LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 2498 2723 91.7 %
Date: 2025-10-16 02:17:52 Functions: 82 82 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/injection_point.h"
      53             : #include "utils/inval.h"
      54             : #include "utils/spccache.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : 
      58             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      59             :                                      TransactionId xid, CommandId cid, int options);
      60             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      61             :                                   Buffer newbuf, HeapTuple oldtup,
      62             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      63             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      64             : #ifdef USE_ASSERT_CHECKING
      65             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      66             :                                                  ItemPointer otid,
      67             :                                                  HeapTuple newtup);
      68             : static void check_inplace_rel_lock(HeapTuple oldtup);
      69             : #endif
      70             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      71             :                                            Bitmapset *interesting_cols,
      72             :                                            Bitmapset *external_cols,
      73             :                                            HeapTuple oldtup, HeapTuple newtup,
      74             :                                            bool *has_external);
      75             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      76             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      77             :                                  bool *have_tuple_lock);
      78             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      79             :                                                    BlockNumber block,
      80             :                                                    ScanDirection dir);
      81             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      82             :                                                         ScanDirection dir);
      83             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      84             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      85             :                                       LockTupleMode mode, bool is_update,
      86             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      87             :                                       uint16 *result_infomask2);
      88             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      89             :                                          ItemPointer ctid, TransactionId xid,
      90             :                                          LockTupleMode mode);
      91             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      92             :                                    uint16 *new_infomask2);
      93             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      94             :                                              uint16 t_infomask);
      95             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      96             :                                     LockTupleMode lockmode, bool *current_is_member);
      97             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      98             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      99             :                             int *remaining);
     100             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
     101             :                                        uint16 infomask, Relation rel, int *remaining,
     102             :                                        bool logLockFailure);
     103             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     104             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     105             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     106             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     107             :                                         bool *copy);
     108             : 
     109             : 
     110             : /*
     111             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     112             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     113             :  * update them).  This table (and the macros below) helps us determine the
     114             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     115             :  * tuple lock strength.
     116             :  *
     117             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     118             :  *
     119             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     120             :  * instead.
     121             :  */
     122             : static const struct
     123             : {
     124             :     LOCKMODE    hwlock;
     125             :     int         lockstatus;
     126             :     int         updstatus;
     127             : }
     128             : 
     129             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     130             : {
     131             :     {                           /* LockTupleKeyShare */
     132             :         AccessShareLock,
     133             :         MultiXactStatusForKeyShare,
     134             :         -1                      /* KeyShare does not allow updating tuples */
     135             :     },
     136             :     {                           /* LockTupleShare */
     137             :         RowShareLock,
     138             :         MultiXactStatusForShare,
     139             :         -1                      /* Share does not allow updating tuples */
     140             :     },
     141             :     {                           /* LockTupleNoKeyExclusive */
     142             :         ExclusiveLock,
     143             :         MultiXactStatusForNoKeyUpdate,
     144             :         MultiXactStatusNoKeyUpdate
     145             :     },
     146             :     {                           /* LockTupleExclusive */
     147             :         AccessExclusiveLock,
     148             :         MultiXactStatusForUpdate,
     149             :         MultiXactStatusUpdate
     150             :     }
     151             : };
     152             : 
     153             : /* Get the LOCKMODE for a given MultiXactStatus */
     154             : #define LOCKMODE_from_mxstatus(status) \
     155             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     156             : 
     157             : /*
     158             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     159             :  * This is more readable than having every caller translate it to lock.h's
     160             :  * LOCKMODE.
     161             :  */
     162             : #define LockTupleTuplock(rel, tup, mode) \
     163             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     164             : #define UnlockTupleTuplock(rel, tup, mode) \
     165             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     166             : #define ConditionalLockTupleTuplock(rel, tup, mode, log) \
     167             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock, (log))
     168             : 
     169             : #ifdef USE_PREFETCH
     170             : /*
     171             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     172             :  * structure to coordinate prefetching activity
     173             :  */
     174             : typedef struct
     175             : {
     176             :     BlockNumber cur_hblkno;
     177             :     int         next_item;
     178             :     int         ndeltids;
     179             :     TM_IndexDelete *deltids;
     180             : } IndexDeletePrefetchState;
     181             : #endif
     182             : 
     183             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     184             : #define BOTTOMUP_MAX_NBLOCKS            6
     185             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     186             : 
     187             : /*
     188             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     189             :  * must visit to help its bottom-up index deletion caller
     190             :  */
     191             : typedef struct IndexDeleteCounts
     192             : {
     193             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     194             :     int16       ntids;          /* Number of TIDs in group */
     195             :     int16       ifirsttid;      /* Offset to group's first deltid */
     196             : } IndexDeleteCounts;
     197             : 
     198             : /*
     199             :  * This table maps tuple lock strength values for each particular
     200             :  * MultiXactStatus value.
     201             :  */
     202             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     203             : {
     204             :     LockTupleKeyShare,          /* ForKeyShare */
     205             :     LockTupleShare,             /* ForShare */
     206             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     207             :     LockTupleExclusive,         /* ForUpdate */
     208             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     209             :     LockTupleExclusive          /* Update */
     210             : };
     211             : 
     212             : /* Get the LockTupleMode for a given MultiXactStatus */
     213             : #define TUPLOCK_from_mxstatus(status) \
     214             :             (MultiXactStatusLock[(status)])
     215             : 
     216             : /*
     217             :  * Check that we have a valid snapshot if we might need TOAST access.
     218             :  */
     219             : static inline void
     220    21000370 : AssertHasSnapshotForToast(Relation rel)
     221             : {
     222             : #ifdef USE_ASSERT_CHECKING
     223             : 
     224             :     /* bootstrap mode in particular breaks this rule */
     225             :     if (!IsNormalProcessingMode())
     226             :         return;
     227             : 
     228             :     /* if the relation doesn't have a TOAST table, we are good */
     229             :     if (!OidIsValid(rel->rd_rel->reltoastrelid))
     230             :         return;
     231             : 
     232             :     Assert(HaveRegisteredOrActiveSnapshot());
     233             : 
     234             : #endif                          /* USE_ASSERT_CHECKING */
     235    21000370 : }
     236             : 
     237             : /* ----------------------------------------------------------------
     238             :  *                       heap support routines
     239             :  * ----------------------------------------------------------------
     240             :  */
     241             : 
     242             : /*
     243             :  * Streaming read API callback for parallel sequential scans. Returns the next
     244             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     245             :  */
     246             : static BlockNumber
     247      201642 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     248             :                                     void *callback_private_data,
     249             :                                     void *per_buffer_data)
     250             : {
     251      201642 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     252             : 
     253             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     254             :     Assert(scan->rs_base.rs_parallel);
     255             : 
     256      201642 :     if (unlikely(!scan->rs_inited))
     257             :     {
     258             :         /* parallel scan */
     259        2986 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     260        2986 :                                                  scan->rs_parallelworkerdata,
     261        2986 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     262             : 
     263             :         /* may return InvalidBlockNumber if there are no more blocks */
     264        5972 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     265        2986 :                                                                     scan->rs_parallelworkerdata,
     266        2986 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     267        2986 :         scan->rs_inited = true;
     268             :     }
     269             :     else
     270             :     {
     271      198656 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     272      198656 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     273      198656 :                                                                     scan->rs_base.rs_parallel);
     274             :     }
     275             : 
     276      201642 :     return scan->rs_prefetch_block;
     277             : }
     278             : 
     279             : /*
     280             :  * Streaming read API callback for serial sequential and TID range scans.
     281             :  * Returns the next block the caller wants from the read stream or
     282             :  * InvalidBlockNumber when done.
     283             :  */
     284             : static BlockNumber
     285     7499738 : heap_scan_stream_read_next_serial(ReadStream *stream,
     286             :                                   void *callback_private_data,
     287             :                                   void *per_buffer_data)
     288             : {
     289     7499738 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     290             : 
     291     7499738 :     if (unlikely(!scan->rs_inited))
     292             :     {
     293     1943268 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     294     1943268 :         scan->rs_inited = true;
     295             :     }
     296             :     else
     297     5556470 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     298             :                                                            scan->rs_prefetch_block,
     299             :                                                            scan->rs_dir);
     300             : 
     301     7499738 :     return scan->rs_prefetch_block;
     302             : }
     303             : 
     304             : /*
     305             :  * Read stream API callback for bitmap heap scans.
     306             :  * Returns the next block the caller wants from the read stream or
     307             :  * InvalidBlockNumber when done.
     308             :  */
     309             : static BlockNumber
     310      421440 : bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data,
     311             :                             void *per_buffer_data)
     312             : {
     313      421440 :     TBMIterateResult *tbmres = per_buffer_data;
     314      421440 :     BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) private_data;
     315      421440 :     HeapScanDesc hscan = (HeapScanDesc) bscan;
     316      421440 :     TableScanDesc sscan = &hscan->rs_base;
     317             : 
     318             :     for (;;)
     319             :     {
     320      421440 :         CHECK_FOR_INTERRUPTS();
     321             : 
     322             :         /* no more entries in the bitmap */
     323      421440 :         if (!tbm_iterate(&sscan->st.rs_tbmiterator, tbmres))
     324       20370 :             return InvalidBlockNumber;
     325             : 
     326             :         /*
     327             :          * Ignore any claimed entries past what we think is the end of the
     328             :          * relation. It may have been extended after the start of our scan (we
     329             :          * only hold an AccessShareLock, and it could be inserts from this
     330             :          * backend).  We don't take this optimization in SERIALIZABLE
     331             :          * isolation though, as we need to examine all invisible tuples
     332             :          * reachable by the index.
     333             :          */
     334      401070 :         if (!IsolationIsSerializable() &&
     335      400852 :             tbmres->blockno >= hscan->rs_nblocks)
     336           0 :             continue;
     337             : 
     338      401070 :         return tbmres->blockno;
     339             :     }
     340             : 
     341             :     /* not reachable */
     342             :     Assert(false);
     343             : }
     344             : 
     345             : /* ----------------
     346             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     347             :  * ----------------
     348             :  */
     349             : static void
     350     1986336 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     351             : {
     352     1986336 :     ParallelBlockTableScanDesc bpscan = NULL;
     353             :     bool        allow_strat;
     354             :     bool        allow_sync;
     355             : 
     356             :     /*
     357             :      * Determine the number of blocks we have to scan.
     358             :      *
     359             :      * It is sufficient to do this once at scan start, since any tuples added
     360             :      * while the scan is in progress will be invisible to my snapshot anyway.
     361             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     362             :      * guarantee to return tuples added after scan start anyway, since they
     363             :      * might go into pages we already scanned.  To guarantee consistent
     364             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     365             :      * lock that ensures the interesting tuple(s) won't change.)
     366             :      */
     367     1986336 :     if (scan->rs_base.rs_parallel != NULL)
     368             :     {
     369        4056 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     370        4056 :         scan->rs_nblocks = bpscan->phs_nblocks;
     371             :     }
     372             :     else
     373     1982280 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     374             : 
     375             :     /*
     376             :      * If the table is large relative to NBuffers, use a bulk-read access
     377             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     378             :      * the thresholds for these features could be different, we make them the
     379             :      * same so that there are only two behaviors to tune rather than four.
     380             :      * (However, some callers need to be able to disable one or both of these
     381             :      * behaviors, independently of the size of the table; also there is a GUC
     382             :      * variable that can disable synchronized scanning.)
     383             :      *
     384             :      * Note that table_block_parallelscan_initialize has a very similar test;
     385             :      * if you change this, consider changing that one, too.
     386             :      */
     387     1986332 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     388     1971768 :         scan->rs_nblocks > NBuffers / 4)
     389             :     {
     390       27070 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     391       27070 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     392             :     }
     393             :     else
     394     1959262 :         allow_strat = allow_sync = false;
     395             : 
     396     1986332 :     if (allow_strat)
     397             :     {
     398             :         /* During a rescan, keep the previous strategy object. */
     399       24484 :         if (scan->rs_strategy == NULL)
     400       24118 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     401             :     }
     402             :     else
     403             :     {
     404     1961848 :         if (scan->rs_strategy != NULL)
     405           0 :             FreeAccessStrategy(scan->rs_strategy);
     406     1961848 :         scan->rs_strategy = NULL;
     407             :     }
     408             : 
     409     1986332 :     if (scan->rs_base.rs_parallel != NULL)
     410             :     {
     411             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     412        4056 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     413           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     414             :         else
     415        4052 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     416             :     }
     417     1982276 :     else if (keep_startblock)
     418             :     {
     419             :         /*
     420             :          * When rescanning, we want to keep the previous startblock setting,
     421             :          * so that rewinding a cursor doesn't generate surprising results.
     422             :          * Reset the active syncscan setting, though.
     423             :          */
     424     1218198 :         if (allow_sync && synchronize_seqscans)
     425         100 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     426             :         else
     427     1218098 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     428             :     }
     429      764078 :     else if (allow_sync && synchronize_seqscans)
     430             :     {
     431         144 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     432         144 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     433             :     }
     434             :     else
     435             :     {
     436      763934 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     437      763934 :         scan->rs_startblock = 0;
     438             :     }
     439             : 
     440     1986332 :     scan->rs_numblocks = InvalidBlockNumber;
     441     1986332 :     scan->rs_inited = false;
     442     1986332 :     scan->rs_ctup.t_data = NULL;
     443     1986332 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     444     1986332 :     scan->rs_cbuf = InvalidBuffer;
     445     1986332 :     scan->rs_cblock = InvalidBlockNumber;
     446     1986332 :     scan->rs_ntuples = 0;
     447     1986332 :     scan->rs_cindex = 0;
     448             : 
     449             :     /*
     450             :      * Initialize to ForwardScanDirection because it is most common and
     451             :      * because heap scans go forward before going backward (e.g. CURSORs).
     452             :      */
     453     1986332 :     scan->rs_dir = ForwardScanDirection;
     454     1986332 :     scan->rs_prefetch_block = InvalidBlockNumber;
     455             : 
     456             :     /* page-at-a-time fields are always invalid when not rs_inited */
     457             : 
     458             :     /*
     459             :      * copy the scan key, if appropriate
     460             :      */
     461     1986332 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     462      440312 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     463             : 
     464             :     /*
     465             :      * Currently, we only have a stats counter for sequential heap scans (but
     466             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     467             :      * and for sample scans we update stats for tuple fetches).
     468             :      */
     469     1986332 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     470     1945648 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     471     1986332 : }
     472             : 
     473             : /*
     474             :  * heap_setscanlimits - restrict range of a heapscan
     475             :  *
     476             :  * startBlk is the page to start at
     477             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     478             :  */
     479             : void
     480        5590 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     481             : {
     482        5590 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     483             : 
     484             :     Assert(!scan->rs_inited);    /* else too late to change */
     485             :     /* else rs_startblock is significant */
     486             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     487             : 
     488             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     489             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     490             : 
     491        5590 :     scan->rs_startblock = startBlk;
     492        5590 :     scan->rs_numblocks = numBlks;
     493        5590 : }
     494             : 
     495             : /*
     496             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     497             :  * multiple times, with constant arguments for all_visible,
     498             :  * check_serializable.
     499             :  */
     500             : pg_attribute_always_inline
     501             : static int
     502     5531754 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     503             :                     Page page, Buffer buffer,
     504             :                     BlockNumber block, int lines,
     505             :                     bool all_visible, bool check_serializable)
     506             : {
     507     5531754 :     int         ntup = 0;
     508             :     OffsetNumber lineoff;
     509             : 
     510   278713926 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     511             :     {
     512   273182188 :         ItemId      lpp = PageGetItemId(page, lineoff);
     513             :         HeapTupleData loctup;
     514             :         bool        valid;
     515             : 
     516   273182188 :         if (!ItemIdIsNormal(lpp))
     517    56355152 :             continue;
     518             : 
     519   216827036 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     520   216827036 :         loctup.t_len = ItemIdGetLength(lpp);
     521   216827036 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     522   216827036 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     523             : 
     524   216827036 :         if (all_visible)
     525    86460132 :             valid = true;
     526             :         else
     527   130366904 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     528             : 
     529   216827036 :         if (check_serializable)
     530        2818 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     531             :                                                 &loctup, buffer, snapshot);
     532             : 
     533   216827020 :         if (valid)
     534             :         {
     535   200800256 :             scan->rs_vistuples[ntup] = lineoff;
     536   200800256 :             ntup++;
     537             :         }
     538             :     }
     539             : 
     540             :     Assert(ntup <= MaxHeapTuplesPerPage);
     541             : 
     542     5531738 :     return ntup;
     543             : }
     544             : 
     545             : /*
     546             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     547             :  *
     548             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     549             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     550             :  */
     551             : void
     552     5531754 : heap_prepare_pagescan(TableScanDesc sscan)
     553             : {
     554     5531754 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     555     5531754 :     Buffer      buffer = scan->rs_cbuf;
     556     5531754 :     BlockNumber block = scan->rs_cblock;
     557             :     Snapshot    snapshot;
     558             :     Page        page;
     559             :     int         lines;
     560             :     bool        all_visible;
     561             :     bool        check_serializable;
     562             : 
     563             :     Assert(BufferGetBlockNumber(buffer) == block);
     564             : 
     565             :     /* ensure we're not accidentally being used when not in pagemode */
     566             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     567     5531754 :     snapshot = scan->rs_base.rs_snapshot;
     568             : 
     569             :     /*
     570             :      * Prune and repair fragmentation for the whole page, if possible.
     571             :      */
     572     5531754 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     573             : 
     574             :     /*
     575             :      * We must hold share lock on the buffer content while examining tuple
     576             :      * visibility.  Afterwards, however, the tuples we have found to be
     577             :      * visible are guaranteed good as long as we hold the buffer pin.
     578             :      */
     579     5531754 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     580             : 
     581     5531754 :     page = BufferGetPage(buffer);
     582     5531754 :     lines = PageGetMaxOffsetNumber(page);
     583             : 
     584             :     /*
     585             :      * If the all-visible flag indicates that all tuples on the page are
     586             :      * visible to everyone, we can skip the per-tuple visibility tests.
     587             :      *
     588             :      * Note: In hot standby, a tuple that's already visible to all
     589             :      * transactions on the primary might still be invisible to a read-only
     590             :      * transaction in the standby. We partly handle this problem by tracking
     591             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     592             :      * page all-visible on the primary and WAL log that along with the
     593             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     594             :      * all transactions that can potentially may not see one or more tuples on
     595             :      * the page. That's how index-only scans work fine in hot standby. A
     596             :      * crucial difference between index-only scans and heap scans is that the
     597             :      * index-only scan completely relies on the visibility map where as heap
     598             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     599             :      * the page-level flag can be trusted in the same way, because it might
     600             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     601             :      * full page write. Until we can prove that beyond doubt, let's check each
     602             :      * tuple for visibility the hard way.
     603             :      */
     604     5531754 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     605             :     check_serializable =
     606     5531754 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     607             : 
     608             :     /*
     609             :      * We call page_collect_tuples() with constant arguments, to get the
     610             :      * compiler to constant fold the constant arguments. Separate calls with
     611             :      * constant arguments, rather than variables, are needed on several
     612             :      * compilers to actually perform constant folding.
     613             :      */
     614     5531754 :     if (likely(all_visible))
     615             :     {
     616     2035240 :         if (likely(!check_serializable))
     617     2035240 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     618             :                                                    block, lines, true, false);
     619             :         else
     620           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     621             :                                                    block, lines, true, true);
     622             :     }
     623             :     else
     624             :     {
     625     3496514 :         if (likely(!check_serializable))
     626     3495268 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     627             :                                                    block, lines, false, false);
     628             :         else
     629        1246 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     630             :                                                    block, lines, false, true);
     631             :     }
     632             : 
     633     5531738 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     634     5531738 : }
     635             : 
     636             : /*
     637             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     638             :  *
     639             :  * Read the next block of the scan relation from the read stream and save it
     640             :  * in the scan descriptor.  It is already pinned.
     641             :  */
     642             : static inline void
     643     7332326 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     644             : {
     645             :     Assert(scan->rs_read_stream);
     646             : 
     647             :     /* release previous scan buffer, if any */
     648     7332326 :     if (BufferIsValid(scan->rs_cbuf))
     649             :     {
     650     5386072 :         ReleaseBuffer(scan->rs_cbuf);
     651     5386072 :         scan->rs_cbuf = InvalidBuffer;
     652             :     }
     653             : 
     654             :     /*
     655             :      * Be sure to check for interrupts at least once per page.  Checks at
     656             :      * higher code levels won't be able to stop a seqscan that encounters many
     657             :      * pages' worth of consecutive dead tuples.
     658             :      */
     659     7332326 :     CHECK_FOR_INTERRUPTS();
     660             : 
     661             :     /*
     662             :      * If the scan direction is changing, reset the prefetch block to the
     663             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     664             :      * between the prefetch block and the current block again before
     665             :      * prefetching blocks in the new, correct scan direction.
     666             :      */
     667     7332322 :     if (unlikely(scan->rs_dir != dir))
     668             :     {
     669         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     670         154 :         read_stream_reset(scan->rs_read_stream);
     671             :     }
     672             : 
     673     7332322 :     scan->rs_dir = dir;
     674             : 
     675     7332322 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     676     7332272 :     if (BufferIsValid(scan->rs_cbuf))
     677     5712810 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     678     7332272 : }
     679             : 
     680             : /*
     681             :  * heapgettup_initial_block - return the first BlockNumber to scan
     682             :  *
     683             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     684             :  * occur with empty tables and in parallel scans when parallel workers get all
     685             :  * of the pages before we can get a chance to get our first page.
     686             :  */
     687             : static pg_noinline BlockNumber
     688     1943268 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     689             : {
     690             :     Assert(!scan->rs_inited);
     691             :     Assert(scan->rs_base.rs_parallel == NULL);
     692             : 
     693             :     /* When there are no pages to scan, return InvalidBlockNumber */
     694     1943268 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     695      939534 :         return InvalidBlockNumber;
     696             : 
     697     1003734 :     if (ScanDirectionIsForward(dir))
     698             :     {
     699     1003670 :         return scan->rs_startblock;
     700             :     }
     701             :     else
     702             :     {
     703             :         /*
     704             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     705             :          * very likely anyone else is doing the same thing at the same time,
     706             :          * and much more likely that we'll just bollix things for forward
     707             :          * scanners.
     708             :          */
     709          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     710             : 
     711             :         /*
     712             :          * Start from last page of the scan.  Ensure we take into account
     713             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     714             :          */
     715          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     716           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     717             : 
     718          58 :         if (scan->rs_startblock > 0)
     719           0 :             return scan->rs_startblock - 1;
     720             : 
     721          58 :         return scan->rs_nblocks - 1;
     722             :     }
     723             : }
     724             : 
     725             : 
     726             : /*
     727             :  * heapgettup_start_page - helper function for heapgettup()
     728             :  *
     729             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     730             :  * to the number of tuples on this page.  Also set *lineoff to the first
     731             :  * offset to scan with forward scans getting the first offset and backward
     732             :  * getting the final offset on the page.
     733             :  */
     734             : static Page
     735      189610 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     736             :                       OffsetNumber *lineoff)
     737             : {
     738             :     Page        page;
     739             : 
     740             :     Assert(scan->rs_inited);
     741             :     Assert(BufferIsValid(scan->rs_cbuf));
     742             : 
     743             :     /* Caller is responsible for ensuring buffer is locked if needed */
     744      189610 :     page = BufferGetPage(scan->rs_cbuf);
     745             : 
     746      189610 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     747             : 
     748      189610 :     if (ScanDirectionIsForward(dir))
     749      189610 :         *lineoff = FirstOffsetNumber;
     750             :     else
     751           0 :         *lineoff = (OffsetNumber) (*linesleft);
     752             : 
     753             :     /* lineoff now references the physically previous or next tid */
     754      189610 :     return page;
     755             : }
     756             : 
     757             : 
     758             : /*
     759             :  * heapgettup_continue_page - helper function for heapgettup()
     760             :  *
     761             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     762             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     763             :  * the next offset to scan according to the ScanDirection in 'dir'.
     764             :  */
     765             : static inline Page
     766    15682000 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     767             :                          OffsetNumber *lineoff)
     768             : {
     769             :     Page        page;
     770             : 
     771             :     Assert(scan->rs_inited);
     772             :     Assert(BufferIsValid(scan->rs_cbuf));
     773             : 
     774             :     /* Caller is responsible for ensuring buffer is locked if needed */
     775    15682000 :     page = BufferGetPage(scan->rs_cbuf);
     776             : 
     777    15682000 :     if (ScanDirectionIsForward(dir))
     778             :     {
     779    15682000 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     780    15682000 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     781             :     }
     782             :     else
     783             :     {
     784             :         /*
     785             :          * The previous returned tuple may have been vacuumed since the
     786             :          * previous scan when we use a non-MVCC snapshot, so we must
     787             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     788             :          */
     789           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     790           0 :         *linesleft = *lineoff;
     791             :     }
     792             : 
     793             :     /* lineoff now references the physically previous or next tid */
     794    15682000 :     return page;
     795             : }
     796             : 
     797             : /*
     798             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     799             :  *
     800             :  * Given the current block number, the scan direction, and various information
     801             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     802             :  * and return it.  If there are no further blocks to scan, return
     803             :  * InvalidBlockNumber to indicate this fact to the caller.
     804             :  *
     805             :  * This should not be called to determine the initial block number -- only for
     806             :  * subsequent blocks.
     807             :  *
     808             :  * This also adjusts rs_numblocks when a limit has been imposed by
     809             :  * heap_setscanlimits().
     810             :  */
     811             : static inline BlockNumber
     812     5556470 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     813             : {
     814             :     Assert(scan->rs_base.rs_parallel == NULL);
     815             : 
     816     5556470 :     if (likely(ScanDirectionIsForward(dir)))
     817             :     {
     818     5556352 :         block++;
     819             : 
     820             :         /* wrap back to the start of the heap */
     821     5556352 :         if (block >= scan->rs_nblocks)
     822      801354 :             block = 0;
     823             : 
     824             :         /*
     825             :          * Report our new scan position for synchronization purposes. We don't
     826             :          * do that when moving backwards, however. That would just mess up any
     827             :          * other forward-moving scanners.
     828             :          *
     829             :          * Note: we do this before checking for end of scan so that the final
     830             :          * state of the position hint is back at the start of the rel.  That's
     831             :          * not strictly necessary, but otherwise when you run the same query
     832             :          * multiple times the starting position would shift a little bit
     833             :          * backwards on every invocation, which is confusing. We don't
     834             :          * guarantee any specific ordering in general, though.
     835             :          */
     836     5556352 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     837       22530 :             ss_report_location(scan->rs_base.rs_rd, block);
     838             : 
     839             :         /* we're done if we're back at where we started */
     840     5556352 :         if (block == scan->rs_startblock)
     841      801272 :             return InvalidBlockNumber;
     842             : 
     843             :         /* check if the limit imposed by heap_setscanlimits() is met */
     844     4755080 :         if (scan->rs_numblocks != InvalidBlockNumber)
     845             :         {
     846        4932 :             if (--scan->rs_numblocks == 0)
     847        3056 :                 return InvalidBlockNumber;
     848             :         }
     849             : 
     850     4752024 :         return block;
     851             :     }
     852             :     else
     853             :     {
     854             :         /* we're done if the last block is the start position */
     855         118 :         if (block == scan->rs_startblock)
     856         118 :             return InvalidBlockNumber;
     857             : 
     858             :         /* check if the limit imposed by heap_setscanlimits() is met */
     859           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     860             :         {
     861           0 :             if (--scan->rs_numblocks == 0)
     862           0 :                 return InvalidBlockNumber;
     863             :         }
     864             : 
     865             :         /* wrap to the end of the heap when the last page was page 0 */
     866           0 :         if (block == 0)
     867           0 :             block = scan->rs_nblocks;
     868             : 
     869           0 :         block--;
     870             : 
     871           0 :         return block;
     872             :     }
     873             : }
     874             : 
     875             : /* ----------------
     876             :  *      heapgettup - fetch next heap tuple
     877             :  *
     878             :  *      Initialize the scan if not already done; then advance to the next
     879             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     880             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     881             :  *
     882             :  * Note: the reason nkeys/key are passed separately, even though they are
     883             :  * kept in the scan descriptor, is that the caller may not want us to check
     884             :  * the scankeys.
     885             :  *
     886             :  * Note: when we fall off the end of the scan in either direction, we
     887             :  * reset rs_inited.  This means that a further request with the same
     888             :  * scan direction will restart the scan, which is a bit odd, but a
     889             :  * request with the opposite scan direction will start a fresh scan
     890             :  * in the proper direction.  The latter is required behavior for cursors,
     891             :  * while the former case is generally undefined behavior in Postgres
     892             :  * so we don't care too much.
     893             :  * ----------------
     894             :  */
     895             : static void
     896    15722818 : heapgettup(HeapScanDesc scan,
     897             :            ScanDirection dir,
     898             :            int nkeys,
     899             :            ScanKey key)
     900             : {
     901    15722818 :     HeapTuple   tuple = &(scan->rs_ctup);
     902             :     Page        page;
     903             :     OffsetNumber lineoff;
     904             :     int         linesleft;
     905             : 
     906    15722818 :     if (likely(scan->rs_inited))
     907             :     {
     908             :         /* continue from previously returned page/tuple */
     909    15682000 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     910    15682000 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     911    15682000 :         goto continue_page;
     912             :     }
     913             : 
     914             :     /*
     915             :      * advance the scan until we find a qualifying tuple or run out of stuff
     916             :      * to scan
     917             :      */
     918             :     while (true)
     919             :     {
     920      230132 :         heap_fetch_next_buffer(scan, dir);
     921             : 
     922             :         /* did we run out of blocks to scan? */
     923      230132 :         if (!BufferIsValid(scan->rs_cbuf))
     924       40522 :             break;
     925             : 
     926             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     927             : 
     928      189610 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     929      189610 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     930    15871610 : continue_page:
     931             : 
     932             :         /*
     933             :          * Only continue scanning the page while we have lines left.
     934             :          *
     935             :          * Note that this protects us from accessing line pointers past
     936             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     937             :          * table scan, and for when we start scanning a new page.
     938             :          */
     939    15954966 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     940             :         {
     941             :             bool        visible;
     942    15765652 :             ItemId      lpp = PageGetItemId(page, lineoff);
     943             : 
     944    15765652 :             if (!ItemIdIsNormal(lpp))
     945       72920 :                 continue;
     946             : 
     947    15692732 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     948    15692732 :             tuple->t_len = ItemIdGetLength(lpp);
     949    15692732 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     950             : 
     951    15692732 :             visible = HeapTupleSatisfiesVisibility(tuple,
     952             :                                                    scan->rs_base.rs_snapshot,
     953             :                                                    scan->rs_cbuf);
     954             : 
     955    15692732 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     956             :                                                 tuple, scan->rs_cbuf,
     957             :                                                 scan->rs_base.rs_snapshot);
     958             : 
     959             :             /* skip tuples not visible to this snapshot */
     960    15692732 :             if (!visible)
     961       10436 :                 continue;
     962             : 
     963             :             /* skip any tuples that don't match the scan key */
     964    15682296 :             if (key != NULL &&
     965           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     966             :                              nkeys, key))
     967           0 :                 continue;
     968             : 
     969    15682296 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     970    15682296 :             scan->rs_coffset = lineoff;
     971    15682296 :             return;
     972             :         }
     973             : 
     974             :         /*
     975             :          * if we get here, it means we've exhausted the items on this page and
     976             :          * it's time to move to the next.
     977             :          */
     978      189314 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     979             :     }
     980             : 
     981             :     /* end of scan */
     982       40522 :     if (BufferIsValid(scan->rs_cbuf))
     983           0 :         ReleaseBuffer(scan->rs_cbuf);
     984             : 
     985       40522 :     scan->rs_cbuf = InvalidBuffer;
     986       40522 :     scan->rs_cblock = InvalidBlockNumber;
     987       40522 :     scan->rs_prefetch_block = InvalidBlockNumber;
     988       40522 :     tuple->t_data = NULL;
     989       40522 :     scan->rs_inited = false;
     990             : }
     991             : 
     992             : /* ----------------
     993             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     994             :  *
     995             :  *      Same API as heapgettup, but used in page-at-a-time mode
     996             :  *
     997             :  * The internal logic is much the same as heapgettup's too, but there are some
     998             :  * differences: we do not take the buffer content lock (that only needs to
     999             :  * happen inside heap_prepare_pagescan), and we iterate through just the
    1000             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
    1001             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
    1002             :  * heapgettup is 1-based.
    1003             :  * ----------------
    1004             :  */
    1005             : static void
    1006    99668572 : heapgettup_pagemode(HeapScanDesc scan,
    1007             :                     ScanDirection dir,
    1008             :                     int nkeys,
    1009             :                     ScanKey key)
    1010             : {
    1011    99668572 :     HeapTuple   tuple = &(scan->rs_ctup);
    1012             :     Page        page;
    1013             :     uint32      lineindex;
    1014             :     uint32      linesleft;
    1015             : 
    1016    99668572 :     if (likely(scan->rs_inited))
    1017             :     {
    1018             :         /* continue from previously returned page/tuple */
    1019    97763136 :         page = BufferGetPage(scan->rs_cbuf);
    1020             : 
    1021    97763136 :         lineindex = scan->rs_cindex + dir;
    1022    97763136 :         if (ScanDirectionIsForward(dir))
    1023    97762478 :             linesleft = scan->rs_ntuples - lineindex;
    1024             :         else
    1025         658 :             linesleft = scan->rs_cindex;
    1026             :         /* lineindex now references the next or previous visible tid */
    1027             : 
    1028    97763136 :         goto continue_page;
    1029             :     }
    1030             : 
    1031             :     /*
    1032             :      * advance the scan until we find a qualifying tuple or run out of stuff
    1033             :      * to scan
    1034             :      */
    1035             :     while (true)
    1036             :     {
    1037     7102194 :         heap_fetch_next_buffer(scan, dir);
    1038             : 
    1039             :         /* did we run out of blocks to scan? */
    1040     7102140 :         if (!BufferIsValid(scan->rs_cbuf))
    1041     1578940 :             break;
    1042             : 
    1043             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
    1044             : 
    1045             :         /* prune the page and determine visible tuple offsets */
    1046     5523200 :         heap_prepare_pagescan((TableScanDesc) scan);
    1047     5523184 :         page = BufferGetPage(scan->rs_cbuf);
    1048     5523184 :         linesleft = scan->rs_ntuples;
    1049     5523184 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
    1050             : 
    1051             :         /* block is the same for all tuples, set it once outside the loop */
    1052     5523184 :         ItemPointerSetBlockNumber(&tuple->t_self, scan->rs_cblock);
    1053             : 
    1054             :         /* lineindex now references the next or previous visible tid */
    1055   103286320 : continue_page:
    1056             : 
    1057   199612174 :         for (; linesleft > 0; linesleft--, lineindex += dir)
    1058             :         {
    1059             :             ItemId      lpp;
    1060             :             OffsetNumber lineoff;
    1061             : 
    1062             :             Assert(lineindex <= scan->rs_ntuples);
    1063   194415416 :             lineoff = scan->rs_vistuples[lineindex];
    1064   194415416 :             lpp = PageGetItemId(page, lineoff);
    1065             :             Assert(ItemIdIsNormal(lpp));
    1066             : 
    1067   194415416 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1068   194415416 :             tuple->t_len = ItemIdGetLength(lpp);
    1069   194415416 :             ItemPointerSetOffsetNumber(&tuple->t_self, lineoff);
    1070             : 
    1071             :             /* skip any tuples that don't match the scan key */
    1072   194415416 :             if (key != NULL &&
    1073    97135120 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1074             :                              nkeys, key))
    1075    96325854 :                 continue;
    1076             : 
    1077    98089562 :             scan->rs_cindex = lineindex;
    1078    98089562 :             return;
    1079             :         }
    1080             :     }
    1081             : 
    1082             :     /* end of scan */
    1083     1578940 :     if (BufferIsValid(scan->rs_cbuf))
    1084           0 :         ReleaseBuffer(scan->rs_cbuf);
    1085     1578940 :     scan->rs_cbuf = InvalidBuffer;
    1086     1578940 :     scan->rs_cblock = InvalidBlockNumber;
    1087     1578940 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1088     1578940 :     tuple->t_data = NULL;
    1089     1578940 :     scan->rs_inited = false;
    1090             : }
    1091             : 
    1092             : 
    1093             : /* ----------------------------------------------------------------
    1094             :  *                   heap access method interface
    1095             :  * ----------------------------------------------------------------
    1096             :  */
    1097             : 
    1098             : 
    1099             : TableScanDesc
    1100      768030 : heap_beginscan(Relation relation, Snapshot snapshot,
    1101             :                int nkeys, ScanKey key,
    1102             :                ParallelTableScanDesc parallel_scan,
    1103             :                uint32 flags)
    1104             : {
    1105             :     HeapScanDesc scan;
    1106             : 
    1107             :     /*
    1108             :      * increment relation ref count while scanning relation
    1109             :      *
    1110             :      * This is just to make really sure the relcache entry won't go away while
    1111             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1112             :      * anyway, so this is redundant in all normal scenarios...
    1113             :      */
    1114      768030 :     RelationIncrementReferenceCount(relation);
    1115             : 
    1116             :     /*
    1117             :      * allocate and initialize scan descriptor
    1118             :      */
    1119      768030 :     if (flags & SO_TYPE_BITMAPSCAN)
    1120             :     {
    1121       16198 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1122             : 
    1123             :         /*
    1124             :          * Bitmap Heap scans do not have any fields that a normal Heap Scan
    1125             :          * does not have, so no special initializations required here.
    1126             :          */
    1127       16198 :         scan = (HeapScanDesc) bscan;
    1128             :     }
    1129             :     else
    1130      751832 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1131             : 
    1132      768030 :     scan->rs_base.rs_rd = relation;
    1133      768030 :     scan->rs_base.rs_snapshot = snapshot;
    1134      768030 :     scan->rs_base.rs_nkeys = nkeys;
    1135      768030 :     scan->rs_base.rs_flags = flags;
    1136      768030 :     scan->rs_base.rs_parallel = parallel_scan;
    1137      768030 :     scan->rs_strategy = NULL;    /* set in initscan */
    1138      768030 :     scan->rs_cbuf = InvalidBuffer;
    1139             : 
    1140             :     /*
    1141             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1142             :      */
    1143      768030 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1144       58208 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1145             : 
    1146             :     /* Check that a historic snapshot is not used for non-catalog tables */
    1147      768030 :     if (snapshot &&
    1148      750644 :         IsHistoricMVCCSnapshot(snapshot) &&
    1149        1320 :         !RelationIsAccessibleInLogicalDecoding(relation))
    1150             :     {
    1151           0 :         ereport(ERROR,
    1152             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    1153             :                  errmsg("cannot query non-catalog table \"%s\" during logical decoding",
    1154             :                         RelationGetRelationName(relation))));
    1155             :     }
    1156             : 
    1157             :     /*
    1158             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1159             :      * predicate lock on the entire relation. This is required not only to
    1160             :      * lock all the matching tuples, but also to conflict with new insertions
    1161             :      * into the table. In an indexscan, we take page locks on the index pages
    1162             :      * covering the range specified in the scan qual, but in a heap scan there
    1163             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1164             :      * story, there we have already scanned the index and locked the index
    1165             :      * pages covering the predicate. But in that case we still have to lock
    1166             :      * any matching heap tuples. For sample scan we could optimize the locking
    1167             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1168             :      * locking for that.
    1169             :      */
    1170      768030 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1171             :     {
    1172             :         /*
    1173             :          * Ensure a missing snapshot is noticed reliably, even if the
    1174             :          * isolation mode means predicate locking isn't performed (and
    1175             :          * therefore the snapshot isn't used here).
    1176             :          */
    1177             :         Assert(snapshot);
    1178      731806 :         PredicateLockRelation(relation, snapshot);
    1179             :     }
    1180             : 
    1181             :     /* we only need to set this up once */
    1182      768030 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1183             : 
    1184             :     /*
    1185             :      * Allocate memory to keep track of page allocation for parallel workers
    1186             :      * when doing a parallel scan.
    1187             :      */
    1188      768030 :     if (parallel_scan != NULL)
    1189        3948 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1190             :     else
    1191      764082 :         scan->rs_parallelworkerdata = NULL;
    1192             : 
    1193             :     /*
    1194             :      * we do this here instead of in initscan() because heap_rescan also calls
    1195             :      * initscan() and we don't want to allocate memory again
    1196             :      */
    1197      768030 :     if (nkeys > 0)
    1198      440312 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1199             :     else
    1200      327718 :         scan->rs_base.rs_key = NULL;
    1201             : 
    1202      768030 :     initscan(scan, key, false);
    1203             : 
    1204      768026 :     scan->rs_read_stream = NULL;
    1205             : 
    1206             :     /*
    1207             :      * Set up a read stream for sequential scans and TID range scans. This
    1208             :      * should be done after initscan() because initscan() allocates the
    1209             :      * BufferAccessStrategy object passed to the read stream API.
    1210             :      */
    1211      768026 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1212       36370 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1213      733510 :     {
    1214             :         ReadStreamBlockNumberCB cb;
    1215             : 
    1216      733510 :         if (scan->rs_base.rs_parallel)
    1217        3948 :             cb = heap_scan_stream_read_next_parallel;
    1218             :         else
    1219      729562 :             cb = heap_scan_stream_read_next_serial;
    1220             : 
    1221             :         /* ---
    1222             :          * It is safe to use batchmode as the only locks taken by `cb`
    1223             :          * are never taken while waiting for IO:
    1224             :          * - SyncScanLock is used in the non-parallel case
    1225             :          * - in the parallel case, only spinlocks and atomics are used
    1226             :          * ---
    1227             :          */
    1228      733510 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL |
    1229             :                                                           READ_STREAM_USE_BATCHING,
    1230             :                                                           scan->rs_strategy,
    1231             :                                                           scan->rs_base.rs_rd,
    1232             :                                                           MAIN_FORKNUM,
    1233             :                                                           cb,
    1234             :                                                           scan,
    1235             :                                                           0);
    1236             :     }
    1237       34516 :     else if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1238             :     {
    1239       16198 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_DEFAULT |
    1240             :                                                           READ_STREAM_USE_BATCHING,
    1241             :                                                           scan->rs_strategy,
    1242             :                                                           scan->rs_base.rs_rd,
    1243             :                                                           MAIN_FORKNUM,
    1244             :                                                           bitmapheap_stream_read_next,
    1245             :                                                           scan,
    1246             :                                                           sizeof(TBMIterateResult));
    1247             :     }
    1248             : 
    1249             : 
    1250      768026 :     return (TableScanDesc) scan;
    1251             : }
    1252             : 
    1253             : void
    1254     1218306 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1255             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1256             : {
    1257     1218306 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1258             : 
    1259     1218306 :     if (set_params)
    1260             :     {
    1261          30 :         if (allow_strat)
    1262          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1263             :         else
    1264           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1265             : 
    1266          30 :         if (allow_sync)
    1267          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1268             :         else
    1269          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1270             : 
    1271          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1272          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1273          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1274             :         else
    1275           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1276             :     }
    1277             : 
    1278             :     /*
    1279             :      * unpin scan buffers
    1280             :      */
    1281     1218306 :     if (BufferIsValid(scan->rs_cbuf))
    1282             :     {
    1283        3266 :         ReleaseBuffer(scan->rs_cbuf);
    1284        3266 :         scan->rs_cbuf = InvalidBuffer;
    1285             :     }
    1286             : 
    1287             :     /*
    1288             :      * SO_TYPE_BITMAPSCAN would be cleaned up here, but it does not hold any
    1289             :      * additional data vs a normal HeapScan
    1290             :      */
    1291             : 
    1292             :     /*
    1293             :      * The read stream is reset on rescan. This must be done before
    1294             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1295             :      * in initscan().
    1296             :      */
    1297     1218306 :     if (scan->rs_read_stream)
    1298     1218270 :         read_stream_reset(scan->rs_read_stream);
    1299             : 
    1300             :     /*
    1301             :      * reinitialize scan descriptor
    1302             :      */
    1303     1218306 :     initscan(scan, key, true);
    1304     1218306 : }
    1305             : 
    1306             : void
    1307      763290 : heap_endscan(TableScanDesc sscan)
    1308             : {
    1309      763290 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1310             : 
    1311             :     /* Note: no locking manipulations needed */
    1312             : 
    1313             :     /*
    1314             :      * unpin scan buffers
    1315             :      */
    1316      763290 :     if (BufferIsValid(scan->rs_cbuf))
    1317      320212 :         ReleaseBuffer(scan->rs_cbuf);
    1318             : 
    1319             :     /*
    1320             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1321             :      */
    1322      763290 :     if (scan->rs_read_stream)
    1323      745078 :         read_stream_end(scan->rs_read_stream);
    1324             : 
    1325             :     /*
    1326             :      * decrement relation reference count and free scan descriptor storage
    1327             :      */
    1328      763290 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1329             : 
    1330      763290 :     if (scan->rs_base.rs_key)
    1331      440254 :         pfree(scan->rs_base.rs_key);
    1332             : 
    1333      763290 :     if (scan->rs_strategy != NULL)
    1334       24098 :         FreeAccessStrategy(scan->rs_strategy);
    1335             : 
    1336      763290 :     if (scan->rs_parallelworkerdata != NULL)
    1337        3948 :         pfree(scan->rs_parallelworkerdata);
    1338             : 
    1339      763290 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1340       78946 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1341             : 
    1342      763290 :     pfree(scan);
    1343      763290 : }
    1344             : 
    1345             : HeapTuple
    1346    19875966 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1347             : {
    1348    19875966 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1349             : 
    1350             :     /*
    1351             :      * This is still widely used directly, without going through table AM, so
    1352             :      * add a safety check.  It's possible we should, at a later point,
    1353             :      * downgrade this to an assert. The reason for checking the AM routine,
    1354             :      * rather than the AM oid, is that this allows to write regression tests
    1355             :      * that create another AM reusing the heap handler.
    1356             :      */
    1357    19875966 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1358           0 :         ereport(ERROR,
    1359             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1360             :                  errmsg_internal("only heap AM is supported")));
    1361             : 
    1362             :     /*
    1363             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1364             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1365             :      * these variables are declared.  Normally we have such a check at tableam
    1366             :      * level API but this is called from many places so we need to ensure it
    1367             :      * here.
    1368             :      */
    1369    19875966 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1370           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1371             : 
    1372             :     /* Note: no locking manipulations needed */
    1373             : 
    1374    19875966 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1375     5112758 :         heapgettup_pagemode(scan, direction,
    1376     5112758 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1377             :     else
    1378    14763208 :         heapgettup(scan, direction,
    1379    14763208 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1380             : 
    1381    19875966 :     if (scan->rs_ctup.t_data == NULL)
    1382      131274 :         return NULL;
    1383             : 
    1384             :     /*
    1385             :      * if we get here it means we have a new current scan tuple, so point to
    1386             :      * the proper return buffer and return the tuple.
    1387             :      */
    1388             : 
    1389    19744692 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1390             : 
    1391    19744692 :     return &scan->rs_ctup;
    1392             : }
    1393             : 
    1394             : bool
    1395    95506636 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1396             : {
    1397    95506636 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1398             : 
    1399             :     /* Note: no locking manipulations needed */
    1400             : 
    1401    95506636 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1402    94547026 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1403             :     else
    1404      959610 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1405             : 
    1406    95506582 :     if (scan->rs_ctup.t_data == NULL)
    1407             :     {
    1408     1488094 :         ExecClearTuple(slot);
    1409     1488094 :         return false;
    1410             :     }
    1411             : 
    1412             :     /*
    1413             :      * if we get here it means we have a new current scan tuple, so point to
    1414             :      * the proper return buffer and return the tuple.
    1415             :      */
    1416             : 
    1417    94018488 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1418             : 
    1419    94018488 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1420             :                              scan->rs_cbuf);
    1421    94018488 :     return true;
    1422             : }
    1423             : 
    1424             : void
    1425        1920 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1426             :                   ItemPointer maxtid)
    1427             : {
    1428        1920 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1429             :     BlockNumber startBlk;
    1430             :     BlockNumber numBlks;
    1431             :     ItemPointerData highestItem;
    1432             :     ItemPointerData lowestItem;
    1433             : 
    1434             :     /*
    1435             :      * For relations without any pages, we can simply leave the TID range
    1436             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1437             :      * the given TID range.
    1438             :      */
    1439        1920 :     if (scan->rs_nblocks == 0)
    1440          48 :         return;
    1441             : 
    1442             :     /*
    1443             :      * Set up some ItemPointers which point to the first and last possible
    1444             :      * tuples in the heap.
    1445             :      */
    1446        1908 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1447        1908 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1448             : 
    1449             :     /*
    1450             :      * If the given maximum TID is below the highest possible TID in the
    1451             :      * relation, then restrict the range to that, otherwise we scan to the end
    1452             :      * of the relation.
    1453             :      */
    1454        1908 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1455         140 :         ItemPointerCopy(maxtid, &highestItem);
    1456             : 
    1457             :     /*
    1458             :      * If the given minimum TID is above the lowest possible TID in the
    1459             :      * relation, then restrict the range to only scan for TIDs above that.
    1460             :      */
    1461        1908 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1462        1762 :         ItemPointerCopy(mintid, &lowestItem);
    1463             : 
    1464             :     /*
    1465             :      * Check for an empty range and protect from would be negative results
    1466             :      * from the numBlks calculation below.
    1467             :      */
    1468        1908 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1469             :     {
    1470             :         /* Set an empty range of blocks to scan */
    1471          36 :         heap_setscanlimits(sscan, 0, 0);
    1472          36 :         return;
    1473             :     }
    1474             : 
    1475             :     /*
    1476             :      * Calculate the first block and the number of blocks we must scan. We
    1477             :      * could be more aggressive here and perform some more validation to try
    1478             :      * and further narrow the scope of blocks to scan by checking if the
    1479             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1480             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1481             :      * we could scan one fewer blocks.  However, such an optimization does not
    1482             :      * seem worth troubling over, currently.
    1483             :      */
    1484        1872 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1485             : 
    1486        1872 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1487        1872 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1488             : 
    1489             :     /* Set the start block and number of blocks to scan */
    1490        1872 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1491             : 
    1492             :     /* Finally, set the TID range in sscan */
    1493        1872 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1494        1872 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1495             : }
    1496             : 
    1497             : bool
    1498        8602 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1499             :                           TupleTableSlot *slot)
    1500             : {
    1501        8602 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1502        8602 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1503        8602 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1504             : 
    1505             :     /* Note: no locking manipulations needed */
    1506             :     for (;;)
    1507             :     {
    1508        8788 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1509        8788 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1510             :         else
    1511           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1512             : 
    1513        8772 :         if (scan->rs_ctup.t_data == NULL)
    1514             :         {
    1515          94 :             ExecClearTuple(slot);
    1516          94 :             return false;
    1517             :         }
    1518             : 
    1519             :         /*
    1520             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1521             :          * range of pages we scan to only ones that can contain the TID range
    1522             :          * we're scanning for.  Here we must filter out any tuples from these
    1523             :          * pages that are outside of that range.
    1524             :          */
    1525        8678 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1526             :         {
    1527         186 :             ExecClearTuple(slot);
    1528             : 
    1529             :             /*
    1530             :              * When scanning backwards, the TIDs will be in descending order.
    1531             :              * Future tuples in this direction will be lower still, so we can
    1532             :              * just return false to indicate there will be no more tuples.
    1533             :              */
    1534         186 :             if (ScanDirectionIsBackward(direction))
    1535           0 :                 return false;
    1536             : 
    1537         186 :             continue;
    1538             :         }
    1539             : 
    1540             :         /*
    1541             :          * Likewise for the final page, we must filter out TIDs greater than
    1542             :          * maxtid.
    1543             :          */
    1544        8492 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1545             :         {
    1546          76 :             ExecClearTuple(slot);
    1547             : 
    1548             :             /*
    1549             :              * When scanning forward, the TIDs will be in ascending order.
    1550             :              * Future tuples in this direction will be higher still, so we can
    1551             :              * just return false to indicate there will be no more tuples.
    1552             :              */
    1553          76 :             if (ScanDirectionIsForward(direction))
    1554          76 :                 return false;
    1555           0 :             continue;
    1556             :         }
    1557             : 
    1558        8416 :         break;
    1559             :     }
    1560             : 
    1561             :     /*
    1562             :      * if we get here it means we have a new current scan tuple, so point to
    1563             :      * the proper return buffer and return the tuple.
    1564             :      */
    1565        8416 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1566             : 
    1567        8416 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1568        8416 :     return true;
    1569             : }
    1570             : 
    1571             : /*
    1572             :  *  heap_fetch      - retrieve tuple with given tid
    1573             :  *
    1574             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1575             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1576             :  * against the specified snapshot.
    1577             :  *
    1578             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1579             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1580             :  * must unpin the buffer when done with the tuple.
    1581             :  *
    1582             :  * If the tuple is not found (ie, item number references a deleted slot),
    1583             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1584             :  * and false is returned.
    1585             :  *
    1586             :  * If the tuple is found but fails the time qual check, then the behavior
    1587             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1588             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1589             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1590             :  * and again the caller must unpin the buffer; but false is returned.
    1591             :  *
    1592             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1593             :  * be fetched.
    1594             :  *
    1595             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1596             :  * return false on invalid item number.  There are a couple of reasons though.
    1597             :  * One is that the caller can relatively easily check the block number for
    1598             :  * validity, but cannot check the item number without reading the page
    1599             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1600             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1601             :  * truncate off the destination page without having killed the referencing
    1602             :  * tuple first), but the item number might well not be good.
    1603             :  */
    1604             : bool
    1605      355682 : heap_fetch(Relation relation,
    1606             :            Snapshot snapshot,
    1607             :            HeapTuple tuple,
    1608             :            Buffer *userbuf,
    1609             :            bool keep_buf)
    1610             : {
    1611      355682 :     ItemPointer tid = &(tuple->t_self);
    1612             :     ItemId      lp;
    1613             :     Buffer      buffer;
    1614             :     Page        page;
    1615             :     OffsetNumber offnum;
    1616             :     bool        valid;
    1617             : 
    1618             :     /*
    1619             :      * Fetch and pin the appropriate page of the relation.
    1620             :      */
    1621      355682 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1622             : 
    1623             :     /*
    1624             :      * Need share lock on buffer to examine tuple commit status.
    1625             :      */
    1626      355666 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1627      355666 :     page = BufferGetPage(buffer);
    1628             : 
    1629             :     /*
    1630             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1631             :      * TID was obtained.
    1632             :      */
    1633      355666 :     offnum = ItemPointerGetOffsetNumber(tid);
    1634      355666 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1635             :     {
    1636           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1637           6 :         ReleaseBuffer(buffer);
    1638           6 :         *userbuf = InvalidBuffer;
    1639           6 :         tuple->t_data = NULL;
    1640           6 :         return false;
    1641             :     }
    1642             : 
    1643             :     /*
    1644             :      * get the item line pointer corresponding to the requested tid
    1645             :      */
    1646      355660 :     lp = PageGetItemId(page, offnum);
    1647             : 
    1648             :     /*
    1649             :      * Must check for deleted tuple.
    1650             :      */
    1651      355660 :     if (!ItemIdIsNormal(lp))
    1652             :     {
    1653         676 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1654         676 :         ReleaseBuffer(buffer);
    1655         676 :         *userbuf = InvalidBuffer;
    1656         676 :         tuple->t_data = NULL;
    1657         676 :         return false;
    1658             :     }
    1659             : 
    1660             :     /*
    1661             :      * fill in *tuple fields
    1662             :      */
    1663      354984 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1664      354984 :     tuple->t_len = ItemIdGetLength(lp);
    1665      354984 :     tuple->t_tableOid = RelationGetRelid(relation);
    1666             : 
    1667             :     /*
    1668             :      * check tuple visibility, then release lock
    1669             :      */
    1670      354984 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1671             : 
    1672      354984 :     if (valid)
    1673      354874 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1674      354874 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1675             : 
    1676      354984 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1677             : 
    1678      354984 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1679             : 
    1680      354984 :     if (valid)
    1681             :     {
    1682             :         /*
    1683             :          * All checks passed, so return the tuple as valid. Caller is now
    1684             :          * responsible for releasing the buffer.
    1685             :          */
    1686      354874 :         *userbuf = buffer;
    1687             : 
    1688      354874 :         return true;
    1689             :     }
    1690             : 
    1691             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1692         110 :     if (keep_buf)
    1693          68 :         *userbuf = buffer;
    1694             :     else
    1695             :     {
    1696          42 :         ReleaseBuffer(buffer);
    1697          42 :         *userbuf = InvalidBuffer;
    1698          42 :         tuple->t_data = NULL;
    1699             :     }
    1700             : 
    1701         110 :     return false;
    1702             : }
    1703             : 
    1704             : /*
    1705             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1706             :  *
    1707             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1708             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1709             :  * for the first chain member satisfying the given snapshot.  If one is
    1710             :  * found, we update *tid to reference that tuple's offset number, and
    1711             :  * return true.  If no match, return false without modifying *tid.
    1712             :  *
    1713             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1714             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1715             :  * contents of this buffer on return are undefined.
    1716             :  *
    1717             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1718             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1719             :  * are vacuumable, false if not.
    1720             :  *
    1721             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1722             :  * lock on the buffer; it is still pinned/locked at exit.
    1723             :  */
    1724             : bool
    1725    44761118 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1726             :                        Snapshot snapshot, HeapTuple heapTuple,
    1727             :                        bool *all_dead, bool first_call)
    1728             : {
    1729    44761118 :     Page        page = BufferGetPage(buffer);
    1730    44761118 :     TransactionId prev_xmax = InvalidTransactionId;
    1731             :     BlockNumber blkno;
    1732             :     OffsetNumber offnum;
    1733             :     bool        at_chain_start;
    1734             :     bool        valid;
    1735             :     bool        skip;
    1736    44761118 :     GlobalVisState *vistest = NULL;
    1737             : 
    1738             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1739    44761118 :     if (all_dead)
    1740    38249500 :         *all_dead = first_call;
    1741             : 
    1742    44761118 :     blkno = ItemPointerGetBlockNumber(tid);
    1743    44761118 :     offnum = ItemPointerGetOffsetNumber(tid);
    1744    44761118 :     at_chain_start = first_call;
    1745    44761118 :     skip = !first_call;
    1746             : 
    1747             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1748             :     Assert(TransactionIdIsValid(RecentXmin));
    1749             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1750             : 
    1751             :     /* Scan through possible multiple members of HOT-chain */
    1752             :     for (;;)
    1753     2860472 :     {
    1754             :         ItemId      lp;
    1755             : 
    1756             :         /* check for bogus TID */
    1757    47621590 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1758             :             break;
    1759             : 
    1760    47621590 :         lp = PageGetItemId(page, offnum);
    1761             : 
    1762             :         /* check for unused, dead, or redirected items */
    1763    47621590 :         if (!ItemIdIsNormal(lp))
    1764             :         {
    1765             :             /* We should only see a redirect at start of chain */
    1766     1753776 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1767             :             {
    1768             :                 /* Follow the redirect */
    1769      999086 :                 offnum = ItemIdGetRedirect(lp);
    1770      999086 :                 at_chain_start = false;
    1771      999086 :                 continue;
    1772             :             }
    1773             :             /* else must be end of chain */
    1774      754690 :             break;
    1775             :         }
    1776             : 
    1777             :         /*
    1778             :          * Update heapTuple to point to the element of the HOT chain we're
    1779             :          * currently investigating. Having t_self set correctly is important
    1780             :          * because the SSI checks and the *Satisfies routine for historical
    1781             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1782             :          */
    1783    45867814 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1784    45867814 :         heapTuple->t_len = ItemIdGetLength(lp);
    1785    45867814 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1786    45867814 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1787             : 
    1788             :         /*
    1789             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1790             :          */
    1791    45867814 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1792           0 :             break;
    1793             : 
    1794             :         /*
    1795             :          * The xmin should match the previous xmax value, else chain is
    1796             :          * broken.
    1797             :          */
    1798    47729200 :         if (TransactionIdIsValid(prev_xmax) &&
    1799     1861386 :             !TransactionIdEquals(prev_xmax,
    1800             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1801           0 :             break;
    1802             : 
    1803             :         /*
    1804             :          * When first_call is true (and thus, skip is initially false) we'll
    1805             :          * return the first tuple we find.  But on later passes, heapTuple
    1806             :          * will initially be pointing to the tuple we returned last time.
    1807             :          * Returning it again would be incorrect (and would loop forever), so
    1808             :          * we skip it and return the next match we find.
    1809             :          */
    1810    45867814 :         if (!skip)
    1811             :         {
    1812             :             /* If it's visible per the snapshot, we must return it */
    1813    45697662 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1814    45697662 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1815             :                                                 buffer, snapshot);
    1816             : 
    1817    45697652 :             if (valid)
    1818             :             {
    1819    31585446 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1820    31585446 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1821    31585446 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1822    31585446 :                 if (all_dead)
    1823    25645630 :                     *all_dead = false;
    1824    31585446 :                 return true;
    1825             :             }
    1826             :         }
    1827    14282358 :         skip = false;
    1828             : 
    1829             :         /*
    1830             :          * If we can't see it, maybe no one else can either.  At caller
    1831             :          * request, check whether all chain members are dead to all
    1832             :          * transactions.
    1833             :          *
    1834             :          * Note: if you change the criterion here for what is "dead", fix the
    1835             :          * planner's get_actual_variable_range() function to match.
    1836             :          */
    1837    14282358 :         if (all_dead && *all_dead)
    1838             :         {
    1839    12901154 :             if (!vistest)
    1840    12622868 :                 vistest = GlobalVisTestFor(relation);
    1841             : 
    1842    12901154 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1843    12159246 :                 *all_dead = false;
    1844             :         }
    1845             : 
    1846             :         /*
    1847             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1848             :          * the next offnum and loop around.
    1849             :          */
    1850    14282358 :         if (HeapTupleIsHotUpdated(heapTuple))
    1851             :         {
    1852             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1853             :                    blkno);
    1854     1861386 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1855     1861386 :             at_chain_start = false;
    1856     1861386 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1857             :         }
    1858             :         else
    1859    12420972 :             break;              /* end of chain */
    1860             :     }
    1861             : 
    1862    13175662 :     return false;
    1863             : }
    1864             : 
    1865             : /*
    1866             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1867             :  *
    1868             :  * Actually, this gets the latest version that is visible according to the
    1869             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1870             :  * possibly uncommitted version.
    1871             :  *
    1872             :  * *tid is both an input and an output parameter: it is updated to
    1873             :  * show the latest version of the row.  Note that it will not be changed
    1874             :  * if no version of the row passes the snapshot test.
    1875             :  */
    1876             : void
    1877         300 : heap_get_latest_tid(TableScanDesc sscan,
    1878             :                     ItemPointer tid)
    1879             : {
    1880         300 :     Relation    relation = sscan->rs_rd;
    1881         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1882             :     ItemPointerData ctid;
    1883             :     TransactionId priorXmax;
    1884             : 
    1885             :     /*
    1886             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1887             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1888             :      * ones in the table.
    1889             :      */
    1890             :     Assert(ItemPointerIsValid(tid));
    1891             : 
    1892             :     /*
    1893             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1894             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1895             :      * to be bogus.
    1896             :      *
    1897             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1898             :      * Depending on the snapshot passed, there might be at most one visible
    1899             :      * version of the row, but we don't try to optimize for that.
    1900             :      */
    1901         300 :     ctid = *tid;
    1902         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1903             :     for (;;)
    1904          90 :     {
    1905             :         Buffer      buffer;
    1906             :         Page        page;
    1907             :         OffsetNumber offnum;
    1908             :         ItemId      lp;
    1909             :         HeapTupleData tp;
    1910             :         bool        valid;
    1911             : 
    1912             :         /*
    1913             :          * Read, pin, and lock the page.
    1914             :          */
    1915         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1916         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1917         390 :         page = BufferGetPage(buffer);
    1918             : 
    1919             :         /*
    1920             :          * Check for bogus item number.  This is not treated as an error
    1921             :          * condition because it can happen while following a t_ctid link. We
    1922             :          * just assume that the prior tid is OK and return it unchanged.
    1923             :          */
    1924         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1925         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1926             :         {
    1927           0 :             UnlockReleaseBuffer(buffer);
    1928           0 :             break;
    1929             :         }
    1930         390 :         lp = PageGetItemId(page, offnum);
    1931         390 :         if (!ItemIdIsNormal(lp))
    1932             :         {
    1933           0 :             UnlockReleaseBuffer(buffer);
    1934           0 :             break;
    1935             :         }
    1936             : 
    1937             :         /* OK to access the tuple */
    1938         390 :         tp.t_self = ctid;
    1939         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1940         390 :         tp.t_len = ItemIdGetLength(lp);
    1941         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1942             : 
    1943             :         /*
    1944             :          * After following a t_ctid link, we might arrive at an unrelated
    1945             :          * tuple.  Check for XMIN match.
    1946             :          */
    1947         480 :         if (TransactionIdIsValid(priorXmax) &&
    1948          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1949             :         {
    1950           0 :             UnlockReleaseBuffer(buffer);
    1951           0 :             break;
    1952             :         }
    1953             : 
    1954             :         /*
    1955             :          * Check tuple visibility; if visible, set it as the new result
    1956             :          * candidate.
    1957             :          */
    1958         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1959         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1960         390 :         if (valid)
    1961         276 :             *tid = ctid;
    1962             : 
    1963             :         /*
    1964             :          * If there's a valid t_ctid link, follow it, else we're done.
    1965             :          */
    1966         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1967         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1968         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1969         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1970             :         {
    1971         300 :             UnlockReleaseBuffer(buffer);
    1972         300 :             break;
    1973             :         }
    1974             : 
    1975          90 :         ctid = tp.t_data->t_ctid;
    1976          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1977          90 :         UnlockReleaseBuffer(buffer);
    1978             :     }                           /* end of loop */
    1979         300 : }
    1980             : 
    1981             : 
    1982             : /*
    1983             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1984             :  *
    1985             :  * This is called after we have waited for the XMAX transaction to terminate.
    1986             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1987             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1988             :  * hint bit if possible --- but beware that that may not yet be possible,
    1989             :  * if the transaction committed asynchronously.
    1990             :  *
    1991             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1992             :  * even if it commits.
    1993             :  *
    1994             :  * Hence callers should look only at XMAX_INVALID.
    1995             :  *
    1996             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1997             :  */
    1998             : static void
    1999         426 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    2000             : {
    2001             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    2002             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    2003             : 
    2004         426 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    2005             :     {
    2006         762 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    2007         336 :             TransactionIdDidCommit(xid))
    2008         282 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    2009             :                                  xid);
    2010             :         else
    2011         144 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    2012             :                                  InvalidTransactionId);
    2013             :     }
    2014         426 : }
    2015             : 
    2016             : 
    2017             : /*
    2018             :  * GetBulkInsertState - prepare status object for a bulk insert
    2019             :  */
    2020             : BulkInsertState
    2021        4662 : GetBulkInsertState(void)
    2022             : {
    2023             :     BulkInsertState bistate;
    2024             : 
    2025        4662 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    2026        4662 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    2027        4662 :     bistate->current_buf = InvalidBuffer;
    2028        4662 :     bistate->next_free = InvalidBlockNumber;
    2029        4662 :     bistate->last_free = InvalidBlockNumber;
    2030        4662 :     bistate->already_extended_by = 0;
    2031        4662 :     return bistate;
    2032             : }
    2033             : 
    2034             : /*
    2035             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    2036             :  */
    2037             : void
    2038        4374 : FreeBulkInsertState(BulkInsertState bistate)
    2039             : {
    2040        4374 :     if (bistate->current_buf != InvalidBuffer)
    2041        3508 :         ReleaseBuffer(bistate->current_buf);
    2042        4374 :     FreeAccessStrategy(bistate->strategy);
    2043        4374 :     pfree(bistate);
    2044        4374 : }
    2045             : 
    2046             : /*
    2047             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    2048             :  */
    2049             : void
    2050      161516 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    2051             : {
    2052      161516 :     if (bistate->current_buf != InvalidBuffer)
    2053       60042 :         ReleaseBuffer(bistate->current_buf);
    2054      161516 :     bistate->current_buf = InvalidBuffer;
    2055             : 
    2056             :     /*
    2057             :      * Despite the name, we also reset bulk relation extension state.
    2058             :      * Otherwise we can end up erroring out due to looking for free space in
    2059             :      * ->next_free of one partition, even though ->next_free was set when
    2060             :      * extending another partition. It could obviously also be bad for
    2061             :      * efficiency to look at existing blocks at offsets from another
    2062             :      * partition, even if we don't error out.
    2063             :      */
    2064      161516 :     bistate->next_free = InvalidBlockNumber;
    2065      161516 :     bistate->last_free = InvalidBlockNumber;
    2066      161516 : }
    2067             : 
    2068             : 
    2069             : /*
    2070             :  *  heap_insert     - insert tuple into a heap
    2071             :  *
    2072             :  * The new tuple is stamped with current transaction ID and the specified
    2073             :  * command ID.
    2074             :  *
    2075             :  * See table_tuple_insert for comments about most of the input flags, except
    2076             :  * that this routine directly takes a tuple rather than a slot.
    2077             :  *
    2078             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    2079             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    2080             :  * implement table_tuple_insert_speculative().
    2081             :  *
    2082             :  * On return the header fields of *tup are updated to match the stored tuple;
    2083             :  * in particular tup->t_self receives the actual TID where the tuple was
    2084             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2085             :  * reflected into *tup.
    2086             :  */
    2087             : void
    2088    16686392 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2089             :             int options, BulkInsertState bistate)
    2090             : {
    2091    16686392 :     TransactionId xid = GetCurrentTransactionId();
    2092             :     HeapTuple   heaptup;
    2093             :     Buffer      buffer;
    2094    16686378 :     Buffer      vmbuffer = InvalidBuffer;
    2095    16686378 :     bool        all_visible_cleared = false;
    2096             : 
    2097             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2098             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2099             :            RelationGetNumberOfAttributes(relation));
    2100             : 
    2101    16686378 :     AssertHasSnapshotForToast(relation);
    2102             : 
    2103             :     /*
    2104             :      * Fill in tuple header fields and toast the tuple if necessary.
    2105             :      *
    2106             :      * Note: below this point, heaptup is the data we actually intend to store
    2107             :      * into the relation; tup is the caller's original untoasted data.
    2108             :      */
    2109    16686378 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2110             : 
    2111             :     /*
    2112             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2113             :      * this will also pin the requisite visibility map page.
    2114             :      */
    2115    16686378 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2116             :                                        InvalidBuffer, options, bistate,
    2117             :                                        &vmbuffer, NULL,
    2118             :                                        0);
    2119             : 
    2120             :     /*
    2121             :      * We're about to do the actual insert -- but check for conflict first, to
    2122             :      * avoid possibly having to roll back work we've just done.
    2123             :      *
    2124             :      * This is safe without a recheck as long as there is no possibility of
    2125             :      * another process scanning the page between this check and the insert
    2126             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2127             :      * continuously held from this point until the tuple insert is visible).
    2128             :      *
    2129             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2130             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2131             :      * page locks are only consolidated versions of tuple locks; they do not
    2132             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2133             :      * buffer when making the call, which makes for a faster check.
    2134             :      */
    2135    16686378 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2136             : 
    2137             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2138    16686354 :     START_CRIT_SECTION();
    2139             : 
    2140    16686354 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2141    16686354 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2142             : 
    2143    16686354 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2144             :     {
    2145       14936 :         all_visible_cleared = true;
    2146       14936 :         PageClearAllVisible(BufferGetPage(buffer));
    2147       14936 :         visibilitymap_clear(relation,
    2148       14936 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2149             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2150             :     }
    2151             : 
    2152             :     /*
    2153             :      * XXX Should we set PageSetPrunable on this page ?
    2154             :      *
    2155             :      * The inserting transaction may eventually abort thus making this tuple
    2156             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2157             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2158             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2159             :      *
    2160             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2161             :      */
    2162             : 
    2163    16686354 :     MarkBufferDirty(buffer);
    2164             : 
    2165             :     /* XLOG stuff */
    2166    16686354 :     if (RelationNeedsWAL(relation))
    2167             :     {
    2168             :         xl_heap_insert xlrec;
    2169             :         xl_heap_header xlhdr;
    2170             :         XLogRecPtr  recptr;
    2171    14174324 :         Page        page = BufferGetPage(buffer);
    2172    14174324 :         uint8       info = XLOG_HEAP_INSERT;
    2173    14174324 :         int         bufflags = 0;
    2174             : 
    2175             :         /*
    2176             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2177             :          * decode, so log that as well.
    2178             :          */
    2179    14174324 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2180        6796 :             log_heap_new_cid(relation, heaptup);
    2181             : 
    2182             :         /*
    2183             :          * If this is the single and first tuple on page, we can reinit the
    2184             :          * page instead of restoring the whole thing.  Set flag, and hide
    2185             :          * buffer references from XLogInsert.
    2186             :          */
    2187    14356852 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2188      182528 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2189             :         {
    2190      180710 :             info |= XLOG_HEAP_INIT_PAGE;
    2191      180710 :             bufflags |= REGBUF_WILL_INIT;
    2192             :         }
    2193             : 
    2194    14174324 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2195    14174324 :         xlrec.flags = 0;
    2196    14174324 :         if (all_visible_cleared)
    2197       14930 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2198    14174324 :         if (options & HEAP_INSERT_SPECULATIVE)
    2199        4122 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2200             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2201             : 
    2202             :         /*
    2203             :          * For logical decoding, we need the tuple even if we're doing a full
    2204             :          * page write, so make sure it's included even if we take a full-page
    2205             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2206             :          */
    2207    14174324 :         if (RelationIsLogicallyLogged(relation) &&
    2208      499810 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2209             :         {
    2210      499756 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2211      499756 :             bufflags |= REGBUF_KEEP_DATA;
    2212             : 
    2213      499756 :             if (IsToastRelation(relation))
    2214        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2215             :         }
    2216             : 
    2217    14174324 :         XLogBeginInsert();
    2218    14174324 :         XLogRegisterData(&xlrec, SizeOfHeapInsert);
    2219             : 
    2220    14174324 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2221    14174324 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2222    14174324 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2223             : 
    2224             :         /*
    2225             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2226             :          * write the whole page to the xlog, we don't need to store
    2227             :          * xl_heap_header in the xlog.
    2228             :          */
    2229    14174324 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2230    14174324 :         XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    2231             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2232    14174324 :         XLogRegisterBufData(0,
    2233    14174324 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2234    14174324 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2235             : 
    2236             :         /* filtering by origin on a row level is much more efficient */
    2237    14174324 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2238             : 
    2239    14174324 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2240             : 
    2241    14174324 :         PageSetLSN(page, recptr);
    2242             :     }
    2243             : 
    2244    16686354 :     END_CRIT_SECTION();
    2245             : 
    2246    16686354 :     UnlockReleaseBuffer(buffer);
    2247    16686354 :     if (vmbuffer != InvalidBuffer)
    2248       15496 :         ReleaseBuffer(vmbuffer);
    2249             : 
    2250             :     /*
    2251             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2252             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2253             :      * the heaptup data structure is all in local memory, not in the shared
    2254             :      * buffer.
    2255             :      */
    2256    16686354 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2257             : 
    2258             :     /* Note: speculative insertions are counted too, even if aborted later */
    2259    16686354 :     pgstat_count_heap_insert(relation, 1);
    2260             : 
    2261             :     /*
    2262             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2263             :      * back to the caller's image, too.
    2264             :      */
    2265    16686354 :     if (heaptup != tup)
    2266             :     {
    2267       36436 :         tup->t_self = heaptup->t_self;
    2268       36436 :         heap_freetuple(heaptup);
    2269             :     }
    2270    16686354 : }
    2271             : 
    2272             : /*
    2273             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2274             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2275             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2276             :  * that in any case, the header fields are also set in the original tuple.
    2277             :  */
    2278             : static HeapTuple
    2279    19632228 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2280             :                     CommandId cid, int options)
    2281             : {
    2282             :     /*
    2283             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2284             :      * performed in workers. We have the infrastructure to allow parallel
    2285             :      * inserts in general except for the cases where inserts generate a new
    2286             :      * CommandId (eg. inserts into a table having a foreign key column).
    2287             :      */
    2288    19632228 :     if (IsParallelWorker())
    2289           0 :         ereport(ERROR,
    2290             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2291             :                  errmsg("cannot insert tuples in a parallel worker")));
    2292             : 
    2293    19632228 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2294    19632228 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2295    19632228 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2296    19632228 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2297    19632228 :     if (options & HEAP_INSERT_FROZEN)
    2298      204192 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2299             : 
    2300    19632228 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2301    19632228 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2302    19632228 :     tup->t_tableOid = RelationGetRelid(relation);
    2303             : 
    2304             :     /*
    2305             :      * If the new tuple is too big for storage or contains already toasted
    2306             :      * out-of-line attributes from some other relation, invoke the toaster.
    2307             :      */
    2308    19632228 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2309       62050 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2310             :     {
    2311             :         /* toast table entries should never be recursively toasted */
    2312             :         Assert(!HeapTupleHasExternal(tup));
    2313       61954 :         return tup;
    2314             :     }
    2315    19570274 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2316       36524 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2317             :     else
    2318    19533750 :         return tup;
    2319             : }
    2320             : 
    2321             : /*
    2322             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2323             :  * that inserting the remaining heaptuples requires. Used to determine how
    2324             :  * much the relation needs to be extended by.
    2325             :  */
    2326             : static int
    2327      728856 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2328             : {
    2329      728856 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2330      728856 :     int         npages = 1;
    2331             : 
    2332     4847132 :     for (int i = done; i < ntuples; i++)
    2333             :     {
    2334     4118276 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2335             : 
    2336     4118276 :         if (page_avail < tup_sz)
    2337             :         {
    2338       30950 :             npages++;
    2339       30950 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2340             :         }
    2341     4118276 :         page_avail -= tup_sz;
    2342             :     }
    2343             : 
    2344      728856 :     return npages;
    2345             : }
    2346             : 
    2347             : /*
    2348             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2349             :  *
    2350             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2351             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2352             :  * tuples can be inserted on a single page, we can write just a single WAL
    2353             :  * record covering all of them, and only need to lock/unlock the page once.
    2354             :  *
    2355             :  * Note: this leaks memory into the current memory context. You can create a
    2356             :  * temporary context before calling this, if that's a problem.
    2357             :  */
    2358             : void
    2359      715958 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2360             :                   CommandId cid, int options, BulkInsertState bistate)
    2361             : {
    2362      715958 :     TransactionId xid = GetCurrentTransactionId();
    2363             :     HeapTuple  *heaptuples;
    2364             :     int         i;
    2365             :     int         ndone;
    2366             :     PGAlignedBlock scratch;
    2367             :     Page        page;
    2368      715958 :     Buffer      vmbuffer = InvalidBuffer;
    2369             :     bool        needwal;
    2370             :     Size        saveFreeSpace;
    2371      715958 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2372      715958 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2373      715958 :     bool        starting_with_empty_page = false;
    2374      715958 :     int         npages = 0;
    2375      715958 :     int         npages_used = 0;
    2376             : 
    2377             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2378             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2379             : 
    2380      715958 :     AssertHasSnapshotForToast(relation);
    2381             : 
    2382      715958 :     needwal = RelationNeedsWAL(relation);
    2383      715958 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2384             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2385             : 
    2386             :     /* Toast and set header data in all the slots */
    2387      715958 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2388     3661808 :     for (i = 0; i < ntuples; i++)
    2389             :     {
    2390             :         HeapTuple   tuple;
    2391             : 
    2392     2945850 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2393     2945850 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2394     2945850 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2395     2945850 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2396             :                                             options);
    2397             :     }
    2398             : 
    2399             :     /*
    2400             :      * We're about to do the actual inserts -- but check for conflict first,
    2401             :      * to minimize the possibility of having to roll back work we've just
    2402             :      * done.
    2403             :      *
    2404             :      * A check here does not definitively prevent a serialization anomaly;
    2405             :      * that check MUST be done at least past the point of acquiring an
    2406             :      * exclusive buffer content lock on every buffer that will be affected,
    2407             :      * and MAY be done after all inserts are reflected in the buffers and
    2408             :      * those locks are released; otherwise there is a race condition.  Since
    2409             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2410             :      * would not be feasible to identify and lock all of those buffers before
    2411             :      * the loop, we must do a final check at the end.
    2412             :      *
    2413             :      * The check here could be omitted with no loss of correctness; it is
    2414             :      * present strictly as an optimization.
    2415             :      *
    2416             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2417             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2418             :      * page locks are only consolidated versions of tuple locks; they do not
    2419             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2420             :      * buffer when making the call, which makes for a faster check.
    2421             :      */
    2422      715958 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2423             : 
    2424      715958 :     ndone = 0;
    2425     1461114 :     while (ndone < ntuples)
    2426             :     {
    2427             :         Buffer      buffer;
    2428      745156 :         bool        all_visible_cleared = false;
    2429      745156 :         bool        all_frozen_set = false;
    2430             :         int         nthispage;
    2431             : 
    2432      745156 :         CHECK_FOR_INTERRUPTS();
    2433             : 
    2434             :         /*
    2435             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2436             :          * the worst case.  This will be used to determine how much to extend
    2437             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2438             :          * filled a prior page from scratch, we can just update our last
    2439             :          * computation, but if we started with a partially filled page,
    2440             :          * recompute from scratch, the number of potentially required pages
    2441             :          * can vary due to tuples needing to fit onto the page, page headers
    2442             :          * etc.
    2443             :          */
    2444      745156 :         if (ndone == 0 || !starting_with_empty_page)
    2445             :         {
    2446      728856 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2447             :                                              saveFreeSpace);
    2448      728856 :             npages_used = 0;
    2449             :         }
    2450             :         else
    2451       16300 :             npages_used++;
    2452             : 
    2453             :         /*
    2454             :          * Find buffer where at least the next tuple will fit.  If the page is
    2455             :          * all-visible, this will also pin the requisite visibility map page.
    2456             :          *
    2457             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2458             :          * empty page. See all_frozen_set below.
    2459             :          */
    2460      745156 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2461             :                                            InvalidBuffer, options, bistate,
    2462             :                                            &vmbuffer, NULL,
    2463             :                                            npages - npages_used);
    2464      745156 :         page = BufferGetPage(buffer);
    2465             : 
    2466      745156 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2467             : 
    2468      745156 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2469             :         {
    2470        3322 :             all_frozen_set = true;
    2471             :             /* Lock the vmbuffer before entering the critical section */
    2472        3322 :             LockBuffer(vmbuffer, BUFFER_LOCK_EXCLUSIVE);
    2473             :         }
    2474             : 
    2475             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2476      745156 :         START_CRIT_SECTION();
    2477             : 
    2478             :         /*
    2479             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2480             :          * Put that on the page, and then as many other tuples as fit.
    2481             :          */
    2482      745156 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2483             : 
    2484             :         /*
    2485             :          * For logical decoding we need combo CIDs to properly decode the
    2486             :          * catalog.
    2487             :          */
    2488      745156 :         if (needwal && need_cids)
    2489       10012 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2490             : 
    2491     2945850 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2492             :         {
    2493     2229892 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2494             : 
    2495     2229892 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2496       29198 :                 break;
    2497             : 
    2498     2200694 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2499             : 
    2500             :             /*
    2501             :              * For logical decoding we need combo CIDs to properly decode the
    2502             :              * catalog.
    2503             :              */
    2504     2200694 :             if (needwal && need_cids)
    2505        9346 :                 log_heap_new_cid(relation, heaptup);
    2506             :         }
    2507             : 
    2508             :         /*
    2509             :          * If the page is all visible, need to clear that, unless we're only
    2510             :          * going to add further frozen rows to it.
    2511             :          *
    2512             :          * If we're only adding already frozen rows to a previously empty
    2513             :          * page, mark it as all-frozen and update the visibility map. We're
    2514             :          * already holding a pin on the vmbuffer.
    2515             :          */
    2516      745156 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2517             :         {
    2518        5960 :             all_visible_cleared = true;
    2519        5960 :             PageClearAllVisible(page);
    2520        5960 :             visibilitymap_clear(relation,
    2521             :                                 BufferGetBlockNumber(buffer),
    2522             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2523             :         }
    2524      739196 :         else if (all_frozen_set)
    2525             :         {
    2526        3322 :             PageSetAllVisible(page);
    2527        3322 :             visibilitymap_set_vmbits(BufferGetBlockNumber(buffer),
    2528             :                                      vmbuffer,
    2529             :                                      VISIBILITYMAP_ALL_VISIBLE |
    2530             :                                      VISIBILITYMAP_ALL_FROZEN,
    2531             :                                      relation->rd_locator);
    2532             :         }
    2533             : 
    2534             :         /*
    2535             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2536             :          */
    2537             : 
    2538      745156 :         MarkBufferDirty(buffer);
    2539             : 
    2540             :         /* XLOG stuff */
    2541      745156 :         if (needwal)
    2542             :         {
    2543             :             XLogRecPtr  recptr;
    2544             :             xl_heap_multi_insert *xlrec;
    2545      737500 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2546             :             char       *tupledata;
    2547             :             int         totaldatalen;
    2548      737500 :             char       *scratchptr = scratch.data;
    2549             :             bool        init;
    2550      737500 :             int         bufflags = 0;
    2551             : 
    2552             :             /*
    2553             :              * If the page was previously empty, we can reinit the page
    2554             :              * instead of restoring the whole thing.
    2555             :              */
    2556      737500 :             init = starting_with_empty_page;
    2557             : 
    2558             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2559      737500 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2560      737500 :             scratchptr += SizeOfHeapMultiInsert;
    2561             : 
    2562             :             /*
    2563             :              * Allocate offsets array. Unless we're reinitializing the page,
    2564             :              * in that case the tuples are stored in order starting at
    2565             :              * FirstOffsetNumber and we don't need to store the offsets
    2566             :              * explicitly.
    2567             :              */
    2568      737500 :             if (!init)
    2569      711392 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2570             : 
    2571             :             /* the rest of the scratch space is used for tuple data */
    2572      737500 :             tupledata = scratchptr;
    2573             : 
    2574             :             /* check that the mutually exclusive flags are not both set */
    2575             :             Assert(!(all_visible_cleared && all_frozen_set));
    2576             : 
    2577      737500 :             xlrec->flags = 0;
    2578      737500 :             if (all_visible_cleared)
    2579        5960 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2580             : 
    2581             :             /*
    2582             :              * We don't have to worry about including a conflict xid in the
    2583             :              * WAL record, as HEAP_INSERT_FROZEN intentionally violates
    2584             :              * visibility rules.
    2585             :              */
    2586      737500 :             if (all_frozen_set)
    2587          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2588             : 
    2589      737500 :             xlrec->ntuples = nthispage;
    2590             : 
    2591             :             /*
    2592             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2593             :              * for each tuple.
    2594             :              */
    2595     3272520 :             for (i = 0; i < nthispage; i++)
    2596             :             {
    2597     2535020 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2598             :                 xl_multi_insert_tuple *tuphdr;
    2599             :                 int         datalen;
    2600             : 
    2601     2535020 :                 if (!init)
    2602     1487910 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2603             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2604     2535020 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2605     2535020 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2606             : 
    2607     2535020 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2608     2535020 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2609     2535020 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2610             : 
    2611             :                 /* write bitmap [+ padding] [+ oid] + data */
    2612     2535020 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2613     2535020 :                 memcpy(scratchptr,
    2614     2535020 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2615             :                        datalen);
    2616     2535020 :                 tuphdr->datalen = datalen;
    2617     2535020 :                 scratchptr += datalen;
    2618             :             }
    2619      737500 :             totaldatalen = scratchptr - tupledata;
    2620             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2621             : 
    2622      737500 :             if (need_tuple_data)
    2623         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2624             : 
    2625             :             /*
    2626             :              * Signal that this is the last xl_heap_multi_insert record
    2627             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2628             :              * decoding so it knows when to cleanup temporary data.
    2629             :              */
    2630      737500 :             if (ndone + nthispage == ntuples)
    2631      715120 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2632             : 
    2633      737500 :             if (init)
    2634             :             {
    2635       26108 :                 info |= XLOG_HEAP_INIT_PAGE;
    2636       26108 :                 bufflags |= REGBUF_WILL_INIT;
    2637             :             }
    2638             : 
    2639             :             /*
    2640             :              * If we're doing logical decoding, include the new tuple data
    2641             :              * even if we take a full-page image of the page.
    2642             :              */
    2643      737500 :             if (need_tuple_data)
    2644         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2645             : 
    2646      737500 :             XLogBeginInsert();
    2647      737500 :             XLogRegisterData(xlrec, tupledata - scratch.data);
    2648      737500 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2649      737500 :             if (all_frozen_set)
    2650          26 :                 XLogRegisterBuffer(1, vmbuffer, 0);
    2651             : 
    2652      737500 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2653             : 
    2654             :             /* filtering by origin on a row level is much more efficient */
    2655      737500 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2656             : 
    2657      737500 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2658             : 
    2659      737500 :             PageSetLSN(page, recptr);
    2660      737500 :             if (all_frozen_set)
    2661             :             {
    2662             :                 Assert(BufferIsDirty(vmbuffer));
    2663          26 :                 PageSetLSN(BufferGetPage(vmbuffer), recptr);
    2664             :             }
    2665             :         }
    2666             : 
    2667      745156 :         END_CRIT_SECTION();
    2668             : 
    2669      745156 :         if (all_frozen_set)
    2670        3322 :             LockBuffer(vmbuffer, BUFFER_LOCK_UNLOCK);
    2671             : 
    2672      745156 :         UnlockReleaseBuffer(buffer);
    2673      745156 :         ndone += nthispage;
    2674             : 
    2675             :         /*
    2676             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2677             :          * likely that we'll insert into subsequent heap pages that are likely
    2678             :          * to use the same vm page.
    2679             :          */
    2680             :     }
    2681             : 
    2682             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2683      715958 :     if (vmbuffer != InvalidBuffer)
    2684        6128 :         ReleaseBuffer(vmbuffer);
    2685             : 
    2686             :     /*
    2687             :      * We're done with the actual inserts.  Check for conflicts again, to
    2688             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2689             :      * this final check, a sequential scan of the heap may have locked the
    2690             :      * table after the "before" check, missing one opportunity to detect the
    2691             :      * conflict, and then scanned the table before the new tuples were there,
    2692             :      * missing the other chance to detect the conflict.
    2693             :      *
    2694             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2695             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2696             :      * page locks are only consolidated versions of tuple locks; they do not
    2697             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2698             :      * buffer when making the call.
    2699             :      */
    2700      715958 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2701             : 
    2702             :     /*
    2703             :      * If tuples are cachable, mark them for invalidation from the caches in
    2704             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2705             :      * because the heaptuples data structure is all in local memory, not in
    2706             :      * the shared buffer.
    2707             :      */
    2708      715958 :     if (IsCatalogRelation(relation))
    2709             :     {
    2710     2456268 :         for (i = 0; i < ntuples; i++)
    2711     1742736 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2712             :     }
    2713             : 
    2714             :     /* copy t_self fields back to the caller's slots */
    2715     3661808 :     for (i = 0; i < ntuples; i++)
    2716     2945850 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2717             : 
    2718      715958 :     pgstat_count_heap_insert(relation, ntuples);
    2719      715958 : }
    2720             : 
    2721             : /*
    2722             :  *  simple_heap_insert - insert a tuple
    2723             :  *
    2724             :  * Currently, this routine differs from heap_insert only in supplying
    2725             :  * a default command ID and not allowing access to the speedup options.
    2726             :  *
    2727             :  * This should be used rather than using heap_insert directly in most places
    2728             :  * where we are modifying system catalogs.
    2729             :  */
    2730             : void
    2731     1798966 : simple_heap_insert(Relation relation, HeapTuple tup)
    2732             : {
    2733     1798966 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2734     1798966 : }
    2735             : 
    2736             : /*
    2737             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2738             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2739             :  * xl_heap_lock_updated WAL records.
    2740             :  *
    2741             :  * See fix_infomask_from_infobits.
    2742             :  */
    2743             : static uint8
    2744     3895580 : compute_infobits(uint16 infomask, uint16 infomask2)
    2745             : {
    2746             :     return
    2747     3895580 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2748     3895580 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2749     3895580 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2750             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2751     7791160 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2752             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2753     3895580 :          XLHL_KEYS_UPDATED : 0);
    2754             : }
    2755             : 
    2756             : /*
    2757             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2758             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2759             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2760             :  * that the tuple state continues to be the same it was when we previously
    2761             :  * examined it.
    2762             :  *
    2763             :  * Note the Xmax field itself must be compared separately.
    2764             :  */
    2765             : static inline bool
    2766       10736 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2767             : {
    2768       10736 :     const uint16 interesting =
    2769             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2770             : 
    2771       10736 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2772          28 :         return true;
    2773             : 
    2774       10708 :     return false;
    2775             : }
    2776             : 
    2777             : /*
    2778             :  *  heap_delete - delete a tuple
    2779             :  *
    2780             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2781             :  * this routine directly takes a tuple rather than a slot.
    2782             :  *
    2783             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2784             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2785             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2786             :  * generated by another transaction).
    2787             :  */
    2788             : TM_Result
    2789     2988604 : heap_delete(Relation relation, ItemPointer tid,
    2790             :             CommandId cid, Snapshot crosscheck, bool wait,
    2791             :             TM_FailureData *tmfd, bool changingPart)
    2792             : {
    2793             :     TM_Result   result;
    2794     2988604 :     TransactionId xid = GetCurrentTransactionId();
    2795             :     ItemId      lp;
    2796             :     HeapTupleData tp;
    2797             :     Page        page;
    2798             :     BlockNumber block;
    2799             :     Buffer      buffer;
    2800     2988604 :     Buffer      vmbuffer = InvalidBuffer;
    2801             :     TransactionId new_xmax;
    2802             :     uint16      new_infomask,
    2803             :                 new_infomask2;
    2804     2988604 :     bool        have_tuple_lock = false;
    2805             :     bool        iscombo;
    2806     2988604 :     bool        all_visible_cleared = false;
    2807     2988604 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2808     2988604 :     bool        old_key_copied = false;
    2809             : 
    2810             :     Assert(ItemPointerIsValid(tid));
    2811             : 
    2812     2988604 :     AssertHasSnapshotForToast(relation);
    2813             : 
    2814             :     /*
    2815             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2816             :      * Other workers might need that combo CID for visibility checks, and we
    2817             :      * have no provision for broadcasting it to them.
    2818             :      */
    2819     2988604 :     if (IsInParallelMode())
    2820           0 :         ereport(ERROR,
    2821             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2822             :                  errmsg("cannot delete tuples during a parallel operation")));
    2823             : 
    2824     2988604 :     block = ItemPointerGetBlockNumber(tid);
    2825     2988604 :     buffer = ReadBuffer(relation, block);
    2826     2988604 :     page = BufferGetPage(buffer);
    2827             : 
    2828             :     /*
    2829             :      * Before locking the buffer, pin the visibility map page if it appears to
    2830             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2831             :      * in the middle of changing this, so we'll need to recheck after we have
    2832             :      * the lock.
    2833             :      */
    2834     2988604 :     if (PageIsAllVisible(page))
    2835         414 :         visibilitymap_pin(relation, block, &vmbuffer);
    2836             : 
    2837     2988604 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2838             : 
    2839     2988604 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2840             :     Assert(ItemIdIsNormal(lp));
    2841             : 
    2842     2988604 :     tp.t_tableOid = RelationGetRelid(relation);
    2843     2988604 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2844     2988604 :     tp.t_len = ItemIdGetLength(lp);
    2845     2988604 :     tp.t_self = *tid;
    2846             : 
    2847           2 : l1:
    2848             : 
    2849             :     /*
    2850             :      * If we didn't pin the visibility map page and the page has become all
    2851             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2852             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2853             :      * unfortunate, but hopefully shouldn't happen often.
    2854             :      */
    2855     2988606 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2856             :     {
    2857           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2858           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2859           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2860             :     }
    2861             : 
    2862     2988606 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2863             : 
    2864     2988606 :     if (result == TM_Invisible)
    2865             :     {
    2866           0 :         UnlockReleaseBuffer(buffer);
    2867           0 :         ereport(ERROR,
    2868             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2869             :                  errmsg("attempted to delete invisible tuple")));
    2870             :     }
    2871     2988606 :     else if (result == TM_BeingModified && wait)
    2872             :     {
    2873             :         TransactionId xwait;
    2874             :         uint16      infomask;
    2875             : 
    2876             :         /* must copy state data before unlocking buffer */
    2877       81080 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2878       81080 :         infomask = tp.t_data->t_infomask;
    2879             : 
    2880             :         /*
    2881             :          * Sleep until concurrent transaction ends -- except when there's a
    2882             :          * single locker and it's our own transaction.  Note we don't care
    2883             :          * which lock mode the locker has, because we need the strongest one.
    2884             :          *
    2885             :          * Before sleeping, we need to acquire tuple lock to establish our
    2886             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2887             :          * release us when we are next-in-line for the tuple.
    2888             :          *
    2889             :          * If we are forced to "start over" below, we keep the tuple lock;
    2890             :          * this arranges that we stay at the head of the line while rechecking
    2891             :          * tuple state.
    2892             :          */
    2893       81080 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2894             :         {
    2895          16 :             bool        current_is_member = false;
    2896             : 
    2897          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2898             :                                         LockTupleExclusive, &current_is_member))
    2899             :             {
    2900          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2901             : 
    2902             :                 /*
    2903             :                  * Acquire the lock, if necessary (but skip it when we're
    2904             :                  * requesting a lock and already have one; avoids deadlock).
    2905             :                  */
    2906          16 :                 if (!current_is_member)
    2907          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2908             :                                          LockWaitBlock, &have_tuple_lock);
    2909             : 
    2910             :                 /* wait for multixact */
    2911          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2912             :                                 relation, &(tp.t_self), XLTW_Delete,
    2913             :                                 NULL);
    2914          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2915             : 
    2916             :                 /*
    2917             :                  * If xwait had just locked the tuple then some other xact
    2918             :                  * could update this tuple before we get to this point.  Check
    2919             :                  * for xmax change, and start over if so.
    2920             :                  *
    2921             :                  * We also must start over if we didn't pin the VM page, and
    2922             :                  * the page has become all visible.
    2923             :                  */
    2924          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2925          32 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2926          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2927             :                                          xwait))
    2928           0 :                     goto l1;
    2929             :             }
    2930             : 
    2931             :             /*
    2932             :              * You might think the multixact is necessarily done here, but not
    2933             :              * so: it could have surviving members, namely our own xact or
    2934             :              * other subxacts of this backend.  It is legal for us to delete
    2935             :              * the tuple in either case, however (the latter case is
    2936             :              * essentially a situation of upgrading our former shared lock to
    2937             :              * exclusive).  We don't bother changing the on-disk hint bits
    2938             :              * since we are about to overwrite the xmax altogether.
    2939             :              */
    2940             :         }
    2941       81064 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2942             :         {
    2943             :             /*
    2944             :              * Wait for regular transaction to end; but first, acquire tuple
    2945             :              * lock.
    2946             :              */
    2947         100 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2948         100 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2949             :                                  LockWaitBlock, &have_tuple_lock);
    2950         100 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2951          92 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2952             : 
    2953             :             /*
    2954             :              * xwait is done, but if xwait had just locked the tuple then some
    2955             :              * other xact could update this tuple before we get to this point.
    2956             :              * Check for xmax change, and start over if so.
    2957             :              *
    2958             :              * We also must start over if we didn't pin the VM page, and the
    2959             :              * page has become all visible.
    2960             :              */
    2961         184 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2962         182 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2963          90 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2964             :                                      xwait))
    2965           2 :                 goto l1;
    2966             : 
    2967             :             /* Otherwise check if it committed or aborted */
    2968          90 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2969             :         }
    2970             : 
    2971             :         /*
    2972             :          * We may overwrite if previous xmax aborted, or if it committed but
    2973             :          * only locked the tuple without updating it.
    2974             :          */
    2975      162100 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2976       81088 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2977          58 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2978       81020 :             result = TM_Ok;
    2979          50 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2980          42 :             result = TM_Updated;
    2981             :         else
    2982           8 :             result = TM_Deleted;
    2983             :     }
    2984             : 
    2985             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2986             :     if (result != TM_Ok)
    2987             :     {
    2988             :         Assert(result == TM_SelfModified ||
    2989             :                result == TM_Updated ||
    2990             :                result == TM_Deleted ||
    2991             :                result == TM_BeingModified);
    2992             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2993             :         Assert(result != TM_Updated ||
    2994             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2995             :     }
    2996             : 
    2997     2988596 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2998             :     {
    2999             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3000           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    3001           2 :             result = TM_Updated;
    3002             :     }
    3003             : 
    3004     2988596 :     if (result != TM_Ok)
    3005             :     {
    3006         120 :         tmfd->ctid = tp.t_data->t_ctid;
    3007         120 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    3008         120 :         if (result == TM_SelfModified)
    3009          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    3010             :         else
    3011          78 :             tmfd->cmax = InvalidCommandId;
    3012         120 :         UnlockReleaseBuffer(buffer);
    3013         120 :         if (have_tuple_lock)
    3014          50 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3015         120 :         if (vmbuffer != InvalidBuffer)
    3016           0 :             ReleaseBuffer(vmbuffer);
    3017         120 :         return result;
    3018             :     }
    3019             : 
    3020             :     /*
    3021             :      * We're about to do the actual delete -- check for conflict first, to
    3022             :      * avoid possibly having to roll back work we've just done.
    3023             :      *
    3024             :      * This is safe without a recheck as long as there is no possibility of
    3025             :      * another process scanning the page between this check and the delete
    3026             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    3027             :      * continuously held from this point until the tuple delete is visible).
    3028             :      */
    3029     2988476 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    3030             : 
    3031             :     /* replace cid with a combo CID if necessary */
    3032     2988448 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    3033             : 
    3034             :     /*
    3035             :      * Compute replica identity tuple before entering the critical section so
    3036             :      * we don't PANIC upon a memory allocation failure.
    3037             :      */
    3038     2988448 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    3039             : 
    3040             :     /*
    3041             :      * If this is the first possibly-multixact-able operation in the current
    3042             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    3043             :      * certain that the transaction will never become a member of any older
    3044             :      * MultiXactIds than that.  (We have to do this even if we end up just
    3045             :      * using our own TransactionId below, since some other backend could
    3046             :      * incorporate our XID into a MultiXact immediately afterwards.)
    3047             :      */
    3048     2988448 :     MultiXactIdSetOldestMember();
    3049             : 
    3050     2988448 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    3051     2988448 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    3052             :                               xid, LockTupleExclusive, true,
    3053             :                               &new_xmax, &new_infomask, &new_infomask2);
    3054             : 
    3055     2988448 :     START_CRIT_SECTION();
    3056             : 
    3057             :     /*
    3058             :      * If this transaction commits, the tuple will become DEAD sooner or
    3059             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3060             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3061             :      * the subsequent page pruning will be a no-op and the hint will be
    3062             :      * cleared.
    3063             :      */
    3064     2988448 :     PageSetPrunable(page, xid);
    3065             : 
    3066     2988448 :     if (PageIsAllVisible(page))
    3067             :     {
    3068         414 :         all_visible_cleared = true;
    3069         414 :         PageClearAllVisible(page);
    3070         414 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3071             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3072             :     }
    3073             : 
    3074             :     /* store transaction information of xact deleting the tuple */
    3075     2988448 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3076     2988448 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3077     2988448 :     tp.t_data->t_infomask |= new_infomask;
    3078     2988448 :     tp.t_data->t_infomask2 |= new_infomask2;
    3079     2988448 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    3080     2988448 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    3081     2988448 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    3082             :     /* Make sure there is no forward chain link in t_ctid */
    3083     2988448 :     tp.t_data->t_ctid = tp.t_self;
    3084             : 
    3085             :     /* Signal that this is actually a move into another partition */
    3086     2988448 :     if (changingPart)
    3087         968 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    3088             : 
    3089     2988448 :     MarkBufferDirty(buffer);
    3090             : 
    3091             :     /*
    3092             :      * XLOG stuff
    3093             :      *
    3094             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    3095             :      * routines.
    3096             :      */
    3097     2988448 :     if (RelationNeedsWAL(relation))
    3098             :     {
    3099             :         xl_heap_delete xlrec;
    3100             :         xl_heap_header xlhdr;
    3101             :         XLogRecPtr  recptr;
    3102             : 
    3103             :         /*
    3104             :          * For logical decode we need combo CIDs to properly decode the
    3105             :          * catalog
    3106             :          */
    3107     2863210 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3108       12516 :             log_heap_new_cid(relation, &tp);
    3109             : 
    3110     2863210 :         xlrec.flags = 0;
    3111     2863210 :         if (all_visible_cleared)
    3112         414 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3113     2863210 :         if (changingPart)
    3114         968 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3115     5726420 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3116     2863210 :                                               tp.t_data->t_infomask2);
    3117     2863210 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3118     2863210 :         xlrec.xmax = new_xmax;
    3119             : 
    3120     2863210 :         if (old_key_tuple != NULL)
    3121             :         {
    3122       94036 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3123         264 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3124             :             else
    3125       93772 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3126             :         }
    3127             : 
    3128     2863210 :         XLogBeginInsert();
    3129     2863210 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    3130             : 
    3131     2863210 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3132             : 
    3133             :         /*
    3134             :          * Log replica identity of the deleted tuple if there is one
    3135             :          */
    3136     2863210 :         if (old_key_tuple != NULL)
    3137             :         {
    3138       94036 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3139       94036 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3140       94036 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3141             : 
    3142       94036 :             XLogRegisterData(&xlhdr, SizeOfHeapHeader);
    3143       94036 :             XLogRegisterData((char *) old_key_tuple->t_data
    3144             :                              + SizeofHeapTupleHeader,
    3145       94036 :                              old_key_tuple->t_len
    3146             :                              - SizeofHeapTupleHeader);
    3147             :         }
    3148             : 
    3149             :         /* filtering by origin on a row level is much more efficient */
    3150     2863210 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3151             : 
    3152     2863210 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3153             : 
    3154     2863210 :         PageSetLSN(page, recptr);
    3155             :     }
    3156             : 
    3157     2988448 :     END_CRIT_SECTION();
    3158             : 
    3159     2988448 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3160             : 
    3161     2988448 :     if (vmbuffer != InvalidBuffer)
    3162         414 :         ReleaseBuffer(vmbuffer);
    3163             : 
    3164             :     /*
    3165             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3166             :      * those items too.  We have to do this before releasing the buffer
    3167             :      * because we need to look at the contents of the tuple, but it's OK to
    3168             :      * release the content lock on the buffer first.
    3169             :      */
    3170     2988448 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3171        5166 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3172             :     {
    3173             :         /* toast table entries should never be recursively toasted */
    3174             :         Assert(!HeapTupleHasExternal(&tp));
    3175             :     }
    3176     2983302 :     else if (HeapTupleHasExternal(&tp))
    3177         598 :         heap_toast_delete(relation, &tp, false);
    3178             : 
    3179             :     /*
    3180             :      * Mark tuple for invalidation from system caches at next command
    3181             :      * boundary. We have to do this before releasing the buffer because we
    3182             :      * need to look at the contents of the tuple.
    3183             :      */
    3184     2988448 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3185             : 
    3186             :     /* Now we can release the buffer */
    3187     2988448 :     ReleaseBuffer(buffer);
    3188             : 
    3189             :     /*
    3190             :      * Release the lmgr tuple lock, if we had it.
    3191             :      */
    3192     2988448 :     if (have_tuple_lock)
    3193          52 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3194             : 
    3195     2988448 :     pgstat_count_heap_delete(relation);
    3196             : 
    3197     2988448 :     if (old_key_tuple != NULL && old_key_copied)
    3198       93774 :         heap_freetuple(old_key_tuple);
    3199             : 
    3200     2988448 :     return TM_Ok;
    3201             : }
    3202             : 
    3203             : /*
    3204             :  *  simple_heap_delete - delete a tuple
    3205             :  *
    3206             :  * This routine may be used to delete a tuple when concurrent updates of
    3207             :  * the target tuple are not expected (for example, because we have a lock
    3208             :  * on the relation associated with the tuple).  Any failure is reported
    3209             :  * via ereport().
    3210             :  */
    3211             : void
    3212     1256742 : simple_heap_delete(Relation relation, ItemPointer tid)
    3213             : {
    3214             :     TM_Result   result;
    3215             :     TM_FailureData tmfd;
    3216             : 
    3217     1256742 :     result = heap_delete(relation, tid,
    3218             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3219             :                          true /* wait for commit */ ,
    3220             :                          &tmfd, false /* changingPart */ );
    3221     1256742 :     switch (result)
    3222             :     {
    3223           0 :         case TM_SelfModified:
    3224             :             /* Tuple was already updated in current command? */
    3225           0 :             elog(ERROR, "tuple already updated by self");
    3226             :             break;
    3227             : 
    3228     1256742 :         case TM_Ok:
    3229             :             /* done successfully */
    3230     1256742 :             break;
    3231             : 
    3232           0 :         case TM_Updated:
    3233           0 :             elog(ERROR, "tuple concurrently updated");
    3234             :             break;
    3235             : 
    3236           0 :         case TM_Deleted:
    3237           0 :             elog(ERROR, "tuple concurrently deleted");
    3238             :             break;
    3239             : 
    3240           0 :         default:
    3241           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3242             :             break;
    3243             :     }
    3244     1256742 : }
    3245             : 
    3246             : /*
    3247             :  *  heap_update - replace a tuple
    3248             :  *
    3249             :  * See table_tuple_update() for an explanation of the parameters, except that
    3250             :  * this routine directly takes a tuple rather than a slot.
    3251             :  *
    3252             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3253             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3254             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3255             :  * generated by another transaction).
    3256             :  */
    3257             : TM_Result
    3258      609430 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3259             :             CommandId cid, Snapshot crosscheck, bool wait,
    3260             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3261             :             TU_UpdateIndexes *update_indexes)
    3262             : {
    3263             :     TM_Result   result;
    3264      609430 :     TransactionId xid = GetCurrentTransactionId();
    3265             :     Bitmapset  *hot_attrs;
    3266             :     Bitmapset  *sum_attrs;
    3267             :     Bitmapset  *key_attrs;
    3268             :     Bitmapset  *id_attrs;
    3269             :     Bitmapset  *interesting_attrs;
    3270             :     Bitmapset  *modified_attrs;
    3271             :     ItemId      lp;
    3272             :     HeapTupleData oldtup;
    3273             :     HeapTuple   heaptup;
    3274      609430 :     HeapTuple   old_key_tuple = NULL;
    3275      609430 :     bool        old_key_copied = false;
    3276             :     Page        page;
    3277             :     BlockNumber block;
    3278             :     MultiXactStatus mxact_status;
    3279             :     Buffer      buffer,
    3280             :                 newbuf,
    3281      609430 :                 vmbuffer = InvalidBuffer,
    3282      609430 :                 vmbuffer_new = InvalidBuffer;
    3283             :     bool        need_toast;
    3284             :     Size        newtupsize,
    3285             :                 pagefree;
    3286      609430 :     bool        have_tuple_lock = false;
    3287             :     bool        iscombo;
    3288      609430 :     bool        use_hot_update = false;
    3289      609430 :     bool        summarized_update = false;
    3290             :     bool        key_intact;
    3291      609430 :     bool        all_visible_cleared = false;
    3292      609430 :     bool        all_visible_cleared_new = false;
    3293             :     bool        checked_lockers;
    3294             :     bool        locker_remains;
    3295      609430 :     bool        id_has_external = false;
    3296             :     TransactionId xmax_new_tuple,
    3297             :                 xmax_old_tuple;
    3298             :     uint16      infomask_old_tuple,
    3299             :                 infomask2_old_tuple,
    3300             :                 infomask_new_tuple,
    3301             :                 infomask2_new_tuple;
    3302             : 
    3303             :     Assert(ItemPointerIsValid(otid));
    3304             : 
    3305             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3306             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3307             :            RelationGetNumberOfAttributes(relation));
    3308             : 
    3309      609430 :     AssertHasSnapshotForToast(relation);
    3310             : 
    3311             :     /*
    3312             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3313             :      * Other workers might need that combo CID for visibility checks, and we
    3314             :      * have no provision for broadcasting it to them.
    3315             :      */
    3316      609430 :     if (IsInParallelMode())
    3317           0 :         ereport(ERROR,
    3318             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3319             :                  errmsg("cannot update tuples during a parallel operation")));
    3320             : 
    3321             : #ifdef USE_ASSERT_CHECKING
    3322             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3323             : #endif
    3324             : 
    3325             :     /*
    3326             :      * Fetch the list of attributes to be checked for various operations.
    3327             :      *
    3328             :      * For HOT considerations, this is wasted effort if we fail to update or
    3329             :      * have to put the new tuple on a different page.  But we must compute the
    3330             :      * list before obtaining buffer lock --- in the worst case, if we are
    3331             :      * doing an update on one of the relevant system catalogs, we could
    3332             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3333             :      * caches the data so this is usually pretty cheap.
    3334             :      *
    3335             :      * We also need columns used by the replica identity and columns that are
    3336             :      * considered the "key" of rows in the table.
    3337             :      *
    3338             :      * Note that we get copies of each bitmap, so we need not worry about
    3339             :      * relcache flush happening midway through.
    3340             :      */
    3341      609430 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3342             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3343      609430 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3344             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3345      609430 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3346      609430 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3347             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3348      609430 :     interesting_attrs = NULL;
    3349      609430 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3350      609430 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3351      609430 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3352      609430 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3353             : 
    3354      609430 :     block = ItemPointerGetBlockNumber(otid);
    3355      609430 :     INJECTION_POINT("heap_update-before-pin", NULL);
    3356      609430 :     buffer = ReadBuffer(relation, block);
    3357      609430 :     page = BufferGetPage(buffer);
    3358             : 
    3359             :     /*
    3360             :      * Before locking the buffer, pin the visibility map page if it appears to
    3361             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3362             :      * in the middle of changing this, so we'll need to recheck after we have
    3363             :      * the lock.
    3364             :      */
    3365      609430 :     if (PageIsAllVisible(page))
    3366        3372 :         visibilitymap_pin(relation, block, &vmbuffer);
    3367             : 
    3368      609430 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3369             : 
    3370      609430 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3371             : 
    3372             :     /*
    3373             :      * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
    3374             :      * we see LP_NORMAL here.  When the otid origin is a syscache, we may have
    3375             :      * neither a pin nor a snapshot.  Hence, we may see other LP_ states, each
    3376             :      * of which indicates concurrent pruning.
    3377             :      *
    3378             :      * Failing with TM_Updated would be most accurate.  However, unlike other
    3379             :      * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
    3380             :      * LP_DEAD cases.  While the distinction between TM_Updated and TM_Deleted
    3381             :      * does matter to SQL statements UPDATE and MERGE, those SQL statements
    3382             :      * hold a snapshot that ensures LP_NORMAL.  Hence, the choice between
    3383             :      * TM_Updated and TM_Deleted affects only the wording of error messages.
    3384             :      * Settle on TM_Deleted, for two reasons.  First, it avoids complicating
    3385             :      * the specification of when tmfd->ctid is valid.  Second, it creates
    3386             :      * error log evidence that we took this branch.
    3387             :      *
    3388             :      * Since it's possible to see LP_UNUSED at otid, it's also possible to see
    3389             :      * LP_NORMAL for a tuple that replaced LP_UNUSED.  If it's a tuple for an
    3390             :      * unrelated row, we'll fail with "duplicate key value violates unique".
    3391             :      * XXX if otid is the live, newer version of the newtup row, we'll discard
    3392             :      * changes originating in versions of this catalog row after the version
    3393             :      * the caller got from syscache.  See syscache-update-pruned.spec.
    3394             :      */
    3395      609430 :     if (!ItemIdIsNormal(lp))
    3396             :     {
    3397             :         Assert(RelationSupportsSysCache(RelationGetRelid(relation)));
    3398             : 
    3399           2 :         UnlockReleaseBuffer(buffer);
    3400             :         Assert(!have_tuple_lock);
    3401           2 :         if (vmbuffer != InvalidBuffer)
    3402           2 :             ReleaseBuffer(vmbuffer);
    3403           2 :         tmfd->ctid = *otid;
    3404           2 :         tmfd->xmax = InvalidTransactionId;
    3405           2 :         tmfd->cmax = InvalidCommandId;
    3406           2 :         *update_indexes = TU_None;
    3407             : 
    3408           2 :         bms_free(hot_attrs);
    3409           2 :         bms_free(sum_attrs);
    3410           2 :         bms_free(key_attrs);
    3411           2 :         bms_free(id_attrs);
    3412             :         /* modified_attrs not yet initialized */
    3413           2 :         bms_free(interesting_attrs);
    3414           2 :         return TM_Deleted;
    3415             :     }
    3416             : 
    3417             :     /*
    3418             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3419             :      * properly.
    3420             :      */
    3421      609428 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3422      609428 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3423      609428 :     oldtup.t_len = ItemIdGetLength(lp);
    3424      609428 :     oldtup.t_self = *otid;
    3425             : 
    3426             :     /* the new tuple is ready, except for this: */
    3427      609428 :     newtup->t_tableOid = RelationGetRelid(relation);
    3428             : 
    3429             :     /*
    3430             :      * Determine columns modified by the update.  Additionally, identify
    3431             :      * whether any of the unmodified replica identity key attributes in the
    3432             :      * old tuple is externally stored or not.  This is required because for
    3433             :      * such attributes the flattened value won't be WAL logged as part of the
    3434             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3435             :      * ExtractReplicaIdentity.
    3436             :      */
    3437      609428 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3438             :                                               id_attrs, &oldtup,
    3439             :                                               newtup, &id_has_external);
    3440             : 
    3441             :     /*
    3442             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3443             :      * This allows for more concurrency when we are running simultaneously
    3444             :      * with foreign key checks.
    3445             :      *
    3446             :      * Note that if a column gets detoasted while executing the update, but
    3447             :      * the value ends up being the same, this test will fail and we will use
    3448             :      * the stronger lock.  This is acceptable; the important case to optimize
    3449             :      * is updates that don't manipulate key columns, not those that
    3450             :      * serendipitously arrive at the same key values.
    3451             :      */
    3452      609428 :     if (!bms_overlap(modified_attrs, key_attrs))
    3453             :     {
    3454      601132 :         *lockmode = LockTupleNoKeyExclusive;
    3455      601132 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3456      601132 :         key_intact = true;
    3457             : 
    3458             :         /*
    3459             :          * If this is the first possibly-multixact-able operation in the
    3460             :          * current transaction, set my per-backend OldestMemberMXactId
    3461             :          * setting. We can be certain that the transaction will never become a
    3462             :          * member of any older MultiXactIds than that.  (We have to do this
    3463             :          * even if we end up just using our own TransactionId below, since
    3464             :          * some other backend could incorporate our XID into a MultiXact
    3465             :          * immediately afterwards.)
    3466             :          */
    3467      601132 :         MultiXactIdSetOldestMember();
    3468             :     }
    3469             :     else
    3470             :     {
    3471        8296 :         *lockmode = LockTupleExclusive;
    3472        8296 :         mxact_status = MultiXactStatusUpdate;
    3473        8296 :         key_intact = false;
    3474             :     }
    3475             : 
    3476             :     /*
    3477             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3478             :      * otid may very well point at newtup->t_self, which we will overwrite
    3479             :      * with the new tuple's location, so there's great risk of confusion if we
    3480             :      * use otid anymore.
    3481             :      */
    3482             : 
    3483      609428 : l2:
    3484      609430 :     checked_lockers = false;
    3485      609430 :     locker_remains = false;
    3486      609430 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3487             : 
    3488             :     /* see below about the "no wait" case */
    3489             :     Assert(result != TM_BeingModified || wait);
    3490             : 
    3491      609430 :     if (result == TM_Invisible)
    3492             :     {
    3493           0 :         UnlockReleaseBuffer(buffer);
    3494           0 :         ereport(ERROR,
    3495             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3496             :                  errmsg("attempted to update invisible tuple")));
    3497             :     }
    3498      609430 :     else if (result == TM_BeingModified && wait)
    3499             :     {
    3500             :         TransactionId xwait;
    3501             :         uint16      infomask;
    3502       71880 :         bool        can_continue = false;
    3503             : 
    3504             :         /*
    3505             :          * XXX note that we don't consider the "no wait" case here.  This
    3506             :          * isn't a problem currently because no caller uses that case, but it
    3507             :          * should be fixed if such a caller is introduced.  It wasn't a
    3508             :          * problem previously because this code would always wait, but now
    3509             :          * that some tuple locks do not conflict with one of the lock modes we
    3510             :          * use, it is possible that this case is interesting to handle
    3511             :          * specially.
    3512             :          *
    3513             :          * This may cause failures with third-party code that calls
    3514             :          * heap_update directly.
    3515             :          */
    3516             : 
    3517             :         /* must copy state data before unlocking buffer */
    3518       71880 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3519       71880 :         infomask = oldtup.t_data->t_infomask;
    3520             : 
    3521             :         /*
    3522             :          * Now we have to do something about the existing locker.  If it's a
    3523             :          * multi, sleep on it; we might be awakened before it is completely
    3524             :          * gone (or even not sleep at all in some cases); we need to preserve
    3525             :          * it as locker, unless it is gone completely.
    3526             :          *
    3527             :          * If it's not a multi, we need to check for sleeping conditions
    3528             :          * before actually going to sleep.  If the update doesn't conflict
    3529             :          * with the locks, we just continue without sleeping (but making sure
    3530             :          * it is preserved).
    3531             :          *
    3532             :          * Before sleeping, we need to acquire tuple lock to establish our
    3533             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3534             :          * release us when we are next-in-line for the tuple.  Note we must
    3535             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3536             :          * otherwise we're open for race conditions with other transactions
    3537             :          * holding the tuple lock which sleep on us.
    3538             :          *
    3539             :          * If we are forced to "start over" below, we keep the tuple lock;
    3540             :          * this arranges that we stay at the head of the line while rechecking
    3541             :          * tuple state.
    3542             :          */
    3543       71880 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3544             :         {
    3545             :             TransactionId update_xact;
    3546             :             int         remain;
    3547         120 :             bool        current_is_member = false;
    3548             : 
    3549         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3550             :                                         *lockmode, &current_is_member))
    3551             :             {
    3552          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3553             : 
    3554             :                 /*
    3555             :                  * Acquire the lock, if necessary (but skip it when we're
    3556             :                  * requesting a lock and already have one; avoids deadlock).
    3557             :                  */
    3558          16 :                 if (!current_is_member)
    3559           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3560             :                                          LockWaitBlock, &have_tuple_lock);
    3561             : 
    3562             :                 /* wait for multixact */
    3563          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3564             :                                 relation, &oldtup.t_self, XLTW_Update,
    3565             :                                 &remain);
    3566          16 :                 checked_lockers = true;
    3567          16 :                 locker_remains = remain != 0;
    3568          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3569             : 
    3570             :                 /*
    3571             :                  * If xwait had just locked the tuple then some other xact
    3572             :                  * could update this tuple before we get to this point.  Check
    3573             :                  * for xmax change, and start over if so.
    3574             :                  */
    3575          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3576          16 :                                           infomask) ||
    3577          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3578             :                                          xwait))
    3579           0 :                     goto l2;
    3580             :             }
    3581             : 
    3582             :             /*
    3583             :              * Note that the multixact may not be done by now.  It could have
    3584             :              * surviving members; our own xact or other subxacts of this
    3585             :              * backend, and also any other concurrent transaction that locked
    3586             :              * the tuple with LockTupleKeyShare if we only got
    3587             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3588             :              * careful to mark the updated tuple with the surviving members in
    3589             :              * Xmax.
    3590             :              *
    3591             :              * Note that there could have been another update in the
    3592             :              * MultiXact. In that case, we need to check whether it committed
    3593             :              * or aborted. If it aborted we are safe to update it again;
    3594             :              * otherwise there is an update conflict, and we have to return
    3595             :              * TableTuple{Deleted, Updated} below.
    3596             :              *
    3597             :              * In the LockTupleExclusive case, we still need to preserve the
    3598             :              * surviving members: those would include the tuple locks we had
    3599             :              * before this one, which are important to keep in case this
    3600             :              * subxact aborts.
    3601             :              */
    3602         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3603          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3604             :             else
    3605         104 :                 update_xact = InvalidTransactionId;
    3606             : 
    3607             :             /*
    3608             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3609             :              * TransactionIdIsInProgress() call needed here, since we called
    3610             :              * MultiXactIdWait() above.
    3611             :              */
    3612         136 :             if (!TransactionIdIsValid(update_xact) ||
    3613          16 :                 TransactionIdDidAbort(update_xact))
    3614         106 :                 can_continue = true;
    3615             :         }
    3616       71760 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3617             :         {
    3618             :             /*
    3619             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3620             :              * lock here, but must preserve our locking information.
    3621             :              */
    3622       71548 :             checked_lockers = true;
    3623       71548 :             locker_remains = true;
    3624       71548 :             can_continue = true;
    3625             :         }
    3626         212 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3627             :         {
    3628             :             /*
    3629             :              * If it's just a key-share locker, and we're not changing the key
    3630             :              * columns, we don't need to wait for it to end; but we need to
    3631             :              * preserve it as locker.
    3632             :              */
    3633          58 :             checked_lockers = true;
    3634          58 :             locker_remains = true;
    3635          58 :             can_continue = true;
    3636             :         }
    3637             :         else
    3638             :         {
    3639             :             /*
    3640             :              * Wait for regular transaction to end; but first, acquire tuple
    3641             :              * lock.
    3642             :              */
    3643         154 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3644         154 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3645             :                                  LockWaitBlock, &have_tuple_lock);
    3646         154 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3647             :                               XLTW_Update);
    3648         154 :             checked_lockers = true;
    3649         154 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3650             : 
    3651             :             /*
    3652             :              * xwait is done, but if xwait had just locked the tuple then some
    3653             :              * other xact could update this tuple before we get to this point.
    3654             :              * Check for xmax change, and start over if so.
    3655             :              */
    3656         306 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3657         152 :                 !TransactionIdEquals(xwait,
    3658             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3659           2 :                 goto l2;
    3660             : 
    3661             :             /* Otherwise check if it committed or aborted */
    3662         152 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3663         152 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3664          44 :                 can_continue = true;
    3665             :         }
    3666             : 
    3667       71878 :         if (can_continue)
    3668       71756 :             result = TM_Ok;
    3669         122 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3670         112 :             result = TM_Updated;
    3671             :         else
    3672          10 :             result = TM_Deleted;
    3673             :     }
    3674             : 
    3675             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3676             :     if (result != TM_Ok)
    3677             :     {
    3678             :         Assert(result == TM_SelfModified ||
    3679             :                result == TM_Updated ||
    3680             :                result == TM_Deleted ||
    3681             :                result == TM_BeingModified);
    3682             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3683             :         Assert(result != TM_Updated ||
    3684             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3685             :     }
    3686             : 
    3687      609428 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3688             :     {
    3689             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3690           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3691           2 :             result = TM_Updated;
    3692             :     }
    3693             : 
    3694      609428 :     if (result != TM_Ok)
    3695             :     {
    3696         316 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3697         316 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3698         316 :         if (result == TM_SelfModified)
    3699         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3700             :         else
    3701         212 :             tmfd->cmax = InvalidCommandId;
    3702         316 :         UnlockReleaseBuffer(buffer);
    3703         316 :         if (have_tuple_lock)
    3704         108 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3705         316 :         if (vmbuffer != InvalidBuffer)
    3706           0 :             ReleaseBuffer(vmbuffer);
    3707         316 :         *update_indexes = TU_None;
    3708             : 
    3709         316 :         bms_free(hot_attrs);
    3710         316 :         bms_free(sum_attrs);
    3711         316 :         bms_free(key_attrs);
    3712         316 :         bms_free(id_attrs);
    3713         316 :         bms_free(modified_attrs);
    3714         316 :         bms_free(interesting_attrs);
    3715         316 :         return result;
    3716             :     }
    3717             : 
    3718             :     /*
    3719             :      * If we didn't pin the visibility map page and the page has become all
    3720             :      * visible while we were busy locking the buffer, or during some
    3721             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3722             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3723             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3724             :      * tuple has been locked or updated under us, but hopefully it won't
    3725             :      * happen very often.
    3726             :      */
    3727      609112 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3728             :     {
    3729           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3730           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3731           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3732           0 :         goto l2;
    3733             :     }
    3734             : 
    3735             :     /* Fill in transaction status data */
    3736             : 
    3737             :     /*
    3738             :      * If the tuple we're updating is locked, we need to preserve the locking
    3739             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3740             :      */
    3741      609112 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3742      609112 :                               oldtup.t_data->t_infomask,
    3743      609112 :                               oldtup.t_data->t_infomask2,
    3744             :                               xid, *lockmode, true,
    3745             :                               &xmax_old_tuple, &infomask_old_tuple,
    3746             :                               &infomask2_old_tuple);
    3747             : 
    3748             :     /*
    3749             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3750             :      * was no xmax previously, or there was one but all lockers are now gone,
    3751             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3752             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3753             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3754             :      */
    3755      680824 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3756      143424 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3757       71608 :         (checked_lockers && !locker_remains))
    3758      537400 :         xmax_new_tuple = InvalidTransactionId;
    3759             :     else
    3760       71712 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3761             : 
    3762      609112 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3763             :     {
    3764      537400 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3765      537400 :         infomask2_new_tuple = 0;
    3766             :     }
    3767             :     else
    3768             :     {
    3769             :         /*
    3770             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3771             :          * to use on the new tuple depend on what was there on the old one.
    3772             :          * Note that since we're doing an update, the only possibility is that
    3773             :          * the lockers had FOR KEY SHARE lock.
    3774             :          */
    3775       71712 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3776             :         {
    3777         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3778             :                                    &infomask2_new_tuple);
    3779             :         }
    3780             :         else
    3781             :         {
    3782       71606 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3783       71606 :             infomask2_new_tuple = 0;
    3784             :         }
    3785             :     }
    3786             : 
    3787             :     /*
    3788             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3789             :      * Xmax, as well as initial infomask bits as computed above.
    3790             :      */
    3791      609112 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3792      609112 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3793      609112 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3794      609112 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3795      609112 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3796      609112 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3797      609112 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3798             : 
    3799             :     /*
    3800             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3801             :      * the plain cid into the new tuple.
    3802             :      */
    3803      609112 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3804             : 
    3805             :     /*
    3806             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3807             :      * on the same page as the old, then we need to release the content lock
    3808             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3809             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3810             :      * show that it's locked, else other processes may try to update it
    3811             :      * themselves.
    3812             :      *
    3813             :      * We need to invoke the toaster if there are already any out-of-line
    3814             :      * toasted values present, or if the new tuple is over-threshold.
    3815             :      */
    3816      609112 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3817           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3818             :     {
    3819             :         /* toast table entries should never be recursively toasted */
    3820             :         Assert(!HeapTupleHasExternal(&oldtup));
    3821             :         Assert(!HeapTupleHasExternal(newtup));
    3822           0 :         need_toast = false;
    3823             :     }
    3824             :     else
    3825     1826578 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3826     1217466 :                       HeapTupleHasExternal(newtup) ||
    3827      608306 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3828             : 
    3829      609112 :     pagefree = PageGetHeapFreeSpace(page);
    3830             : 
    3831      609112 :     newtupsize = MAXALIGN(newtup->t_len);
    3832             : 
    3833      609112 :     if (need_toast || newtupsize > pagefree)
    3834      300444 :     {
    3835             :         TransactionId xmax_lock_old_tuple;
    3836             :         uint16      infomask_lock_old_tuple,
    3837             :                     infomask2_lock_old_tuple;
    3838      300444 :         bool        cleared_all_frozen = false;
    3839             : 
    3840             :         /*
    3841             :          * To prevent concurrent sessions from updating the tuple, we have to
    3842             :          * temporarily mark it locked, while we release the page-level lock.
    3843             :          *
    3844             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3845             :          * written out to disk, we unfortunately have to WAL log this
    3846             :          * temporary modification.  We can reuse xl_heap_lock for this
    3847             :          * purpose.  If we crash/error before following through with the
    3848             :          * actual update, xmax will be of an aborted transaction, allowing
    3849             :          * other sessions to proceed.
    3850             :          */
    3851             : 
    3852             :         /*
    3853             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3854             :          * to be done separately from the combo that's going to be used for
    3855             :          * updating, because the potentially created multixact would otherwise
    3856             :          * be wrong.
    3857             :          */
    3858      300444 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3859      300444 :                                   oldtup.t_data->t_infomask,
    3860      300444 :                                   oldtup.t_data->t_infomask2,
    3861             :                                   xid, *lockmode, false,
    3862             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3863             :                                   &infomask2_lock_old_tuple);
    3864             : 
    3865             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3866             : 
    3867      300444 :         START_CRIT_SECTION();
    3868             : 
    3869             :         /* Clear obsolete visibility flags ... */
    3870      300444 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3871      300444 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3872      300444 :         HeapTupleClearHotUpdated(&oldtup);
    3873             :         /* ... and store info about transaction updating this tuple */
    3874             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3875      300444 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3876      300444 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3877      300444 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3878      300444 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3879             : 
    3880             :         /* temporarily make it look not-updated, but locked */
    3881      300444 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3882             : 
    3883             :         /*
    3884             :          * Clear all-frozen bit on visibility map if needed. We could
    3885             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3886             :          * overhead would be unchanged, that doesn't seem necessarily
    3887             :          * worthwhile.
    3888             :          */
    3889      302264 :         if (PageIsAllVisible(page) &&
    3890        1820 :             visibilitymap_clear(relation, block, vmbuffer,
    3891             :                                 VISIBILITYMAP_ALL_FROZEN))
    3892        1482 :             cleared_all_frozen = true;
    3893             : 
    3894      300444 :         MarkBufferDirty(buffer);
    3895             : 
    3896      300444 :         if (RelationNeedsWAL(relation))
    3897             :         {
    3898             :             xl_heap_lock xlrec;
    3899             :             XLogRecPtr  recptr;
    3900             : 
    3901      280186 :             XLogBeginInsert();
    3902      280186 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3903             : 
    3904      280186 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3905      280186 :             xlrec.xmax = xmax_lock_old_tuple;
    3906      560372 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3907      280186 :                                                   oldtup.t_data->t_infomask2);
    3908      280186 :             xlrec.flags =
    3909      280186 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3910      280186 :             XLogRegisterData(&xlrec, SizeOfHeapLock);
    3911      280186 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3912      280186 :             PageSetLSN(page, recptr);
    3913             :         }
    3914             : 
    3915      300444 :         END_CRIT_SECTION();
    3916             : 
    3917      300444 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3918             : 
    3919             :         /*
    3920             :          * Let the toaster do its thing, if needed.
    3921             :          *
    3922             :          * Note: below this point, heaptup is the data we actually intend to
    3923             :          * store into the relation; newtup is the caller's original untoasted
    3924             :          * data.
    3925             :          */
    3926      300444 :         if (need_toast)
    3927             :         {
    3928             :             /* Note we always use WAL and FSM during updates */
    3929        3310 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3930        3310 :             newtupsize = MAXALIGN(heaptup->t_len);
    3931             :         }
    3932             :         else
    3933      297134 :             heaptup = newtup;
    3934             : 
    3935             :         /*
    3936             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3937             :          * tricky since someone else could have added tuples to the page while
    3938             :          * we weren't looking.  We have to recheck the available space after
    3939             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3940             :          * former amount of free space is still not enough; it's unlikely
    3941             :          * there's more free now than before.
    3942             :          *
    3943             :          * What's more, if we need to get a new page, we will need to acquire
    3944             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3945             :          * some other backend trying to get the same two locks in the other
    3946             :          * order, we must be consistent about the order we get the locks in.
    3947             :          * We use the rule "lock the lower-numbered page of the relation
    3948             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3949             :          * while not holding the lock on the old page, and we must rely on it
    3950             :          * to get the locks on both pages in the correct order.
    3951             :          *
    3952             :          * Another consideration is that we need visibility map page pin(s) if
    3953             :          * we will have to clear the all-visible flag on either page.  If we
    3954             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3955             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3956             :          * a loop.
    3957             :          */
    3958             :         for (;;)
    3959             :         {
    3960      300444 :             if (newtupsize > pagefree)
    3961             :             {
    3962             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3963      299338 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3964             :                                                    buffer, 0, NULL,
    3965             :                                                    &vmbuffer_new, &vmbuffer,
    3966             :                                                    0);
    3967             :                 /* We're all done. */
    3968      299338 :                 break;
    3969             :             }
    3970             :             /* Acquire VM page pin if needed and we don't have it. */
    3971        1106 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3972           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3973             :             /* Re-acquire the lock on the old tuple's page. */
    3974        1106 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3975             :             /* Re-check using the up-to-date free space */
    3976        1106 :             pagefree = PageGetHeapFreeSpace(page);
    3977        1106 :             if (newtupsize > pagefree ||
    3978        1106 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3979             :             {
    3980             :                 /*
    3981             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3982             :                  * all-visible flag.  We must now unlock and loop to avoid
    3983             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3984             :                  */
    3985           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3986             :             }
    3987             :             else
    3988             :             {
    3989             :                 /* We're all done. */
    3990        1106 :                 newbuf = buffer;
    3991        1106 :                 break;
    3992             :             }
    3993             :         }
    3994             :     }
    3995             :     else
    3996             :     {
    3997             :         /* No TOAST work needed, and it'll fit on same page */
    3998      308668 :         newbuf = buffer;
    3999      308668 :         heaptup = newtup;
    4000             :     }
    4001             : 
    4002             :     /*
    4003             :      * We're about to do the actual update -- check for conflict first, to
    4004             :      * avoid possibly having to roll back work we've just done.
    4005             :      *
    4006             :      * This is safe without a recheck as long as there is no possibility of
    4007             :      * another process scanning the pages between this check and the update
    4008             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    4009             :      * continuously held from this point until the tuple update is visible).
    4010             :      *
    4011             :      * For the new tuple the only check needed is at the relation level, but
    4012             :      * since both tuples are in the same relation and the check for oldtup
    4013             :      * will include checking the relation level, there is no benefit to a
    4014             :      * separate check for the new tuple.
    4015             :      */
    4016      609112 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    4017             :                                    BufferGetBlockNumber(buffer));
    4018             : 
    4019             :     /*
    4020             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    4021             :      * has enough space for the new tuple.  If they are the same buffer, only
    4022             :      * one pin is held.
    4023             :      */
    4024             : 
    4025      609088 :     if (newbuf == buffer)
    4026             :     {
    4027             :         /*
    4028             :          * Since the new tuple is going into the same page, we might be able
    4029             :          * to do a HOT update.  Check if any of the index columns have been
    4030             :          * changed.
    4031             :          */
    4032      309750 :         if (!bms_overlap(modified_attrs, hot_attrs))
    4033             :         {
    4034      285932 :             use_hot_update = true;
    4035             : 
    4036             :             /*
    4037             :              * If none of the columns that are used in hot-blocking indexes
    4038             :              * were updated, we can apply HOT, but we do still need to check
    4039             :              * if we need to update the summarizing indexes, and update those
    4040             :              * indexes if the columns were updated, or we may fail to detect
    4041             :              * e.g. value bound changes in BRIN minmax indexes.
    4042             :              */
    4043      285932 :             if (bms_overlap(modified_attrs, sum_attrs))
    4044        3282 :                 summarized_update = true;
    4045             :         }
    4046             :     }
    4047             :     else
    4048             :     {
    4049             :         /* Set a hint that the old page could use prune/defrag */
    4050      299338 :         PageSetFull(page);
    4051             :     }
    4052             : 
    4053             :     /*
    4054             :      * Compute replica identity tuple before entering the critical section so
    4055             :      * we don't PANIC upon a memory allocation failure.
    4056             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    4057             :      * logged.  Pass old key required as true only if the replica identity key
    4058             :      * columns are modified or it has external data.
    4059             :      */
    4060      609088 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    4061      609088 :                                            bms_overlap(modified_attrs, id_attrs) ||
    4062             :                                            id_has_external,
    4063             :                                            &old_key_copied);
    4064             : 
    4065             :     /* NO EREPORT(ERROR) from here till changes are logged */
    4066      609088 :     START_CRIT_SECTION();
    4067             : 
    4068             :     /*
    4069             :      * If this transaction commits, the old tuple will become DEAD sooner or
    4070             :      * later.  Set flag that this page is a candidate for pruning once our xid
    4071             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    4072             :      * the subsequent page pruning will be a no-op and the hint will be
    4073             :      * cleared.
    4074             :      *
    4075             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    4076             :      * there would be a prunable tuple in the newbuf; but for now we choose
    4077             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    4078             :      * sync if this decision changes.
    4079             :      */
    4080      609088 :     PageSetPrunable(page, xid);
    4081             : 
    4082      609088 :     if (use_hot_update)
    4083             :     {
    4084             :         /* Mark the old tuple as HOT-updated */
    4085      285932 :         HeapTupleSetHotUpdated(&oldtup);
    4086             :         /* And mark the new tuple as heap-only */
    4087      285932 :         HeapTupleSetHeapOnly(heaptup);
    4088             :         /* Mark the caller's copy too, in case different from heaptup */
    4089      285932 :         HeapTupleSetHeapOnly(newtup);
    4090             :     }
    4091             :     else
    4092             :     {
    4093             :         /* Make sure tuples are correctly marked as not-HOT */
    4094      323156 :         HeapTupleClearHotUpdated(&oldtup);
    4095      323156 :         HeapTupleClearHeapOnly(heaptup);
    4096      323156 :         HeapTupleClearHeapOnly(newtup);
    4097             :     }
    4098             : 
    4099      609088 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    4100             : 
    4101             : 
    4102             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    4103      609088 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    4104      609088 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    4105             :     /* ... and store info about transaction updating this tuple */
    4106             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    4107      609088 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    4108      609088 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    4109      609088 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    4110      609088 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    4111             : 
    4112             :     /* record address of new tuple in t_ctid of old one */
    4113      609088 :     oldtup.t_data->t_ctid = heaptup->t_self;
    4114             : 
    4115             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    4116      609088 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    4117             :     {
    4118        3370 :         all_visible_cleared = true;
    4119        3370 :         PageClearAllVisible(BufferGetPage(buffer));
    4120        3370 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    4121             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    4122             :     }
    4123      609088 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    4124             :     {
    4125        1694 :         all_visible_cleared_new = true;
    4126        1694 :         PageClearAllVisible(BufferGetPage(newbuf));
    4127        1694 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    4128             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    4129             :     }
    4130             : 
    4131      609088 :     if (newbuf != buffer)
    4132      299338 :         MarkBufferDirty(newbuf);
    4133      609088 :     MarkBufferDirty(buffer);
    4134             : 
    4135             :     /* XLOG stuff */
    4136      609088 :     if (RelationNeedsWAL(relation))
    4137             :     {
    4138             :         XLogRecPtr  recptr;
    4139             : 
    4140             :         /*
    4141             :          * For logical decoding we need combo CIDs to properly decode the
    4142             :          * catalog.
    4143             :          */
    4144      586358 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4145             :         {
    4146        5112 :             log_heap_new_cid(relation, &oldtup);
    4147        5112 :             log_heap_new_cid(relation, heaptup);
    4148             :         }
    4149             : 
    4150      586358 :         recptr = log_heap_update(relation, buffer,
    4151             :                                  newbuf, &oldtup, heaptup,
    4152             :                                  old_key_tuple,
    4153             :                                  all_visible_cleared,
    4154             :                                  all_visible_cleared_new);
    4155      586358 :         if (newbuf != buffer)
    4156             :         {
    4157      279092 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4158             :         }
    4159      586358 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4160             :     }
    4161             : 
    4162      609088 :     END_CRIT_SECTION();
    4163             : 
    4164      609088 :     if (newbuf != buffer)
    4165      299338 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4166      609088 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4167             : 
    4168             :     /*
    4169             :      * Mark old tuple for invalidation from system caches at next command
    4170             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4171             :      * have to do this before releasing the buffer because oldtup is in the
    4172             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4173             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4174             :      * sinval messages.)
    4175             :      */
    4176      609088 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4177             : 
    4178             :     /* Now we can release the buffer(s) */
    4179      609088 :     if (newbuf != buffer)
    4180      299338 :         ReleaseBuffer(newbuf);
    4181      609088 :     ReleaseBuffer(buffer);
    4182      609088 :     if (BufferIsValid(vmbuffer_new))
    4183        1694 :         ReleaseBuffer(vmbuffer_new);
    4184      609088 :     if (BufferIsValid(vmbuffer))
    4185        3370 :         ReleaseBuffer(vmbuffer);
    4186             : 
    4187             :     /*
    4188             :      * Release the lmgr tuple lock, if we had it.
    4189             :      */
    4190      609088 :     if (have_tuple_lock)
    4191          44 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4192             : 
    4193      609088 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4194             : 
    4195             :     /*
    4196             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4197             :      * back to the caller's image, too.
    4198             :      */
    4199      609088 :     if (heaptup != newtup)
    4200             :     {
    4201        3214 :         newtup->t_self = heaptup->t_self;
    4202        3214 :         heap_freetuple(heaptup);
    4203             :     }
    4204             : 
    4205             :     /*
    4206             :      * If it is a HOT update, the update may still need to update summarized
    4207             :      * indexes, lest we fail to update those summaries and get incorrect
    4208             :      * results (for example, minmax bounds of the block may change with this
    4209             :      * update).
    4210             :      */
    4211      609088 :     if (use_hot_update)
    4212             :     {
    4213      285932 :         if (summarized_update)
    4214        3282 :             *update_indexes = TU_Summarizing;
    4215             :         else
    4216      282650 :             *update_indexes = TU_None;
    4217             :     }
    4218             :     else
    4219      323156 :         *update_indexes = TU_All;
    4220             : 
    4221      609088 :     if (old_key_tuple != NULL && old_key_copied)
    4222         168 :         heap_freetuple(old_key_tuple);
    4223             : 
    4224      609088 :     bms_free(hot_attrs);
    4225      609088 :     bms_free(sum_attrs);
    4226      609088 :     bms_free(key_attrs);
    4227      609088 :     bms_free(id_attrs);
    4228      609088 :     bms_free(modified_attrs);
    4229      609088 :     bms_free(interesting_attrs);
    4230             : 
    4231      609088 :     return TM_Ok;
    4232             : }
    4233             : 
    4234             : #ifdef USE_ASSERT_CHECKING
    4235             : /*
    4236             :  * Confirm adequate lock held during heap_update(), per rules from
    4237             :  * README.tuplock section "Locking to write inplace-updated tables".
    4238             :  */
    4239             : static void
    4240             : check_lock_if_inplace_updateable_rel(Relation relation,
    4241             :                                      ItemPointer otid,
    4242             :                                      HeapTuple newtup)
    4243             : {
    4244             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4245             :     switch (RelationGetRelid(relation))
    4246             :     {
    4247             :         case RelationRelationId:
    4248             :         case DatabaseRelationId:
    4249             :             {
    4250             :                 LOCKTAG     tuptag;
    4251             : 
    4252             :                 SET_LOCKTAG_TUPLE(tuptag,
    4253             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4254             :                                   relation->rd_lockInfo.lockRelId.relId,
    4255             :                                   ItemPointerGetBlockNumber(otid),
    4256             :                                   ItemPointerGetOffsetNumber(otid));
    4257             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4258             :                     return;
    4259             :             }
    4260             :             break;
    4261             :         default:
    4262             :             Assert(!IsInplaceUpdateRelation(relation));
    4263             :             return;
    4264             :     }
    4265             : 
    4266             :     switch (RelationGetRelid(relation))
    4267             :     {
    4268             :         case RelationRelationId:
    4269             :             {
    4270             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4271             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4272             :                 Oid         relid = classForm->oid;
    4273             :                 Oid         dbid;
    4274             :                 LOCKTAG     tag;
    4275             : 
    4276             :                 if (IsSharedRelation(relid))
    4277             :                     dbid = InvalidOid;
    4278             :                 else
    4279             :                     dbid = MyDatabaseId;
    4280             : 
    4281             :                 if (classForm->relkind == RELKIND_INDEX)
    4282             :                 {
    4283             :                     Relation    irel = index_open(relid, AccessShareLock);
    4284             : 
    4285             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4286             :                     index_close(irel, AccessShareLock);
    4287             :                 }
    4288             :                 else
    4289             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4290             : 
    4291             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4292             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4293             :                     elog(WARNING,
    4294             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4295             :                          NameStr(classForm->relname),
    4296             :                          relid,
    4297             :                          classForm->relkind,
    4298             :                          ItemPointerGetBlockNumber(otid),
    4299             :                          ItemPointerGetOffsetNumber(otid));
    4300             :             }
    4301             :             break;
    4302             :         case DatabaseRelationId:
    4303             :             {
    4304             :                 /* LOCKTAG_TUPLE required */
    4305             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4306             : 
    4307             :                 elog(WARNING,
    4308             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4309             :                      NameStr(dbForm->datname),
    4310             :                      dbForm->oid,
    4311             :                      ItemPointerGetBlockNumber(otid),
    4312             :                      ItemPointerGetOffsetNumber(otid));
    4313             :             }
    4314             :             break;
    4315             :     }
    4316             : }
    4317             : 
    4318             : /*
    4319             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4320             :  * "Locking to write inplace-updated tables".
    4321             :  */
    4322             : static void
    4323             : check_inplace_rel_lock(HeapTuple oldtup)
    4324             : {
    4325             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4326             :     Oid         relid = classForm->oid;
    4327             :     Oid         dbid;
    4328             :     LOCKTAG     tag;
    4329             : 
    4330             :     if (IsSharedRelation(relid))
    4331             :         dbid = InvalidOid;
    4332             :     else
    4333             :         dbid = MyDatabaseId;
    4334             : 
    4335             :     if (classForm->relkind == RELKIND_INDEX)
    4336             :     {
    4337             :         Relation    irel = index_open(relid, AccessShareLock);
    4338             : 
    4339             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4340             :         index_close(irel, AccessShareLock);
    4341             :     }
    4342             :     else
    4343             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4344             : 
    4345             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4346             :         elog(WARNING,
    4347             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4348             :              NameStr(classForm->relname),
    4349             :              relid,
    4350             :              classForm->relkind,
    4351             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4352             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4353             : }
    4354             : #endif
    4355             : 
    4356             : /*
    4357             :  * Check if the specified attribute's values are the same.  Subroutine for
    4358             :  * HeapDetermineColumnsInfo.
    4359             :  */
    4360             : static bool
    4361     1473588 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4362             :                  bool isnull1, bool isnull2)
    4363             : {
    4364             :     /*
    4365             :      * If one value is NULL and other is not, then they are certainly not
    4366             :      * equal
    4367             :      */
    4368     1473588 :     if (isnull1 != isnull2)
    4369          90 :         return false;
    4370             : 
    4371             :     /*
    4372             :      * If both are NULL, they can be considered equal.
    4373             :      */
    4374     1473498 :     if (isnull1)
    4375        9982 :         return true;
    4376             : 
    4377             :     /*
    4378             :      * We do simple binary comparison of the two datums.  This may be overly
    4379             :      * strict because there can be multiple binary representations for the
    4380             :      * same logical value.  But we should be OK as long as there are no false
    4381             :      * positives.  Using a type-specific equality operator is messy because
    4382             :      * there could be multiple notions of equality in different operator
    4383             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4384             :      * while holding exclusive buffer lock.
    4385             :      */
    4386     1463516 :     if (attrnum <= 0)
    4387             :     {
    4388             :         /* The only allowed system columns are OIDs, so do this */
    4389           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4390             :     }
    4391             :     else
    4392             :     {
    4393             :         CompactAttribute *att;
    4394             : 
    4395             :         Assert(attrnum <= tupdesc->natts);
    4396     1463516 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4397     1463516 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4398             :     }
    4399             : }
    4400             : 
    4401             : /*
    4402             :  * Check which columns are being updated.
    4403             :  *
    4404             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4405             :  * from those listed as interesting, the set of columns that changed.
    4406             :  *
    4407             :  * has_external indicates if any of the unmodified attributes (from those
    4408             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4409             :  * stored externally.
    4410             :  */
    4411             : static Bitmapset *
    4412      609428 : HeapDetermineColumnsInfo(Relation relation,
    4413             :                          Bitmapset *interesting_cols,
    4414             :                          Bitmapset *external_cols,
    4415             :                          HeapTuple oldtup, HeapTuple newtup,
    4416             :                          bool *has_external)
    4417             : {
    4418             :     int         attidx;
    4419      609428 :     Bitmapset  *modified = NULL;
    4420      609428 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4421             : 
    4422      609428 :     attidx = -1;
    4423     2083016 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4424             :     {
    4425             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4426     1473588 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4427             :         Datum       value1,
    4428             :                     value2;
    4429             :         bool        isnull1,
    4430             :                     isnull2;
    4431             : 
    4432             :         /*
    4433             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4434             :          * worth supporting this case, since it could only succeed after a
    4435             :          * no-op update, which is hardly a case worth optimizing for.
    4436             :          */
    4437     1473588 :         if (attrnum == 0)
    4438             :         {
    4439           0 :             modified = bms_add_member(modified, attidx);
    4440     1409250 :             continue;
    4441             :         }
    4442             : 
    4443             :         /*
    4444             :          * Likewise, automatically say "not equal" for any system attribute
    4445             :          * other than tableOID; we cannot expect these to be consistent in a
    4446             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4447             :          */
    4448     1473588 :         if (attrnum < 0)
    4449             :         {
    4450           0 :             if (attrnum != TableOidAttributeNumber)
    4451             :             {
    4452           0 :                 modified = bms_add_member(modified, attidx);
    4453           0 :                 continue;
    4454             :             }
    4455             :         }
    4456             : 
    4457             :         /*
    4458             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4459             :          * if there are many indexed columns.  Should we do a single
    4460             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4461             :          * work for system columns ...
    4462             :          */
    4463     1473588 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4464     1473588 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4465             : 
    4466     1473588 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4467             :                               value2, isnull1, isnull2))
    4468             :         {
    4469       53470 :             modified = bms_add_member(modified, attidx);
    4470       53470 :             continue;
    4471             :         }
    4472             : 
    4473             :         /*
    4474             :          * No need to check attributes that can't be stored externally. Note
    4475             :          * that system attributes can't be stored externally.
    4476             :          */
    4477     1420118 :         if (attrnum < 0 || isnull1 ||
    4478     1410136 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4479     1355780 :             continue;
    4480             : 
    4481             :         /*
    4482             :          * Check if the old tuple's attribute is stored externally and is a
    4483             :          * member of external_cols.
    4484             :          */
    4485       64348 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4486          10 :             bms_is_member(attidx, external_cols))
    4487           4 :             *has_external = true;
    4488             :     }
    4489             : 
    4490      609428 :     return modified;
    4491             : }
    4492             : 
    4493             : /*
    4494             :  *  simple_heap_update - replace a tuple
    4495             :  *
    4496             :  * This routine may be used to update a tuple when concurrent updates of
    4497             :  * the target tuple are not expected (for example, because we have a lock
    4498             :  * on the relation associated with the tuple).  Any failure is reported
    4499             :  * via ereport().
    4500             :  */
    4501             : void
    4502      222186 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4503             :                    TU_UpdateIndexes *update_indexes)
    4504             : {
    4505             :     TM_Result   result;
    4506             :     TM_FailureData tmfd;
    4507             :     LockTupleMode lockmode;
    4508             : 
    4509      222186 :     result = heap_update(relation, otid, tup,
    4510             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4511             :                          true /* wait for commit */ ,
    4512             :                          &tmfd, &lockmode, update_indexes);
    4513      222186 :     switch (result)
    4514             :     {
    4515           0 :         case TM_SelfModified:
    4516             :             /* Tuple was already updated in current command? */
    4517           0 :             elog(ERROR, "tuple already updated by self");
    4518             :             break;
    4519             : 
    4520      222184 :         case TM_Ok:
    4521             :             /* done successfully */
    4522      222184 :             break;
    4523             : 
    4524           0 :         case TM_Updated:
    4525           0 :             elog(ERROR, "tuple concurrently updated");
    4526             :             break;
    4527             : 
    4528           2 :         case TM_Deleted:
    4529           2 :             elog(ERROR, "tuple concurrently deleted");
    4530             :             break;
    4531             : 
    4532           0 :         default:
    4533           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4534             :             break;
    4535             :     }
    4536      222184 : }
    4537             : 
    4538             : 
    4539             : /*
    4540             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4541             :  */
    4542             : static MultiXactStatus
    4543        2390 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4544             : {
    4545             :     int         retval;
    4546             : 
    4547        2390 :     if (is_update)
    4548         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4549             :     else
    4550        2198 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4551             : 
    4552        2390 :     if (retval == -1)
    4553           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4554             :              is_update ? "true" : "false");
    4555             : 
    4556        2390 :     return (MultiXactStatus) retval;
    4557             : }
    4558             : 
    4559             : /*
    4560             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4561             :  *
    4562             :  * Note that this acquires a buffer pin, which the caller must release.
    4563             :  *
    4564             :  * Input parameters:
    4565             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4566             :  *  cid: current command ID (used for visibility test, and stored into
    4567             :  *      tuple's cmax if lock is successful)
    4568             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4569             :  *  wait_policy: what to do if tuple lock is not available
    4570             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4571             :  *      tuples.
    4572             :  *
    4573             :  * Output parameters:
    4574             :  *  *tuple: all fields filled in
    4575             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4576             :  *  *tmfd: filled in failure cases (see below)
    4577             :  *
    4578             :  * Function results are the same as the ones for table_tuple_lock().
    4579             :  *
    4580             :  * In the failure cases other than TM_Invisible, the routine fills
    4581             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4582             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4583             :  * since we cannot obtain cmax from a combo CID generated by another
    4584             :  * transaction).
    4585             :  * See comments for struct TM_FailureData for additional info.
    4586             :  *
    4587             :  * See README.tuplock for a thorough explanation of this mechanism.
    4588             :  */
    4589             : TM_Result
    4590      169906 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4591             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4592             :                 bool follow_updates,
    4593             :                 Buffer *buffer, TM_FailureData *tmfd)
    4594             : {
    4595             :     TM_Result   result;
    4596      169906 :     ItemPointer tid = &(tuple->t_self);
    4597             :     ItemId      lp;
    4598             :     Page        page;
    4599      169906 :     Buffer      vmbuffer = InvalidBuffer;
    4600             :     BlockNumber block;
    4601             :     TransactionId xid,
    4602             :                 xmax;
    4603             :     uint16      old_infomask,
    4604             :                 new_infomask,
    4605             :                 new_infomask2;
    4606      169906 :     bool        first_time = true;
    4607      169906 :     bool        skip_tuple_lock = false;
    4608      169906 :     bool        have_tuple_lock = false;
    4609      169906 :     bool        cleared_all_frozen = false;
    4610             : 
    4611      169906 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4612      169906 :     block = ItemPointerGetBlockNumber(tid);
    4613             : 
    4614             :     /*
    4615             :      * Before locking the buffer, pin the visibility map page if it appears to
    4616             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4617             :      * in the middle of changing this, so we'll need to recheck after we have
    4618             :      * the lock.
    4619             :      */
    4620      169906 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4621        3334 :         visibilitymap_pin(relation, block, &vmbuffer);
    4622             : 
    4623      169906 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4624             : 
    4625      169906 :     page = BufferGetPage(*buffer);
    4626      169906 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4627             :     Assert(ItemIdIsNormal(lp));
    4628             : 
    4629      169906 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4630      169906 :     tuple->t_len = ItemIdGetLength(lp);
    4631      169906 :     tuple->t_tableOid = RelationGetRelid(relation);
    4632             : 
    4633          28 : l3:
    4634      169934 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4635             : 
    4636      169934 :     if (result == TM_Invisible)
    4637             :     {
    4638             :         /*
    4639             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4640             :          * UPDATE.  We return this value here rather than throwing an error in
    4641             :          * order to give that case the opportunity to throw a more specific
    4642             :          * error.
    4643             :          */
    4644          24 :         result = TM_Invisible;
    4645          24 :         goto out_locked;
    4646             :     }
    4647      169910 :     else if (result == TM_BeingModified ||
    4648      154136 :              result == TM_Updated ||
    4649             :              result == TM_Deleted)
    4650             :     {
    4651             :         TransactionId xwait;
    4652             :         uint16      infomask;
    4653             :         uint16      infomask2;
    4654             :         bool        require_sleep;
    4655             :         ItemPointerData t_ctid;
    4656             : 
    4657             :         /* must copy state data before unlocking buffer */
    4658       15776 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4659       15776 :         infomask = tuple->t_data->t_infomask;
    4660       15776 :         infomask2 = tuple->t_data->t_infomask2;
    4661       15776 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4662             : 
    4663       15776 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4664             : 
    4665             :         /*
    4666             :          * If any subtransaction of the current top transaction already holds
    4667             :          * a lock as strong as or stronger than what we're requesting, we
    4668             :          * effectively hold the desired lock already.  We *must* succeed
    4669             :          * without trying to take the tuple lock, else we will deadlock
    4670             :          * against anyone wanting to acquire a stronger lock.
    4671             :          *
    4672             :          * Note we only do this the first time we loop on the HTSU result;
    4673             :          * there is no point in testing in subsequent passes, because
    4674             :          * evidently our own transaction cannot have acquired a new lock after
    4675             :          * the first time we checked.
    4676             :          */
    4677       15776 :         if (first_time)
    4678             :         {
    4679       15758 :             first_time = false;
    4680             : 
    4681       15758 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4682             :             {
    4683             :                 int         i;
    4684             :                 int         nmembers;
    4685             :                 MultiXactMember *members;
    4686             : 
    4687             :                 /*
    4688             :                  * We don't need to allow old multixacts here; if that had
    4689             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4690             :                  * MayBeUpdated and we wouldn't be here.
    4691             :                  */
    4692             :                 nmembers =
    4693         156 :                     GetMultiXactIdMembers(xwait, &members, false,
    4694         156 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4695             : 
    4696         466 :                 for (i = 0; i < nmembers; i++)
    4697             :                 {
    4698             :                     /* only consider members of our own transaction */
    4699         338 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4700         240 :                         continue;
    4701             : 
    4702          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4703             :                     {
    4704          28 :                         pfree(members);
    4705          28 :                         result = TM_Ok;
    4706          28 :                         goto out_unlocked;
    4707             :                     }
    4708             :                     else
    4709             :                     {
    4710             :                         /*
    4711             :                          * Disable acquisition of the heavyweight tuple lock.
    4712             :                          * Otherwise, when promoting a weaker lock, we might
    4713             :                          * deadlock with another locker that has acquired the
    4714             :                          * heavyweight tuple lock and is waiting for our
    4715             :                          * transaction to finish.
    4716             :                          *
    4717             :                          * Note that in this case we still need to wait for
    4718             :                          * the multixact if required, to avoid acquiring
    4719             :                          * conflicting locks.
    4720             :                          */
    4721          70 :                         skip_tuple_lock = true;
    4722             :                     }
    4723             :                 }
    4724             : 
    4725         128 :                 if (members)
    4726         128 :                     pfree(members);
    4727             :             }
    4728       15602 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4729             :             {
    4730       13104 :                 switch (mode)
    4731             :                 {
    4732         332 :                     case LockTupleKeyShare:
    4733             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4734             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4735             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4736         332 :                         result = TM_Ok;
    4737         332 :                         goto out_unlocked;
    4738          38 :                     case LockTupleShare:
    4739          50 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4740          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4741             :                         {
    4742          26 :                             result = TM_Ok;
    4743          26 :                             goto out_unlocked;
    4744             :                         }
    4745          12 :                         break;
    4746         130 :                     case LockTupleNoKeyExclusive:
    4747         130 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4748             :                         {
    4749         106 :                             result = TM_Ok;
    4750         106 :                             goto out_unlocked;
    4751             :                         }
    4752          24 :                         break;
    4753       12604 :                     case LockTupleExclusive:
    4754       12604 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4755        2524 :                             infomask2 & HEAP_KEYS_UPDATED)
    4756             :                         {
    4757        2482 :                             result = TM_Ok;
    4758        2482 :                             goto out_unlocked;
    4759             :                         }
    4760       10122 :                         break;
    4761             :                 }
    4762             :             }
    4763             :         }
    4764             : 
    4765             :         /*
    4766             :          * Initially assume that we will have to wait for the locking
    4767             :          * transaction(s) to finish.  We check various cases below in which
    4768             :          * this can be turned off.
    4769             :          */
    4770       12802 :         require_sleep = true;
    4771       12802 :         if (mode == LockTupleKeyShare)
    4772             :         {
    4773             :             /*
    4774             :              * If we're requesting KeyShare, and there's no update present, we
    4775             :              * don't need to wait.  Even if there is an update, we can still
    4776             :              * continue if the key hasn't been modified.
    4777             :              *
    4778             :              * However, if there are updates, we need to walk the update chain
    4779             :              * to mark future versions of the row as locked, too.  That way,
    4780             :              * if somebody deletes that future version, we're protected
    4781             :              * against the key going away.  This locking of future versions
    4782             :              * could block momentarily, if a concurrent transaction is
    4783             :              * deleting a key; or it could return a value to the effect that
    4784             :              * the transaction deleting the key has already committed.  So we
    4785             :              * do this before re-locking the buffer; otherwise this would be
    4786             :              * prone to deadlocks.
    4787             :              *
    4788             :              * Note that the TID we're locking was grabbed before we unlocked
    4789             :              * the buffer.  For it to change while we're not looking, the
    4790             :              * other properties we're testing for below after re-locking the
    4791             :              * buffer would also change, in which case we would restart this
    4792             :              * loop above.
    4793             :              */
    4794        1170 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4795             :             {
    4796             :                 bool        updated;
    4797             : 
    4798        1084 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4799             : 
    4800             :                 /*
    4801             :                  * If there are updates, follow the update chain; bail out if
    4802             :                  * that cannot be done.
    4803             :                  */
    4804        1084 :                 if (follow_updates && updated)
    4805             :                 {
    4806             :                     TM_Result   res;
    4807             : 
    4808         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4809             :                                                   GetCurrentTransactionId(),
    4810             :                                                   mode);
    4811         100 :                     if (res != TM_Ok)
    4812             :                     {
    4813          12 :                         result = res;
    4814             :                         /* recovery code expects to have buffer lock held */
    4815          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4816         380 :                         goto failed;
    4817             :                     }
    4818             :                 }
    4819             : 
    4820        1072 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4821             : 
    4822             :                 /*
    4823             :                  * Make sure it's still an appropriate lock, else start over.
    4824             :                  * Also, if it wasn't updated before we released the lock, but
    4825             :                  * is updated now, we start over too; the reason is that we
    4826             :                  * now need to follow the update chain to lock the new
    4827             :                  * versions.
    4828             :                  */
    4829        1072 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4830          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4831          86 :                      !updated))
    4832          28 :                     goto l3;
    4833             : 
    4834             :                 /* Things look okay, so we can skip sleeping */
    4835        1072 :                 require_sleep = false;
    4836             : 
    4837             :                 /*
    4838             :                  * Note we allow Xmax to change here; other updaters/lockers
    4839             :                  * could have modified it before we grabbed the buffer lock.
    4840             :                  * However, this is not a problem, because with the recheck we
    4841             :                  * just did we ensure that they still don't conflict with the
    4842             :                  * lock we want.
    4843             :                  */
    4844             :             }
    4845             :         }
    4846       11632 :         else if (mode == LockTupleShare)
    4847             :         {
    4848             :             /*
    4849             :              * If we're requesting Share, we can similarly avoid sleeping if
    4850             :              * there's no update and no exclusive lock present.
    4851             :              */
    4852         886 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4853         886 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4854             :             {
    4855         874 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4856             : 
    4857             :                 /*
    4858             :                  * Make sure it's still an appropriate lock, else start over.
    4859             :                  * See above about allowing xmax to change.
    4860             :                  */
    4861        1748 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4862         874 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4863           0 :                     goto l3;
    4864         874 :                 require_sleep = false;
    4865             :             }
    4866             :         }
    4867       10746 :         else if (mode == LockTupleNoKeyExclusive)
    4868             :         {
    4869             :             /*
    4870             :              * If we're requesting NoKeyExclusive, we might also be able to
    4871             :              * avoid sleeping; just ensure that there no conflicting lock
    4872             :              * already acquired.
    4873             :              */
    4874         326 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4875             :             {
    4876          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4877             :                                              mode, NULL))
    4878             :                 {
    4879             :                     /*
    4880             :                      * No conflict, but if the xmax changed under us in the
    4881             :                      * meantime, start over.
    4882             :                      */
    4883          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4884          52 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4885          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4886             :                                              xwait))
    4887           0 :                         goto l3;
    4888             : 
    4889             :                     /* otherwise, we're good */
    4890          26 :                     require_sleep = false;
    4891             :                 }
    4892             :             }
    4893         274 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4894             :             {
    4895          36 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4896             : 
    4897             :                 /* if the xmax changed in the meantime, start over */
    4898          72 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4899          36 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4900             :                                          xwait))
    4901           0 :                     goto l3;
    4902             :                 /* otherwise, we're good */
    4903          36 :                 require_sleep = false;
    4904             :             }
    4905             :         }
    4906             : 
    4907             :         /*
    4908             :          * As a check independent from those above, we can also avoid sleeping
    4909             :          * if the current transaction is the sole locker of the tuple.  Note
    4910             :          * that the strength of the lock already held is irrelevant; this is
    4911             :          * not about recording the lock in Xmax (which will be done regardless
    4912             :          * of this optimization, below).  Also, note that the cases where we
    4913             :          * hold a lock stronger than we are requesting are already handled
    4914             :          * above by not doing anything.
    4915             :          *
    4916             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4917             :          * is well equipped to deal with this situation on its own.
    4918             :          */
    4919       23490 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4920       10700 :             TransactionIdIsCurrentTransactionId(xwait))
    4921             :         {
    4922             :             /* ... but if the xmax changed in the meantime, start over */
    4923       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4924       20244 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4925       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4926             :                                      xwait))
    4927           0 :                 goto l3;
    4928             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4929       10122 :             require_sleep = false;
    4930             :         }
    4931             : 
    4932             :         /*
    4933             :          * Time to sleep on the other transaction/multixact, if necessary.
    4934             :          *
    4935             :          * If the other transaction is an update/delete that's already
    4936             :          * committed, then sleeping cannot possibly do any good: if we're
    4937             :          * required to sleep, get out to raise an error instead.
    4938             :          *
    4939             :          * By here, we either have already acquired the buffer exclusive lock,
    4940             :          * or we must wait for the locking transaction or multixact; so below
    4941             :          * we ensure that we grab buffer lock after the sleep.
    4942             :          */
    4943       12790 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4944             :         {
    4945         292 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4946         292 :             goto failed;
    4947             :         }
    4948       12498 :         else if (require_sleep)
    4949             :         {
    4950             :             /*
    4951             :              * Acquire tuple lock to establish our priority for the tuple, or
    4952             :              * die trying.  LockTuple will release us when we are next-in-line
    4953             :              * for the tuple.  We must do this even if we are share-locking,
    4954             :              * but not if we already have a weaker lock on the tuple.
    4955             :              *
    4956             :              * If we are forced to "start over" below, we keep the tuple lock;
    4957             :              * this arranges that we stay at the head of the line while
    4958             :              * rechecking tuple state.
    4959             :              */
    4960         368 :             if (!skip_tuple_lock &&
    4961         336 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4962             :                                       &have_tuple_lock))
    4963             :             {
    4964             :                 /*
    4965             :                  * This can only happen if wait_policy is Skip and the lock
    4966             :                  * couldn't be obtained.
    4967             :                  */
    4968           2 :                 result = TM_WouldBlock;
    4969             :                 /* recovery code expects to have buffer lock held */
    4970           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4971           2 :                 goto failed;
    4972             :             }
    4973             : 
    4974         364 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4975             :             {
    4976          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4977             : 
    4978             :                 /* We only ever lock tuples, never update them */
    4979          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4980           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4981             : 
    4982             :                 /* wait for multixact to end, or die trying  */
    4983          80 :                 switch (wait_policy)
    4984             :                 {
    4985          72 :                     case LockWaitBlock:
    4986          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4987             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4988          72 :                         break;
    4989           4 :                     case LockWaitSkip:
    4990           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4991             :                                                         status, infomask, relation,
    4992             :                                                         NULL, false))
    4993             :                         {
    4994           4 :                             result = TM_WouldBlock;
    4995             :                             /* recovery code expects to have buffer lock held */
    4996           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4997           4 :                             goto failed;
    4998             :                         }
    4999           0 :                         break;
    5000           4 :                     case LockWaitError:
    5001           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    5002             :                                                         status, infomask, relation,
    5003             :                                                         NULL, log_lock_failures))
    5004           4 :                             ereport(ERROR,
    5005             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5006             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5007             :                                             RelationGetRelationName(relation))));
    5008             : 
    5009           0 :                         break;
    5010             :                 }
    5011             : 
    5012             :                 /*
    5013             :                  * Of course, the multixact might not be done here: if we're
    5014             :                  * requesting a light lock mode, other transactions with light
    5015             :                  * locks could still be alive, as well as locks owned by our
    5016             :                  * own xact or other subxacts of this backend.  We need to
    5017             :                  * preserve the surviving MultiXact members.  Note that it
    5018             :                  * isn't absolutely necessary in the latter case, but doing so
    5019             :                  * is simpler.
    5020             :                  */
    5021             :             }
    5022             :             else
    5023             :             {
    5024             :                 /* wait for regular transaction to end, or die trying */
    5025         284 :                 switch (wait_policy)
    5026             :                 {
    5027         206 :                     case LockWaitBlock:
    5028         206 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    5029             :                                           XLTW_Lock);
    5030         206 :                         break;
    5031          66 :                     case LockWaitSkip:
    5032          66 :                         if (!ConditionalXactLockTableWait(xwait, false))
    5033             :                         {
    5034          66 :                             result = TM_WouldBlock;
    5035             :                             /* recovery code expects to have buffer lock held */
    5036          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5037          66 :                             goto failed;
    5038             :                         }
    5039           0 :                         break;
    5040          12 :                     case LockWaitError:
    5041          12 :                         if (!ConditionalXactLockTableWait(xwait, log_lock_failures))
    5042          12 :                             ereport(ERROR,
    5043             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5044             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    5045             :                                             RelationGetRelationName(relation))));
    5046           0 :                         break;
    5047             :                 }
    5048             :             }
    5049             : 
    5050             :             /* if there are updates, follow the update chain */
    5051         278 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    5052             :             {
    5053             :                 TM_Result   res;
    5054             : 
    5055         106 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    5056             :                                               GetCurrentTransactionId(),
    5057             :                                               mode);
    5058         106 :                 if (res != TM_Ok)
    5059             :                 {
    5060           4 :                     result = res;
    5061             :                     /* recovery code expects to have buffer lock held */
    5062           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5063           4 :                     goto failed;
    5064             :                 }
    5065             :             }
    5066             : 
    5067         274 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5068             : 
    5069             :             /*
    5070             :              * xwait is done, but if xwait had just locked the tuple then some
    5071             :              * other xact could update this tuple before we get to this point.
    5072             :              * Check for xmax change, and start over if so.
    5073             :              */
    5074         524 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    5075         250 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    5076             :                                      xwait))
    5077          28 :                 goto l3;
    5078             : 
    5079         246 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    5080             :             {
    5081             :                 /*
    5082             :                  * Otherwise check if it committed or aborted.  Note we cannot
    5083             :                  * be here if the tuple was only locked by somebody who didn't
    5084             :                  * conflict with us; that would have been handled above.  So
    5085             :                  * that transaction must necessarily be gone by now.  But
    5086             :                  * don't check for this in the multixact case, because some
    5087             :                  * locker transactions might still be running.
    5088             :                  */
    5089         184 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    5090             :             }
    5091             :         }
    5092             : 
    5093             :         /* By here, we're certain that we hold buffer exclusive lock again */
    5094             : 
    5095             :         /*
    5096             :          * We may lock if previous xmax aborted, or if it committed but only
    5097             :          * locked the tuple without updating it; or if we didn't have to wait
    5098             :          * at all for whatever reason.
    5099             :          */
    5100       12376 :         if (!require_sleep ||
    5101         432 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    5102         342 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    5103         156 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    5104       12232 :             result = TM_Ok;
    5105         144 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    5106         108 :             result = TM_Updated;
    5107             :         else
    5108          36 :             result = TM_Deleted;
    5109             :     }
    5110             : 
    5111      154134 : failed:
    5112      166890 :     if (result != TM_Ok)
    5113             :     {
    5114             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    5115             :                result == TM_Deleted || result == TM_WouldBlock);
    5116             : 
    5117             :         /*
    5118             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    5119             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    5120             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    5121             :          * this assert is slightly different from the equivalent one in
    5122             :          * heap_delete and heap_update.
    5123             :          */
    5124             :         Assert((result == TM_WouldBlock) ||
    5125             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    5126             :         Assert(result != TM_Updated ||
    5127             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    5128         536 :         tmfd->ctid = tuple->t_data->t_ctid;
    5129         536 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    5130         536 :         if (result == TM_SelfModified)
    5131          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    5132             :         else
    5133         524 :             tmfd->cmax = InvalidCommandId;
    5134         536 :         goto out_locked;
    5135             :     }
    5136             : 
    5137             :     /*
    5138             :      * If we didn't pin the visibility map page and the page has become all
    5139             :      * visible while we were busy locking the buffer, or during some
    5140             :      * subsequent window during which we had it unlocked, we'll have to unlock
    5141             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5142             :      * unfortunate, especially since we'll now have to recheck whether the
    5143             :      * tuple has been locked or updated under us, but hopefully it won't
    5144             :      * happen very often.
    5145             :      */
    5146      166354 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5147             :     {
    5148           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5149           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5150           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5151           0 :         goto l3;
    5152             :     }
    5153             : 
    5154      166354 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5155      166354 :     old_infomask = tuple->t_data->t_infomask;
    5156             : 
    5157             :     /*
    5158             :      * If this is the first possibly-multixact-able operation in the current
    5159             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5160             :      * certain that the transaction will never become a member of any older
    5161             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5162             :      * using our own TransactionId below, since some other backend could
    5163             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5164             :      */
    5165      166354 :     MultiXactIdSetOldestMember();
    5166             : 
    5167             :     /*
    5168             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5169             :      * not modify the tuple just yet, because that would leave it in the wrong
    5170             :      * state if multixact.c elogs.
    5171             :      */
    5172      166354 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5173             :                               GetCurrentTransactionId(), mode, false,
    5174             :                               &xid, &new_infomask, &new_infomask2);
    5175             : 
    5176      166354 :     START_CRIT_SECTION();
    5177             : 
    5178             :     /*
    5179             :      * Store transaction information of xact locking the tuple.
    5180             :      *
    5181             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5182             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5183             :      * previously updated tuple, it's important to preserve the Cmax.
    5184             :      *
    5185             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5186             :      * we would break the HOT chain.
    5187             :      */
    5188      166354 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5189      166354 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5190      166354 :     tuple->t_data->t_infomask |= new_infomask;
    5191      166354 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5192      166354 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5193      166276 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5194      166354 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5195             : 
    5196             :     /*
    5197             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5198             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5199             :      * because it was set by the updater.  Moreover, if the tuple has been
    5200             :      * updated, we need to follow the update chain to lock the new versions of
    5201             :      * the tuple as well.
    5202             :      */
    5203      166354 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5204      166276 :         tuple->t_data->t_ctid = *tid;
    5205             : 
    5206             :     /* Clear only the all-frozen bit on visibility map if needed */
    5207      169688 :     if (PageIsAllVisible(page) &&
    5208        3334 :         visibilitymap_clear(relation, block, vmbuffer,
    5209             :                             VISIBILITYMAP_ALL_FROZEN))
    5210          30 :         cleared_all_frozen = true;
    5211             : 
    5212             : 
    5213      166354 :     MarkBufferDirty(*buffer);
    5214             : 
    5215             :     /*
    5216             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5217             :      * there is no state change worth restoring after a crash.  You would be
    5218             :      * wrong however: we have just written either a TransactionId or a
    5219             :      * MultiXactId that may never have been seen on disk before, and we need
    5220             :      * to make sure that there are XLOG entries covering those ID numbers.
    5221             :      * Else the same IDs might be re-used after a crash, which would be
    5222             :      * disastrous if this page made it to disk before the crash.  Essentially
    5223             :      * we have to enforce the WAL log-before-data rule even in this case.
    5224             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5225             :      * entries for everything anyway.)
    5226             :      */
    5227      166354 :     if (RelationNeedsWAL(relation))
    5228             :     {
    5229             :         xl_heap_lock xlrec;
    5230             :         XLogRecPtr  recptr;
    5231             : 
    5232      165666 :         XLogBeginInsert();
    5233      165666 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5234             : 
    5235      165666 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5236      165666 :         xlrec.xmax = xid;
    5237      331332 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5238      165666 :                                               tuple->t_data->t_infomask2);
    5239      165666 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5240      165666 :         XLogRegisterData(&xlrec, SizeOfHeapLock);
    5241             : 
    5242             :         /* we don't decode row locks atm, so no need to log the origin */
    5243             : 
    5244      165666 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5245             : 
    5246      165666 :         PageSetLSN(page, recptr);
    5247             :     }
    5248             : 
    5249      166354 :     END_CRIT_SECTION();
    5250             : 
    5251      166354 :     result = TM_Ok;
    5252             : 
    5253      166914 : out_locked:
    5254      166914 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5255             : 
    5256      169888 : out_unlocked:
    5257      169888 :     if (BufferIsValid(vmbuffer))
    5258        3334 :         ReleaseBuffer(vmbuffer);
    5259             : 
    5260             :     /*
    5261             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5262             :      * visibility info.
    5263             :      */
    5264             : 
    5265             :     /*
    5266             :      * Now that we have successfully marked the tuple as locked, we can
    5267             :      * release the lmgr tuple lock, if we had it.
    5268             :      */
    5269      169888 :     if (have_tuple_lock)
    5270         306 :         UnlockTupleTuplock(relation, tid, mode);
    5271             : 
    5272      169888 :     return result;
    5273             : }
    5274             : 
    5275             : /*
    5276             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5277             :  * its normal, Xmax-based tuple lock.
    5278             :  *
    5279             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5280             :  * whether the lock has previously been acquired (and this function does
    5281             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5282             :  * has been flipped to true.
    5283             :  *
    5284             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5285             :  * wait_policy is Skip.
    5286             :  */
    5287             : static bool
    5288         602 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5289             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5290             : {
    5291         602 :     if (*have_tuple_lock)
    5292          18 :         return true;
    5293             : 
    5294         584 :     switch (wait_policy)
    5295             :     {
    5296         502 :         case LockWaitBlock:
    5297         502 :             LockTupleTuplock(relation, tid, mode);
    5298         502 :             break;
    5299             : 
    5300          68 :         case LockWaitSkip:
    5301          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, false))
    5302           2 :                 return false;
    5303          66 :             break;
    5304             : 
    5305          14 :         case LockWaitError:
    5306          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode, log_lock_failures))
    5307           2 :                 ereport(ERROR,
    5308             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5309             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5310             :                                 RelationGetRelationName(relation))));
    5311          12 :             break;
    5312             :     }
    5313         580 :     *have_tuple_lock = true;
    5314             : 
    5315         580 :     return true;
    5316             : }
    5317             : 
    5318             : /*
    5319             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5320             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5321             :  * corresponding infomasks to use on the tuple.
    5322             :  *
    5323             :  * Note that this might have side effects such as creating a new MultiXactId.
    5324             :  *
    5325             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5326             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5327             :  * but it was not running anymore. There is a race condition, which is that the
    5328             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5329             :  * either here, or within MultiXactIdExpand.
    5330             :  *
    5331             :  * There is a similar race condition possible when the old xmax was a regular
    5332             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5333             :  * window, but it's still possible to end up creating an unnecessary
    5334             :  * MultiXactId.  Fortunately this is harmless.
    5335             :  */
    5336             : static void
    5337     4064498 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5338             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5339             :                           LockTupleMode mode, bool is_update,
    5340             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5341             :                           uint16 *result_infomask2)
    5342             : {
    5343             :     TransactionId new_xmax;
    5344             :     uint16      new_infomask,
    5345             :                 new_infomask2;
    5346             : 
    5347             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5348             : 
    5349      207902 : l5:
    5350     4272400 :     new_infomask = 0;
    5351     4272400 :     new_infomask2 = 0;
    5352     4272400 :     if (old_infomask & HEAP_XMAX_INVALID)
    5353             :     {
    5354             :         /*
    5355             :          * No previous locker; we just insert our own TransactionId.
    5356             :          *
    5357             :          * Note that it's critical that this case be the first one checked,
    5358             :          * because there are several blocks below that come back to this one
    5359             :          * to implement certain optimizations; old_infomask might contain
    5360             :          * other dirty bits in those cases, but we don't really care.
    5361             :          */
    5362     4062252 :         if (is_update)
    5363             :         {
    5364     3597368 :             new_xmax = add_to_xmax;
    5365     3597368 :             if (mode == LockTupleExclusive)
    5366     3060812 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5367             :         }
    5368             :         else
    5369             :         {
    5370      464884 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5371      464884 :             switch (mode)
    5372             :             {
    5373        5144 :                 case LockTupleKeyShare:
    5374        5144 :                     new_xmax = add_to_xmax;
    5375        5144 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5376        5144 :                     break;
    5377        1472 :                 case LockTupleShare:
    5378        1472 :                     new_xmax = add_to_xmax;
    5379        1472 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5380        1472 :                     break;
    5381      266936 :                 case LockTupleNoKeyExclusive:
    5382      266936 :                     new_xmax = add_to_xmax;
    5383      266936 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5384      266936 :                     break;
    5385      191332 :                 case LockTupleExclusive:
    5386      191332 :                     new_xmax = add_to_xmax;
    5387      191332 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5388      191332 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5389      191332 :                     break;
    5390           0 :                 default:
    5391           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5392           0 :                     elog(ERROR, "invalid lock mode");
    5393             :             }
    5394             :         }
    5395             :     }
    5396      210148 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5397             :     {
    5398             :         MultiXactStatus new_status;
    5399             : 
    5400             :         /*
    5401             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5402             :          * cross-check.
    5403             :          */
    5404             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5405             : 
    5406             :         /*
    5407             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5408             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5409             :          * anymore.  This check is critical for databases upgraded by
    5410             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5411             :          * that such multis are never passed.
    5412             :          */
    5413         230 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5414             :         {
    5415           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5416           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5417           0 :             goto l5;
    5418             :         }
    5419             : 
    5420             :         /*
    5421             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5422             :          * include add_to_xmax; but if all the members were lockers and are
    5423             :          * all gone, we can do away with the IS_MULTI bit and just set
    5424             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5425             :          * and we have an updater that aborted, we can also do without a
    5426             :          * multi.
    5427             :          *
    5428             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5429             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5430             :          * incurring extra work anyhow.
    5431             :          */
    5432         230 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5433             :         {
    5434          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5435          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5436             :                                                                 old_infomask)))
    5437             :             {
    5438             :                 /*
    5439             :                  * Reset these bits and restart; otherwise fall through to
    5440             :                  * create a new multi below.
    5441             :                  */
    5442          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5443          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5444          46 :                 goto l5;
    5445             :             }
    5446             :         }
    5447             : 
    5448         184 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5449             : 
    5450         184 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5451             :                                      new_status);
    5452         184 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5453             :     }
    5454      209918 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5455             :     {
    5456             :         /*
    5457             :          * It's a committed update, so we need to preserve him as updater of
    5458             :          * the tuple.
    5459             :          */
    5460             :         MultiXactStatus status;
    5461             :         MultiXactStatus new_status;
    5462             : 
    5463          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5464           0 :             status = MultiXactStatusUpdate;
    5465             :         else
    5466          26 :             status = MultiXactStatusNoKeyUpdate;
    5467             : 
    5468          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5469             : 
    5470             :         /*
    5471             :          * since it's not running, it's obviously impossible for the old
    5472             :          * updater to be identical to the current one, so we need not check
    5473             :          * for that case as we do in the block above.
    5474             :          */
    5475          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5476          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5477             :     }
    5478      209892 :     else if (TransactionIdIsInProgress(xmax))
    5479             :     {
    5480             :         /*
    5481             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5482             :          * create a new MultiXactId that includes both the old locker or
    5483             :          * updater and our own TransactionId.
    5484             :          */
    5485             :         MultiXactStatus new_status;
    5486             :         MultiXactStatus old_status;
    5487             :         LockTupleMode old_mode;
    5488             : 
    5489      209874 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5490             :         {
    5491      209822 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5492       11236 :                 old_status = MultiXactStatusForKeyShare;
    5493      198586 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5494         866 :                 old_status = MultiXactStatusForShare;
    5495      197720 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5496             :             {
    5497      197720 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5498      185448 :                     old_status = MultiXactStatusForUpdate;
    5499             :                 else
    5500       12272 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5501             :             }
    5502             :             else
    5503             :             {
    5504             :                 /*
    5505             :                  * LOCK_ONLY can be present alone only when a page has been
    5506             :                  * upgraded by pg_upgrade.  But in that case,
    5507             :                  * TransactionIdIsInProgress() should have returned false.  We
    5508             :                  * assume it's no longer locked in this case.
    5509             :                  */
    5510           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5511           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5512           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5513           0 :                 goto l5;
    5514             :             }
    5515             :         }
    5516             :         else
    5517             :         {
    5518             :             /* it's an update, but which kind? */
    5519          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5520           0 :                 old_status = MultiXactStatusUpdate;
    5521             :             else
    5522          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5523             :         }
    5524             : 
    5525      209874 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5526             : 
    5527             :         /*
    5528             :          * If the lock to be acquired is for the same TransactionId as the
    5529             :          * existing lock, there's an optimization possible: consider only the
    5530             :          * strongest of both locks as the only one present, and restart.
    5531             :          */
    5532      209874 :         if (xmax == add_to_xmax)
    5533             :         {
    5534             :             /*
    5535             :              * Note that it's not possible for the original tuple to be
    5536             :              * updated: we wouldn't be here because the tuple would have been
    5537             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5538             :              * this code can also run when traversing an update chain to lock
    5539             :              * future versions of a tuple.  But we wouldn't be here either,
    5540             :              * because the add_to_xmax would be different from the original
    5541             :              * updater.
    5542             :              */
    5543             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5544             : 
    5545             :             /* acquire the strongest of both */
    5546      207840 :             if (mode < old_mode)
    5547      104372 :                 mode = old_mode;
    5548             :             /* mustn't touch is_update */
    5549             : 
    5550      207840 :             old_infomask |= HEAP_XMAX_INVALID;
    5551      207840 :             goto l5;
    5552             :         }
    5553             : 
    5554             :         /* otherwise, just fall back to creating a new multixact */
    5555        2034 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5556        2034 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5557             :                                      add_to_xmax, new_status);
    5558        2034 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5559             :     }
    5560          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5561          10 :              TransactionIdDidCommit(xmax))
    5562           2 :     {
    5563             :         /*
    5564             :          * It's a committed update, so we gotta preserve him as updater of the
    5565             :          * tuple.
    5566             :          */
    5567             :         MultiXactStatus status;
    5568             :         MultiXactStatus new_status;
    5569             : 
    5570           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5571           0 :             status = MultiXactStatusUpdate;
    5572             :         else
    5573           2 :             status = MultiXactStatusNoKeyUpdate;
    5574             : 
    5575           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5576             : 
    5577             :         /*
    5578             :          * since it's not running, it's obviously impossible for the old
    5579             :          * updater to be identical to the current one, so we need not check
    5580             :          * for that case as we do in the block above.
    5581             :          */
    5582           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5583           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5584             :     }
    5585             :     else
    5586             :     {
    5587             :         /*
    5588             :          * Can get here iff the locking/updating transaction was running when
    5589             :          * the infomask was extracted from the tuple, but finished before
    5590             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5591             :          * no locker at all in the first place.
    5592             :          */
    5593          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5594          16 :         goto l5;
    5595             :     }
    5596             : 
    5597     4064498 :     *result_infomask = new_infomask;
    5598     4064498 :     *result_infomask2 = new_infomask2;
    5599     4064498 :     *result_xmax = new_xmax;
    5600     4064498 : }
    5601             : 
    5602             : /*
    5603             :  * Subroutine for heap_lock_updated_tuple_rec.
    5604             :  *
    5605             :  * Given a hypothetical multixact status held by the transaction identified
    5606             :  * with the given xid, does the current transaction need to wait, fail, or can
    5607             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5608             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5609             :  * returned.  If the lock is already held by the current transaction, return
    5610             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5611             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5612             :  *
    5613             :  * The held status is said to be hypothetical because it might correspond to a
    5614             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5615             :  * way for simplicity of API.
    5616             :  */
    5617             : static TM_Result
    5618          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5619             :                            LockTupleMode mode, HeapTuple tup,
    5620             :                            bool *needwait)
    5621             : {
    5622             :     MultiXactStatus wantedstatus;
    5623             : 
    5624          64 :     *needwait = false;
    5625          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5626             : 
    5627             :     /*
    5628             :      * Note: we *must* check TransactionIdIsInProgress before
    5629             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5630             :      * for an explanation.
    5631             :      */
    5632          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5633             :     {
    5634             :         /*
    5635             :          * The tuple has already been locked by our own transaction.  This is
    5636             :          * very rare but can happen if multiple transactions are trying to
    5637             :          * lock an ancient version of the same tuple.
    5638             :          */
    5639           0 :         return TM_SelfModified;
    5640             :     }
    5641          64 :     else if (TransactionIdIsInProgress(xid))
    5642             :     {
    5643             :         /*
    5644             :          * If the locking transaction is running, what we do depends on
    5645             :          * whether the lock modes conflict: if they do, then we must wait for
    5646             :          * it to finish; otherwise we can fall through to lock this tuple
    5647             :          * version without waiting.
    5648             :          */
    5649          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5650          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5651             :         {
    5652          16 :             *needwait = true;
    5653             :         }
    5654             : 
    5655             :         /*
    5656             :          * If we set needwait above, then this value doesn't matter;
    5657             :          * otherwise, this value signals to caller that it's okay to proceed.
    5658             :          */
    5659          32 :         return TM_Ok;
    5660             :     }
    5661          32 :     else if (TransactionIdDidAbort(xid))
    5662           6 :         return TM_Ok;
    5663          26 :     else if (TransactionIdDidCommit(xid))
    5664             :     {
    5665             :         /*
    5666             :          * The other transaction committed.  If it was only a locker, then the
    5667             :          * lock is completely gone now and we can return success; but if it
    5668             :          * was an update, then what we do depends on whether the two lock
    5669             :          * modes conflict.  If they conflict, then we must report error to
    5670             :          * caller. But if they don't, we can fall through to allow the current
    5671             :          * transaction to lock the tuple.
    5672             :          *
    5673             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5674             :          * a transaction ends, all its locks are gone and meaningless, and
    5675             :          * thus we can ignore them; whereas its updates persist.  In the
    5676             :          * TransactionIdIsInProgress case, above, we don't need to check
    5677             :          * because we know the lock is still "alive" and thus a conflict needs
    5678             :          * always be checked.
    5679             :          */
    5680          26 :         if (!ISUPDATE_from_mxstatus(status))
    5681           8 :             return TM_Ok;
    5682             : 
    5683          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5684          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5685             :         {
    5686             :             /* bummer */
    5687          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5688          12 :                 return TM_Updated;
    5689             :             else
    5690           4 :                 return TM_Deleted;
    5691             :         }
    5692             : 
    5693           2 :         return TM_Ok;
    5694             :     }
    5695             : 
    5696             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5697           0 :     return TM_Ok;
    5698             : }
    5699             : 
    5700             : 
    5701             : /*
    5702             :  * Recursive part of heap_lock_updated_tuple
    5703             :  *
    5704             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5705             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5706             :  * version as well.
    5707             :  */
    5708             : static TM_Result
    5709         176 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5710             :                             LockTupleMode mode)
    5711             : {
    5712             :     TM_Result   result;
    5713             :     ItemPointerData tupid;
    5714             :     HeapTupleData mytup;
    5715             :     Buffer      buf;
    5716             :     uint16      new_infomask,
    5717             :                 new_infomask2,
    5718             :                 old_infomask,
    5719             :                 old_infomask2;
    5720             :     TransactionId xmax,
    5721             :                 new_xmax;
    5722         176 :     TransactionId priorXmax = InvalidTransactionId;
    5723         176 :     bool        cleared_all_frozen = false;
    5724             :     bool        pinned_desired_page;
    5725         176 :     Buffer      vmbuffer = InvalidBuffer;
    5726             :     BlockNumber block;
    5727             : 
    5728         176 :     ItemPointerCopy(tid, &tupid);
    5729             : 
    5730             :     for (;;)
    5731             :     {
    5732         182 :         new_infomask = 0;
    5733         182 :         new_xmax = InvalidTransactionId;
    5734         182 :         block = ItemPointerGetBlockNumber(&tupid);
    5735         182 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5736             : 
    5737         182 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5738             :         {
    5739             :             /*
    5740             :              * if we fail to find the updated version of the tuple, it's
    5741             :              * because it was vacuumed/pruned away after its creator
    5742             :              * transaction aborted.  So behave as if we got to the end of the
    5743             :              * chain, and there's no further tuple to lock: return success to
    5744             :              * caller.
    5745             :              */
    5746           0 :             result = TM_Ok;
    5747           0 :             goto out_unlocked;
    5748             :         }
    5749             : 
    5750         182 : l4:
    5751         198 :         CHECK_FOR_INTERRUPTS();
    5752             : 
    5753             :         /*
    5754             :          * Before locking the buffer, pin the visibility map page if it
    5755             :          * appears to be necessary.  Since we haven't got the lock yet,
    5756             :          * someone else might be in the middle of changing this, so we'll need
    5757             :          * to recheck after we have the lock.
    5758             :          */
    5759         198 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5760             :         {
    5761           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5762           0 :             pinned_desired_page = true;
    5763             :         }
    5764             :         else
    5765         198 :             pinned_desired_page = false;
    5766             : 
    5767         198 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5768             : 
    5769             :         /*
    5770             :          * If we didn't pin the visibility map page and the page has become
    5771             :          * all visible while we were busy locking the buffer, we'll have to
    5772             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5773             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5774             :          *
    5775             :          * Note: in some paths through this function, we will reach here
    5776             :          * holding a pin on a vm page that may or may not be the one matching
    5777             :          * this page.  If this page isn't all-visible, we won't use the vm
    5778             :          * page, but we hold onto such a pin till the end of the function.
    5779             :          */
    5780         198 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5781             :         {
    5782           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5783           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5784           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5785             :         }
    5786             : 
    5787             :         /*
    5788             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5789             :          * end of the chain, we're done, so return success.
    5790             :          */
    5791         204 :         if (TransactionIdIsValid(priorXmax) &&
    5792           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5793             :                                  priorXmax))
    5794             :         {
    5795           0 :             result = TM_Ok;
    5796           0 :             goto out_locked;
    5797             :         }
    5798             : 
    5799             :         /*
    5800             :          * Also check Xmin: if this tuple was created by an aborted
    5801             :          * (sub)transaction, then we already locked the last live one in the
    5802             :          * chain, thus we're done, so return success.
    5803             :          */
    5804         198 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5805             :         {
    5806          26 :             result = TM_Ok;
    5807          26 :             goto out_locked;
    5808             :         }
    5809             : 
    5810         172 :         old_infomask = mytup.t_data->t_infomask;
    5811         172 :         old_infomask2 = mytup.t_data->t_infomask2;
    5812         172 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5813             : 
    5814             :         /*
    5815             :          * If this tuple version has been updated or locked by some concurrent
    5816             :          * transaction(s), what we do depends on whether our lock mode
    5817             :          * conflicts with what those other transactions hold, and also on the
    5818             :          * status of them.
    5819             :          */
    5820         172 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5821             :         {
    5822             :             TransactionId rawxmax;
    5823             :             bool        needwait;
    5824             : 
    5825          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5826          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5827             :             {
    5828             :                 int         nmembers;
    5829             :                 int         i;
    5830             :                 MultiXactMember *members;
    5831             : 
    5832             :                 /*
    5833             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5834             :                  * applied to tuples after the first in an update chain.  Said
    5835             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5836             :                  * pg_upgraded, but that one was already locked by our caller,
    5837             :                  * not us; and any subsequent ones cannot be because our
    5838             :                  * caller must necessarily have obtained a snapshot later than
    5839             :                  * the pg_upgrade itself.
    5840             :                  */
    5841             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5842             : 
    5843           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5844           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5845           8 :                 for (i = 0; i < nmembers; i++)
    5846             :                 {
    5847           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5848           6 :                                                         members[i].xid,
    5849             :                                                         mode,
    5850             :                                                         &mytup,
    5851             :                                                         &needwait);
    5852             : 
    5853             :                     /*
    5854             :                      * If the tuple was already locked by ourselves in a
    5855             :                      * previous iteration of this (say heap_lock_tuple was
    5856             :                      * forced to restart the locking loop because of a change
    5857             :                      * in xmax), then we hold the lock already on this tuple
    5858             :                      * version and we don't need to do anything; and this is
    5859             :                      * not an error condition either.  We just need to skip
    5860             :                      * this tuple and continue locking the next version in the
    5861             :                      * update chain.
    5862             :                      */
    5863           6 :                     if (result == TM_SelfModified)
    5864             :                     {
    5865           0 :                         pfree(members);
    5866           0 :                         goto next;
    5867             :                     }
    5868             : 
    5869           6 :                     if (needwait)
    5870             :                     {
    5871           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5872           0 :                         XactLockTableWait(members[i].xid, rel,
    5873             :                                           &mytup.t_self,
    5874             :                                           XLTW_LockUpdated);
    5875           0 :                         pfree(members);
    5876           0 :                         goto l4;
    5877             :                     }
    5878           6 :                     if (result != TM_Ok)
    5879             :                     {
    5880           0 :                         pfree(members);
    5881           0 :                         goto out_locked;
    5882             :                     }
    5883             :                 }
    5884           2 :                 if (members)
    5885           2 :                     pfree(members);
    5886             :             }
    5887             :             else
    5888             :             {
    5889             :                 MultiXactStatus status;
    5890             : 
    5891             :                 /*
    5892             :                  * For a non-multi Xmax, we first need to compute the
    5893             :                  * corresponding MultiXactStatus by using the infomask bits.
    5894             :                  */
    5895          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5896             :                 {
    5897          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5898          20 :                         status = MultiXactStatusForKeyShare;
    5899           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5900           0 :                         status = MultiXactStatusForShare;
    5901           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5902             :                     {
    5903           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5904           0 :                             status = MultiXactStatusForUpdate;
    5905             :                         else
    5906           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5907             :                     }
    5908             :                     else
    5909             :                     {
    5910             :                         /*
    5911             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5912             :                          * as share-locked in the old cluster) shouldn't be
    5913             :                          * seen in the middle of an update chain.
    5914             :                          */
    5915           0 :                         elog(ERROR, "invalid lock status in tuple");
    5916             :                     }
    5917             :                 }
    5918             :                 else
    5919             :                 {
    5920             :                     /* it's an update, but which kind? */
    5921          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5922          28 :                         status = MultiXactStatusUpdate;
    5923             :                     else
    5924          10 :                         status = MultiXactStatusNoKeyUpdate;
    5925             :                 }
    5926             : 
    5927          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5928             :                                                     &mytup, &needwait);
    5929             : 
    5930             :                 /*
    5931             :                  * If the tuple was already locked by ourselves in a previous
    5932             :                  * iteration of this (say heap_lock_tuple was forced to
    5933             :                  * restart the locking loop because of a change in xmax), then
    5934             :                  * we hold the lock already on this tuple version and we don't
    5935             :                  * need to do anything; and this is not an error condition
    5936             :                  * either.  We just need to skip this tuple and continue
    5937             :                  * locking the next version in the update chain.
    5938             :                  */
    5939          58 :                 if (result == TM_SelfModified)
    5940           0 :                     goto next;
    5941             : 
    5942          58 :                 if (needwait)
    5943             :                 {
    5944          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5945          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5946             :                                       XLTW_LockUpdated);
    5947          16 :                     goto l4;
    5948             :                 }
    5949          42 :                 if (result != TM_Ok)
    5950             :                 {
    5951          16 :                     goto out_locked;
    5952             :                 }
    5953             :             }
    5954             :         }
    5955             : 
    5956             :         /* compute the new Xmax and infomask values for the tuple ... */
    5957         140 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5958             :                                   xid, mode, false,
    5959             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5960             : 
    5961         140 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5962           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5963             :                                 VISIBILITYMAP_ALL_FROZEN))
    5964           0 :             cleared_all_frozen = true;
    5965             : 
    5966         140 :         START_CRIT_SECTION();
    5967             : 
    5968             :         /* ... and set them */
    5969         140 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5970         140 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5971         140 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5972         140 :         mytup.t_data->t_infomask |= new_infomask;
    5973         140 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5974             : 
    5975         140 :         MarkBufferDirty(buf);
    5976             : 
    5977             :         /* XLOG stuff */
    5978         140 :         if (RelationNeedsWAL(rel))
    5979             :         {
    5980             :             xl_heap_lock_updated xlrec;
    5981             :             XLogRecPtr  recptr;
    5982         140 :             Page        page = BufferGetPage(buf);
    5983             : 
    5984         140 :             XLogBeginInsert();
    5985         140 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5986             : 
    5987         140 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5988         140 :             xlrec.xmax = new_xmax;
    5989         140 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5990         140 :             xlrec.flags =
    5991         140 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5992             : 
    5993         140 :             XLogRegisterData(&xlrec, SizeOfHeapLockUpdated);
    5994             : 
    5995         140 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5996             : 
    5997         140 :             PageSetLSN(page, recptr);
    5998             :         }
    5999             : 
    6000         140 :         END_CRIT_SECTION();
    6001             : 
    6002         140 : next:
    6003             :         /* if we find the end of update chain, we're done. */
    6004         280 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    6005         280 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    6006         148 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    6007           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    6008             :         {
    6009         134 :             result = TM_Ok;
    6010         134 :             goto out_locked;
    6011             :         }
    6012             : 
    6013             :         /* tail recursion */
    6014           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    6015           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    6016           6 :         UnlockReleaseBuffer(buf);
    6017             :     }
    6018             : 
    6019             :     result = TM_Ok;
    6020             : 
    6021         176 : out_locked:
    6022         176 :     UnlockReleaseBuffer(buf);
    6023             : 
    6024         176 : out_unlocked:
    6025         176 :     if (vmbuffer != InvalidBuffer)
    6026           0 :         ReleaseBuffer(vmbuffer);
    6027             : 
    6028         176 :     return result;
    6029             : }
    6030             : 
    6031             : /*
    6032             :  * heap_lock_updated_tuple
    6033             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    6034             :  *      marks) on the updated versions.
    6035             :  *
    6036             :  * The initial tuple is assumed to be already locked.
    6037             :  *
    6038             :  * This function doesn't check visibility, it just unconditionally marks the
    6039             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    6040             :  * concurrently (or updated with the key being modified), sleep until the
    6041             :  * transaction doing it is finished.
    6042             :  *
    6043             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    6044             :  * when we have to wait for other transactions to release them, as opposed to
    6045             :  * what heap_lock_tuple does.  The reason is that having more than one
    6046             :  * transaction walking the chain is probably uncommon enough that risk of
    6047             :  * starvation is not likely: one of the preconditions for being here is that
    6048             :  * the snapshot in use predates the update that created this tuple (because we
    6049             :  * started at an earlier version of the tuple), but at the same time such a
    6050             :  * transaction cannot be using repeatable read or serializable isolation
    6051             :  * levels, because that would lead to a serializability failure.
    6052             :  */
    6053             : static TM_Result
    6054         206 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    6055             :                         TransactionId xid, LockTupleMode mode)
    6056             : {
    6057             :     /*
    6058             :      * If the tuple has not been updated, or has moved into another partition
    6059             :      * (effectively a delete) stop here.
    6060             :      */
    6061         206 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    6062         202 :         !ItemPointerEquals(&tuple->t_self, ctid))
    6063             :     {
    6064             :         /*
    6065             :          * If this is the first possibly-multixact-able operation in the
    6066             :          * current transaction, set my per-backend OldestMemberMXactId
    6067             :          * setting. We can be certain that the transaction will never become a
    6068             :          * member of any older MultiXactIds than that.  (We have to do this
    6069             :          * even if we end up just using our own TransactionId below, since
    6070             :          * some other backend could incorporate our XID into a MultiXact
    6071             :          * immediately afterwards.)
    6072             :          */
    6073         176 :         MultiXactIdSetOldestMember();
    6074             : 
    6075         176 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    6076             :     }
    6077             : 
    6078             :     /* nothing to lock */
    6079          30 :     return TM_Ok;
    6080             : }
    6081             : 
    6082             : /*
    6083             :  *  heap_finish_speculative - mark speculative insertion as successful
    6084             :  *
    6085             :  * To successfully finish a speculative insertion we have to clear speculative
    6086             :  * token from tuple.  To do so the t_ctid field, which will contain a
    6087             :  * speculative token value, is modified in place to point to the tuple itself,
    6088             :  * which is characteristic of a newly inserted ordinary tuple.
    6089             :  *
    6090             :  * NB: It is not ok to commit without either finishing or aborting a
    6091             :  * speculative insertion.  We could treat speculative tuples of committed
    6092             :  * transactions implicitly as completed, but then we would have to be prepared
    6093             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    6094             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    6095             :  * but clearing the token at completion isn't very expensive either.
    6096             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    6097             :  */
    6098             : void
    6099        4124 : heap_finish_speculative(Relation relation, ItemPointer tid)
    6100             : {
    6101             :     Buffer      buffer;
    6102             :     Page        page;
    6103             :     OffsetNumber offnum;
    6104        4124 :     ItemId      lp = NULL;
    6105             :     HeapTupleHeader htup;
    6106             : 
    6107        4124 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    6108        4124 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6109        4124 :     page = BufferGetPage(buffer);
    6110             : 
    6111        4124 :     offnum = ItemPointerGetOffsetNumber(tid);
    6112        4124 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    6113        4124 :         lp = PageGetItemId(page, offnum);
    6114             : 
    6115        4124 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    6116           0 :         elog(ERROR, "invalid lp");
    6117             : 
    6118        4124 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    6119             : 
    6120             :     /* NO EREPORT(ERROR) from here till changes are logged */
    6121        4124 :     START_CRIT_SECTION();
    6122             : 
    6123             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    6124             : 
    6125        4124 :     MarkBufferDirty(buffer);
    6126             : 
    6127             :     /*
    6128             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    6129             :      * itself like it does on regular tuples.
    6130             :      */
    6131        4124 :     htup->t_ctid = *tid;
    6132             : 
    6133             :     /* XLOG stuff */
    6134        4124 :     if (RelationNeedsWAL(relation))
    6135             :     {
    6136             :         xl_heap_confirm xlrec;
    6137             :         XLogRecPtr  recptr;
    6138             : 
    6139        4106 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    6140             : 
    6141        4106 :         XLogBeginInsert();
    6142             : 
    6143             :         /* We want the same filtering on this as on a plain insert */
    6144        4106 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6145             : 
    6146        4106 :         XLogRegisterData(&xlrec, SizeOfHeapConfirm);
    6147        4106 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6148             : 
    6149        4106 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6150             : 
    6151        4106 :         PageSetLSN(page, recptr);
    6152             :     }
    6153             : 
    6154        4124 :     END_CRIT_SECTION();
    6155             : 
    6156        4124 :     UnlockReleaseBuffer(buffer);
    6157        4124 : }
    6158             : 
    6159             : /*
    6160             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6161             :  *
    6162             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6163             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6164             :  * to all transactions, including our own.  In particular, it makes
    6165             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6166             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6167             :  * transaction to finish (it'll just wait for our speculative insertion to
    6168             :  * finish).
    6169             :  *
    6170             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6171             :  * that arise due to a mutual dependency that is not user visible.  By
    6172             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6173             :  * reordering lock acquisition in client code, because the implementation level
    6174             :  * lock acquisitions are not under the user's direct control.  If speculative
    6175             :  * inserters did not take this precaution, then under high concurrency they
    6176             :  * could deadlock with each other, which would not be acceptable.
    6177             :  *
    6178             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6179             :  * dedicated routine with stripped down requirements.  Note that this is also
    6180             :  * used to delete the TOAST tuples created during speculative insertion.
    6181             :  *
    6182             :  * This routine does not affect logical decoding as it only looks at
    6183             :  * confirmation records.
    6184             :  */
    6185             : void
    6186          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6187             : {
    6188          20 :     TransactionId xid = GetCurrentTransactionId();
    6189             :     ItemId      lp;
    6190             :     HeapTupleData tp;
    6191             :     Page        page;
    6192             :     BlockNumber block;
    6193             :     Buffer      buffer;
    6194             : 
    6195             :     Assert(ItemPointerIsValid(tid));
    6196             : 
    6197          20 :     block = ItemPointerGetBlockNumber(tid);
    6198          20 :     buffer = ReadBuffer(relation, block);
    6199          20 :     page = BufferGetPage(buffer);
    6200             : 
    6201          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6202             : 
    6203             :     /*
    6204             :      * Page can't be all visible, we just inserted into it, and are still
    6205             :      * running.
    6206             :      */
    6207             :     Assert(!PageIsAllVisible(page));
    6208             : 
    6209          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6210             :     Assert(ItemIdIsNormal(lp));
    6211             : 
    6212          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6213          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6214          20 :     tp.t_len = ItemIdGetLength(lp);
    6215          20 :     tp.t_self = *tid;
    6216             : 
    6217             :     /*
    6218             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6219             :      * inserted by us.
    6220             :      */
    6221          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6222           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6223          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6224           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6225             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6226             : 
    6227             :     /*
    6228             :      * No need to check for serializable conflicts here.  There is never a
    6229             :      * need for a combo CID, either.  No need to extract replica identity, or
    6230             :      * do anything special with infomask bits.
    6231             :      */
    6232             : 
    6233          20 :     START_CRIT_SECTION();
    6234             : 
    6235             :     /*
    6236             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6237             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6238             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6239             :      * that's safe against wraparound / being older than the table's
    6240             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6241             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6242             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6243             :      * TransactionXmin, so there's no race here).
    6244             :      */
    6245             :     Assert(TransactionIdIsValid(TransactionXmin));
    6246             :     {
    6247          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6248             :         TransactionId prune_xid;
    6249             : 
    6250          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6251           0 :             prune_xid = relfrozenxid;
    6252             :         else
    6253          20 :             prune_xid = TransactionXmin;
    6254          20 :         PageSetPrunable(page, prune_xid);
    6255             :     }
    6256             : 
    6257             :     /* store transaction information of xact deleting the tuple */
    6258          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6259          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6260             : 
    6261             :     /*
    6262             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6263             :      * tuple immediately invisible everyone.  (In particular, to any
    6264             :      * transactions waiting on the speculative token, woken up later.)
    6265             :      */
    6266          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6267             : 
    6268             :     /* Clear the speculative insertion token too */
    6269          20 :     tp.t_data->t_ctid = tp.t_self;
    6270             : 
    6271          20 :     MarkBufferDirty(buffer);
    6272             : 
    6273             :     /*
    6274             :      * XLOG stuff
    6275             :      *
    6276             :      * The WAL records generated here match heap_delete().  The same recovery
    6277             :      * routines are used.
    6278             :      */
    6279          20 :     if (RelationNeedsWAL(relation))
    6280             :     {
    6281             :         xl_heap_delete xlrec;
    6282             :         XLogRecPtr  recptr;
    6283             : 
    6284          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6285          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6286          20 :                                               tp.t_data->t_infomask2);
    6287          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6288          20 :         xlrec.xmax = xid;
    6289             : 
    6290          20 :         XLogBeginInsert();
    6291          20 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    6292          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6293             : 
    6294             :         /* No replica identity & replication origin logged */
    6295             : 
    6296          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6297             : 
    6298          20 :         PageSetLSN(page, recptr);
    6299             :     }
    6300             : 
    6301          20 :     END_CRIT_SECTION();
    6302             : 
    6303          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6304             : 
    6305          20 :     if (HeapTupleHasExternal(&tp))
    6306             :     {
    6307             :         Assert(!IsToastRelation(relation));
    6308           2 :         heap_toast_delete(relation, &tp, true);
    6309             :     }
    6310             : 
    6311             :     /*
    6312             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6313             :      * speculative insertion
    6314             :      */
    6315             : 
    6316             :     /* Now we can release the buffer */
    6317          20 :     ReleaseBuffer(buffer);
    6318             : 
    6319             :     /* count deletion, as we counted the insertion too */
    6320          20 :     pgstat_count_heap_delete(relation);
    6321          20 : }
    6322             : 
    6323             : /*
    6324             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6325             :  *
    6326             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6327             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6328             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6329             :  * and the caller must release that by calling
    6330             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6331             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6332             :  * transactions to end, and return false.
    6333             :  *
    6334             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6335             :  * DDL, this doesn't guarantee any particular predicate locking.
    6336             :  *
    6337             :  * One could modify this to return true for tuples with delete in progress,
    6338             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6339             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6340             :  * update.
    6341             :  *
    6342             :  * Readers of inplace-updated fields expect changes to those fields are
    6343             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6344             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6345             :  * return a lower datfrozenxid for the same database OID (lower in the
    6346             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6347             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6348             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6349             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6350             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6351             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6352             :  * committed tuple.)
    6353             :  *
    6354             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6355             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6356             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6357             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6358             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6359             :  * in one critical section or (b) accepting a chance of partial completion.
    6360             :  * Partial completion of a relfrozenxid update would have the weird
    6361             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6362             :  * move forward between vacuum_get_cutoffs() and finishing.
    6363             :  */
    6364             : bool
    6365      377432 : heap_inplace_lock(Relation relation,
    6366             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6367             :                   void (*release_callback) (void *), void *arg)
    6368             : {
    6369      377432 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6370             :     TM_Result   result;
    6371             :     bool        ret;
    6372             : 
    6373             : #ifdef USE_ASSERT_CHECKING
    6374             :     if (RelationGetRelid(relation) == RelationRelationId)
    6375             :         check_inplace_rel_lock(oldtup_ptr);
    6376             : #endif
    6377             : 
    6378             :     Assert(BufferIsValid(buffer));
    6379             : 
    6380             :     /*
    6381             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6382             :      * version without our own inplace changes or inplace changes other
    6383             :      * sessions complete while we wait for locks, inplace update mustn't
    6384             :      * change catcache lookup keys.  But we aren't bothering with index
    6385             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6386             :      * would be too late, because this might reach a
    6387             :      * CatalogCacheInitializeCache() that locks "buffer".
    6388             :      */
    6389      377432 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6390             : 
    6391      377432 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6392      377432 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6393             : 
    6394             :     /*----------
    6395             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6396             :      *
    6397             :      * - wait unconditionally
    6398             :      * - already locked tuple above, since inplace needs that unconditionally
    6399             :      * - don't recheck header after wait: simpler to defer to next iteration
    6400             :      * - don't try to continue even if the updater aborts: likewise
    6401             :      * - no crosscheck
    6402             :      */
    6403      377432 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6404             :                                       buffer);
    6405             : 
    6406      377432 :     if (result == TM_Invisible)
    6407             :     {
    6408             :         /* no known way this can happen */
    6409           0 :         ereport(ERROR,
    6410             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6411             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6412             :     }
    6413      377432 :     else if (result == TM_SelfModified)
    6414             :     {
    6415             :         /*
    6416             :          * CREATE INDEX might reach this if an expression is silly enough to
    6417             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6418             :          * statements might get here after a heap_update() of the same row, in
    6419             :          * the absence of an intervening CommandCounterIncrement().
    6420             :          */
    6421           0 :         ereport(ERROR,
    6422             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6423             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6424             :     }
    6425      377432 :     else if (result == TM_BeingModified)
    6426             :     {
    6427             :         TransactionId xwait;
    6428             :         uint16      infomask;
    6429             : 
    6430         182 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6431         182 :         infomask = oldtup.t_data->t_infomask;
    6432             : 
    6433         182 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6434             :         {
    6435          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6436          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6437             :             int         remain;
    6438             : 
    6439          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6440             :                                         lockmode, NULL))
    6441             :             {
    6442           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6443           4 :                 release_callback(arg);
    6444           4 :                 ret = false;
    6445           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6446             :                                 relation, &oldtup.t_self, XLTW_Update,
    6447             :                                 &remain);
    6448             :             }
    6449             :             else
    6450           6 :                 ret = true;
    6451             :         }
    6452         172 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6453           2 :             ret = true;
    6454         170 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6455           2 :             ret = true;
    6456             :         else
    6457             :         {
    6458         168 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6459         168 :             release_callback(arg);
    6460         168 :             ret = false;
    6461         168 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6462             :                               XLTW_Update);
    6463             :         }
    6464             :     }
    6465             :     else
    6466             :     {
    6467      377250 :         ret = (result == TM_Ok);
    6468      377250 :         if (!ret)
    6469             :         {
    6470           2 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6471           2 :             release_callback(arg);
    6472             :         }
    6473             :     }
    6474             : 
    6475             :     /*
    6476             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6477             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6478             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6479             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6480             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6481             :      * don't bother optimizing that.
    6482             :      */
    6483      377432 :     if (!ret)
    6484             :     {
    6485         174 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6486         174 :         ForgetInplace_Inval();
    6487         174 :         InvalidateCatalogSnapshot();
    6488             :     }
    6489      377432 :     return ret;
    6490             : }
    6491             : 
    6492             : /*
    6493             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6494             :  *
    6495             :  * The tuple cannot change size, and therefore its header fields and null
    6496             :  * bitmap (if any) don't change either.
    6497             :  *
    6498             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6499             :  */
    6500             : void
    6501      161710 : heap_inplace_update_and_unlock(Relation relation,
    6502             :                                HeapTuple oldtup, HeapTuple tuple,
    6503             :                                Buffer buffer)
    6504             : {
    6505      161710 :     HeapTupleHeader htup = oldtup->t_data;
    6506             :     uint32      oldlen;
    6507             :     uint32      newlen;
    6508             :     char       *dst;
    6509             :     char       *src;
    6510      161710 :     int         nmsgs = 0;
    6511      161710 :     SharedInvalidationMessage *invalMessages = NULL;
    6512      161710 :     bool        RelcacheInitFileInval = false;
    6513             : 
    6514             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6515      161710 :     oldlen = oldtup->t_len - htup->t_hoff;
    6516      161710 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6517      161710 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6518           0 :         elog(ERROR, "wrong tuple length");
    6519             : 
    6520      161710 :     dst = (char *) htup + htup->t_hoff;
    6521      161710 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6522             : 
    6523             :     /* Like RecordTransactionCommit(), log only if needed */
    6524      161710 :     if (XLogStandbyInfoActive())
    6525       99624 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6526             :                                                &RelcacheInitFileInval);
    6527             : 
    6528             :     /*
    6529             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6530             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6531             :      * in advance, if we checkpoint and then crash between inplace
    6532             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6533             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6534             :      * neglect to PANIC on EIO.
    6535             :      */
    6536      161710 :     PreInplace_Inval();
    6537             : 
    6538             :     /*----------
    6539             :      * NO EREPORT(ERROR) from here till changes are complete
    6540             :      *
    6541             :      * Our buffer lock won't stop a reader having already pinned and checked
    6542             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6543             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6544             :      * checkpoint delay makes that acceptable.  With the usual order of
    6545             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6546             :      * datfrozenxid to overtake relfrozenxid:
    6547             :      *
    6548             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6549             :      * ["R" is a VACUUM tbl]
    6550             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6551             :      * D: systable_getnext() returns pg_class tuple of tbl
    6552             :      * R: memcpy() into pg_class tuple of tbl
    6553             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6554             :      * [crash]
    6555             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6556             :      *
    6557             :      * Mimic MarkBufferDirtyHint() subroutine XLogSaveBufferForHint().
    6558             :      * Specifically, use DELAY_CHKPT_START, and copy the buffer to the stack.
    6559             :      * The stack copy facilitates a FPI of the post-mutation block before we
    6560             :      * accept other sessions seeing it.  DELAY_CHKPT_START allows us to
    6561             :      * XLogInsert() before MarkBufferDirty().  Since XLogSaveBufferForHint()
    6562             :      * can operate under BUFFER_LOCK_SHARED, it can't avoid DELAY_CHKPT_START.
    6563             :      * This function, however, likely could avoid it with the following order
    6564             :      * of operations: MarkBufferDirty(), XLogInsert(), memcpy().  Opt to use
    6565             :      * DELAY_CHKPT_START here, too, as a way to have fewer distinct code
    6566             :      * patterns to analyze.  Inplace update isn't so frequent that it should
    6567             :      * pursue the small optimization of skipping DELAY_CHKPT_START.
    6568             :      */
    6569             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6570      161710 :     START_CRIT_SECTION();
    6571      161710 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6572             : 
    6573             :     /* XLOG stuff */
    6574      161710 :     if (RelationNeedsWAL(relation))
    6575             :     {
    6576             :         xl_heap_inplace xlrec;
    6577             :         PGAlignedBlock copied_buffer;
    6578      161694 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6579      161694 :         Page        page = BufferGetPage(buffer);
    6580      161694 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6581      161694 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6582             :         uintptr_t   dst_offset_in_block;
    6583             :         RelFileLocator rlocator;
    6584             :         ForkNumber  forkno;
    6585             :         BlockNumber blkno;
    6586             :         XLogRecPtr  recptr;
    6587             : 
    6588      161694 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6589      161694 :         xlrec.dbId = MyDatabaseId;
    6590      161694 :         xlrec.tsId = MyDatabaseTableSpace;
    6591      161694 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6592      161694 :         xlrec.nmsgs = nmsgs;
    6593             : 
    6594      161694 :         XLogBeginInsert();
    6595      161694 :         XLogRegisterData(&xlrec, MinSizeOfHeapInplace);
    6596      161694 :         if (nmsgs != 0)
    6597       70324 :             XLogRegisterData(invalMessages,
    6598             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6599             : 
    6600             :         /* register block matching what buffer will look like after changes */
    6601      161694 :         memcpy(copied_buffer.data, origdata, lower);
    6602      161694 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6603      161694 :         dst_offset_in_block = dst - origdata;
    6604      161694 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6605      161694 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6606             :         Assert(forkno == MAIN_FORKNUM);
    6607      161694 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6608             :                           REGBUF_STANDARD);
    6609      161694 :         XLogRegisterBufData(0, src, newlen);
    6610             : 
    6611             :         /* inplace updates aren't decoded atm, don't log the origin */
    6612             : 
    6613      161694 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6614             : 
    6615      161694 :         PageSetLSN(page, recptr);
    6616             :     }
    6617             : 
    6618      161710 :     memcpy(dst, src, newlen);
    6619             : 
    6620      161710 :     MarkBufferDirty(buffer);
    6621             : 
    6622      161710 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6623             : 
    6624             :     /*
    6625             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6626             :      * do this before UnlockTuple().
    6627             :      *
    6628             :      * If we're mutating a tuple visible only to this transaction, there's an
    6629             :      * equivalent transactional inval from the action that created the tuple,
    6630             :      * and this inval is superfluous.
    6631             :      */
    6632      161710 :     AtInplace_Inval();
    6633             : 
    6634      161710 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6635      161710 :     END_CRIT_SECTION();
    6636      161710 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6637             : 
    6638      161710 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6639             : 
    6640             :     /*
    6641             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6642             :      * is the only one known to be necessary.  To reduce risk from the
    6643             :      * transition to immediate invalidation, continue sending a transactional
    6644             :      * invalidation like we've long done.  Third-party code might rely on it.
    6645             :      */
    6646      161710 :     if (!IsBootstrapProcessingMode())
    6647      132410 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6648      161710 : }
    6649             : 
    6650             : /*
    6651             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6652             :  */
    6653             : void
    6654      215548 : heap_inplace_unlock(Relation relation,
    6655             :                     HeapTuple oldtup, Buffer buffer)
    6656             : {
    6657      215548 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6658      215548 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6659      215548 :     ForgetInplace_Inval();
    6660      215548 : }
    6661             : 
    6662             : #define     FRM_NOOP                0x0001
    6663             : #define     FRM_INVALIDATE_XMAX     0x0002
    6664             : #define     FRM_RETURN_IS_XID       0x0004
    6665             : #define     FRM_RETURN_IS_MULTI     0x0008
    6666             : #define     FRM_MARK_COMMITTED      0x0010
    6667             : 
    6668             : /*
    6669             :  * FreezeMultiXactId
    6670             :  *      Determine what to do during freezing when a tuple is marked by a
    6671             :  *      MultiXactId.
    6672             :  *
    6673             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6674             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6675             :  *
    6676             :  * Possible values that we can set in "flags":
    6677             :  * FRM_NOOP
    6678             :  *      don't do anything -- keep existing Xmax
    6679             :  * FRM_INVALIDATE_XMAX
    6680             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6681             :  * FRM_RETURN_IS_XID
    6682             :  *      The Xid return value is a single update Xid to set as xmax.
    6683             :  * FRM_MARK_COMMITTED
    6684             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6685             :  * FRM_RETURN_IS_MULTI
    6686             :  *      The return value is a new MultiXactId to set as new Xmax.
    6687             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6688             :  *
    6689             :  * Caller delegates control of page freezing to us.  In practice we always
    6690             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6691             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6692             :  * can never be left behind.  We freely choose when and how to process each
    6693             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6694             :  *
    6695             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6696             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6697             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6698             :  * misses through eager processing.
    6699             :  *
    6700             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6701             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6702             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6703             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6704             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6705             :  * its own special risks.
    6706             :  *
    6707             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6708             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6709             :  *
    6710             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6711             :  * have already forced page-level freezing, since that might incur the same
    6712             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6713             :  */
    6714             : static TransactionId
    6715          12 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6716             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6717             :                   HeapPageFreeze *pagefrz)
    6718             : {
    6719             :     TransactionId newxmax;
    6720             :     MultiXactMember *members;
    6721             :     int         nmembers;
    6722             :     bool        need_replace;
    6723             :     int         nnewmembers;
    6724             :     MultiXactMember *newmembers;
    6725             :     bool        has_lockers;
    6726             :     TransactionId update_xid;
    6727             :     bool        update_committed;
    6728             :     TransactionId FreezePageRelfrozenXid;
    6729             : 
    6730          12 :     *flags = 0;
    6731             : 
    6732             :     /* We should only be called in Multis */
    6733             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6734             : 
    6735          24 :     if (!MultiXactIdIsValid(multi) ||
    6736          12 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6737             :     {
    6738           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6739           0 :         pagefrz->freeze_required = true;
    6740           0 :         return InvalidTransactionId;
    6741             :     }
    6742          12 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6743           0 :         ereport(ERROR,
    6744             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6745             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6746             :                                  multi, cutoffs->relminmxid)));
    6747          12 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6748             :     {
    6749             :         TransactionId update_xact;
    6750             : 
    6751             :         /*
    6752             :          * This old multi cannot possibly have members still running, but
    6753             :          * verify just in case.  If it was a locker only, it can be removed
    6754             :          * without any further consideration; but if it contained an update,
    6755             :          * we might need to preserve it.
    6756             :          */
    6757           8 :         if (MultiXactIdIsRunning(multi,
    6758           8 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6759           0 :             ereport(ERROR,
    6760             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6761             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6762             :                                      multi, cutoffs->OldestMxact)));
    6763             : 
    6764           8 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6765             :         {
    6766           8 :             *flags |= FRM_INVALIDATE_XMAX;
    6767           8 :             pagefrz->freeze_required = true;
    6768           8 :             return InvalidTransactionId;
    6769             :         }
    6770             : 
    6771             :         /* replace multi with single XID for its updater? */
    6772           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6773           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6774           0 :             ereport(ERROR,
    6775             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6776             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6777             :                                      multi, update_xact,
    6778             :                                      cutoffs->relfrozenxid)));
    6779           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6780             :         {
    6781             :             /*
    6782             :              * Updater XID has to have aborted (otherwise the tuple would have
    6783             :              * been pruned away instead, since updater XID is < OldestXmin).
    6784             :              * Just remove xmax.
    6785             :              */
    6786           0 :             if (TransactionIdDidCommit(update_xact))
    6787           0 :                 ereport(ERROR,
    6788             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6789             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6790             :                                          multi, update_xact,
    6791             :                                          cutoffs->OldestXmin)));
    6792           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6793           0 :             pagefrz->freeze_required = true;
    6794           0 :             return InvalidTransactionId;
    6795             :         }
    6796             : 
    6797             :         /* Have to keep updater XID as new xmax */
    6798           0 :         *flags |= FRM_RETURN_IS_XID;
    6799           0 :         pagefrz->freeze_required = true;
    6800           0 :         return update_xact;
    6801             :     }
    6802             : 
    6803             :     /*
    6804             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6805             :      * need to walk the whole members array to figure out what to do, if
    6806             :      * anything.
    6807             :      */
    6808             :     nmembers =
    6809           4 :         GetMultiXactIdMembers(multi, &members, false,
    6810           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6811           4 :     if (nmembers <= 0)
    6812             :     {
    6813             :         /* Nothing worth keeping */
    6814           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6815           0 :         pagefrz->freeze_required = true;
    6816           0 :         return InvalidTransactionId;
    6817             :     }
    6818             : 
    6819             :     /*
    6820             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6821             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6822             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6823             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6824             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6825             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6826             :      * required to make it safe to leave xmax undisturbed, independent of
    6827             :      * whether or not page freezing is triggered somewhere else.
    6828             :      *
    6829             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6830             :      * which obviates the need to maintain either set of trackers, anywhere.
    6831             :      * Every other case will reliably execute a freeze plan for xmax that
    6832             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6833             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6834             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6835             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6836             :      */
    6837           4 :     need_replace = false;
    6838           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6839           8 :     for (int i = 0; i < nmembers; i++)
    6840             :     {
    6841           6 :         TransactionId xid = members[i].xid;
    6842             : 
    6843             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6844             : 
    6845           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6846             :         {
    6847             :             /* Can't violate the FreezeLimit postcondition */
    6848           2 :             need_replace = true;
    6849           2 :             break;
    6850             :         }
    6851           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6852           0 :             FreezePageRelfrozenXid = xid;
    6853             :     }
    6854             : 
    6855             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6856           4 :     if (!need_replace)
    6857           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6858             : 
    6859           4 :     if (!need_replace)
    6860             :     {
    6861             :         /*
    6862             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6863             :          * both together to make it safe to retain this particular multi after
    6864             :          * freezing its page
    6865             :          */
    6866           2 :         *flags |= FRM_NOOP;
    6867           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6868           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6869           0 :             pagefrz->FreezePageRelminMxid = multi;
    6870           2 :         pfree(members);
    6871           2 :         return multi;
    6872             :     }
    6873             : 
    6874             :     /*
    6875             :      * Do a more thorough second pass over the multi to figure out which
    6876             :      * member XIDs actually need to be kept.  Checking the precise status of
    6877             :      * individual members might even show that we don't need to keep anything.
    6878             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6879             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6880             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6881             :      */
    6882           2 :     nnewmembers = 0;
    6883           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6884           2 :     has_lockers = false;
    6885           2 :     update_xid = InvalidTransactionId;
    6886           2 :     update_committed = false;
    6887             : 
    6888             :     /*
    6889             :      * Determine whether to keep each member xid, or to ignore it instead
    6890             :      */
    6891           6 :     for (int i = 0; i < nmembers; i++)
    6892             :     {
    6893           4 :         TransactionId xid = members[i].xid;
    6894           4 :         MultiXactStatus mstatus = members[i].status;
    6895             : 
    6896             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6897             : 
    6898           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6899             :         {
    6900             :             /*
    6901             :              * Locker XID (not updater XID).  We only keep lockers that are
    6902             :              * still running.
    6903             :              */
    6904           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6905           4 :                 TransactionIdIsInProgress(xid))
    6906             :             {
    6907           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6908           0 :                     ereport(ERROR,
    6909             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6910             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6911             :                                              multi, xid,
    6912             :                                              cutoffs->OldestXmin)));
    6913           2 :                 newmembers[nnewmembers++] = members[i];
    6914           2 :                 has_lockers = true;
    6915             :             }
    6916             : 
    6917           4 :             continue;
    6918             :         }
    6919             : 
    6920             :         /*
    6921             :          * Updater XID (not locker XID).  Should we keep it?
    6922             :          *
    6923             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6924             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6925             :          * the updater XID aborted.  If the updater transaction is known
    6926             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6927             :          *
    6928             :          * In any case the Multi should never contain two updaters, whatever
    6929             :          * their individual commit status.  Check for that first, in passing.
    6930             :          */
    6931           0 :         if (TransactionIdIsValid(update_xid))
    6932           0 :             ereport(ERROR,
    6933             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6934             :                      errmsg_internal("multixact %u has two or more updating members",
    6935             :                                      multi),
    6936             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6937             :                                         update_xid, xid)));
    6938             : 
    6939             :         /*
    6940             :          * As with all tuple visibility routines, it's critical to test
    6941             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6942             :          * race conditions explained in detail in heapam_visibility.c.
    6943             :          */
    6944           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6945           0 :             TransactionIdIsInProgress(xid))
    6946           0 :             update_xid = xid;
    6947           0 :         else if (TransactionIdDidCommit(xid))
    6948             :         {
    6949             :             /*
    6950             :              * The transaction committed, so we can tell caller to set
    6951             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6952             :              * transaction is not running.)
    6953             :              */
    6954           0 :             update_committed = true;
    6955           0 :             update_xid = xid;
    6956             :         }
    6957             :         else
    6958             :         {
    6959             :             /*
    6960             :              * Not in progress, not committed -- must be aborted or crashed;
    6961             :              * we can ignore it.
    6962             :              */
    6963           0 :             continue;
    6964             :         }
    6965             : 
    6966             :         /*
    6967             :          * We determined that updater must be kept -- add it to pending new
    6968             :          * members list
    6969             :          */
    6970           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6971           0 :             ereport(ERROR,
    6972             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6973             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6974             :                                      multi, xid, cutoffs->OldestXmin)));
    6975           0 :         newmembers[nnewmembers++] = members[i];
    6976             :     }
    6977             : 
    6978           2 :     pfree(members);
    6979             : 
    6980             :     /*
    6981             :      * Determine what to do with caller's multi based on information gathered
    6982             :      * during our second pass
    6983             :      */
    6984           2 :     if (nnewmembers == 0)
    6985             :     {
    6986             :         /* Nothing worth keeping */
    6987           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6988           0 :         newxmax = InvalidTransactionId;
    6989             :     }
    6990           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6991             :     {
    6992             :         /*
    6993             :          * If there's a single member and it's an update, pass it back alone
    6994             :          * without creating a new Multi.  (XXX we could do this when there's a
    6995             :          * single remaining locker, too, but that would complicate the API too
    6996             :          * much; moreover, the case with the single updater is more
    6997             :          * interesting, because those are longer-lived.)
    6998             :          */
    6999             :         Assert(nnewmembers == 1);
    7000           0 :         *flags |= FRM_RETURN_IS_XID;
    7001           0 :         if (update_committed)
    7002           0 :             *flags |= FRM_MARK_COMMITTED;
    7003           0 :         newxmax = update_xid;
    7004             :     }
    7005             :     else
    7006             :     {
    7007             :         /*
    7008             :          * Create a new multixact with the surviving members of the previous
    7009             :          * one, to set as new Xmax in the tuple
    7010             :          */
    7011           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    7012           2 :         *flags |= FRM_RETURN_IS_MULTI;
    7013             :     }
    7014             : 
    7015           2 :     pfree(newmembers);
    7016             : 
    7017           2 :     pagefrz->freeze_required = true;
    7018           2 :     return newxmax;
    7019             : }
    7020             : 
    7021             : /*
    7022             :  * heap_prepare_freeze_tuple
    7023             :  *
    7024             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7025             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    7026             :  * setup enough state (in the *frz output argument) to enable caller to
    7027             :  * process this tuple as part of freezing its page, and return true.  Return
    7028             :  * false if nothing can be changed about the tuple right now.
    7029             :  *
    7030             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    7031             :  * caller executes returned freeze plan (or if the tuple was already totally
    7032             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    7033             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    7034             :  *
    7035             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    7036             :  * tuple that we returned true for, and then execute freezing.  Caller must
    7037             :  * initialize pagefrz fields for page as a whole before first call here for
    7038             :  * each heap page.
    7039             :  *
    7040             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    7041             :  * We'll often prepare freeze plans for a page that caller just discards.
    7042             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    7043             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    7044             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    7045             :  * that VACUUM always follows that rule.
    7046             :  *
    7047             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    7048             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    7049             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    7050             :  * and it's convenient to make that happen by piggy-backing it on the "force
    7051             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    7052             :  * because it is expensive right now (though only when it's still possible to
    7053             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    7054             :  *
    7055             :  * It is assumed that the caller has checked the tuple with
    7056             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    7057             :  * (else we should be removing the tuple, not freezing it).
    7058             :  *
    7059             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    7060             :  * It will be set as tuple's new xmax when our *frz output is processed within
    7061             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    7062             :  * then caller had better have an exclusive lock on it already.
    7063             :  */
    7064             : bool
    7065    50662318 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    7066             :                           const struct VacuumCutoffs *cutoffs,
    7067             :                           HeapPageFreeze *pagefrz,
    7068             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    7069             : {
    7070    50662318 :     bool        xmin_already_frozen = false,
    7071    50662318 :                 xmax_already_frozen = false;
    7072    50662318 :     bool        freeze_xmin = false,
    7073    50662318 :                 replace_xvac = false,
    7074    50662318 :                 replace_xmax = false,
    7075    50662318 :                 freeze_xmax = false;
    7076             :     TransactionId xid;
    7077             : 
    7078    50662318 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    7079    50662318 :     frz->t_infomask2 = tuple->t_infomask2;
    7080    50662318 :     frz->t_infomask = tuple->t_infomask;
    7081    50662318 :     frz->frzflags = 0;
    7082    50662318 :     frz->checkflags = 0;
    7083             : 
    7084             :     /*
    7085             :      * Process xmin, while keeping track of whether it's already frozen, or
    7086             :      * will become frozen iff our freeze plan is executed by caller (could be
    7087             :      * neither).
    7088             :      */
    7089    50662318 :     xid = HeapTupleHeaderGetXmin(tuple);
    7090    50662318 :     if (!TransactionIdIsNormal(xid))
    7091    44762734 :         xmin_already_frozen = true;
    7092             :     else
    7093             :     {
    7094     5899584 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7095           0 :             ereport(ERROR,
    7096             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7097             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    7098             :                                      xid, cutoffs->relfrozenxid)));
    7099             : 
    7100             :         /* Will set freeze_xmin flags in freeze plan below */
    7101     5899584 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7102             : 
    7103             :         /* Verify that xmin committed if and when freeze plan is executed */
    7104     5899584 :         if (freeze_xmin)
    7105     4503086 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    7106             :     }
    7107             : 
    7108             :     /*
    7109             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    7110             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    7111             :      */
    7112    50662318 :     xid = HeapTupleHeaderGetXvac(tuple);
    7113    50662318 :     if (TransactionIdIsNormal(xid))
    7114             :     {
    7115             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7116             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    7117             : 
    7118             :         /*
    7119             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    7120             :          * tracking to ignore xvac.
    7121             :          */
    7122           0 :         replace_xvac = pagefrz->freeze_required = true;
    7123             : 
    7124             :         /* Will set replace_xvac flags in freeze plan below */
    7125             :     }
    7126             : 
    7127             :     /* Now process xmax */
    7128    50662318 :     xid = frz->xmax;
    7129    50662318 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7130             :     {
    7131             :         /* Raw xmax is a MultiXactId */
    7132             :         TransactionId newxmax;
    7133             :         uint16      flags;
    7134             : 
    7135             :         /*
    7136             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    7137             :          * process xmax by replacing it (in the "replace_xmax" path), or
    7138             :          * perform no-op xmax processing.  The only constraint is that the
    7139             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    7140             :          */
    7141          12 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    7142             :                                     &flags, pagefrz);
    7143             : 
    7144          12 :         if (flags & FRM_NOOP)
    7145             :         {
    7146             :             /*
    7147             :              * xmax is a MultiXactId, and nothing about it changes for now.
    7148             :              * This is the only case where 'freeze_required' won't have been
    7149             :              * set for us by FreezeMultiXactId, as well as the only case where
    7150             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7151             :              *
    7152             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7153             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7154             :              * for us (the "freeze page" variants, specifically).  That'll
    7155             :              * make it safe for our caller to freeze the page later on, while
    7156             :              * leaving this particular xmax undisturbed.
    7157             :              *
    7158             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7159             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7160             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7161             :              * will take place below if 'freeze_required' isn't set already.
    7162             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7163             :              * freeze" tracker maintenance to happen in only one place.)
    7164             :              */
    7165             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7166             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7167             :         }
    7168          10 :         else if (flags & FRM_RETURN_IS_XID)
    7169             :         {
    7170             :             /*
    7171             :              * xmax will become an updater Xid (original MultiXact's updater
    7172             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7173             :              */
    7174             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7175             : 
    7176             :             /*
    7177             :              * NB -- some of these transformations are only valid because we
    7178             :              * know the return Xid is a tuple updater (i.e. not merely a
    7179             :              * locker.) Also note that the only reason we don't explicitly
    7180             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7181             :              * t_infomask2 rather than t_infomask.
    7182             :              */
    7183           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7184           0 :             frz->xmax = newxmax;
    7185           0 :             if (flags & FRM_MARK_COMMITTED)
    7186           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7187           0 :             replace_xmax = true;
    7188             :         }
    7189          10 :         else if (flags & FRM_RETURN_IS_MULTI)
    7190             :         {
    7191             :             uint16      newbits;
    7192             :             uint16      newbits2;
    7193             : 
    7194             :             /*
    7195             :              * xmax is an old MultiXactId that we have to replace with a new
    7196             :              * MultiXactId, to carry forward two or more original member XIDs.
    7197             :              */
    7198             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7199             : 
    7200             :             /*
    7201             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7202             :              * here; that routine initializes the masks to all zeroes, which
    7203             :              * would lose other bits we need.  Doing it this way ensures all
    7204             :              * unrelated bits remain untouched.
    7205             :              */
    7206           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7207           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7208           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7209           2 :             frz->t_infomask |= newbits;
    7210           2 :             frz->t_infomask2 |= newbits2;
    7211           2 :             frz->xmax = newxmax;
    7212           2 :             replace_xmax = true;
    7213             :         }
    7214             :         else
    7215             :         {
    7216             :             /*
    7217             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7218             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7219             :              */
    7220             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7221             :             Assert(!TransactionIdIsValid(newxmax));
    7222             : 
    7223             :             /* Will set freeze_xmax flags in freeze plan below */
    7224           8 :             freeze_xmax = true;
    7225             :         }
    7226             : 
    7227             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7228             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7229             :     }
    7230    50662306 :     else if (TransactionIdIsNormal(xid))
    7231             :     {
    7232             :         /* Raw xmax is normal XID */
    7233    18568132 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7234           0 :             ereport(ERROR,
    7235             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7236             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7237             :                                      xid, cutoffs->relfrozenxid)));
    7238             : 
    7239             :         /* Will set freeze_xmax flags in freeze plan below */
    7240    18568132 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7241             : 
    7242             :         /*
    7243             :          * Verify that xmax aborted if and when freeze plan is executed,
    7244             :          * provided it's from an update. (A lock-only xmax can be removed
    7245             :          * independent of this, since the lock is released at xact end.)
    7246             :          */
    7247    18568132 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7248        1778 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7249             :     }
    7250    32094174 :     else if (!TransactionIdIsValid(xid))
    7251             :     {
    7252             :         /* Raw xmax is InvalidTransactionId XID */
    7253             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7254    32094174 :         xmax_already_frozen = true;
    7255             :     }
    7256             :     else
    7257           0 :         ereport(ERROR,
    7258             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7259             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7260             :                                  xid, tuple->t_infomask)));
    7261             : 
    7262    50662318 :     if (freeze_xmin)
    7263             :     {
    7264             :         Assert(!xmin_already_frozen);
    7265             : 
    7266     4503086 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7267             :     }
    7268    50662318 :     if (replace_xvac)
    7269             :     {
    7270             :         /*
    7271             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7272             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7273             :          * transaction succeeded.
    7274             :          */
    7275             :         Assert(pagefrz->freeze_required);
    7276           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7277           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7278             :         else
    7279           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7280             :     }
    7281             :     if (replace_xmax)
    7282             :     {
    7283             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7284             :         Assert(pagefrz->freeze_required);
    7285             : 
    7286             :         /* Already set replace_xmax flags in freeze plan earlier */
    7287             :     }
    7288    50662318 :     if (freeze_xmax)
    7289             :     {
    7290             :         Assert(!xmax_already_frozen && !replace_xmax);
    7291             : 
    7292        3858 :         frz->xmax = InvalidTransactionId;
    7293             : 
    7294             :         /*
    7295             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7296             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7297             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7298             :          */
    7299        3858 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7300        3858 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7301        3858 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7302        3858 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7303             :     }
    7304             : 
    7305             :     /*
    7306             :      * Determine if this tuple is already totally frozen, or will become
    7307             :      * totally frozen (provided caller executes freeze plans for the page)
    7308             :      */
    7309    99924280 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7310    49261962 :                        (freeze_xmax || xmax_already_frozen));
    7311             : 
    7312    50662318 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7313             :                                        xmax_already_frozen))
    7314             :     {
    7315             :         /*
    7316             :          * So far no previous tuple from the page made freezing mandatory.
    7317             :          * Does this tuple force caller to freeze the entire page?
    7318             :          */
    7319    21412364 :         pagefrz->freeze_required =
    7320    21412364 :             heap_tuple_should_freeze(tuple, cutoffs,
    7321             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7322             :                                      &pagefrz->NoFreezePageRelminMxid);
    7323             :     }
    7324             : 
    7325             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7326    50662318 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7327             : }
    7328             : 
    7329             : /*
    7330             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7331             :  * plans.
    7332             :  *
    7333             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7334             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7335             :  * successive VACUUMs that each decide against freezing the same page.
    7336             :  */
    7337             : void
    7338       44764 : heap_pre_freeze_checks(Buffer buffer,
    7339             :                        HeapTupleFreeze *tuples, int ntuples)
    7340             : {
    7341       44764 :     Page        page = BufferGetPage(buffer);
    7342             : 
    7343     1926456 :     for (int i = 0; i < ntuples; i++)
    7344             :     {
    7345     1881692 :         HeapTupleFreeze *frz = tuples + i;
    7346     1881692 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7347             :         HeapTupleHeader htup;
    7348             : 
    7349     1881692 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7350             : 
    7351             :         /* Deliberately avoid relying on tuple hint bits here */
    7352     1881692 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7353             :         {
    7354     1881690 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7355             : 
    7356             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7357     1881690 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7358           0 :                 ereport(ERROR,
    7359             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7360             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7361             :                                          xmin)));
    7362             :         }
    7363             : 
    7364             :         /*
    7365             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7366             :          * left behind by transactions that were in progress during a crash,
    7367             :          * so we can only check that xmax didn't commit
    7368             :          */
    7369     1881692 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7370             :         {
    7371         632 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7372             : 
    7373             :             Assert(TransactionIdIsNormal(xmax));
    7374         632 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7375           0 :                 ereport(ERROR,
    7376             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7377             :                          errmsg_internal("cannot freeze committed xmax %u",
    7378             :                                          xmax)));
    7379             :         }
    7380             :     }
    7381       44764 : }
    7382             : 
    7383             : /*
    7384             :  * Helper which executes freezing of one or more heap tuples on a page on
    7385             :  * behalf of caller.  Caller passes an array of tuple plans from
    7386             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7387             :  * Must be called in a critical section that also marks the buffer dirty and,
    7388             :  * if needed, emits WAL.
    7389             :  */
    7390             : void
    7391       44764 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7392             : {
    7393       44764 :     Page        page = BufferGetPage(buffer);
    7394             : 
    7395     1926456 :     for (int i = 0; i < ntuples; i++)
    7396             :     {
    7397     1881692 :         HeapTupleFreeze *frz = tuples + i;
    7398     1881692 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7399             :         HeapTupleHeader htup;
    7400             : 
    7401     1881692 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7402     1881692 :         heap_execute_freeze_tuple(htup, frz);
    7403             :     }
    7404       44764 : }
    7405             : 
    7406             : /*
    7407             :  * heap_freeze_tuple
    7408             :  *      Freeze tuple in place, without WAL logging.
    7409             :  *
    7410             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7411             :  */
    7412             : bool
    7413      715704 : heap_freeze_tuple(HeapTupleHeader tuple,
    7414             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7415             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7416             : {
    7417             :     HeapTupleFreeze frz;
    7418             :     bool        do_freeze;
    7419             :     bool        totally_frozen;
    7420             :     struct VacuumCutoffs cutoffs;
    7421             :     HeapPageFreeze pagefrz;
    7422             : 
    7423      715704 :     cutoffs.relfrozenxid = relfrozenxid;
    7424      715704 :     cutoffs.relminmxid = relminmxid;
    7425      715704 :     cutoffs.OldestXmin = FreezeLimit;
    7426      715704 :     cutoffs.OldestMxact = MultiXactCutoff;
    7427      715704 :     cutoffs.FreezeLimit = FreezeLimit;
    7428      715704 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7429             : 
    7430      715704 :     pagefrz.freeze_required = true;
    7431      715704 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7432      715704 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7433      715704 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7434      715704 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7435             : 
    7436      715704 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7437             :                                           &pagefrz, &frz, &totally_frozen);
    7438             : 
    7439             :     /*
    7440             :      * Note that because this is not a WAL-logged operation, we don't need to
    7441             :      * fill in the offset in the freeze record.
    7442             :      */
    7443             : 
    7444      715704 :     if (do_freeze)
    7445      509692 :         heap_execute_freeze_tuple(tuple, &frz);
    7446      715704 :     return do_freeze;
    7447             : }
    7448             : 
    7449             : /*
    7450             :  * For a given MultiXactId, return the hint bits that should be set in the
    7451             :  * tuple's infomask.
    7452             :  *
    7453             :  * Normally this should be called for a multixact that was just created, and
    7454             :  * so is on our local cache, so the GetMembers call is fast.
    7455             :  */
    7456             : static void
    7457        2354 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7458             :                        uint16 *new_infomask2)
    7459             : {
    7460             :     int         nmembers;
    7461             :     MultiXactMember *members;
    7462             :     int         i;
    7463        2354 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7464        2354 :     uint16      bits2 = 0;
    7465        2354 :     bool        has_update = false;
    7466        2354 :     LockTupleMode strongest = LockTupleKeyShare;
    7467             : 
    7468             :     /*
    7469             :      * We only use this in multis we just created, so they cannot be values
    7470             :      * pre-pg_upgrade.
    7471             :      */
    7472        2354 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7473             : 
    7474        7188 :     for (i = 0; i < nmembers; i++)
    7475             :     {
    7476             :         LockTupleMode mode;
    7477             : 
    7478             :         /*
    7479             :          * Remember the strongest lock mode held by any member of the
    7480             :          * multixact.
    7481             :          */
    7482        4834 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7483        4834 :         if (mode > strongest)
    7484        1322 :             strongest = mode;
    7485             : 
    7486             :         /* See what other bits we need */
    7487        4834 :         switch (members[i].status)
    7488             :         {
    7489        4452 :             case MultiXactStatusForKeyShare:
    7490             :             case MultiXactStatusForShare:
    7491             :             case MultiXactStatusForNoKeyUpdate:
    7492        4452 :                 break;
    7493             : 
    7494         104 :             case MultiXactStatusForUpdate:
    7495         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7496         104 :                 break;
    7497             : 
    7498         258 :             case MultiXactStatusNoKeyUpdate:
    7499         258 :                 has_update = true;
    7500         258 :                 break;
    7501             : 
    7502          20 :             case MultiXactStatusUpdate:
    7503          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7504          20 :                 has_update = true;
    7505          20 :                 break;
    7506             :         }
    7507             :     }
    7508             : 
    7509        2354 :     if (strongest == LockTupleExclusive ||
    7510             :         strongest == LockTupleNoKeyExclusive)
    7511         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7512        1916 :     else if (strongest == LockTupleShare)
    7513         878 :         bits |= HEAP_XMAX_SHR_LOCK;
    7514        1038 :     else if (strongest == LockTupleKeyShare)
    7515        1038 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7516             : 
    7517        2354 :     if (!has_update)
    7518        2076 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7519             : 
    7520        2354 :     if (nmembers > 0)
    7521        2354 :         pfree(members);
    7522             : 
    7523        2354 :     *new_infomask = bits;
    7524        2354 :     *new_infomask2 = bits2;
    7525        2354 : }
    7526             : 
    7527             : /*
    7528             :  * MultiXactIdGetUpdateXid
    7529             :  *
    7530             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7531             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7532             :  * transaction.
    7533             :  *
    7534             :  * Caller is expected to check the status of the updating transaction, if
    7535             :  * necessary.
    7536             :  */
    7537             : static TransactionId
    7538         980 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7539             : {
    7540         980 :     TransactionId update_xact = InvalidTransactionId;
    7541             :     MultiXactMember *members;
    7542             :     int         nmembers;
    7543             : 
    7544             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7545             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7546             : 
    7547             :     /*
    7548             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7549             :      * pre-pg_upgrade.
    7550             :      */
    7551         980 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7552             : 
    7553         980 :     if (nmembers > 0)
    7554             :     {
    7555             :         int         i;
    7556             : 
    7557        2548 :         for (i = 0; i < nmembers; i++)
    7558             :         {
    7559             :             /* Ignore lockers */
    7560        2548 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7561        1568 :                 continue;
    7562             : 
    7563             :             /* there can be at most one updater */
    7564             :             Assert(update_xact == InvalidTransactionId);
    7565         980 :             update_xact = members[i].xid;
    7566             : #ifndef USE_ASSERT_CHECKING
    7567             : 
    7568             :             /*
    7569             :              * in an assert-enabled build, walk the whole array to ensure
    7570             :              * there's no other updater.
    7571             :              */
    7572         980 :             break;
    7573             : #endif
    7574             :         }
    7575             : 
    7576         980 :         pfree(members);
    7577             :     }
    7578             : 
    7579         980 :     return update_xact;
    7580             : }
    7581             : 
    7582             : /*
    7583             :  * HeapTupleGetUpdateXid
    7584             :  *      As above, but use a HeapTupleHeader
    7585             :  *
    7586             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7587             :  * checking the hint bits.
    7588             :  */
    7589             : TransactionId
    7590         964 : HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
    7591             : {
    7592         964 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tup),
    7593         964 :                                    tup->t_infomask);
    7594             : }
    7595             : 
    7596             : /*
    7597             :  * Does the given multixact conflict with the current transaction grabbing a
    7598             :  * tuple lock of the given strength?
    7599             :  *
    7600             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7601             :  *
    7602             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7603             :  * transaction is a member of the given multixact.
    7604             :  */
    7605             : static bool
    7606         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7607             :                         LockTupleMode lockmode, bool *current_is_member)
    7608             : {
    7609             :     int         nmembers;
    7610             :     MultiXactMember *members;
    7611         198 :     bool        result = false;
    7612         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7613             : 
    7614         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7615           0 :         return false;
    7616             : 
    7617         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7618         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7619         198 :     if (nmembers >= 0)
    7620             :     {
    7621             :         int         i;
    7622             : 
    7623         618 :         for (i = 0; i < nmembers; i++)
    7624             :         {
    7625             :             TransactionId memxid;
    7626             :             LOCKMODE    memlockmode;
    7627             : 
    7628         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7629             :                 break;
    7630             : 
    7631         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7632             : 
    7633             :             /* ignore members from current xact (but track their presence) */
    7634         420 :             memxid = members[i].xid;
    7635         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7636             :             {
    7637         184 :                 if (current_is_member != NULL)
    7638         156 :                     *current_is_member = true;
    7639         184 :                 continue;
    7640             :             }
    7641         236 :             else if (result)
    7642          16 :                 continue;
    7643             : 
    7644             :             /* ignore members that don't conflict with the lock we want */
    7645         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7646         142 :                 continue;
    7647             : 
    7648          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7649             :             {
    7650             :                 /* ignore aborted updaters */
    7651          34 :                 if (TransactionIdDidAbort(memxid))
    7652           2 :                     continue;
    7653             :             }
    7654             :             else
    7655             :             {
    7656             :                 /* ignore lockers-only that are no longer in progress */
    7657          44 :                 if (!TransactionIdIsInProgress(memxid))
    7658          14 :                     continue;
    7659             :             }
    7660             : 
    7661             :             /*
    7662             :              * Whatever remains are either live lockers that conflict with our
    7663             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7664             :              * with what we want.  Set up to return true, but keep going to
    7665             :              * look for the current transaction among the multixact members,
    7666             :              * if needed.
    7667             :              */
    7668          62 :             result = true;
    7669             :         }
    7670         198 :         pfree(members);
    7671             :     }
    7672             : 
    7673         198 :     return result;
    7674             : }
    7675             : 
    7676             : /*
    7677             :  * Do_MultiXactIdWait
    7678             :  *      Actual implementation for the two functions below.
    7679             :  *
    7680             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7681             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7682             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7683             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7684             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7685             :  * context information for error messages.  'remaining', if not NULL, receives
    7686             :  * the number of members that are still running, including any (non-aborted)
    7687             :  * subtransactions of our own transaction.  'logLockFailure' indicates whether
    7688             :  * to log details when a lock acquisition fails with 'nowait' enabled.
    7689             :  *
    7690             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7691             :  * members that belong to the current backend are *not* waited for, however;
    7692             :  * this would not merely be useless but would lead to Assert failure inside
    7693             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7694             :  * transactions *of other backends* that were members of the MultiXactId
    7695             :  * that conflict with the requested status are dead (and no new ones can have
    7696             :  * been added, since it is not legal to add members to an existing
    7697             :  * MultiXactId).
    7698             :  *
    7699             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7700             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7701             :  *
    7702             :  * Note that in case we return false, the number of remaining members is
    7703             :  * not to be trusted.
    7704             :  */
    7705             : static bool
    7706         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7707             :                    uint16 infomask, bool nowait,
    7708             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7709             :                    int *remaining, bool logLockFailure)
    7710             : {
    7711         116 :     bool        result = true;
    7712             :     MultiXactMember *members;
    7713             :     int         nmembers;
    7714         116 :     int         remain = 0;
    7715             : 
    7716             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7717         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7718         116 :         GetMultiXactIdMembers(multi, &members, false,
    7719         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7720             : 
    7721         116 :     if (nmembers >= 0)
    7722             :     {
    7723             :         int         i;
    7724             : 
    7725         374 :         for (i = 0; i < nmembers; i++)
    7726             :         {
    7727         266 :             TransactionId memxid = members[i].xid;
    7728         266 :             MultiXactStatus memstatus = members[i].status;
    7729             : 
    7730         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7731             :             {
    7732          48 :                 remain++;
    7733          48 :                 continue;
    7734             :             }
    7735             : 
    7736         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7737         218 :                                      LOCKMODE_from_mxstatus(status)))
    7738             :             {
    7739          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7740          16 :                     remain++;
    7741          44 :                 continue;
    7742             :             }
    7743             : 
    7744             :             /*
    7745             :              * This member conflicts with our multi, so we have to sleep (or
    7746             :              * return failure, if asked to avoid waiting.)
    7747             :              *
    7748             :              * Note that we don't set up an error context callback ourselves,
    7749             :              * but instead we pass the info down to XactLockTableWait.  This
    7750             :              * might seem a bit wasteful because the context is set up and
    7751             :              * tore down for each member of the multixact, but in reality it
    7752             :              * should be barely noticeable, and it avoids duplicate code.
    7753             :              */
    7754         174 :             if (nowait)
    7755             :             {
    7756           8 :                 result = ConditionalXactLockTableWait(memxid, logLockFailure);
    7757           8 :                 if (!result)
    7758           8 :                     break;
    7759             :             }
    7760             :             else
    7761         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7762             :         }
    7763             : 
    7764         116 :         pfree(members);
    7765             :     }
    7766             : 
    7767         116 :     if (remaining)
    7768          20 :         *remaining = remain;
    7769             : 
    7770         116 :     return result;
    7771             : }
    7772             : 
    7773             : /*
    7774             :  * MultiXactIdWait
    7775             :  *      Sleep on a MultiXactId.
    7776             :  *
    7777             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7778             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7779             :  *
    7780             :  * We return (in *remaining, if not NULL) the number of members that are still
    7781             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7782             :  */
    7783             : static void
    7784         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7785             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7786             :                 int *remaining)
    7787             : {
    7788         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7789             :                               rel, ctid, oper, remaining, false);
    7790         108 : }
    7791             : 
    7792             : /*
    7793             :  * ConditionalMultiXactIdWait
    7794             :  *      As above, but only lock if we can get the lock without blocking.
    7795             :  *
    7796             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7797             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7798             :  *
    7799             :  * If the multixact is now all gone, return true.  Returns false if some
    7800             :  * transactions might still be running.
    7801             :  *
    7802             :  * We return (in *remaining, if not NULL) the number of members that are still
    7803             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7804             :  */
    7805             : static bool
    7806           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7807             :                            uint16 infomask, Relation rel, int *remaining,
    7808             :                            bool logLockFailure)
    7809             : {
    7810           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7811             :                               rel, NULL, XLTW_None, remaining, logLockFailure);
    7812             : }
    7813             : 
    7814             : /*
    7815             :  * heap_tuple_needs_eventual_freeze
    7816             :  *
    7817             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7818             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7819             :  */
    7820             : bool
    7821      274502 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7822             : {
    7823             :     TransactionId xid;
    7824             : 
    7825             :     /*
    7826             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7827             :      * frozen.
    7828             :      */
    7829      274502 :     xid = HeapTupleHeaderGetXmin(tuple);
    7830      274502 :     if (TransactionIdIsNormal(xid))
    7831        4940 :         return true;
    7832             : 
    7833             :     /*
    7834             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7835             :      */
    7836      269562 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7837             :     {
    7838             :         MultiXactId multi;
    7839             : 
    7840           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7841           0 :         if (MultiXactIdIsValid(multi))
    7842           0 :             return true;
    7843             :     }
    7844             :     else
    7845             :     {
    7846      269562 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7847      269562 :         if (TransactionIdIsNormal(xid))
    7848          14 :             return true;
    7849             :     }
    7850             : 
    7851      269548 :     if (tuple->t_infomask & HEAP_MOVED)
    7852             :     {
    7853           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7854           0 :         if (TransactionIdIsNormal(xid))
    7855           0 :             return true;
    7856             :     }
    7857             : 
    7858      269548 :     return false;
    7859             : }
    7860             : 
    7861             : /*
    7862             :  * heap_tuple_should_freeze
    7863             :  *
    7864             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7865             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7866             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7867             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7868             :  *
    7869             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7870             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7871             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7872             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7873             :  * point that it fully commits to not freezing the tuple/page in question.
    7874             :  */
    7875             : bool
    7876    21415266 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7877             :                          const struct VacuumCutoffs *cutoffs,
    7878             :                          TransactionId *NoFreezePageRelfrozenXid,
    7879             :                          MultiXactId *NoFreezePageRelminMxid)
    7880             : {
    7881             :     TransactionId xid;
    7882             :     MultiXactId multi;
    7883    21415266 :     bool        freeze = false;
    7884             : 
    7885             :     /* First deal with xmin */
    7886    21415266 :     xid = HeapTupleHeaderGetXmin(tuple);
    7887    21415266 :     if (TransactionIdIsNormal(xid))
    7888             :     {
    7889             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7890     3555246 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7891       45430 :             *NoFreezePageRelfrozenXid = xid;
    7892     3555246 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7893       41888 :             freeze = true;
    7894             :     }
    7895             : 
    7896             :     /* Now deal with xmax */
    7897    21415266 :     xid = InvalidTransactionId;
    7898    21415266 :     multi = InvalidMultiXactId;
    7899    21415266 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7900           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7901             :     else
    7902    21415262 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7903             : 
    7904    21415266 :     if (TransactionIdIsNormal(xid))
    7905             :     {
    7906             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7907             :         /* xmax is a non-permanent XID */
    7908    18436298 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7909           4 :             *NoFreezePageRelfrozenXid = xid;
    7910    18436298 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7911          46 :             freeze = true;
    7912             :     }
    7913     2978968 :     else if (!MultiXactIdIsValid(multi))
    7914             :     {
    7915             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7916             :     }
    7917           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7918             :     {
    7919             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7920           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7921           0 :             *NoFreezePageRelminMxid = multi;
    7922             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7923           0 :         freeze = true;
    7924             :     }
    7925             :     else
    7926             :     {
    7927             :         /* xmax is a MultiXactId that may have an updater XID */
    7928             :         MultiXactMember *members;
    7929             :         int         nmembers;
    7930             : 
    7931             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7932           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7933           4 :             *NoFreezePageRelminMxid = multi;
    7934           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7935           4 :             freeze = true;
    7936             : 
    7937             :         /* need to check whether any member of the mxact is old */
    7938           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7939           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7940             : 
    7941          10 :         for (int i = 0; i < nmembers; i++)
    7942             :         {
    7943           6 :             xid = members[i].xid;
    7944             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7945           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7946           0 :                 *NoFreezePageRelfrozenXid = xid;
    7947           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7948           0 :                 freeze = true;
    7949             :         }
    7950           4 :         if (nmembers > 0)
    7951           2 :             pfree(members);
    7952             :     }
    7953             : 
    7954    21415266 :     if (tuple->t_infomask & HEAP_MOVED)
    7955             :     {
    7956           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7957           0 :         if (TransactionIdIsNormal(xid))
    7958             :         {
    7959             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7960           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7961           0 :                 *NoFreezePageRelfrozenXid = xid;
    7962             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7963           0 :             freeze = true;
    7964             :         }
    7965             :     }
    7966             : 
    7967    21415266 :     return freeze;
    7968             : }
    7969             : 
    7970             : /*
    7971             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7972             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7973             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7974             :  * or index deletion.
    7975             :  *
    7976             :  * Caller must initialize its value to InvalidTransactionId, which is
    7977             :  * generally interpreted as "definitely no need for a recovery conflict".
    7978             :  * Final value must reflect all heap tuples that caller will physically remove
    7979             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7980             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7981             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7982             :  */
    7983             : void
    7984     3013412 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7985             :                                       TransactionId *snapshotConflictHorizon)
    7986             : {
    7987     3013412 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7988     3013412 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7989     3013412 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7990             : 
    7991     3013412 :     if (tuple->t_infomask & HEAP_MOVED)
    7992             :     {
    7993           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7994           0 :             *snapshotConflictHorizon = xvac;
    7995             :     }
    7996             : 
    7997             :     /*
    7998             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7999             :      * updated/deleted by the inserting transaction.
    8000             :      *
    8001             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    8002             :      */
    8003     3013412 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    8004      210914 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    8005             :     {
    8006     5448540 :         if (xmax != xmin &&
    8007     2589484 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    8008      193242 :             *snapshotConflictHorizon = xmax;
    8009             :     }
    8010     3013412 : }
    8011             : 
    8012             : #ifdef USE_PREFETCH
    8013             : /*
    8014             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    8015             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    8016             :  * we can prefetch, and which have already been prefetched; each call to this
    8017             :  * function picks up where the previous call left off.
    8018             :  *
    8019             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    8020             :  * by heap block, with all TIDs for each block appearing together in exactly
    8021             :  * one group.
    8022             :  */
    8023             : static void
    8024       38284 : index_delete_prefetch_buffer(Relation rel,
    8025             :                              IndexDeletePrefetchState *prefetch_state,
    8026             :                              int prefetch_count)
    8027             : {
    8028       38284 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    8029       38284 :     int         count = 0;
    8030             :     int         i;
    8031       38284 :     int         ndeltids = prefetch_state->ndeltids;
    8032       38284 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    8033             : 
    8034       38284 :     for (i = prefetch_state->next_item;
    8035     1339968 :          i < ndeltids && count < prefetch_count;
    8036     1301684 :          i++)
    8037             :     {
    8038     1301684 :         ItemPointer htid = &deltids[i].tid;
    8039             : 
    8040     2591940 :         if (cur_hblkno == InvalidBlockNumber ||
    8041     1290256 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    8042             :         {
    8043       35028 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    8044       35028 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    8045       35028 :             count++;
    8046             :         }
    8047             :     }
    8048             : 
    8049             :     /*
    8050             :      * Save the prefetch position so that next time we can continue from that
    8051             :      * position.
    8052             :      */
    8053       38284 :     prefetch_state->next_item = i;
    8054       38284 :     prefetch_state->cur_hblkno = cur_hblkno;
    8055       38284 : }
    8056             : #endif
    8057             : 
    8058             : /*
    8059             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    8060             :  * involving an invalid TID in index AM caller's index page.
    8061             :  *
    8062             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    8063             :  * lock on the index page containing the TIDs we examine here, so we don't
    8064             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    8065             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    8066             :  * heap-only tuple, which is not the case during standard index scans.
    8067             :  */
    8068             : static inline void
    8069     1076428 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    8070             :                         Page page, OffsetNumber maxoff,
    8071             :                         ItemPointer htid, TM_IndexStatus *istatus)
    8072             : {
    8073     1076428 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    8074             :     ItemId      iid;
    8075             : 
    8076             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    8077             : 
    8078     1076428 :     if (unlikely(indexpagehoffnum > maxoff))
    8079           0 :         ereport(ERROR,
    8080             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8081             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    8082             :                                  ItemPointerGetBlockNumber(htid),
    8083             :                                  indexpagehoffnum,
    8084             :                                  istatus->idxoffnum, delstate->iblknum,
    8085             :                                  RelationGetRelationName(delstate->irel))));
    8086             : 
    8087     1076428 :     iid = PageGetItemId(page, indexpagehoffnum);
    8088     1076428 :     if (unlikely(!ItemIdIsUsed(iid)))
    8089           0 :         ereport(ERROR,
    8090             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    8091             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    8092             :                                  ItemPointerGetBlockNumber(htid),
    8093             :                                  indexpagehoffnum,
    8094             :                                  istatus->idxoffnum, delstate->iblknum,
    8095             :                                  RelationGetRelationName(delstate->irel))));
    8096             : 
    8097     1076428 :     if (ItemIdHasStorage(iid))
    8098             :     {
    8099             :         HeapTupleHeader htup;
    8100             : 
    8101             :         Assert(ItemIdIsNormal(iid));
    8102      641472 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    8103             : 
    8104      641472 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    8105           0 :             ereport(ERROR,
    8106             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    8107             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    8108             :                                      ItemPointerGetBlockNumber(htid),
    8109             :                                      indexpagehoffnum,
    8110             :                                      istatus->idxoffnum, delstate->iblknum,
    8111             :                                      RelationGetRelationName(delstate->irel))));
    8112             :     }
    8113     1076428 : }
    8114             : 
    8115             : /*
    8116             :  * heapam implementation of tableam's index_delete_tuples interface.
    8117             :  *
    8118             :  * This helper function is called by index AMs during index tuple deletion.
    8119             :  * See tableam header comments for an explanation of the interface implemented
    8120             :  * here and a general theory of operation.  Note that each call here is either
    8121             :  * a simple index deletion call, or a bottom-up index deletion call.
    8122             :  *
    8123             :  * It's possible for this to generate a fair amount of I/O, since we may be
    8124             :  * deleting hundreds of tuples from a single index block.  To amortize that
    8125             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    8126             :  * the same heap block.
    8127             :  */
    8128             : TransactionId
    8129       11428 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    8130             : {
    8131             :     /* Initial assumption is that earlier pruning took care of conflict */
    8132       11428 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    8133       11428 :     BlockNumber blkno = InvalidBlockNumber;
    8134       11428 :     Buffer      buf = InvalidBuffer;
    8135       11428 :     Page        page = NULL;
    8136       11428 :     OffsetNumber maxoff = InvalidOffsetNumber;
    8137             :     TransactionId priorXmax;
    8138             : #ifdef USE_PREFETCH
    8139             :     IndexDeletePrefetchState prefetch_state;
    8140             :     int         prefetch_distance;
    8141             : #endif
    8142             :     SnapshotData SnapshotNonVacuumable;
    8143       11428 :     int         finalndeltids = 0,
    8144       11428 :                 nblocksaccessed = 0;
    8145             : 
    8146             :     /* State that's only used in bottom-up index deletion case */
    8147       11428 :     int         nblocksfavorable = 0;
    8148       11428 :     int         curtargetfreespace = delstate->bottomupfreespace,
    8149       11428 :                 lastfreespace = 0,
    8150       11428 :                 actualfreespace = 0;
    8151       11428 :     bool        bottomup_final_block = false;
    8152             : 
    8153       11428 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8154             : 
    8155             :     /* Sort caller's deltids array by TID for further processing */
    8156       11428 :     index_delete_sort(delstate);
    8157             : 
    8158             :     /*
    8159             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8160             :      * greatest number of promising TIDs are to be found, and determine how
    8161             :      * many blocks from the start of sorted array should be considered
    8162             :      * favorable.  This will also shrink the deltids array in order to
    8163             :      * eliminate completely unfavorable blocks up front.
    8164             :      */
    8165       11428 :     if (delstate->bottomup)
    8166        3976 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8167             : 
    8168             : #ifdef USE_PREFETCH
    8169             :     /* Initialize prefetch state. */
    8170       11428 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8171       11428 :     prefetch_state.next_item = 0;
    8172       11428 :     prefetch_state.ndeltids = delstate->ndeltids;
    8173       11428 :     prefetch_state.deltids = delstate->deltids;
    8174             : 
    8175             :     /*
    8176             :      * Determine the prefetch distance that we will attempt to maintain.
    8177             :      *
    8178             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8179             :      * sure that isn't a catalog relation before we call code that does
    8180             :      * syscache lookups, to avoid risk of deadlock.
    8181             :      */
    8182       11428 :     if (IsCatalogRelation(rel))
    8183        8234 :         prefetch_distance = maintenance_io_concurrency;
    8184             :     else
    8185             :         prefetch_distance =
    8186        3194 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8187             : 
    8188             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8189       11428 :     if (delstate->bottomup)
    8190             :     {
    8191             :         Assert(nblocksfavorable >= 1);
    8192             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8193        3976 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8194             :     }
    8195             : 
    8196             :     /* Start prefetching. */
    8197       11428 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8198             : #endif
    8199             : 
    8200             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8201             :     Assert(delstate->ndeltids > 0);
    8202     1087856 :     for (int i = 0; i < delstate->ndeltids; i++)
    8203             :     {
    8204     1080404 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8205     1080404 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8206     1080404 :         ItemPointer htid = &ideltid->tid;
    8207             :         OffsetNumber offnum;
    8208             : 
    8209             :         /*
    8210             :          * Read buffer, and perform required extra steps each time a new block
    8211             :          * is encountered.  Avoid refetching if it's the same block as the one
    8212             :          * from the last htid.
    8213             :          */
    8214     2149380 :         if (blkno == InvalidBlockNumber ||
    8215     1068976 :             ItemPointerGetBlockNumber(htid) != blkno)
    8216             :         {
    8217             :             /*
    8218             :              * Consider giving up early for bottom-up index deletion caller
    8219             :              * first. (Only prefetch next-next block afterwards, when it
    8220             :              * becomes clear that we're at least going to access the next
    8221             :              * block in line.)
    8222             :              *
    8223             :              * Sometimes the first block frees so much space for bottom-up
    8224             :              * caller that the deletion process can end without accessing any
    8225             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8226             :              * per bottom-up deletion operation, though.
    8227             :              */
    8228       30832 :             if (delstate->bottomup)
    8229             :             {
    8230             :                 /*
    8231             :                  * We often allow caller to delete a few additional items
    8232             :                  * whose entries we reached after the point that space target
    8233             :                  * from caller was satisfied.  The cost of accessing the page
    8234             :                  * was already paid at that point, so it made sense to finish
    8235             :                  * it off.  When that happened, we finalize everything here
    8236             :                  * (by finishing off the whole bottom-up deletion operation
    8237             :                  * without needlessly paying the cost of accessing any more
    8238             :                  * blocks).
    8239             :                  */
    8240        8830 :                 if (bottomup_final_block)
    8241         302 :                     break;
    8242             : 
    8243             :                 /*
    8244             :                  * Give up when we didn't enable our caller to free any
    8245             :                  * additional space as a result of processing the page that we
    8246             :                  * just finished up with.  This rule is the main way in which
    8247             :                  * we keep the cost of bottom-up deletion under control.
    8248             :                  */
    8249        8528 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8250        3674 :                     break;
    8251        4854 :                 lastfreespace = actualfreespace;    /* for next time */
    8252             : 
    8253             :                 /*
    8254             :                  * Deletion operation (which is bottom-up) will definitely
    8255             :                  * access the next block in line.  Prepare for that now.
    8256             :                  *
    8257             :                  * Decay target free space so that we don't hang on for too
    8258             :                  * long with a marginal case. (Space target is only truly
    8259             :                  * helpful when it allows us to recognize that we don't need
    8260             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8261             :                  * agreeable workload characteristics.)
    8262             :                  *
    8263             :                  * We are a bit more patient when we encounter contiguous
    8264             :                  * blocks, though: these are treated as favorable blocks.  The
    8265             :                  * decay process is only applied when the next block in line
    8266             :                  * is not a favorable/contiguous block.  This is not an
    8267             :                  * exception to the general rule; we still insist on finding
    8268             :                  * at least one deletable item per block accessed.  See
    8269             :                  * bottomup_nblocksfavorable() for full details of the theory
    8270             :                  * behind favorable blocks and heap block locality in general.
    8271             :                  *
    8272             :                  * Note: The first block in line is always treated as a
    8273             :                  * favorable block, so the earliest possible point that the
    8274             :                  * decay can be applied is just before we access the second
    8275             :                  * block in line.  The Assert() verifies this for us.
    8276             :                  */
    8277             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8278        4854 :                 if (nblocksfavorable > 0)
    8279        4310 :                     nblocksfavorable--;
    8280             :                 else
    8281         544 :                     curtargetfreespace /= 2;
    8282             :             }
    8283             : 
    8284             :             /* release old buffer */
    8285       26856 :             if (BufferIsValid(buf))
    8286       15428 :                 UnlockReleaseBuffer(buf);
    8287             : 
    8288       26856 :             blkno = ItemPointerGetBlockNumber(htid);
    8289       26856 :             buf = ReadBuffer(rel, blkno);
    8290       26856 :             nblocksaccessed++;
    8291             :             Assert(!delstate->bottomup ||
    8292             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8293             : 
    8294             : #ifdef USE_PREFETCH
    8295             : 
    8296             :             /*
    8297             :              * To maintain the prefetch distance, prefetch one more page for
    8298             :              * each page we read.
    8299             :              */
    8300       26856 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8301             : #endif
    8302             : 
    8303       26856 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8304             : 
    8305       26856 :             page = BufferGetPage(buf);
    8306       26856 :             maxoff = PageGetMaxOffsetNumber(page);
    8307             :         }
    8308             : 
    8309             :         /*
    8310             :          * In passing, detect index corruption involving an index page with a
    8311             :          * TID that points to a location in the heap that couldn't possibly be
    8312             :          * correct.  We only do this with actual TIDs from caller's index page
    8313             :          * (not items reached by traversing through a HOT chain).
    8314             :          */
    8315     1076428 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8316             : 
    8317     1076428 :         if (istatus->knowndeletable)
    8318             :             Assert(!delstate->bottomup && !istatus->promising);
    8319             :         else
    8320             :         {
    8321      811236 :             ItemPointerData tmp = *htid;
    8322             :             HeapTupleData heapTuple;
    8323             : 
    8324             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8325      811236 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8326             :                                        &heapTuple, NULL, true))
    8327      490834 :                 continue;       /* can't delete entry */
    8328             : 
    8329             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8330      320402 :             istatus->knowndeletable = true;
    8331             : 
    8332             :             /* Maintain index free space info for bottom-up deletion case */
    8333      320402 :             if (delstate->bottomup)
    8334             :             {
    8335             :                 Assert(istatus->freespace > 0);
    8336       17304 :                 actualfreespace += istatus->freespace;
    8337       17304 :                 if (actualfreespace >= curtargetfreespace)
    8338        4330 :                     bottomup_final_block = true;
    8339             :             }
    8340             :         }
    8341             : 
    8342             :         /*
    8343             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8344             :          * whole by advancing current value using heap tuple headers.  This is
    8345             :          * loosely based on the logic for pruning a HOT chain.
    8346             :          */
    8347      585594 :         offnum = ItemPointerGetOffsetNumber(htid);
    8348      585594 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8349             :         for (;;)
    8350       41390 :         {
    8351             :             ItemId      lp;
    8352             :             HeapTupleHeader htup;
    8353             : 
    8354             :             /* Sanity check (pure paranoia) */
    8355      626984 :             if (offnum < FirstOffsetNumber)
    8356           0 :                 break;
    8357             : 
    8358             :             /*
    8359             :              * An offset past the end of page's line pointer array is possible
    8360             :              * when the array was truncated
    8361             :              */
    8362      626984 :             if (offnum > maxoff)
    8363           0 :                 break;
    8364             : 
    8365      626984 :             lp = PageGetItemId(page, offnum);
    8366      626984 :             if (ItemIdIsRedirected(lp))
    8367             :             {
    8368       18578 :                 offnum = ItemIdGetRedirect(lp);
    8369       18578 :                 continue;
    8370             :             }
    8371             : 
    8372             :             /*
    8373             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8374             :              * entry marked knowndeletable by our caller up front).  No heap
    8375             :              * tuple headers get examined for an htid that leads us to an
    8376             :              * LP_DEAD item.  This is okay because the earlier pruning
    8377             :              * operation that made the line pointer LP_DEAD in the first place
    8378             :              * must have considered the original tuple header as part of
    8379             :              * generating its own snapshotConflictHorizon value.
    8380             :              *
    8381             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8382             :              * the same strategy that index vacuuming uses in all cases. Index
    8383             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8384             :              * field of their own for this reason.
    8385             :              */
    8386      608406 :             if (!ItemIdIsNormal(lp))
    8387      385260 :                 break;
    8388             : 
    8389      223146 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8390             : 
    8391             :             /*
    8392             :              * Check the tuple XMIN against prior XMAX, if any
    8393             :              */
    8394      245958 :             if (TransactionIdIsValid(priorXmax) &&
    8395       22812 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8396           0 :                 break;
    8397             : 
    8398      223146 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8399             :                                                   &snapshotConflictHorizon);
    8400             : 
    8401             :             /*
    8402             :              * If the tuple is not HOT-updated, then we are at the end of this
    8403             :              * HOT-chain.  No need to visit later tuples from the same update
    8404             :              * chain (they get their own index entries) -- just move on to
    8405             :              * next htid from index AM caller.
    8406             :              */
    8407      223146 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8408      200334 :                 break;
    8409             : 
    8410             :             /* Advance to next HOT chain member */
    8411             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8412       22812 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8413       22812 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8414             :         }
    8415             : 
    8416             :         /* Enable further/final shrinking of deltids for caller */
    8417      585594 :         finalndeltids = i + 1;
    8418             :     }
    8419             : 
    8420       11428 :     UnlockReleaseBuffer(buf);
    8421             : 
    8422             :     /*
    8423             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8424             :      * is not just a minor optimization.  Final deltids array size might be
    8425             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8426             :      * ndeltids being zero in all cases with zero total deletable entries.
    8427             :      */
    8428             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8429       11428 :     delstate->ndeltids = finalndeltids;
    8430             : 
    8431       11428 :     return snapshotConflictHorizon;
    8432             : }
    8433             : 
    8434             : /*
    8435             :  * Specialized inlineable comparison function for index_delete_sort()
    8436             :  */
    8437             : static inline int
    8438    25665260 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8439             : {
    8440    25665260 :     ItemPointer tid1 = &deltid1->tid;
    8441    25665260 :     ItemPointer tid2 = &deltid2->tid;
    8442             : 
    8443             :     {
    8444    25665260 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8445    25665260 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8446             : 
    8447    25665260 :         if (blk1 != blk2)
    8448    10526068 :             return (blk1 < blk2) ? -1 : 1;
    8449             :     }
    8450             :     {
    8451    15139192 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8452    15139192 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8453             : 
    8454    15139192 :         if (pos1 != pos2)
    8455    15139192 :             return (pos1 < pos2) ? -1 : 1;
    8456             :     }
    8457             : 
    8458             :     Assert(false);
    8459             : 
    8460           0 :     return 0;
    8461             : }
    8462             : 
    8463             : /*
    8464             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8465             :  * processing by heap_index_delete_tuples().
    8466             :  *
    8467             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8468             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8469             :  * We use shellsort for this because it's easy to specialize, compiles to
    8470             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8471             :  * (which are typical here).
    8472             :  */
    8473             : static void
    8474       11428 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8475             : {
    8476       11428 :     TM_IndexDelete *deltids = delstate->deltids;
    8477       11428 :     int         ndeltids = delstate->ndeltids;
    8478             : 
    8479             :     /*
    8480             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8481             :      *
    8482             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8483             :      * all supported BLCKSZ values.
    8484             :      */
    8485       11428 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8486             : 
    8487             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8488             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8489             :                      "element size exceeds 8 bytes");
    8490             : 
    8491      114280 :     for (int g = 0; g < lengthof(gaps); g++)
    8492             :     {
    8493    15268066 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8494             :         {
    8495    15165214 :             TM_IndexDelete d = deltids[i];
    8496    15165214 :             int         j = i;
    8497             : 
    8498    26414814 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8499             :             {
    8500    11249600 :                 deltids[j] = deltids[j - hi];
    8501    11249600 :                 j -= hi;
    8502             :             }
    8503    15165214 :             deltids[j] = d;
    8504             :         }
    8505             :     }
    8506       11428 : }
    8507             : 
    8508             : /*
    8509             :  * Returns how many blocks should be considered favorable/contiguous for a
    8510             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8511             :  * from and includes the first block in line.
    8512             :  *
    8513             :  * There is always at least one favorable block during bottom-up index
    8514             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8515             :  * first block in line (the only favorable block) can be thought of as a
    8516             :  * degenerate array of contiguous blocks that consists of a single block.
    8517             :  * heap_index_delete_tuples() will expect this.
    8518             :  *
    8519             :  * Caller passes blockgroups, a description of the final order that deltids
    8520             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8521             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8522             :  * only passes deltids to us so that we can interpret blockgroups).
    8523             :  *
    8524             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8525             :  * since in general the main factor that determines which blocks we visit is
    8526             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8527             :  * We're not really targeting the general case, though -- the actual goal is
    8528             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8529             :  * The effects of most of the heuristics we apply are only noticeable in the
    8530             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8531             :  * passes.
    8532             :  *
    8533             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8534             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8535             :  * accessed contiguously, in the sense that each newly visited block is the
    8536             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8537             :  * close enough to it).  It will likely be cheaper to access more favorable
    8538             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8539             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8540             :  * (or a matter of further correlated version churn) before all blocks that
    8541             :  * appear together as a single large batch of favorable blocks get accessed by
    8542             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8543             :  * appear almost constantly or not even once (it all depends on per-index
    8544             :  * workload characteristics).
    8545             :  *
    8546             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8547             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8548             :  * batched together, at least with workloads that are naturally amenable to
    8549             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8550             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8551             :  * enables temporal locality of access, since sorting by heap block number
    8552             :  * naturally tends to make the bottom-up processing order deterministic.
    8553             :  *
    8554             :  * Consider the following example to get a sense of how temporal locality
    8555             :  * might matter: There is a heap relation with several indexes, each of which
    8556             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8557             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8558             :  * the indexes are logically modified by the UPDATE statements (if they were
    8559             :  * then bottom-up index deletion would not be triggered in the first place).
    8560             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8561             :  * heap_update() call) will have the same heap TID in each and every index.
    8562             :  * Since these indexes are low cardinality and never get logically modified,
    8563             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8564             :  * in approximately sequential order.  Temporal locality of access occurs due
    8565             :  * to bottom-up deletion passes behaving very similarly across each of the
    8566             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8567             :  * to visit heap blocks to a minimum.
    8568             :  */
    8569             : static int
    8570        3976 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8571             :                           TM_IndexDelete *deltids)
    8572             : {
    8573        3976 :     int64       lastblock = -1;
    8574        3976 :     int         nblocksfavorable = 0;
    8575             : 
    8576             :     Assert(nblockgroups >= 1);
    8577             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8578             : 
    8579             :     /*
    8580             :      * We tolerate heap blocks that will be accessed only slightly out of
    8581             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8582             :      * blocks happen to fall into different buckets (perhaps due only to a
    8583             :      * small difference in npromisingtids that the bucketing scheme didn't
    8584             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8585             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8586             :      * but it works well enough in practice.
    8587             :      */
    8588       12730 :     for (int b = 0; b < nblockgroups; b++)
    8589             :     {
    8590       12182 :         IndexDeleteCounts *group = blockgroups + b;
    8591       12182 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8592       12182 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8593             : 
    8594       12182 :         if (lastblock != -1 &&
    8595        8206 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8596        7140 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8597             :             break;
    8598             : 
    8599        8754 :         nblocksfavorable++;
    8600        8754 :         lastblock = block;
    8601             :     }
    8602             : 
    8603             :     /* Always indicate that there is at least 1 favorable block */
    8604             :     Assert(nblocksfavorable >= 1);
    8605             : 
    8606        3976 :     return nblocksfavorable;
    8607             : }
    8608             : 
    8609             : /*
    8610             :  * qsort comparison function for bottomup_sort_and_shrink()
    8611             :  */
    8612             : static int
    8613      411006 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8614             : {
    8615      411006 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8616      411006 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8617             : 
    8618             :     /*
    8619             :      * Most significant field is npromisingtids (which we invert the order of
    8620             :      * so as to sort in desc order).
    8621             :      *
    8622             :      * Caller should have already normalized npromisingtids fields into
    8623             :      * power-of-two values (buckets).
    8624             :      */
    8625      411006 :     if (group1->npromisingtids > group2->npromisingtids)
    8626       19034 :         return -1;
    8627      391972 :     if (group1->npromisingtids < group2->npromisingtids)
    8628       21898 :         return 1;
    8629             : 
    8630             :     /*
    8631             :      * Tiebreak: desc ntids sort order.
    8632             :      *
    8633             :      * We cannot expect power-of-two values for ntids fields.  We should
    8634             :      * behave as if they were already rounded up for us instead.
    8635             :      */
    8636      370074 :     if (group1->ntids != group2->ntids)
    8637             :     {
    8638      258210 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8639      258210 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8640             : 
    8641      258210 :         if (ntids1 > ntids2)
    8642       40950 :             return -1;
    8643      217260 :         if (ntids1 < ntids2)
    8644       52356 :             return 1;
    8645             :     }
    8646             : 
    8647             :     /*
    8648             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8649             :      * block in deltids array) order.
    8650             :      *
    8651             :      * This is equivalent to sorting in ascending heap block number order
    8652             :      * (among otherwise equal subsets of the array).  This approach allows us
    8653             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8654             :      * that the deltids array was sorted in ascending heap TID order when
    8655             :      * these offsets to the first TID from each heap block group were formed.)
    8656             :      */
    8657      276768 :     if (group1->ifirsttid > group2->ifirsttid)
    8658      136496 :         return 1;
    8659      140272 :     if (group1->ifirsttid < group2->ifirsttid)
    8660      140272 :         return -1;
    8661             : 
    8662           0 :     pg_unreachable();
    8663             : 
    8664             :     return 0;
    8665             : }
    8666             : 
    8667             : /*
    8668             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8669             :  *
    8670             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8671             :  * deletion.  The array should already be sorted in TID order when we're
    8672             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8673             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8674             :  * known to have the most "promising" TIDs.
    8675             :  *
    8676             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8677             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8678             :  * return.  This often means that deltids will be shrunk to a small fraction
    8679             :  * of its original size (we eliminate many heap blocks from consideration for
    8680             :  * caller up front).
    8681             :  *
    8682             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8683             :  * for a definition and full details.
    8684             :  */
    8685             : static int
    8686        3976 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8687             : {
    8688             :     IndexDeleteCounts *blockgroups;
    8689             :     TM_IndexDelete *reordereddeltids;
    8690        3976 :     BlockNumber curblock = InvalidBlockNumber;
    8691        3976 :     int         nblockgroups = 0;
    8692        3976 :     int         ncopied = 0;
    8693        3976 :     int         nblocksfavorable = 0;
    8694             : 
    8695             :     Assert(delstate->bottomup);
    8696             :     Assert(delstate->ndeltids > 0);
    8697             : 
    8698             :     /* Calculate per-heap-block count of TIDs */
    8699        3976 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8700     1904158 :     for (int i = 0; i < delstate->ndeltids; i++)
    8701             :     {
    8702     1900182 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8703     1900182 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8704     1900182 :         ItemPointer htid = &ideltid->tid;
    8705     1900182 :         bool        promising = istatus->promising;
    8706             : 
    8707     1900182 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8708             :         {
    8709             :             /* New block group */
    8710       79706 :             nblockgroups++;
    8711             : 
    8712             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8713             :                    !BlockNumberIsValid(curblock));
    8714             : 
    8715       79706 :             curblock = ItemPointerGetBlockNumber(htid);
    8716       79706 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8717       79706 :             blockgroups[nblockgroups - 1].ntids = 1;
    8718       79706 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8719             :         }
    8720             :         else
    8721             :         {
    8722     1820476 :             blockgroups[nblockgroups - 1].ntids++;
    8723             :         }
    8724             : 
    8725     1900182 :         if (promising)
    8726      243664 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8727             :     }
    8728             : 
    8729             :     /*
    8730             :      * We're about ready to sort block groups to determine the optimal order
    8731             :      * for visiting heap blocks.  But before we do, round the number of
    8732             :      * promising tuples for each block group up to the next power-of-two,
    8733             :      * unless it is very low (less than 4), in which case we round up to 4.
    8734             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8735             :      * of block groups that both have very low values.
    8736             :      *
    8737             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8738             :      * contains blocks that have _approximately_ the same number of promising
    8739             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8740             :      * in the total number of promising entries, so that the whole process can
    8741             :      * give a little weight to heapam factors (like heap block locality)
    8742             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8743             :      * would be foolish to interpret small differences in npromisingtids
    8744             :      * values as anything more than noise.
    8745             :      *
    8746             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8747             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8748             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8749             :      * only reason that we don't fix nhtids in the same way here too is that
    8750             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8751             :      * bucketization dynamically instead (in the sort comparator).
    8752             :      *
    8753             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8754             :      * heap locality/favorable blocks can significantly influence when and how
    8755             :      * heap blocks are accessed.
    8756             :      */
    8757       83682 :     for (int b = 0; b < nblockgroups; b++)
    8758             :     {
    8759       79706 :         IndexDeleteCounts *group = blockgroups + b;
    8760             : 
    8761             :         /* Better off falling back on nhtids with low npromisingtids */
    8762       79706 :         if (group->npromisingtids <= 4)
    8763       68530 :             group->npromisingtids = 4;
    8764             :         else
    8765       11176 :             group->npromisingtids =
    8766       11176 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8767             :     }
    8768             : 
    8769             :     /* Sort groups and rearrange caller's deltids array */
    8770        3976 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8771             :           bottomup_sort_and_shrink_cmp);
    8772        3976 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8773             : 
    8774        3976 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8775             :     /* Determine number of favorable blocks at the start of final deltids */
    8776        3976 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8777             :                                                  delstate->deltids);
    8778             : 
    8779       26612 :     for (int b = 0; b < nblockgroups; b++)
    8780             :     {
    8781       22636 :         IndexDeleteCounts *group = blockgroups + b;
    8782       22636 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8783             : 
    8784       22636 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8785       22636 :                sizeof(TM_IndexDelete) * group->ntids);
    8786       22636 :         ncopied += group->ntids;
    8787             :     }
    8788             : 
    8789             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8790        3976 :     memcpy(delstate->deltids, reordereddeltids,
    8791             :            sizeof(TM_IndexDelete) * ncopied);
    8792        3976 :     delstate->ndeltids = ncopied;
    8793             : 
    8794        3976 :     pfree(reordereddeltids);
    8795        3976 :     pfree(blockgroups);
    8796             : 
    8797        3976 :     return nblocksfavorable;
    8798             : }
    8799             : 
    8800             : /*
    8801             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8802             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8803             :  * corresponding visibility map block.  Both should have already been modified
    8804             :  * and dirtied.
    8805             :  *
    8806             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8807             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8808             :  *
    8809             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8810             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8811             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8812             :  * update the heap page's LSN.
    8813             :  */
    8814             : XLogRecPtr
    8815       67046 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8816             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8817             : {
    8818             :     xl_heap_visible xlrec;
    8819             :     XLogRecPtr  recptr;
    8820             :     uint8       flags;
    8821             : 
    8822             :     Assert(BufferIsValid(heap_buffer));
    8823             :     Assert(BufferIsValid(vm_buffer));
    8824             : 
    8825       67046 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8826       67046 :     xlrec.flags = vmflags;
    8827       67046 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8828         108 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8829       67046 :     XLogBeginInsert();
    8830       67046 :     XLogRegisterData(&xlrec, SizeOfHeapVisible);
    8831             : 
    8832       67046 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8833             : 
    8834       67046 :     flags = REGBUF_STANDARD;
    8835       67046 :     if (!XLogHintBitIsNeeded())
    8836        6144 :         flags |= REGBUF_NO_IMAGE;
    8837       67046 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8838             : 
    8839       67046 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8840             : 
    8841       67046 :     return recptr;
    8842             : }
    8843             : 
    8844             : /*
    8845             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8846             :  * have modified the buffer(s) and marked them dirty.
    8847             :  */
    8848             : static XLogRecPtr
    8849      586358 : log_heap_update(Relation reln, Buffer oldbuf,
    8850             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8851             :                 HeapTuple old_key_tuple,
    8852             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8853             : {
    8854             :     xl_heap_update xlrec;
    8855             :     xl_heap_header xlhdr;
    8856             :     xl_heap_header xlhdr_idx;
    8857             :     uint8       info;
    8858             :     uint16      prefix_suffix[2];
    8859      586358 :     uint16      prefixlen = 0,
    8860      586358 :                 suffixlen = 0;
    8861             :     XLogRecPtr  recptr;
    8862      586358 :     Page        page = BufferGetPage(newbuf);
    8863      586358 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8864             :     bool        init;
    8865             :     int         bufflags;
    8866             : 
    8867             :     /* Caller should not call me on a non-WAL-logged relation */
    8868             :     Assert(RelationNeedsWAL(reln));
    8869             : 
    8870      586358 :     XLogBeginInsert();
    8871             : 
    8872      586358 :     if (HeapTupleIsHeapOnly(newtup))
    8873      283564 :         info = XLOG_HEAP_HOT_UPDATE;
    8874             :     else
    8875      302794 :         info = XLOG_HEAP_UPDATE;
    8876             : 
    8877             :     /*
    8878             :      * If the old and new tuple are on the same page, we only need to log the
    8879             :      * parts of the new tuple that were changed.  That saves on the amount of
    8880             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8881             :      * the beginning and end of the tuple.  That's quick to check, and
    8882             :      * perfectly covers the common case that only one field is updated.
    8883             :      *
    8884             :      * We could do this even if the old and new tuple are on different pages,
    8885             :      * but only if we don't make a full-page image of the old page, which is
    8886             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8887             :      * some reason, it would allow the corruption to propagate the new page,
    8888             :      * so it seems best to avoid.  Under the general assumption that most
    8889             :      * updates tend to create the new tuple version on the same page, there
    8890             :      * isn't much to be gained by doing this across pages anyway.
    8891             :      *
    8892             :      * Skip this if we're taking a full-page image of the new page, as we
    8893             :      * don't include the new tuple in the WAL record in that case.  Also
    8894             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8895             :      * read the new tuple in whole from the WAL record alone.
    8896             :      */
    8897      586358 :     if (oldbuf == newbuf && !need_tuple_data &&
    8898      283382 :         !XLogCheckBufferNeedsBackup(newbuf))
    8899             :     {
    8900      282388 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8901      282388 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8902      282388 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8903      282388 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8904             : 
    8905             :         /* Check for common prefix between old and new tuple */
    8906    23495156 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8907             :         {
    8908    23443820 :             if (newp[prefixlen] != oldp[prefixlen])
    8909      231052 :                 break;
    8910             :         }
    8911             : 
    8912             :         /*
    8913             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8914             :          * at least 3 bytes or there's no point.
    8915             :          */
    8916      282388 :         if (prefixlen < 3)
    8917       44170 :             prefixlen = 0;
    8918             : 
    8919             :         /* Same for suffix */
    8920     9012704 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8921             :         {
    8922     8960852 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8923      230536 :                 break;
    8924             :         }
    8925      282388 :         if (suffixlen < 3)
    8926       70678 :             suffixlen = 0;
    8927             :     }
    8928             : 
    8929             :     /* Prepare main WAL data chain */
    8930      586358 :     xlrec.flags = 0;
    8931      586358 :     if (all_visible_cleared)
    8932        3368 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8933      586358 :     if (new_all_visible_cleared)
    8934        1694 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8935      586358 :     if (prefixlen > 0)
    8936      238218 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8937      586358 :     if (suffixlen > 0)
    8938      211710 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8939      586358 :     if (need_tuple_data)
    8940             :     {
    8941       94044 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8942       94044 :         if (old_key_tuple)
    8943             :         {
    8944         292 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8945         130 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8946             :             else
    8947         162 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8948             :         }
    8949             :     }
    8950             : 
    8951             :     /* If new tuple is the single and first tuple on page... */
    8952      593184 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8953        6826 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8954             :     {
    8955        6396 :         info |= XLOG_HEAP_INIT_PAGE;
    8956        6396 :         init = true;
    8957             :     }
    8958             :     else
    8959      579962 :         init = false;
    8960             : 
    8961             :     /* Prepare WAL data for the old page */
    8962      586358 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8963      586358 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8964     1172716 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8965      586358 :                                               oldtup->t_data->t_infomask2);
    8966             : 
    8967             :     /* Prepare WAL data for the new page */
    8968      586358 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8969      586358 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8970             : 
    8971      586358 :     bufflags = REGBUF_STANDARD;
    8972      586358 :     if (init)
    8973        6396 :         bufflags |= REGBUF_WILL_INIT;
    8974      586358 :     if (need_tuple_data)
    8975       94044 :         bufflags |= REGBUF_KEEP_DATA;
    8976             : 
    8977      586358 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8978      586358 :     if (oldbuf != newbuf)
    8979      279092 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8980             : 
    8981      586358 :     XLogRegisterData(&xlrec, SizeOfHeapUpdate);
    8982             : 
    8983             :     /*
    8984             :      * Prepare WAL data for the new tuple.
    8985             :      */
    8986      586358 :     if (prefixlen > 0 || suffixlen > 0)
    8987             :     {
    8988      281468 :         if (prefixlen > 0 && suffixlen > 0)
    8989             :         {
    8990      168460 :             prefix_suffix[0] = prefixlen;
    8991      168460 :             prefix_suffix[1] = suffixlen;
    8992      168460 :             XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
    8993             :         }
    8994      113008 :         else if (prefixlen > 0)
    8995             :         {
    8996       69758 :             XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
    8997             :         }
    8998             :         else
    8999             :         {
    9000       43250 :             XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
    9001             :         }
    9002             :     }
    9003             : 
    9004      586358 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    9005      586358 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    9006      586358 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    9007             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    9008             : 
    9009             :     /*
    9010             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    9011             :      *
    9012             :      * The 'data' doesn't include the common prefix or suffix.
    9013             :      */
    9014      586358 :     XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    9015      586358 :     if (prefixlen == 0)
    9016             :     {
    9017      348140 :         XLogRegisterBufData(0,
    9018      348140 :                             (char *) newtup->t_data + SizeofHeapTupleHeader,
    9019      348140 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    9020             :     }
    9021             :     else
    9022             :     {
    9023             :         /*
    9024             :          * Have to write the null bitmap and data after the common prefix as
    9025             :          * two separate rdata entries.
    9026             :          */
    9027             :         /* bitmap [+ padding] [+ oid] */
    9028      238218 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    9029             :         {
    9030      238218 :             XLogRegisterBufData(0,
    9031      238218 :                                 (char *) newtup->t_data + SizeofHeapTupleHeader,
    9032      238218 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    9033             :         }
    9034             : 
    9035             :         /* data after common prefix */
    9036      238218 :         XLogRegisterBufData(0,
    9037      238218 :                             (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
    9038      238218 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    9039             :     }
    9040             : 
    9041             :     /* We need to log a tuple identity */
    9042      586358 :     if (need_tuple_data && old_key_tuple)
    9043             :     {
    9044             :         /* don't really need this, but its more comfy to decode */
    9045         292 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    9046         292 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    9047         292 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    9048             : 
    9049         292 :         XLogRegisterData(&xlhdr_idx, SizeOfHeapHeader);
    9050             : 
    9051             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    9052         292 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    9053         292 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    9054             :     }
    9055             : 
    9056             :     /* filtering by origin on a row level is much more efficient */
    9057      586358 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    9058             : 
    9059      586358 :     recptr = XLogInsert(RM_HEAP_ID, info);
    9060             : 
    9061      586358 :     return recptr;
    9062             : }
    9063             : 
    9064             : /*
    9065             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    9066             :  *
    9067             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    9068             :  * tuples.
    9069             :  */
    9070             : static XLogRecPtr
    9071       48894 : log_heap_new_cid(Relation relation, HeapTuple tup)
    9072             : {
    9073             :     xl_heap_new_cid xlrec;
    9074             : 
    9075             :     XLogRecPtr  recptr;
    9076       48894 :     HeapTupleHeader hdr = tup->t_data;
    9077             : 
    9078             :     Assert(ItemPointerIsValid(&tup->t_self));
    9079             :     Assert(tup->t_tableOid != InvalidOid);
    9080             : 
    9081       48894 :     xlrec.top_xid = GetTopTransactionId();
    9082       48894 :     xlrec.target_locator = relation->rd_locator;
    9083       48894 :     xlrec.target_tid = tup->t_self;
    9084             : 
    9085             :     /*
    9086             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    9087             :      * combo CID, set cmin and cmax.
    9088             :      */
    9089       48894 :     if (hdr->t_infomask & HEAP_COMBOCID)
    9090             :     {
    9091             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    9092             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    9093        4048 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    9094        4048 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    9095        4048 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    9096             :     }
    9097             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    9098             :     else
    9099             :     {
    9100             :         /*
    9101             :          * Tuple inserted.
    9102             :          *
    9103             :          * We need to check for LOCK ONLY because multixacts might be
    9104             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    9105             :          * which case there will be an xmax, although the tuple just got
    9106             :          * inserted.
    9107             :          */
    9108       58428 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    9109       13582 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    9110             :         {
    9111       31266 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    9112       31266 :             xlrec.cmax = InvalidCommandId;
    9113             :         }
    9114             :         /* Tuple from a different tx updated or deleted. */
    9115             :         else
    9116             :         {
    9117       13580 :             xlrec.cmin = InvalidCommandId;
    9118       13580 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    9119             :         }
    9120       44846 :         xlrec.combocid = InvalidCommandId;
    9121             :     }
    9122             : 
    9123             :     /*
    9124             :      * Note that we don't need to register the buffer here, because this
    9125             :      * operation does not modify the page. The insert/update/delete that
    9126             :      * called us certainly did, but that's WAL-logged separately.
    9127             :      */
    9128       48894 :     XLogBeginInsert();
    9129       48894 :     XLogRegisterData(&xlrec, SizeOfHeapNewCid);
    9130             : 
    9131             :     /* will be looked at irrespective of origin */
    9132             : 
    9133       48894 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    9134             : 
    9135       48894 :     return recptr;
    9136             : }
    9137             : 
    9138             : /*
    9139             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    9140             :  * the old tuple in an UPDATE or DELETE.
    9141             :  *
    9142             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    9143             :  * key defined.
    9144             :  *
    9145             :  * Pass key_required true if any replica identity columns changed value, or if
    9146             :  * any of them have any external data.  Delete must always pass true.
    9147             :  *
    9148             :  * *copy is set to true if the returned tuple is a modified copy rather than
    9149             :  * the same tuple that was passed in.
    9150             :  */
    9151             : static HeapTuple
    9152     3597536 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9153             :                        bool *copy)
    9154             : {
    9155     3597536 :     TupleDesc   desc = RelationGetDescr(relation);
    9156     3597536 :     char        replident = relation->rd_rel->relreplident;
    9157             :     Bitmapset  *idattrs;
    9158             :     HeapTuple   key_tuple;
    9159             :     bool        nulls[MaxHeapAttributeNumber];
    9160             :     Datum       values[MaxHeapAttributeNumber];
    9161             : 
    9162     3597536 :     *copy = false;
    9163             : 
    9164     3597536 :     if (!RelationIsLogicallyLogged(relation))
    9165     3396952 :         return NULL;
    9166             : 
    9167      200584 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9168         462 :         return NULL;
    9169             : 
    9170      200122 :     if (replident == REPLICA_IDENTITY_FULL)
    9171             :     {
    9172             :         /*
    9173             :          * When logging the entire old tuple, it very well could contain
    9174             :          * toasted columns. If so, force them to be inlined.
    9175             :          */
    9176         394 :         if (HeapTupleHasExternal(tp))
    9177             :         {
    9178           8 :             *copy = true;
    9179           8 :             tp = toast_flatten_tuple(tp, desc);
    9180             :         }
    9181         394 :         return tp;
    9182             :     }
    9183             : 
    9184             :     /* if the key isn't required and we're only logging the key, we're done */
    9185      199728 :     if (!key_required)
    9186       93752 :         return NULL;
    9187             : 
    9188             :     /* find out the replica identity columns */
    9189      105976 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9190             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9191             : 
    9192             :     /*
    9193             :      * If there's no defined replica identity columns, treat as !key_required.
    9194             :      * (This case should not be reachable from heap_update, since that should
    9195             :      * calculate key_required accurately.  But heap_delete just passes
    9196             :      * constant true for key_required, so we can hit this case in deletes.)
    9197             :      */
    9198      105976 :     if (bms_is_empty(idattrs))
    9199       12042 :         return NULL;
    9200             : 
    9201             :     /*
    9202             :      * Construct a new tuple containing only the replica identity columns,
    9203             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9204             :      * identity columns aren't null.
    9205             :      */
    9206       93934 :     heap_deform_tuple(tp, desc, values, nulls);
    9207             : 
    9208      301790 :     for (int i = 0; i < desc->natts; i++)
    9209             :     {
    9210      207856 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9211             :                           idattrs))
    9212             :             Assert(!nulls[i]);
    9213             :         else
    9214      113898 :             nulls[i] = true;
    9215             :     }
    9216             : 
    9217       93934 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9218       93934 :     *copy = true;
    9219             : 
    9220       93934 :     bms_free(idattrs);
    9221             : 
    9222             :     /*
    9223             :      * If the tuple, which by here only contains indexed columns, still has
    9224             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9225             :      * since there's limits on the size of indexed columns, so we don't
    9226             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9227             :      * the indexed columns, even if it would be more efficient.
    9228             :      */
    9229       93934 :     if (HeapTupleHasExternal(key_tuple))
    9230             :     {
    9231           8 :         HeapTuple   oldtup = key_tuple;
    9232             : 
    9233           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9234           8 :         heap_freetuple(oldtup);
    9235             :     }
    9236             : 
    9237       93934 :     return key_tuple;
    9238             : }
    9239             : 
    9240             : /*
    9241             :  * HeapCheckForSerializableConflictOut
    9242             :  *      We are reading a tuple.  If it's not visible, there may be a
    9243             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9244             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9245             :  *
    9246             :  * We will determine the top level xid of the writing transaction with which
    9247             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9248             :  * for overlap with our own transaction.
    9249             :  *
    9250             :  * This function should be called just about anywhere in heapam.c where a
    9251             :  * tuple has been read. The caller must hold at least a shared lock on the
    9252             :  * buffer, because this function might set hint bits on the tuple. There is
    9253             :  * currently no known reason to call this function from an index AM.
    9254             :  */
    9255             : void
    9256    62974488 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9257             :                                     HeapTuple tuple, Buffer buffer,
    9258             :                                     Snapshot snapshot)
    9259             : {
    9260             :     TransactionId xid;
    9261             :     HTSV_Result htsvResult;
    9262             : 
    9263    62974488 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9264    62923764 :         return;
    9265             : 
    9266             :     /*
    9267             :      * Check to see whether the tuple has been written to by a concurrent
    9268             :      * transaction, either to create it not visible to us, or to delete it
    9269             :      * while it is visible to us.  The "visible" bool indicates whether the
    9270             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9271             :      * is going on with it.
    9272             :      *
    9273             :      * In the event of a concurrently inserted tuple that also happens to have
    9274             :      * been concurrently updated (by a separate transaction), the xmin of the
    9275             :      * tuple will be used -- not the updater's xid.
    9276             :      */
    9277       50724 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9278       50724 :     switch (htsvResult)
    9279             :     {
    9280       49098 :         case HEAPTUPLE_LIVE:
    9281       49098 :             if (visible)
    9282       49072 :                 return;
    9283          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9284          26 :             break;
    9285         722 :         case HEAPTUPLE_RECENTLY_DEAD:
    9286             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9287         722 :             if (visible)
    9288         570 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9289             :             else
    9290         152 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9291             : 
    9292         722 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9293             :             {
    9294             :                 /* This is like the HEAPTUPLE_DEAD case */
    9295             :                 Assert(!visible);
    9296         134 :                 return;
    9297             :             }
    9298         588 :             break;
    9299         656 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9300         656 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9301         656 :             break;
    9302         248 :         case HEAPTUPLE_DEAD:
    9303             :             Assert(!visible);
    9304         248 :             return;
    9305           0 :         default:
    9306             : 
    9307             :             /*
    9308             :              * The only way to get to this default clause is if a new value is
    9309             :              * added to the enum type without adding it to this switch
    9310             :              * statement.  That's a bug, so elog.
    9311             :              */
    9312           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9313             : 
    9314             :             /*
    9315             :              * In spite of having all enum values covered and calling elog on
    9316             :              * this default, some compilers think this is a code path which
    9317             :              * allows xid to be used below without initialization. Silence
    9318             :              * that warning.
    9319             :              */
    9320             :             xid = InvalidTransactionId;
    9321             :     }
    9322             : 
    9323             :     Assert(TransactionIdIsValid(xid));
    9324             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9325             : 
    9326             :     /*
    9327             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9328             :      * if it's our own xid.
    9329             :      */
    9330        1270 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9331         128 :         return;
    9332        1142 :     xid = SubTransGetTopmostTransaction(xid);
    9333        1142 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9334           0 :         return;
    9335             : 
    9336        1142 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9337             : }

Generated by: LCOV version 1.16