogInsert.
    2152             :          */
    2153    14237270 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2154      180550 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2155             :         {
    2156      178778 :             info |= XLOG_HEAP_INIT_PAGE;
    2157      178778 :             bufflags |= REGBUF_WILL_INIT;
    2158             :         }
    2159             : 
    2160    14056720 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2161    14056720 :         xlrec.flags = 0;
    2162    14056720 :         if (all_visible_cleared)
    2163       14114 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2164    14056720 :         if (options & HEAP_INSERT_SPECULATIVE)
    2165        4110 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2166             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2167             : 
    2168             :         /*
    2169             :          * For logical decoding, we need the tuple even if we're doing a full
    2170             :          * page write, so make sure it's included even if we take a full-page
    2171             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2172             :          */
    2173    14056720 :         if (RelationIsLogicallyLogged(relation) &&
    2174      499762 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2175             :         {
    2176      499708 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2177      499708 :             bufflags |= REGBUF_KEEP_DATA;
    2178             : 
    2179      499708 :             if (IsToastRelation(relation))
    2180        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2181             :         }
    2182             : 
    2183    14056720 :         XLogBeginInsert();
    2184    14056720 :         XLogRegisterData(&xlrec, SizeOfHeapInsert);
    2185             : 
    2186    14056720 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2187    14056720 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2188    14056720 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2189             : 
    2190             :         /*
    2191             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2192             :          * write the whole page to the xlog, we don't need to store
    2193             :          * xl_heap_header in the xlog.
    2194             :          */
    2195    14056720 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2196    14056720 :         XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    2197             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2198    14056720 :         XLogRegisterBufData(0,
    2199    14056720 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2200    14056720 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2201             : 
    2202             :         /* filtering by origin on a row level is much more efficient */
    2203    14056720 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2204             : 
    2205    14056720 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2206             : 
    2207    14056720 :         PageSetLSN(page, recptr);
    2208             :     }
    2209             : 
    2210    16556574 :     END_CRIT_SECTION();
    2211             : 
    2212    16556574 :     UnlockReleaseBuffer(buffer);
    2213    16556574 :     if (vmbuffer != InvalidBuffer)
    2214       14732 :         ReleaseBuffer(vmbuffer);
    2215             : 
    2216             :     /*
    2217             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2218             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2219             :      * the heaptup data structure is all in local memory, not in the shared
    2220             :      * buffer.
    2221             :      */
    2222    16556574 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2223             : 
    2224             :     /* Note: speculative insertions are counted too, even if aborted later */
    2225    16556574 :     pgstat_count_heap_insert(relation, 1);
    2226             : 
    2227             :     /*
    2228             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2229             :      * back to the caller's image, too.
    2230             :      */
    2231    16556574 :     if (heaptup != tup)
    2232             :     {
    2233       36020 :         tup->t_self = heaptup->t_self;
    2234       36020 :         heap_freetuple(heaptup);
    2235             :     }
    2236    16556574 : }
    2237             : 
    2238             : /*
    2239             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2240             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2241             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2242             :  * that in any case, the header fields are also set in the original tuple.
    2243             :  */
    2244             : static HeapTuple
    2245    20333150 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2246             :                     CommandId cid, int options)
    2247             : {
    2248             :     /*
    2249             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2250             :      * performed in workers. We have the infrastructure to allow parallel
    2251             :      * inserts in general except for the cases where inserts generate a new
    2252             :      * CommandId (eg. inserts into a table having a foreign key column).
    2253             :      */
    2254    20333150 :     if (IsParallelWorker())
    2255           0 :         ereport(ERROR,
    2256             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2257             :                  errmsg("cannot insert tuples in a parallel worker")));
    2258             : 
    2259    20333150 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2260    20333150 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2261    20333150 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2262    20333150 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2263    20333150 :     if (options & HEAP_INSERT_FROZEN)
    2264      204264 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2265             : 
    2266    20333150 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2267    20333150 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2268    20333150 :     tup->t_tableOid = RelationGetRelid(relation);
    2269             : 
    2270             :     /*
    2271             :      * If the new tuple is too big for storage or contains already toasted
    2272             :      * out-of-line attributes from some other relation, invoke the toaster.
    2273             :      */
    2274    20333150 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2275       60628 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2276             :     {
    2277             :         /* toast table entries should never be recursively toasted */
    2278             :         Assert(!HeapTupleHasExternal(tup));
    2279       60532 :         return tup;
    2280             :     }
    2281    20272618 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2282       36128 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2283             :     else
    2284    20236490 :         return tup;
    2285             : }
    2286             : 
    2287             : /*
    2288             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2289             :  * that inserting the remaining heaptuples requires. Used to determine how
    2290             :  * much the relation needs to be extended by.
    2291             :  */
    2292             : static int
    2293      726054 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2294             : {
    2295      726054 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2296      726054 :     int         npages = 1;
    2297             : 
    2298     6316704 :     for (int i = done; i < ntuples; i++)
    2299             :     {
    2300     5590650 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2301             : 
    2302     5590650 :         if (page_avail < tup_sz)
    2303             :         {
    2304       43500 :             npages++;
    2305       43500 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2306             :         }
    2307     5590650 :         page_avail -= tup_sz;
    2308             :     }
    2309             : 
    2310      726054 :     return npages;
    2311             : }
    2312             : 
    2313             : /*
    2314             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2315             :  *
    2316             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2317             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2318             :  * tuples can be inserted on a single page, we can write just a single WAL
    2319             :  * record covering all of them, and only need to lock/unlock the page once.
    2320             :  *
    2321             :  * Note: this leaks memory into the current memory context. You can create a
    2322             :  * temporary context before calling this, if that's a problem.
    2323             :  */
    2324             : void
    2325      712118 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2326             :                   CommandId cid, int options, BulkInsertState bistate)
    2327             : {
    2328      712118 :     TransactionId xid = GetCurrentTransactionId();
    2329             :     HeapTuple  *heaptuples;
    2330             :     int         i;
    2331             :     int         ndone;
    2332             :     PGAlignedBlock scratch;
    2333             :     Page        page;
    2334      712118 :     Buffer      vmbuffer = InvalidBuffer;
    2335             :     bool        needwal;
    2336             :     Size        saveFreeSpace;
    2337      712118 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2338      712118 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2339      712118 :     bool        starting_with_empty_page = false;
    2340      712118 :     int         npages = 0;
    2341      712118 :     int         npages_used = 0;
    2342             : 
    2343             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2344             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2345             : 
    2346      712118 :     needwal = RelationNeedsWAL(relation);
    2347      712118 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2348             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2349             : 
    2350             :     /* Toast and set header data in all the slots */
    2351      712118 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2352     4488670 :     for (i = 0; i < ntuples; i++)
    2353             :     {
    2354             :         HeapTuple   tuple;
    2355             : 
    2356     3776552 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2357     3776552 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2358     3776552 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2359     3776552 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2360             :                                             options);
    2361             :     }
    2362             : 
    2363             :     /*
    2364             :      * We're about to do the actual inserts -- but check for conflict first,
    2365             :      * to minimize the possibility of having to roll back work we've just
    2366             :      * done.
    2367             :      *
    2368             :      * A check here does not definitively prevent a serialization anomaly;
    2369             :      * that check MUST be done at least past the point of acquiring an
    2370             :      * exclusive buffer content lock on every buffer that will be affected,
    2371             :      * and MAY be done after all inserts are reflected in the buffers and
    2372             :      * those locks are released; otherwise there is a race condition.  Since
    2373             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2374             :      * would not be feasible to identify and lock all of those buffers before
    2375             :      * the loop, we must do a final check at the end.
    2376             :      *
    2377             :      * The check here could be omitted with no loss of correctness; it is
    2378             :      * present strictly as an optimization.
    2379             :      *
    2380             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2381             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2382             :      * page locks are only consolidated versions of tuple locks; they do not
    2383             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2384             :      * buffer when making the call, which makes for a faster check.
    2385             :      */
    2386      712118 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2387             : 
    2388      712118 :     ndone = 0;
    2389     1461106 :     while (ndone < ntuples)
    2390             :     {
    2391             :         Buffer      buffer;
    2392      748988 :         bool        all_visible_cleared = false;
    2393      748988 :         bool        all_frozen_set = false;
    2394             :         int         nthispage;
    2395             : 
    2396      748988 :         CHECK_FOR_INTERRUPTS();
    2397             : 
    2398             :         /*
    2399             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2400             :          * the worst case.  This will be used to determine how much to extend
    2401             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2402             :          * filled a prior page from scratch, we can just update our last
    2403             :          * computation, but if we started with a partially filled page,
    2404             :          * recompute from scratch, the number of potentially required pages
    2405             :          * can vary due to tuples needing to fit onto the page, page headers
    2406             :          * etc.
    2407             :          */
    2408      748988 :         if (ndone == 0 || !starting_with_empty_page)
    2409             :         {
    2410      726054 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2411             :                                              saveFreeSpace);
    2412      726054 :             npages_used = 0;
    2413             :         }
    2414             :         else
    2415       22934 :             npages_used++;
    2416             : 
    2417             :         /*
    2418             :          * Find buffer where at least the next tuple will fit.  If the page is
    2419             :          * all-visible, this will also pin the requisite visibility map page.
    2420             :          *
    2421             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2422             :          * empty page. See all_frozen_set below.
    2423             :          */
    2424      748988 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2425             :                                            InvalidBuffer, options, bistate,
    2426             :                                            &vmbuffer, NULL,
    2427             :                                            npages - npages_used);
    2428      748988 :         page = BufferGetPage(buffer);
    2429             : 
    2430      748988 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2431             : 
    2432      748988 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2433        3322 :             all_frozen_set = true;
    2434             : 
    2435             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2436      748988 :         START_CRIT_SECTION();
    2437             : 
    2438             :         /*
    2439             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2440             :          * Put that on the page, and then as many other tuples as fit.
    2441             :          */
    2442      748988 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2443             : 
    2444             :         /*
    2445             :          * For logical decoding we need combo CIDs to properly decode the
    2446             :          * catalog.
    2447             :          */
    2448      748988 :         if (needwal && need_cids)
    2449        9682 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2450             : 
    2451     3776552 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2452             :         {
    2453     3064434 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2454             : 
    2455     3064434 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2456       36870 :                 break;
    2457             : 
    2458     3027564 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2459             : 
    2460             :             /*
    2461             :              * For logical decoding we need combo CIDs to properly decode the
    2462             :              * catalog.
    2463             :              */
    2464     3027564 :             if (needwal && need_cids)
    2465        9202 :                 log_heap_new_cid(relation, heaptup);
    2466             :         }
    2467             : 
    2468             :         /*
    2469             :          * If the page is all visible, need to clear that, unless we're only
    2470             :          * going to add further frozen rows to it.
    2471             :          *
    2472             :          * If we're only adding already frozen rows to a previously empty
    2473             :          * page, mark it as all-visible.
    2474             :          */
    2475      748988 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2476             :         {
    2477        6458 :             all_visible_cleared = true;
    2478        6458 :             PageClearAllVisible(page);
    2479        6458 :             visibilitymap_clear(relation,
    2480             :                                 BufferGetBlockNumber(buffer),
    2481             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2482             :         }
    2483      742530 :         else if (all_frozen_set)
    2484        3322 :             PageSetAllVisible(page);
    2485             : 
    2486             :         /*
    2487             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2488             :          */
    2489             : 
    2490      748988 :         MarkBufferDirty(buffer);
    2491             : 
    2492             :         /* XLOG stuff */
    2493      748988 :         if (needwal)
    2494             :         {
    2495             :             XLogRecPtr  recptr;
    2496             :             xl_heap_multi_insert *xlrec;
    2497      732244 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2498             :             char       *tupledata;
    2499             :             int         totaldatalen;
    2500      732244 :             char       *scratchptr = scratch.data;
    2501             :             bool        init;
    2502      732244 :             int         bufflags = 0;
    2503             : 
    2504             :             /*
    2505             :              * If the page was previously empty, we can reinit the page
    2506             :              * instead of restoring the whole thing.
    2507             :              */
    2508      732244 :             init = starting_with_empty_page;
    2509             : 
    2510             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2511      732244 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2512      732244 :             scratchptr += SizeOfHeapMultiInsert;
    2513             : 
    2514             :             /*
    2515             :              * Allocate offsets array. Unless we're reinitializing the page,
    2516             :              * in that case the tuples are stored in order starting at
    2517             :              * FirstOffsetNumber and we don't need to store the offsets
    2518             :              * explicitly.
    2519             :              */
    2520      732244 :             if (!init)
    2521      706210 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2522             : 
    2523             :             /* the rest of the scratch space is used for tuple data */
    2524      732244 :             tupledata = scratchptr;
    2525             : 
    2526             :             /* check that the mutually exclusive flags are not both set */
    2527             :             Assert(!(all_visible_cleared && all_frozen_set));
    2528             : 
    2529      732244 :             xlrec->flags = 0;
    2530      732244 :             if (all_visible_cleared)
    2531        6458 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2532      732244 :             if (all_frozen_set)
    2533          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2534             : 
    2535      732244 :             xlrec->ntuples = nthispage;
    2536             : 
    2537             :             /*
    2538             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2539             :              * for each tuple.
    2540             :              */
    2541     3260874 :             for (i = 0; i < nthispage; i++)
    2542             :             {
    2543     2528630 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2544             :                 xl_multi_insert_tuple *tuphdr;
    2545             :                 int         datalen;
    2546             : 
    2547     2528630 :                 if (!init)
    2548     1492334 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2549             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2550     2528630 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2551     2528630 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2552             : 
    2553     2528630 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2554     2528630 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2555     2528630 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2556             : 
    2557             :                 /* write bitmap [+ padding] [+ oid] + data */
    2558     2528630 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2559     2528630 :                 memcpy(scratchptr,
    2560     2528630 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2561             :                        datalen);
    2562     2528630 :                 tuphdr->datalen = datalen;
    2563     2528630 :                 scratchptr += datalen;
    2564             :             }
    2565      732244 :             totaldatalen = scratchptr - tupledata;
    2566             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2567             : 
    2568      732244 :             if (need_tuple_data)
    2569         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2570             : 
    2571             :             /*
    2572             :              * Signal that this is the last xl_heap_multi_insert record
    2573             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2574             :              * decoding so it knows when to cleanup temporary data.
    2575             :              */
    2576      732244 :             if (ndone + nthispage == ntuples)
    2577      709604 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2578             : 
    2579      732244 :             if (init)
    2580             :             {
    2581       26034 :                 info |= XLOG_HEAP_INIT_PAGE;
    2582       26034 :                 bufflags |= REGBUF_WILL_INIT;
    2583             :             }
    2584             : 
    2585             :             /*
    2586             :              * If we're doing logical decoding, include the new tuple data
    2587             :              * even if we take a full-page image of the page.
    2588             :              */
    2589      732244 :             if (need_tuple_data)
    2590         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2591             : 
    2592      732244 :             XLogBeginInsert();
    2593      732244 :             XLogRegisterData(xlrec, tupledata - scratch.data);
    2594      732244 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2595             : 
    2596      732244 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2597             : 
    2598             :             /* filtering by origin on a row level is much more efficient */
    2599      732244 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2600             : 
    2601      732244 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2602             : 
    2603      732244 :             PageSetLSN(page, recptr);
    2604             :         }
    2605             : 
    2606      748988 :         END_CRIT_SECTION();
    2607             : 
    2608             :         /*
    2609             :          * If we've frozen everything on the page, update the visibilitymap.
    2610             :          * We're already holding pin on the vmbuffer.
    2611             :          */
    2612      748988 :         if (all_frozen_set)
    2613             :         {
    2614             :             Assert(PageIsAllVisible(page));
    2615             :             Assert(visibilitymap_pin_ok(BufferGetBlockNumber(buffer), vmbuffer));
    2616             : 
    2617             :             /*
    2618             :              * It's fine to use InvalidTransactionId here - this is only used
    2619             :              * when HEAP_INSERT_FROZEN is specified, which intentionally
    2620             :              * violates visibility rules.
    2621             :              */
    2622        3322 :             visibilitymap_set(relation, BufferGetBlockNumber(buffer), buffer,
    2623             :                               InvalidXLogRecPtr, vmbuffer,
    2624             :                               InvalidTransactionId,
    2625             :                               VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
    2626             :         }
    2627             : 
    2628      748988 :         UnlockReleaseBuffer(buffer);
    2629      748988 :         ndone += nthispage;
    2630             : 
    2631             :         /*
    2632             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2633             :          * likely that we'll insert into subsequent heap pages that are likely
    2634             :          * to use the same vm page.
    2635             :          */
    2636             :     }
    2637             : 
    2638             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2639      712118 :     if (vmbuffer != InvalidBuffer)
    2640        6652 :         ReleaseBuffer(vmbuffer);
    2641             : 
    2642             :     /*
    2643             :      * We're done with the actual inserts.  Check for conflicts again, to
    2644             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2645             :      * this final check, a sequential scan of the heap may have locked the
    2646             :      * table after the "before" check, missing one opportunity to detect the
    2647             :      * conflict, and then scanned the table before the new tuples were there,
    2648             :      * missing the other chance to detect the conflict.
    2649             :      *
    2650             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2651             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2652             :      * page locks are only consolidated versions of tuple locks; they do not
    2653             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2654             :      * buffer when making the call.
    2655             :      */
    2656      712118 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2657             : 
    2658             :     /*
    2659             :      * If tuples are cachable, mark them for invalidation from the caches in
    2660             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2661             :      * because the heaptuples data structure is all in local memory, not in
    2662             :      * the shared buffer.
    2663             :      */
    2664      712118 :     if (IsCatalogRelation(relation))
    2665             :     {
    2666     2445782 :         for (i = 0; i < ntuples; i++)
    2667     1737806 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2668             :     }
    2669             : 
    2670             :     /* copy t_self fields back to the caller's slots */
    2671     4488670 :     for (i = 0; i < ntuples; i++)
    2672     3776552 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2673             : 
    2674      712118 :     pgstat_count_heap_insert(relation, ntuples);
    2675      712118 : }
    2676             : 
    2677             : /*
    2678             :  *  simple_heap_insert - insert a tuple
    2679             :  *
    2680             :  * Currently, this routine differs from heap_insert only in supplying
    2681             :  * a default command ID and not allowing access to the speedup options.
    2682             :  *
    2683             :  * This should be used rather than using heap_insert directly in most places
    2684             :  * where we are modifying system catalogs.
    2685             :  */
    2686             : void
    2687     1763822 : simple_heap_insert(Relation relation, HeapTuple tup)
    2688             : {
    2689     1763822 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2690     1763822 : }
    2691             : 
    2692             : /*
    2693             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2694             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2695             :  * xl_heap_lock_updated WAL records.
    2696             :  *
    2697             :  * See fix_infomask_from_infobits.
    2698             :  */
    2699             : static uint8
    2700     3855860 : compute_infobits(uint16 infomask, uint16 infomask2)
    2701             : {
    2702             :     return
    2703     3855860 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2704     3855860 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2705     3855860 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2706             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2707     7711720 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2708             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2709     3855860 :          XLHL_KEYS_UPDATED : 0);
    2710             : }
    2711             : 
    2712             : /*
    2713             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2714             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2715             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2716             :  * that the tuple state continues to be the same it was when we previously
    2717             :  * examined it.
    2718             :  *
    2719             :  * Note the Xmax field itself must be compared separately.
    2720             :  */
    2721             : static inline bool
    2722       10658 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2723             : {
    2724       10658 :     const uint16 interesting =
    2725             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2726             : 
    2727       10658 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2728          28 :         return true;
    2729             : 
    2730       10630 :     return false;
    2731             : }
    2732             : 
    2733             : /*
    2734             :  *  heap_delete - delete a tuple
    2735             :  *
    2736             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2737             :  * this routine directly takes a tuple rather than a slot.
    2738             :  *
    2739             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2740             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2741             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2742             :  * generated by another transaction).
    2743             :  */
    2744             : TM_Result
    2745     2949494 : heap_delete(Relation relation, ItemPointer tid,
    2746             :             CommandId cid, Snapshot crosscheck, bool wait,
    2747             :             TM_FailureData *tmfd, bool changingPart)
    2748             : {
    2749             :     TM_Result   result;
    2750     2949494 :     TransactionId xid = GetCurrentTransactionId();
    2751             :     ItemId      lp;
    2752             :     HeapTupleData tp;
    2753             :     Page        page;
    2754             :     BlockNumber block;
    2755             :     Buffer      buffer;
    2756     2949494 :     Buffer      vmbuffer = InvalidBuffer;
    2757             :     TransactionId new_xmax;
    2758             :     uint16      new_infomask,
    2759             :                 new_infomask2;
    2760     2949494 :     bool        have_tuple_lock = false;
    2761             :     bool        iscombo;
    2762     2949494 :     bool        all_visible_cleared = false;
    2763     2949494 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2764     2949494 :     bool        old_key_copied = false;
    2765             : 
    2766             :     Assert(ItemPointerIsValid(tid));
    2767             : 
    2768             :     /*
    2769             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2770             :      * Other workers might need that combo CID for visibility checks, and we
    2771             :      * have no provision for broadcasting it to them.
    2772             :      */
    2773     2949494 :     if (IsInParallelMode())
    2774           0 :         ereport(ERROR,
    2775             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2776             :                  errmsg("cannot delete tuples during a parallel operation")));
    2777             : 
    2778     2949494 :     block = ItemPointerGetBlockNumber(tid);
    2779     2949494 :     buffer = ReadBuffer(relation, block);
    2780     2949494 :     page = BufferGetPage(buffer);
    2781             : 
    2782             :     /*
    2783             :      * Before locking the buffer, pin the visibility map page if it appears to
    2784             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2785             :      * in the middle of changing this, so we'll need to recheck after we have
    2786             :      * the lock.
    2787             :      */
    2788     2949494 :     if (PageIsAllVisible(page))
    2789         396 :         visibilitymap_pin(relation, block, &vmbuffer);
    2790             : 
    2791     2949494 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2792             : 
    2793     2949494 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2794             :     Assert(ItemIdIsNormal(lp));
    2795             : 
    2796     2949494 :     tp.t_tableOid = RelationGetRelid(relation);
    2797     2949494 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2798     2949494 :     tp.t_len = ItemIdGetLength(lp);
    2799     2949494 :     tp.t_self = *tid;
    2800             : 
    2801     2949496 : l1:
    2802             : 
    2803             :     /*
    2804             :      * If we didn't pin the visibility map page and the page has become all
    2805             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2806             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2807             :      * unfortunate, but hopefully shouldn't happen often.
    2808             :      */
    2809     2949496 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2810             :     {
    2811           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2812           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2813           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2814             :     }
    2815             : 
    2816     2949496 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2817             : 
    2818     2949496 :     if (result == TM_Invisible)
    2819             :     {
    2820           0 :         UnlockReleaseBuffer(buffer);
    2821           0 :         ereport(ERROR,
    2822             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2823             :                  errmsg("attempted to delete invisible tuple")));
    2824             :     }
    2825     2949496 :     else if (result == TM_BeingModified && wait)
    2826             :     {
    2827             :         TransactionId xwait;
    2828             :         uint16      infomask;
    2829             : 
    2830             :         /* must copy state data before unlocking buffer */
    2831       81080 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2832       81080 :         infomask = tp.t_data->t_infomask;
    2833             : 
    2834             :         /*
    2835             :          * Sleep until concurrent transaction ends -- except when there's a
    2836             :          * single locker and it's our own transaction.  Note we don't care
    2837             :          * which lock mode the locker has, because we need the strongest one.
    2838             :          *
    2839             :          * Before sleeping, we need to acquire tuple lock to establish our
    2840             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2841             :          * release us when we are next-in-line for the tuple.
    2842             :          *
    2843             :          * If we are forced to "start over" below, we keep the tuple lock;
    2844             :          * this arranges that we stay at the head of the line while rechecking
    2845             :          * tuple state.
    2846             :          */
    2847       81080 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2848             :         {
    2849          16 :             bool        current_is_member = false;
    2850             : 
    2851          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2852             :                                         LockTupleExclusive, &current_is_member))
    2853             :             {
    2854          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2855             : 
    2856             :                 /*
    2857             :                  * Acquire the lock, if necessary (but skip it when we're
    2858             :                  * requesting a lock and already have one; avoids deadlock).
    2859             :                  */
    2860          16 :                 if (!current_is_member)
    2861          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2862             :                                          LockWaitBlock, &have_tuple_lock);
    2863             : 
    2864             :                 /* wait for multixact */
    2865          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2866             :                                 relation, &(tp.t_self), XLTW_Delete,
    2867             :                                 NULL);
    2868          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2869             : 
    2870             :                 /*
    2871             :                  * If xwait had just locked the tuple then some other xact
    2872             :                  * could update this tuple before we get to this point.  Check
    2873             :                  * for xmax change, and start over if so.
    2874             :                  *
    2875             :                  * We also must start over if we didn't pin the VM page, and
    2876             :                  * the page has become all visible.
    2877             :                  */
    2878          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2879          32 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2880          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2881             :                                          xwait))
    2882           0 :                     goto l1;
    2883             :             }
    2884             : 
    2885             :             /*
    2886             :              * You might think the multixact is necessarily done here, but not
    2887             :              * so: it could have surviving members, namely our own xact or
    2888             :              * other subxacts of this backend.  It is legal for us to delete
    2889             :              * the tuple in either case, however (the latter case is
    2890             :              * essentially a situation of upgrading our former shared lock to
    2891             :              * exclusive).  We don't bother changing the on-disk hint bits
    2892             :              * since we are about to overwrite the xmax altogether.
    2893             :              */
    2894             :         }
    2895       81064 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2896             :         {
    2897             :             /*
    2898             :              * Wait for regular transaction to end; but first, acquire tuple
    2899             :              * lock.
    2900             :              */
    2901          80 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2902          80 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2903             :                                  LockWaitBlock, &have_tuple_lock);
    2904          80 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2905          72 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2906             : 
    2907             :             /*
    2908             :              * xwait is done, but if xwait had just locked the tuple then some
    2909             :              * other xact could update this tuple before we get to this point.
    2910             :              * Check for xmax change, and start over if so.
    2911             :              *
    2912             :              * We also must start over if we didn't pin the VM page, and the
    2913             :              * page has become all visible.
    2914             :              */
    2915         144 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2916         142 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2917          70 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2918             :                                      xwait))
    2919           2 :                 goto l1;
    2920             : 
    2921             :             /* Otherwise check if it committed or aborted */
    2922          70 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2923             :         }
    2924             : 
    2925             :         /*
    2926             :          * We may overwrite if previous xmax aborted, or if it committed but
    2927             :          * only locked the tuple without updating it.
    2928             :          */
    2929      162112 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2930       81092 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2931          50 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2932       81028 :             result = TM_Ok;
    2933          42 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2934          34 :             result = TM_Updated;
    2935             :         else
    2936           8 :             result = TM_Deleted;
    2937             :     }
    2938             : 
    2939             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2940             :     if (result != TM_Ok)
    2941             :     {
    2942             :         Assert(result == TM_SelfModified ||
    2943             :                result == TM_Updated ||
    2944             :                result == TM_Deleted ||
    2945             :                result == TM_BeingModified);
    2946             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2947             :         Assert(result != TM_Updated ||
    2948             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2949             :     }
    2950             : 
    2951     2949486 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2952             :     {
    2953             :         /* Perform additional check for transaction-snapshot mode RI updates */
    2954           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    2955           2 :             result = TM_Updated;
    2956             :     }
    2957             : 
    2958     2949486 :     if (result != TM_Ok)
    2959             :     {
    2960         112 :         tmfd->ctid = tp.t_data->t_ctid;
    2961         112 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    2962         112 :         if (result == TM_SelfModified)
    2963          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    2964             :         else
    2965          70 :             tmfd->cmax = InvalidCommandId;
    2966         112 :         UnlockReleaseBuffer(buffer);
    2967         112 :         if (have_tuple_lock)
    2968          42 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    2969         112 :         if (vmbuffer != InvalidBuffer)
    2970           0 :             ReleaseBuffer(vmbuffer);
    2971         112 :         return result;
    2972             :     }
    2973             : 
    2974             :     /*
    2975             :      * We're about to do the actual delete -- check for conflict first, to
    2976             :      * avoid possibly having to roll back work we've just done.
    2977             :      *
    2978             :      * This is safe without a recheck as long as there is no possibility of
    2979             :      * another process scanning the page between this check and the delete
    2980             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2981             :      * continuously held from this point until the tuple delete is visible).
    2982             :      */
    2983     2949374 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    2984             : 
    2985             :     /* replace cid with a combo CID if necessary */
    2986     2949346 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    2987             : 
    2988             :     /*
    2989             :      * Compute replica identity tuple before entering the critical section so
    2990             :      * we don't PANIC upon a memory allocation failure.
    2991             :      */
    2992     2949346 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    2993             : 
    2994             :     /*
    2995             :      * If this is the first possibly-multixact-able operation in the current
    2996             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    2997             :      * certain that the transaction will never become a member of any older
    2998             :      * MultiXactIds than that.  (We have to do this even if we end up just
    2999             :      * using our own TransactionId below, since some other backend could
    3000             :      * incorporate our XID into a MultiXact immediately afterwards.)
    3001             :      */
    3002     2949346 :     MultiXactIdSetOldestMember();
    3003             : 
    3004     2949346 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    3005     2949346 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    3006             :                               xid, LockTupleExclusive, true,
    3007             :                               &new_xmax, &new_infomask, &new_infomask2);
    3008             : 
    3009     2949346 :     START_CRIT_SECTION();
    3010             : 
    3011             :     /*
    3012             :      * If this transaction commits, the tuple will become DEAD sooner or
    3013             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3014             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3015             :      * the subsequent page pruning will be a no-op and the hint will be
    3016             :      * cleared.
    3017             :      */
    3018     2949346 :     PageSetPrunable(page, xid);
    3019             : 
    3020     2949346 :     if (PageIsAllVisible(page))
    3021             :     {
    3022         396 :         all_visible_cleared = true;
    3023         396 :         PageClearAllVisible(page);
    3024         396 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3025             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3026             :     }
    3027             : 
    3028             :     /* store transaction information of xact deleting the tuple */
    3029     2949346 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3030     2949346 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3031     2949346 :     tp.t_data->t_infomask |= new_infomask;
    3032     2949346 :     tp.t_data->t_infomask2 |= new_infomask2;
    3033     2949346 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    3034     2949346 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    3035     2949346 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    3036             :     /* Make sure there is no forward chain link in t_ctid */
    3037     2949346 :     tp.t_data->t_ctid = tp.t_self;
    3038             : 
    3039             :     /* Signal that this is actually a move into another partition */
    3040     2949346 :     if (changingPart)
    3041         964 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    3042             : 
    3043     2949346 :     MarkBufferDirty(buffer);
    3044             : 
    3045             :     /*
    3046             :      * XLOG stuff
    3047             :      *
    3048             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    3049             :      * routines.
    3050             :      */
    3051     2949346 :     if (RelationNeedsWAL(relation))
    3052             :     {
    3053             :         xl_heap_delete xlrec;
    3054             :         xl_heap_header xlhdr;
    3055             :         XLogRecPtr  recptr;
    3056             : 
    3057             :         /*
    3058             :          * For logical decode we need combo CIDs to properly decode the
    3059             :          * catalog
    3060             :          */
    3061     2828128 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3062       12334 :             log_heap_new_cid(relation, &tp);
    3063             : 
    3064     2828128 :         xlrec.flags = 0;
    3065     2828128 :         if (all_visible_cleared)
    3066         396 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3067     2828128 :         if (changingPart)
    3068         964 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3069     5656256 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3070     2828128 :                                               tp.t_data->t_infomask2);
    3071     2828128 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3072     2828128 :         xlrec.xmax = new_xmax;
    3073             : 
    3074     2828128 :         if (old_key_tuple != NULL)
    3075             :         {
    3076       94028 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3077         256 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3078             :             else
    3079       93772 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3080             :         }
    3081             : 
    3082     2828128 :         XLogBeginInsert();
    3083     2828128 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    3084             : 
    3085     2828128 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3086             : 
    3087             :         /*
    3088             :          * Log replica identity of the deleted tuple if there is one
    3089             :          */
    3090     2828128 :         if (old_key_tuple != NULL)
    3091             :         {
    3092       94028 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3093       94028 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3094       94028 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3095             : 
    3096       94028 :             XLogRegisterData(&xlhdr, SizeOfHeapHeader);
    3097       94028 :             XLogRegisterData((char *) old_key_tuple->t_data
    3098             :                              + SizeofHeapTupleHeader,
    3099       94028 :                              old_key_tuple->t_len
    3100             :                              - SizeofHeapTupleHeader);
    3101             :         }
    3102             : 
    3103             :         /* filtering by origin on a row level is much more efficient */
    3104     2828128 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3105             : 
    3106     2828128 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3107             : 
    3108     2828128 :         PageSetLSN(page, recptr);
    3109             :     }
    3110             : 
    3111     2949346 :     END_CRIT_SECTION();
    3112             : 
    3113     2949346 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3114             : 
    3115     2949346 :     if (vmbuffer != InvalidBuffer)
    3116         396 :         ReleaseBuffer(vmbuffer);
    3117             : 
    3118             :     /*
    3119             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3120             :      * those items too.  We have to do this before releasing the buffer
    3121             :      * because we need to look at the contents of the tuple, but it's OK to
    3122             :      * release the content lock on the buffer first.
    3123             :      */
    3124     2949346 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3125        4796 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3126             :     {
    3127             :         /* toast table entries should never be recursively toasted */
    3128             :         Assert(!HeapTupleHasExternal(&tp));
    3129             :     }
    3130     2944570 :     else if (HeapTupleHasExternal(&tp))
    3131         586 :         heap_toast_delete(relation, &tp, false);
    3132             : 
    3133             :     /*
    3134             :      * Mark tuple for invalidation from system caches at next command
    3135             :      * boundary. We have to do this before releasing the buffer because we
    3136             :      * need to look at the contents of the tuple.
    3137             :      */
    3138     2949346 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3139             : 
    3140             :     /* Now we can release the buffer */
    3141     2949346 :     ReleaseBuffer(buffer);
    3142             : 
    3143             :     /*
    3144             :      * Release the lmgr tuple lock, if we had it.
    3145             :      */
    3146     2949346 :     if (have_tuple_lock)
    3147          40 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3148             : 
    3149     2949346 :     pgstat_count_heap_delete(relation);
    3150             : 
    3151     2949346 :     if (old_key_tuple != NULL && old_key_copied)
    3152       93774 :         heap_freetuple(old_key_tuple);
    3153             : 
    3154     2949346 :     return TM_Ok;
    3155             : }
    3156             : 
    3157             : /*
    3158             :  *  simple_heap_delete - delete a tuple
    3159             :  *
    3160             :  * This routine may be used to delete a tuple when concurrent updates of
    3161             :  * the target tuple are not expected (for example, because we have a lock
    3162             :  * on the relation associated with the tuple).  Any failure is reported
    3163             :  * via ereport().
    3164             :  */
    3165             : void
    3166     1223022 : simple_heap_delete(Relation relation, ItemPointer tid)
    3167             : {
    3168             :     TM_Result   result;
    3169             :     TM_FailureData tmfd;
    3170             : 
    3171     1223022 :     result = heap_delete(relation, tid,
    3172             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3173             :                          true /* wait for commit */ ,
    3174             :                          &tmfd, false /* changingPart */ );
    3175     1223022 :     switch (result)
    3176             :     {
    3177           0 :         case TM_SelfModified:
    3178             :             /* Tuple was already updated in current command? */
    3179           0 :             elog(ERROR, "tuple already updated by self");
    3180             :             break;
    3181             : 
    3182     1223022 :         case TM_Ok:
    3183             :             /* done successfully */
    3184     1223022 :             break;
    3185             : 
    3186           0 :         case TM_Updated:
    3187           0 :             elog(ERROR, "tuple concurrently updated");
    3188             :             break;
    3189             : 
    3190           0 :         case TM_Deleted:
    3191           0 :             elog(ERROR, "tuple concurrently deleted");
    3192             :             break;
    3193             : 
    3194           0 :         default:
    3195           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3196             :             break;
    3197             :     }
    3198     1223022 : }
    3199             : 
    3200             : /*
    3201             :  *  heap_update - replace a tuple
    3202             :  *
    3203             :  * See table_tuple_update() for an explanation of the parameters, except that
    3204             :  * this routine directly takes a tuple rather than a slot.
    3205             :  *
    3206             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3207             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3208             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3209             :  * generated by another transaction).
    3210             :  */
    3211             : TM_Result
    3212      608496 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3213             :             CommandId cid, Snapshot crosscheck, bool wait,
    3214             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3215             :             TU_UpdateIndexes *update_indexes)
    3216             : {
    3217             :     TM_Result   result;
    3218      608496 :     TransactionId xid = GetCurrentTransactionId();
    3219             :     Bitmapset  *hot_attrs;
    3220             :     Bitmapset  *sum_attrs;
    3221             :     Bitmapset  *key_attrs;
    3222             :     Bitmapset  *id_attrs;
    3223             :     Bitmapset  *interesting_attrs;
    3224             :     Bitmapset  *modified_attrs;
    3225             :     ItemId      lp;
    3226             :     HeapTupleData oldtup;
    3227             :     HeapTuple   heaptup;
    3228      608496 :     HeapTuple   old_key_tuple = NULL;
    3229      608496 :     bool        old_key_copied = false;
    3230             :     Page        page;
    3231             :     BlockNumber block;
    3232             :     MultiXactStatus mxact_status;
    3233             :     Buffer      buffer,
    3234             :                 newbuf,
    3235      608496 :                 vmbuffer = InvalidBuffer,
    3236      608496 :                 vmbuffer_new = InvalidBuffer;
    3237             :     bool        need_toast;
    3238             :     Size        newtupsize,
    3239             :                 pagefree;
    3240      608496 :     bool        have_tuple_lock = false;
    3241             :     bool        iscombo;
    3242      608496 :     bool        use_hot_update = false;
    3243      608496 :     bool        summarized_update = false;
    3244             :     bool        key_intact;
    3245      608496 :     bool        all_visible_cleared = false;
    3246      608496 :     bool        all_visible_cleared_new = false;
    3247             :     bool        checked_lockers;
    3248             :     bool        locker_remains;
    3249      608496 :     bool        id_has_external = false;
    3250             :     TransactionId xmax_new_tuple,
    3251             :                 xmax_old_tuple;
    3252             :     uint16      infomask_old_tuple,
    3253             :                 infomask2_old_tuple,
    3254             :                 infomask_new_tuple,
    3255             :                 infomask2_new_tuple;
    3256             : 
    3257             :     Assert(ItemPointerIsValid(otid));
    3258             : 
    3259             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3260             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3261             :            RelationGetNumberOfAttributes(relation));
    3262             : 
    3263             :     /*
    3264             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3265             :      * Other workers might need that combo CID for visibility checks, and we
    3266             :      * have no provision for broadcasting it to them.
    3267             :      */
    3268      608496 :     if (IsInParallelMode())
    3269           0 :         ereport(ERROR,
    3270             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3271             :                  errmsg("cannot update tuples during a parallel operation")));
    3272             : 
    3273             : #ifdef USE_ASSERT_CHECKING
    3274             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3275             : #endif
    3276             : 
    3277             :     /*
    3278             :      * Fetch the list of attributes to be checked for various operations.
    3279             :      *
    3280             :      * For HOT considerations, this is wasted effort if we fail to update or
    3281             :      * have to put the new tuple on a different page.  But we must compute the
    3282             :      * list before obtaining buffer lock --- in the worst case, if we are
    3283             :      * doing an update on one of the relevant system catalogs, we could
    3284             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3285             :      * caches the data so this is usually pretty cheap.
    3286             :      *
    3287             :      * We also need columns used by the replica identity and columns that are
    3288             :      * considered the "key" of rows in the table.
    3289             :      *
    3290             :      * Note that we get copies of each bitmap, so we need not worry about
    3291             :      * relcache flush happening midway through.
    3292             :      */
    3293      608496 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3294             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3295      608496 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3296             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3297      608496 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3298      608496 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3299             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3300      608496 :     interesting_attrs = NULL;
    3301      608496 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3302      608496 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3303      608496 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3304      608496 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3305             : 
    3306      608496 :     block = ItemPointerGetBlockNumber(otid);
    3307      608496 :     INJECTION_POINT("heap_update-before-pin");
    3308      608496 :     buffer = ReadBuffer(relation, block);
    3309      608496 :     page = BufferGetPage(buffer);
    3310             : 
    3311             :     /*
    3312             :      * Before locking the buffer, pin the visibility map page if it appears to
    3313             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3314             :      * in the middle of changing this, so we'll need to recheck after we have
    3315             :      * the lock.
    3316             :      */
    3317      608496 :     if (PageIsAllVisible(page))
    3318        3056 :         visibilitymap_pin(relation, block, &vmbuffer);
    3319             : 
    3320      608496 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3321             : 
    3322      608496 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3323             : 
    3324             :     /*
    3325             :      * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
    3326             :      * we see LP_NORMAL here.  When the otid origin is a syscache, we may have
    3327             :      * neither a pin nor a snapshot.  Hence, we may see other LP_ states, each
    3328             :      * of which indicates concurrent pruning.
    3329             :      *
    3330             :      * Failing with TM_Updated would be most accurate.  However, unlike other
    3331             :      * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
    3332             :      * LP_DEAD cases.  While the distinction between TM_Updated and TM_Deleted
    3333             :      * does matter to SQL statements UPDATE and MERGE, those SQL statements
    3334             :      * hold a snapshot that ensures LP_NORMAL.  Hence, the choice between
    3335             :      * TM_Updated and TM_Deleted affects only the wording of error messages.
    3336             :      * Settle on TM_Deleted, for two reasons.  First, it avoids complicating
    3337             :      * the specification of when tmfd->ctid is valid.  Second, it creates
    3338             :      * error log evidence that we took this branch.
    3339             :      *
    3340             :      * Since it's possible to see LP_UNUSED at otid, it's also possible to see
    3341             :      * LP_NORMAL for a tuple that replaced LP_UNUSED.  If it's a tuple for an
    3342             :      * unrelated row, we'll fail with "duplicate key value violates unique".
    3343             :      * XXX if otid is the live, newer version of the newtup row, we'll discard
    3344             :      * changes originating in versions of this catalog row after the version
    3345             :      * the caller got from syscache.  See syscache-update-pruned.spec.
    3346             :      */
    3347      608496 :     if (!ItemIdIsNormal(lp))
    3348             :     {
    3349             :         Assert(RelationSupportsSysCache(RelationGetRelid(relation)));
    3350             : 
    3351           2 :         UnlockReleaseBuffer(buffer);
    3352             :         Assert(!have_tuple_lock);
    3353           2 :         if (vmbuffer != InvalidBuffer)
    3354           2 :             ReleaseBuffer(vmbuffer);
    3355           2 :         tmfd->ctid = *otid;
    3356           2 :         tmfd->xmax = InvalidTransactionId;
    3357           2 :         tmfd->cmax = InvalidCommandId;
    3358           2 :         *update_indexes = TU_None;
    3359             : 
    3360           2 :         bms_free(hot_attrs);
    3361           2 :         bms_free(sum_attrs);
    3362           2 :         bms_free(key_attrs);
    3363           2 :         bms_free(id_attrs);
    3364             :         /* modified_attrs not yet initialized */
    3365           2 :         bms_free(interesting_attrs);
    3366           2 :         return TM_Deleted;
    3367             :     }
    3368             : 
    3369             :     /*
    3370             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3371             :      * properly.
    3372             :      */
    3373      608494 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3374      608494 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3375      608494 :     oldtup.t_len = ItemIdGetLength(lp);
    3376      608494 :     oldtup.t_self = *otid;
    3377             : 
    3378             :     /* the new tuple is ready, except for this: */
    3379      608494 :     newtup->t_tableOid = RelationGetRelid(relation);
    3380             : 
    3381             :     /*
    3382             :      * Determine columns modified by the update.  Additionally, identify
    3383             :      * whether any of the unmodified replica identity key attributes in the
    3384             :      * old tuple is externally stored or not.  This is required because for
    3385             :      * such attributes the flattened value won't be WAL logged as part of the
    3386             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3387             :      * ExtractReplicaIdentity.
    3388             :      */
    3389      608494 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3390             :                                               id_attrs, &oldtup,
    3391             :                                               newtup, &id_has_external);
    3392             : 
    3393             :     /*
    3394             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3395             :      * This allows for more concurrency when we are running simultaneously
    3396             :      * with foreign key checks.
    3397             :      *
    3398             :      * Note that if a column gets detoasted while executing the update, but
    3399             :      * the value ends up being the same, this test will fail and we will use
    3400             :      * the stronger lock.  This is acceptable; the important case to optimize
    3401             :      * is updates that don't manipulate key columns, not those that
    3402             :      * serendipitously arrive at the same key values.
    3403             :      */
    3404      608494 :     if (!bms_overlap(modified_attrs, key_attrs))
    3405             :     {
    3406      600202 :         *lockmode = LockTupleNoKeyExclusive;
    3407      600202 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3408      600202 :         key_intact = true;
    3409             : 
    3410             :         /*
    3411             :          * If this is the first possibly-multixact-able operation in the
    3412             :          * current transaction, set my per-backend OldestMemberMXactId
    3413             :          * setting. We can be certain that the transaction will never become a
    3414             :          * member of any older MultiXactIds than that.  (We have to do this
    3415             :          * even if we end up just using our own TransactionId below, since
    3416             :          * some other backend could incorporate our XID into a MultiXact
    3417             :          * immediately afterwards.)
    3418             :          */
    3419      600202 :         MultiXactIdSetOldestMember();
    3420             :     }
    3421             :     else
    3422             :     {
    3423        8292 :         *lockmode = LockTupleExclusive;
    3424        8292 :         mxact_status = MultiXactStatusUpdate;
    3425        8292 :         key_intact = false;
    3426             :     }
    3427             : 
    3428             :     /*
    3429             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3430             :      * otid may very well point at newtup->t_self, which we will overwrite
    3431             :      * with the new tuple's location, so there's great risk of confusion if we
    3432             :      * use otid anymore.
    3433             :      */
    3434             : 
    3435      608494 : l2:
    3436      608496 :     checked_lockers = false;
    3437      608496 :     locker_remains = false;
    3438      608496 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3439             : 
    3440             :     /* see below about the "no wait" case */
    3441             :     Assert(result != TM_BeingModified || wait);
    3442             : 
    3443      608496 :     if (result == TM_Invisible)
    3444             :     {
    3445           0 :         UnlockReleaseBuffer(buffer);
    3446           0 :         ereport(ERROR,
    3447             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3448             :                  errmsg("attempted to update invisible tuple")));
    3449             :     }
    3450      608496 :     else if (result == TM_BeingModified && wait)
    3451             :     {
    3452             :         TransactionId xwait;
    3453             :         uint16      infomask;
    3454       71858 :         bool        can_continue = false;
    3455             : 
    3456             :         /*
    3457             :          * XXX note that we don't consider the "no wait" case here.  This
    3458             :          * isn't a problem currently because no caller uses that case, but it
    3459             :          * should be fixed if such a caller is introduced.  It wasn't a
    3460             :          * problem previously because this code would always wait, but now
    3461             :          * that some tuple locks do not conflict with one of the lock modes we
    3462             :          * use, it is possible that this case is interesting to handle
    3463             :          * specially.
    3464             :          *
    3465             :          * This may cause failures with third-party code that calls
    3466             :          * heap_update directly.
    3467             :          */
    3468             : 
    3469             :         /* must copy state data before unlocking buffer */
    3470       71858 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3471       71858 :         infomask = oldtup.t_data->t_infomask;
    3472             : 
    3473             :         /*
    3474             :          * Now we have to do something about the existing locker.  If it's a
    3475             :          * multi, sleep on it; we might be awakened before it is completely
    3476             :          * gone (or even not sleep at all in some cases); we need to preserve
    3477             :          * it as locker, unless it is gone completely.
    3478             :          *
    3479             :          * If it's not a multi, we need to check for sleeping conditions
    3480             :          * before actually going to sleep.  If the update doesn't conflict
    3481             :          * with the locks, we just continue without sleeping (but making sure
    3482             :          * it is preserved).
    3483             :          *
    3484             :          * Before sleeping, we need to acquire tuple lock to establish our
    3485             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3486             :          * release us when we are next-in-line for the tuple.  Note we must
    3487             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3488             :          * otherwise we're open for race conditions with other transactions
    3489             :          * holding the tuple lock which sleep on us.
    3490             :          *
    3491             :          * If we are forced to "start over" below, we keep the tuple lock;
    3492             :          * this arranges that we stay at the head of the line while rechecking
    3493             :          * tuple state.
    3494             :          */
    3495       71858 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3496             :         {
    3497             :             TransactionId update_xact;
    3498             :             int         remain;
    3499         120 :             bool        current_is_member = false;
    3500             : 
    3501         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3502             :                                         *lockmode, &current_is_member))
    3503             :             {
    3504          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3505             : 
    3506             :                 /*
    3507             :                  * Acquire the lock, if necessary (but skip it when we're
    3508             :                  * requesting a lock and already have one; avoids deadlock).
    3509             :                  */
    3510          16 :                 if (!current_is_member)
    3511           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3512             :                                          LockWaitBlock, &have_tuple_lock);
    3513             : 
    3514             :                 /* wait for multixact */
    3515          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3516             :                                 relation, &oldtup.t_self, XLTW_Update,
    3517             :                                 &remain);
    3518          16 :                 checked_lockers = true;
    3519          16 :                 locker_remains = remain != 0;
    3520          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3521             : 
    3522             :                 /*
    3523             :                  * If xwait had just locked the tuple then some other xact
    3524             :                  * could update this tuple before we get to this point.  Check
    3525             :                  * for xmax change, and start over if so.
    3526             :                  */
    3527          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3528          16 :                                           infomask) ||
    3529          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3530             :                                          xwait))
    3531           0 :                     goto l2;
    3532             :             }
    3533             : 
    3534             :             /*
    3535             :              * Note that the multixact may not be done by now.  It could have
    3536             :              * surviving members; our own xact or other subxacts of this
    3537             :              * backend, and also any other concurrent transaction that locked
    3538             :              * the tuple with LockTupleKeyShare if we only got
    3539             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3540             :              * careful to mark the updated tuple with the surviving members in
    3541             :              * Xmax.
    3542             :              *
    3543             :              * Note that there could have been another update in the
    3544             :              * MultiXact. In that case, we need to check whether it committed
    3545             :              * or aborted. If it aborted we are safe to update it again;
    3546             :              * otherwise there is an update conflict, and we have to return
    3547             :              * TableTuple{Deleted, Updated} below.
    3548             :              *
    3549             :              * In the LockTupleExclusive case, we still need to preserve the
    3550             :              * surviving members: those would include the tuple locks we had
    3551             :              * before this one, which are important to keep in case this
    3552             :              * subxact aborts.
    3553             :              */
    3554         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3555          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3556             :             else
    3557         104 :                 update_xact = InvalidTransactionId;
    3558             : 
    3559             :             /*
    3560             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3561             :              * TransactionIdIsInProgress() call needed here, since we called
    3562             :              * MultiXactIdWait() above.
    3563             :              */
    3564         136 :             if (!TransactionIdIsValid(update_xact) ||
    3565          16 :                 TransactionIdDidAbort(update_xact))
    3566         106 :                 can_continue = true;
    3567             :         }
    3568       71738 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3569             :         {
    3570             :             /*
    3571             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3572             :              * lock here, but must preserve our locking information.
    3573             :              */
    3574       71554 :             checked_lockers = true;
    3575       71554 :             locker_remains = true;
    3576       71554 :             can_continue = true;
    3577             :         }
    3578         184 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3579             :         {
    3580             :             /*
    3581             :              * If it's just a key-share locker, and we're not changing the key
    3582             :              * columns, we don't need to wait for it to end; but we need to
    3583             :              * preserve it as locker.
    3584             :              */
    3585          58 :             checked_lockers = true;
    3586          58 :             locker_remains = true;
    3587          58 :             can_continue = true;
    3588             :         }
    3589             :         else
    3590             :         {
    3591             :             /*
    3592             :              * Wait for regular transaction to end; but first, acquire tuple
    3593             :              * lock.
    3594             :              */
    3595         126 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3596         126 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3597             :                                  LockWaitBlock, &have_tuple_lock);
    3598         126 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3599             :                               XLTW_Update);
    3600         126 :             checked_lockers = true;
    3601         126 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3602             : 
    3603             :             /*
    3604             :              * xwait is done, but if xwait had just locked the tuple then some
    3605             :              * other xact could update this tuple before we get to this point.
    3606             :              * Check for xmax change, and start over if so.
    3607             :              */
    3608         250 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3609         124 :                 !TransactionIdEquals(xwait,
    3610             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3611           2 :                 goto l2;
    3612             : 
    3613             :             /* Otherwise check if it committed or aborted */
    3614         124 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3615         124 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3616          30 :                 can_continue = true;
    3617             :         }
    3618             : 
    3619       71856 :         if (can_continue)
    3620       71748 :             result = TM_Ok;
    3621         108 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3622          98 :             result = TM_Updated;
    3623             :         else
    3624          10 :             result = TM_Deleted;
    3625             :     }
    3626             : 
    3627             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3628             :     if (result != TM_Ok)
    3629             :     {
    3630             :         Assert(result == TM_SelfModified ||
    3631             :                result == TM_Updated ||
    3632             :                result == TM_Deleted ||
    3633             :                result == TM_BeingModified);
    3634             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3635             :         Assert(result != TM_Updated ||
    3636             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3637             :     }
    3638             : 
    3639      608494 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3640             :     {
    3641             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3642           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3643           2 :             result = TM_Updated;
    3644             :     }
    3645             : 
    3646      608494 :     if (result != TM_Ok)
    3647             :     {
    3648         304 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3649         304 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3650         304 :         if (result == TM_SelfModified)
    3651         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3652             :         else
    3653         200 :             tmfd->cmax = InvalidCommandId;
    3654         304 :         UnlockReleaseBuffer(buffer);
    3655         304 :         if (have_tuple_lock)
    3656          94 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3657         304 :         if (vmbuffer != InvalidBuffer)
    3658           0 :             ReleaseBuffer(vmbuffer);
    3659         304 :         *update_indexes = TU_None;
    3660             : 
    3661         304 :         bms_free(hot_attrs);
    3662         304 :         bms_free(sum_attrs);
    3663         304 :         bms_free(key_attrs);
    3664         304 :         bms_free(id_attrs);
    3665         304 :         bms_free(modified_attrs);
    3666         304 :         bms_free(interesting_attrs);
    3667         304 :         return result;
    3668             :     }
    3669             : 
    3670             :     /*
    3671             :      * If we didn't pin the visibility map page and the page has become all
    3672             :      * visible while we were busy locking the buffer, or during some
    3673             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3674             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3675             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3676             :      * tuple has been locked or updated under us, but hopefully it won't
    3677             :      * happen very often.
    3678             :      */
    3679      608190 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3680             :     {
    3681           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3682           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3683           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3684           0 :         goto l2;
    3685             :     }
    3686             : 
    3687             :     /* Fill in transaction status data */
    3688             : 
    3689             :     /*
    3690             :      * If the tuple we're updating is locked, we need to preserve the locking
    3691             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3692             :      */
    3693      608190 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3694      608190 :                               oldtup.t_data->t_infomask,
    3695      608190 :                               oldtup.t_data->t_infomask2,
    3696             :                               xid, *lockmode, true,
    3697             :                               &xmax_old_tuple, &infomask_old_tuple,
    3698             :                               &infomask2_old_tuple);
    3699             : 
    3700             :     /*
    3701             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3702             :      * was no xmax previously, or there was one but all lockers are now gone,
    3703             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3704             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3705             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3706             :      */
    3707      679908 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3708      143436 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3709       71614 :         (checked_lockers && !locker_remains))
    3710      536472 :         xmax_new_tuple = InvalidTransactionId;
    3711             :     else
    3712       71718 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3713             : 
    3714      608190 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3715             :     {
    3716      536472 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3717      536472 :         infomask2_new_tuple = 0;
    3718             :     }
    3719             :     else
    3720             :     {
    3721             :         /*
    3722             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3723             :          * to use on the new tuple depend on what was there on the old one.
    3724             :          * Note that since we're doing an update, the only possibility is that
    3725             :          * the lockers had FOR KEY SHARE lock.
    3726             :          */
    3727       71718 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3728             :         {
    3729         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3730             :                                    &infomask2_new_tuple);
    3731             :         }
    3732             :         else
    3733             :         {
    3734       71612 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3735       71612 :             infomask2_new_tuple = 0;
    3736             :         }
    3737             :     }
    3738             : 
    3739             :     /*
    3740             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3741             :      * Xmax, as well as initial infomask bits as computed above.
    3742             :      */
    3743      608190 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3744      608190 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3745      608190 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3746      608190 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3747      608190 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3748      608190 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3749      608190 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3750             : 
    3751             :     /*
    3752             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3753             :      * the plain cid into the new tuple.
    3754             :      */
    3755      608190 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3756             : 
    3757             :     /*
    3758             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3759             :      * on the same page as the old, then we need to release the content lock
    3760             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3761             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3762             :      * show that it's locked, else other processes may try to update it
    3763             :      * themselves.
    3764             :      *
    3765             :      * We need to invoke the toaster if there are already any out-of-line
    3766             :      * toasted values present, or if the new tuple is over-threshold.
    3767             :      */
    3768      608190 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3769           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3770             :     {
    3771             :         /* toast table entries should never be recursively toasted */
    3772             :         Assert(!HeapTupleHasExternal(&oldtup));
    3773             :         Assert(!HeapTupleHasExternal(newtup));
    3774           0 :         need_toast = false;
    3775             :     }
    3776             :     else
    3777     1823862 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3778     1215672 :                       HeapTupleHasExternal(newtup) ||
    3779      607434 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3780             : 
    3781      608190 :     pagefree = PageGetHeapFreeSpace(page);
    3782             : 
    3783      608190 :     newtupsize = MAXALIGN(newtup->t_len);
    3784             : 
    3785      608190 :     if (need_toast || newtupsize > pagefree)
    3786      296916 :     {
    3787             :         TransactionId xmax_lock_old_tuple;
    3788             :         uint16      infomask_lock_old_tuple,
    3789             :                     infomask2_lock_old_tuple;
    3790      296916 :         bool        cleared_all_frozen = false;
    3791             : 
    3792             :         /*
    3793             :          * To prevent concurrent sessions from updating the tuple, we have to
    3794             :          * temporarily mark it locked, while we release the page-level lock.
    3795             :          *
    3796             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3797             :          * written out to disk, we unfortunately have to WAL log this
    3798             :          * temporary modification.  We can reuse xl_heap_lock for this
    3799             :          * purpose.  If we crash/error before following through with the
    3800             :          * actual update, xmax will be of an aborted transaction, allowing
    3801             :          * other sessions to proceed.
    3802             :          */
    3803             : 
    3804             :         /*
    3805             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3806             :          * to be done separately from the combo that's going to be used for
    3807             :          * updating, because the potentially created multixact would otherwise
    3808             :          * be wrong.
    3809             :          */
    3810      296916 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3811      296916 :                                   oldtup.t_data->t_infomask,
    3812      296916 :                                   oldtup.t_data->t_infomask2,
    3813             :                                   xid, *lockmode, false,
    3814             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3815             :                                   &infomask2_lock_old_tuple);
    3816             : 
    3817             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3818             : 
    3819      296916 :         START_CRIT_SECTION();
    3820             : 
    3821             :         /* Clear obsolete visibility flags ... */
    3822      296916 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3823      296916 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3824      296916 :         HeapTupleClearHotUpdated(&oldtup);
    3825             :         /* ... and store info about transaction updating this tuple */
    3826             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3827      296916 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3828      296916 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3829      296916 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3830      296916 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3831             : 
    3832             :         /* temporarily make it look not-updated, but locked */
    3833      296916 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3834             : 
    3835             :         /*
    3836             :          * Clear all-frozen bit on visibility map if needed. We could
    3837             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3838             :          * overhead would be unchanged, that doesn't seem necessarily
    3839             :          * worthwhile.
    3840             :          */
    3841      298660 :         if (PageIsAllVisible(page) &&
    3842        1744 :             visibilitymap_clear(relation, block, vmbuffer,
    3843             :                                 VISIBILITYMAP_ALL_FROZEN))
    3844        1416 :             cleared_all_frozen = true;
    3845             : 
    3846      296916 :         MarkBufferDirty(buffer);
    3847             : 
    3848      296916 :         if (RelationNeedsWAL(relation))
    3849             :         {
    3850             :             xl_heap_lock xlrec;
    3851             :             XLogRecPtr  recptr;
    3852             : 
    3853      276664 :             XLogBeginInsert();
    3854      276664 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3855             : 
    3856      276664 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3857      276664 :             xlrec.xmax = xmax_lock_old_tuple;
    3858      553328 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3859      276664 :                                                   oldtup.t_data->t_infomask2);
    3860      276664 :             xlrec.flags =
    3861      276664 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3862      276664 :             XLogRegisterData(&xlrec, SizeOfHeapLock);
    3863      276664 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3864      276664 :             PageSetLSN(page, recptr);
    3865             :         }
    3866             : 
    3867      296916 :         END_CRIT_SECTION();
    3868             : 
    3869      296916 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3870             : 
    3871             :         /*
    3872             :          * Let the toaster do its thing, if needed.
    3873             :          *
    3874             :          * Note: below this point, heaptup is the data we actually intend to
    3875             :          * store into the relation; newtup is the caller's original untoasted
    3876             :          * data.
    3877             :          */
    3878      296916 :         if (need_toast)
    3879             :         {
    3880             :             /* Note we always use WAL and FSM during updates */
    3881        3146 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3882        3146 :             newtupsize = MAXALIGN(heaptup->t_len);
    3883             :         }
    3884             :         else
    3885      293770 :             heaptup = newtup;
    3886             : 
    3887             :         /*
    3888             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3889             :          * tricky since someone else could have added tuples to the page while
    3890             :          * we weren't looking.  We have to recheck the available space after
    3891             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3892             :          * former amount of free space is still not enough; it's unlikely
    3893             :          * there's more free now than before.
    3894             :          *
    3895             :          * What's more, if we need to get a new page, we will need to acquire
    3896             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3897             :          * some other backend trying to get the same two locks in the other
    3898             :          * order, we must be consistent about the order we get the locks in.
    3899             :          * We use the rule "lock the lower-numbered page of the relation
    3900             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3901             :          * while not holding the lock on the old page, and we must rely on it
    3902             :          * to get the locks on both pages in the correct order.
    3903             :          *
    3904             :          * Another consideration is that we need visibility map page pin(s) if
    3905             :          * we will have to clear the all-visible flag on either page.  If we
    3906             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3907             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3908             :          * a loop.
    3909             :          */
    3910             :         for (;;)
    3911             :         {
    3912      296916 :             if (newtupsize > pagefree)
    3913             :             {
    3914             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3915      295894 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3916             :                                                    buffer, 0, NULL,
    3917             :                                                    &vmbuffer_new, &vmbuffer,
    3918             :                                                    0);
    3919             :                 /* We're all done. */
    3920      295894 :                 break;
    3921             :             }
    3922             :             /* Acquire VM page pin if needed and we don't have it. */
    3923        1022 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3924           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3925             :             /* Re-acquire the lock on the old tuple's page. */
    3926        1022 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3927             :             /* Re-check using the up-to-date free space */
    3928        1022 :             pagefree = PageGetHeapFreeSpace(page);
    3929        1022 :             if (newtupsize > pagefree ||
    3930        1022 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3931             :             {
    3932             :                 /*
    3933             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3934             :                  * all-visible flag.  We must now unlock and loop to avoid
    3935             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3936             :                  */
    3937           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3938             :             }
    3939             :             else
    3940             :             {
    3941             :                 /* We're all done. */
    3942        1022 :                 newbuf = buffer;
    3943        1022 :                 break;
    3944             :             }
    3945             :         }
    3946             :     }
    3947             :     else
    3948             :     {
    3949             :         /* No TOAST work needed, and it'll fit on same page */
    3950      311274 :         newbuf = buffer;
    3951      311274 :         heaptup = newtup;
    3952             :     }
    3953             : 
    3954             :     /*
    3955             :      * We're about to do the actual update -- check for conflict first, to
    3956             :      * avoid possibly having to roll back work we've just done.
    3957             :      *
    3958             :      * This is safe without a recheck as long as there is no possibility of
    3959             :      * another process scanning the pages between this check and the update
    3960             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    3961             :      * continuously held from this point until the tuple update is visible).
    3962             :      *
    3963             :      * For the new tuple the only check needed is at the relation level, but
    3964             :      * since both tuples are in the same relation and the check for oldtup
    3965             :      * will include checking the relation level, there is no benefit to a
    3966             :      * separate check for the new tuple.
    3967             :      */
    3968      608190 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    3969             :                                    BufferGetBlockNumber(buffer));
    3970             : 
    3971             :     /*
    3972             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    3973             :      * has enough space for the new tuple.  If they are the same buffer, only
    3974             :      * one pin is held.
    3975             :      */
    3976             : 
    3977      608166 :     if (newbuf == buffer)
    3978             :     {
    3979             :         /*
    3980             :          * Since the new tuple is going into the same page, we might be able
    3981             :          * to do a HOT update.  Check if any of the index columns have been
    3982             :          * changed.
    3983             :          */
    3984      312272 :         if (!bms_overlap(modified_attrs, hot_attrs))
    3985             :         {
    3986      286558 :             use_hot_update = true;
    3987             : 
    3988             :             /*
    3989             :              * If none of the columns that are used in hot-blocking indexes
    3990             :              * were updated, we can apply HOT, but we do still need to check
    3991             :              * if we need to update the summarizing indexes, and update those
    3992             :              * indexes if the columns were updated, or we may fail to detect
    3993             :              * e.g. value bound changes in BRIN minmax indexes.
    3994             :              */
    3995      286558 :             if (bms_overlap(modified_attrs, sum_attrs))
    3996        3282 :                 summarized_update = true;
    3997             :         }
    3998             :     }
    3999             :     else
    4000             :     {
    4001             :         /* Set a hint that the old page could use prune/defrag */
    4002      295894 :         PageSetFull(page);
    4003             :     }
    4004             : 
    4005             :     /*
    4006             :      * Compute replica identity tuple before entering the critical section so
    4007             :      * we don't PANIC upon a memory allocation failure.
    4008             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    4009             :      * logged.  Pass old key required as true only if the replica identity key
    4010             :      * columns are modified or it has external data.
    4011             :      */
    4012      608166 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    4013      608166 :                                            bms_overlap(modified_attrs, id_attrs) ||
    4014             :                                            id_has_external,
    4015             :                                            &old_key_copied);
    4016             : 
    4017             :     /* NO EREPORT(ERROR) from here till changes are logged */
    4018      608166 :     START_CRIT_SECTION();
    4019             : 
    4020             :     /*
    4021             :      * If this transaction commits, the old tuple will become DEAD sooner or
    4022             :      * later.  Set flag that this page is a candidate for pruning once our xid
    4023             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    4024             :      * the subsequent page pruning will be a no-op and the hint will be
    4025             :      * cleared.
    4026             :      *
    4027             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    4028             :      * there would be a prunable tuple in the newbuf; but for now we choose
    4029             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    4030             :      * sync if this decision changes.
    4031             :      */
    4032      608166 :     PageSetPrunable(page, xid);
    4033             : 
    4034      608166 :     if (use_hot_update)
    4035             :     {
    4036             :         /* Mark the old tuple as HOT-updated */
    4037      286558 :         HeapTupleSetHotUpdated(&oldtup);
    4038             :         /* And mark the new tuple as heap-only */
    4039      286558 :         HeapTupleSetHeapOnly(heaptup);
    4040             :         /* Mark the caller's copy too, in case different from heaptup */
    4041      286558 :         HeapTupleSetHeapOnly(newtup);
    4042             :     }
    4043             :     else
    4044             :     {
    4045             :         /* Make sure tuples are correctly marked as not-HOT */
    4046      321608 :         HeapTupleClearHotUpdated(&oldtup);
    4047      321608 :         HeapTupleClearHeapOnly(heaptup);
    4048      321608 :         HeapTupleClearHeapOnly(newtup);
    4049             :     }
    4050             : 
    4051      608166 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    4052             : 
    4053             : 
    4054             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    4055      608166 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    4056      608166 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    4057             :     /* ... and store info about transaction updating this tuple */
    4058             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    4059      608166 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    4060      608166 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    4061      608166 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    4062      608166 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    4063             : 
    4064             :     /* record address of new tuple in t_ctid of old one */
    4065      608166 :     oldtup.t_data->t_ctid = heaptup->t_self;
    4066             : 
    4067             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    4068      608166 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    4069             :     {
    4070        3050 :         all_visible_cleared = true;
    4071        3050 :         PageClearAllVisible(BufferGetPage(buffer));
    4072        3050 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    4073             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    4074             :     }
    4075      608166 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    4076             :     {
    4077        1392 :         all_visible_cleared_new = true;
    4078        1392 :         PageClearAllVisible(BufferGetPage(newbuf));
    4079        1392 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    4080             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    4081             :     }
    4082             : 
    4083      608166 :     if (newbuf != buffer)
    4084      295894 :         MarkBufferDirty(newbuf);
    4085      608166 :     MarkBufferDirty(buffer);
    4086             : 
    4087             :     /* XLOG stuff */
    4088      608166 :     if (RelationNeedsWAL(relation))
    4089             :     {
    4090             :         XLogRecPtr  recptr;
    4091             : 
    4092             :         /*
    4093             :          * For logical decoding we need combo CIDs to properly decode the
    4094             :          * catalog.
    4095             :          */
    4096      585442 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4097             :         {
    4098        5014 :             log_heap_new_cid(relation, &oldtup);
    4099        5014 :             log_heap_new_cid(relation, heaptup);
    4100             :         }
    4101             : 
    4102      585442 :         recptr = log_heap_update(relation, buffer,
    4103             :                                  newbuf, &oldtup, heaptup,
    4104             :                                  old_key_tuple,
    4105             :                                  all_visible_cleared,
    4106             :                                  all_visible_cleared_new);
    4107      585442 :         if (newbuf != buffer)
    4108             :         {
    4109      275654 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4110             :         }
    4111      585442 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4112             :     }
    4113             : 
    4114      608166 :     END_CRIT_SECTION();
    4115             : 
    4116      608166 :     if (newbuf != buffer)
    4117      295894 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4118      608166 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4119             : 
    4120             :     /*
    4121             :      * Mark old tuple for invalidation from system caches at next command
    4122             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4123             :      * have to do this before releasing the buffer because oldtup is in the
    4124             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4125             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4126             :      * sinval messages.)
    4127             :      */
    4128      608166 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4129             : 
    4130             :     /* Now we can release the buffer(s) */
    4131      608166 :     if (newbuf != buffer)
    4132      295894 :         ReleaseBuffer(newbuf);
    4133      608166 :     ReleaseBuffer(buffer);
    4134      608166 :     if (BufferIsValid(vmbuffer_new))
    4135        1392 :         ReleaseBuffer(vmbuffer_new);
    4136      608166 :     if (BufferIsValid(vmbuffer))
    4137        3054 :         ReleaseBuffer(vmbuffer);
    4138             : 
    4139             :     /*
    4140             :      * Release the lmgr tuple lock, if we had it.
    4141             :      */
    4142      608166 :     if (have_tuple_lock)
    4143          30 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4144             : 
    4145      608166 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4146             : 
    4147             :     /*
    4148             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4149             :      * back to the caller's image, too.
    4150             :      */
    4151      608166 :     if (heaptup != newtup)
    4152             :     {
    4153        3052 :         newtup->t_self = heaptup->t_self;
    4154        3052 :         heap_freetuple(heaptup);
    4155             :     }
    4156             : 
    4157             :     /*
    4158             :      * If it is a HOT update, the update may still need to update summarized
    4159             :      * indexes, lest we fail to update those summaries and get incorrect
    4160             :      * results (for example, minmax bounds of the block may change with this
    4161             :      * update).
    4162             :      */
    4163      608166 :     if (use_hot_update)
    4164             :     {
    4165      286558 :         if (summarized_update)
    4166        3282 :             *update_indexes = TU_Summarizing;
    4167             :         else
    4168      283276 :             *update_indexes = TU_None;
    4169             :     }
    4170             :     else
    4171      321608 :         *update_indexes = TU_All;
    4172             : 
    4173      608166 :     if (old_key_tuple != NULL && old_key_copied)
    4174         166 :         heap_freetuple(old_key_tuple);
    4175             : 
    4176      608166 :     bms_free(hot_attrs);
    4177      608166 :     bms_free(sum_attrs);
    4178      608166 :     bms_free(key_attrs);
    4179      608166 :     bms_free(id_attrs);
    4180      608166 :     bms_free(modified_attrs);
    4181      608166 :     bms_free(interesting_attrs);
    4182             : 
    4183      608166 :     return TM_Ok;
    4184             : }
    4185             : 
    4186             : #ifdef USE_ASSERT_CHECKING
    4187             : /*
    4188             :  * Confirm adequate lock held during heap_update(), per rules from
    4189             :  * README.tuplock section "Locking to write inplace-updated tables".
    4190             :  */
    4191             : static void
    4192             : check_lock_if_inplace_updateable_rel(Relation relation,
    4193             :                                      ItemPointer otid,
    4194             :                                      HeapTuple newtup)
    4195             : {
    4196             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4197             :     switch (RelationGetRelid(relation))
    4198             :     {
    4199             :         case RelationRelationId:
    4200             :         case DatabaseRelationId:
    4201             :             {
    4202             :                 LOCKTAG     tuptag;
    4203             : 
    4204             :                 SET_LOCKTAG_TUPLE(tuptag,
    4205             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4206             :                                   relation->rd_lockInfo.lockRelId.relId,
    4207             :                                   ItemPointerGetBlockNumber(otid),
    4208             :                                   ItemPointerGetOffsetNumber(otid));
    4209             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4210             :                     return;
    4211             :             }
    4212             :             break;
    4213             :         default:
    4214             :             Assert(!IsInplaceUpdateRelation(relation));
    4215             :             return;
    4216             :     }
    4217             : 
    4218             :     switch (RelationGetRelid(relation))
    4219             :     {
    4220             :         case RelationRelationId:
    4221             :             {
    4222             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4223             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4224             :                 Oid         relid = classForm->oid;
    4225             :                 Oid         dbid;
    4226             :                 LOCKTAG     tag;
    4227             : 
    4228             :                 if (IsSharedRelation(relid))
    4229             :                     dbid = InvalidOid;
    4230             :                 else
    4231             :                     dbid = MyDatabaseId;
    4232             : 
    4233             :                 if (classForm->relkind == RELKIND_INDEX)
    4234             :                 {
    4235             :                     Relation    irel = index_open(relid, AccessShareLock);
    4236             : 
    4237             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4238             :                     index_close(irel, AccessShareLock);
    4239             :                 }
    4240             :                 else
    4241             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4242             : 
    4243             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4244             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4245             :                     elog(WARNING,
    4246             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4247             :                          NameStr(classForm->relname),
    4248             :                          relid,
    4249             :                          classForm->relkind,
    4250             :                          ItemPointerGetBlockNumber(otid),
    4251             :                          ItemPointerGetOffsetNumber(otid));
    4252             :             }
    4253             :             break;
    4254             :         case DatabaseRelationId:
    4255             :             {
    4256             :                 /* LOCKTAG_TUPLE required */
    4257             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4258             : 
    4259             :                 elog(WARNING,
    4260             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4261             :                      NameStr(dbForm->datname),
    4262             :                      dbForm->oid,
    4263             :                      ItemPointerGetBlockNumber(otid),
    4264             :                      ItemPointerGetOffsetNumber(otid));
    4265             :             }
    4266             :             break;
    4267             :     }
    4268             : }
    4269             : 
    4270             : /*
    4271             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4272             :  * "Locking to write inplace-updated tables".
    4273             :  */
    4274             : static void
    4275             : check_inplace_rel_lock(HeapTuple oldtup)
    4276             : {
    4277             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4278             :     Oid         relid = classForm->oid;
    4279             :     Oid         dbid;
    4280             :     LOCKTAG     tag;
    4281             : 
    4282             :     if (IsSharedRelation(relid))
    4283             :         dbid = InvalidOid;
    4284             :     else
    4285             :         dbid = MyDatabaseId;
    4286             : 
    4287             :     if (classForm->relkind == RELKIND_INDEX)
    4288             :     {
    4289             :         Relation    irel = index_open(relid, AccessShareLock);
    4290             : 
    4291             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4292             :         index_close(irel, AccessShareLock);
    4293             :     }
    4294             :     else
    4295             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4296             : 
    4297             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4298             :         elog(WARNING,
    4299             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4300             :              NameStr(classForm->relname),
    4301             :              relid,
    4302             :              classForm->relkind,
    4303             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4304             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4305             : }
    4306             : #endif
    4307             : 
    4308             : /*
    4309             :  * Check if the specified attribute's values are the same.  Subroutine for
    4310             :  * HeapDetermineColumnsInfo.
    4311             :  */
    4312             : static bool
    4313     1474850 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4314             :                  bool isnull1, bool isnull2)
    4315             : {
    4316             :     /*
    4317             :      * If one value is NULL and other is not, then they are certainly not
    4318             :      * equal
    4319             :      */
    4320     1474850 :     if (isnull1 != isnull2)
    4321          90 :         return false;
    4322             : 
    4323             :     /*
    4324             :      * If both are NULL, they can be considered equal.
    4325             :      */
    4326     1474760 :     if (isnull1)
    4327        9982 :         return true;
    4328             : 
    4329             :     /*
    4330             :      * We do simple binary comparison of the two datums.  This may be overly
    4331             :      * strict because there can be multiple binary representations for the
    4332             :      * same logical value.  But we should be OK as long as there are no false
    4333             :      * positives.  Using a type-specific equality operator is messy because
    4334             :      * there could be multiple notions of equality in different operator
    4335             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4336             :      * while holding exclusive buffer lock.
    4337             :      */
    4338     1464778 :     if (attrnum <= 0)
    4339             :     {
    4340             :         /* The only allowed system columns are OIDs, so do this */
    4341           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4342             :     }
    4343             :     else
    4344             :     {
    4345             :         CompactAttribute *att;
    4346             : 
    4347             :         Assert(attrnum <= tupdesc->natts);
    4348     1464778 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4349     1464778 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4350             :     }
    4351             : }
    4352             : 
    4353             : /*
    4354             :  * Check which columns are being updated.
    4355             :  *
    4356             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4357             :  * from those listed as interesting, the set of columns that changed.
    4358             :  *
    4359             :  * has_external indicates if any of the unmodified attributes (from those
    4360             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4361             :  * stored externally.
    4362             :  */
    4363             : static Bitmapset *
    4364      608494 : HeapDetermineColumnsInfo(Relation relation,
    4365             :                          Bitmapset *interesting_cols,
    4366             :                          Bitmapset *external_cols,
    4367             :                          HeapTuple oldtup, HeapTuple newtup,
    4368             :                          bool *has_external)
    4369             : {
    4370             :     int         attidx;
    4371      608494 :     Bitmapset  *modified = NULL;
    4372      608494 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4373             : 
    4374      608494 :     attidx = -1;
    4375     2083344 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4376             :     {
    4377             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4378     1474850 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4379             :         Datum       value1,
    4380             :                     value2;
    4381             :         bool        isnull1,
    4382             :                     isnull2;
    4383             : 
    4384             :         /*
    4385             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4386             :          * worth supporting this case, since it could only succeed after a
    4387             :          * no-op update, which is hardly a case worth optimizing for.
    4388             :          */
    4389     1474850 :         if (attrnum == 0)
    4390             :         {
    4391           0 :             modified = bms_add_member(modified, attidx);
    4392     1411720 :             continue;
    4393             :         }
    4394             : 
    4395             :         /*
    4396             :          * Likewise, automatically say "not equal" for any system attribute
    4397             :          * other than tableOID; we cannot expect these to be consistent in a
    4398             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4399             :          */
    4400     1474850 :         if (attrnum < 0)
    4401             :         {
    4402           0 :             if (attrnum != TableOidAttributeNumber)
    4403             :             {
    4404           0 :                 modified = bms_add_member(modified, attidx);
    4405           0 :                 continue;
    4406             :             }
    4407             :         }
    4408             : 
    4409             :         /*
    4410             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4411             :          * if there are many indexed columns.  Should we do a single
    4412             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4413             :          * work for system columns ...
    4414             :          */
    4415     1474850 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4416     1474850 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4417             : 
    4418     1474850 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4419             :                               value2, isnull1, isnull2))
    4420             :         {
    4421       55766 :             modified = bms_add_member(modified, attidx);
    4422       55766 :             continue;
    4423             :         }
    4424             : 
    4425             :         /*
    4426             :          * No need to check attributes that can't be stored externally. Note
    4427             :          * that system attributes can't be stored externally.
    4428             :          */
    4429     1419084 :         if (attrnum < 0 || isnull1 ||
    4430     1409102 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4431     1355954 :             continue;
    4432             : 
    4433             :         /*
    4434             :          * Check if the old tuple's attribute is stored externally and is a
    4435             :          * member of external_cols.
    4436             :          */
    4437       63140 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4438          10 :             bms_is_member(attidx, external_cols))
    4439           4 :             *has_external = true;
    4440             :     }
    4441             : 
    4442      608494 :     return modified;
    4443             : }
    4444             : 
    4445             : /*
    4446             :  *  simple_heap_update - replace a tuple
    4447             :  *
    4448             :  * This routine may be used to update a tuple when concurrent updates of
    4449             :  * the target tuple are not expected (for example, because we have a lock
    4450             :  * on the relation associated with the tuple).  Any failure is reported
    4451             :  * via ereport().
    4452             :  */
    4453             : void
    4454      221830 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4455             :                    TU_UpdateIndexes *update_indexes)
    4456             : {
    4457             :     TM_Result   result;
    4458             :     TM_FailureData tmfd;
    4459             :     LockTupleMode lockmode;
    4460             : 
    4461      221830 :     result = heap_update(relation, otid, tup,
    4462             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4463             :                          true /* wait for commit */ ,
    4464             :                          &tmfd, &lockmode, update_indexes);
    4465      221830 :     switch (result)
    4466             :     {
    4467           0 :         case TM_SelfModified:
    4468             :             /* Tuple was already updated in current command? */
    4469           0 :             elog(ERROR, "tuple already updated by self");
    4470             :             break;
    4471             : 
    4472      221828 :         case TM_Ok:
    4473             :             /* done successfully */
    4474      221828 :             break;
    4475             : 
    4476           0 :         case TM_Updated:
    4477           0 :             elog(ERROR, "tuple concurrently updated");
    4478             :             break;
    4479             : 
    4480           2 :         case TM_Deleted:
    4481           2 :             elog(ERROR, "tuple concurrently deleted");
    4482             :             break;
    4483             : 
    4484           0 :         default:
    4485           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4486             :             break;
    4487             :     }
    4488      221828 : }
    4489             : 
    4490             : 
    4491             : /*
    4492             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4493             :  */
    4494             : static MultiXactStatus
    4495        2410 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4496             : {
    4497             :     int         retval;
    4498             : 
    4499        2410 :     if (is_update)
    4500         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4501             :     else
    4502        2218 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4503             : 
    4504        2410 :     if (retval == -1)
    4505           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4506             :              is_update ? "true" : "false");
    4507             : 
    4508        2410 :     return (MultiXactStatus) retval;
    4509             : }
    4510             : 
    4511             : /*
    4512             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4513             :  *
    4514             :  * Note that this acquires a buffer pin, which the caller must release.
    4515             :  *
    4516             :  * Input parameters:
    4517             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4518             :  *  tid: TID of tuple to lock
    4519             :  *  cid: current command ID (used for visibility test, and stored into
    4520             :  *      tuple's cmax if lock is successful)
    4521             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4522             :  *  wait_policy: what to do if tuple lock is not available
    4523             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4524             :  *      tuples.
    4525             :  *
    4526             :  * Output parameters:
    4527             :  *  *tuple: all fields filled in
    4528             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4529             :  *  *tmfd: filled in failure cases (see below)
    4530             :  *
    4531             :  * Function results are the same as the ones for table_tuple_lock().
    4532             :  *
    4533             :  * In the failure cases other than TM_Invisible, the routine fills
    4534             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4535             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4536             :  * since we cannot obtain cmax from a combo CID generated by another
    4537             :  * transaction).
    4538             :  * See comments for struct TM_FailureData for additional info.
    4539             :  *
    4540             :  * See README.tuplock for a thorough explanation of this mechanism.
    4541             :  */
    4542             : TM_Result
    4543      169614 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4544             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4545             :                 bool follow_updates,
    4546             :                 Buffer *buffer, TM_FailureData *tmfd)
    4547             : {
    4548             :     TM_Result   result;
    4549      169614 :     ItemPointer tid = &(tuple->t_self);
    4550             :     ItemId      lp;
    4551             :     Page        page;
    4552      169614 :     Buffer      vmbuffer = InvalidBuffer;
    4553             :     BlockNumber block;
    4554             :     TransactionId xid,
    4555             :                 xmax;
    4556             :     uint16      old_infomask,
    4557             :                 new_infomask,
    4558             :                 new_infomask2;
    4559      169614 :     bool        first_time = true;
    4560      169614 :     bool        skip_tuple_lock = false;
    4561      169614 :     bool        have_tuple_lock = false;
    4562      169614 :     bool        cleared_all_frozen = false;
    4563             : 
    4564      169614 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4565      169614 :     block = ItemPointerGetBlockNumber(tid);
    4566             : 
    4567             :     /*
    4568             :      * Before locking the buffer, pin the visibility map page if it appears to
    4569             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4570             :      * in the middle of changing this, so we'll need to recheck after we have
    4571             :      * the lock.
    4572             :      */
    4573      169614 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4574        3336 :         visibilitymap_pin(relation, block, &vmbuffer);
    4575             : 
    4576      169614 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4577             : 
    4578      169614 :     page = BufferGetPage(*buffer);
    4579      169614 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4580             :     Assert(ItemIdIsNormal(lp));
    4581             : 
    4582      169614 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4583      169614 :     tuple->t_len = ItemIdGetLength(lp);
    4584      169614 :     tuple->t_tableOid = RelationGetRelid(relation);
    4585             : 
    4586      169642 : l3:
    4587      169642 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4588             : 
    4589      169642 :     if (result == TM_Invisible)
    4590             :     {
    4591             :         /*
    4592             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4593             :          * UPDATE.  We return this value here rather than throwing an error in
    4594             :          * order to give that case the opportunity to throw a more specific
    4595             :          * error.
    4596             :          */
    4597          24 :         result = TM_Invisible;
    4598          24 :         goto out_locked;
    4599             :     }
    4600      169618 :     else if (result == TM_BeingModified ||
    4601      153932 :              result == TM_Updated ||
    4602             :              result == TM_Deleted)
    4603             :     {
    4604             :         TransactionId xwait;
    4605             :         uint16      infomask;
    4606             :         uint16      infomask2;
    4607             :         bool        require_sleep;
    4608             :         ItemPointerData t_ctid;
    4609             : 
    4610             :         /* must copy state data before unlocking buffer */
    4611       15688 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4612       15688 :         infomask = tuple->t_data->t_infomask;
    4613       15688 :         infomask2 = tuple->t_data->t_infomask2;
    4614       15688 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4615             : 
    4616       15688 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4617             : 
    4618             :         /*
    4619             :          * If any subtransaction of the current top transaction already holds
    4620             :          * a lock as strong as or stronger than what we're requesting, we
    4621             :          * effectively hold the desired lock already.  We *must* succeed
    4622             :          * without trying to take the tuple lock, else we will deadlock
    4623             :          * against anyone wanting to acquire a stronger lock.
    4624             :          *
    4625             :          * Note we only do this the first time we loop on the HTSU result;
    4626             :          * there is no point in testing in subsequent passes, because
    4627             :          * evidently our own transaction cannot have acquired a new lock after
    4628             :          * the first time we checked.
    4629             :          */
    4630       15688 :         if (first_time)
    4631             :         {
    4632       15670 :             first_time = false;
    4633             : 
    4634       15670 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4635             :             {
    4636             :                 int         i;
    4637             :                 int         nmembers;
    4638             :                 MultiXactMember *members;
    4639             : 
    4640             :                 /*
    4641             :                  * We don't need to allow old multixacts here; if that had
    4642             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4643             :                  * MayBeUpdated and we wouldn't be here.
    4644             :                  */
    4645             :                 nmembers =
    4646         168 :                     GetMultiXactIdMembers(xwait, &members, false,
    4647         168 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4648             : 
    4649         504 :                 for (i = 0; i < nmembers; i++)
    4650             :                 {
    4651             :                     /* only consider members of our own transaction */
    4652         364 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4653         266 :                         continue;
    4654             : 
    4655          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4656             :                     {
    4657          28 :                         pfree(members);
    4658          28 :                         result = TM_Ok;
    4659          28 :                         goto out_unlocked;
    4660             :                     }
    4661             :                     else
    4662             :                     {
    4663             :                         /*
    4664             :                          * Disable acquisition of the heavyweight tuple lock.
    4665             :                          * Otherwise, when promoting a weaker lock, we might
    4666             :                          * deadlock with another locker that has acquired the
    4667             :                          * heavyweight tuple lock and is waiting for our
    4668             :                          * transaction to finish.
    4669             :                          *
    4670             :                          * Note that in this case we still need to wait for
    4671             :                          * the multixact if required, to avoid acquiring
    4672             :                          * conflicting locks.
    4673             :                          */
    4674          70 :                         skip_tuple_lock = true;
    4675             :                     }
    4676             :                 }
    4677             : 
    4678         140 :                 if (members)
    4679         140 :                     pfree(members);
    4680             :             }
    4681       15502 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4682             :             {
    4683       13044 :                 switch (mode)
    4684             :                 {
    4685         324 :                     case LockTupleKeyShare:
    4686             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4687             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4688             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4689         324 :                         result = TM_Ok;
    4690         324 :                         goto out_unlocked;
    4691          14 :                     case LockTupleShare:
    4692          26 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4693          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4694             :                         {
    4695           2 :                             result = TM_Ok;
    4696           2 :                             goto out_unlocked;
    4697             :                         }
    4698          12 :                         break;
    4699         122 :                     case LockTupleNoKeyExclusive:
    4700         122 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4701             :                         {
    4702         100 :                             result = TM_Ok;
    4703         100 :                             goto out_unlocked;
    4704             :                         }
    4705          22 :                         break;
    4706       12584 :                     case LockTupleExclusive:
    4707       12584 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4708        2504 :                             infomask2 & HEAP_KEYS_UPDATED)
    4709             :                         {
    4710        2462 :                             result = TM_Ok;
    4711        2462 :                             goto out_unlocked;
    4712             :                         }
    4713       10122 :                         break;
    4714             :                 }
    4715        2476 :             }
    4716             :         }
    4717             : 
    4718             :         /*
    4719             :          * Initially assume that we will have to wait for the locking
    4720             :          * transaction(s) to finish.  We check various cases below in which
    4721             :          * this can be turned off.
    4722             :          */
    4723       12772 :         require_sleep = true;
    4724       12772 :         if (mode == LockTupleKeyShare)
    4725             :         {
    4726             :             /*
    4727             :              * If we're requesting KeyShare, and there's no update present, we
    4728             :              * don't need to wait.  Even if there is an update, we can still
    4729             :              * continue if the key hasn't been modified.
    4730             :              *
    4731             :              * However, if there are updates, we need to walk the update chain
    4732             :              * to mark future versions of the row as locked, too.  That way,
    4733             :              * if somebody deletes that future version, we're protected
    4734             :              * against the key going away.  This locking of future versions
    4735             :              * could block momentarily, if a concurrent transaction is
    4736             :              * deleting a key; or it could return a value to the effect that
    4737             :              * the transaction deleting the key has already committed.  So we
    4738             :              * do this before re-locking the buffer; otherwise this would be
    4739             :              * prone to deadlocks.
    4740             :              *
    4741             :              * Note that the TID we're locking was grabbed before we unlocked
    4742             :              * the buffer.  For it to change while we're not looking, the
    4743             :              * other properties we're testing for below after re-locking the
    4744             :              * buffer would also change, in which case we would restart this
    4745             :              * loop above.
    4746             :              */
    4747        1166 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4748             :             {
    4749             :                 bool        updated;
    4750             : 
    4751        1104 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4752             : 
    4753             :                 /*
    4754             :                  * If there are updates, follow the update chain; bail out if
    4755             :                  * that cannot be done.
    4756             :                  */
    4757        1104 :                 if (follow_updates && updated)
    4758             :                 {
    4759             :                     TM_Result   res;
    4760             : 
    4761         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4762             :                                                   GetCurrentTransactionId(),
    4763             :                                                   mode);
    4764         100 :                     if (res != TM_Ok)
    4765             :                     {
    4766          12 :                         result = res;
    4767             :                         /* recovery code expects to have buffer lock held */
    4768          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4769         360 :                         goto failed;
    4770             :                     }
    4771             :                 }
    4772             : 
    4773        1092 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4774             : 
    4775             :                 /*
    4776             :                  * Make sure it's still an appropriate lock, else start over.
    4777             :                  * Also, if it wasn't updated before we released the lock, but
    4778             :                  * is updated now, we start over too; the reason is that we
    4779             :                  * now need to follow the update chain to lock the new
    4780             :                  * versions.
    4781             :                  */
    4782        1092 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4783          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4784          86 :                      !updated))
    4785          28 :                     goto l3;
    4786             : 
    4787             :                 /* Things look okay, so we can skip sleeping */
    4788        1092 :                 require_sleep = false;
    4789             : 
    4790             :                 /*
    4791             :                  * Note we allow Xmax to change here; other updaters/lockers
    4792             :                  * could have modified it before we grabbed the buffer lock.
    4793             :                  * However, this is not a problem, because with the recheck we
    4794             :                  * just did we ensure that they still don't conflict with the
    4795             :                  * lock we want.
    4796             :                  */
    4797             :             }
    4798             :         }
    4799       11606 :         else if (mode == LockTupleShare)
    4800             :         {
    4801             :             /*
    4802             :              * If we're requesting Share, we can similarly avoid sleeping if
    4803             :              * there's no update and no exclusive lock present.
    4804             :              */
    4805         886 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4806         886 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4807             :             {
    4808         874 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4809             : 
    4810             :                 /*
    4811             :                  * Make sure it's still an appropriate lock, else start over.
    4812             :                  * See above about allowing xmax to change.
    4813             :                  */
    4814        1748 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4815         874 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4816           0 :                     goto l3;
    4817         874 :                 require_sleep = false;
    4818             :             }
    4819             :         }
    4820       10720 :         else if (mode == LockTupleNoKeyExclusive)
    4821             :         {
    4822             :             /*
    4823             :              * If we're requesting NoKeyExclusive, we might also be able to
    4824             :              * avoid sleeping; just ensure that there no conflicting lock
    4825             :              * already acquired.
    4826             :              */
    4827         310 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4828             :             {
    4829          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4830             :                                              mode, NULL))
    4831             :                 {
    4832             :                     /*
    4833             :                      * No conflict, but if the xmax changed under us in the
    4834             :                      * meantime, start over.
    4835             :                      */
    4836          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4837          52 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4838          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4839             :                                              xwait))
    4840           0 :                         goto l3;
    4841             : 
    4842             :                     /* otherwise, we're good */
    4843          26 :                     require_sleep = false;
    4844             :                 }
    4845             :             }
    4846         258 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4847             :             {
    4848          34 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4849             : 
    4850             :                 /* if the xmax changed in the meantime, start over */
    4851          68 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4852          34 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4853             :                                          xwait))
    4854           0 :                     goto l3;
    4855             :                 /* otherwise, we're good */
    4856          34 :                 require_sleep = false;
    4857             :             }
    4858             :         }
    4859             : 
    4860             :         /*
    4861             :          * As a check independent from those above, we can also avoid sleeping
    4862             :          * if the current transaction is the sole locker of the tuple.  Note
    4863             :          * that the strength of the lock already held is irrelevant; this is
    4864             :          * not about recording the lock in Xmax (which will be done regardless
    4865             :          * of this optimization, below).  Also, note that the cases where we
    4866             :          * hold a lock stronger than we are requesting are already handled
    4867             :          * above by not doing anything.
    4868             :          *
    4869             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4870             :          * is well equipped to deal with this situation on its own.
    4871             :          */
    4872       23412 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4873       10652 :             TransactionIdIsCurrentTransactionId(xwait))
    4874             :         {
    4875             :             /* ... but if the xmax changed in the meantime, start over */
    4876       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4877       20244 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4878       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4879             :                                      xwait))
    4880           0 :                 goto l3;
    4881             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4882       10122 :             require_sleep = false;
    4883             :         }
    4884             : 
    4885             :         /*
    4886             :          * Time to sleep on the other transaction/multixact, if necessary.
    4887             :          *
    4888             :          * If the other transaction is an update/delete that's already
    4889             :          * committed, then sleeping cannot possibly do any good: if we're
    4890             :          * required to sleep, get out to raise an error instead.
    4891             :          *
    4892             :          * By here, we either have already acquired the buffer exclusive lock,
    4893             :          * or we must wait for the locking transaction or multixact; so below
    4894             :          * we ensure that we grab buffer lock after the sleep.
    4895             :          */
    4896       12760 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4897             :         {
    4898         272 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4899         272 :             goto failed;
    4900             :         }
    4901       12488 :         else if (require_sleep)
    4902             :         {
    4903             :             /*
    4904             :              * Acquire tuple lock to establish our priority for the tuple, or
    4905             :              * die trying.  LockTuple will release us when we are next-in-line
    4906             :              * for the tuple.  We must do this even if we are share-locking,
    4907             :              * but not if we already have a weaker lock on the tuple.
    4908             :              *
    4909             :              * If we are forced to "start over" below, we keep the tuple lock;
    4910             :              * this arranges that we stay at the head of the line while
    4911             :              * rechecking tuple state.
    4912             :              */
    4913         340 :             if (!skip_tuple_lock &&
    4914         308 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4915             :                                       &have_tuple_lock))
    4916             :             {
    4917             :                 /*
    4918             :                  * This can only happen if wait_policy is Skip and the lock
    4919             :                  * couldn't be obtained.
    4920             :                  */
    4921           2 :                 result = TM_WouldBlock;
    4922             :                 /* recovery code expects to have buffer lock held */
    4923           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4924           2 :                 goto failed;
    4925             :             }
    4926             : 
    4927         336 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4928             :             {
    4929          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4930             : 
    4931             :                 /* We only ever lock tuples, never update them */
    4932          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4933           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4934             : 
    4935             :                 /* wait for multixact to end, or die trying  */
    4936          80 :                 switch (wait_policy)
    4937             :                 {
    4938          72 :                     case LockWaitBlock:
    4939          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4940             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4941          72 :                         break;
    4942           4 :                     case LockWaitSkip:
    4943           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4944             :                                                         status, infomask, relation,
    4945             :                                                         NULL, false))
    4946             :                         {
    4947           4 :                             result = TM_WouldBlock;
    4948             :                             /* recovery code expects to have buffer lock held */
    4949           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4950           4 :                             goto failed;
    4951             :                         }
    4952           0 :                         break;
    4953           4 :                     case LockWaitError:
    4954           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4955             :                                                         status, infomask, relation,
    4956             :                                                         NULL, log_lock_failure))
    4957           4 :                             ereport(ERROR,
    4958             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4959             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4960             :                                             RelationGetRelationName(relation))));
    4961             : 
    4962           0 :                         break;
    4963             :                 }
    4964             : 
    4965             :                 /*
    4966             :                  * Of course, the multixact might not be done here: if we're
    4967             :                  * requesting a light lock mode, other transactions with light
    4968             :                  * locks could still be alive, as well as locks owned by our
    4969             :                  * own xact or other subxacts of this backend.  We need to
    4970             :                  * preserve the surviving MultiXact members.  Note that it
    4971             :                  * isn't absolutely necessary in the latter case, but doing so
    4972             :                  * is simpler.
    4973             :                  */
    4974          72 :             }
    4975             :             else
    4976             :             {
    4977             :                 /* wait for regular transaction to end, or die trying */
    4978         256 :                 switch (wait_policy)
    4979             :                 {
    4980         178 :                     case LockWaitBlock:
    4981         178 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    4982             :                                           XLTW_Lock);
    4983         178 :                         break;
    4984          66 :                     case LockWaitSkip:
    4985          66 :                         if (!ConditionalXactLockTableWait(xwait, false))
    4986             :                         {
    4987          66 :                             result = TM_WouldBlock;
    4988             :                             /* recovery code expects to have buffer lock held */
    4989          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4990          66 :                             goto failed;
    4991             :                         }
    4992           0 :                         break;
    4993          12 :                     case LockWaitError:
    4994          12 :                         if (!ConditionalXactLockTableWait(xwait, log_lock_failure))
    4995          12 :                             ereport(ERROR,
    4996             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4997             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4998             :                                             RelationGetRelationName(relation))));
    4999           0 :                         break;
    5000             :                 }
    5001         250 :             }
    5002             : 
    5003             :             /* if there are updates, follow the update chain */
    5004         250 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    5005             :             {
    5006             :                 TM_Result   res;
    5007             : 
    5008          80 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    5009             :                                               GetCurrentTransactionId(),
    5010             :                                               mode);
    5011          80 :                 if (res != TM_Ok)
    5012             :                 {
    5013           4 :                     result = res;
    5014             :                     /* recovery code expects to have buffer lock held */
    5015           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5016           4 :                     goto failed;
    5017             :                 }
    5018             :             }
    5019             : 
    5020         246 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5021             : 
    5022             :             /*
    5023             :              * xwait is done, but if xwait had just locked the tuple then some
    5024             :              * other xact could update this tuple before we get to this point.
    5025             :              * Check for xmax change, and start over if so.
    5026             :              */
    5027         468 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    5028         222 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    5029             :                                      xwait))
    5030          28 :                 goto l3;
    5031             : 
    5032         218 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    5033             :             {
    5034             :                 /*
    5035             :                  * Otherwise check if it committed or aborted.  Note we cannot
    5036             :                  * be here if the tuple was only locked by somebody who didn't
    5037             :                  * conflict with us; that would have been handled above.  So
    5038             :                  * that transaction must necessarily be gone by now.  But
    5039             :                  * don't check for this in the multixact case, because some
    5040             :                  * locker transactions might still be running.
    5041             :                  */
    5042         156 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    5043             :             }
    5044             :         }
    5045             : 
    5046             :         /* By here, we're certain that we hold buffer exclusive lock again */
    5047             : 
    5048             :         /*
    5049             :          * We may lock if previous xmax aborted, or if it committed but only
    5050             :          * locked the tuple without updating it; or if we didn't have to wait
    5051             :          * at all for whatever reason.
    5052             :          */
    5053       12366 :         if (!require_sleep ||
    5054         376 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    5055         286 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    5056         128 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    5057       12250 :             result = TM_Ok;
    5058         116 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    5059          92 :             result = TM_Updated;
    5060             :         else
    5061          24 :             result = TM_Deleted;
    5062             :     }
    5063             : 
    5064      153930 : failed:
    5065      166656 :     if (result != TM_Ok)
    5066             :     {
    5067             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    5068             :                result == TM_Deleted || result == TM_WouldBlock);
    5069             : 
    5070             :         /*
    5071             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    5072             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    5073             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    5074             :          * this assert is slightly different from the equivalent one in
    5075             :          * heap_delete and heap_update.
    5076             :          */
    5077             :         Assert((result == TM_WouldBlock) ||
    5078             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    5079             :         Assert(result != TM_Updated ||
    5080             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    5081         488 :         tmfd->ctid = tuple->t_data->t_ctid;
    5082         488 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    5083         488 :         if (result == TM_SelfModified)
    5084          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    5085             :         else
    5086         476 :             tmfd->cmax = InvalidCommandId;
    5087         488 :         goto out_locked;
    5088             :     }
    5089             : 
    5090             :     /*
    5091             :      * If we didn't pin the visibility map page and the page has become all
    5092             :      * visible while we were busy locking the buffer, or during some
    5093             :      * subsequent window during which we had it unlocked, we'll have to unlock
    5094             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5095             :      * unfortunate, especially since we'll now have to recheck whether the
    5096             :      * tuple has been locked or updated under us, but hopefully it won't
    5097             :      * happen very often.
    5098             :      */
    5099      166168 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5100             :     {
    5101           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5102           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5103           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5104           0 :         goto l3;
    5105             :     }
    5106             : 
    5107      166168 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5108      166168 :     old_infomask = tuple->t_data->t_infomask;
    5109             : 
    5110             :     /*
    5111             :      * If this is the first possibly-multixact-able operation in the current
    5112             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5113             :      * certain that the transaction will never become a member of any older
    5114             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5115             :      * using our own TransactionId below, since some other backend could
    5116             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5117             :      */
    5118      166168 :     MultiXactIdSetOldestMember();
    5119             : 
    5120             :     /*
    5121             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5122             :      * not modify the tuple just yet, because that would leave it in the wrong
    5123             :      * state if multixact.c elogs.
    5124             :      */
    5125      166168 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5126             :                               GetCurrentTransactionId(), mode, false,
    5127             :                               &xid, &new_infomask, &new_infomask2);
    5128             : 
    5129      166168 :     START_CRIT_SECTION();
    5130             : 
    5131             :     /*
    5132             :      * Store transaction information of xact locking the tuple.
    5133             :      *
    5134             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5135             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5136             :      * previously updated tuple, it's important to preserve the Cmax.
    5137             :      *
    5138             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5139             :      * we would break the HOT chain.
    5140             :      */
    5141      166168 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5142      166168 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5143      166168 :     tuple->t_data->t_infomask |= new_infomask;
    5144      166168 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5145      166168 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5146      166090 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5147      166168 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5148             : 
    5149             :     /*
    5150             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5151             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5152             :      * because it was set by the updater.  Moreover, if the tuple has been
    5153             :      * updated, we need to follow the update chain to lock the new versions of
    5154             :      * the tuple as well.
    5155             :      */
    5156      166168 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5157      166090 :         tuple->t_data->t_ctid = *tid;
    5158             : 
    5159             :     /* Clear only the all-frozen bit on visibility map if needed */
    5160      169504 :     if (PageIsAllVisible(page) &&
    5161        3336 :         visibilitymap_clear(relation, block, vmbuffer,
    5162             :                             VISIBILITYMAP_ALL_FROZEN))
    5163          32 :         cleared_all_frozen = true;
    5164             : 
    5165             : 
    5166      166168 :     MarkBufferDirty(*buffer);
    5167             : 
    5168             :     /*
    5169             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5170             :      * there is no state change worth restoring after a crash.  You would be
    5171             :      * wrong however: we have just written either a TransactionId or a
    5172             :      * MultiXactId that may never have been seen on disk before, and we need
    5173             :      * to make sure that there are XLOG entries covering those ID numbers.
    5174             :      * Else the same IDs might be re-used after a crash, which would be
    5175             :      * disastrous if this page made it to disk before the crash.  Essentially
    5176             :      * we have to enforce the WAL log-before-data rule even in this case.
    5177             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5178             :      * entries for everything anyway.)
    5179             :      */
    5180      166168 :     if (RelationNeedsWAL(relation))
    5181             :     {
    5182             :         xl_heap_lock xlrec;
    5183             :         XLogRecPtr  recptr;
    5184             : 
    5185      165480 :         XLogBeginInsert();
    5186      165480 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5187             : 
    5188      165480 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5189      165480 :         xlrec.xmax = xid;
    5190      330960 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5191      165480 :                                               tuple->t_data->t_infomask2);
    5192      165480 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5193      165480 :         XLogRegisterData(&xlrec, SizeOfHeapLock);
    5194             : 
    5195             :         /* we don't decode row locks atm, so no need to log the origin */
    5196             : 
    5197      165480 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5198             : 
    5199      165480 :         PageSetLSN(page, recptr);
    5200             :     }
    5201             : 
    5202      166168 :     END_CRIT_SECTION();
    5203             : 
    5204      166168 :     result = TM_Ok;
    5205             : 
    5206      166680 : out_locked:
    5207      166680 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5208             : 
    5209      169596 : out_unlocked:
    5210      169596 :     if (BufferIsValid(vmbuffer))
    5211        3336 :         ReleaseBuffer(vmbuffer);
    5212             : 
    5213             :     /*
    5214             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5215             :      * visibility info.
    5216             :      */
    5217             : 
    5218             :     /*
    5219             :      * Now that we have successfully marked the tuple as locked, we can
    5220             :      * release the lmgr tuple lock, if we had it.
    5221             :      */
    5222      169596 :     if (have_tuple_lock)
    5223         278 :         UnlockTupleTuplock(relation, tid, mode);
    5224             : 
    5225      169596 :     return result;
    5226             : }
    5227             : 
    5228             : /*
    5229             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5230             :  * its normal, Xmax-based tuple lock.
    5231             :  *
    5232             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5233             :  * whether the lock has previously been acquired (and this function does
    5234             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5235             :  * has been flipped to true.
    5236             :  *
    5237             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5238             :  * wait_policy is Skip.
    5239             :  */
    5240             : static bool
    5241         526 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5242             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5243             : {
    5244         526 :     if (*have_tuple_lock)
    5245          18 :         return true;
    5246             : 
    5247         508 :     switch (wait_policy)
    5248             :     {
    5249         426 :         case LockWaitBlock:
    5250         426 :             LockTupleTuplock(relation, tid, mode);
    5251         426 :             break;
    5252             : 
    5253          68 :         case LockWaitSkip:
    5254          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, false))
    5255           2 :                 return false;
    5256          66 :             break;
    5257             : 
    5258          14 :         case LockWaitError:
    5259          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, log_lock_failure))
    5260           2 :                 ereport(ERROR,
    5261             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5262             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5263             :                                 RelationGetRelationName(relation))));
    5264          12 :             break;
    5265             :     }
    5266         504 :     *have_tuple_lock = true;
    5267             : 
    5268         504 :     return true;
    5269             : }
    5270             : 
    5271             : /*
    5272             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5273             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5274             :  * corresponding infomasks to use on the tuple.
    5275             :  *
    5276             :  * Note that this might have side effects such as creating a new MultiXactId.
    5277             :  *
    5278             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5279             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5280             :  * but it was not running anymore. There is a race condition, which is that the
    5281             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5282             :  * either here, or within MultiXactIdExpand.
    5283             :  *
    5284             :  * There is a similar race condition possible when the old xmax was a regular
    5285             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5286             :  * window, but it's still possible to end up creating an unnecessary
    5287             :  * MultiXactId.  Fortunately this is harmless.
    5288             :  */
    5289             : static void
    5290     4228418 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5291             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5292             :                           LockTupleMode mode, bool is_update,
    5293             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5294             :                           uint16 *result_infomask2)
    5295             : {
    5296             :     TransactionId new_xmax;
    5297             :     uint16      new_infomask,
    5298             :                 new_infomask2;
    5299             : 
    5300             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5301             : 
    5302     4228418 : l5:
    5303     4228418 :     new_infomask = 0;
    5304     4228418 :     new_infomask2 = 0;
    5305     4228418 :     if (old_infomask & HEAP_XMAX_INVALID)
    5306             :     {
    5307             :         /*
    5308             :          * No previous locker; we just insert our own TransactionId.
    5309             :          *
    5310             :          * Note that it's critical that this case be the first one checked,
    5311             :          * because there are several blocks below that come back to this one
    5312             :          * to implement certain optimizations; old_infomask might contain
    5313             :          * other dirty bits in those cases, but we don't really care.
    5314             :          */
    5315     4018480 :         if (is_update)
    5316             :         {
    5317     3557344 :             new_xmax = add_to_xmax;
    5318     3557344 :             if (mode == LockTupleExclusive)
    5319     3021708 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5320             :         }
    5321             :         else
    5322             :         {
    5323      461136 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5324      461136 :             switch (mode)
    5325             :             {
    5326        5032 :                 case LockTupleKeyShare:
    5327        5032 :                     new_xmax = add_to_xmax;
    5328        5032 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5329        5032 :                     break;
    5330        1448 :                 case LockTupleShare:
    5331        1448 :                     new_xmax = add_to_xmax;
    5332        1448 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5333        1448 :                     break;
    5334      263676 :                 case LockTupleNoKeyExclusive:
    5335      263676 :                     new_xmax = add_to_xmax;
    5336      263676 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5337      263676 :                     break;
    5338      190980 :                 case LockTupleExclusive:
    5339      190980 :                     new_xmax = add_to_xmax;
    5340      190980 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5341      190980 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5342      190980 :                     break;
    5343           0 :                 default:
    5344           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5345           0 :                     elog(ERROR, "invalid lock mode");
    5346             :             }
    5347             :         }
    5348             :     }
    5349      209938 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5350             :     {
    5351             :         MultiXactStatus new_status;
    5352             : 
    5353             :         /*
    5354             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5355             :          * cross-check.
    5356             :          */
    5357             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5358             : 
    5359             :         /*
    5360             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5361             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5362             :          * anymore.  This check is critical for databases upgraded by
    5363             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5364             :          * that such multis are never passed.
    5365             :          */
    5366         240 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5367             :         {
    5368           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5369           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5370           0 :             goto l5;
    5371             :         }
    5372             : 
    5373             :         /*
    5374             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5375             :          * include add_to_xmax; but if all the members were lockers and are
    5376             :          * all gone, we can do away with the IS_MULTI bit and just set
    5377             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5378             :          * and we have an updater that aborted, we can also do without a
    5379             :          * multi.
    5380             :          *
    5381             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5382             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5383             :          * incurring extra work anyhow.
    5384             :          */
    5385         240 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5386             :         {
    5387          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5388          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5389             :                                                                 old_infomask)))
    5390             :             {
    5391             :                 /*
    5392             :                  * Reset these bits and restart; otherwise fall through to
    5393             :                  * create a new multi below.
    5394             :                  */
    5395          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5396          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5397          46 :                 goto l5;
    5398             :             }
    5399             :         }
    5400             : 
    5401         194 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5402             : 
    5403         194 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5404             :                                      new_status);
    5405         194 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5406             :     }
    5407      209698 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5408             :     {
    5409             :         /*
    5410             :          * It's a committed update, so we need to preserve him as updater of
    5411             :          * the tuple.
    5412             :          */
    5413             :         MultiXactStatus status;
    5414             :         MultiXactStatus new_status;
    5415             : 
    5416          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5417           0 :             status = MultiXactStatusUpdate;
    5418             :         else
    5419          26 :             status = MultiXactStatusNoKeyUpdate;
    5420             : 
    5421          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5422             : 
    5423             :         /*
    5424             :          * since it's not running, it's obviously impossible for the old
    5425             :          * updater to be identical to the current one, so we need not check
    5426             :          * for that case as we do in the block above.
    5427             :          */
    5428          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5429          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5430             :     }
    5431      209672 :     else if (TransactionIdIsInProgress(xmax))
    5432             :     {
    5433             :         /*
    5434             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5435             :          * create a new MultiXactId that includes both the old locker or
    5436             :          * updater and our own TransactionId.
    5437             :          */
    5438             :         MultiXactStatus new_status;
    5439             :         MultiXactStatus old_status;
    5440             :         LockTupleMode old_mode;
    5441             : 
    5442      209654 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5443             :         {
    5444      209602 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5445       11244 :                 old_status = MultiXactStatusForKeyShare;
    5446      198358 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5447         866 :                 old_status = MultiXactStatusForShare;
    5448      197492 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5449             :             {
    5450      197492 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5451      185262 :                     old_status = MultiXactStatusForUpdate;
    5452             :                 else
    5453       12230 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5454             :             }
    5455             :             else
    5456             :             {
    5457             :                 /*
    5458             :                  * LOCK_ONLY can be present alone only when a page has been
    5459             :                  * upgraded by pg_upgrade.  But in that case,
    5460             :                  * TransactionIdIsInProgress() should have returned false.  We
    5461             :                  * assume it's no longer locked in this case.
    5462             :                  */
    5463           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5464           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5465           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5466           0 :                 goto l5;
    5467             :             }
    5468             :         }
    5469             :         else
    5470             :         {
    5471             :             /* it's an update, but which kind? */
    5472          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5473           0 :                 old_status = MultiXactStatusUpdate;
    5474             :             else
    5475          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5476             :         }
    5477             : 
    5478      209654 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5479             : 
    5480             :         /*
    5481             :          * If the lock to be acquired is for the same TransactionId as the
    5482             :          * existing lock, there's an optimization possible: consider only the
    5483             :          * strongest of both locks as the only one present, and restart.
    5484             :          */
    5485      209654 :         if (xmax == add_to_xmax)
    5486             :         {
    5487             :             /*
    5488             :              * Note that it's not possible for the original tuple to be
    5489             :              * updated: we wouldn't be here because the tuple would have been
    5490             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5491             :              * this code can also run when traversing an update chain to lock
    5492             :              * future versions of a tuple.  But we wouldn't be here either,
    5493             :              * because the add_to_xmax would be different from the original
    5494             :              * updater.
    5495             :              */
    5496             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5497             : 
    5498             :             /* acquire the strongest of both */
    5499      207610 :             if (mode < old_mode)
    5500      104148 :                 mode = old_mode;
    5501             :             /* mustn't touch is_update */
    5502             : 
    5503      207610 :             old_infomask |= HEAP_XMAX_INVALID;
    5504      207610 :             goto l5;
    5505             :         }
    5506             : 
    5507             :         /* otherwise, just fall back to creating a new multixact */
    5508        2044 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5509        2044 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5510             :                                      add_to_xmax, new_status);
    5511        2044 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5512             :     }
    5513          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5514          10 :              TransactionIdDidCommit(xmax))
    5515           2 :     {
    5516             :         /*
    5517             :          * It's a committed update, so we gotta preserve him as updater of the
    5518             :          * tuple.
    5519             :          */
    5520             :         MultiXactStatus status;
    5521             :         MultiXactStatus new_status;
    5522             : 
    5523           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5524           0 :             status = MultiXactStatusUpdate;
    5525             :         else
    5526           2 :             status = MultiXactStatusNoKeyUpdate;
    5527             : 
    5528           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5529             : 
    5530             :         /*
    5531             :          * since it's not running, it's obviously impossible for the old
    5532             :          * updater to be identical to the current one, so we need not check
    5533             :          * for that case as we do in the block above.
    5534             :          */
    5535           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5536           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5537             :     }
    5538             :     else
    5539             :     {
    5540             :         /*
    5541             :          * Can get here iff the locking/updating transaction was running when
    5542             :          * the infomask was extracted from the tuple, but finished before
    5543             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5544             :          * no locker at all in the first place.
    5545             :          */
    5546          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5547          16 :         goto l5;
    5548             :     }
    5549             : 
    5550     4020746 :     *result_infomask = new_infomask;
    5551     4020746 :     *result_infomask2 = new_infomask2;
    5552     4020746 :     *result_xmax = new_xmax;
    5553     4020746 : }
    5554             : 
    5555             : /*
    5556             :  * Subroutine for heap_lock_updated_tuple_rec.
    5557             :  *
    5558             :  * Given a hypothetical multixact status held by the transaction identified
    5559             :  * with the given xid, does the current transaction need to wait, fail, or can
    5560             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5561             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5562             :  * returned.  If the lock is already held by the current transaction, return
    5563             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5564             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5565             :  *
    5566             :  * The held status is said to be hypothetical because it might correspond to a
    5567             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5568             :  * way for simplicity of API.
    5569             :  */
    5570             : static TM_Result
    5571          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5572             :                            LockTupleMode mode, HeapTuple tup,
    5573             :                            bool *needwait)
    5574             : {
    5575             :     MultiXactStatus wantedstatus;
    5576             : 
    5577          64 :     *needwait = false;
    5578          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5579             : 
    5580             :     /*
    5581             :      * Note: we *must* check TransactionIdIsInProgress before
    5582             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5583             :      * for an explanation.
    5584             :      */
    5585          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5586             :     {
    5587             :         /*
    5588             :          * The tuple has already been locked by our own transaction.  This is
    5589             :          * very rare but can happen if multiple transactions are trying to
    5590             :          * lock an ancient version of the same tuple.
    5591             :          */
    5592           0 :         return TM_SelfModified;
    5593             :     }
    5594          64 :     else if (TransactionIdIsInProgress(xid))
    5595             :     {
    5596             :         /*
    5597             :          * If the locking transaction is running, what we do depends on
    5598             :          * whether the lock modes conflict: if they do, then we must wait for
    5599             :          * it to finish; otherwise we can fall through to lock this tuple
    5600             :          * version without waiting.
    5601             :          */
    5602          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5603          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5604             :         {
    5605          16 :             *needwait = true;
    5606             :         }
    5607             : 
    5608             :         /*
    5609             :          * If we set needwait above, then this value doesn't matter;
    5610             :          * otherwise, this value signals to caller that it's okay to proceed.
    5611             :          */
    5612          32 :         return TM_Ok;
    5613             :     }
    5614          32 :     else if (TransactionIdDidAbort(xid))
    5615           6 :         return TM_Ok;
    5616          26 :     else if (TransactionIdDidCommit(xid))
    5617             :     {
    5618             :         /*
    5619             :          * The other transaction committed.  If it was only a locker, then the
    5620             :          * lock is completely gone now and we can return success; but if it
    5621             :          * was an update, then what we do depends on whether the two lock
    5622             :          * modes conflict.  If they conflict, then we must report error to
    5623             :          * caller. But if they don't, we can fall through to allow the current
    5624             :          * transaction to lock the tuple.
    5625             :          *
    5626             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5627             :          * a transaction ends, all its locks are gone and meaningless, and
    5628             :          * thus we can ignore them; whereas its updates persist.  In the
    5629             :          * TransactionIdIsInProgress case, above, we don't need to check
    5630             :          * because we know the lock is still "alive" and thus a conflict needs
    5631             :          * always be checked.
    5632             :          */
    5633          26 :         if (!ISUPDATE_from_mxstatus(status))
    5634           8 :             return TM_Ok;
    5635             : 
    5636          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5637          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5638             :         {
    5639             :             /* bummer */
    5640          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5641          12 :                 return TM_Updated;
    5642             :             else
    5643           4 :                 return TM_Deleted;
    5644             :         }
    5645             : 
    5646           2 :         return TM_Ok;
    5647             :     }
    5648             : 
    5649             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5650           0 :     return TM_Ok;
    5651             : }
    5652             : 
    5653             : 
    5654             : /*
    5655             :  * Recursive part of heap_lock_updated_tuple
    5656             :  *
    5657             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5658             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5659             :  * version as well.
    5660             :  */
    5661             : static TM_Result
    5662         162 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5663             :                             LockTupleMode mode)
    5664             : {
    5665             :     TM_Result   result;
    5666             :     ItemPointerData tupid;
    5667             :     HeapTupleData mytup;
    5668             :     Buffer      buf;
    5669             :     uint16      new_infomask,
    5670             :                 new_infomask2,
    5671             :                 old_infomask,
    5672             :                 old_infomask2;
    5673             :     TransactionId xmax,
    5674             :                 new_xmax;
    5675         162 :     TransactionId priorXmax = InvalidTransactionId;
    5676         162 :     bool        cleared_all_frozen = false;
    5677             :     bool        pinned_desired_page;
    5678         162 :     Buffer      vmbuffer = InvalidBuffer;
    5679             :     BlockNumber block;
    5680             : 
    5681         162 :     ItemPointerCopy(tid, &tupid);
    5682             : 
    5683             :     for (;;)
    5684             :     {
    5685         168 :         new_infomask = 0;
    5686         168 :         new_xmax = InvalidTransactionId;
    5687         168 :         block = ItemPointerGetBlockNumber(&tupid);
    5688         168 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5689             : 
    5690         168 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5691             :         {
    5692             :             /*
    5693             :              * if we fail to find the updated version of the tuple, it's
    5694             :              * because it was vacuumed/pruned away after its creator
    5695             :              * transaction aborted.  So behave as if we got to the end of the
    5696             :              * chain, and there's no further tuple to lock: return success to
    5697             :              * caller.
    5698             :              */
    5699           0 :             result = TM_Ok;
    5700           0 :             goto out_unlocked;
    5701             :         }
    5702             : 
    5703         168 : l4:
    5704         184 :         CHECK_FOR_INTERRUPTS();
    5705             : 
    5706             :         /*
    5707             :          * Before locking the buffer, pin the visibility map page if it
    5708             :          * appears to be necessary.  Since we haven't got the lock yet,
    5709             :          * someone else might be in the middle of changing this, so we'll need
    5710             :          * to recheck after we have the lock.
    5711             :          */
    5712         184 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5713             :         {
    5714           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5715           0 :             pinned_desired_page = true;
    5716             :         }
    5717             :         else
    5718         184 :             pinned_desired_page = false;
    5719             : 
    5720         184 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5721             : 
    5722             :         /*
    5723             :          * If we didn't pin the visibility map page and the page has become
    5724             :          * all visible while we were busy locking the buffer, we'll have to
    5725             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5726             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5727             :          *
    5728             :          * Note: in some paths through this function, we will reach here
    5729             :          * holding a pin on a vm page that may or may not be the one matching
    5730             :          * this page.  If this page isn't all-visible, we won't use the vm
    5731             :          * page, but we hold onto such a pin till the end of the function.
    5732             :          */
    5733         184 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5734             :         {
    5735           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5736           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5737           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5738             :         }
    5739             : 
    5740             :         /*
    5741             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5742             :          * end of the chain, we're done, so return success.
    5743             :          */
    5744         190 :         if (TransactionIdIsValid(priorXmax) &&
    5745           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5746             :                                  priorXmax))
    5747             :         {
    5748           0 :             result = TM_Ok;
    5749           0 :             goto out_locked;
    5750             :         }
    5751             : 
    5752             :         /*
    5753             :          * Also check Xmin: if this tuple was created by an aborted
    5754             :          * (sub)transaction, then we already locked the last live one in the
    5755             :          * chain, thus we're done, so return success.
    5756             :          */
    5757         184 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5758             :         {
    5759          26 :             result = TM_Ok;
    5760          26 :             goto out_locked;
    5761             :         }
    5762             : 
    5763         158 :         old_infomask = mytup.t_data->t_infomask;
    5764         158 :         old_infomask2 = mytup.t_data->t_infomask2;
    5765         158 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5766             : 
    5767             :         /*
    5768             :          * If this tuple version has been updated or locked by some concurrent
    5769             :          * transaction(s), what we do depends on whether our lock mode
    5770             :          * conflicts with what those other transactions hold, and also on the
    5771             :          * status of them.
    5772             :          */
    5773         158 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5774             :         {
    5775             :             TransactionId rawxmax;
    5776             :             bool        needwait;
    5777             : 
    5778          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5779          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5780             :             {
    5781             :                 int         nmembers;
    5782             :                 int         i;
    5783             :                 MultiXactMember *members;
    5784             : 
    5785             :                 /*
    5786             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5787             :                  * applied to tuples after the first in an update chain.  Said
    5788             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5789             :                  * pg_upgraded, but that one was already locked by our caller,
    5790             :                  * not us; and any subsequent ones cannot be because our
    5791             :                  * caller must necessarily have obtained a snapshot later than
    5792             :                  * the pg_upgrade itself.
    5793             :                  */
    5794             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5795             : 
    5796           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5797           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5798           8 :                 for (i = 0; i < nmembers; i++)
    5799             :                 {
    5800           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5801           6 :                                                         members[i].xid,
    5802             :                                                         mode,
    5803             :                                                         &mytup,
    5804             :                                                         &needwait);
    5805             : 
    5806             :                     /*
    5807             :                      * If the tuple was already locked by ourselves in a
    5808             :                      * previous iteration of this (say heap_lock_tuple was
    5809             :                      * forced to restart the locking loop because of a change
    5810             :                      * in xmax), then we hold the lock already on this tuple
    5811             :                      * version and we don't need to do anything; and this is
    5812             :                      * not an error condition either.  We just need to skip
    5813             :                      * this tuple and continue locking the next version in the
    5814             :                      * update chain.
    5815             :                      */
    5816           6 :                     if (result == TM_SelfModified)
    5817             :                     {
    5818           0 :                         pfree(members);
    5819           0 :                         goto next;
    5820             :                     }
    5821             : 
    5822           6 :                     if (needwait)
    5823             :                     {
    5824           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5825           0 :                         XactLockTableWait(members[i].xid, rel,
    5826             :                                           &mytup.t_self,
    5827             :                                           XLTW_LockUpdated);
    5828           0 :                         pfree(members);
    5829           0 :                         goto l4;
    5830             :                     }
    5831           6 :                     if (result != TM_Ok)
    5832             :                     {
    5833           0 :                         pfree(members);
    5834           0 :                         goto out_locked;
    5835             :                     }
    5836             :                 }
    5837           2 :                 if (members)
    5838           2 :                     pfree(members);
    5839             :             }
    5840             :             else
    5841             :             {
    5842             :                 MultiXactStatus status;
    5843             : 
    5844             :                 /*
    5845             :                  * For a non-multi Xmax, we first need to compute the
    5846             :                  * corresponding MultiXactStatus by using the infomask bits.
    5847             :                  */
    5848          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5849             :                 {
    5850          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5851          20 :                         status = MultiXactStatusForKeyShare;
    5852           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5853           0 :                         status = MultiXactStatusForShare;
    5854           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5855             :                     {
    5856           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5857           0 :                             status = MultiXactStatusForUpdate;
    5858             :                         else
    5859           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5860             :                     }
    5861             :                     else
    5862             :                     {
    5863             :                         /*
    5864             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5865             :                          * as share-locked in the old cluster) shouldn't be
    5866             :                          * seen in the middle of an update chain.
    5867             :                          */
    5868           0 :                         elog(ERROR, "invalid lock status in tuple");
    5869             :                     }
    5870             :                 }
    5871             :                 else
    5872             :                 {
    5873             :                     /* it's an update, but which kind? */
    5874          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5875          28 :                         status = MultiXactStatusUpdate;
    5876             :                     else
    5877          10 :                         status = MultiXactStatusNoKeyUpdate;
    5878             :                 }
    5879             : 
    5880          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5881             :                                                     &mytup, &needwait);
    5882             : 
    5883             :                 /*
    5884             :                  * If the tuple was already locked by ourselves in a previous
    5885             :                  * iteration of this (say heap_lock_tuple was forced to
    5886             :                  * restart the locking loop because of a change in xmax), then
    5887             :                  * we hold the lock already on this tuple version and we don't
    5888             :                  * need to do anything; and this is not an error condition
    5889             :                  * either.  We just need to skip this tuple and continue
    5890             :                  * locking the next version in the update chain.
    5891             :                  */
    5892          58 :                 if (result == TM_SelfModified)
    5893           0 :                     goto next;
    5894             : 
    5895          58 :                 if (needwait)
    5896             :                 {
    5897          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5898          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5899             :                                       XLTW_LockUpdated);
    5900          16 :                     goto l4;
    5901             :                 }
    5902          42 :                 if (result != TM_Ok)
    5903             :                 {
    5904          16 :                     goto out_locked;
    5905             :                 }
    5906             :             }
    5907             :         }
    5908             : 
    5909             :         /* compute the new Xmax and infomask values for the tuple ... */
    5910         126 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5911             :                                   xid, mode, false,
    5912             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5913             : 
    5914         126 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5915           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5916             :                                 VISIBILITYMAP_ALL_FROZEN))
    5917           0 :             cleared_all_frozen = true;
    5918             : 
    5919         126 :         START_CRIT_SECTION();
    5920             : 
    5921             :         /* ... and set them */
    5922         126 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5923         126 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5924         126 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5925         126 :         mytup.t_data->t_infomask |= new_infomask;
    5926         126 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5927             : 
    5928         126 :         MarkBufferDirty(buf);
    5929             : 
    5930             :         /* XLOG stuff */
    5931         126 :         if (RelationNeedsWAL(rel))
    5932             :         {
    5933             :             xl_heap_lock_updated xlrec;
    5934             :             XLogRecPtr  recptr;
    5935         126 :             Page        page = BufferGetPage(buf);
    5936             : 
    5937         126 :             XLogBeginInsert();
    5938         126 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5939             : 
    5940         126 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5941         126 :             xlrec.xmax = new_xmax;
    5942         126 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5943         126 :             xlrec.flags =
    5944         126 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5945             : 
    5946         126 :             XLogRegisterData(&xlrec, SizeOfHeapLockUpdated);
    5947             : 
    5948         126 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5949             : 
    5950         126 :             PageSetLSN(page, recptr);
    5951             :         }
    5952             : 
    5953         126 :         END_CRIT_SECTION();
    5954             : 
    5955         126 : next:
    5956             :         /* if we find the end of update chain, we're done. */
    5957         252 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    5958         252 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    5959         134 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    5960           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    5961             :         {
    5962         120 :             result = TM_Ok;
    5963         120 :             goto out_locked;
    5964             :         }
    5965             : 
    5966             :         /* tail recursion */
    5967           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    5968           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    5969           6 :         UnlockReleaseBuffer(buf);
    5970             :     }
    5971             : 
    5972             :     result = TM_Ok;
    5973             : 
    5974         162 : out_locked:
    5975         162 :     UnlockReleaseBuffer(buf);
    5976             : 
    5977         162 : out_unlocked:
    5978         162 :     if (vmbuffer != InvalidBuffer)
    5979           0 :         ReleaseBuffer(vmbuffer);
    5980             : 
    5981         162 :     return result;
    5982             : }
    5983             : 
    5984             : /*
    5985             :  * heap_lock_updated_tuple
    5986             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    5987             :  *      marks) on the updated versions.
    5988             :  *
    5989             :  * The initial tuple is assumed to be already locked.
    5990             :  *
    5991             :  * This function doesn't check visibility, it just unconditionally marks the
    5992             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    5993             :  * concurrently (or updated with the key being modified), sleep until the
    5994             :  * transaction doing it is finished.
    5995             :  *
    5996             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    5997             :  * when we have to wait for other transactions to release them, as opposed to
    5998             :  * what heap_lock_tuple does.  The reason is that having more than one
    5999             :  * transaction walking the chain is probably uncommon enough that risk of
    6000             :  * starvation is not likely: one of the preconditions for being here is that
    6001             :  * the snapshot in use predates the update that created this tuple (because we
    6002             :  * started at an earlier version of the tuple), but at the same time such a
    6003             :  * transaction cannot be using repeatable read or serializable isolation
    6004             :  * levels, because that would lead to a serializability failure.
    6005             :  */
    6006             : static TM_Result
    6007         180 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    6008             :                         TransactionId xid, LockTupleMode mode)
    6009             : {
    6010             :     /*
    6011             :      * If the tuple has not been updated, or has moved into another partition
    6012             :      * (effectively a delete) stop here.
    6013             :      */
    6014         180 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    6015         176 :         !ItemPointerEquals(&tuple->t_self, ctid))
    6016             :     {
    6017             :         /*
    6018             :          * If this is the first possibly-multixact-able operation in the
    6019             :          * current transaction, set my per-backend OldestMemberMXactId
    6020             :          * setting. We can be certain that the transaction will never become a
    6021             :          * member of any older MultiXactIds than that.  (We have to do this
    6022             :          * even if we end up just using our own TransactionId below, since
    6023             :          * some other backend could incorporate our XID into a MultiXact
    6024             :          * immediately afterwards.)
    6025             :          */
    6026         162 :         MultiXactIdSetOldestMember();
    6027             : 
    6028         162 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    6029             :     }
    6030             : 
    6031             :     /* nothing to lock */
    6032          18 :     return TM_Ok;
    6033             : }
    6034             : 
    6035             : /*
    6036             :  *  heap_finish_speculative - mark speculative insertion as successful
    6037             :  *
    6038             :  * To successfully finish a speculative insertion we have to clear speculative
    6039             :  * token from tuple.  To do so the t_ctid field, which will contain a
    6040             :  * speculative token value, is modified in place to point to the tuple itself,
    6041             :  * which is characteristic of a newly inserted ordinary tuple.
    6042             :  *
    6043             :  * NB: It is not ok to commit without either finishing or aborting a
    6044             :  * speculative insertion.  We could treat speculative tuples of committed
    6045             :  * transactions implicitly as completed, but then we would have to be prepared
    6046             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    6047             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    6048             :  * but clearing the token at completion isn't very expensive either.
    6049             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    6050             :  */
    6051             : void
    6052        4112 : heap_finish_speculative(Relation relation, ItemPointer tid)
    6053             : {
    6054             :     Buffer      buffer;
    6055             :     Page        page;
    6056             :     OffsetNumber offnum;
    6057        4112 :     ItemId      lp = NULL;
    6058             :     HeapTupleHeader htup;
    6059             : 
    6060        4112 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    6061        4112 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6062        4112 :     page = (Page) BufferGetPage(buffer);
    6063             : 
    6064        4112 :     offnum = ItemPointerGetOffsetNumber(tid);
    6065        4112 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    6066        4112 :         lp = PageGetItemId(page, offnum);
    6067             : 
    6068        4112 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    6069           0 :         elog(ERROR, "invalid lp");
    6070             : 
    6071        4112 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    6072             : 
    6073             :     /* NO EREPORT(ERROR) from here till changes are logged */
    6074        4112 :     START_CRIT_SECTION();
    6075             : 
    6076             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    6077             : 
    6078        4112 :     MarkBufferDirty(buffer);
    6079             : 
    6080             :     /*
    6081             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    6082             :      * itself like it does on regular tuples.
    6083             :      */
    6084        4112 :     htup->t_ctid = *tid;
    6085             : 
    6086             :     /* XLOG stuff */
    6087        4112 :     if (RelationNeedsWAL(relation))
    6088             :     {
    6089             :         xl_heap_confirm xlrec;
    6090             :         XLogRecPtr  recptr;
    6091             : 
    6092        4094 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    6093             : 
    6094        4094 :         XLogBeginInsert();
    6095             : 
    6096             :         /* We want the same filtering on this as on a plain insert */
    6097        4094 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6098             : 
    6099        4094 :         XLogRegisterData(&xlrec, SizeOfHeapConfirm);
    6100        4094 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6101             : 
    6102        4094 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6103             : 
    6104        4094 :         PageSetLSN(page, recptr);
    6105             :     }
    6106             : 
    6107        4112 :     END_CRIT_SECTION();
    6108             : 
    6109        4112 :     UnlockReleaseBuffer(buffer);
    6110        4112 : }
    6111             : 
    6112             : /*
    6113             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6114             :  *
    6115             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6116             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6117             :  * to all transactions, including our own.  In particular, it makes
    6118             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6119             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6120             :  * transaction to finish (it'll just wait for our speculative insertion to
    6121             :  * finish).
    6122             :  *
    6123             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6124             :  * that arise due to a mutual dependency that is not user visible.  By
    6125             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6126             :  * reordering lock acquisition in client code, because the implementation level
    6127             :  * lock acquisitions are not under the user's direct control.  If speculative
    6128             :  * inserters did not take this precaution, then under high concurrency they
    6129             :  * could deadlock with each other, which would not be acceptable.
    6130             :  *
    6131             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6132             :  * dedicated routine with stripped down requirements.  Note that this is also
    6133             :  * used to delete the TOAST tuples created during speculative insertion.
    6134             :  *
    6135             :  * This routine does not affect logical decoding as it only looks at
    6136             :  * confirmation records.
    6137             :  */
    6138             : void
    6139          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6140             : {
    6141          20 :     TransactionId xid = GetCurrentTransactionId();
    6142             :     ItemId      lp;
    6143             :     HeapTupleData tp;
    6144             :     Page        page;
    6145             :     BlockNumber block;
    6146             :     Buffer      buffer;
    6147             : 
    6148             :     Assert(ItemPointerIsValid(tid));
    6149             : 
    6150          20 :     block = ItemPointerGetBlockNumber(tid);
    6151          20 :     buffer = ReadBuffer(relation, block);
    6152          20 :     page = BufferGetPage(buffer);
    6153             : 
    6154          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6155             : 
    6156             :     /*
    6157             :      * Page can't be all visible, we just inserted into it, and are still
    6158             :      * running.
    6159             :      */
    6160             :     Assert(!PageIsAllVisible(page));
    6161             : 
    6162          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6163             :     Assert(ItemIdIsNormal(lp));
    6164             : 
    6165          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6166          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6167          20 :     tp.t_len = ItemIdGetLength(lp);
    6168          20 :     tp.t_self = *tid;
    6169             : 
    6170             :     /*
    6171             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6172             :      * inserted by us.
    6173             :      */
    6174          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6175           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6176          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6177           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6178             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6179             : 
    6180             :     /*
    6181             :      * No need to check for serializable conflicts here.  There is never a
    6182             :      * need for a combo CID, either.  No need to extract replica identity, or
    6183             :      * do anything special with infomask bits.
    6184             :      */
    6185             : 
    6186          20 :     START_CRIT_SECTION();
    6187             : 
    6188             :     /*
    6189             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6190             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6191             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6192             :      * that's safe against wraparound / being older than the table's
    6193             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6194             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6195             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6196             :      * TransactionXmin, so there's no race here).
    6197             :      */
    6198             :     Assert(TransactionIdIsValid(TransactionXmin));
    6199             :     {
    6200          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6201             :         TransactionId prune_xid;
    6202             : 
    6203          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6204           0 :             prune_xid = relfrozenxid;
    6205             :         else
    6206          20 :             prune_xid = TransactionXmin;
    6207          20 :         PageSetPrunable(page, prune_xid);
    6208             :     }
    6209             : 
    6210             :     /* store transaction information of xact deleting the tuple */
    6211          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6212          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6213             : 
    6214             :     /*
    6215             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6216             :      * tuple immediately invisible everyone.  (In particular, to any
    6217             :      * transactions waiting on the speculative token, woken up later.)
    6218             :      */
    6219          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6220             : 
    6221             :     /* Clear the speculative insertion token too */
    6222          20 :     tp.t_data->t_ctid = tp.t_self;
    6223             : 
    6224          20 :     MarkBufferDirty(buffer);
    6225             : 
    6226             :     /*
    6227             :      * XLOG stuff
    6228             :      *
    6229             :      * The WAL records generated here match heap_delete().  The same recovery
    6230             :      * routines are used.
    6231             :      */
    6232          20 :     if (RelationNeedsWAL(relation))
    6233             :     {
    6234             :         xl_heap_delete xlrec;
    6235             :         XLogRecPtr  recptr;
    6236             : 
    6237          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6238          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6239          20 :                                               tp.t_data->t_infomask2);
    6240          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6241          20 :         xlrec.xmax = xid;
    6242             : 
    6243          20 :         XLogBeginInsert();
    6244          20 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    6245          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6246             : 
    6247             :         /* No replica identity & replication origin logged */
    6248             : 
    6249          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6250             : 
    6251          20 :         PageSetLSN(page, recptr);
    6252             :     }
    6253             : 
    6254          20 :     END_CRIT_SECTION();
    6255             : 
    6256          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6257             : 
    6258          20 :     if (HeapTupleHasExternal(&tp))
    6259             :     {
    6260             :         Assert(!IsToastRelation(relation));
    6261           2 :         heap_toast_delete(relation, &tp, true);
    6262             :     }
    6263             : 
    6264             :     /*
    6265             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6266             :      * speculative insertion
    6267             :      */
    6268             : 
    6269             :     /* Now we can release the buffer */
    6270          20 :     ReleaseBuffer(buffer);
    6271             : 
    6272             :     /* count deletion, as we counted the insertion too */
    6273          20 :     pgstat_count_heap_delete(relation);
    6274          20 : }
    6275             : 
    6276             : /*
    6277             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6278             :  *
    6279             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6280             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6281             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6282             :  * and the caller must release that by calling
    6283             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6284             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6285             :  * transactions to end, and return false.
    6286             :  *
    6287             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6288             :  * DDL, this doesn't guarantee any particular predicate locking.
    6289             :  *
    6290             :  * One could modify this to return true for tuples with delete in progress,
    6291             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6292             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6293             :  * update.
    6294             :  *
    6295             :  * Readers of inplace-updated fields expect changes to those fields are
    6296             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6297             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6298             :  * return a lower datfrozenxid for the same database OID (lower in the
    6299             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6300             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6301             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6302             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6303             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6304             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6305             :  * committed tuple.)
    6306             :  *
    6307             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6308             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6309             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6310             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6311             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6312             :  * in one critical section or (b) accepting a chance of partial completion.
    6313             :  * Partial completion of a relfrozenxid update would have the weird
    6314             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6315             :  * move forward between vacuum_get_cutoffs() and finishing.
    6316             :  */
    6317             : bool
    6318      289174 : heap_inplace_lock(Relation relation,
    6319             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6320             :                   void (*release_callback) (void *), void *arg)
    6321             : {
    6322      289174 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6323             :     TM_Result   result;
    6324             :     bool        ret;
    6325             : 
    6326             : #ifdef USE_ASSERT_CHECKING
    6327             :     if (RelationGetRelid(relation) == RelationRelationId)
    6328             :         check_inplace_rel_lock(oldtup_ptr);
    6329             : #endif
    6330             : 
    6331             :     Assert(BufferIsValid(buffer));
    6332             : 
    6333             :     /*
    6334             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6335             :      * version without our own inplace changes or inplace changes other
    6336             :      * sessions complete while we wait for locks, inplace update mustn't
    6337             :      * change catcache lookup keys.  But we aren't bothering with index
    6338             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6339             :      * would be too late, because this might reach a
    6340             :      * CatalogCacheInitializeCache() that locks "buffer".
    6341             :      */
    6342      289174 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6343             : 
    6344      289174 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6345      289174 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6346             : 
    6347             :     /*----------
    6348             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6349             :      *
    6350             :      * - wait unconditionally
    6351             :      * - already locked tuple above, since inplace needs that unconditionally
    6352             :      * - don't recheck header after wait: simpler to defer to next iteration
    6353             :      * - don't try to continue even if the updater aborts: likewise
    6354             :      * - no crosscheck
    6355             :      */
    6356      289174 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6357             :                                       buffer);
    6358             : 
    6359      289174 :     if (result == TM_Invisible)
    6360             :     {
    6361             :         /* no known way this can happen */
    6362           0 :         ereport(ERROR,
    6363             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6364             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6365             :     }
    6366      289174 :     else if (result == TM_SelfModified)
    6367             :     {
    6368             :         /*
    6369             :          * CREATE INDEX might reach this if an expression is silly enough to
    6370             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6371             :          * statements might get here after a heap_update() of the same row, in
    6372             :          * the absence of an intervening CommandCounterIncrement().
    6373             :          */
    6374           0 :         ereport(ERROR,
    6375             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6376             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6377             :     }
    6378      289174 :     else if (result == TM_BeingModified)
    6379             :     {
    6380             :         TransactionId xwait;
    6381             :         uint16      infomask;
    6382             : 
    6383          44 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6384          44 :         infomask = oldtup.t_data->t_infomask;
    6385             : 
    6386          44 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6387             :         {
    6388          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6389          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6390             :             int         remain;
    6391             : 
    6392          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6393             :                                         lockmode, NULL))
    6394             :             {
    6395           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6396           4 :                 release_callback(arg);
    6397           4 :                 ret = false;
    6398           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6399             :                                 relation, &oldtup.t_self, XLTW_Update,
    6400             :                                 &remain);
    6401             :             }
    6402             :             else
    6403           6 :                 ret = true;
    6404             :         }
    6405          34 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6406           2 :             ret = true;
    6407          32 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6408           2 :             ret = true;
    6409             :         else
    6410             :         {
    6411          30 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6412          30 :             release_callback(arg);
    6413          30 :             ret = false;
    6414          30 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6415             :                               XLTW_Update);
    6416             :         }
    6417             :     }
    6418             :     else
    6419             :     {
    6420      289130 :         ret = (result == TM_Ok);
    6421      289130 :         if (!ret)
    6422             :         {
    6423           0 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6424           0 :             release_callback(arg);
    6425             :         }
    6426             :     }
    6427             : 
    6428             :     /*
    6429             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6430             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6431             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6432             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6433             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6434             :      * don't bother optimizing that.
    6435             :      */
    6436      289174 :     if (!ret)
    6437             :     {
    6438          34 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6439          34 :         ForgetInplace_Inval();
    6440          34 :         InvalidateCatalogSnapshot();
    6441             :     }
    6442      289174 :     return ret;
    6443             : }
    6444             : 
    6445             : /*
    6446             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6447             :  *
    6448             :  * The tuple cannot change size, and therefore its header fields and null
    6449             :  * bitmap (if any) don't change either.
    6450             :  *
    6451             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6452             :  */
    6453             : void
    6454      163076 : heap_inplace_update_and_unlock(Relation relation,
    6455             :                                HeapTuple oldtup, HeapTuple tuple,
    6456             :                                Buffer buffer)
    6457             : {
    6458      163076 :     HeapTupleHeader htup = oldtup->t_data;
    6459             :     uint32      oldlen;
    6460             :     uint32      newlen;
    6461             :     char       *dst;
    6462             :     char       *src;
    6463      163076 :     int         nmsgs = 0;
    6464      163076 :     SharedInvalidationMessage *invalMessages = NULL;
    6465      163076 :     bool        RelcacheInitFileInval = false;
    6466             : 
    6467             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6468      163076 :     oldlen = oldtup->t_len - htup->t_hoff;
    6469      163076 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6470      163076 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6471           0 :         elog(ERROR, "wrong tuple length");
    6472             : 
    6473      163076 :     dst = (char *) htup + htup->t_hoff;
    6474      163076 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6475             : 
    6476             :     /* Like RecordTransactionCommit(), log only if needed */
    6477      163076 :     if (XLogStandbyInfoActive())
    6478       96734 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6479             :                                                &RelcacheInitFileInval);
    6480             : 
    6481             :     /*
    6482             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6483             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6484             :      * in advance, if we checkpoint and then crash between inplace
    6485             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6486             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6487             :      * neglect to PANIC on EIO.
    6488             :      */
    6489      163076 :     PreInplace_Inval();
    6490             : 
    6491             :     /*----------
    6492             :      * NO EREPORT(ERROR) from here till changes are complete
    6493             :      *
    6494             :      * Our buffer lock won't stop a reader having already pinned and checked
    6495             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6496             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6497             :      * checkpoint delay makes that acceptable.  With the usual order of
    6498             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6499             :      * datfrozenxid to overtake relfrozenxid:
    6500             :      *
    6501             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6502             :      * ["R" is a VACUUM tbl]
    6503             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6504             :      * D: systable_getnext() returns pg_class tuple of tbl
    6505             :      * R: memcpy() into pg_class tuple of tbl
    6506             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6507             :      * [crash]
    6508             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6509             :      *
    6510             :      * Mimic MarkBufferDirtyHint() subroutine XLogSaveBufferForHint().
    6511             :      * Specifically, use DELAY_CHKPT_START, and copy the buffer to the stack.
    6512             :      * The stack copy facilitates a FPI of the post-mutation block before we
    6513             :      * accept other sessions seeing it.  DELAY_CHKPT_START allows us to
    6514             :      * XLogInsert() before MarkBufferDirty().  Since XLogSaveBufferForHint()
    6515             :      * can operate under BUFFER_LOCK_SHARED, it can't avoid DELAY_CHKPT_START.
    6516             :      * This function, however, likely could avoid it with the following order
    6517             :      * of operations: MarkBufferDirty(), XLogInsert(), memcpy().  Opt to use
    6518             :      * DELAY_CHKPT_START here, too, as a way to have fewer distinct code
    6519             :      * patterns to analyze.  Inplace update isn't so frequent that it should
    6520             :      * pursue the small optimization of skipping DELAY_CHKPT_START.
    6521             :      */
    6522             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6523      163076 :     START_CRIT_SECTION();
    6524      163076 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6525             : 
    6526             :     /* XLOG stuff */
    6527      163076 :     if (RelationNeedsWAL(relation))
    6528             :     {
    6529             :         xl_heap_inplace xlrec;
    6530             :         PGAlignedBlock copied_buffer;
    6531      163060 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6532      163060 :         Page        page = BufferGetPage(buffer);
    6533      163060 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6534      163060 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6535             :         uintptr_t   dst_offset_in_block;
    6536             :         RelFileLocator rlocator;
    6537             :         ForkNumber  forkno;
    6538             :         BlockNumber blkno;
    6539             :         XLogRecPtr  recptr;
    6540             : 
    6541      163060 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6542      163060 :         xlrec.dbId = MyDatabaseId;
    6543      163060 :         xlrec.tsId = MyDatabaseTableSpace;
    6544      163060 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6545      163060 :         xlrec.nmsgs = nmsgs;
    6546             : 
    6547      163060 :         XLogBeginInsert();
    6548      163060 :         XLogRegisterData(&xlrec, MinSizeOfHeapInplace);
    6549      163060 :         if (nmsgs != 0)
    6550       67726 :             XLogRegisterData(invalMessages,
    6551             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6552             : 
    6553             :         /* register block matching what buffer will look like after changes */
    6554      163060 :         memcpy(copied_buffer.data, origdata, lower);
    6555      163060 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6556      163060 :         dst_offset_in_block = dst - origdata;
    6557      163060 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6558      163060 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6559             :         Assert(forkno == MAIN_FORKNUM);
    6560      163060 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6561             :                           REGBUF_STANDARD);
    6562      163060 :         XLogRegisterBufData(0, src, newlen);
    6563             : 
    6564             :         /* inplace updates aren't decoded atm, don't log the origin */
    6565             : 
    6566      163060 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6567             : 
    6568      163060 :         PageSetLSN(page, recptr);
    6569             :     }
    6570             : 
    6571      163076 :     memcpy(dst, src, newlen);
    6572             : 
    6573      163076 :     MarkBufferDirty(buffer);
    6574             : 
    6575      163076 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6576             : 
    6577             :     /*
    6578             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6579             :      * do this before UnlockTuple().
    6580             :      *
    6581             :      * If we're mutating a tuple visible only to this transaction, there's an
    6582             :      * equivalent transactional inval from the action that created the tuple,
    6583             :      * and this inval is superfluous.
    6584             :      */
    6585      163076 :     AtInplace_Inval();
    6586             : 
    6587      163076 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6588      163076 :     END_CRIT_SECTION();
    6589      163076 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6590             : 
    6591      163076 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6592             : 
    6593             :     /*
    6594             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6595             :      * is the only one known to be necessary.  To reduce risk from the
    6596             :      * transition to immediate invalidation, continue sending a transactional
    6597             :      * invalidation like we've long done.  Third-party code might rely on it.
    6598             :      */
    6599      163076 :     if (!IsBootstrapProcessingMode())
    6600      134068 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6601      163076 : }
    6602             : 
    6603             : /*
    6604             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6605             :  */
    6606             : void
    6607      126064 : heap_inplace_unlock(Relation relation,
    6608             :                     HeapTuple oldtup, Buffer buffer)
    6609             : {
    6610      126064 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6611      126064 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6612      126064 :     ForgetInplace_Inval();
    6613      126064 : }
    6614             : 
    6615             : #define     FRM_NOOP                0x0001
    6616             : #define     FRM_INVALIDATE_XMAX     0x0002
    6617             : #define     FRM_RETURN_IS_XID       0x0004
    6618             : #define     FRM_RETURN_IS_MULTI     0x0008
    6619             : #define     FRM_MARK_COMMITTED      0x0010
    6620             : 
    6621             : /*
    6622             :  * FreezeMultiXactId
    6623             :  *      Determine what to do during freezing when a tuple is marked by a
    6624             :  *      MultiXactId.
    6625             :  *
    6626             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6627             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6628             :  *
    6629             :  * Possible values that we can set in "flags":
    6630             :  * FRM_NOOP
    6631             :  *      don't do anything -- keep existing Xmax
    6632             :  * FRM_INVALIDATE_XMAX
    6633             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6634             :  * FRM_RETURN_IS_XID
    6635             :  *      The Xid return value is a single update Xid to set as xmax.
    6636             :  * FRM_MARK_COMMITTED
    6637             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6638             :  * FRM_RETURN_IS_MULTI
    6639             :  *      The return value is a new MultiXactId to set as new Xmax.
    6640             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6641             :  *
    6642             :  * Caller delegates control of page freezing to us.  In practice we always
    6643             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6644             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6645             :  * can never be left behind.  We freely choose when and how to process each
    6646             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6647             :  *
    6648             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6649             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6650             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6651             :  * misses through eager processing.
    6652             :  *
    6653             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6654             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6655             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6656             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6657             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6658             :  * its own special risks.
    6659             :  *
    6660             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6661             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6662             :  *
    6663             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6664             :  * have already forced page-level freezing, since that might incur the same
    6665             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6666             :  */
    6667             : static TransactionId
    6668          14 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6669             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6670             :                   HeapPageFreeze *pagefrz)
    6671             : {
    6672             :     TransactionId newxmax;
    6673             :     MultiXactMember *members;
    6674             :     int         nmembers;
    6675             :     bool        need_replace;
    6676             :     int         nnewmembers;
    6677             :     MultiXactMember *newmembers;
    6678             :     bool        has_lockers;
    6679             :     TransactionId update_xid;
    6680             :     bool        update_committed;
    6681             :     TransactionId FreezePageRelfrozenXid;
    6682             : 
    6683          14 :     *flags = 0;
    6684             : 
    6685             :     /* We should only be called in Multis */
    6686             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6687             : 
    6688          28 :     if (!MultiXactIdIsValid(multi) ||
    6689          14 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6690             :     {
    6691           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6692           0 :         pagefrz->freeze_required = true;
    6693           0 :         return InvalidTransactionId;
    6694             :     }
    6695          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6696           0 :         ereport(ERROR,
    6697             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6698             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6699             :                                  multi, cutoffs->relminmxid)));
    6700          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6701             :     {
    6702             :         TransactionId update_xact;
    6703             : 
    6704             :         /*
    6705             :          * This old multi cannot possibly have members still running, but
    6706             :          * verify just in case.  If it was a locker only, it can be removed
    6707             :          * without any further consideration; but if it contained an update,
    6708             :          * we might need to preserve it.
    6709             :          */
    6710          10 :         if (MultiXactIdIsRunning(multi,
    6711          10 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6712           0 :             ereport(ERROR,
    6713             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6714             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6715             :                                      multi, cutoffs->OldestMxact)));
    6716             : 
    6717          10 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6718             :         {
    6719          10 :             *flags |= FRM_INVALIDATE_XMAX;
    6720          10 :             pagefrz->freeze_required = true;
    6721          10 :             return InvalidTransactionId;
    6722             :         }
    6723             : 
    6724             :         /* replace multi with single XID for its updater? */
    6725           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6726           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6727           0 :             ereport(ERROR,
    6728             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6729             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6730             :                                      multi, update_xact,
    6731             :                                      cutoffs->relfrozenxid)));
    6732           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6733             :         {
    6734             :             /*
    6735             :              * Updater XID has to have aborted (otherwise the tuple would have
    6736             :              * been pruned away instead, since updater XID is < OldestXmin).
    6737             :              * Just remove xmax.
    6738             :              */
    6739           0 :             if (TransactionIdDidCommit(update_xact))
    6740           0 :                 ereport(ERROR,
    6741             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6742             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6743             :                                          multi, update_xact,
    6744             :                                          cutoffs->OldestXmin)));
    6745           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6746           0 :             pagefrz->freeze_required = true;
    6747           0 :             return InvalidTransactionId;
    6748             :         }
    6749             : 
    6750             :         /* Have to keep updater XID as new xmax */
    6751           0 :         *flags |= FRM_RETURN_IS_XID;
    6752           0 :         pagefrz->freeze_required = true;
    6753           0 :         return update_xact;
    6754             :     }
    6755             : 
    6756             :     /*
    6757             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6758             :      * need to walk the whole members array to figure out what to do, if
    6759             :      * anything.
    6760             :      */
    6761             :     nmembers =
    6762           4 :         GetMultiXactIdMembers(multi, &members, false,
    6763           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6764           4 :     if (nmembers <= 0)
    6765             :     {
    6766             :         /* Nothing worth keeping */
    6767           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6768           0 :         pagefrz->freeze_required = true;
    6769           0 :         return InvalidTransactionId;
    6770             :     }
    6771             : 
    6772             :     /*
    6773             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6774             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6775             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6776             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6777             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6778             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6779             :      * required to make it safe to leave xmax undisturbed, independent of
    6780             :      * whether or not page freezing is triggered somewhere else.
    6781             :      *
    6782             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6783             :      * which obviates the need to maintain either set of trackers, anywhere.
    6784             :      * Every other case will reliably execute a freeze plan for xmax that
    6785             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6786             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6787             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6788             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6789             :      */
    6790           4 :     need_replace = false;
    6791           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6792           8 :     for (int i = 0; i < nmembers; i++)
    6793             :     {
    6794           6 :         TransactionId xid = members[i].xid;
    6795             : 
    6796             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6797             : 
    6798           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6799             :         {
    6800             :             /* Can't violate the FreezeLimit postcondition */
    6801           2 :             need_replace = true;
    6802           2 :             break;
    6803             :         }
    6804           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6805           0 :             FreezePageRelfrozenXid = xid;
    6806             :     }
    6807             : 
    6808             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6809           4 :     if (!need_replace)
    6810           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6811             : 
    6812           4 :     if (!need_replace)
    6813             :     {
    6814             :         /*
    6815             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6816             :          * both together to make it safe to retain this particular multi after
    6817             :          * freezing its page
    6818             :          */
    6819           2 :         *flags |= FRM_NOOP;
    6820           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6821           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6822           0 :             pagefrz->FreezePageRelminMxid = multi;
    6823           2 :         pfree(members);
    6824           2 :         return multi;
    6825             :     }
    6826             : 
    6827             :     /*
    6828             :      * Do a more thorough second pass over the multi to figure out which
    6829             :      * member XIDs actually need to be kept.  Checking the precise status of
    6830             :      * individual members might even show that we don't need to keep anything.
    6831             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6832             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6833             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6834             :      */
    6835           2 :     nnewmembers = 0;
    6836           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6837           2 :     has_lockers = false;
    6838           2 :     update_xid = InvalidTransactionId;
    6839           2 :     update_committed = false;
    6840             : 
    6841             :     /*
    6842             :      * Determine whether to keep each member xid, or to ignore it instead
    6843             :      */
    6844           6 :     for (int i = 0; i < nmembers; i++)
    6845             :     {
    6846           4 :         TransactionId xid = members[i].xid;
    6847           4 :         MultiXactStatus mstatus = members[i].status;
    6848             : 
    6849             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6850             : 
    6851           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6852             :         {
    6853             :             /*
    6854             :              * Locker XID (not updater XID).  We only keep lockers that are
    6855             :              * still running.
    6856             :              */
    6857           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6858           4 :                 TransactionIdIsInProgress(xid))
    6859             :             {
    6860           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6861           0 :                     ereport(ERROR,
    6862             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6863             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6864             :                                              multi, xid,
    6865             :                                              cutoffs->OldestXmin)));
    6866           2 :                 newmembers[nnewmembers++] = members[i];
    6867           2 :                 has_lockers = true;
    6868             :             }
    6869             : 
    6870           4 :             continue;
    6871             :         }
    6872             : 
    6873             :         /*
    6874             :          * Updater XID (not locker XID).  Should we keep it?
    6875             :          *
    6876             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6877             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6878             :          * the updater XID aborted.  If the updater transaction is known
    6879             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6880             :          *
    6881             :          * In any case the Multi should never contain two updaters, whatever
    6882             :          * their individual commit status.  Check for that first, in passing.
    6883             :          */
    6884           0 :         if (TransactionIdIsValid(update_xid))
    6885           0 :             ereport(ERROR,
    6886             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6887             :                      errmsg_internal("multixact %u has two or more updating members",
    6888             :                                      multi),
    6889             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6890             :                                         update_xid, xid)));
    6891             : 
    6892             :         /*
    6893             :          * As with all tuple visibility routines, it's critical to test
    6894             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6895             :          * race conditions explained in detail in heapam_visibility.c.
    6896             :          */
    6897           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6898           0 :             TransactionIdIsInProgress(xid))
    6899           0 :             update_xid = xid;
    6900           0 :         else if (TransactionIdDidCommit(xid))
    6901             :         {
    6902             :             /*
    6903             :              * The transaction committed, so we can tell caller to set
    6904             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6905             :              * transaction is not running.)
    6906             :              */
    6907           0 :             update_committed = true;
    6908           0 :             update_xid = xid;
    6909             :         }
    6910             :         else
    6911             :         {
    6912             :             /*
    6913             :              * Not in progress, not committed -- must be aborted or crashed;
    6914             :              * we can ignore it.
    6915             :              */
    6916           0 :             continue;
    6917             :         }
    6918             : 
    6919             :         /*
    6920             :          * We determined that updater must be kept -- add it to pending new
    6921             :          * members list
    6922             :          */
    6923           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6924           0 :             ereport(ERROR,
    6925             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6926             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6927             :                                      multi, xid, cutoffs->OldestXmin)));
    6928           0 :         newmembers[nnewmembers++] = members[i];
    6929             :     }
    6930             : 
    6931           2 :     pfree(members);
    6932             : 
    6933             :     /*
    6934             :      * Determine what to do with caller's multi based on information gathered
    6935             :      * during our second pass
    6936             :      */
    6937           2 :     if (nnewmembers == 0)
    6938             :     {
    6939             :         /* Nothing worth keeping */
    6940           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6941           0 :         newxmax = InvalidTransactionId;
    6942             :     }
    6943           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6944             :     {
    6945             :         /*
    6946             :          * If there's a single member and it's an update, pass it back alone
    6947             :          * without creating a new Multi.  (XXX we could do this when there's a
    6948             :          * single remaining locker, too, but that would complicate the API too
    6949             :          * much; moreover, the case with the single updater is more
    6950             :          * interesting, because those are longer-lived.)
    6951             :          */
    6952             :         Assert(nnewmembers == 1);
    6953           0 :         *flags |= FRM_RETURN_IS_XID;
    6954           0 :         if (update_committed)
    6955           0 :             *flags |= FRM_MARK_COMMITTED;
    6956           0 :         newxmax = update_xid;
    6957             :     }
    6958             :     else
    6959             :     {
    6960             :         /*
    6961             :          * Create a new multixact with the surviving members of the previous
    6962             :          * one, to set as new Xmax in the tuple
    6963             :          */
    6964           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    6965           2 :         *flags |= FRM_RETURN_IS_MULTI;
    6966             :     }
    6967             : 
    6968           2 :     pfree(newmembers);
    6969             : 
    6970           2 :     pagefrz->freeze_required = true;
    6971           2 :     return newxmax;
    6972             : }
    6973             : 
    6974             : /*
    6975             :  * heap_prepare_freeze_tuple
    6976             :  *
    6977             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    6978             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    6979             :  * setup enough state (in the *frz output argument) to enable caller to
    6980             :  * process this tuple as part of freezing its page, and return true.  Return
    6981             :  * false if nothing can be changed about the tuple right now.
    6982             :  *
    6983             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    6984             :  * caller executes returned freeze plan (or if the tuple was already totally
    6985             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    6986             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    6987             :  *
    6988             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    6989             :  * tuple that we returned true for, and then execute freezing.  Caller must
    6990             :  * initialize pagefrz fields for page as a whole before first call here for
    6991             :  * each heap page.
    6992             :  *
    6993             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    6994             :  * We'll often prepare freeze plans for a page that caller just discards.
    6995             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    6996             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    6997             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    6998             :  * that VACUUM always follows that rule.
    6999             :  *
    7000             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    7001             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    7002             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    7003             :  * and it's convenient to make that happen by piggy-backing it on the "force
    7004             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    7005             :  * because it is expensive right now (though only when it's still possible to
    7006             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    7007             :  *
    7008             :  * It is assumed that the caller has checked the tuple with
    7009             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    7010             :  * (else we should be removing the tuple, not freezing it).
    7011             :  *
    7012             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    7013             :  * It will be set as tuple's new xmax when our *frz output is processed within
    7014             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    7015             :  * then caller had better have an exclusive lock on it already.
    7016             :  */
    7017             : bool
    7018    33604252 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    7019             :                           const struct VacuumCutoffs *cutoffs,
    7020             :                           HeapPageFreeze *pagefrz,
    7021             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    7022             : {
    7023    33604252 :     bool        xmin_already_frozen = false,
    7024    33604252 :                 xmax_already_frozen = false;
    7025    33604252 :     bool        freeze_xmin = false,
    7026    33604252 :                 replace_xvac = false,
    7027    33604252 :                 replace_xmax = false,
    7028    33604252 :                 freeze_xmax = false;
    7029             :     TransactionId xid;
    7030             : 
    7031    33604252 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    7032    33604252 :     frz->t_infomask2 = tuple->t_infomask2;
    7033    33604252 :     frz->t_infomask = tuple->t_infomask;
    7034    33604252 :     frz->frzflags = 0;
    7035    33604252 :     frz->checkflags = 0;
    7036             : 
    7037             :     /*
    7038             :      * Process xmin, while keeping track of whether it's already frozen, or
    7039             :      * will become frozen iff our freeze plan is executed by caller (could be
    7040             :      * neither).
    7041             :      */
    7042    33604252 :     xid = HeapTupleHeaderGetXmin(tuple);
    7043    33604252 :     if (!TransactionIdIsNormal(xid))
    7044    27893830 :         xmin_already_frozen = true;
    7045             :     else
    7046             :     {
    7047     5710422 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7048           0 :             ereport(ERROR,
    7049             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7050             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    7051             :                                      xid, cutoffs->relfrozenxid)));
    7052             : 
    7053             :         /* Will set freeze_xmin flags in freeze plan below */
    7054     5710422 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7055             : 
    7056             :         /* Verify that xmin committed if and when freeze plan is executed */
    7057     5710422 :         if (freeze_xmin)
    7058     4642362 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    7059             :     }
    7060             : 
    7061             :     /*
    7062             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    7063             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    7064             :      */
    7065    33604252 :     xid = HeapTupleHeaderGetXvac(tuple);
    7066    33604252 :     if (TransactionIdIsNormal(xid))
    7067             :     {
    7068             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7069             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    7070             : 
    7071             :         /*
    7072             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    7073             :          * tracking to ignore xvac.
    7074             :          */
    7075           0 :         replace_xvac = pagefrz->freeze_required = true;
    7076             : 
    7077             :         /* Will set replace_xvac flags in freeze plan below */
    7078             :     }
    7079             : 
    7080             :     /* Now process xmax */
    7081    33604252 :     xid = frz->xmax;
    7082    33604252 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7083             :     {
    7084             :         /* Raw xmax is a MultiXactId */
    7085             :         TransactionId newxmax;
    7086             :         uint16      flags;
    7087             : 
    7088             :         /*
    7089             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    7090             :          * process xmax by replacing it (in the "replace_xmax" path), or
    7091             :          * perform no-op xmax processing.  The only constraint is that the
    7092             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    7093             :          */
    7094          14 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    7095             :                                     &flags, pagefrz);
    7096             : 
    7097          14 :         if (flags & FRM_NOOP)
    7098             :         {
    7099             :             /*
    7100             :              * xmax is a MultiXactId, and nothing about it changes for now.
    7101             :              * This is the only case where 'freeze_required' won't have been
    7102             :              * set for us by FreezeMultiXactId, as well as the only case where
    7103             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7104             :              *
    7105             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7106             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7107             :              * for us (the "freeze page" variants, specifically).  That'll
    7108             :              * make it safe for our caller to freeze the page later on, while
    7109             :              * leaving this particular xmax undisturbed.
    7110             :              *
    7111             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7112             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7113             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7114             :              * will take place below if 'freeze_required' isn't set already.
    7115             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7116             :              * freeze" tracker maintenance to happen in only one place.)
    7117             :              */
    7118             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7119             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7120             :         }
    7121          12 :         else if (flags & FRM_RETURN_IS_XID)
    7122             :         {
    7123             :             /*
    7124             :              * xmax will become an updater Xid (original MultiXact's updater
    7125             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7126             :              */
    7127             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7128             : 
    7129             :             /*
    7130             :              * NB -- some of these transformations are only valid because we
    7131             :              * know the return Xid is a tuple updater (i.e. not merely a
    7132             :              * locker.) Also note that the only reason we don't explicitly
    7133             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7134             :              * t_infomask2 rather than t_infomask.
    7135             :              */
    7136           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7137           0 :             frz->xmax = newxmax;
    7138           0 :             if (flags & FRM_MARK_COMMITTED)
    7139           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7140           0 :             replace_xmax = true;
    7141             :         }
    7142          12 :         else if (flags & FRM_RETURN_IS_MULTI)
    7143             :         {
    7144             :             uint16      newbits;
    7145             :             uint16      newbits2;
    7146             : 
    7147             :             /*
    7148             :              * xmax is an old MultiXactId that we have to replace with a new
    7149             :              * MultiXactId, to carry forward two or more original member XIDs.
    7150             :              */
    7151             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7152             : 
    7153             :             /*
    7154             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7155             :              * here; that routine initializes the masks to all zeroes, which
    7156             :              * would lose other bits we need.  Doing it this way ensures all
    7157             :              * unrelated bits remain untouched.
    7158             :              */
    7159           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7160           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7161           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7162           2 :             frz->t_infomask |= newbits;
    7163           2 :             frz->t_infomask2 |= newbits2;
    7164           2 :             frz->xmax = newxmax;
    7165           2 :             replace_xmax = true;
    7166             :         }
    7167             :         else
    7168             :         {
    7169             :             /*
    7170             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7171             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7172             :              */
    7173             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7174             :             Assert(!TransactionIdIsValid(newxmax));
    7175             : 
    7176             :             /* Will set freeze_xmax flags in freeze plan below */
    7177          10 :             freeze_xmax = true;
    7178             :         }
    7179             : 
    7180             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7181             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7182             :     }
    7183    33604238 :     else if (TransactionIdIsNormal(xid))
    7184             :     {
    7185             :         /* Raw xmax is normal XID */
    7186    12148670 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7187           0 :             ereport(ERROR,
    7188             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7189             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7190             :                                      xid, cutoffs->relfrozenxid)));
    7191             : 
    7192             :         /* Will set freeze_xmax flags in freeze plan below */
    7193    12148670 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7194             : 
    7195             :         /*
    7196             :          * Verify that xmax aborted if and when freeze plan is executed,
    7197             :          * provided it's from an update. (A lock-only xmax can be removed
    7198             :          * independent of this, since the lock is released at xact end.)
    7199             :          */
    7200    12148670 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7201        1396 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7202             :     }
    7203    21455568 :     else if (!TransactionIdIsValid(xid))
    7204             :     {
    7205             :         /* Raw xmax is InvalidTransactionId XID */
    7206             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7207    21455568 :         xmax_already_frozen = true;
    7208             :     }
    7209             :     else
    7210           0 :         ereport(ERROR,
    7211             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7212             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7213             :                                  xid, tuple->t_infomask)));
    7214             : 
    7215    33604252 :     if (freeze_xmin)
    7216             :     {
    7217             :         Assert(!xmin_already_frozen);
    7218             : 
    7219     4642362 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7220             :     }
    7221    33604252 :     if (replace_xvac)
    7222             :     {
    7223             :         /*
    7224             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7225             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7226             :          * transaction succeeded.
    7227             :          */
    7228             :         Assert(pagefrz->freeze_required);
    7229           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7230           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7231             :         else
    7232           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7233             :     }
    7234             :     if (replace_xmax)
    7235             :     {
    7236             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7237             :         Assert(pagefrz->freeze_required);
    7238             : 
    7239             :         /* Already set replace_xmax flags in freeze plan earlier */
    7240             :     }
    7241    33604252 :     if (freeze_xmax)
    7242             :     {
    7243             :         Assert(!xmax_already_frozen && !replace_xmax);
    7244             : 
    7245        3154 :         frz->xmax = InvalidTransactionId;
    7246             : 
    7247             :         /*
    7248             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7249             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7250             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7251             :          */
    7252        3154 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7253        3154 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7254        3154 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7255        3154 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7256             :     }
    7257             : 
    7258             :     /*
    7259             :      * Determine if this tuple is already totally frozen, or will become
    7260             :      * totally frozen (provided caller executes freeze plans for the page)
    7261             :      */
    7262    66137290 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7263    32533038 :                        (freeze_xmax || xmax_already_frozen));
    7264             : 
    7265    33604252 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7266             :                                        xmax_already_frozen))
    7267             :     {
    7268             :         /*
    7269             :          * So far no previous tuple from the page made freezing mandatory.
    7270             :          * Does this tuple force caller to freeze the entire page?
    7271             :          */
    7272    14931134 :         pagefrz->freeze_required =
    7273    14931134 :             heap_tuple_should_freeze(tuple, cutoffs,
    7274             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7275             :                                      &pagefrz->NoFreezePageRelminMxid);
    7276             :     }
    7277             : 
    7278             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7279    33604252 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7280             : }
    7281             : 
    7282             : /*
    7283             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7284             :  * plans.
    7285             :  *
    7286             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7287             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7288             :  * successive VACUUMs that each decide against freezing the same page.
    7289             :  */
    7290             : void
    7291       42660 : heap_pre_freeze_checks(Buffer buffer,
    7292             :                        HeapTupleFreeze *tuples, int ntuples)
    7293             : {
    7294       42660 :     Page        page = BufferGetPage(buffer);
    7295             : 
    7296     1859222 :     for (int i = 0; i < ntuples; i++)
    7297             :     {
    7298     1816562 :         HeapTupleFreeze *frz = tuples + i;
    7299     1816562 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7300             :         HeapTupleHeader htup;
    7301             : 
    7302     1816562 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7303             : 
    7304             :         /* Deliberately avoid relying on tuple hint bits here */
    7305     1816562 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7306             :         {
    7307     1816560 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7308             : 
    7309             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7310     1816560 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7311           0 :                 ereport(ERROR,
    7312             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7313             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7314             :                                          xmin)));
    7315             :         }
    7316             : 
    7317             :         /*
    7318             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7319             :          * left behind by transactions that were in progress during a crash,
    7320             :          * so we can only check that xmax didn't commit
    7321             :          */
    7322     1816562 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7323             :         {
    7324          86 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7325             : 
    7326             :             Assert(TransactionIdIsNormal(xmax));
    7327          86 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7328           0 :                 ereport(ERROR,
    7329             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7330             :                          errmsg_internal("cannot freeze committed xmax %u",
    7331             :                                          xmax)));
    7332             :         }
    7333             :     }
    7334       42660 : }
    7335             : 
    7336             : /*
    7337             :  * Helper which executes freezing of one or more heap tuples on a page on
    7338             :  * behalf of caller.  Caller passes an array of tuple plans from
    7339             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7340             :  * Must be called in a critical section that also marks the buffer dirty and,
    7341             :  * if needed, emits WAL.
    7342             :  */
    7343             : void
    7344       42660 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7345             : {
    7346       42660 :     Page        page = BufferGetPage(buffer);
    7347             : 
    7348     1859222 :     for (int i = 0; i < ntuples; i++)
    7349             :     {
    7350     1816562 :         HeapTupleFreeze *frz = tuples + i;
    7351     1816562 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7352             :         HeapTupleHeader htup;
    7353             : 
    7354     1816562 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7355     1816562 :         heap_execute_freeze_tuple(htup, frz);
    7356             :     }
    7357       42660 : }
    7358             : 
    7359             : /*
    7360             :  * heap_freeze_tuple
    7361             :  *      Freeze tuple in place, without WAL logging.
    7362             :  *
    7363             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7364             :  */
    7365             : bool
    7366      706558 : heap_freeze_tuple(HeapTupleHeader tuple,
    7367             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7368             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7369             : {
    7370             :     HeapTupleFreeze frz;
    7371             :     bool        do_freeze;
    7372             :     bool        totally_frozen;
    7373             :     struct VacuumCutoffs cutoffs;
    7374             :     HeapPageFreeze pagefrz;
    7375             : 
    7376      706558 :     cutoffs.relfrozenxid = relfrozenxid;
    7377      706558 :     cutoffs.relminmxid = relminmxid;
    7378      706558 :     cutoffs.OldestXmin = FreezeLimit;
    7379      706558 :     cutoffs.OldestMxact = MultiXactCutoff;
    7380      706558 :     cutoffs.FreezeLimit = FreezeLimit;
    7381      706558 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7382             : 
    7383      706558 :     pagefrz.freeze_required = true;
    7384      706558 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7385      706558 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7386      706558 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7387      706558 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7388             : 
    7389      706558 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7390             :                                           &pagefrz, &frz, &totally_frozen);
    7391             : 
    7392             :     /*
    7393             :      * Note that because this is not a WAL-logged operation, we don't need to
    7394             :      * fill in the offset in the freeze record.
    7395             :      */
    7396             : 
    7397      706558 :     if (do_freeze)
    7398      527300 :         heap_execute_freeze_tuple(tuple, &frz);
    7399      706558 :     return do_freeze;
    7400             : }
    7401             : 
    7402             : /*
    7403             :  * For a given MultiXactId, return the hint bits that should be set in the
    7404             :  * tuple's infomask.
    7405             :  *
    7406             :  * Normally this should be called for a multixact that was just created, and
    7407             :  * so is on our local cache, so the GetMembers call is fast.
    7408             :  */
    7409             : static void
    7410        2374 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7411             :                        uint16 *new_infomask2)
    7412             : {
    7413             :     int         nmembers;
    7414             :     MultiXactMember *members;
    7415             :     int         i;
    7416        2374 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7417        2374 :     uint16      bits2 = 0;
    7418        2374 :     bool        has_update = false;
    7419        2374 :     LockTupleMode strongest = LockTupleKeyShare;
    7420             : 
    7421             :     /*
    7422             :      * We only use this in multis we just created, so they cannot be values
    7423             :      * pre-pg_upgrade.
    7424             :      */
    7425        2374 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7426             : 
    7427        7266 :     for (i = 0; i < nmembers; i++)
    7428             :     {
    7429             :         LockTupleMode mode;
    7430             : 
    7431             :         /*
    7432             :          * Remember the strongest lock mode held by any member of the
    7433             :          * multixact.
    7434             :          */
    7435        4892 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7436        4892 :         if (mode > strongest)
    7437        1322 :             strongest = mode;
    7438             : 
    7439             :         /* See what other bits we need */
    7440        4892 :         switch (members[i].status)
    7441             :         {
    7442        4510 :             case MultiXactStatusForKeyShare:
    7443             :             case MultiXactStatusForShare:
    7444             :             case MultiXactStatusForNoKeyUpdate:
    7445        4510 :                 break;
    7446             : 
    7447         104 :             case MultiXactStatusForUpdate:
    7448         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7449         104 :                 break;
    7450             : 
    7451         258 :             case MultiXactStatusNoKeyUpdate:
    7452         258 :                 has_update = true;
    7453         258 :                 break;
    7454             : 
    7455          20 :             case MultiXactStatusUpdate:
    7456          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7457          20 :                 has_update = true;
    7458          20 :                 break;
    7459             :         }
    7460        4892 :     }
    7461             : 
    7462        2374 :     if (strongest == LockTupleExclusive ||
    7463             :         strongest == LockTupleNoKeyExclusive)
    7464         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7465        1936 :     else if (strongest == LockTupleShare)
    7466         878 :         bits |= HEAP_XMAX_SHR_LOCK;
    7467        1058 :     else if (strongest == LockTupleKeyShare)
    7468        1058 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7469             : 
    7470        2374 :     if (!has_update)
    7471        2096 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7472             : 
    7473        2374 :     if (nmembers > 0)
    7474        2374 :         pfree(members);
    7475             : 
    7476        2374 :     *new_infomask = bits;
    7477        2374 :     *new_infomask2 = bits2;
    7478        2374 : }
    7479             : 
    7480             : /*
    7481             :  * MultiXactIdGetUpdateXid
    7482             :  *
    7483             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7484             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7485             :  * transaction.
    7486             :  *
    7487             :  * Caller is expected to check the status of the updating transaction, if
    7488             :  * necessary.
    7489             :  */
    7490             : static TransactionId
    7491        1022 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7492             : {
    7493        1022 :     TransactionId update_xact = InvalidTransactionId;
    7494             :     MultiXactMember *members;
    7495             :     int         nmembers;
    7496             : 
    7497             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7498             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7499             : 
    7500             :     /*
    7501             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7502             :      * pre-pg_upgrade.
    7503             :      */
    7504        1022 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7505             : 
    7506        1022 :     if (nmembers > 0)
    7507             :     {
    7508             :         int         i;
    7509             : 
    7510        2674 :         for (i = 0; i < nmembers; i++)
    7511             :         {
    7512             :             /* Ignore lockers */
    7513        2674 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7514        1652 :                 continue;
    7515             : 
    7516             :             /* there can be at most one updater */
    7517             :             Assert(update_xact == InvalidTransactionId);
    7518        1022 :             update_xact = members[i].xid;
    7519             : #ifndef USE_ASSERT_CHECKING
    7520             : 
    7521             :             /*
    7522             :              * in an assert-enabled build, walk the whole array to ensure
    7523             :              * there's no other updater.
    7524             :              */
    7525        1022 :             break;
    7526             : #endif
    7527             :         }
    7528             : 
    7529        1022 :         pfree(members);
    7530             :     }
    7531             : 
    7532        1022 :     return update_xact;
    7533             : }
    7534             : 
    7535             : /*
    7536             :  * HeapTupleGetUpdateXid
    7537             :  *      As above, but use a HeapTupleHeader
    7538             :  *
    7539             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7540             :  * checking the hint bits.
    7541             :  */
    7542             : TransactionId
    7543        1006 : HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
    7544             : {
    7545        1006 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tup),
    7546        1006 :                                    tup->t_infomask);
    7547             : }
    7548             : 
    7549             : /*
    7550             :  * Does the given multixact conflict with the current transaction grabbing a
    7551             :  * tuple lock of the given strength?
    7552             :  *
    7553             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7554             :  *
    7555             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7556             :  * transaction is a member of the given multixact.
    7557             :  */
    7558             : static bool
    7559         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7560             :                         LockTupleMode lockmode, bool *current_is_member)
    7561             : {
    7562             :     int         nmembers;
    7563             :     MultiXactMember *members;
    7564         198 :     bool        result = false;
    7565         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7566             : 
    7567         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7568           0 :         return false;
    7569             : 
    7570         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7571         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7572         198 :     if (nmembers >= 0)
    7573             :     {
    7574             :         int         i;
    7575             : 
    7576         618 :         for (i = 0; i < nmembers; i++)
    7577             :         {
    7578             :             TransactionId memxid;
    7579             :             LOCKMODE    memlockmode;
    7580             : 
    7581         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7582             :                 break;
    7583             : 
    7584         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7585             : 
    7586             :             /* ignore members from current xact (but track their presence) */
    7587         420 :             memxid = members[i].xid;
    7588         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7589             :             {
    7590         184 :                 if (current_is_member != NULL)
    7591         156 :                     *current_is_member = true;
    7592         184 :                 continue;
    7593             :             }
    7594         236 :             else if (result)
    7595          16 :                 continue;
    7596             : 
    7597             :             /* ignore members that don't conflict with the lock we want */
    7598         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7599         142 :                 continue;
    7600             : 
    7601          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7602             :             {
    7603             :                 /* ignore aborted updaters */
    7604          34 :                 if (TransactionIdDidAbort(memxid))
    7605           2 :                     continue;
    7606             :             }
    7607             :             else
    7608             :             {
    7609             :                 /* ignore lockers-only that are no longer in progress */
    7610          44 :                 if (!TransactionIdIsInProgress(memxid))
    7611          14 :                     continue;
    7612             :             }
    7613             : 
    7614             :             /*
    7615             :              * Whatever remains are either live lockers that conflict with our
    7616             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7617             :              * with what we want.  Set up to return true, but keep going to
    7618             :              * look for the current transaction among the multixact members,
    7619             :              * if needed.
    7620             :              */
    7621          62 :             result = true;
    7622             :         }
    7623         198 :         pfree(members);
    7624             :     }
    7625             : 
    7626         198 :     return result;
    7627             : }
    7628             : 
    7629             : /*
    7630             :  * Do_MultiXactIdWait
    7631             :  *      Actual implementation for the two functions below.
    7632             :  *
    7633             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7634             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7635             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7636             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7637             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7638             :  * context information for error messages.  'remaining', if not NULL, receives
    7639             :  * the number of members that are still running, including any (non-aborted)
    7640             :  * subtransactions of our own transaction.  'logLockFailure' indicates whether
    7641             :  * to log details when a lock acquisition fails with 'nowait' enabled.
    7642             :  *
    7643             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7644             :  * members that belong to the current backend are *not* waited for, however;
    7645             :  * this would not merely be useless but would lead to Assert failure inside
    7646             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7647             :  * transactions *of other backends* that were members of the MultiXactId
    7648             :  * that conflict with the requested status are dead (and no new ones can have
    7649             :  * been added, since it is not legal to add members to an existing
    7650             :  * MultiXactId).
    7651             :  *
    7652             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7653             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7654             :  *
    7655             :  * Note that in case we return false, the number of remaining members is
    7656             :  * not to be trusted.
    7657             :  */
    7658             : static bool
    7659         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7660             :                    uint16 infomask, bool nowait,
    7661             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7662             :                    int *remaining, bool logLockFailure)
    7663             : {
    7664         116 :     bool        result = true;
    7665             :     MultiXactMember *members;
    7666             :     int         nmembers;
    7667         116 :     int         remain = 0;
    7668             : 
    7669             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7670         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7671         116 :         GetMultiXactIdMembers(multi, &members, false,
    7672         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7673             : 
    7674         116 :     if (nmembers >= 0)
    7675             :     {
    7676             :         int         i;
    7677             : 
    7678         374 :         for (i = 0; i < nmembers; i++)
    7679             :         {
    7680         266 :             TransactionId memxid = members[i].xid;
    7681         266 :             MultiXactStatus memstatus = members[i].status;
    7682             : 
    7683         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7684             :             {
    7685          48 :                 remain++;
    7686          48 :                 continue;
    7687             :             }
    7688             : 
    7689         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7690         218 :                                      LOCKMODE_from_mxstatus(status)))
    7691             :             {
    7692          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7693          16 :                     remain++;
    7694          44 :                 continue;
    7695             :             }
    7696             : 
    7697             :             /*
    7698             :              * This member conflicts with our multi, so we have to sleep (or
    7699             :              * return failure, if asked to avoid waiting.)
    7700             :              *
    7701             :              * Note that we don't set up an error context callback ourselves,
    7702             :              * but instead we pass the info down to XactLockTableWait.  This
    7703             :              * might seem a bit wasteful because the context is set up and
    7704             :              * tore down for each member of the multixact, but in reality it
    7705             :              * should be barely noticeable, and it avoids duplicate code.
    7706             :              */
    7707         174 :             if (nowait)
    7708             :             {
    7709           8 :                 result = ConditionalXactLockTableWait(memxid, logLockFailure);
    7710           8 :                 if (!result)
    7711           8 :                     break;
    7712             :             }
    7713             :             else
    7714         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7715             :         }
    7716             : 
    7717         116 :         pfree(members);
    7718             :     }
    7719             : 
    7720         116 :     if (remaining)
    7721          20 :         *remaining = remain;
    7722             : 
    7723         116 :     return result;
    7724             : }
    7725             : 
    7726             : /*
    7727             :  * MultiXactIdWait
    7728             :  *      Sleep on a MultiXactId.
    7729             :  *
    7730             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7731             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7732             :  *
    7733             :  * We return (in *remaining, if not NULL) the number of members that are still
    7734             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7735             :  */
    7736             : static void
    7737         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7738             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7739             :                 int *remaining)
    7740             : {
    7741         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7742             :                               rel, ctid, oper, remaining, false);
    7743         108 : }
    7744             : 
    7745             : /*
    7746             :  * ConditionalMultiXactIdWait
    7747             :  *      As above, but only lock if we can get the lock without blocking.
    7748             :  *
    7749             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7750             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7751             :  *
    7752             :  * If the multixact is now all gone, return true.  Returns false if some
    7753             :  * transactions might still be running.
    7754             :  *
    7755             :  * We return (in *remaining, if not NULL) the number of members that are still
    7756             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7757             :  */
    7758             : static bool
    7759           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7760             :                            uint16 infomask, Relation rel, int *remaining,
    7761             :                            bool logLockFailure)
    7762             : {
    7763           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7764             :                               rel, NULL, XLTW_None, remaining, logLockFailure);
    7765             : }
    7766             : 
    7767             : /*
    7768             :  * heap_tuple_needs_eventual_freeze
    7769             :  *
    7770             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7771             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7772             :  */
    7773             : bool
    7774      233884 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7775             : {
    7776             :     TransactionId xid;
    7777             : 
    7778             :     /*
    7779             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7780             :      * frozen.
    7781             :      */
    7782      233884 :     xid = HeapTupleHeaderGetXmin(tuple);
    7783      233884 :     if (TransactionIdIsNormal(xid))
    7784        5404 :         return true;
    7785             : 
    7786             :     /*
    7787             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7788             :      */
    7789      228480 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7790             :     {
    7791             :         MultiXactId multi;
    7792             : 
    7793           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7794           0 :         if (MultiXactIdIsValid(multi))
    7795           0 :             return true;
    7796             :     }
    7797             :     else
    7798             :     {
    7799      228480 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7800      228480 :         if (TransactionIdIsNormal(xid))
    7801          14 :             return true;
    7802             :     }
    7803             : 
    7804      228466 :     if (tuple->t_infomask & HEAP_MOVED)
    7805             :     {
    7806           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7807           0 :         if (TransactionIdIsNormal(xid))
    7808           0 :             return true;
    7809             :     }
    7810             : 
    7811      228466 :     return false;
    7812             : }
    7813             : 
    7814             : /*
    7815             :  * heap_tuple_should_freeze
    7816             :  *
    7817             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7818             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7819             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7820             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7821             :  *
    7822             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7823             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7824             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7825             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7826             :  * point that it fully commits to not freezing the tuple/page in question.
    7827             :  */
    7828             : bool
    7829    14931522 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7830             :                          const struct VacuumCutoffs *cutoffs,
    7831             :                          TransactionId *NoFreezePageRelfrozenXid,
    7832             :                          MultiXactId *NoFreezePageRelminMxid)
    7833             : {
    7834             :     TransactionId xid;
    7835             :     MultiXactId multi;
    7836    14931522 :     bool        freeze = false;
    7837             : 
    7838             :     /* First deal with xmin */
    7839    14931522 :     xid = HeapTupleHeaderGetXmin(tuple);
    7840    14931522 :     if (TransactionIdIsNormal(xid))
    7841             :     {
    7842             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7843     3404884 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7844       44028 :             *NoFreezePageRelfrozenXid = xid;
    7845     3404884 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7846       41004 :             freeze = true;
    7847             :     }
    7848             : 
    7849             :     /* Now deal with xmax */
    7850    14931522 :     xid = InvalidTransactionId;
    7851    14931522 :     multi = InvalidMultiXactId;
    7852    14931522 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7853           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7854             :     else
    7855    14931518 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7856             : 
    7857    14931522 :     if (TransactionIdIsNormal(xid))
    7858             :     {
    7859             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7860             :         /* xmax is a non-permanent XID */
    7861    12025390 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7862           2 :             *NoFreezePageRelfrozenXid = xid;
    7863    12025390 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7864           8 :             freeze = true;
    7865             :     }
    7866     2906132 :     else if (!MultiXactIdIsValid(multi))
    7867             :     {
    7868             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7869             :     }
    7870           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7871             :     {
    7872             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7873           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7874           0 :             *NoFreezePageRelminMxid = multi;
    7875             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7876           0 :         freeze = true;
    7877             :     }
    7878             :     else
    7879             :     {
    7880             :         /* xmax is a MultiXactId that may have an updater XID */
    7881             :         MultiXactMember *members;
    7882             :         int         nmembers;
    7883             : 
    7884             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7885           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7886           4 :             *NoFreezePageRelminMxid = multi;
    7887           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7888           4 :             freeze = true;
    7889             : 
    7890             :         /* need to check whether any member of the mxact is old */
    7891           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7892           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7893             : 
    7894          10 :         for (int i = 0; i < nmembers; i++)
    7895             :         {
    7896           6 :             xid = members[i].xid;
    7897             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7898           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7899           0 :                 *NoFreezePageRelfrozenXid = xid;
    7900           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7901           0 :                 freeze = true;
    7902             :         }
    7903           4 :         if (nmembers > 0)
    7904           2 :             pfree(members);
    7905             :     }
    7906             : 
    7907    14931522 :     if (tuple->t_infomask & HEAP_MOVED)
    7908             :     {
    7909           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7910           0 :         if (TransactionIdIsNormal(xid))
    7911             :         {
    7912             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7913           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7914           0 :                 *NoFreezePageRelfrozenXid = xid;
    7915             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7916           0 :             freeze = true;
    7917             :         }
    7918             :     }
    7919             : 
    7920    14931522 :     return freeze;
    7921             : }
    7922             : 
    7923             : /*
    7924             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7925             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7926             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7927             :  * or index deletion.
    7928             :  *
    7929             :  * Caller must initialize its value to InvalidTransactionId, which is
    7930             :  * generally interpreted as "definitely no need for a recovery conflict".
    7931             :  * Final value must reflect all heap tuples that caller will physically remove
    7932             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7933             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7934             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7935             :  */
    7936             : void
    7937     3136814 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7938             :                                       TransactionId *snapshotConflictHorizon)
    7939             : {
    7940     3136814 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7941     3136814 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7942     3136814 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7943             : 
    7944     3136814 :     if (tuple->t_infomask & HEAP_MOVED)
    7945             :     {
    7946           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7947           0 :             *snapshotConflictHorizon = xvac;
    7948             :     }
    7949             : 
    7950             :     /*
    7951             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7952             :      * updated/deleted by the inserting transaction.
    7953             :      *
    7954             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    7955             :      */
    7956     3136814 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    7957      197520 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    7958             :     {
    7959     5623654 :         if (xmax != xmin &&
    7960     2637262 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    7961      195584 :             *snapshotConflictHorizon = xmax;
    7962             :     }
    7963     3136814 : }
    7964             : 
    7965             : #ifdef USE_PREFETCH
    7966             : /*
    7967             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    7968             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    7969             :  * we can prefetch, and which have already been prefetched; each call to this
    7970             :  * function picks up where the previous call left off.
    7971             :  *
    7972             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    7973             :  * by heap block, with all TIDs for each block appearing together in exactly
    7974             :  * one group.
    7975             :  */
    7976             : static void
    7977       38710 : index_delete_prefetch_buffer(Relation rel,
    7978             :                              IndexDeletePrefetchState *prefetch_state,
    7979             :                              int prefetch_count)
    7980             : {
    7981       38710 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    7982       38710 :     int         count = 0;
    7983             :     int         i;
    7984       38710 :     int         ndeltids = prefetch_state->ndeltids;
    7985       38710 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    7986             : 
    7987     1383612 :     for (i = prefetch_state->next_item;
    7988     1352970 :          i < ndeltids && count < prefetch_count;
    7989     1344902 :          i++)
    7990             :     {
    7991     1344902 :         ItemPointer htid = &deltids[i].tid;
    7992             : 
    7993     2678086 :         if (cur_hblkno == InvalidBlockNumber ||
    7994     1333184 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    7995             :         {
    7996       35158 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    7997       35158 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    7998       35158 :             count++;
    7999             :         }
    8000             :     }
    8001             : 
    8002             :     /*
    8003             :      * Save the prefetch position so that next time we can continue from that
    8004             :      * position.
    8005             :      */
    8006       38710 :     prefetch_state->next_item = i;
    8007       38710 :     prefetch_state->cur_hblkno = cur_hblkno;
    8008       38710 : }
    8009             : #endif
    8010             : 
    8011             : /*
    8012             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    8013             :  * involving an invalid TID in index AM caller's index page.
    8014             :  *
    8015             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    8016             :  * lock on the index page containing the TIDs we examine here, so we don't
    8017             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    8018             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    8019             :  * heap-only tuple, which is not the case during standard index scans.
    8020             :  */
    8021             : static inline void
    8022     1118982 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    8023             :                         Page page, OffsetNumber maxoff,
    8024             :                         ItemPointer htid, TM_IndexStatus *istatus)
    8025             : {
    8026     1118982 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    8027             :     ItemId      iid;
    8028             : 
    8029             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    8030             : 
    8031     1118982 :     if (unlikely(indexpagehoffnum > maxoff))
    8032           0 :         ereport(ERROR,
    8033             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8034             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    8035             :                                  ItemPointerGetBlockNumber(htid),
    8036             :                                  indexpagehoffnum,
    8037             :                                  istatus->idxoffnum, delstate->iblknum,
    8038             :                                  RelationGetRelationName(delstate->irel))));
    8039             : 
    8040     1118982 :     iid = PageGetItemId(page, indexpagehoffnum);
    8041     1118982 :     if (unlikely(!ItemIdIsUsed(iid)))
    8042           0 :         ereport(ERROR,
    8043             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8044             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    8045             :                                  ItemPointerGetBlockNumber(htid),
    8046             :                                  indexpagehoffnum,
    8047             :                                  istatus->idxoffnum, delstate->iblknum,
    8048             :                                  RelationGetRelationName(delstate->irel))));
    8049             : 
    8050     1118982 :     if (ItemIdHasStorage(iid))
    8051             :     {
    8052             :         HeapTupleHeader htup;
    8053             : 
    8054             :         Assert(ItemIdIsNormal(iid));
    8055      657102 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    8056             : 
    8057      657102 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    8058           0 :             ereport(ERROR,
    8059             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    8060             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    8061             :                                      ItemPointerGetBlockNumber(htid),
    8062             :                                      indexpagehoffnum,
    8063             :                                      istatus->idxoffnum, delstate->iblknum,
    8064             :                                      RelationGetRelationName(delstate->irel))));
    8065             :     }
    8066     1118982 : }
    8067             : 
    8068             : /*
    8069             :  * heapam implementation of tableam's index_delete_tuples interface.
    8070             :  *
    8071             :  * This helper function is called by index AMs during index tuple deletion.
    8072             :  * See tableam header comments for an explanation of the interface implemented
    8073             :  * here and a general theory of operation.  Note that each call here is either
    8074             :  * a simple index deletion call, or a bottom-up index deletion call.
    8075             :  *
    8076             :  * It's possible for this to generate a fair amount of I/O, since we may be
    8077             :  * deleting hundreds of tuples from a single index block.  To amortize that
    8078             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    8079             :  * the same heap block.
    8080             :  */
    8081             : TransactionId
    8082       11718 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    8083             : {
    8084             :     /* Initial assumption is that earlier pruning took care of conflict */
    8085       11718 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    8086       11718 :     BlockNumber blkno = InvalidBlockNumber;
    8087       11718 :     Buffer      buf = InvalidBuffer;
    8088       11718 :     Page        page = NULL;
    8089       11718 :     OffsetNumber maxoff = InvalidOffsetNumber;
    8090             :     TransactionId priorXmax;
    8091             : #ifdef USE_PREFETCH
    8092             :     IndexDeletePrefetchState prefetch_state;
    8093             :     int         prefetch_distance;
    8094             : #endif
    8095             :     SnapshotData SnapshotNonVacuumable;
    8096       11718 :     int         finalndeltids = 0,
    8097       11718 :                 nblocksaccessed = 0;
    8098             : 
    8099             :     /* State that's only used in bottom-up index deletion case */
    8100       11718 :     int         nblocksfavorable = 0;
    8101       11718 :     int         curtargetfreespace = delstate->bottomupfreespace,
    8102       11718 :                 lastfreespace = 0,
    8103       11718 :                 actualfreespace = 0;
    8104       11718 :     bool        bottomup_final_block = false;
    8105             : 
    8106       11718 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8107             : 
    8108             :     /* Sort caller's deltids array by TID for further processing */
    8109       11718 :     index_delete_sort(delstate);
    8110             : 
    8111             :     /*
    8112             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8113             :      * greatest number of promising TIDs are to be found, and determine how
    8114             :      * many blocks from the start of sorted array should be considered
    8115             :      * favorable.  This will also shrink the deltids array in order to
    8116             :      * eliminate completely unfavorable blocks up front.
    8117             :      */
    8118       11718 :     if (delstate->bottomup)
    8119        4086 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8120             : 
    8121             : #ifdef USE_PREFETCH
    8122             :     /* Initialize prefetch state. */
    8123       11718 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8124       11718 :     prefetch_state.next_item = 0;
    8125       11718 :     prefetch_state.ndeltids = delstate->ndeltids;
    8126       11718 :     prefetch_state.deltids = delstate->deltids;
    8127             : 
    8128             :     /*
    8129             :      * Determine the prefetch distance that we will attempt to maintain.
    8130             :      *
    8131             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8132             :      * sure that isn't a catalog relation before we call code that does
    8133             :      * syscache lookups, to avoid risk of deadlock.
    8134             :      */
    8135       11718 :     if (IsCatalogRelation(rel))
    8136        8478 :         prefetch_distance = maintenance_io_concurrency;
    8137             :     else
    8138             :         prefetch_distance =
    8139        3240 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8140             : 
    8141             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8142       11718 :     if (delstate->bottomup)
    8143             :     {
    8144             :         Assert(nblocksfavorable >= 1);
    8145             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8146        4086 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8147             :     }
    8148             : 
    8149             :     /* Start prefetching. */
    8150       11718 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8151             : #endif
    8152             : 
    8153             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8154             :     Assert(delstate->ndeltids > 0);
    8155     1130700 :     for (int i = 0; i < delstate->ndeltids; i++)
    8156             :     {
    8157     1123068 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8158     1123068 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8159     1123068 :         ItemPointer htid = &ideltid->tid;
    8160             :         OffsetNumber offnum;
    8161             : 
    8162             :         /*
    8163             :          * Read buffer, and perform required extra steps each time a new block
    8164             :          * is encountered.  Avoid refetching if it's the same block as the one
    8165             :          * from the last htid.
    8166             :          */
    8167     2234418 :         if (blkno == InvalidBlockNumber ||
    8168     1111350 :             ItemPointerGetBlockNumber(htid) != blkno)
    8169             :         {
    8170             :             /*
    8171             :              * Consider giving up early for bottom-up index deletion caller
    8172             :              * first. (Only prefetch next-next block afterwards, when it
    8173             :              * becomes clear that we're at least going to access the next
    8174             :              * block in line.)
    8175             :              *
    8176             :              * Sometimes the first block frees so much space for bottom-up
    8177             :              * caller that the deletion process can end without accessing any
    8178             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8179             :              * per bottom-up deletion operation, though.
    8180             :              */
    8181       31078 :             if (delstate->bottomup)
    8182             :             {
    8183             :                 /*
    8184             :                  * We often allow caller to delete a few additional items
    8185             :                  * whose entries we reached after the point that space target
    8186             :                  * from caller was satisfied.  The cost of accessing the page
    8187             :                  * was already paid at that point, so it made sense to finish
    8188             :                  * it off.  When that happened, we finalize everything here
    8189             :                  * (by finishing off the whole bottom-up deletion operation
    8190             :                  * without needlessly paying the cost of accessing any more
    8191             :                  * blocks).
    8192             :                  */
    8193        8874 :                 if (bottomup_final_block)
    8194         328 :                     break;
    8195             : 
    8196             :                 /*
    8197             :                  * Give up when we didn't enable our caller to free any
    8198             :                  * additional space as a result of processing the page that we
    8199             :                  * just finished up with.  This rule is the main way in which
    8200             :                  * we keep the cost of bottom-up deletion under control.
    8201             :                  */
    8202        8546 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8203        3758 :                     break;
    8204        4788 :                 lastfreespace = actualfreespace;    /* for next time */
    8205             : 
    8206             :                 /*
    8207             :                  * Deletion operation (which is bottom-up) will definitely
    8208             :                  * access the next block in line.  Prepare for that now.
    8209             :                  *
    8210             :                  * Decay target free space so that we don't hang on for too
    8211             :                  * long with a marginal case. (Space target is only truly
    8212             :                  * helpful when it allows us to recognize that we don't need
    8213             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8214             :                  * agreeable workload characteristics.)
    8215             :                  *
    8216             :                  * We are a bit more patient when we encounter contiguous
    8217             :                  * blocks, though: these are treated as favorable blocks.  The
    8218             :                  * decay process is only applied when the next block in line
    8219             :                  * is not a favorable/contiguous block.  This is not an
    8220             :                  * exception to the general rule; we still insist on finding
    8221             :                  * at least one deletable item per block accessed.  See
    8222             :                  * bottomup_nblocksfavorable() for full details of the theory
    8223             :                  * behind favorable blocks and heap block locality in general.
    8224             :                  *
    8225             :                  * Note: The first block in line is always treated as a
    8226             :                  * favorable block, so the earliest possible point that the
    8227             :                  * decay can be applied is just before we access the second
    8228             :                  * block in line.  The Assert() verifies this for us.
    8229             :                  */
    8230             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8231        4788 :                 if (nblocksfavorable > 0)
    8232        4574 :                     nblocksfavorable--;
    8233             :                 else
    8234         214 :                     curtargetfreespace /= 2;
    8235             :             }
    8236             : 
    8237             :             /* release old buffer */
    8238       26992 :             if (BufferIsValid(buf))
    8239       15274 :                 UnlockReleaseBuffer(buf);
    8240             : 
    8241       26992 :             blkno = ItemPointerGetBlockNumber(htid);
    8242       26992 :             buf = ReadBuffer(rel, blkno);
    8243       26992 :             nblocksaccessed++;
    8244             :             Assert(!delstate->bottomup ||
    8245             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8246             : 
    8247             : #ifdef USE_PREFETCH
    8248             : 
    8249             :             /*
    8250             :              * To maintain the prefetch distance, prefetch one more page for
    8251             :              * each page we read.
    8252             :              */
    8253       26992 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8254             : #endif
    8255             : 
    8256       26992 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8257             : 
    8258       26992 :             page = BufferGetPage(buf);
    8259       26992 :             maxoff = PageGetMaxOffsetNumber(page);
    8260             :         }
    8261             : 
    8262             :         /*
    8263             :          * In passing, detect index corruption involving an index page with a
    8264             :          * TID that points to a location in the heap that couldn't possibly be
    8265             :          * correct.  We only do this with actual TIDs from caller's index page
    8266             :          * (not items reached by traversing through a HOT chain).
    8267             :          */
    8268     1118982 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8269             : 
    8270     1118982 :         if (istatus->knowndeletable)
    8271             :             Assert(!delstate->bottomup && !istatus->promising);
    8272             :         else
    8273             :         {
    8274      852004 :             ItemPointerData tmp = *htid;
    8275             :             HeapTupleData heapTuple;
    8276             : 
    8277             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8278      852004 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8279             :                                        &heapTuple, NULL, true))
    8280      508724 :                 continue;       /* can't delete entry */
    8281             : 
    8282             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8283      343280 :             istatus->knowndeletable = true;
    8284             : 
    8285             :             /* Maintain index free space info for bottom-up deletion case */
    8286      343280 :             if (delstate->bottomup)
    8287             :             {
    8288             :                 Assert(istatus->freespace > 0);
    8289       17436 :                 actualfreespace += istatus->freespace;
    8290       17436 :                 if (actualfreespace >= curtargetfreespace)
    8291        5140 :                     bottomup_final_block = true;
    8292             :             }
    8293             :         }
    8294             : 
    8295             :         /*
    8296             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8297             :          * whole by advancing current value using heap tuple headers.  This is
    8298             :          * loosely based on the logic for pruning a HOT chain.
    8299             :          */
    8300      610258 :         offnum = ItemPointerGetOffsetNumber(htid);
    8301      610258 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8302             :         for (;;)
    8303       41030 :         {
    8304             :             ItemId      lp;
    8305             :             HeapTupleHeader htup;
    8306             : 
    8307             :             /* Sanity check (pure paranoia) */
    8308      651288 :             if (offnum < FirstOffsetNumber)
    8309           0 :                 break;
    8310             : 
    8311             :             /*
    8312             :              * An offset past the end of page's line pointer array is possible
    8313             :              * when the array was truncated
    8314             :              */
    8315      651288 :             if (offnum > maxoff)
    8316           0 :                 break;
    8317             : 
    8318      651288 :             lp = PageGetItemId(page, offnum);
    8319      651288 :             if (ItemIdIsRedirected(lp))
    8320             :             {
    8321       18312 :                 offnum = ItemIdGetRedirect(lp);
    8322       18312 :                 continue;
    8323             :             }
    8324             : 
    8325             :             /*
    8326             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8327             :              * entry marked knowndeletable by our caller up front).  No heap
    8328             :              * tuple headers get examined for an htid that leads us to an
    8329             :              * LP_DEAD item.  This is okay because the earlier pruning
    8330             :              * operation that made the line pointer LP_DEAD in the first place
    8331             :              * must have considered the original tuple header as part of
    8332             :              * generating its own snapshotConflictHorizon value.
    8333             :              *
    8334             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8335             :              * the same strategy that index vacuuming uses in all cases. Index
    8336             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8337             :              * field of their own for this reason.
    8338             :              */
    8339      632976 :             if (!ItemIdIsNormal(lp))
    8340      410462 :                 break;
    8341             : 
    8342      222514 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8343             : 
    8344             :             /*
    8345             :              * Check the tuple XMIN against prior XMAX, if any
    8346             :              */
    8347      245232 :             if (TransactionIdIsValid(priorXmax) &&
    8348       22718 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8349           0 :                 break;
    8350             : 
    8351      222514 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8352             :                                                   &snapshotConflictHorizon);
    8353             : 
    8354             :             /*
    8355             :              * If the tuple is not HOT-updated, then we are at the end of this
    8356             :              * HOT-chain.  No need to visit later tuples from the same update
    8357             :              * chain (they get their own index entries) -- just move on to
    8358             :              * next htid from index AM caller.
    8359             :              */
    8360      222514 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8361      199796 :                 break;
    8362             : 
    8363             :             /* Advance to next HOT chain member */
    8364             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8365       22718 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8366       22718 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8367             :         }
    8368             : 
    8369             :         /* Enable further/final shrinking of deltids for caller */
    8370      610258 :         finalndeltids = i + 1;
    8371             :     }
    8372             : 
    8373       11718 :     UnlockReleaseBuffer(buf);
    8374             : 
    8375             :     /*
    8376             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8377             :      * is not just a minor optimization.  Final deltids array size might be
    8378             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8379             :      * ndeltids being zero in all cases with zero total deletable entries.
    8380             :      */
    8381             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8382       11718 :     delstate->ndeltids = finalndeltids;
    8383             : 
    8384       11718 :     return snapshotConflictHorizon;
    8385             : }
    8386             : 
    8387             : /*
    8388             :  * Specialized inlineable comparison function for index_delete_sort()
    8389             :  */
    8390             : static inline int
    8391    26672744 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8392             : {
    8393    26672744 :     ItemPointer tid1 = &deltid1->tid;
    8394    26672744 :     ItemPointer tid2 = &deltid2->tid;
    8395             : 
    8396             :     {
    8397    26672744 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8398    26672744 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8399             : 
    8400    26672744 :         if (blk1 != blk2)
    8401    10990156 :             return (blk1 < blk2) ? -1 : 1;
    8402             :     }
    8403             :     {
    8404    15682588 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8405    15682588 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8406             : 
    8407    15682588 :         if (pos1 != pos2)
    8408    15682588 :             return (pos1 < pos2) ? -1 : 1;
    8409             :     }
    8410             : 
    8411             :     Assert(false);
    8412             : 
    8413           0 :     return 0;
    8414             : }
    8415             : 
    8416             : /*
    8417             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8418             :  * processing by heap_index_delete_tuples().
    8419             :  *
    8420             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8421             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8422             :  * We use shellsort for this because it's easy to specialize, compiles to
    8423             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8424             :  * (which are typical here).
    8425             :  */
    8426             : static void
    8427       11718 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8428             : {
    8429       11718 :     TM_IndexDelete *deltids = delstate->deltids;
    8430       11718 :     int         ndeltids = delstate->ndeltids;
    8431             : 
    8432             :     /*
    8433             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8434             :      *
    8435             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8436             :      * all supported BLCKSZ values.
    8437             :      */
    8438       11718 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8439             : 
    8440             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8441             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8442             :                      "element size exceeds 8 bytes");
    8443             : 
    8444      117180 :     for (int g = 0; g < lengthof(gaps); g++)
    8445             :     {
    8446    15943144 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8447             :         {
    8448    15837682 :             TM_IndexDelete d = deltids[i];
    8449    15837682 :             int         j = i;
    8450             : 
    8451    27433524 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8452             :             {
    8453    11595842 :                 deltids[j] = deltids[j - hi];
    8454    11595842 :                 j -= hi;
    8455             :             }
    8456    15837682 :             deltids[j] = d;
    8457             :         }
    8458             :     }
    8459       11718 : }
    8460             : 
    8461             : /*
    8462             :  * Returns how many blocks should be considered favorable/contiguous for a
    8463             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8464             :  * from and includes the first block in line.
    8465             :  *
    8466             :  * There is always at least one favorable block during bottom-up index
    8467             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8468             :  * first block in line (the only favorable block) can be thought of as a
    8469             :  * degenerate array of contiguous blocks that consists of a single block.
    8470             :  * heap_index_delete_tuples() will expect this.
    8471             :  *
    8472             :  * Caller passes blockgroups, a description of the final order that deltids
    8473             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8474             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8475             :  * only passes deltids to us so that we can interpret blockgroups).
    8476             :  *
    8477             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8478             :  * since in general the main factor that determines which blocks we visit is
    8479             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8480             :  * We're not really targeting the general case, though -- the actual goal is
    8481             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8482             :  * The effects of most of the heuristics we apply are only noticeable in the
    8483             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8484             :  * passes.
    8485             :  *
    8486             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8487             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8488             :  * accessed contiguously, in the sense that each newly visited block is the
    8489             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8490             :  * close enough to it).  It will likely be cheaper to access more favorable
    8491             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8492             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8493             :  * (or a matter of further correlated version churn) before all blocks that
    8494             :  * appear together as a single large batch of favorable blocks get accessed by
    8495             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8496             :  * appear almost constantly or not even once (it all depends on per-index
    8497             :  * workload characteristics).
    8498             :  *
    8499             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8500             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8501             :  * batched together, at least with workloads that are naturally amenable to
    8502             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8503             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8504             :  * enables temporal locality of access, since sorting by heap block number
    8505             :  * naturally tends to make the bottom-up processing order deterministic.
    8506             :  *
    8507             :  * Consider the following example to get a sense of how temporal locality
    8508             :  * might matter: There is a heap relation with several indexes, each of which
    8509             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8510             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8511             :  * the indexes are logically modified by the UPDATE statements (if they were
    8512             :  * then bottom-up index deletion would not be triggered in the first place).
    8513             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8514             :  * heap_update() call) will have the same heap TID in each and every index.
    8515             :  * Since these indexes are low cardinality and never get logically modified,
    8516             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8517             :  * in approximately sequential order.  Temporal locality of access occurs due
    8518             :  * to bottom-up deletion passes behaving very similarly across each of the
    8519             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8520             :  * to visit heap blocks to a minimum.
    8521             :  */
    8522             : static int
    8523        4086 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8524             :                           TM_IndexDelete *deltids)
    8525             : {
    8526        4086 :     int64       lastblock = -1;
    8527        4086 :     int         nblocksfavorable = 0;
    8528             : 
    8529             :     Assert(nblockgroups >= 1);
    8530             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8531             : 
    8532             :     /*
    8533             :      * We tolerate heap blocks that will be accessed only slightly out of
    8534             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8535             :      * blocks happen to fall into different buckets (perhaps due only to a
    8536             :      * small difference in npromisingtids that the bucketing scheme didn't
    8537             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8538             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8539             :      * but it works well enough in practice.
    8540             :      */
    8541       13158 :     for (int b = 0; b < nblockgroups; b++)
    8542             :     {
    8543       12530 :         IndexDeleteCounts *group = blockgroups + b;
    8544       12530 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8545       12530 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8546             : 
    8547       12530 :         if (lastblock != -1 &&
    8548        8444 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8549        7216 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8550             :             break;
    8551             : 
    8552        9072 :         nblocksfavorable++;
    8553        9072 :         lastblock = block;
    8554             :     }
    8555             : 
    8556             :     /* Always indicate that there is at least 1 favorable block */
    8557             :     Assert(nblocksfavorable >= 1);
    8558             : 
    8559        4086 :     return nblocksfavorable;
    8560             : }
    8561             : 
    8562             : /*
    8563             :  * qsort comparison function for bottomup_sort_and_shrink()
    8564             :  */
    8565             : static int
    8566      411560 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8567             : {
    8568      411560 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8569      411560 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8570             : 
    8571             :     /*
    8572             :      * Most significant field is npromisingtids (which we invert the order of
    8573             :      * so as to sort in desc order).
    8574             :      *
    8575             :      * Caller should have already normalized npromisingtids fields into
    8576             :      * power-of-two values (buckets).
    8577             :      */
    8578      411560 :     if (group1->npromisingtids > group2->npromisingtids)
    8579       19286 :         return -1;
    8580      392274 :     if (group1->npromisingtids < group2->npromisingtids)
    8581       23746 :         return 1;
    8582             : 
    8583             :     /*
    8584             :      * Tiebreak: desc ntids sort order.
    8585             :      *
    8586             :      * We cannot expect power-of-two values for ntids fields.  We should
    8587             :      * behave as if they were already rounded up for us instead.
    8588             :      */
    8589      368528 :     if (group1->ntids != group2->ntids)
    8590             :     {
    8591      263106 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8592      263106 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8593             : 
    8594      263106 :         if (ntids1 > ntids2)
    8595       40440 :             return -1;
    8596      222666 :         if (ntids1 < ntids2)
    8597       45776 :             return 1;
    8598             :     }
    8599             : 
    8600             :     /*
    8601             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8602             :      * block in deltids array) order.
    8603             :      *
    8604             :      * This is equivalent to sorting in ascending heap block number order
    8605             :      * (among otherwise equal subsets of the array).  This approach allows us
    8606             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8607             :      * that the deltids array was sorted in ascending heap TID order when
    8608             :      * these offsets to the first TID from each heap block group were formed.)
    8609             :      */
    8610      282312 :     if (group1->ifirsttid > group2->ifirsttid)
    8611      140356 :         return 1;
    8612      141956 :     if (group1->ifirsttid < group2->ifirsttid)
    8613      141956 :         return -1;
    8614             : 
    8615           0 :     pg_unreachable();
    8616             : 
    8617             :     return 0;
    8618             : }
    8619             : 
    8620             : /*
    8621             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8622             :  *
    8623             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8624             :  * deletion.  The array should already be sorted in TID order when we're
    8625             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8626             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8627             :  * known to have the most "promising" TIDs.
    8628             :  *
    8629             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8630             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8631             :  * return.  This often means that deltids will be shrunk to a small fraction
    8632             :  * of its original size (we eliminate many heap blocks from consideration for
    8633             :  * caller up front).
    8634             :  *
    8635             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8636             :  * for a definition and full details.
    8637             :  */
    8638             : static int
    8639        4086 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8640             : {
    8641             :     IndexDeleteCounts *blockgroups;
    8642             :     TM_IndexDelete *reordereddeltids;
    8643        4086 :     BlockNumber curblock = InvalidBlockNumber;
    8644        4086 :     int         nblockgroups = 0;
    8645        4086 :     int         ncopied = 0;
    8646        4086 :     int         nblocksfavorable = 0;
    8647             : 
    8648             :     Assert(delstate->bottomup);
    8649             :     Assert(delstate->ndeltids > 0);
    8650             : 
    8651             :     /* Calculate per-heap-block count of TIDs */
    8652        4086 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8653     1978752 :     for (int i = 0; i < delstate->ndeltids; i++)
    8654             :     {
    8655     1974666 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8656     1974666 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8657     1974666 :         ItemPointer htid = &ideltid->tid;
    8658     1974666 :         bool        promising = istatus->promising;
    8659             : 
    8660     1974666 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8661             :         {
    8662             :             /* New block group */
    8663       80554 :             nblockgroups++;
    8664             : 
    8665             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8666             :                    !BlockNumberIsValid(curblock));
    8667             : 
    8668       80554 :             curblock = ItemPointerGetBlockNumber(htid);
    8669       80554 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8670       80554 :             blockgroups[nblockgroups - 1].ntids = 1;
    8671       80554 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8672             :         }
    8673             :         else
    8674             :         {
    8675     1894112 :             blockgroups[nblockgroups - 1].ntids++;
    8676             :         }
    8677             : 
    8678     1974666 :         if (promising)
    8679      247756 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8680             :     }
    8681             : 
    8682             :     /*
    8683             :      * We're about ready to sort block groups to determine the optimal order
    8684             :      * for visiting heap blocks.  But before we do, round the number of
    8685             :      * promising tuples for each block group up to the next power-of-two,
    8686             :      * unless it is very low (less than 4), in which case we round up to 4.
    8687             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8688             :      * of block groups that both have very low values.
    8689             :      *
    8690             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8691             :      * contains blocks that have _approximately_ the same number of promising
    8692             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8693             :      * in the total number of promising entries, so that the whole process can
    8694             :      * give a little weight to heapam factors (like heap block locality)
    8695             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8696             :      * would be foolish to interpret small differences in npromisingtids
    8697             :      * values as anything more than noise.
    8698             :      *
    8699             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8700             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8701             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8702             :      * only reason that we don't fix nhtids in the same way here too is that
    8703             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8704             :      * bucketization dynamically instead (in the sort comparator).
    8705             :      *
    8706             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8707             :      * heap locality/favorable blocks can significantly influence when and how
    8708             :      * heap blocks are accessed.
    8709             :      */
    8710       84640 :     for (int b = 0; b < nblockgroups; b++)
    8711             :     {
    8712       80554 :         IndexDeleteCounts *group = blockgroups + b;
    8713             : 
    8714             :         /* Better off falling back on nhtids with low npromisingtids */
    8715       80554 :         if (group->npromisingtids <= 4)
    8716       69006 :             group->npromisingtids = 4;
    8717             :         else
    8718       11548 :             group->npromisingtids =
    8719       11548 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8720             :     }
    8721             : 
    8722             :     /* Sort groups and rearrange caller's deltids array */
    8723        4086 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8724             :           bottomup_sort_and_shrink_cmp);
    8725        4086 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8726             : 
    8727        4086 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8728             :     /* Determine number of favorable blocks at the start of final deltids */
    8729        4086 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8730             :                                                  delstate->deltids);
    8731             : 
    8732       27384 :     for (int b = 0; b < nblockgroups; b++)
    8733             :     {
    8734       23298 :         IndexDeleteCounts *group = blockgroups + b;
    8735       23298 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8736             : 
    8737       23298 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8738       23298 :                sizeof(TM_IndexDelete) * group->ntids);
    8739       23298 :         ncopied += group->ntids;
    8740             :     }
    8741             : 
    8742             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8743        4086 :     memcpy(delstate->deltids, reordereddeltids,
    8744             :            sizeof(TM_IndexDelete) * ncopied);
    8745        4086 :     delstate->ndeltids = ncopied;
    8746             : 
    8747        4086 :     pfree(reordereddeltids);
    8748        4086 :     pfree(blockgroups);
    8749             : 
    8750        4086 :     return nblocksfavorable;
    8751             : }
    8752             : 
    8753             : /*
    8754             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8755             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8756             :  * corresponding visibility map block.  Both should have already been modified
    8757             :  * and dirtied.
    8758             :  *
    8759             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8760             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8761             :  *
    8762             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8763             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8764             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8765             :  * update the heap page's LSN.
    8766             :  */
    8767             : XLogRecPtr
    8768       87412 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8769             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8770             : {
    8771             :     xl_heap_visible xlrec;
    8772             :     XLogRecPtr  recptr;
    8773             :     uint8       flags;
    8774             : 
    8775             :     Assert(BufferIsValid(heap_buffer));
    8776             :     Assert(BufferIsValid(vm_buffer));
    8777             : 
    8778       87412 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8779       87412 :     xlrec.flags = vmflags;
    8780       87412 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8781         252 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8782       87412 :     XLogBeginInsert();
    8783       87412 :     XLogRegisterData(&xlrec, SizeOfHeapVisible);
    8784             : 
    8785       87412 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8786             : 
    8787       87412 :     flags = REGBUF_STANDARD;
    8788       87412 :     if (!XLogHintBitIsNeeded())
    8789        5880 :         flags |= REGBUF_NO_IMAGE;
    8790       87412 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8791             : 
    8792       87412 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8793             : 
    8794       87412 :     return recptr;
    8795             : }
    8796             : 
    8797             : /*
    8798             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8799             :  * have modified the buffer(s) and marked them dirty.
    8800             :  */
    8801             : static XLogRecPtr
    8802      585442 : log_heap_update(Relation reln, Buffer oldbuf,
    8803             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8804             :                 HeapTuple old_key_tuple,
    8805             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8806             : {
    8807             :     xl_heap_update xlrec;
    8808             :     xl_heap_header xlhdr;
    8809             :     xl_heap_header xlhdr_idx;
    8810             :     uint8       info;
    8811             :     uint16      prefix_suffix[2];
    8812      585442 :     uint16      prefixlen = 0,
    8813      585442 :                 suffixlen = 0;
    8814             :     XLogRecPtr  recptr;
    8815      585442 :     Page        page = BufferGetPage(newbuf);
    8816      585442 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8817             :     bool        init;
    8818             :     int         bufflags;
    8819             : 
    8820             :     /* Caller should not call me on a non-WAL-logged relation */
    8821             :     Assert(RelationNeedsWAL(reln));
    8822             : 
    8823      585442 :     XLogBeginInsert();
    8824             : 
    8825      585442 :     if (HeapTupleIsHeapOnly(newtup))
    8826      284190 :         info = XLOG_HEAP_HOT_UPDATE;
    8827             :     else
    8828      301252 :         info = XLOG_HEAP_UPDATE;
    8829             : 
    8830             :     /*
    8831             :      * If the old and new tuple are on the same page, we only need to log the
    8832             :      * parts of the new tuple that were changed.  That saves on the amount of
    8833             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8834             :      * the beginning and end of the tuple.  That's quick to check, and
    8835             :      * perfectly covers the common case that only one field is updated.
    8836             :      *
    8837             :      * We could do this even if the old and new tuple are on different pages,
    8838             :      * but only if we don't make a full-page image of the old page, which is
    8839             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8840             :      * some reason, it would allow the corruption to propagate the new page,
    8841             :      * so it seems best to avoid.  Under the general assumption that most
    8842             :      * updates tend to create the new tuple version on the same page, there
    8843             :      * isn't much to be gained by doing this across pages anyway.
    8844             :      *
    8845             :      * Skip this if we're taking a full-page image of the new page, as we
    8846             :      * don't include the new tuple in the WAL record in that case.  Also
    8847             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8848             :      * read the new tuple in whole from the WAL record alone.
    8849             :      */
    8850      585442 :     if (oldbuf == newbuf && !need_tuple_data &&
    8851      285904 :         !XLogCheckBufferNeedsBackup(newbuf))
    8852             :     {
    8853      284922 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8854      284922 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8855      284922 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8856      284922 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8857             : 
    8858             :         /* Check for common prefix between old and new tuple */
    8859    23703852 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8860             :         {
    8861    23653348 :             if (newp[prefixlen] != oldp[prefixlen])
    8862      234418 :                 break;
    8863             :         }
    8864             : 
    8865             :         /*
    8866             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8867             :          * at least 3 bytes or there's no point.
    8868             :          */
    8869      284922 :         if (prefixlen < 3)
    8870       44176 :             prefixlen = 0;
    8871             : 
    8872             :         /* Same for suffix */
    8873     9409726 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8874             :         {
    8875     9358712 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8876      233908 :                 break;
    8877             :         }
    8878      284922 :         if (suffixlen < 3)
    8879       69512 :             suffixlen = 0;
    8880             :     }
    8881             : 
    8882             :     /* Prepare main WAL data chain */
    8883      585442 :     xlrec.flags = 0;
    8884      585442 :     if (all_visible_cleared)
    8885        3048 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8886      585442 :     if (new_all_visible_cleared)
    8887        1392 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8888      585442 :     if (prefixlen > 0)
    8889      240746 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8890      585442 :     if (suffixlen > 0)
    8891      215410 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8892      585442 :     if (need_tuple_data)
    8893             :     {
    8894       94044 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8895       94044 :         if (old_key_tuple)
    8896             :         {
    8897         286 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8898         126 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8899             :             else
    8900         160 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8901             :         }
    8902             :     }
    8903             : 
    8904             :     /* If new tuple is the single and first tuple on page... */
    8905      592186 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8906        6744 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8907             :     {
    8908        6342 :         info |= XLOG_HEAP_INIT_PAGE;
    8909        6342 :         init = true;
    8910             :     }
    8911             :     else
    8912      579100 :         init = false;
    8913             : 
    8914             :     /* Prepare WAL data for the old page */
    8915      585442 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8916      585442 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8917     1170884 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8918      585442 :                                               oldtup->t_data->t_infomask2);
    8919             : 
    8920             :     /* Prepare WAL data for the new page */
    8921      585442 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8922      585442 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8923             : 
    8924      585442 :     bufflags = REGBUF_STANDARD;
    8925      585442 :     if (init)
    8926        6342 :         bufflags |= REGBUF_WILL_INIT;
    8927      585442 :     if (need_tuple_data)
    8928       94044 :         bufflags |= REGBUF_KEEP_DATA;
    8929             : 
    8930      585442 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8931      585442 :     if (oldbuf != newbuf)
    8932      275654 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8933             : 
    8934      585442 :     XLogRegisterData(&xlrec, SizeOfHeapUpdate);
    8935             : 
    8936             :     /*
    8937             :      * Prepare WAL data for the new tuple.
    8938             :      */
    8939      585442 :     if (prefixlen > 0 || suffixlen > 0)
    8940             :     {
    8941      284014 :         if (prefixlen > 0 && suffixlen > 0)
    8942             :         {
    8943      172142 :             prefix_suffix[0] = prefixlen;
    8944      172142 :             prefix_suffix[1] = suffixlen;
    8945      172142 :             XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
    8946             :         }
    8947      111872 :         else if (prefixlen > 0)
    8948             :         {
    8949       68604 :             XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
    8950             :         }
    8951             :         else
    8952             :         {
    8953       43268 :             XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
    8954             :         }
    8955             :     }
    8956             : 
    8957      585442 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    8958      585442 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    8959      585442 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    8960             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    8961             : 
    8962             :     /*
    8963             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    8964             :      *
    8965             :      * The 'data' doesn't include the common prefix or suffix.
    8966             :      */
    8967      585442 :     XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    8968      585442 :     if (prefixlen == 0)
    8969             :     {
    8970      344696 :         XLogRegisterBufData(0,
    8971      344696 :                             (char *) newtup->t_data + SizeofHeapTupleHeader,
    8972      344696 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    8973             :     }
    8974             :     else
    8975             :     {
    8976             :         /*
    8977             :          * Have to write the null bitmap and data after the common prefix as
    8978             :          * two separate rdata entries.
    8979             :          */
    8980             :         /* bitmap [+ padding] [+ oid] */
    8981      240746 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    8982             :         {
    8983      240746 :             XLogRegisterBufData(0,
    8984      240746 :                                 (char *) newtup->t_data + SizeofHeapTupleHeader,
    8985      240746 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    8986             :         }
    8987             : 
    8988             :         /* data after common prefix */
    8989      240746 :         XLogRegisterBufData(0,
    8990      240746 :                             (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
    8991      240746 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    8992             :     }
    8993             : 
    8994             :     /* We need to log a tuple identity */
    8995      585442 :     if (need_tuple_data && old_key_tuple)
    8996             :     {
    8997             :         /* don't really need this, but its more comfy to decode */
    8998         286 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    8999         286 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    9000         286 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    9001             : 
    9002         286 :         XLogRegisterData(&xlhdr_idx, SizeOfHeapHeader);
    9003             : 
    9004             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    9005         286 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    9006         286 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    9007             :     }
    9008             : 
    9009             :     /* filtering by origin on a row level is much more efficient */
    9010      585442 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    9011             : 
    9012      585442 :     recptr = XLogInsert(RM_HEAP_ID, info);
    9013             : 
    9014      585442 :     return recptr;
    9015             : }
    9016             : 
    9017             : /*
    9018             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    9019             :  *
    9020             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    9021             :  * tuples.
    9022             :  */
    9023             : static XLogRecPtr
    9024       47788 : log_heap_new_cid(Relation relation, HeapTuple tup)
    9025             : {
    9026             :     xl_heap_new_cid xlrec;
    9027             : 
    9028             :     XLogRecPtr  recptr;
    9029       47788 :     HeapTupleHeader hdr = tup->t_data;
    9030             : 
    9031             :     Assert(ItemPointerIsValid(&tup->t_self));
    9032             :     Assert(tup->t_tableOid != InvalidOid);
    9033             : 
    9034       47788 :     xlrec.top_xid = GetTopTransactionId();
    9035       47788 :     xlrec.target_locator = relation->rd_locator;
    9036       47788 :     xlrec.target_tid = tup->t_self;
    9037             : 
    9038             :     /*
    9039             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    9040             :      * combo CID, set cmin and cmax.
    9041             :      */
    9042       47788 :     if (hdr->t_infomask & HEAP_COMBOCID)
    9043             :     {
    9044             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    9045             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    9046        4036 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    9047        4036 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    9048        4036 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    9049             :     }
    9050             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    9051             :     else
    9052             :     {
    9053             :         /*
    9054             :          * Tuple inserted.
    9055             :          *
    9056             :          * We need to check for LOCK ONLY because multixacts might be
    9057             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    9058             :          * which case there will be an xmax, although the tuple just got
    9059             :          * inserted.
    9060             :          */
    9061       57066 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    9062       13314 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    9063             :         {
    9064       30440 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    9065       30440 :             xlrec.cmax = InvalidCommandId;
    9066             :         }
    9067             :         /* Tuple from a different tx updated or deleted. */
    9068             :         else
    9069             :         {
    9070       13312 :             xlrec.cmin = InvalidCommandId;
    9071       13312 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    9072             :         }
    9073       43752 :         xlrec.combocid = InvalidCommandId;
    9074             :     }
    9075             : 
    9076             :     /*
    9077             :      * Note that we don't need to register the buffer here, because this
    9078             :      * operation does not modify the page. The insert/update/delete that
    9079             :      * called us certainly did, but that's WAL-logged separately.
    9080             :      */
    9081       47788 :     XLogBeginInsert();
    9082       47788 :     XLogRegisterData(&xlrec, SizeOfHeapNewCid);
    9083             : 
    9084             :     /* will be looked at irrespective of origin */
    9085             : 
    9086       47788 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    9087             : 
    9088       47788 :     return recptr;
    9089             : }
    9090             : 
    9091             : /*
    9092             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    9093             :  * the old tuple in an UPDATE or DELETE.
    9094             :  *
    9095             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    9096             :  * key defined.
    9097             :  *
    9098             :  * Pass key_required true if any replica identity columns changed value, or if
    9099             :  * any of them have any external data.  Delete must always pass true.
    9100             :  *
    9101             :  * *copy is set to true if the returned tuple is a modified copy rather than
    9102             :  * the same tuple that was passed in.
    9103             :  */
    9104             : static HeapTuple
    9105     3557512 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9106             :                        bool *copy)
    9107             : {
    9108     3557512 :     TupleDesc   desc = RelationGetDescr(relation);
    9109     3557512 :     char        replident = relation->rd_rel->relreplident;
    9110             :     Bitmapset  *idattrs;
    9111             :     HeapTuple   key_tuple;
    9112             :     bool        nulls[MaxHeapAttributeNumber];
    9113             :     Datum       values[MaxHeapAttributeNumber];
    9114             : 
    9115     3557512 :     *copy = false;
    9116             : 
    9117     3557512 :     if (!RelationIsLogicallyLogged(relation))
    9118     3356936 :         return NULL;
    9119             : 
    9120      200576 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9121         462 :         return NULL;
    9122             : 
    9123      200114 :     if (replident == REPLICA_IDENTITY_FULL)
    9124             :     {
    9125             :         /*
    9126             :          * When logging the entire old tuple, it very well could contain
    9127             :          * toasted columns. If so, force them to be inlined.
    9128             :          */
    9129         382 :         if (HeapTupleHasExternal(tp))
    9130             :         {
    9131           8 :             *copy = true;
    9132           8 :             tp = toast_flatten_tuple(tp, desc);
    9133             :         }
    9134         382 :         return tp;
    9135             :     }
    9136             : 
    9137             :     /* if the key isn't required and we're only logging the key, we're done */
    9138      199732 :     if (!key_required)
    9139       93758 :         return NULL;
    9140             : 
    9141             :     /* find out the replica identity columns */
    9142      105974 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9143             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9144             : 
    9145             :     /*
    9146             :      * If there's no defined replica identity columns, treat as !key_required.
    9147             :      * (This case should not be reachable from heap_update, since that should
    9148             :      * calculate key_required accurately.  But heap_delete just passes
    9149             :      * constant true for key_required, so we can hit this case in deletes.)
    9150             :      */
    9151      105974 :     if (bms_is_empty(idattrs))
    9152       12042 :         return NULL;
    9153             : 
    9154             :     /*
    9155             :      * Construct a new tuple containing only the replica identity columns,
    9156             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9157             :      * identity columns aren't null.
    9158             :      */
    9159       93932 :     heap_deform_tuple(tp, desc, values, nulls);
    9160             : 
    9161      301782 :     for (int i = 0; i < desc->natts; i++)
    9162             :     {
    9163      207850 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9164             :                           idattrs))
    9165             :             Assert(!nulls[i]);
    9166             :         else
    9167      113894 :             nulls[i] = true;
    9168             :     }
    9169             : 
    9170       93932 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9171       93932 :     *copy = true;
    9172             : 
    9173       93932 :     bms_free(idattrs);
    9174             : 
    9175             :     /*
    9176             :      * If the tuple, which by here only contains indexed columns, still has
    9177             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9178             :      * since there's limits on the size of indexed columns, so we don't
    9179             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9180             :      * the indexed columns, even if it would be more efficient.
    9181             :      */
    9182       93932 :     if (HeapTupleHasExternal(key_tuple))
    9183             :     {
    9184           8 :         HeapTuple   oldtup = key_tuple;
    9185             : 
    9186           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9187           8 :         heap_freetuple(oldtup);
    9188             :     }
    9189             : 
    9190       93932 :     return key_tuple;
    9191             : }
    9192             : 
    9193             : /*
    9194             :  * HeapCheckForSerializableConflictOut
    9195             :  *      We are reading a tuple.  If it's not visible, there may be a
    9196             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9197             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9198             :  *
    9199             :  * We will determine the top level xid of the writing transaction with which
    9200             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9201             :  * for overlap with our own transaction.
    9202             :  *
    9203             :  * This function should be called just about anywhere in heapam.c where a
    9204             :  * tuple has been read. The caller must hold at least a shared lock on the
    9205             :  * buffer, because this function might set hint bits on the tuple. There is
    9206             :  * currently no known reason to call this function from an index AM.
    9207             :  */
    9208             : void
    9209    62907768 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9210             :                                     HeapTuple tuple, Buffer buffer,
    9211             :                                     Snapshot snapshot)
    9212             : {
    9213             :     TransactionId xid;
    9214             :     HTSV_Result htsvResult;
    9215             : 
    9216    62907768 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9217    62857098 :         return;
    9218             : 
    9219             :     /*
    9220             :      * Check to see whether the tuple has been written to by a concurrent
    9221             :      * transaction, either to create it not visible to us, or to delete it
    9222             :      * while it is visible to us.  The "visible" bool indicates whether the
    9223             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9224             :      * is going on with it.
    9225             :      *
    9226             :      * In the event of a concurrently inserted tuple that also happens to have
    9227             :      * been concurrently updated (by a separate transaction), the xmin of the
    9228             :      * tuple will be used -- not the updater's xid.
    9229             :      */
    9230       50670 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9231       50670 :     switch (htsvResult)
    9232             :     {
    9233       49066 :         case HEAPTUPLE_LIVE:
    9234       49066 :             if (visible)
    9235       49040 :                 return;
    9236          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9237          26 :             break;
    9238         704 :         case HEAPTUPLE_RECENTLY_DEAD:
    9239             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9240         704 :             if (visible)
    9241         562 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9242             :             else
    9243         142 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9244             : 
    9245         704 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9246             :             {
    9247             :                 /* This is like the HEAPTUPLE_DEAD case */
    9248             :                 Assert(!visible);
    9249         128 :                 return;
    9250             :             }
    9251         576 :             break;
    9252         652 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9253         652 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9254         652 :             break;
    9255         248 :         case HEAPTUPLE_DEAD:
    9256             :             Assert(!visible);
    9257         248 :             return;
    9258           0 :         default:
    9259             : 
    9260             :             /*
    9261             :              * The only way to get to this default clause is if a new value is
    9262             :              * added to the enum type without adding it to this switch
    9263             :              * statement.  That's a bug, so elog.
    9264             :              */
    9265           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9266             : 
    9267             :             /*
    9268             :              * In spite of having all enum values covered and calling elog on
    9269             :              * this default, some compilers think this is a code path which
    9270             :              * allows xid to be used below without initialization. Silence
    9271             :              * that warning.
    9272             :              */
    9273             :             xid = InvalidTransactionId;
    9274             :     }
    9275             : 
    9276             :     Assert(TransactionIdIsValid(xid));
    9277             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9278             : 
    9279             :     /*
    9280             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9281             :      * if it's our own xid.
    9282             :      */
    9283        1254 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9284         124 :         return;
    9285        1130 :     xid = SubTransGetTopmostTransaction(xid);
    9286        1130 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9287           0 :         return;
    9288             : 
    9289        1130 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9290             : }

Generated by: LCOV version 1.14