LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2462 2689 91.6 %
Date: 2025-01-18 04:15:08 Functions: 80 80 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/inval.h"
      53             : #include "utils/spccache.h"
      54             : 
      55             : 
      56             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      57             :                                      TransactionId xid, CommandId cid, int options);
      58             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      59             :                                   Buffer newbuf, HeapTuple oldtup,
      60             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      61             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      62             : #ifdef USE_ASSERT_CHECKING
      63             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      64             :                                                  ItemPointer otid,
      65             :                                                  HeapTuple newtup);
      66             : static void check_inplace_rel_lock(HeapTuple oldtup);
      67             : #endif
      68             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      69             :                                            Bitmapset *interesting_cols,
      70             :                                            Bitmapset *external_cols,
      71             :                                            HeapTuple oldtup, HeapTuple newtup,
      72             :                                            bool *has_external);
      73             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      74             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      75             :                                  bool *have_tuple_lock);
      76             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      77             :                                                    BlockNumber block,
      78             :                                                    ScanDirection dir);
      79             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      80             :                                                         ScanDirection dir);
      81             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      82             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      83             :                                       LockTupleMode mode, bool is_update,
      84             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      85             :                                       uint16 *result_infomask2);
      86             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      87             :                                          ItemPointer ctid, TransactionId xid,
      88             :                                          LockTupleMode mode);
      89             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      90             :                                    uint16 *new_infomask2);
      91             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      92             :                                              uint16 t_infomask);
      93             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      94             :                                     LockTupleMode lockmode, bool *current_is_member);
      95             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      96             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      97             :                             int *remaining);
      98             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
      99             :                                        uint16 infomask, Relation rel, int *remaining);
     100             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     101             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     102             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     103             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     104             :                                         bool *copy);
     105             : 
     106             : 
     107             : /*
     108             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     109             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     110             :  * update them).  This table (and the macros below) helps us determine the
     111             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     112             :  * tuple lock strength.
     113             :  *
     114             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     115             :  *
     116             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     117             :  * instead.
     118             :  */
     119             : static const struct
     120             : {
     121             :     LOCKMODE    hwlock;
     122             :     int         lockstatus;
     123             :     int         updstatus;
     124             : }
     125             : 
     126             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     127             : {
     128             :     {                           /* LockTupleKeyShare */
     129             :         AccessShareLock,
     130             :         MultiXactStatusForKeyShare,
     131             :         -1                      /* KeyShare does not allow updating tuples */
     132             :     },
     133             :     {                           /* LockTupleShare */
     134             :         RowShareLock,
     135             :         MultiXactStatusForShare,
     136             :         -1                      /* Share does not allow updating tuples */
     137             :     },
     138             :     {                           /* LockTupleNoKeyExclusive */
     139             :         ExclusiveLock,
     140             :         MultiXactStatusForNoKeyUpdate,
     141             :         MultiXactStatusNoKeyUpdate
     142             :     },
     143             :     {                           /* LockTupleExclusive */
     144             :         AccessExclusiveLock,
     145             :         MultiXactStatusForUpdate,
     146             :         MultiXactStatusUpdate
     147             :     }
     148             : };
     149             : 
     150             : /* Get the LOCKMODE for a given MultiXactStatus */
     151             : #define LOCKMODE_from_mxstatus(status) \
     152             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     153             : 
     154             : /*
     155             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     156             :  * This is more readable than having every caller translate it to lock.h's
     157             :  * LOCKMODE.
     158             :  */
     159             : #define LockTupleTuplock(rel, tup, mode) \
     160             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     161             : #define UnlockTupleTuplock(rel, tup, mode) \
     162             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     163             : #define ConditionalLockTupleTuplock(rel, tup, mode) \
     164             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     165             : 
     166             : #ifdef USE_PREFETCH
     167             : /*
     168             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     169             :  * structure to coordinate prefetching activity
     170             :  */
     171             : typedef struct
     172             : {
     173             :     BlockNumber cur_hblkno;
     174             :     int         next_item;
     175             :     int         ndeltids;
     176             :     TM_IndexDelete *deltids;
     177             : } IndexDeletePrefetchState;
     178             : #endif
     179             : 
     180             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     181             : #define BOTTOMUP_MAX_NBLOCKS            6
     182             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     183             : 
     184             : /*
     185             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     186             :  * must visit to help its bottom-up index deletion caller
     187             :  */
     188             : typedef struct IndexDeleteCounts
     189             : {
     190             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     191             :     int16       ntids;          /* Number of TIDs in group */
     192             :     int16       ifirsttid;      /* Offset to group's first deltid */
     193             : } IndexDeleteCounts;
     194             : 
     195             : /*
     196             :  * This table maps tuple lock strength values for each particular
     197             :  * MultiXactStatus value.
     198             :  */
     199             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     200             : {
     201             :     LockTupleKeyShare,          /* ForKeyShare */
     202             :     LockTupleShare,             /* ForShare */
     203             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     204             :     LockTupleExclusive,         /* ForUpdate */
     205             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     206             :     LockTupleExclusive          /* Update */
     207             : };
     208             : 
     209             : /* Get the LockTupleMode for a given MultiXactStatus */
     210             : #define TUPLOCK_from_mxstatus(status) \
     211             :             (MultiXactStatusLock[(status)])
     212             : 
     213             : /* ----------------------------------------------------------------
     214             :  *                       heap support routines
     215             :  * ----------------------------------------------------------------
     216             :  */
     217             : 
     218             : /*
     219             :  * Streaming read API callback for parallel sequential scans. Returns the next
     220             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     221             :  */
     222             : static BlockNumber
     223      201250 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     224             :                                     void *callback_private_data,
     225             :                                     void *per_buffer_data)
     226             : {
     227      201250 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     228             : 
     229             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     230             :     Assert(scan->rs_base.rs_parallel);
     231             : 
     232      201250 :     if (unlikely(!scan->rs_inited))
     233             :     {
     234             :         /* parallel scan */
     235        2802 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     236        2802 :                                                  scan->rs_parallelworkerdata,
     237        2802 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     238             : 
     239             :         /* may return InvalidBlockNumber if there are no more blocks */
     240        5604 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     241        2802 :                                                                     scan->rs_parallelworkerdata,
     242        2802 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     243        2802 :         scan->rs_inited = true;
     244             :     }
     245             :     else
     246             :     {
     247      198448 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     248      198448 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     249      198448 :                                                                     scan->rs_base.rs_parallel);
     250             :     }
     251             : 
     252      201250 :     return scan->rs_prefetch_block;
     253             : }
     254             : 
     255             : /*
     256             :  * Streaming read API callback for serial sequential and TID range scans.
     257             :  * Returns the next block the caller wants from the read stream or
     258             :  * InvalidBlockNumber when done.
     259             :  */
     260             : static BlockNumber
     261     6468896 : heap_scan_stream_read_next_serial(ReadStream *stream,
     262             :                                   void *callback_private_data,
     263             :                                   void *per_buffer_data)
     264             : {
     265     6468896 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     266             : 
     267     6468896 :     if (unlikely(!scan->rs_inited))
     268             :     {
     269     1640918 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     270     1640918 :         scan->rs_inited = true;
     271             :     }
     272             :     else
     273     4827978 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     274             :                                                            scan->rs_prefetch_block,
     275             :                                                            scan->rs_dir);
     276             : 
     277     6468896 :     return scan->rs_prefetch_block;
     278             : }
     279             : 
     280             : /* ----------------
     281             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     282             :  * ----------------
     283             :  */
     284             : static void
     285     1680366 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     286             : {
     287     1680366 :     ParallelBlockTableScanDesc bpscan = NULL;
     288             :     bool        allow_strat;
     289             :     bool        allow_sync;
     290             : 
     291             :     /*
     292             :      * Determine the number of blocks we have to scan.
     293             :      *
     294             :      * It is sufficient to do this once at scan start, since any tuples added
     295             :      * while the scan is in progress will be invisible to my snapshot anyway.
     296             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     297             :      * guarantee to return tuples added after scan start anyway, since they
     298             :      * might go into pages we already scanned.  To guarantee consistent
     299             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     300             :      * lock that ensures the interesting tuple(s) won't change.)
     301             :      */
     302     1680366 :     if (scan->rs_base.rs_parallel != NULL)
     303             :     {
     304        4002 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     305        4002 :         scan->rs_nblocks = bpscan->phs_nblocks;
     306             :     }
     307             :     else
     308     1676364 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     309             : 
     310             :     /*
     311             :      * If the table is large relative to NBuffers, use a bulk-read access
     312             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     313             :      * the thresholds for these features could be different, we make them the
     314             :      * same so that there are only two behaviors to tune rather than four.
     315             :      * (However, some callers need to be able to disable one or both of these
     316             :      * behaviors, independently of the size of the table; also there is a GUC
     317             :      * variable that can disable synchronized scanning.)
     318             :      *
     319             :      * Note that table_block_parallelscan_initialize has a very similar test;
     320             :      * if you change this, consider changing that one, too.
     321             :      */
     322     1680362 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     323     1668080 :         scan->rs_nblocks > NBuffers / 4)
     324             :     {
     325       23762 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     326       23762 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     327             :     }
     328             :     else
     329     1656600 :         allow_strat = allow_sync = false;
     330             : 
     331     1680362 :     if (allow_strat)
     332             :     {
     333             :         /* During a rescan, keep the previous strategy object. */
     334       21280 :         if (scan->rs_strategy == NULL)
     335       21002 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     336             :     }
     337             :     else
     338             :     {
     339     1659082 :         if (scan->rs_strategy != NULL)
     340           0 :             FreeAccessStrategy(scan->rs_strategy);
     341     1659082 :         scan->rs_strategy = NULL;
     342             :     }
     343             : 
     344     1680362 :     if (scan->rs_base.rs_parallel != NULL)
     345             :     {
     346             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     347        4002 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     348           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     349             :         else
     350        3998 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     351             :     }
     352     1676360 :     else if (keep_startblock)
     353             :     {
     354             :         /*
     355             :          * When rescanning, we want to keep the previous startblock setting,
     356             :          * so that rewinding a cursor doesn't generate surprising results.
     357             :          * Reset the active syncscan setting, though.
     358             :          */
     359     1007228 :         if (allow_sync && synchronize_seqscans)
     360          40 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     361             :         else
     362     1007188 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     363             :     }
     364      669132 :     else if (allow_sync && synchronize_seqscans)
     365             :     {
     366         118 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     367         118 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     368             :     }
     369             :     else
     370             :     {
     371      669014 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     372      669014 :         scan->rs_startblock = 0;
     373             :     }
     374             : 
     375     1680362 :     scan->rs_numblocks = InvalidBlockNumber;
     376     1680362 :     scan->rs_inited = false;
     377     1680362 :     scan->rs_ctup.t_data = NULL;
     378     1680362 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     379     1680362 :     scan->rs_cbuf = InvalidBuffer;
     380     1680362 :     scan->rs_cblock = InvalidBlockNumber;
     381     1680362 :     scan->rs_ntuples = 0;
     382     1680362 :     scan->rs_cindex = 0;
     383             : 
     384             :     /*
     385             :      * Initialize to ForwardScanDirection because it is most common and
     386             :      * because heap scans go forward before going backward (e.g. CURSORs).
     387             :      */
     388     1680362 :     scan->rs_dir = ForwardScanDirection;
     389     1680362 :     scan->rs_prefetch_block = InvalidBlockNumber;
     390             : 
     391             :     /* page-at-a-time fields are always invalid when not rs_inited */
     392             : 
     393             :     /*
     394             :      * copy the scan key, if appropriate
     395             :      */
     396     1680362 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     397      384926 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     398             : 
     399             :     /*
     400             :      * Currently, we only have a stats counter for sequential heap scans (but
     401             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     402             :      * and for sample scans we update stats for tuple fetches).
     403             :      */
     404     1680362 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     405     1644984 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     406     1680362 : }
     407             : 
     408             : /*
     409             :  * heap_setscanlimits - restrict range of a heapscan
     410             :  *
     411             :  * startBlk is the page to start at
     412             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     413             :  */
     414             : void
     415        3756 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     416             : {
     417        3756 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     418             : 
     419             :     Assert(!scan->rs_inited);    /* else too late to change */
     420             :     /* else rs_startblock is significant */
     421             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     422             : 
     423             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     424             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     425             : 
     426        3756 :     scan->rs_startblock = startBlk;
     427        3756 :     scan->rs_numblocks = numBlks;
     428        3756 : }
     429             : 
     430             : /*
     431             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     432             :  * multiple times, with constant arguments for all_visible,
     433             :  * check_serializable.
     434             :  */
     435             : pg_attribute_always_inline
     436             : static int
     437     4828344 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     438             :                     Page page, Buffer buffer,
     439             :                     BlockNumber block, int lines,
     440             :                     bool all_visible, bool check_serializable)
     441             : {
     442     4828344 :     int         ntup = 0;
     443             :     OffsetNumber lineoff;
     444             : 
     445   244934670 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     446             :     {
     447   240106342 :         ItemId      lpp = PageGetItemId(page, lineoff);
     448             :         HeapTupleData loctup;
     449             :         bool        valid;
     450             : 
     451   240106342 :         if (!ItemIdIsNormal(lpp))
     452    51685558 :             continue;
     453             : 
     454   188420784 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     455   188420784 :         loctup.t_len = ItemIdGetLength(lpp);
     456   188420784 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     457   188420784 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     458             : 
     459   188420784 :         if (all_visible)
     460    68875302 :             valid = true;
     461             :         else
     462   119545482 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     463             : 
     464   188420784 :         if (check_serializable)
     465        2810 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     466             :                                                 &loctup, buffer, snapshot);
     467             : 
     468   188420768 :         if (valid)
     469             :         {
     470   173023226 :             scan->rs_vistuples[ntup] = lineoff;
     471   173023226 :             ntup++;
     472             :         }
     473             :     }
     474             : 
     475             :     Assert(ntup <= MaxHeapTuplesPerPage);
     476             : 
     477     4828328 :     return ntup;
     478             : }
     479             : 
     480             : /*
     481             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     482             :  *
     483             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     484             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     485             :  */
     486             : void
     487     4828344 : heap_prepare_pagescan(TableScanDesc sscan)
     488             : {
     489     4828344 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     490     4828344 :     Buffer      buffer = scan->rs_cbuf;
     491     4828344 :     BlockNumber block = scan->rs_cblock;
     492             :     Snapshot    snapshot;
     493             :     Page        page;
     494             :     int         lines;
     495             :     bool        all_visible;
     496             :     bool        check_serializable;
     497             : 
     498             :     Assert(BufferGetBlockNumber(buffer) == block);
     499             : 
     500             :     /* ensure we're not accidentally being used when not in pagemode */
     501             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     502     4828344 :     snapshot = scan->rs_base.rs_snapshot;
     503             : 
     504             :     /*
     505             :      * Prune and repair fragmentation for the whole page, if possible.
     506             :      */
     507     4828344 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     508             : 
     509             :     /*
     510             :      * We must hold share lock on the buffer content while examining tuple
     511             :      * visibility.  Afterwards, however, the tuples we have found to be
     512             :      * visible are guaranteed good as long as we hold the buffer pin.
     513             :      */
     514     4828344 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     515             : 
     516     4828344 :     page = BufferGetPage(buffer);
     517     4828344 :     lines = PageGetMaxOffsetNumber(page);
     518             : 
     519             :     /*
     520             :      * If the all-visible flag indicates that all tuples on the page are
     521             :      * visible to everyone, we can skip the per-tuple visibility tests.
     522             :      *
     523             :      * Note: In hot standby, a tuple that's already visible to all
     524             :      * transactions on the primary might still be invisible to a read-only
     525             :      * transaction in the standby. We partly handle this problem by tracking
     526             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     527             :      * page all-visible on the primary and WAL log that along with the
     528             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     529             :      * all transactions that can potentially may not see one or more tuples on
     530             :      * the page. That's how index-only scans work fine in hot standby. A
     531             :      * crucial difference between index-only scans and heap scans is that the
     532             :      * index-only scan completely relies on the visibility map where as heap
     533             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     534             :      * the page-level flag can be trusted in the same way, because it might
     535             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     536             :      * full page write. Until we can prove that beyond doubt, let's check each
     537             :      * tuple for visibility the hard way.
     538             :      */
     539     4828344 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     540             :     check_serializable =
     541     4828344 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     542             : 
     543             :     /*
     544             :      * We call page_collect_tuples() with constant arguments, to get the
     545             :      * compiler to constant fold the constant arguments. Separate calls with
     546             :      * constant arguments, rather than variables, are needed on several
     547             :      * compilers to actually perform constant folding.
     548             :      */
     549     4828344 :     if (likely(all_visible))
     550             :     {
     551     1642766 :         if (likely(!check_serializable))
     552     1642766 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     553             :                                                    block, lines, true, false);
     554             :         else
     555           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     556             :                                                    block, lines, true, true);
     557             :     }
     558             :     else
     559             :     {
     560     3185578 :         if (likely(!check_serializable))
     561     3184340 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     562             :                                                    block, lines, false, false);
     563             :         else
     564        1238 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     565             :                                                    block, lines, false, true);
     566             :     }
     567             : 
     568     4828328 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     569     4828328 : }
     570             : 
     571             : /*
     572             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     573             :  *
     574             :  * Read the next block of the scan relation from the read stream and save it
     575             :  * in the scan descriptor.  It is already pinned.
     576             :  */
     577             : static inline void
     578     6369274 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     579             : {
     580             :     Assert(scan->rs_read_stream);
     581             : 
     582             :     /* release previous scan buffer, if any */
     583     6369274 :     if (BufferIsValid(scan->rs_cbuf))
     584             :     {
     585     4725552 :         ReleaseBuffer(scan->rs_cbuf);
     586     4725552 :         scan->rs_cbuf = InvalidBuffer;
     587             :     }
     588             : 
     589             :     /*
     590             :      * Be sure to check for interrupts at least once per page.  Checks at
     591             :      * higher code levels won't be able to stop a seqscan that encounters many
     592             :      * pages' worth of consecutive dead tuples.
     593             :      */
     594     6369274 :     CHECK_FOR_INTERRUPTS();
     595             : 
     596             :     /*
     597             :      * If the scan direction is changing, reset the prefetch block to the
     598             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     599             :      * between the prefetch block and the current block again before
     600             :      * prefetching blocks in the new, correct scan direction.
     601             :      */
     602     6369270 :     if (unlikely(scan->rs_dir != dir))
     603             :     {
     604         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     605         154 :         read_stream_reset(scan->rs_read_stream);
     606             :     }
     607             : 
     608     6369270 :     scan->rs_dir = dir;
     609             : 
     610     6369270 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     611     6369270 :     if (BufferIsValid(scan->rs_cbuf))
     612     5006102 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     613     6369270 : }
     614             : 
     615             : /*
     616             :  * heapgettup_initial_block - return the first BlockNumber to scan
     617             :  *
     618             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     619             :  * occur with empty tables and in parallel scans when parallel workers get all
     620             :  * of the pages before we can get a chance to get our first page.
     621             :  */
     622             : static pg_noinline BlockNumber
     623     1640918 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     624             : {
     625             :     Assert(!scan->rs_inited);
     626             :     Assert(scan->rs_base.rs_parallel == NULL);
     627             : 
     628             :     /* When there are no pages to scan, return InvalidBlockNumber */
     629     1640918 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     630      773178 :         return InvalidBlockNumber;
     631             : 
     632      867740 :     if (ScanDirectionIsForward(dir))
     633             :     {
     634      867676 :         return scan->rs_startblock;
     635             :     }
     636             :     else
     637             :     {
     638             :         /*
     639             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     640             :          * very likely anyone else is doing the same thing at the same time,
     641             :          * and much more likely that we'll just bollix things for forward
     642             :          * scanners.
     643             :          */
     644          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     645             : 
     646             :         /*
     647             :          * Start from last page of the scan.  Ensure we take into account
     648             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     649             :          */
     650          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     651           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     652             : 
     653          58 :         if (scan->rs_startblock > 0)
     654           0 :             return scan->rs_startblock - 1;
     655             : 
     656          58 :         return scan->rs_nblocks - 1;
     657             :     }
     658             : }
     659             : 
     660             : 
     661             : /*
     662             :  * heapgettup_start_page - helper function for heapgettup()
     663             :  *
     664             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     665             :  * to the number of tuples on this page.  Also set *lineoff to the first
     666             :  * offset to scan with forward scans getting the first offset and backward
     667             :  * getting the final offset on the page.
     668             :  */
     669             : static Page
     670      186312 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     671             :                       OffsetNumber *lineoff)
     672             : {
     673             :     Page        page;
     674             : 
     675             :     Assert(scan->rs_inited);
     676             :     Assert(BufferIsValid(scan->rs_cbuf));
     677             : 
     678             :     /* Caller is responsible for ensuring buffer is locked if needed */
     679      186312 :     page = BufferGetPage(scan->rs_cbuf);
     680             : 
     681      186312 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     682             : 
     683      186312 :     if (ScanDirectionIsForward(dir))
     684      186312 :         *lineoff = FirstOffsetNumber;
     685             :     else
     686           0 :         *lineoff = (OffsetNumber) (*linesleft);
     687             : 
     688             :     /* lineoff now references the physically previous or next tid */
     689      186312 :     return page;
     690             : }
     691             : 
     692             : 
     693             : /*
     694             :  * heapgettup_continue_page - helper function for heapgettup()
     695             :  *
     696             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     697             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     698             :  * the next offset to scan according to the ScanDirection in 'dir'.
     699             :  */
     700             : static inline Page
     701    15573480 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     702             :                          OffsetNumber *lineoff)
     703             : {
     704             :     Page        page;
     705             : 
     706             :     Assert(scan->rs_inited);
     707             :     Assert(BufferIsValid(scan->rs_cbuf));
     708             : 
     709             :     /* Caller is responsible for ensuring buffer is locked if needed */
     710    15573480 :     page = BufferGetPage(scan->rs_cbuf);
     711             : 
     712    15573480 :     if (ScanDirectionIsForward(dir))
     713             :     {
     714    15573480 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     715    15573480 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     716             :     }
     717             :     else
     718             :     {
     719             :         /*
     720             :          * The previous returned tuple may have been vacuumed since the
     721             :          * previous scan when we use a non-MVCC snapshot, so we must
     722             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     723             :          */
     724           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     725           0 :         *linesleft = *lineoff;
     726             :     }
     727             : 
     728             :     /* lineoff now references the physically previous or next tid */
     729    15573480 :     return page;
     730             : }
     731             : 
     732             : /*
     733             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     734             :  *
     735             :  * Given the current block number, the scan direction, and various information
     736             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     737             :  * and return it.  If there are no further blocks to scan, return
     738             :  * InvalidBlockNumber to indicate this fact to the caller.
     739             :  *
     740             :  * This should not be called to determine the initial block number -- only for
     741             :  * subsequent blocks.
     742             :  *
     743             :  * This also adjusts rs_numblocks when a limit has been imposed by
     744             :  * heap_setscanlimits().
     745             :  */
     746             : static inline BlockNumber
     747     4827978 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     748             : {
     749             :     Assert(scan->rs_base.rs_parallel == NULL);
     750             : 
     751     4827978 :     if (likely(ScanDirectionIsForward(dir)))
     752             :     {
     753     4827860 :         block++;
     754             : 
     755             :         /* wrap back to the start of the heap */
     756     4827860 :         if (block >= scan->rs_nblocks)
     757      696596 :             block = 0;
     758             : 
     759             :         /*
     760             :          * Report our new scan position for synchronization purposes. We don't
     761             :          * do that when moving backwards, however. That would just mess up any
     762             :          * other forward-moving scanners.
     763             :          *
     764             :          * Note: we do this before checking for end of scan so that the final
     765             :          * state of the position hint is back at the start of the rel.  That's
     766             :          * not strictly necessary, but otherwise when you run the same query
     767             :          * multiple times the starting position would shift a little bit
     768             :          * backwards on every invocation, which is confusing. We don't
     769             :          * guarantee any specific ordering in general, though.
     770             :          */
     771     4827860 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     772       17574 :             ss_report_location(scan->rs_base.rs_rd, block);
     773             : 
     774             :         /* we're done if we're back at where we started */
     775     4827860 :         if (block == scan->rs_startblock)
     776      696514 :             return InvalidBlockNumber;
     777             : 
     778             :         /* check if the limit imposed by heap_setscanlimits() is met */
     779     4131346 :         if (scan->rs_numblocks != InvalidBlockNumber)
     780             :         {
     781        3184 :             if (--scan->rs_numblocks == 0)
     782        3056 :                 return InvalidBlockNumber;
     783             :         }
     784             : 
     785     4128290 :         return block;
     786             :     }
     787             :     else
     788             :     {
     789             :         /* we're done if the last block is the start position */
     790         118 :         if (block == scan->rs_startblock)
     791         118 :             return InvalidBlockNumber;
     792             : 
     793             :         /* check if the limit imposed by heap_setscanlimits() is met */
     794           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     795             :         {
     796           0 :             if (--scan->rs_numblocks == 0)
     797           0 :                 return InvalidBlockNumber;
     798             :         }
     799             : 
     800             :         /* wrap to the end of the heap when the last page was page 0 */
     801           0 :         if (block == 0)
     802           0 :             block = scan->rs_nblocks;
     803             : 
     804           0 :         block--;
     805             : 
     806           0 :         return block;
     807             :     }
     808             : }
     809             : 
     810             : /* ----------------
     811             :  *      heapgettup - fetch next heap tuple
     812             :  *
     813             :  *      Initialize the scan if not already done; then advance to the next
     814             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     815             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     816             :  *
     817             :  * Note: the reason nkeys/key are passed separately, even though they are
     818             :  * kept in the scan descriptor, is that the caller may not want us to check
     819             :  * the scankeys.
     820             :  *
     821             :  * Note: when we fall off the end of the scan in either direction, we
     822             :  * reset rs_inited.  This means that a further request with the same
     823             :  * scan direction will restart the scan, which is a bit odd, but a
     824             :  * request with the opposite scan direction will start a fresh scan
     825             :  * in the proper direction.  The latter is required behavior for cursors,
     826             :  * while the former case is generally undefined behavior in Postgres
     827             :  * so we don't care too much.
     828             :  * ----------------
     829             :  */
     830             : static void
     831    15612908 : heapgettup(HeapScanDesc scan,
     832             :            ScanDirection dir,
     833             :            int nkeys,
     834             :            ScanKey key)
     835             : {
     836    15612908 :     HeapTuple   tuple = &(scan->rs_ctup);
     837             :     Page        page;
     838             :     OffsetNumber lineoff;
     839             :     int         linesleft;
     840             : 
     841    15612908 :     if (likely(scan->rs_inited))
     842             :     {
     843             :         /* continue from previously returned page/tuple */
     844    15573480 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     845    15573480 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     846    15573480 :         goto continue_page;
     847             :     }
     848             : 
     849             :     /*
     850             :      * advance the scan until we find a qualifying tuple or run out of stuff
     851             :      * to scan
     852             :      */
     853             :     while (true)
     854             :     {
     855      225440 :         heap_fetch_next_buffer(scan, dir);
     856             : 
     857             :         /* did we run out of blocks to scan? */
     858      225440 :         if (!BufferIsValid(scan->rs_cbuf))
     859       39128 :             break;
     860             : 
     861             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     862             : 
     863      186312 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     864      186312 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     865    15759792 : continue_page:
     866             : 
     867             :         /*
     868             :          * Only continue scanning the page while we have lines left.
     869             :          *
     870             :          * Note that this protects us from accessing line pointers past
     871             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     872             :          * table scan, and for when we start scanning a new page.
     873             :          */
     874    15851742 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     875             :         {
     876             :             bool        visible;
     877    15665730 :             ItemId      lpp = PageGetItemId(page, lineoff);
     878             : 
     879    15665730 :             if (!ItemIdIsNormal(lpp))
     880       81494 :                 continue;
     881             : 
     882    15584236 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     883    15584236 :             tuple->t_len = ItemIdGetLength(lpp);
     884    15584236 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     885             : 
     886    15584236 :             visible = HeapTupleSatisfiesVisibility(tuple,
     887             :                                                    scan->rs_base.rs_snapshot,
     888             :                                                    scan->rs_cbuf);
     889             : 
     890    15584236 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     891             :                                                 tuple, scan->rs_cbuf,
     892             :                                                 scan->rs_base.rs_snapshot);
     893             : 
     894             :             /* skip tuples not visible to this snapshot */
     895    15584236 :             if (!visible)
     896       10456 :                 continue;
     897             : 
     898             :             /* skip any tuples that don't match the scan key */
     899    15573780 :             if (key != NULL &&
     900           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     901             :                              nkeys, key))
     902           0 :                 continue;
     903             : 
     904    15573780 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     905    15573780 :             scan->rs_coffset = lineoff;
     906    15573780 :             return;
     907             :         }
     908             : 
     909             :         /*
     910             :          * if we get here, it means we've exhausted the items on this page and
     911             :          * it's time to move to the next.
     912             :          */
     913      186012 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     914             :     }
     915             : 
     916             :     /* end of scan */
     917       39128 :     if (BufferIsValid(scan->rs_cbuf))
     918           0 :         ReleaseBuffer(scan->rs_cbuf);
     919             : 
     920       39128 :     scan->rs_cbuf = InvalidBuffer;
     921       39128 :     scan->rs_cblock = InvalidBlockNumber;
     922       39128 :     scan->rs_prefetch_block = InvalidBlockNumber;
     923       39128 :     tuple->t_data = NULL;
     924       39128 :     scan->rs_inited = false;
     925             : }
     926             : 
     927             : /* ----------------
     928             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     929             :  *
     930             :  *      Same API as heapgettup, but used in page-at-a-time mode
     931             :  *
     932             :  * The internal logic is much the same as heapgettup's too, but there are some
     933             :  * differences: we do not take the buffer content lock (that only needs to
     934             :  * happen inside heap_prepare_pagescan), and we iterate through just the
     935             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
     936             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
     937             :  * heapgettup is 1-based.
     938             :  * ----------------
     939             :  */
     940             : static void
     941    87520420 : heapgettup_pagemode(HeapScanDesc scan,
     942             :                     ScanDirection dir,
     943             :                     int nkeys,
     944             :                     ScanKey key)
     945             : {
     946    87520420 :     HeapTuple   tuple = &(scan->rs_ctup);
     947             :     Page        page;
     948             :     uint32      lineindex;
     949             :     uint32      linesleft;
     950             : 
     951    87520420 :     if (likely(scan->rs_inited))
     952             :     {
     953             :         /* continue from previously returned page/tuple */
     954    85916126 :         page = BufferGetPage(scan->rs_cbuf);
     955             : 
     956    85916126 :         lineindex = scan->rs_cindex + dir;
     957    85916126 :         if (ScanDirectionIsForward(dir))
     958    85915468 :             linesleft = scan->rs_ntuples - lineindex;
     959             :         else
     960         658 :             linesleft = scan->rs_cindex;
     961             :         /* lineindex now references the next or previous visible tid */
     962             : 
     963    85916126 :         goto continue_page;
     964             :     }
     965             : 
     966             :     /*
     967             :      * advance the scan until we find a qualifying tuple or run out of stuff
     968             :      * to scan
     969             :      */
     970             :     while (true)
     971             :     {
     972     6143834 :         heap_fetch_next_buffer(scan, dir);
     973             : 
     974             :         /* did we run out of blocks to scan? */
     975     6143830 :         if (!BufferIsValid(scan->rs_cbuf))
     976     1324040 :             break;
     977             : 
     978             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     979             : 
     980             :         /* prune the page and determine visible tuple offsets */
     981     4819790 :         heap_prepare_pagescan((TableScanDesc) scan);
     982     4819774 :         page = BufferGetPage(scan->rs_cbuf);
     983     4819774 :         linesleft = scan->rs_ntuples;
     984     4819774 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
     985             : 
     986             :         /* lineindex now references the next or previous visible tid */
     987    90735900 : continue_page:
     988             : 
     989   172070704 :         for (; linesleft > 0; linesleft--, lineindex += dir)
     990             :         {
     991             :             ItemId      lpp;
     992             :             OffsetNumber lineoff;
     993             : 
     994             :             Assert(lineindex <= scan->rs_ntuples);
     995   167531164 :             lineoff = scan->rs_vistuples[lineindex];
     996   167531164 :             lpp = PageGetItemId(page, lineoff);
     997             :             Assert(ItemIdIsNormal(lpp));
     998             : 
     999   167531164 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1000   167531164 :             tuple->t_len = ItemIdGetLength(lpp);
    1001   167531164 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
    1002             : 
    1003             :             /* skip any tuples that don't match the scan key */
    1004   167531164 :             if (key != NULL &&
    1005    81986376 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1006             :                              nkeys, key))
    1007    81334804 :                 continue;
    1008             : 
    1009    86196360 :             scan->rs_cindex = lineindex;
    1010    86196360 :             return;
    1011             :         }
    1012             :     }
    1013             : 
    1014             :     /* end of scan */
    1015     1324040 :     if (BufferIsValid(scan->rs_cbuf))
    1016           0 :         ReleaseBuffer(scan->rs_cbuf);
    1017     1324040 :     scan->rs_cbuf = InvalidBuffer;
    1018     1324040 :     scan->rs_cblock = InvalidBlockNumber;
    1019     1324040 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1020     1324040 :     tuple->t_data = NULL;
    1021     1324040 :     scan->rs_inited = false;
    1022             : }
    1023             : 
    1024             : 
    1025             : /* ----------------------------------------------------------------
    1026             :  *                   heap access method interface
    1027             :  * ----------------------------------------------------------------
    1028             :  */
    1029             : 
    1030             : 
    1031             : TableScanDesc
    1032      673030 : heap_beginscan(Relation relation, Snapshot snapshot,
    1033             :                int nkeys, ScanKey key,
    1034             :                ParallelTableScanDesc parallel_scan,
    1035             :                uint32 flags)
    1036             : {
    1037             :     HeapScanDesc scan;
    1038             : 
    1039             :     /*
    1040             :      * increment relation ref count while scanning relation
    1041             :      *
    1042             :      * This is just to make really sure the relcache entry won't go away while
    1043             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1044             :      * anyway, so this is redundant in all normal scenarios...
    1045             :      */
    1046      673030 :     RelationIncrementReferenceCount(relation);
    1047             : 
    1048             :     /*
    1049             :      * allocate and initialize scan descriptor
    1050             :      */
    1051      673030 :     if (flags & SO_TYPE_BITMAPSCAN)
    1052             :     {
    1053       15496 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1054             : 
    1055       15496 :         bscan->rs_vmbuffer = InvalidBuffer;
    1056       15496 :         bscan->rs_empty_tuples_pending = 0;
    1057       15496 :         scan = (HeapScanDesc) bscan;
    1058             :     }
    1059             :     else
    1060      657534 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1061             : 
    1062      673030 :     scan->rs_base.rs_rd = relation;
    1063      673030 :     scan->rs_base.rs_snapshot = snapshot;
    1064      673030 :     scan->rs_base.rs_nkeys = nkeys;
    1065      673030 :     scan->rs_base.rs_flags = flags;
    1066      673030 :     scan->rs_base.rs_parallel = parallel_scan;
    1067      673030 :     scan->rs_strategy = NULL;    /* set in initscan */
    1068             : 
    1069             :     /*
    1070             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1071             :      */
    1072      673030 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1073       54126 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1074             : 
    1075             :     /*
    1076             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1077             :      * predicate lock on the entire relation. This is required not only to
    1078             :      * lock all the matching tuples, but also to conflict with new insertions
    1079             :      * into the table. In an indexscan, we take page locks on the index pages
    1080             :      * covering the range specified in the scan qual, but in a heap scan there
    1081             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1082             :      * story, there we have already scanned the index and locked the index
    1083             :      * pages covering the predicate. But in that case we still have to lock
    1084             :      * any matching heap tuples. For sample scan we could optimize the locking
    1085             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1086             :      * locking for that.
    1087             :      */
    1088      673030 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1089             :     {
    1090             :         /*
    1091             :          * Ensure a missing snapshot is noticed reliably, even if the
    1092             :          * isolation mode means predicate locking isn't performed (and
    1093             :          * therefore the snapshot isn't used here).
    1094             :          */
    1095             :         Assert(snapshot);
    1096      641998 :         PredicateLockRelation(relation, snapshot);
    1097             :     }
    1098             : 
    1099             :     /* we only need to set this up once */
    1100      673030 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1101             : 
    1102             :     /*
    1103             :      * Allocate memory to keep track of page allocation for parallel workers
    1104             :      * when doing a parallel scan.
    1105             :      */
    1106      673030 :     if (parallel_scan != NULL)
    1107        3894 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1108             :     else
    1109      669136 :         scan->rs_parallelworkerdata = NULL;
    1110             : 
    1111             :     /*
    1112             :      * we do this here instead of in initscan() because heap_rescan also calls
    1113             :      * initscan() and we don't want to allocate memory again
    1114             :      */
    1115      673030 :     if (nkeys > 0)
    1116      384926 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1117             :     else
    1118      288104 :         scan->rs_base.rs_key = NULL;
    1119             : 
    1120      673030 :     initscan(scan, key, false);
    1121             : 
    1122      673026 :     scan->rs_read_stream = NULL;
    1123             : 
    1124             :     /*
    1125             :      * Set up a read stream for sequential scans and TID range scans. This
    1126             :      * should be done after initscan() because initscan() allocates the
    1127             :      * BufferAccessStrategy object passed to the read stream API.
    1128             :      */
    1129      673026 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1130       31178 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1131             :     {
    1132             :         ReadStreamBlockNumberCB cb;
    1133             : 
    1134      641960 :         if (scan->rs_base.rs_parallel)
    1135        3894 :             cb = heap_scan_stream_read_next_parallel;
    1136             :         else
    1137      638066 :             cb = heap_scan_stream_read_next_serial;
    1138             : 
    1139      641960 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL,
    1140             :                                                           scan->rs_strategy,
    1141             :                                                           scan->rs_base.rs_rd,
    1142             :                                                           MAIN_FORKNUM,
    1143             :                                                           cb,
    1144             :                                                           scan,
    1145             :                                                           0);
    1146             :     }
    1147             : 
    1148             : 
    1149      673026 :     return (TableScanDesc) scan;
    1150             : }
    1151             : 
    1152             : void
    1153     1007336 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1154             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1155             : {
    1156     1007336 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1157             : 
    1158     1007336 :     if (set_params)
    1159             :     {
    1160          30 :         if (allow_strat)
    1161          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1162             :         else
    1163           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1164             : 
    1165          30 :         if (allow_sync)
    1166          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1167             :         else
    1168          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1169             : 
    1170          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1171          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1172          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1173             :         else
    1174           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1175             :     }
    1176             : 
    1177             :     /*
    1178             :      * unpin scan buffers
    1179             :      */
    1180     1007336 :     if (BufferIsValid(scan->rs_cbuf))
    1181        5610 :         ReleaseBuffer(scan->rs_cbuf);
    1182             : 
    1183     1007336 :     if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1184             :     {
    1185        4098 :         BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) scan;
    1186             : 
    1187             :         /*
    1188             :          * Reset empty_tuples_pending, a field only used by bitmap heap scan,
    1189             :          * to avoid incorrectly emitting NULL-filled tuples from a previous
    1190             :          * scan on rescan.
    1191             :          */
    1192        4098 :         bscan->rs_empty_tuples_pending = 0;
    1193             : 
    1194        4098 :         if (BufferIsValid(bscan->rs_vmbuffer))
    1195             :         {
    1196          54 :             ReleaseBuffer(bscan->rs_vmbuffer);
    1197          54 :             bscan->rs_vmbuffer = InvalidBuffer;
    1198             :         }
    1199             :     }
    1200             : 
    1201             :     /*
    1202             :      * The read stream is reset on rescan. This must be done before
    1203             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1204             :      * in initscan().
    1205             :      */
    1206     1007336 :     if (scan->rs_read_stream)
    1207     1003202 :         read_stream_reset(scan->rs_read_stream);
    1208             : 
    1209             :     /*
    1210             :      * reinitialize scan descriptor
    1211             :      */
    1212     1007336 :     initscan(scan, key, true);
    1213     1007336 : }
    1214             : 
    1215             : void
    1216      670300 : heap_endscan(TableScanDesc sscan)
    1217             : {
    1218      670300 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1219             : 
    1220             :     /* Note: no locking manipulations needed */
    1221             : 
    1222             :     /*
    1223             :      * unpin scan buffers
    1224             :      */
    1225      670300 :     if (BufferIsValid(scan->rs_cbuf))
    1226      288140 :         ReleaseBuffer(scan->rs_cbuf);
    1227             : 
    1228      670300 :     if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1229             :     {
    1230       15382 :         BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) sscan;
    1231             : 
    1232       15382 :         bscan->rs_empty_tuples_pending = 0;
    1233       15382 :         if (BufferIsValid(bscan->rs_vmbuffer))
    1234          54 :             ReleaseBuffer(bscan->rs_vmbuffer);
    1235             :     }
    1236             : 
    1237             :     /*
    1238             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1239             :      */
    1240      670300 :     if (scan->rs_read_stream)
    1241      639438 :         read_stream_end(scan->rs_read_stream);
    1242             : 
    1243             :     /*
    1244             :      * decrement relation reference count and free scan descriptor storage
    1245             :      */
    1246      670300 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1247             : 
    1248      670300 :     if (scan->rs_base.rs_key)
    1249      384868 :         pfree(scan->rs_base.rs_key);
    1250             : 
    1251      670300 :     if (scan->rs_strategy != NULL)
    1252       20984 :         FreeAccessStrategy(scan->rs_strategy);
    1253             : 
    1254      670300 :     if (scan->rs_parallelworkerdata != NULL)
    1255        3894 :         pfree(scan->rs_parallelworkerdata);
    1256             : 
    1257      670300 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1258       67992 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1259             : 
    1260      670300 :     pfree(scan);
    1261      670300 : }
    1262             : 
    1263             : HeapTuple
    1264    18769068 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1265             : {
    1266    18769068 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1267             : 
    1268             :     /*
    1269             :      * This is still widely used directly, without going through table AM, so
    1270             :      * add a safety check.  It's possible we should, at a later point,
    1271             :      * downgrade this to an assert. The reason for checking the AM routine,
    1272             :      * rather than the AM oid, is that this allows to write regression tests
    1273             :      * that create another AM reusing the heap handler.
    1274             :      */
    1275    18769068 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1276           0 :         ereport(ERROR,
    1277             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1278             :                  errmsg_internal("only heap AM is supported")));
    1279             : 
    1280             :     /*
    1281             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1282             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1283             :      * these variables are declared.  Normally we have such a check at tableam
    1284             :      * level API but this is called from many places so we need to ensure it
    1285             :      * here.
    1286             :      */
    1287    18769068 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1288           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1289             : 
    1290             :     /* Note: no locking manipulations needed */
    1291             : 
    1292    18769068 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1293     4130550 :         heapgettup_pagemode(scan, direction,
    1294     4130550 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1295             :     else
    1296    14638518 :         heapgettup(scan, direction,
    1297    14638518 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1298             : 
    1299    18769068 :     if (scan->rs_ctup.t_data == NULL)
    1300      117596 :         return NULL;
    1301             : 
    1302             :     /*
    1303             :      * if we get here it means we have a new current scan tuple, so point to
    1304             :      * the proper return buffer and return the tuple.
    1305             :      */
    1306             : 
    1307    18651472 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1308             : 
    1309    18651472 :     return &scan->rs_ctup;
    1310             : }
    1311             : 
    1312             : bool
    1313    84358134 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1314             : {
    1315    84358134 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1316             : 
    1317             :     /* Note: no locking manipulations needed */
    1318             : 
    1319    84358134 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1320    83383744 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1321             :     else
    1322      974390 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1323             : 
    1324    84358114 :     if (scan->rs_ctup.t_data == NULL)
    1325             :     {
    1326     1245478 :         ExecClearTuple(slot);
    1327     1245478 :         return false;
    1328             :     }
    1329             : 
    1330             :     /*
    1331             :      * if we get here it means we have a new current scan tuple, so point to
    1332             :      * the proper return buffer and return the tuple.
    1333             :      */
    1334             : 
    1335    83112636 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1336             : 
    1337    83112636 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1338             :                              scan->rs_cbuf);
    1339    83112636 :     return true;
    1340             : }
    1341             : 
    1342             : void
    1343         178 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1344             :                   ItemPointer maxtid)
    1345             : {
    1346         178 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1347             :     BlockNumber startBlk;
    1348             :     BlockNumber numBlks;
    1349             :     ItemPointerData highestItem;
    1350             :     ItemPointerData lowestItem;
    1351             : 
    1352             :     /*
    1353             :      * For relations without any pages, we can simply leave the TID range
    1354             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1355             :      * the given TID range.
    1356             :      */
    1357         178 :     if (scan->rs_nblocks == 0)
    1358          48 :         return;
    1359             : 
    1360             :     /*
    1361             :      * Set up some ItemPointers which point to the first and last possible
    1362             :      * tuples in the heap.
    1363             :      */
    1364         166 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1365         166 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1366             : 
    1367             :     /*
    1368             :      * If the given maximum TID is below the highest possible TID in the
    1369             :      * relation, then restrict the range to that, otherwise we scan to the end
    1370             :      * of the relation.
    1371             :      */
    1372         166 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1373         132 :         ItemPointerCopy(maxtid, &highestItem);
    1374             : 
    1375             :     /*
    1376             :      * If the given minimum TID is above the lowest possible TID in the
    1377             :      * relation, then restrict the range to only scan for TIDs above that.
    1378             :      */
    1379         166 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1380          52 :         ItemPointerCopy(mintid, &lowestItem);
    1381             : 
    1382             :     /*
    1383             :      * Check for an empty range and protect from would be negative results
    1384             :      * from the numBlks calculation below.
    1385             :      */
    1386         166 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1387             :     {
    1388             :         /* Set an empty range of blocks to scan */
    1389          36 :         heap_setscanlimits(sscan, 0, 0);
    1390          36 :         return;
    1391             :     }
    1392             : 
    1393             :     /*
    1394             :      * Calculate the first block and the number of blocks we must scan. We
    1395             :      * could be more aggressive here and perform some more validation to try
    1396             :      * and further narrow the scope of blocks to scan by checking if the
    1397             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1398             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1399             :      * we could scan one fewer blocks.  However, such an optimization does not
    1400             :      * seem worth troubling over, currently.
    1401             :      */
    1402         130 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1403             : 
    1404         130 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1405         130 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1406             : 
    1407             :     /* Set the start block and number of blocks to scan */
    1408         130 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1409             : 
    1410             :     /* Finally, set the TID range in sscan */
    1411         130 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1412         130 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1413             : }
    1414             : 
    1415             : bool
    1416        5940 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1417             :                           TupleTableSlot *slot)
    1418             : {
    1419        5940 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1420        5940 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1421        5940 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1422             : 
    1423             :     /* Note: no locking manipulations needed */
    1424             :     for (;;)
    1425             :     {
    1426        6126 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1427        6126 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1428             :         else
    1429           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1430             : 
    1431        6126 :         if (scan->rs_ctup.t_data == NULL)
    1432             :         {
    1433          94 :             ExecClearTuple(slot);
    1434          94 :             return false;
    1435             :         }
    1436             : 
    1437             :         /*
    1438             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1439             :          * range of pages we scan to only ones that can contain the TID range
    1440             :          * we're scanning for.  Here we must filter out any tuples from these
    1441             :          * pages that are outside of that range.
    1442             :          */
    1443        6032 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1444             :         {
    1445         186 :             ExecClearTuple(slot);
    1446             : 
    1447             :             /*
    1448             :              * When scanning backwards, the TIDs will be in descending order.
    1449             :              * Future tuples in this direction will be lower still, so we can
    1450             :              * just return false to indicate there will be no more tuples.
    1451             :              */
    1452         186 :             if (ScanDirectionIsBackward(direction))
    1453           0 :                 return false;
    1454             : 
    1455         186 :             continue;
    1456             :         }
    1457             : 
    1458             :         /*
    1459             :          * Likewise for the final page, we must filter out TIDs greater than
    1460             :          * maxtid.
    1461             :          */
    1462        5846 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1463             :         {
    1464          72 :             ExecClearTuple(slot);
    1465             : 
    1466             :             /*
    1467             :              * When scanning forward, the TIDs will be in ascending order.
    1468             :              * Future tuples in this direction will be higher still, so we can
    1469             :              * just return false to indicate there will be no more tuples.
    1470             :              */
    1471          72 :             if (ScanDirectionIsForward(direction))
    1472          72 :                 return false;
    1473           0 :             continue;
    1474             :         }
    1475             : 
    1476        5774 :         break;
    1477             :     }
    1478             : 
    1479             :     /*
    1480             :      * if we get here it means we have a new current scan tuple, so point to
    1481             :      * the proper return buffer and return the tuple.
    1482             :      */
    1483        5774 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1484             : 
    1485        5774 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1486        5774 :     return true;
    1487             : }
    1488             : 
    1489             : /*
    1490             :  *  heap_fetch      - retrieve tuple with given tid
    1491             :  *
    1492             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1493             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1494             :  * against the specified snapshot.
    1495             :  *
    1496             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1497             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1498             :  * must unpin the buffer when done with the tuple.
    1499             :  *
    1500             :  * If the tuple is not found (ie, item number references a deleted slot),
    1501             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1502             :  * and false is returned.
    1503             :  *
    1504             :  * If the tuple is found but fails the time qual check, then the behavior
    1505             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1506             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1507             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1508             :  * and again the caller must unpin the buffer; but false is returned.
    1509             :  *
    1510             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1511             :  * be fetched.
    1512             :  *
    1513             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1514             :  * return false on invalid item number.  There are a couple of reasons though.
    1515             :  * One is that the caller can relatively easily check the block number for
    1516             :  * validity, but cannot check the item number without reading the page
    1517             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1518             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1519             :  * truncate off the destination page without having killed the referencing
    1520             :  * tuple first), but the item number might well not be good.
    1521             :  */
    1522             : bool
    1523      346328 : heap_fetch(Relation relation,
    1524             :            Snapshot snapshot,
    1525             :            HeapTuple tuple,
    1526             :            Buffer *userbuf,
    1527             :            bool keep_buf)
    1528             : {
    1529      346328 :     ItemPointer tid = &(tuple->t_self);
    1530             :     ItemId      lp;
    1531             :     Buffer      buffer;
    1532             :     Page        page;
    1533             :     OffsetNumber offnum;
    1534             :     bool        valid;
    1535             : 
    1536             :     /*
    1537             :      * Fetch and pin the appropriate page of the relation.
    1538             :      */
    1539      346328 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1540             : 
    1541             :     /*
    1542             :      * Need share lock on buffer to examine tuple commit status.
    1543             :      */
    1544      346328 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1545      346328 :     page = BufferGetPage(buffer);
    1546             : 
    1547             :     /*
    1548             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1549             :      * TID was obtained.
    1550             :      */
    1551      346328 :     offnum = ItemPointerGetOffsetNumber(tid);
    1552      346328 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1553             :     {
    1554           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1555           6 :         ReleaseBuffer(buffer);
    1556           6 :         *userbuf = InvalidBuffer;
    1557           6 :         tuple->t_data = NULL;
    1558           6 :         return false;
    1559             :     }
    1560             : 
    1561             :     /*
    1562             :      * get the item line pointer corresponding to the requested tid
    1563             :      */
    1564      346322 :     lp = PageGetItemId(page, offnum);
    1565             : 
    1566             :     /*
    1567             :      * Must check for deleted tuple.
    1568             :      */
    1569      346322 :     if (!ItemIdIsNormal(lp))
    1570             :     {
    1571         684 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1572         684 :         ReleaseBuffer(buffer);
    1573         684 :         *userbuf = InvalidBuffer;
    1574         684 :         tuple->t_data = NULL;
    1575         684 :         return false;
    1576             :     }
    1577             : 
    1578             :     /*
    1579             :      * fill in *tuple fields
    1580             :      */
    1581      345638 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1582      345638 :     tuple->t_len = ItemIdGetLength(lp);
    1583      345638 :     tuple->t_tableOid = RelationGetRelid(relation);
    1584             : 
    1585             :     /*
    1586             :      * check tuple visibility, then release lock
    1587             :      */
    1588      345638 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1589             : 
    1590      345638 :     if (valid)
    1591      345544 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1592      345544 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1593             : 
    1594      345638 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1595             : 
    1596      345638 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1597             : 
    1598      345638 :     if (valid)
    1599             :     {
    1600             :         /*
    1601             :          * All checks passed, so return the tuple as valid. Caller is now
    1602             :          * responsible for releasing the buffer.
    1603             :          */
    1604      345544 :         *userbuf = buffer;
    1605             : 
    1606      345544 :         return true;
    1607             :     }
    1608             : 
    1609             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1610          94 :     if (keep_buf)
    1611          58 :         *userbuf = buffer;
    1612             :     else
    1613             :     {
    1614          36 :         ReleaseBuffer(buffer);
    1615          36 :         *userbuf = InvalidBuffer;
    1616          36 :         tuple->t_data = NULL;
    1617             :     }
    1618             : 
    1619          94 :     return false;
    1620             : }
    1621             : 
    1622             : /*
    1623             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1624             :  *
    1625             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1626             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1627             :  * for the first chain member satisfying the given snapshot.  If one is
    1628             :  * found, we update *tid to reference that tuple's offset number, and
    1629             :  * return true.  If no match, return false without modifying *tid.
    1630             :  *
    1631             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1632             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1633             :  * contents of this buffer on return are undefined.
    1634             :  *
    1635             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1636             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1637             :  * are vacuumable, false if not.
    1638             :  *
    1639             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1640             :  * lock on the buffer; it is still pinned/locked at exit.
    1641             :  */
    1642             : bool
    1643    39854866 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1644             :                        Snapshot snapshot, HeapTuple heapTuple,
    1645             :                        bool *all_dead, bool first_call)
    1646             : {
    1647    39854866 :     Page        page = BufferGetPage(buffer);
    1648    39854866 :     TransactionId prev_xmax = InvalidTransactionId;
    1649             :     BlockNumber blkno;
    1650             :     OffsetNumber offnum;
    1651             :     bool        at_chain_start;
    1652             :     bool        valid;
    1653             :     bool        skip;
    1654    39854866 :     GlobalVisState *vistest = NULL;
    1655             : 
    1656             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1657    39854866 :     if (all_dead)
    1658    34083430 :         *all_dead = first_call;
    1659             : 
    1660    39854866 :     blkno = ItemPointerGetBlockNumber(tid);
    1661    39854866 :     offnum = ItemPointerGetOffsetNumber(tid);
    1662    39854866 :     at_chain_start = first_call;
    1663    39854866 :     skip = !first_call;
    1664             : 
    1665             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1666             :     Assert(TransactionIdIsValid(RecentXmin));
    1667             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1668             : 
    1669             :     /* Scan through possible multiple members of HOT-chain */
    1670             :     for (;;)
    1671     2592336 :     {
    1672             :         ItemId      lp;
    1673             : 
    1674             :         /* check for bogus TID */
    1675    42447202 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1676             :             break;
    1677             : 
    1678    42447202 :         lp = PageGetItemId(page, offnum);
    1679             : 
    1680             :         /* check for unused, dead, or redirected items */
    1681    42447202 :         if (!ItemIdIsNormal(lp))
    1682             :         {
    1683             :             /* We should only see a redirect at start of chain */
    1684     1519978 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1685             :             {
    1686             :                 /* Follow the redirect */
    1687      781524 :                 offnum = ItemIdGetRedirect(lp);
    1688      781524 :                 at_chain_start = false;
    1689      781524 :                 continue;
    1690             :             }
    1691             :             /* else must be end of chain */
    1692      738454 :             break;
    1693             :         }
    1694             : 
    1695             :         /*
    1696             :          * Update heapTuple to point to the element of the HOT chain we're
    1697             :          * currently investigating. Having t_self set correctly is important
    1698             :          * because the SSI checks and the *Satisfies routine for historical
    1699             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1700             :          */
    1701    40927224 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1702    40927224 :         heapTuple->t_len = ItemIdGetLength(lp);
    1703    40927224 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1704    40927224 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1705             : 
    1706             :         /*
    1707             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1708             :          */
    1709    40927224 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1710           0 :             break;
    1711             : 
    1712             :         /*
    1713             :          * The xmin should match the previous xmax value, else chain is
    1714             :          * broken.
    1715             :          */
    1716    42738036 :         if (TransactionIdIsValid(prev_xmax) &&
    1717     1810812 :             !TransactionIdEquals(prev_xmax,
    1718             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1719           0 :             break;
    1720             : 
    1721             :         /*
    1722             :          * When first_call is true (and thus, skip is initially false) we'll
    1723             :          * return the first tuple we find.  But on later passes, heapTuple
    1724             :          * will initially be pointing to the tuple we returned last time.
    1725             :          * Returning it again would be incorrect (and would loop forever), so
    1726             :          * we skip it and return the next match we find.
    1727             :          */
    1728    40927224 :         if (!skip)
    1729             :         {
    1730             :             /* If it's visible per the snapshot, we must return it */
    1731    40772234 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1732    40772234 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1733             :                                                 buffer, snapshot);
    1734             : 
    1735    40772224 :             if (valid)
    1736             :             {
    1737    26828410 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1738    26828410 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1739    26828410 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1740    26828410 :                 if (all_dead)
    1741    21606056 :                     *all_dead = false;
    1742    26828410 :                 return true;
    1743             :             }
    1744             :         }
    1745    14098804 :         skip = false;
    1746             : 
    1747             :         /*
    1748             :          * If we can't see it, maybe no one else can either.  At caller
    1749             :          * request, check whether all chain members are dead to all
    1750             :          * transactions.
    1751             :          *
    1752             :          * Note: if you change the criterion here for what is "dead", fix the
    1753             :          * planner's get_actual_variable_range() function to match.
    1754             :          */
    1755    14098804 :         if (all_dead && *all_dead)
    1756             :         {
    1757    12688556 :             if (!vistest)
    1758    12456184 :                 vistest = GlobalVisTestFor(relation);
    1759             : 
    1760    12688556 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1761    12016770 :                 *all_dead = false;
    1762             :         }
    1763             : 
    1764             :         /*
    1765             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1766             :          * the next offnum and loop around.
    1767             :          */
    1768    14098804 :         if (HeapTupleIsHotUpdated(heapTuple))
    1769             :         {
    1770             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1771             :                    blkno);
    1772     1810812 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1773     1810812 :             at_chain_start = false;
    1774     1810812 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1775             :         }
    1776             :         else
    1777             :             break;              /* end of chain */
    1778             :     }
    1779             : 
    1780    13026446 :     return false;
    1781             : }
    1782             : 
    1783             : /*
    1784             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1785             :  *
    1786             :  * Actually, this gets the latest version that is visible according to the
    1787             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1788             :  * possibly uncommitted version.
    1789             :  *
    1790             :  * *tid is both an input and an output parameter: it is updated to
    1791             :  * show the latest version of the row.  Note that it will not be changed
    1792             :  * if no version of the row passes the snapshot test.
    1793             :  */
    1794             : void
    1795         300 : heap_get_latest_tid(TableScanDesc sscan,
    1796             :                     ItemPointer tid)
    1797             : {
    1798         300 :     Relation    relation = sscan->rs_rd;
    1799         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1800             :     ItemPointerData ctid;
    1801             :     TransactionId priorXmax;
    1802             : 
    1803             :     /*
    1804             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1805             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1806             :      * ones in the table.
    1807             :      */
    1808             :     Assert(ItemPointerIsValid(tid));
    1809             : 
    1810             :     /*
    1811             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1812             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1813             :      * to be bogus.
    1814             :      *
    1815             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1816             :      * Depending on the snapshot passed, there might be at most one visible
    1817             :      * version of the row, but we don't try to optimize for that.
    1818             :      */
    1819         300 :     ctid = *tid;
    1820         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1821             :     for (;;)
    1822          90 :     {
    1823             :         Buffer      buffer;
    1824             :         Page        page;
    1825             :         OffsetNumber offnum;
    1826             :         ItemId      lp;
    1827             :         HeapTupleData tp;
    1828             :         bool        valid;
    1829             : 
    1830             :         /*
    1831             :          * Read, pin, and lock the page.
    1832             :          */
    1833         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1834         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1835         390 :         page = BufferGetPage(buffer);
    1836             : 
    1837             :         /*
    1838             :          * Check for bogus item number.  This is not treated as an error
    1839             :          * condition because it can happen while following a t_ctid link. We
    1840             :          * just assume that the prior tid is OK and return it unchanged.
    1841             :          */
    1842         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1843         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1844             :         {
    1845           0 :             UnlockReleaseBuffer(buffer);
    1846           0 :             break;
    1847             :         }
    1848         390 :         lp = PageGetItemId(page, offnum);
    1849         390 :         if (!ItemIdIsNormal(lp))
    1850             :         {
    1851           0 :             UnlockReleaseBuffer(buffer);
    1852           0 :             break;
    1853             :         }
    1854             : 
    1855             :         /* OK to access the tuple */
    1856         390 :         tp.t_self = ctid;
    1857         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1858         390 :         tp.t_len = ItemIdGetLength(lp);
    1859         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1860             : 
    1861             :         /*
    1862             :          * After following a t_ctid link, we might arrive at an unrelated
    1863             :          * tuple.  Check for XMIN match.
    1864             :          */
    1865         480 :         if (TransactionIdIsValid(priorXmax) &&
    1866          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1867             :         {
    1868           0 :             UnlockReleaseBuffer(buffer);
    1869           0 :             break;
    1870             :         }
    1871             : 
    1872             :         /*
    1873             :          * Check tuple visibility; if visible, set it as the new result
    1874             :          * candidate.
    1875             :          */
    1876         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1877         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1878         390 :         if (valid)
    1879         276 :             *tid = ctid;
    1880             : 
    1881             :         /*
    1882             :          * If there's a valid t_ctid link, follow it, else we're done.
    1883             :          */
    1884         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1885         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1886         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1887         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1888             :         {
    1889         300 :             UnlockReleaseBuffer(buffer);
    1890         300 :             break;
    1891             :         }
    1892             : 
    1893          90 :         ctid = tp.t_data->t_ctid;
    1894          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1895          90 :         UnlockReleaseBuffer(buffer);
    1896             :     }                           /* end of loop */
    1897         300 : }
    1898             : 
    1899             : 
    1900             : /*
    1901             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1902             :  *
    1903             :  * This is called after we have waited for the XMAX transaction to terminate.
    1904             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1905             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1906             :  * hint bit if possible --- but beware that that may not yet be possible,
    1907             :  * if the transaction committed asynchronously.
    1908             :  *
    1909             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1910             :  * even if it commits.
    1911             :  *
    1912             :  * Hence callers should look only at XMAX_INVALID.
    1913             :  *
    1914             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1915             :  */
    1916             : static void
    1917         358 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    1918             : {
    1919             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    1920             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    1921             : 
    1922         358 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    1923             :     {
    1924         650 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    1925         292 :             TransactionIdDidCommit(xid))
    1926         240 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    1927             :                                  xid);
    1928             :         else
    1929         118 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    1930             :                                  InvalidTransactionId);
    1931             :     }
    1932         358 : }
    1933             : 
    1934             : 
    1935             : /*
    1936             :  * GetBulkInsertState - prepare status object for a bulk insert
    1937             :  */
    1938             : BulkInsertState
    1939        4288 : GetBulkInsertState(void)
    1940             : {
    1941             :     BulkInsertState bistate;
    1942             : 
    1943        4288 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    1944        4288 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    1945        4288 :     bistate->current_buf = InvalidBuffer;
    1946        4288 :     bistate->next_free = InvalidBlockNumber;
    1947        4288 :     bistate->last_free = InvalidBlockNumber;
    1948        4288 :     bistate->already_extended_by = 0;
    1949        4288 :     return bistate;
    1950             : }
    1951             : 
    1952             : /*
    1953             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    1954             :  */
    1955             : void
    1956        4028 : FreeBulkInsertState(BulkInsertState bistate)
    1957             : {
    1958        4028 :     if (bistate->current_buf != InvalidBuffer)
    1959        3296 :         ReleaseBuffer(bistate->current_buf);
    1960        4028 :     FreeAccessStrategy(bistate->strategy);
    1961        4028 :     pfree(bistate);
    1962        4028 : }
    1963             : 
    1964             : /*
    1965             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    1966             :  */
    1967             : void
    1968      161512 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    1969             : {
    1970      161512 :     if (bistate->current_buf != InvalidBuffer)
    1971       60042 :         ReleaseBuffer(bistate->current_buf);
    1972      161512 :     bistate->current_buf = InvalidBuffer;
    1973             : 
    1974             :     /*
    1975             :      * Despite the name, we also reset bulk relation extension state.
    1976             :      * Otherwise we can end up erroring out due to looking for free space in
    1977             :      * ->next_free of one partition, even though ->next_free was set when
    1978             :      * extending another partition. It could obviously also be bad for
    1979             :      * efficiency to look at existing blocks at offsets from another
    1980             :      * partition, even if we don't error out.
    1981             :      */
    1982      161512 :     bistate->next_free = InvalidBlockNumber;
    1983      161512 :     bistate->last_free = InvalidBlockNumber;
    1984      161512 : }
    1985             : 
    1986             : 
    1987             : /*
    1988             :  *  heap_insert     - insert tuple into a heap
    1989             :  *
    1990             :  * The new tuple is stamped with current transaction ID and the specified
    1991             :  * command ID.
    1992             :  *
    1993             :  * See table_tuple_insert for comments about most of the input flags, except
    1994             :  * that this routine directly takes a tuple rather than a slot.
    1995             :  *
    1996             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    1997             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    1998             :  * implement table_tuple_insert_speculative().
    1999             :  *
    2000             :  * On return the header fields of *tup are updated to match the stored tuple;
    2001             :  * in particular tup->t_self receives the actual TID where the tuple was
    2002             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2003             :  * reflected into *tup.
    2004             :  */
    2005             : void
    2006    15533408 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2007             :             int options, BulkInsertState bistate)
    2008             : {
    2009    15533408 :     TransactionId xid = GetCurrentTransactionId();
    2010             :     HeapTuple   heaptup;
    2011             :     Buffer      buffer;
    2012    15533396 :     Buffer      vmbuffer = InvalidBuffer;
    2013    15533396 :     bool        all_visible_cleared = false;
    2014             : 
    2015             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2016             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2017             :            RelationGetNumberOfAttributes(relation));
    2018             : 
    2019             :     /*
    2020             :      * Fill in tuple header fields and toast the tuple if necessary.
    2021             :      *
    2022             :      * Note: below this point, heaptup is the data we actually intend to store
    2023             :      * into the relation; tup is the caller's original untoasted data.
    2024             :      */
    2025    15533396 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2026             : 
    2027             :     /*
    2028             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2029             :      * this will also pin the requisite visibility map page.
    2030             :      */
    2031    15533396 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2032             :                                        InvalidBuffer, options, bistate,
    2033             :                                        &vmbuffer, NULL,
    2034             :                                        0);
    2035             : 
    2036             :     /*
    2037             :      * We're about to do the actual insert -- but check for conflict first, to
    2038             :      * avoid possibly having to roll back work we've just done.
    2039             :      *
    2040             :      * This is safe without a recheck as long as there is no possibility of
    2041             :      * another process scanning the page between this check and the insert
    2042             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2043             :      * continuously held from this point until the tuple insert is visible).
    2044             :      *
    2045             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2046             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2047             :      * page locks are only consolidated versions of tuple locks; they do not
    2048             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2049             :      * buffer when making the call, which makes for a faster check.
    2050             :      */
    2051    15533396 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2052             : 
    2053             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2054    15533372 :     START_CRIT_SECTION();
    2055             : 
    2056    15533372 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2057    15533372 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2058             : 
    2059    15533372 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2060             :     {
    2061       13190 :         all_visible_cleared = true;
    2062       13190 :         PageClearAllVisible(BufferGetPage(buffer));
    2063       13190 :         visibilitymap_clear(relation,
    2064       13190 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2065             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2066             :     }
    2067             : 
    2068             :     /*
    2069             :      * XXX Should we set PageSetPrunable on this page ?
    2070             :      *
    2071             :      * The inserting transaction may eventually abort thus making this tuple
    2072             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2073             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2074             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2075             :      *
    2076             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2077             :      */
    2078             : 
    2079    15533372 :     MarkBufferDirty(buffer);
    2080             : 
    2081             :     /* XLOG stuff */
    2082    15533372 :     if (RelationNeedsWAL(relation))
    2083             :     {
    2084             :         xl_heap_insert xlrec;
    2085             :         xl_heap_header xlhdr;
    2086             :         XLogRecPtr  recptr;
    2087    13516198 :         Page        page = BufferGetPage(buffer);
    2088    13516198 :         uint8       info = XLOG_HEAP_INSERT;
    2089    13516198 :         int         bufflags = 0;
    2090             : 
    2091             :         /*
    2092             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2093             :          * decode, so log that as well.
    2094             :          */
    2095    13516198 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2096        6248 :             log_heap_new_cid(relation, heaptup);
    2097             : 
    2098             :         /*
    2099             :          * If this is the single and first tuple on page, we can reinit the
    2100             :          * page instead of restoring the whole thing.  Set flag, and hide
    2101             :          * buffer references from XLogInsert.
    2102             :          */
    2103    13681888 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2104      165690 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2105             :         {
    2106      164224 :             info |= XLOG_HEAP_INIT_PAGE;
    2107      164224 :             bufflags |= REGBUF_WILL_INIT;
    2108             :         }
    2109             : 
    2110    13516198 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2111    13516198 :         xlrec.flags = 0;
    2112    13516198 :         if (all_visible_cleared)
    2113       13184 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2114    13516198 :         if (options & HEAP_INSERT_SPECULATIVE)
    2115        4110 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2116             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2117             : 
    2118             :         /*
    2119             :          * For logical decoding, we need the tuple even if we're doing a full
    2120             :          * page write, so make sure it's included even if we take a full-page
    2121             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2122             :          */
    2123    13516198 :         if (RelationIsLogicallyLogged(relation) &&
    2124      489724 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2125             :         {
    2126      489670 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2127      489670 :             bufflags |= REGBUF_KEEP_DATA;
    2128             : 
    2129      489670 :             if (IsToastRelation(relation))
    2130        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2131             :         }
    2132             : 
    2133    13516198 :         XLogBeginInsert();
    2134    13516198 :         XLogRegisterData((char *) &xlrec, SizeOfHeapInsert);
    2135             : 
    2136    13516198 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2137    13516198 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2138    13516198 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2139             : 
    2140             :         /*
    2141             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2142             :          * write the whole page to the xlog, we don't need to store
    2143             :          * xl_heap_header in the xlog.
    2144             :          */
    2145    13516198 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2146    13516198 :         XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);
    2147             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2148    13516198 :         XLogRegisterBufData(0,
    2149    13516198 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2150    13516198 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2151             : 
    2152             :         /* filtering by origin on a row level is much more efficient */
    2153    13516198 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2154             : 
    2155    13516198 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2156             : 
    2157    13516198 :         PageSetLSN(page, recptr);
    2158             :     }
    2159             : 
    2160    15533372 :     END_CRIT_SECTION();
    2161             : 
    2162    15533372 :     UnlockReleaseBuffer(buffer);
    2163    15533372 :     if (vmbuffer != InvalidBuffer)
    2164       13768 :         ReleaseBuffer(vmbuffer);
    2165             : 
    2166             :     /*
    2167             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2168             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2169             :      * the heaptup data structure is all in local memory, not in the shared
    2170             :      * buffer.
    2171             :      */
    2172    15533372 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2173             : 
    2174             :     /* Note: speculative insertions are counted too, even if aborted later */
    2175    15533372 :     pgstat_count_heap_insert(relation, 1);
    2176             : 
    2177             :     /*
    2178             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2179             :      * back to the caller's image, too.
    2180             :      */
    2181    15533372 :     if (heaptup != tup)
    2182             :     {
    2183       33810 :         tup->t_self = heaptup->t_self;
    2184       33810 :         heap_freetuple(heaptup);
    2185             :     }
    2186    15533372 : }
    2187             : 
    2188             : /*
    2189             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2190             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2191             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2192             :  * that in any case, the header fields are also set in the original tuple.
    2193             :  */
    2194             : static HeapTuple
    2195    18342310 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2196             :                     CommandId cid, int options)
    2197             : {
    2198             :     /*
    2199             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2200             :      * performed in workers. We have the infrastructure to allow parallel
    2201             :      * inserts in general except for the cases where inserts generate a new
    2202             :      * CommandId (eg. inserts into a table having a foreign key column).
    2203             :      */
    2204    18342310 :     if (IsParallelWorker())
    2205           0 :         ereport(ERROR,
    2206             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2207             :                  errmsg("cannot insert tuples in a parallel worker")));
    2208             : 
    2209    18342310 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2210    18342310 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2211    18342310 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2212    18342310 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2213    18342310 :     if (options & HEAP_INSERT_FROZEN)
    2214      204022 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2215             : 
    2216    18342310 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2217    18342310 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2218    18342310 :     tup->t_tableOid = RelationGetRelid(relation);
    2219             : 
    2220             :     /*
    2221             :      * If the new tuple is too big for storage or contains already toasted
    2222             :      * out-of-line attributes from some other relation, invoke the toaster.
    2223             :      */
    2224    18342310 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2225       56998 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2226             :     {
    2227             :         /* toast table entries should never be recursively toasted */
    2228             :         Assert(!HeapTupleHasExternal(tup));
    2229       56902 :         return tup;
    2230             :     }
    2231    18285408 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2232       33892 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2233             :     else
    2234    18251516 :         return tup;
    2235             : }
    2236             : 
    2237             : /*
    2238             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2239             :  * that inserting the remaining heaptuples requires. Used to determine how
    2240             :  * much the relation needs to be extended by.
    2241             :  */
    2242             : static int
    2243      664052 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2244             : {
    2245      664052 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2246      664052 :     int         npages = 1;
    2247             : 
    2248     4659662 :     for (int i = done; i < ntuples; i++)
    2249             :     {
    2250     3995610 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2251             : 
    2252     3995610 :         if (page_avail < tup_sz)
    2253             :         {
    2254       31256 :             npages++;
    2255       31256 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2256             :         }
    2257     3995610 :         page_avail -= tup_sz;
    2258             :     }
    2259             : 
    2260      664052 :     return npages;
    2261             : }
    2262             : 
    2263             : /*
    2264             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2265             :  *
    2266             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2267             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2268             :  * tuples can be inserted on a single page, we can write just a single WAL
    2269             :  * record covering all of them, and only need to lock/unlock the page once.
    2270             :  *
    2271             :  * Note: this leaks memory into the current memory context. You can create a
    2272             :  * temporary context before calling this, if that's a problem.
    2273             :  */
    2274             : void
    2275      652168 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2276             :                   CommandId cid, int options, BulkInsertState bistate)
    2277             : {
    2278      652168 :     TransactionId xid = GetCurrentTransactionId();
    2279             :     HeapTuple  *heaptuples;
    2280             :     int         i;
    2281             :     int         ndone;
    2282             :     PGAlignedBlock scratch;
    2283             :     Page        page;
    2284      652168 :     Buffer      vmbuffer = InvalidBuffer;
    2285             :     bool        needwal;
    2286             :     Size        saveFreeSpace;
    2287      652168 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2288      652168 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2289      652168 :     bool        starting_with_empty_page = false;
    2290      652168 :     int         npages = 0;
    2291      652168 :     int         npages_used = 0;
    2292             : 
    2293             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2294             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2295             : 
    2296      652168 :     needwal = RelationNeedsWAL(relation);
    2297      652168 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2298             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2299             : 
    2300             :     /* Toast and set header data in all the slots */
    2301      652168 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2302     3461082 :     for (i = 0; i < ntuples; i++)
    2303             :     {
    2304             :         HeapTuple   tuple;
    2305             : 
    2306     2808914 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2307     2808914 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2308     2808914 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2309     2808914 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2310             :                                             options);
    2311             :     }
    2312             : 
    2313             :     /*
    2314             :      * We're about to do the actual inserts -- but check for conflict first,
    2315             :      * to minimize the possibility of having to roll back work we've just
    2316             :      * done.
    2317             :      *
    2318             :      * A check here does not definitively prevent a serialization anomaly;
    2319             :      * that check MUST be done at least past the point of acquiring an
    2320             :      * exclusive buffer content lock on every buffer that will be affected,
    2321             :      * and MAY be done after all inserts are reflected in the buffers and
    2322             :      * those locks are released; otherwise there is a race condition.  Since
    2323             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2324             :      * would not be feasible to identify and lock all of those buffers before
    2325             :      * the loop, we must do a final check at the end.
    2326             :      *
    2327             :      * The check here could be omitted with no loss of correctness; it is
    2328             :      * present strictly as an optimization.
    2329             :      *
    2330             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2331             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2332             :      * page locks are only consolidated versions of tuple locks; they do not
    2333             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2334             :      * buffer when making the call, which makes for a faster check.
    2335             :      */
    2336      652168 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2337             : 
    2338      652168 :     ndone = 0;
    2339     1332536 :     while (ndone < ntuples)
    2340             :     {
    2341             :         Buffer      buffer;
    2342      680368 :         bool        all_visible_cleared = false;
    2343      680368 :         bool        all_frozen_set = false;
    2344             :         int         nthispage;
    2345             : 
    2346      680368 :         CHECK_FOR_INTERRUPTS();
    2347             : 
    2348             :         /*
    2349             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2350             :          * the worst case.  This will be used to determine how much to extend
    2351             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2352             :          * filled a prior page from scratch, we can just update our last
    2353             :          * computation, but if we started with a partially filled page,
    2354             :          * recompute from scratch, the number of potentially required pages
    2355             :          * can vary due to tuples needing to fit onto the page, page headers
    2356             :          * etc.
    2357             :          */
    2358      680368 :         if (ndone == 0 || !starting_with_empty_page)
    2359             :         {
    2360      664052 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2361             :                                              saveFreeSpace);
    2362      664052 :             npages_used = 0;
    2363             :         }
    2364             :         else
    2365       16316 :             npages_used++;
    2366             : 
    2367             :         /*
    2368             :          * Find buffer where at least the next tuple will fit.  If the page is
    2369             :          * all-visible, this will also pin the requisite visibility map page.
    2370             :          *
    2371             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2372             :          * empty page. See all_frozen_set below.
    2373             :          */
    2374      680368 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2375             :                                            InvalidBuffer, options, bistate,
    2376             :                                            &vmbuffer, NULL,
    2377             :                                            npages - npages_used);
    2378      680368 :         page = BufferGetPage(buffer);
    2379             : 
    2380      680368 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2381             : 
    2382      680368 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2383        3322 :             all_frozen_set = true;
    2384             : 
    2385             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2386      680368 :         START_CRIT_SECTION();
    2387             : 
    2388             :         /*
    2389             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2390             :          * Put that on the page, and then as many other tuples as fit.
    2391             :          */
    2392      680368 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2393             : 
    2394             :         /*
    2395             :          * For logical decoding we need combo CIDs to properly decode the
    2396             :          * catalog.
    2397             :          */
    2398      680368 :         if (needwal && need_cids)
    2399        9272 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2400             : 
    2401     2808914 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2402             :         {
    2403     2156746 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2404             : 
    2405     2156746 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2406       28200 :                 break;
    2407             : 
    2408     2128546 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2409             : 
    2410             :             /*
    2411             :              * For logical decoding we need combo CIDs to properly decode the
    2412             :              * catalog.
    2413             :              */
    2414     2128546 :             if (needwal && need_cids)
    2415        9000 :                 log_heap_new_cid(relation, heaptup);
    2416             :         }
    2417             : 
    2418             :         /*
    2419             :          * If the page is all visible, need to clear that, unless we're only
    2420             :          * going to add further frozen rows to it.
    2421             :          *
    2422             :          * If we're only adding already frozen rows to a previously empty
    2423             :          * page, mark it as all-visible.
    2424             :          */
    2425      680368 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2426             :         {
    2427        5812 :             all_visible_cleared = true;
    2428        5812 :             PageClearAllVisible(page);
    2429        5812 :             visibilitymap_clear(relation,
    2430             :                                 BufferGetBlockNumber(buffer),
    2431             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2432             :         }
    2433      674556 :         else if (all_frozen_set)
    2434        3322 :             PageSetAllVisible(page);
    2435             : 
    2436             :         /*
    2437             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2438             :          */
    2439             : 
    2440      680368 :         MarkBufferDirty(buffer);
    2441             : 
    2442             :         /* XLOG stuff */
    2443      680368 :         if (needwal)
    2444             :         {
    2445             :             XLogRecPtr  recptr;
    2446             :             xl_heap_multi_insert *xlrec;
    2447      672726 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2448             :             char       *tupledata;
    2449             :             int         totaldatalen;
    2450      672726 :             char       *scratchptr = scratch.data;
    2451             :             bool        init;
    2452      672726 :             int         bufflags = 0;
    2453             : 
    2454             :             /*
    2455             :              * If the page was previously empty, we can reinit the page
    2456             :              * instead of restoring the whole thing.
    2457             :              */
    2458      672726 :             init = starting_with_empty_page;
    2459             : 
    2460             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2461      672726 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2462      672726 :             scratchptr += SizeOfHeapMultiInsert;
    2463             : 
    2464             :             /*
    2465             :              * Allocate offsets array. Unless we're reinitializing the page,
    2466             :              * in that case the tuples are stored in order starting at
    2467             :              * FirstOffsetNumber and we don't need to store the offsets
    2468             :              * explicitly.
    2469             :              */
    2470      672726 :             if (!init)
    2471      647928 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2472             : 
    2473             :             /* the rest of the scratch space is used for tuple data */
    2474      672726 :             tupledata = scratchptr;
    2475             : 
    2476             :             /* check that the mutually exclusive flags are not both set */
    2477             :             Assert(!(all_visible_cleared && all_frozen_set));
    2478             : 
    2479      672726 :             xlrec->flags = 0;
    2480      672726 :             if (all_visible_cleared)
    2481        5812 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2482      672726 :             if (all_frozen_set)
    2483          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2484             : 
    2485      672726 :             xlrec->ntuples = nthispage;
    2486             : 
    2487             :             /*
    2488             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2489             :              * for each tuple.
    2490             :              */
    2491     3070838 :             for (i = 0; i < nthispage; i++)
    2492             :             {
    2493     2398112 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2494             :                 xl_multi_insert_tuple *tuphdr;
    2495             :                 int         datalen;
    2496             : 
    2497     2398112 :                 if (!init)
    2498     1368660 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2499             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2500     2398112 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2501     2398112 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2502             : 
    2503     2398112 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2504     2398112 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2505     2398112 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2506             : 
    2507             :                 /* write bitmap [+ padding] [+ oid] + data */
    2508     2398112 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2509     2398112 :                 memcpy(scratchptr,
    2510     2398112 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2511             :                        datalen);
    2512     2398112 :                 tuphdr->datalen = datalen;
    2513     2398112 :                 scratchptr += datalen;
    2514             :             }
    2515      672726 :             totaldatalen = scratchptr - tupledata;
    2516             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2517             : 
    2518      672726 :             if (need_tuple_data)
    2519         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2520             : 
    2521             :             /*
    2522             :              * Signal that this is the last xl_heap_multi_insert record
    2523             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2524             :              * decoding so it knows when to cleanup temporary data.
    2525             :              */
    2526      672726 :             if (ndone + nthispage == ntuples)
    2527      651344 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2528             : 
    2529      672726 :             if (init)
    2530             :             {
    2531       24798 :                 info |= XLOG_HEAP_INIT_PAGE;
    2532       24798 :                 bufflags |= REGBUF_WILL_INIT;
    2533             :             }
    2534             : 
    2535             :             /*
    2536             :              * If we're doing logical decoding, include the new tuple data
    2537             :              * even if we take a full-page image of the page.
    2538             :              */
    2539      672726 :             if (need_tuple_data)
    2540         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2541             : 
    2542      672726 :             XLogBeginInsert();
    2543      672726 :             XLogRegisterData((char *) xlrec, tupledata - scratch.data);
    2544      672726 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2545             : 
    2546      672726 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2547             : 
    2548             :             /* filtering by origin on a row level is much more efficient */
    2549      672726 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2550             : 
    2551      672726 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2552             : 
    2553      672726 :             PageSetLSN(page, recptr);
    2554             :         }
    2555             : 
    2556      680368 :         END_CRIT_SECTION();
    2557             : 
    2558             :         /*
    2559             :          * If we've frozen everything on the page, update the visibilitymap.
    2560             :          * We're already holding pin on the vmbuffer.
    2561             :          */
    2562      680368 :         if (all_frozen_set)
    2563             :         {
    2564             :             Assert(PageIsAllVisible(page));
    2565             :             Assert(visibilitymap_pin_ok(BufferGetBlockNumber(buffer), vmbuffer));
    2566             : 
    2567             :             /*
    2568             :              * It's fine to use InvalidTransactionId here - this is only used
    2569             :              * when HEAP_INSERT_FROZEN is specified, which intentionally
    2570             :              * violates visibility rules.
    2571             :              */
    2572        3322 :             visibilitymap_set(relation, BufferGetBlockNumber(buffer), buffer,
    2573             :                               InvalidXLogRecPtr, vmbuffer,
    2574             :                               InvalidTransactionId,
    2575             :                               VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
    2576             :         }
    2577             : 
    2578      680368 :         UnlockReleaseBuffer(buffer);
    2579      680368 :         ndone += nthispage;
    2580             : 
    2581             :         /*
    2582             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2583             :          * likely that we'll insert into subsequent heap pages that are likely
    2584             :          * to use the same vm page.
    2585             :          */
    2586             :     }
    2587             : 
    2588             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2589      652168 :     if (vmbuffer != InvalidBuffer)
    2590        6020 :         ReleaseBuffer(vmbuffer);
    2591             : 
    2592             :     /*
    2593             :      * We're done with the actual inserts.  Check for conflicts again, to
    2594             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2595             :      * this final check, a sequential scan of the heap may have locked the
    2596             :      * table after the "before" check, missing one opportunity to detect the
    2597             :      * conflict, and then scanned the table before the new tuples were there,
    2598             :      * missing the other chance to detect the conflict.
    2599             :      *
    2600             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2601             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2602             :      * page locks are only consolidated versions of tuple locks; they do not
    2603             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2604             :      * buffer when making the call.
    2605             :      */
    2606      652168 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2607             : 
    2608             :     /*
    2609             :      * If tuples are cachable, mark them for invalidation from the caches in
    2610             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2611             :      * because the heaptuples data structure is all in local memory, not in
    2612             :      * the shared buffer.
    2613             :      */
    2614      652168 :     if (IsCatalogRelation(relation))
    2615             :     {
    2616     2263180 :         for (i = 0; i < ntuples; i++)
    2617     1613398 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2618             :     }
    2619             : 
    2620             :     /* copy t_self fields back to the caller's slots */
    2621     3461082 :     for (i = 0; i < ntuples; i++)
    2622     2808914 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2623             : 
    2624      652168 :     pgstat_count_heap_insert(relation, ntuples);
    2625      652168 : }
    2626             : 
    2627             : /*
    2628             :  *  simple_heap_insert - insert a tuple
    2629             :  *
    2630             :  * Currently, this routine differs from heap_insert only in supplying
    2631             :  * a default command ID and not allowing access to the speedup options.
    2632             :  *
    2633             :  * This should be used rather than using heap_insert directly in most places
    2634             :  * where we are modifying system catalogs.
    2635             :  */
    2636             : void
    2637     1608770 : simple_heap_insert(Relation relation, HeapTuple tup)
    2638             : {
    2639     1608770 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2640     1608770 : }
    2641             : 
    2642             : /*
    2643             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2644             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2645             :  * xl_heap_lock_updated WAL records.
    2646             :  *
    2647             :  * See fix_infomask_from_infobits.
    2648             :  */
    2649             : static uint8
    2650     3762968 : compute_infobits(uint16 infomask, uint16 infomask2)
    2651             : {
    2652             :     return
    2653     3762968 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2654     3762968 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2655     3762968 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2656             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2657     7525936 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2658             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2659     3762968 :          XLHL_KEYS_UPDATED : 0);
    2660             : }
    2661             : 
    2662             : /*
    2663             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2664             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2665             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2666             :  * that the tuple state continues to be the same it was when we previously
    2667             :  * examined it.
    2668             :  *
    2669             :  * Note the Xmax field itself must be compared separately.
    2670             :  */
    2671             : static inline bool
    2672       10666 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2673             : {
    2674       10666 :     const uint16 interesting =
    2675             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2676             : 
    2677       10666 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2678          28 :         return true;
    2679             : 
    2680       10638 :     return false;
    2681             : }
    2682             : 
    2683             : /*
    2684             :  *  heap_delete - delete a tuple
    2685             :  *
    2686             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2687             :  * this routine directly takes a tuple rather than a slot.
    2688             :  *
    2689             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2690             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2691             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2692             :  * generated by another transaction).
    2693             :  */
    2694             : TM_Result
    2695     2905962 : heap_delete(Relation relation, ItemPointer tid,
    2696             :             CommandId cid, Snapshot crosscheck, bool wait,
    2697             :             TM_FailureData *tmfd, bool changingPart)
    2698             : {
    2699             :     TM_Result   result;
    2700     2905962 :     TransactionId xid = GetCurrentTransactionId();
    2701             :     ItemId      lp;
    2702             :     HeapTupleData tp;
    2703             :     Page        page;
    2704             :     BlockNumber block;
    2705             :     Buffer      buffer;
    2706     2905962 :     Buffer      vmbuffer = InvalidBuffer;
    2707             :     TransactionId new_xmax;
    2708             :     uint16      new_infomask,
    2709             :                 new_infomask2;
    2710     2905962 :     bool        have_tuple_lock = false;
    2711             :     bool        iscombo;
    2712     2905962 :     bool        all_visible_cleared = false;
    2713     2905962 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2714     2905962 :     bool        old_key_copied = false;
    2715             : 
    2716             :     Assert(ItemPointerIsValid(tid));
    2717             : 
    2718             :     /*
    2719             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2720             :      * Other workers might need that combo CID for visibility checks, and we
    2721             :      * have no provision for broadcasting it to them.
    2722             :      */
    2723     2905962 :     if (IsInParallelMode())
    2724           0 :         ereport(ERROR,
    2725             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2726             :                  errmsg("cannot delete tuples during a parallel operation")));
    2727             : 
    2728     2905962 :     block = ItemPointerGetBlockNumber(tid);
    2729     2905962 :     buffer = ReadBuffer(relation, block);
    2730     2905962 :     page = BufferGetPage(buffer);
    2731             : 
    2732             :     /*
    2733             :      * Before locking the buffer, pin the visibility map page if it appears to
    2734             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2735             :      * in the middle of changing this, so we'll need to recheck after we have
    2736             :      * the lock.
    2737             :      */
    2738     2905962 :     if (PageIsAllVisible(page))
    2739         284 :         visibilitymap_pin(relation, block, &vmbuffer);
    2740             : 
    2741     2905962 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2742             : 
    2743     2905962 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2744             :     Assert(ItemIdIsNormal(lp));
    2745             : 
    2746     2905962 :     tp.t_tableOid = RelationGetRelid(relation);
    2747     2905962 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2748     2905962 :     tp.t_len = ItemIdGetLength(lp);
    2749     2905962 :     tp.t_self = *tid;
    2750             : 
    2751     2905964 : l1:
    2752             : 
    2753             :     /*
    2754             :      * If we didn't pin the visibility map page and the page has become all
    2755             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2756             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2757             :      * unfortunate, but hopefully shouldn't happen often.
    2758             :      */
    2759     2905964 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2760             :     {
    2761           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2762           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2763           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2764             :     }
    2765             : 
    2766     2905964 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2767             : 
    2768     2905964 :     if (result == TM_Invisible)
    2769             :     {
    2770           0 :         UnlockReleaseBuffer(buffer);
    2771           0 :         ereport(ERROR,
    2772             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2773             :                  errmsg("attempted to delete invisible tuple")));
    2774             :     }
    2775     2905964 :     else if (result == TM_BeingModified && wait)
    2776             :     {
    2777             :         TransactionId xwait;
    2778             :         uint16      infomask;
    2779             : 
    2780             :         /* must copy state data before unlocking buffer */
    2781       81104 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2782       81104 :         infomask = tp.t_data->t_infomask;
    2783             : 
    2784             :         /*
    2785             :          * Sleep until concurrent transaction ends -- except when there's a
    2786             :          * single locker and it's our own transaction.  Note we don't care
    2787             :          * which lock mode the locker has, because we need the strongest one.
    2788             :          *
    2789             :          * Before sleeping, we need to acquire tuple lock to establish our
    2790             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2791             :          * release us when we are next-in-line for the tuple.
    2792             :          *
    2793             :          * If we are forced to "start over" below, we keep the tuple lock;
    2794             :          * this arranges that we stay at the head of the line while rechecking
    2795             :          * tuple state.
    2796             :          */
    2797       81104 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2798             :         {
    2799          16 :             bool        current_is_member = false;
    2800             : 
    2801          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2802             :                                         LockTupleExclusive, &current_is_member))
    2803             :             {
    2804          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2805             : 
    2806             :                 /*
    2807             :                  * Acquire the lock, if necessary (but skip it when we're
    2808             :                  * requesting a lock and already have one; avoids deadlock).
    2809             :                  */
    2810          16 :                 if (!current_is_member)
    2811          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2812             :                                          LockWaitBlock, &have_tuple_lock);
    2813             : 
    2814             :                 /* wait for multixact */
    2815          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2816             :                                 relation, &(tp.t_self), XLTW_Delete,
    2817             :                                 NULL);
    2818          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2819             : 
    2820             :                 /*
    2821             :                  * If xwait had just locked the tuple then some other xact
    2822             :                  * could update this tuple before we get to this point.  Check
    2823             :                  * for xmax change, and start over if so.
    2824             :                  *
    2825             :                  * We also must start over if we didn't pin the VM page, and
    2826             :                  * the page has become all visible.
    2827             :                  */
    2828          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2829          16 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2830          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2831             :                                          xwait))
    2832           0 :                     goto l1;
    2833             :             }
    2834             : 
    2835             :             /*
    2836             :              * You might think the multixact is necessarily done here, but not
    2837             :              * so: it could have surviving members, namely our own xact or
    2838             :              * other subxacts of this backend.  It is legal for us to delete
    2839             :              * the tuple in either case, however (the latter case is
    2840             :              * essentially a situation of upgrading our former shared lock to
    2841             :              * exclusive).  We don't bother changing the on-disk hint bits
    2842             :              * since we are about to overwrite the xmax altogether.
    2843             :              */
    2844             :         }
    2845       81088 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2846             :         {
    2847             :             /*
    2848             :              * Wait for regular transaction to end; but first, acquire tuple
    2849             :              * lock.
    2850             :              */
    2851          80 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2852          80 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2853             :                                  LockWaitBlock, &have_tuple_lock);
    2854          80 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2855          72 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2856             : 
    2857             :             /*
    2858             :              * xwait is done, but if xwait had just locked the tuple then some
    2859             :              * other xact could update this tuple before we get to this point.
    2860             :              * Check for xmax change, and start over if so.
    2861             :              *
    2862             :              * We also must start over if we didn't pin the VM page, and the
    2863             :              * page has become all visible.
    2864             :              */
    2865         144 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2866          72 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2867          70 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2868             :                                      xwait))
    2869           2 :                 goto l1;
    2870             : 
    2871             :             /* Otherwise check if it committed or aborted */
    2872          70 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2873             :         }
    2874             : 
    2875             :         /*
    2876             :          * We may overwrite if previous xmax aborted, or if it committed but
    2877             :          * only locked the tuple without updating it.
    2878             :          */
    2879       81094 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2880       81116 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2881          50 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2882       81052 :             result = TM_Ok;
    2883          42 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2884          34 :             result = TM_Updated;
    2885             :         else
    2886           8 :             result = TM_Deleted;
    2887             :     }
    2888             : 
    2889             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2890             :     if (result != TM_Ok)
    2891             :     {
    2892             :         Assert(result == TM_SelfModified ||
    2893             :                result == TM_Updated ||
    2894             :                result == TM_Deleted ||
    2895             :                result == TM_BeingModified);
    2896             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2897             :         Assert(result != TM_Updated ||
    2898             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2899             :     }
    2900             : 
    2901     2905954 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2902             :     {
    2903             :         /* Perform additional check for transaction-snapshot mode RI updates */
    2904           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    2905           2 :             result = TM_Updated;
    2906             :     }
    2907             : 
    2908     2905954 :     if (result != TM_Ok)
    2909             :     {
    2910         112 :         tmfd->ctid = tp.t_data->t_ctid;
    2911         112 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    2912         112 :         if (result == TM_SelfModified)
    2913          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    2914             :         else
    2915          70 :             tmfd->cmax = InvalidCommandId;
    2916         112 :         UnlockReleaseBuffer(buffer);
    2917         112 :         if (have_tuple_lock)
    2918          42 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    2919         112 :         if (vmbuffer != InvalidBuffer)
    2920           0 :             ReleaseBuffer(vmbuffer);
    2921         112 :         return result;
    2922             :     }
    2923             : 
    2924             :     /*
    2925             :      * We're about to do the actual delete -- check for conflict first, to
    2926             :      * avoid possibly having to roll back work we've just done.
    2927             :      *
    2928             :      * This is safe without a recheck as long as there is no possibility of
    2929             :      * another process scanning the page between this check and the delete
    2930             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2931             :      * continuously held from this point until the tuple delete is visible).
    2932             :      */
    2933     2905842 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    2934             : 
    2935             :     /* replace cid with a combo CID if necessary */
    2936     2905814 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    2937             : 
    2938             :     /*
    2939             :      * Compute replica identity tuple before entering the critical section so
    2940             :      * we don't PANIC upon a memory allocation failure.
    2941             :      */
    2942     2905814 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    2943             : 
    2944             :     /*
    2945             :      * If this is the first possibly-multixact-able operation in the current
    2946             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    2947             :      * certain that the transaction will never become a member of any older
    2948             :      * MultiXactIds than that.  (We have to do this even if we end up just
    2949             :      * using our own TransactionId below, since some other backend could
    2950             :      * incorporate our XID into a MultiXact immediately afterwards.)
    2951             :      */
    2952     2905814 :     MultiXactIdSetOldestMember();
    2953             : 
    2954     2905814 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    2955     2905814 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    2956             :                               xid, LockTupleExclusive, true,
    2957             :                               &new_xmax, &new_infomask, &new_infomask2);
    2958             : 
    2959     2905814 :     START_CRIT_SECTION();
    2960             : 
    2961             :     /*
    2962             :      * If this transaction commits, the tuple will become DEAD sooner or
    2963             :      * later.  Set flag that this page is a candidate for pruning once our xid
    2964             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    2965             :      * the subsequent page pruning will be a no-op and the hint will be
    2966             :      * cleared.
    2967             :      */
    2968     2905814 :     PageSetPrunable(page, xid);
    2969             : 
    2970     2905814 :     if (PageIsAllVisible(page))
    2971             :     {
    2972         284 :         all_visible_cleared = true;
    2973         284 :         PageClearAllVisible(page);
    2974         284 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    2975             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2976             :     }
    2977             : 
    2978             :     /* store transaction information of xact deleting the tuple */
    2979     2905814 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    2980     2905814 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    2981     2905814 :     tp.t_data->t_infomask |= new_infomask;
    2982     2905814 :     tp.t_data->t_infomask2 |= new_infomask2;
    2983     2905814 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    2984     2905814 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    2985     2905814 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    2986             :     /* Make sure there is no forward chain link in t_ctid */
    2987     2905814 :     tp.t_data->t_ctid = tp.t_self;
    2988             : 
    2989             :     /* Signal that this is actually a move into another partition */
    2990     2905814 :     if (changingPart)
    2991         946 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    2992             : 
    2993     2905814 :     MarkBufferDirty(buffer);
    2994             : 
    2995             :     /*
    2996             :      * XLOG stuff
    2997             :      *
    2998             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    2999             :      * routines.
    3000             :      */
    3001     2905814 :     if (RelationNeedsWAL(relation))
    3002             :     {
    3003             :         xl_heap_delete xlrec;
    3004             :         xl_heap_header xlhdr;
    3005             :         XLogRecPtr  recptr;
    3006             : 
    3007             :         /*
    3008             :          * For logical decode we need combo CIDs to properly decode the
    3009             :          * catalog
    3010             :          */
    3011     2784596 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3012       11838 :             log_heap_new_cid(relation, &tp);
    3013             : 
    3014     2784596 :         xlrec.flags = 0;
    3015     2784596 :         if (all_visible_cleared)
    3016         284 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3017     2784596 :         if (changingPart)
    3018         946 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3019     5569192 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3020     2784596 :                                               tp.t_data->t_infomask2);
    3021     2784596 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3022     2784596 :         xlrec.xmax = new_xmax;
    3023             : 
    3024     2784596 :         if (old_key_tuple != NULL)
    3025             :         {
    3026       94028 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3027         256 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3028             :             else
    3029       93772 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3030             :         }
    3031             : 
    3032     2784596 :         XLogBeginInsert();
    3033     2784596 :         XLogRegisterData((char *) &xlrec, SizeOfHeapDelete);
    3034             : 
    3035     2784596 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3036             : 
    3037             :         /*
    3038             :          * Log replica identity of the deleted tuple if there is one
    3039             :          */
    3040     2784596 :         if (old_key_tuple != NULL)
    3041             :         {
    3042       94028 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3043       94028 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3044       94028 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3045             : 
    3046       94028 :             XLogRegisterData((char *) &xlhdr, SizeOfHeapHeader);
    3047       94028 :             XLogRegisterData((char *) old_key_tuple->t_data
    3048             :                              + SizeofHeapTupleHeader,
    3049       94028 :                              old_key_tuple->t_len
    3050             :                              - SizeofHeapTupleHeader);
    3051             :         }
    3052             : 
    3053             :         /* filtering by origin on a row level is much more efficient */
    3054     2784596 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3055             : 
    3056     2784596 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3057             : 
    3058     2784596 :         PageSetLSN(page, recptr);
    3059             :     }
    3060             : 
    3061     2905814 :     END_CRIT_SECTION();
    3062             : 
    3063     2905814 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3064             : 
    3065     2905814 :     if (vmbuffer != InvalidBuffer)
    3066         284 :         ReleaseBuffer(vmbuffer);
    3067             : 
    3068             :     /*
    3069             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3070             :      * those items too.  We have to do this before releasing the buffer
    3071             :      * because we need to look at the contents of the tuple, but it's OK to
    3072             :      * release the content lock on the buffer first.
    3073             :      */
    3074     2905814 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3075        4504 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3076             :     {
    3077             :         /* toast table entries should never be recursively toasted */
    3078             :         Assert(!HeapTupleHasExternal(&tp));
    3079             :     }
    3080     2901330 :     else if (HeapTupleHasExternal(&tp))
    3081         578 :         heap_toast_delete(relation, &tp, false);
    3082             : 
    3083             :     /*
    3084             :      * Mark tuple for invalidation from system caches at next command
    3085             :      * boundary. We have to do this before releasing the buffer because we
    3086             :      * need to look at the contents of the tuple.
    3087             :      */
    3088     2905814 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3089             : 
    3090             :     /* Now we can release the buffer */
    3091     2905814 :     ReleaseBuffer(buffer);
    3092             : 
    3093             :     /*
    3094             :      * Release the lmgr tuple lock, if we had it.
    3095             :      */
    3096     2905814 :     if (have_tuple_lock)
    3097          40 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3098             : 
    3099     2905814 :     pgstat_count_heap_delete(relation);
    3100             : 
    3101     2905814 :     if (old_key_tuple != NULL && old_key_copied)
    3102       93774 :         heap_freetuple(old_key_tuple);
    3103             : 
    3104     2905814 :     return TM_Ok;
    3105             : }
    3106             : 
    3107             : /*
    3108             :  *  simple_heap_delete - delete a tuple
    3109             :  *
    3110             :  * This routine may be used to delete a tuple when concurrent updates of
    3111             :  * the target tuple are not expected (for example, because we have a lock
    3112             :  * on the relation associated with the tuple).  Any failure is reported
    3113             :  * via ereport().
    3114             :  */
    3115             : void
    3116     1185588 : simple_heap_delete(Relation relation, ItemPointer tid)
    3117             : {
    3118             :     TM_Result   result;
    3119             :     TM_FailureData tmfd;
    3120             : 
    3121     1185588 :     result = heap_delete(relation, tid,
    3122             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3123             :                          true /* wait for commit */ ,
    3124             :                          &tmfd, false /* changingPart */ );
    3125     1185588 :     switch (result)
    3126             :     {
    3127           0 :         case TM_SelfModified:
    3128             :             /* Tuple was already updated in current command? */
    3129           0 :             elog(ERROR, "tuple already updated by self");
    3130             :             break;
    3131             : 
    3132     1185588 :         case TM_Ok:
    3133             :             /* done successfully */
    3134     1185588 :             break;
    3135             : 
    3136           0 :         case TM_Updated:
    3137           0 :             elog(ERROR, "tuple concurrently updated");
    3138             :             break;
    3139             : 
    3140           0 :         case TM_Deleted:
    3141           0 :             elog(ERROR, "tuple concurrently deleted");
    3142             :             break;
    3143             : 
    3144           0 :         default:
    3145           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3146             :             break;
    3147             :     }
    3148     1185588 : }
    3149             : 
    3150             : /*
    3151             :  *  heap_update - replace a tuple
    3152             :  *
    3153             :  * See table_tuple_update() for an explanation of the parameters, except that
    3154             :  * this routine directly takes a tuple rather than a slot.
    3155             :  *
    3156             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3157             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3158             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3159             :  * generated by another transaction).
    3160             :  */
    3161             : TM_Result
    3162      573012 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3163             :             CommandId cid, Snapshot crosscheck, bool wait,
    3164             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3165             :             TU_UpdateIndexes *update_indexes)
    3166             : {
    3167             :     TM_Result   result;
    3168      573012 :     TransactionId xid = GetCurrentTransactionId();
    3169             :     Bitmapset  *hot_attrs;
    3170             :     Bitmapset  *sum_attrs;
    3171             :     Bitmapset  *key_attrs;
    3172             :     Bitmapset  *id_attrs;
    3173             :     Bitmapset  *interesting_attrs;
    3174             :     Bitmapset  *modified_attrs;
    3175             :     ItemId      lp;
    3176             :     HeapTupleData oldtup;
    3177             :     HeapTuple   heaptup;
    3178      573012 :     HeapTuple   old_key_tuple = NULL;
    3179      573012 :     bool        old_key_copied = false;
    3180             :     Page        page;
    3181             :     BlockNumber block;
    3182             :     MultiXactStatus mxact_status;
    3183             :     Buffer      buffer,
    3184             :                 newbuf,
    3185      573012 :                 vmbuffer = InvalidBuffer,
    3186      573012 :                 vmbuffer_new = InvalidBuffer;
    3187             :     bool        need_toast;
    3188             :     Size        newtupsize,
    3189             :                 pagefree;
    3190      573012 :     bool        have_tuple_lock = false;
    3191             :     bool        iscombo;
    3192      573012 :     bool        use_hot_update = false;
    3193      573012 :     bool        summarized_update = false;
    3194             :     bool        key_intact;
    3195      573012 :     bool        all_visible_cleared = false;
    3196      573012 :     bool        all_visible_cleared_new = false;
    3197             :     bool        checked_lockers;
    3198             :     bool        locker_remains;
    3199      573012 :     bool        id_has_external = false;
    3200             :     TransactionId xmax_new_tuple,
    3201             :                 xmax_old_tuple;
    3202             :     uint16      infomask_old_tuple,
    3203             :                 infomask2_old_tuple,
    3204             :                 infomask_new_tuple,
    3205             :                 infomask2_new_tuple;
    3206             : 
    3207             :     Assert(ItemPointerIsValid(otid));
    3208             : 
    3209             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3210             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3211             :            RelationGetNumberOfAttributes(relation));
    3212             : 
    3213             :     /*
    3214             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3215             :      * Other workers might need that combo CID for visibility checks, and we
    3216             :      * have no provision for broadcasting it to them.
    3217             :      */
    3218      573012 :     if (IsInParallelMode())
    3219           0 :         ereport(ERROR,
    3220             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3221             :                  errmsg("cannot update tuples during a parallel operation")));
    3222             : 
    3223             : #ifdef USE_ASSERT_CHECKING
    3224             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3225             : #endif
    3226             : 
    3227             :     /*
    3228             :      * Fetch the list of attributes to be checked for various operations.
    3229             :      *
    3230             :      * For HOT considerations, this is wasted effort if we fail to update or
    3231             :      * have to put the new tuple on a different page.  But we must compute the
    3232             :      * list before obtaining buffer lock --- in the worst case, if we are
    3233             :      * doing an update on one of the relevant system catalogs, we could
    3234             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3235             :      * caches the data so this is usually pretty cheap.
    3236             :      *
    3237             :      * We also need columns used by the replica identity and columns that are
    3238             :      * considered the "key" of rows in the table.
    3239             :      *
    3240             :      * Note that we get copies of each bitmap, so we need not worry about
    3241             :      * relcache flush happening midway through.
    3242             :      */
    3243      573012 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3244             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3245      573012 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3246             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3247      573012 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3248      573012 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3249             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3250      573012 :     interesting_attrs = NULL;
    3251      573012 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3252      573012 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3253      573012 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3254      573012 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3255             : 
    3256      573012 :     block = ItemPointerGetBlockNumber(otid);
    3257      573012 :     buffer = ReadBuffer(relation, block);
    3258      573012 :     page = BufferGetPage(buffer);
    3259             : 
    3260             :     /*
    3261             :      * Before locking the buffer, pin the visibility map page if it appears to
    3262             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3263             :      * in the middle of changing this, so we'll need to recheck after we have
    3264             :      * the lock.
    3265             :      */
    3266      573012 :     if (PageIsAllVisible(page))
    3267        2388 :         visibilitymap_pin(relation, block, &vmbuffer);
    3268             : 
    3269      573012 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3270             : 
    3271      573012 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3272             :     Assert(ItemIdIsNormal(lp));
    3273             : 
    3274             :     /*
    3275             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3276             :      * properly.
    3277             :      */
    3278      573012 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3279      573012 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3280      573012 :     oldtup.t_len = ItemIdGetLength(lp);
    3281      573012 :     oldtup.t_self = *otid;
    3282             : 
    3283             :     /* the new tuple is ready, except for this: */
    3284      573012 :     newtup->t_tableOid = RelationGetRelid(relation);
    3285             : 
    3286             :     /*
    3287             :      * Determine columns modified by the update.  Additionally, identify
    3288             :      * whether any of the unmodified replica identity key attributes in the
    3289             :      * old tuple is externally stored or not.  This is required because for
    3290             :      * such attributes the flattened value won't be WAL logged as part of the
    3291             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3292             :      * ExtractReplicaIdentity.
    3293             :      */
    3294      573012 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3295             :                                               id_attrs, &oldtup,
    3296             :                                               newtup, &id_has_external);
    3297             : 
    3298             :     /*
    3299             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3300             :      * This allows for more concurrency when we are running simultaneously
    3301             :      * with foreign key checks.
    3302             :      *
    3303             :      * Note that if a column gets detoasted while executing the update, but
    3304             :      * the value ends up being the same, this test will fail and we will use
    3305             :      * the stronger lock.  This is acceptable; the important case to optimize
    3306             :      * is updates that don't manipulate key columns, not those that
    3307             :      * serendipitously arrive at the same key values.
    3308             :      */
    3309      573012 :     if (!bms_overlap(modified_attrs, key_attrs))
    3310             :     {
    3311      564870 :         *lockmode = LockTupleNoKeyExclusive;
    3312      564870 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3313      564870 :         key_intact = true;
    3314             : 
    3315             :         /*
    3316             :          * If this is the first possibly-multixact-able operation in the
    3317             :          * current transaction, set my per-backend OldestMemberMXactId
    3318             :          * setting. We can be certain that the transaction will never become a
    3319             :          * member of any older MultiXactIds than that.  (We have to do this
    3320             :          * even if we end up just using our own TransactionId below, since
    3321             :          * some other backend could incorporate our XID into a MultiXact
    3322             :          * immediately afterwards.)
    3323             :          */
    3324      564870 :         MultiXactIdSetOldestMember();
    3325             :     }
    3326             :     else
    3327             :     {
    3328        8142 :         *lockmode = LockTupleExclusive;
    3329        8142 :         mxact_status = MultiXactStatusUpdate;
    3330        8142 :         key_intact = false;
    3331             :     }
    3332             : 
    3333             :     /*
    3334             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3335             :      * otid may very well point at newtup->t_self, which we will overwrite
    3336             :      * with the new tuple's location, so there's great risk of confusion if we
    3337             :      * use otid anymore.
    3338             :      */
    3339             : 
    3340      573012 : l2:
    3341      573014 :     checked_lockers = false;
    3342      573014 :     locker_remains = false;
    3343      573014 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3344             : 
    3345             :     /* see below about the "no wait" case */
    3346             :     Assert(result != TM_BeingModified || wait);
    3347             : 
    3348      573014 :     if (result == TM_Invisible)
    3349             :     {
    3350           0 :         UnlockReleaseBuffer(buffer);
    3351           0 :         ereport(ERROR,
    3352             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3353             :                  errmsg("attempted to update invisible tuple")));
    3354             :     }
    3355      573014 :     else if (result == TM_BeingModified && wait)
    3356             :     {
    3357             :         TransactionId xwait;
    3358             :         uint16      infomask;
    3359       71864 :         bool        can_continue = false;
    3360             : 
    3361             :         /*
    3362             :          * XXX note that we don't consider the "no wait" case here.  This
    3363             :          * isn't a problem currently because no caller uses that case, but it
    3364             :          * should be fixed if such a caller is introduced.  It wasn't a
    3365             :          * problem previously because this code would always wait, but now
    3366             :          * that some tuple locks do not conflict with one of the lock modes we
    3367             :          * use, it is possible that this case is interesting to handle
    3368             :          * specially.
    3369             :          *
    3370             :          * This may cause failures with third-party code that calls
    3371             :          * heap_update directly.
    3372             :          */
    3373             : 
    3374             :         /* must copy state data before unlocking buffer */
    3375       71864 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3376       71864 :         infomask = oldtup.t_data->t_infomask;
    3377             : 
    3378             :         /*
    3379             :          * Now we have to do something about the existing locker.  If it's a
    3380             :          * multi, sleep on it; we might be awakened before it is completely
    3381             :          * gone (or even not sleep at all in some cases); we need to preserve
    3382             :          * it as locker, unless it is gone completely.
    3383             :          *
    3384             :          * If it's not a multi, we need to check for sleeping conditions
    3385             :          * before actually going to sleep.  If the update doesn't conflict
    3386             :          * with the locks, we just continue without sleeping (but making sure
    3387             :          * it is preserved).
    3388             :          *
    3389             :          * Before sleeping, we need to acquire tuple lock to establish our
    3390             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3391             :          * release us when we are next-in-line for the tuple.  Note we must
    3392             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3393             :          * otherwise we're open for race conditions with other transactions
    3394             :          * holding the tuple lock which sleep on us.
    3395             :          *
    3396             :          * If we are forced to "start over" below, we keep the tuple lock;
    3397             :          * this arranges that we stay at the head of the line while rechecking
    3398             :          * tuple state.
    3399             :          */
    3400       71864 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3401             :         {
    3402             :             TransactionId update_xact;
    3403             :             int         remain;
    3404         120 :             bool        current_is_member = false;
    3405             : 
    3406         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3407             :                                         *lockmode, &current_is_member))
    3408             :             {
    3409          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3410             : 
    3411             :                 /*
    3412             :                  * Acquire the lock, if necessary (but skip it when we're
    3413             :                  * requesting a lock and already have one; avoids deadlock).
    3414             :                  */
    3415          16 :                 if (!current_is_member)
    3416           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3417             :                                          LockWaitBlock, &have_tuple_lock);
    3418             : 
    3419             :                 /* wait for multixact */
    3420          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3421             :                                 relation, &oldtup.t_self, XLTW_Update,
    3422             :                                 &remain);
    3423          16 :                 checked_lockers = true;
    3424          16 :                 locker_remains = remain != 0;
    3425          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3426             : 
    3427             :                 /*
    3428             :                  * If xwait had just locked the tuple then some other xact
    3429             :                  * could update this tuple before we get to this point.  Check
    3430             :                  * for xmax change, and start over if so.
    3431             :                  */
    3432          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3433          16 :                                           infomask) ||
    3434          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3435             :                                          xwait))
    3436           0 :                     goto l2;
    3437             :             }
    3438             : 
    3439             :             /*
    3440             :              * Note that the multixact may not be done by now.  It could have
    3441             :              * surviving members; our own xact or other subxacts of this
    3442             :              * backend, and also any other concurrent transaction that locked
    3443             :              * the tuple with LockTupleKeyShare if we only got
    3444             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3445             :              * careful to mark the updated tuple with the surviving members in
    3446             :              * Xmax.
    3447             :              *
    3448             :              * Note that there could have been another update in the
    3449             :              * MultiXact. In that case, we need to check whether it committed
    3450             :              * or aborted. If it aborted we are safe to update it again;
    3451             :              * otherwise there is an update conflict, and we have to return
    3452             :              * TableTuple{Deleted, Updated} below.
    3453             :              *
    3454             :              * In the LockTupleExclusive case, we still need to preserve the
    3455             :              * surviving members: those would include the tuple locks we had
    3456             :              * before this one, which are important to keep in case this
    3457             :              * subxact aborts.
    3458             :              */
    3459         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3460          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3461             :             else
    3462         104 :                 update_xact = InvalidTransactionId;
    3463             : 
    3464             :             /*
    3465             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3466             :              * TransactionIdIsInProgress() call needed here, since we called
    3467             :              * MultiXactIdWait() above.
    3468             :              */
    3469         136 :             if (!TransactionIdIsValid(update_xact) ||
    3470          16 :                 TransactionIdDidAbort(update_xact))
    3471         106 :                 can_continue = true;
    3472             :         }
    3473       71744 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3474             :         {
    3475             :             /*
    3476             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3477             :              * lock here, but must preserve our locking information.
    3478             :              */
    3479       71552 :             checked_lockers = true;
    3480       71552 :             locker_remains = true;
    3481       71552 :             can_continue = true;
    3482             :         }
    3483         192 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3484             :         {
    3485             :             /*
    3486             :              * If it's just a key-share locker, and we're not changing the key
    3487             :              * columns, we don't need to wait for it to end; but we need to
    3488             :              * preserve it as locker.
    3489             :              */
    3490          58 :             checked_lockers = true;
    3491          58 :             locker_remains = true;
    3492          58 :             can_continue = true;
    3493             :         }
    3494             :         else
    3495             :         {
    3496             :             /*
    3497             :              * Wait for regular transaction to end; but first, acquire tuple
    3498             :              * lock.
    3499             :              */
    3500         134 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3501         134 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3502             :                                  LockWaitBlock, &have_tuple_lock);
    3503         134 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3504             :                               XLTW_Update);
    3505         134 :             checked_lockers = true;
    3506         134 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3507             : 
    3508             :             /*
    3509             :              * xwait is done, but if xwait had just locked the tuple then some
    3510             :              * other xact could update this tuple before we get to this point.
    3511             :              * Check for xmax change, and start over if so.
    3512             :              */
    3513         134 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3514         132 :                 !TransactionIdEquals(xwait,
    3515             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3516           2 :                 goto l2;
    3517             : 
    3518             :             /* Otherwise check if it committed or aborted */
    3519         132 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3520         132 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3521          30 :                 can_continue = true;
    3522             :         }
    3523             : 
    3524       71862 :         if (can_continue)
    3525       71746 :             result = TM_Ok;
    3526         116 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3527         106 :             result = TM_Updated;
    3528             :         else
    3529          10 :             result = TM_Deleted;
    3530             :     }
    3531             : 
    3532             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3533             :     if (result != TM_Ok)
    3534             :     {
    3535             :         Assert(result == TM_SelfModified ||
    3536             :                result == TM_Updated ||
    3537             :                result == TM_Deleted ||
    3538             :                result == TM_BeingModified);
    3539             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3540             :         Assert(result != TM_Updated ||
    3541             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3542             :     }
    3543             : 
    3544      573012 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3545             :     {
    3546             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3547           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3548           2 :             result = TM_Updated;
    3549             :     }
    3550             : 
    3551      573012 :     if (result != TM_Ok)
    3552             :     {
    3553         310 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3554         310 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3555         310 :         if (result == TM_SelfModified)
    3556         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3557             :         else
    3558         206 :             tmfd->cmax = InvalidCommandId;
    3559         310 :         UnlockReleaseBuffer(buffer);
    3560         310 :         if (have_tuple_lock)
    3561         102 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3562         310 :         if (vmbuffer != InvalidBuffer)
    3563           0 :             ReleaseBuffer(vmbuffer);
    3564         310 :         *update_indexes = TU_None;
    3565             : 
    3566         310 :         bms_free(hot_attrs);
    3567         310 :         bms_free(sum_attrs);
    3568         310 :         bms_free(key_attrs);
    3569         310 :         bms_free(id_attrs);
    3570         310 :         bms_free(modified_attrs);
    3571         310 :         bms_free(interesting_attrs);
    3572         310 :         return result;
    3573             :     }
    3574             : 
    3575             :     /*
    3576             :      * If we didn't pin the visibility map page and the page has become all
    3577             :      * visible while we were busy locking the buffer, or during some
    3578             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3579             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3580             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3581             :      * tuple has been locked or updated under us, but hopefully it won't
    3582             :      * happen very often.
    3583             :      */
    3584      572702 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3585             :     {
    3586           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3587           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3588           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3589           0 :         goto l2;
    3590             :     }
    3591             : 
    3592             :     /* Fill in transaction status data */
    3593             : 
    3594             :     /*
    3595             :      * If the tuple we're updating is locked, we need to preserve the locking
    3596             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3597             :      */
    3598      572702 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3599      572702 :                               oldtup.t_data->t_infomask,
    3600      572702 :                               oldtup.t_data->t_infomask2,
    3601             :                               xid, *lockmode, true,
    3602             :                               &xmax_old_tuple, &infomask_old_tuple,
    3603             :                               &infomask2_old_tuple);
    3604             : 
    3605             :     /*
    3606             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3607             :      * was no xmax previously, or there was one but all lockers are now gone,
    3608             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3609             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3610             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3611             :      */
    3612      572702 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3613       71716 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3614       71612 :         (checked_lockers && !locker_remains))
    3615      500986 :         xmax_new_tuple = InvalidTransactionId;
    3616             :     else
    3617       71716 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3618             : 
    3619      572702 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3620             :     {
    3621      500986 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3622      500986 :         infomask2_new_tuple = 0;
    3623             :     }
    3624             :     else
    3625             :     {
    3626             :         /*
    3627             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3628             :          * to use on the new tuple depend on what was there on the old one.
    3629             :          * Note that since we're doing an update, the only possibility is that
    3630             :          * the lockers had FOR KEY SHARE lock.
    3631             :          */
    3632       71716 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3633             :         {
    3634         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3635             :                                    &infomask2_new_tuple);
    3636             :         }
    3637             :         else
    3638             :         {
    3639       71610 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3640       71610 :             infomask2_new_tuple = 0;
    3641             :         }
    3642             :     }
    3643             : 
    3644             :     /*
    3645             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3646             :      * Xmax, as well as initial infomask bits as computed above.
    3647             :      */
    3648      572702 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3649      572702 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3650      572702 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3651      572702 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3652      572702 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3653      572702 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3654      572702 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3655             : 
    3656             :     /*
    3657             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3658             :      * the plain cid into the new tuple.
    3659             :      */
    3660      572702 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3661             : 
    3662             :     /*
    3663             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3664             :      * on the same page as the old, then we need to release the content lock
    3665             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3666             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3667             :      * show that it's locked, else other processes may try to update it
    3668             :      * themselves.
    3669             :      *
    3670             :      * We need to invoke the toaster if there are already any out-of-line
    3671             :      * toasted values present, or if the new tuple is over-threshold.
    3672             :      */
    3673      572702 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3674           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3675             :     {
    3676             :         /* toast table entries should never be recursively toasted */
    3677             :         Assert(!HeapTupleHasExternal(&oldtup));
    3678             :         Assert(!HeapTupleHasExternal(newtup));
    3679           0 :         need_toast = false;
    3680             :     }
    3681             :     else
    3682      572702 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3683     1144788 :                       HeapTupleHasExternal(newtup) ||
    3684      572086 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3685             : 
    3686      572702 :     pagefree = PageGetHeapFreeSpace(page);
    3687             : 
    3688      572702 :     newtupsize = MAXALIGN(newtup->t_len);
    3689             : 
    3690      572702 :     if (need_toast || newtupsize > pagefree)
    3691      282904 :     {
    3692             :         TransactionId xmax_lock_old_tuple;
    3693             :         uint16      infomask_lock_old_tuple,
    3694             :                     infomask2_lock_old_tuple;
    3695      282904 :         bool        cleared_all_frozen = false;
    3696             : 
    3697             :         /*
    3698             :          * To prevent concurrent sessions from updating the tuple, we have to
    3699             :          * temporarily mark it locked, while we release the page-level lock.
    3700             :          *
    3701             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3702             :          * written out to disk, we unfortunately have to WAL log this
    3703             :          * temporary modification.  We can reuse xl_heap_lock for this
    3704             :          * purpose.  If we crash/error before following through with the
    3705             :          * actual update, xmax will be of an aborted transaction, allowing
    3706             :          * other sessions to proceed.
    3707             :          */
    3708             : 
    3709             :         /*
    3710             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3711             :          * to be done separately from the combo that's going to be used for
    3712             :          * updating, because the potentially created multixact would otherwise
    3713             :          * be wrong.
    3714             :          */
    3715      282904 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3716      282904 :                                   oldtup.t_data->t_infomask,
    3717      282904 :                                   oldtup.t_data->t_infomask2,
    3718             :                                   xid, *lockmode, false,
    3719             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3720             :                                   &infomask2_lock_old_tuple);
    3721             : 
    3722             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3723             : 
    3724      282904 :         START_CRIT_SECTION();
    3725             : 
    3726             :         /* Clear obsolete visibility flags ... */
    3727      282904 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3728      282904 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3729      282904 :         HeapTupleClearHotUpdated(&oldtup);
    3730             :         /* ... and store info about transaction updating this tuple */
    3731             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3732      282904 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3733      282904 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3734      282904 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3735      282904 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3736             : 
    3737             :         /* temporarily make it look not-updated, but locked */
    3738      282904 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3739             : 
    3740             :         /*
    3741             :          * Clear all-frozen bit on visibility map if needed. We could
    3742             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3743             :          * overhead would be unchanged, that doesn't seem necessarily
    3744             :          * worthwhile.
    3745             :          */
    3746      284180 :         if (PageIsAllVisible(page) &&
    3747        1276 :             visibilitymap_clear(relation, block, vmbuffer,
    3748             :                                 VISIBILITYMAP_ALL_FROZEN))
    3749         998 :             cleared_all_frozen = true;
    3750             : 
    3751      282904 :         MarkBufferDirty(buffer);
    3752             : 
    3753      282904 :         if (RelationNeedsWAL(relation))
    3754             :         {
    3755             :             xl_heap_lock xlrec;
    3756             :             XLogRecPtr  recptr;
    3757             : 
    3758      262640 :             XLogBeginInsert();
    3759      262640 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3760             : 
    3761      262640 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3762      262640 :             xlrec.xmax = xmax_lock_old_tuple;
    3763      525280 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3764      262640 :                                                   oldtup.t_data->t_infomask2);
    3765      262640 :             xlrec.flags =
    3766      262640 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3767      262640 :             XLogRegisterData((char *) &xlrec, SizeOfHeapLock);
    3768      262640 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3769      262640 :             PageSetLSN(page, recptr);
    3770             :         }
    3771             : 
    3772      282904 :         END_CRIT_SECTION();
    3773             : 
    3774      282904 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3775             : 
    3776             :         /*
    3777             :          * Let the toaster do its thing, if needed.
    3778             :          *
    3779             :          * Note: below this point, heaptup is the data we actually intend to
    3780             :          * store into the relation; newtup is the caller's original untoasted
    3781             :          * data.
    3782             :          */
    3783      282904 :         if (need_toast)
    3784             :         {
    3785             :             /* Note we always use WAL and FSM during updates */
    3786        2646 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3787        2646 :             newtupsize = MAXALIGN(heaptup->t_len);
    3788             :         }
    3789             :         else
    3790      280258 :             heaptup = newtup;
    3791             : 
    3792             :         /*
    3793             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3794             :          * tricky since someone else could have added tuples to the page while
    3795             :          * we weren't looking.  We have to recheck the available space after
    3796             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3797             :          * former amount of free space is still not enough; it's unlikely
    3798             :          * there's more free now than before.
    3799             :          *
    3800             :          * What's more, if we need to get a new page, we will need to acquire
    3801             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3802             :          * some other backend trying to get the same two locks in the other
    3803             :          * order, we must be consistent about the order we get the locks in.
    3804             :          * We use the rule "lock the lower-numbered page of the relation
    3805             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3806             :          * while not holding the lock on the old page, and we must rely on it
    3807             :          * to get the locks on both pages in the correct order.
    3808             :          *
    3809             :          * Another consideration is that we need visibility map page pin(s) if
    3810             :          * we will have to clear the all-visible flag on either page.  If we
    3811             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3812             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3813             :          * a loop.
    3814             :          */
    3815             :         for (;;)
    3816             :         {
    3817      282904 :             if (newtupsize > pagefree)
    3818             :             {
    3819             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3820      282038 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3821             :                                                    buffer, 0, NULL,
    3822             :                                                    &vmbuffer_new, &vmbuffer,
    3823             :                                                    0);
    3824             :                 /* We're all done. */
    3825      282038 :                 break;
    3826             :             }
    3827             :             /* Acquire VM page pin if needed and we don't have it. */
    3828         866 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3829           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3830             :             /* Re-acquire the lock on the old tuple's page. */
    3831         866 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3832             :             /* Re-check using the up-to-date free space */
    3833         866 :             pagefree = PageGetHeapFreeSpace(page);
    3834         866 :             if (newtupsize > pagefree ||
    3835         866 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3836             :             {
    3837             :                 /*
    3838             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3839             :                  * all-visible flag.  We must now unlock and loop to avoid
    3840             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3841             :                  */
    3842           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3843             :             }
    3844             :             else
    3845             :             {
    3846             :                 /* We're all done. */
    3847         866 :                 newbuf = buffer;
    3848         866 :                 break;
    3849             :             }
    3850             :         }
    3851             :     }
    3852             :     else
    3853             :     {
    3854             :         /* No TOAST work needed, and it'll fit on same page */
    3855      289798 :         newbuf = buffer;
    3856      289798 :         heaptup = newtup;
    3857             :     }
    3858             : 
    3859             :     /*
    3860             :      * We're about to do the actual update -- check for conflict first, to
    3861             :      * avoid possibly having to roll back work we've just done.
    3862             :      *
    3863             :      * This is safe without a recheck as long as there is no possibility of
    3864             :      * another process scanning the pages between this check and the update
    3865             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    3866             :      * continuously held from this point until the tuple update is visible).
    3867             :      *
    3868             :      * For the new tuple the only check needed is at the relation level, but
    3869             :      * since both tuples are in the same relation and the check for oldtup
    3870             :      * will include checking the relation level, there is no benefit to a
    3871             :      * separate check for the new tuple.
    3872             :      */
    3873      572702 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    3874             :                                    BufferGetBlockNumber(buffer));
    3875             : 
    3876             :     /*
    3877             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    3878             :      * has enough space for the new tuple.  If they are the same buffer, only
    3879             :      * one pin is held.
    3880             :      */
    3881             : 
    3882      572678 :     if (newbuf == buffer)
    3883             :     {
    3884             :         /*
    3885             :          * Since the new tuple is going into the same page, we might be able
    3886             :          * to do a HOT update.  Check if any of the index columns have been
    3887             :          * changed.
    3888             :          */
    3889      290640 :         if (!bms_overlap(modified_attrs, hot_attrs))
    3890             :         {
    3891      266838 :             use_hot_update = true;
    3892             : 
    3893             :             /*
    3894             :              * If none of the columns that are used in hot-blocking indexes
    3895             :              * were updated, we can apply HOT, but we do still need to check
    3896             :              * if we need to update the summarizing indexes, and update those
    3897             :              * indexes if the columns were updated, or we may fail to detect
    3898             :              * e.g. value bound changes in BRIN minmax indexes.
    3899             :              */
    3900      266838 :             if (bms_overlap(modified_attrs, sum_attrs))
    3901        3282 :                 summarized_update = true;
    3902             :         }
    3903             :     }
    3904             :     else
    3905             :     {
    3906             :         /* Set a hint that the old page could use prune/defrag */
    3907      282038 :         PageSetFull(page);
    3908             :     }
    3909             : 
    3910             :     /*
    3911             :      * Compute replica identity tuple before entering the critical section so
    3912             :      * we don't PANIC upon a memory allocation failure.
    3913             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    3914             :      * logged.  Pass old key required as true only if the replica identity key
    3915             :      * columns are modified or it has external data.
    3916             :      */
    3917      572678 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    3918      572678 :                                            bms_overlap(modified_attrs, id_attrs) ||
    3919             :                                            id_has_external,
    3920             :                                            &old_key_copied);
    3921             : 
    3922             :     /* NO EREPORT(ERROR) from here till changes are logged */
    3923      572678 :     START_CRIT_SECTION();
    3924             : 
    3925             :     /*
    3926             :      * If this transaction commits, the old tuple will become DEAD sooner or
    3927             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3928             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3929             :      * the subsequent page pruning will be a no-op and the hint will be
    3930             :      * cleared.
    3931             :      *
    3932             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    3933             :      * there would be a prunable tuple in the newbuf; but for now we choose
    3934             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    3935             :      * sync if this decision changes.
    3936             :      */
    3937      572678 :     PageSetPrunable(page, xid);
    3938             : 
    3939      572678 :     if (use_hot_update)
    3940             :     {
    3941             :         /* Mark the old tuple as HOT-updated */
    3942      266838 :         HeapTupleSetHotUpdated(&oldtup);
    3943             :         /* And mark the new tuple as heap-only */
    3944      266838 :         HeapTupleSetHeapOnly(heaptup);
    3945             :         /* Mark the caller's copy too, in case different from heaptup */
    3946      266838 :         HeapTupleSetHeapOnly(newtup);
    3947             :     }
    3948             :     else
    3949             :     {
    3950             :         /* Make sure tuples are correctly marked as not-HOT */
    3951      305840 :         HeapTupleClearHotUpdated(&oldtup);
    3952      305840 :         HeapTupleClearHeapOnly(heaptup);
    3953      305840 :         HeapTupleClearHeapOnly(newtup);
    3954             :     }
    3955             : 
    3956      572678 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    3957             : 
    3958             : 
    3959             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    3960      572678 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3961      572678 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3962             :     /* ... and store info about transaction updating this tuple */
    3963             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    3964      572678 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    3965      572678 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    3966      572678 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    3967      572678 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3968             : 
    3969             :     /* record address of new tuple in t_ctid of old one */
    3970      572678 :     oldtup.t_data->t_ctid = heaptup->t_self;
    3971             : 
    3972             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    3973      572678 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    3974             :     {
    3975        2388 :         all_visible_cleared = true;
    3976        2388 :         PageClearAllVisible(BufferGetPage(buffer));
    3977        2388 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    3978             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    3979             :     }
    3980      572678 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    3981             :     {
    3982        1196 :         all_visible_cleared_new = true;
    3983        1196 :         PageClearAllVisible(BufferGetPage(newbuf));
    3984        1196 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    3985             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    3986             :     }
    3987             : 
    3988      572678 :     if (newbuf != buffer)
    3989      282038 :         MarkBufferDirty(newbuf);
    3990      572678 :     MarkBufferDirty(buffer);
    3991             : 
    3992             :     /* XLOG stuff */
    3993      572678 :     if (RelationNeedsWAL(relation))
    3994             :     {
    3995             :         XLogRecPtr  recptr;
    3996             : 
    3997             :         /*
    3998             :          * For logical decoding we need combo CIDs to properly decode the
    3999             :          * catalog.
    4000             :          */
    4001      550008 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4002             :         {
    4003        4946 :             log_heap_new_cid(relation, &oldtup);
    4004        4946 :             log_heap_new_cid(relation, heaptup);
    4005             :         }
    4006             : 
    4007      550008 :         recptr = log_heap_update(relation, buffer,
    4008             :                                  newbuf, &oldtup, heaptup,
    4009             :                                  old_key_tuple,
    4010             :                                  all_visible_cleared,
    4011             :                                  all_visible_cleared_new);
    4012      550008 :         if (newbuf != buffer)
    4013             :         {
    4014      261786 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4015             :         }
    4016      550008 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4017             :     }
    4018             : 
    4019      572678 :     END_CRIT_SECTION();
    4020             : 
    4021      572678 :     if (newbuf != buffer)
    4022      282038 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4023      572678 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4024             : 
    4025             :     /*
    4026             :      * Mark old tuple for invalidation from system caches at next command
    4027             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4028             :      * have to do this before releasing the buffer because oldtup is in the
    4029             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4030             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4031             :      * sinval messages.)
    4032             :      */
    4033      572678 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4034             : 
    4035             :     /* Now we can release the buffer(s) */
    4036      572678 :     if (newbuf != buffer)
    4037      282038 :         ReleaseBuffer(newbuf);
    4038      572678 :     ReleaseBuffer(buffer);
    4039      572678 :     if (BufferIsValid(vmbuffer_new))
    4040        1196 :         ReleaseBuffer(vmbuffer_new);
    4041      572678 :     if (BufferIsValid(vmbuffer))
    4042        2388 :         ReleaseBuffer(vmbuffer);
    4043             : 
    4044             :     /*
    4045             :      * Release the lmgr tuple lock, if we had it.
    4046             :      */
    4047      572678 :     if (have_tuple_lock)
    4048          30 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4049             : 
    4050      572678 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4051             : 
    4052             :     /*
    4053             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4054             :      * back to the caller's image, too.
    4055             :      */
    4056      572678 :     if (heaptup != newtup)
    4057             :     {
    4058        2552 :         newtup->t_self = heaptup->t_self;
    4059        2552 :         heap_freetuple(heaptup);
    4060             :     }
    4061             : 
    4062             :     /*
    4063             :      * If it is a HOT update, the update may still need to update summarized
    4064             :      * indexes, lest we fail to update those summaries and get incorrect
    4065             :      * results (for example, minmax bounds of the block may change with this
    4066             :      * update).
    4067             :      */
    4068      572678 :     if (use_hot_update)
    4069             :     {
    4070      266838 :         if (summarized_update)
    4071        3282 :             *update_indexes = TU_Summarizing;
    4072             :         else
    4073      263556 :             *update_indexes = TU_None;
    4074             :     }
    4075             :     else
    4076      305840 :         *update_indexes = TU_All;
    4077             : 
    4078      572678 :     if (old_key_tuple != NULL && old_key_copied)
    4079         164 :         heap_freetuple(old_key_tuple);
    4080             : 
    4081      572678 :     bms_free(hot_attrs);
    4082      572678 :     bms_free(sum_attrs);
    4083      572678 :     bms_free(key_attrs);
    4084      572678 :     bms_free(id_attrs);
    4085      572678 :     bms_free(modified_attrs);
    4086      572678 :     bms_free(interesting_attrs);
    4087             : 
    4088      572678 :     return TM_Ok;
    4089             : }
    4090             : 
    4091             : #ifdef USE_ASSERT_CHECKING
    4092             : /*
    4093             :  * Confirm adequate lock held during heap_update(), per rules from
    4094             :  * README.tuplock section "Locking to write inplace-updated tables".
    4095             :  */
    4096             : static void
    4097             : check_lock_if_inplace_updateable_rel(Relation relation,
    4098             :                                      ItemPointer otid,
    4099             :                                      HeapTuple newtup)
    4100             : {
    4101             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4102             :     switch (RelationGetRelid(relation))
    4103             :     {
    4104             :         case RelationRelationId:
    4105             :         case DatabaseRelationId:
    4106             :             {
    4107             :                 LOCKTAG     tuptag;
    4108             : 
    4109             :                 SET_LOCKTAG_TUPLE(tuptag,
    4110             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4111             :                                   relation->rd_lockInfo.lockRelId.relId,
    4112             :                                   ItemPointerGetBlockNumber(otid),
    4113             :                                   ItemPointerGetOffsetNumber(otid));
    4114             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4115             :                     return;
    4116             :             }
    4117             :             break;
    4118             :         default:
    4119             :             Assert(!IsInplaceUpdateRelation(relation));
    4120             :             return;
    4121             :     }
    4122             : 
    4123             :     switch (RelationGetRelid(relation))
    4124             :     {
    4125             :         case RelationRelationId:
    4126             :             {
    4127             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4128             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4129             :                 Oid         relid = classForm->oid;
    4130             :                 Oid         dbid;
    4131             :                 LOCKTAG     tag;
    4132             : 
    4133             :                 if (IsSharedRelation(relid))
    4134             :                     dbid = InvalidOid;
    4135             :                 else
    4136             :                     dbid = MyDatabaseId;
    4137             : 
    4138             :                 if (classForm->relkind == RELKIND_INDEX)
    4139             :                 {
    4140             :                     Relation    irel = index_open(relid, AccessShareLock);
    4141             : 
    4142             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4143             :                     index_close(irel, AccessShareLock);
    4144             :                 }
    4145             :                 else
    4146             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4147             : 
    4148             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4149             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4150             :                     elog(WARNING,
    4151             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4152             :                          NameStr(classForm->relname),
    4153             :                          relid,
    4154             :                          classForm->relkind,
    4155             :                          ItemPointerGetBlockNumber(otid),
    4156             :                          ItemPointerGetOffsetNumber(otid));
    4157             :             }
    4158             :             break;
    4159             :         case DatabaseRelationId:
    4160             :             {
    4161             :                 /* LOCKTAG_TUPLE required */
    4162             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4163             : 
    4164             :                 elog(WARNING,
    4165             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4166             :                      NameStr(dbForm->datname),
    4167             :                      dbForm->oid,
    4168             :                      ItemPointerGetBlockNumber(otid),
    4169             :                      ItemPointerGetOffsetNumber(otid));
    4170             :             }
    4171             :             break;
    4172             :     }
    4173             : }
    4174             : 
    4175             : /*
    4176             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4177             :  * "Locking to write inplace-updated tables".
    4178             :  */
    4179             : static void
    4180             : check_inplace_rel_lock(HeapTuple oldtup)
    4181             : {
    4182             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4183             :     Oid         relid = classForm->oid;
    4184             :     Oid         dbid;
    4185             :     LOCKTAG     tag;
    4186             : 
    4187             :     if (IsSharedRelation(relid))
    4188             :         dbid = InvalidOid;
    4189             :     else
    4190             :         dbid = MyDatabaseId;
    4191             : 
    4192             :     if (classForm->relkind == RELKIND_INDEX)
    4193             :     {
    4194             :         Relation    irel = index_open(relid, AccessShareLock);
    4195             : 
    4196             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4197             :         index_close(irel, AccessShareLock);
    4198             :     }
    4199             :     else
    4200             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4201             : 
    4202             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4203             :         elog(WARNING,
    4204             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4205             :              NameStr(classForm->relname),
    4206             :              relid,
    4207             :              classForm->relkind,
    4208             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4209             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4210             : }
    4211             : #endif
    4212             : 
    4213             : /*
    4214             :  * Check if the specified attribute's values are the same.  Subroutine for
    4215             :  * HeapDetermineColumnsInfo.
    4216             :  */
    4217             : static bool
    4218     1329448 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4219             :                  bool isnull1, bool isnull2)
    4220             : {
    4221             :     /*
    4222             :      * If one value is NULL and other is not, then they are certainly not
    4223             :      * equal
    4224             :      */
    4225     1329448 :     if (isnull1 != isnull2)
    4226          90 :         return false;
    4227             : 
    4228             :     /*
    4229             :      * If both are NULL, they can be considered equal.
    4230             :      */
    4231     1329358 :     if (isnull1)
    4232        9982 :         return true;
    4233             : 
    4234             :     /*
    4235             :      * We do simple binary comparison of the two datums.  This may be overly
    4236             :      * strict because there can be multiple binary representations for the
    4237             :      * same logical value.  But we should be OK as long as there are no false
    4238             :      * positives.  Using a type-specific equality operator is messy because
    4239             :      * there could be multiple notions of equality in different operator
    4240             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4241             :      * while holding exclusive buffer lock.
    4242             :      */
    4243     1319376 :     if (attrnum <= 0)
    4244             :     {
    4245             :         /* The only allowed system columns are OIDs, so do this */
    4246           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4247             :     }
    4248             :     else
    4249             :     {
    4250             :         CompactAttribute *att;
    4251             : 
    4252             :         Assert(attrnum <= tupdesc->natts);
    4253     1319376 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4254     1319376 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4255             :     }
    4256             : }
    4257             : 
    4258             : /*
    4259             :  * Check which columns are being updated.
    4260             :  *
    4261             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4262             :  * from those listed as interesting, the set of columns that changed.
    4263             :  *
    4264             :  * has_external indicates if any of the unmodified attributes (from those
    4265             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4266             :  * stored externally.
    4267             :  */
    4268             : static Bitmapset *
    4269      573012 : HeapDetermineColumnsInfo(Relation relation,
    4270             :                          Bitmapset *interesting_cols,
    4271             :                          Bitmapset *external_cols,
    4272             :                          HeapTuple oldtup, HeapTuple newtup,
    4273             :                          bool *has_external)
    4274             : {
    4275             :     int         attidx;
    4276      573012 :     Bitmapset  *modified = NULL;
    4277      573012 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4278             : 
    4279      573012 :     attidx = -1;
    4280     1902460 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4281             :     {
    4282             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4283     1329448 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4284             :         Datum       value1,
    4285             :                     value2;
    4286             :         bool        isnull1,
    4287             :                     isnull2;
    4288             : 
    4289             :         /*
    4290             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4291             :          * worth supporting this case, since it could only succeed after a
    4292             :          * no-op update, which is hardly a case worth optimizing for.
    4293             :          */
    4294     1329448 :         if (attrnum == 0)
    4295             :         {
    4296           0 :             modified = bms_add_member(modified, attidx);
    4297     1268182 :             continue;
    4298             :         }
    4299             : 
    4300             :         /*
    4301             :          * Likewise, automatically say "not equal" for any system attribute
    4302             :          * other than tableOID; we cannot expect these to be consistent in a
    4303             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4304             :          */
    4305     1329448 :         if (attrnum < 0)
    4306             :         {
    4307           0 :             if (attrnum != TableOidAttributeNumber)
    4308             :             {
    4309           0 :                 modified = bms_add_member(modified, attidx);
    4310           0 :                 continue;
    4311             :             }
    4312             :         }
    4313             : 
    4314             :         /*
    4315             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4316             :          * if there are many indexed columns.  Should we do a single
    4317             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4318             :          * work for system columns ...
    4319             :          */
    4320     1329448 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4321     1329448 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4322             : 
    4323     1329448 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4324             :                               value2, isnull1, isnull2))
    4325             :         {
    4326       53068 :             modified = bms_add_member(modified, attidx);
    4327       53068 :             continue;
    4328             :         }
    4329             : 
    4330             :         /*
    4331             :          * No need to check attributes that can't be stored externally. Note
    4332             :          * that system attributes can't be stored externally.
    4333             :          */
    4334     1276380 :         if (attrnum < 0 || isnull1 ||
    4335     1266398 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4336     1215114 :             continue;
    4337             : 
    4338             :         /*
    4339             :          * Check if the old tuple's attribute is stored externally and is a
    4340             :          * member of external_cols.
    4341             :          */
    4342       61276 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4343          10 :             bms_is_member(attidx, external_cols))
    4344           4 :             *has_external = true;
    4345             :     }
    4346             : 
    4347      573012 :     return modified;
    4348             : }
    4349             : 
    4350             : /*
    4351             :  *  simple_heap_update - replace a tuple
    4352             :  *
    4353             :  * This routine may be used to update a tuple when concurrent updates of
    4354             :  * the target tuple are not expected (for example, because we have a lock
    4355             :  * on the relation associated with the tuple).  Any failure is reported
    4356             :  * via ereport().
    4357             :  */
    4358             : void
    4359      194476 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4360             :                    TU_UpdateIndexes *update_indexes)
    4361             : {
    4362             :     TM_Result   result;
    4363             :     TM_FailureData tmfd;
    4364             :     LockTupleMode lockmode;
    4365             : 
    4366      194476 :     result = heap_update(relation, otid, tup,
    4367             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4368             :                          true /* wait for commit */ ,
    4369             :                          &tmfd, &lockmode, update_indexes);
    4370      194476 :     switch (result)
    4371             :     {
    4372           0 :         case TM_SelfModified:
    4373             :             /* Tuple was already updated in current command? */
    4374           0 :             elog(ERROR, "tuple already updated by self");
    4375             :             break;
    4376             : 
    4377      194476 :         case TM_Ok:
    4378             :             /* done successfully */
    4379      194476 :             break;
    4380             : 
    4381           0 :         case TM_Updated:
    4382           0 :             elog(ERROR, "tuple concurrently updated");
    4383             :             break;
    4384             : 
    4385           0 :         case TM_Deleted:
    4386           0 :             elog(ERROR, "tuple concurrently deleted");
    4387             :             break;
    4388             : 
    4389           0 :         default:
    4390           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4391             :             break;
    4392             :     }
    4393      194476 : }
    4394             : 
    4395             : 
    4396             : /*
    4397             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4398             :  */
    4399             : static MultiXactStatus
    4400        2404 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4401             : {
    4402             :     int         retval;
    4403             : 
    4404        2404 :     if (is_update)
    4405         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4406             :     else
    4407        2212 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4408             : 
    4409        2404 :     if (retval == -1)
    4410           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4411             :              is_update ? "true" : "false");
    4412             : 
    4413        2404 :     return (MultiXactStatus) retval;
    4414             : }
    4415             : 
    4416             : /*
    4417             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4418             :  *
    4419             :  * Note that this acquires a buffer pin, which the caller must release.
    4420             :  *
    4421             :  * Input parameters:
    4422             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4423             :  *  tid: TID of tuple to lock
    4424             :  *  cid: current command ID (used for visibility test, and stored into
    4425             :  *      tuple's cmax if lock is successful)
    4426             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4427             :  *  wait_policy: what to do if tuple lock is not available
    4428             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4429             :  *      tuples.
    4430             :  *
    4431             :  * Output parameters:
    4432             :  *  *tuple: all fields filled in
    4433             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4434             :  *  *tmfd: filled in failure cases (see below)
    4435             :  *
    4436             :  * Function results are the same as the ones for table_tuple_lock().
    4437             :  *
    4438             :  * In the failure cases other than TM_Invisible, the routine fills
    4439             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4440             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4441             :  * since we cannot obtain cmax from a combo CID generated by another
    4442             :  * transaction).
    4443             :  * See comments for struct TM_FailureData for additional info.
    4444             :  *
    4445             :  * See README.tuplock for a thorough explanation of this mechanism.
    4446             :  */
    4447             : TM_Result
    4448      170166 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4449             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4450             :                 bool follow_updates,
    4451             :                 Buffer *buffer, TM_FailureData *tmfd)
    4452             : {
    4453             :     TM_Result   result;
    4454      170166 :     ItemPointer tid = &(tuple->t_self);
    4455             :     ItemId      lp;
    4456             :     Page        page;
    4457      170166 :     Buffer      vmbuffer = InvalidBuffer;
    4458             :     BlockNumber block;
    4459             :     TransactionId xid,
    4460             :                 xmax;
    4461             :     uint16      old_infomask,
    4462             :                 new_infomask,
    4463             :                 new_infomask2;
    4464      170166 :     bool        first_time = true;
    4465      170166 :     bool        skip_tuple_lock = false;
    4466      170166 :     bool        have_tuple_lock = false;
    4467      170166 :     bool        cleared_all_frozen = false;
    4468             : 
    4469      170166 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4470      170166 :     block = ItemPointerGetBlockNumber(tid);
    4471             : 
    4472             :     /*
    4473             :      * Before locking the buffer, pin the visibility map page if it appears to
    4474             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4475             :      * in the middle of changing this, so we'll need to recheck after we have
    4476             :      * the lock.
    4477             :      */
    4478      170166 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4479        3316 :         visibilitymap_pin(relation, block, &vmbuffer);
    4480             : 
    4481      170166 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4482             : 
    4483      170166 :     page = BufferGetPage(*buffer);
    4484      170166 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4485             :     Assert(ItemIdIsNormal(lp));
    4486             : 
    4487      170166 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4488      170166 :     tuple->t_len = ItemIdGetLength(lp);
    4489      170166 :     tuple->t_tableOid = RelationGetRelid(relation);
    4490             : 
    4491      170194 : l3:
    4492      170194 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4493             : 
    4494      170194 :     if (result == TM_Invisible)
    4495             :     {
    4496             :         /*
    4497             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4498             :          * UPDATE.  We return this value here rather than throwing an error in
    4499             :          * order to give that case the opportunity to throw a more specific
    4500             :          * error.
    4501             :          */
    4502          24 :         result = TM_Invisible;
    4503          24 :         goto out_locked;
    4504             :     }
    4505      170170 :     else if (result == TM_BeingModified ||
    4506      154036 :              result == TM_Updated ||
    4507             :              result == TM_Deleted)
    4508             :     {
    4509             :         TransactionId xwait;
    4510             :         uint16      infomask;
    4511             :         uint16      infomask2;
    4512             :         bool        require_sleep;
    4513             :         ItemPointerData t_ctid;
    4514             : 
    4515             :         /* must copy state data before unlocking buffer */
    4516       16136 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4517       16136 :         infomask = tuple->t_data->t_infomask;
    4518       16136 :         infomask2 = tuple->t_data->t_infomask2;
    4519       16136 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4520             : 
    4521       16136 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4522             : 
    4523             :         /*
    4524             :          * If any subtransaction of the current top transaction already holds
    4525             :          * a lock as strong as or stronger than what we're requesting, we
    4526             :          * effectively hold the desired lock already.  We *must* succeed
    4527             :          * without trying to take the tuple lock, else we will deadlock
    4528             :          * against anyone wanting to acquire a stronger lock.
    4529             :          *
    4530             :          * Note we only do this the first time we loop on the HTSU result;
    4531             :          * there is no point in testing in subsequent passes, because
    4532             :          * evidently our own transaction cannot have acquired a new lock after
    4533             :          * the first time we checked.
    4534             :          */
    4535       16136 :         if (first_time)
    4536             :         {
    4537       16118 :             first_time = false;
    4538             : 
    4539       16118 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4540             :             {
    4541             :                 int         i;
    4542             :                 int         nmembers;
    4543             :                 MultiXactMember *members;
    4544             : 
    4545             :                 /*
    4546             :                  * We don't need to allow old multixacts here; if that had
    4547             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4548             :                  * MayBeUpdated and we wouldn't be here.
    4549             :                  */
    4550             :                 nmembers =
    4551         166 :                     GetMultiXactIdMembers(xwait, &members, false,
    4552         166 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4553             : 
    4554         490 :                 for (i = 0; i < nmembers; i++)
    4555             :                 {
    4556             :                     /* only consider members of our own transaction */
    4557         352 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4558         254 :                         continue;
    4559             : 
    4560          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4561             :                     {
    4562          28 :                         pfree(members);
    4563          28 :                         result = TM_Ok;
    4564          28 :                         goto out_unlocked;
    4565             :                     }
    4566             :                     else
    4567             :                     {
    4568             :                         /*
    4569             :                          * Disable acquisition of the heavyweight tuple lock.
    4570             :                          * Otherwise, when promoting a weaker lock, we might
    4571             :                          * deadlock with another locker that has acquired the
    4572             :                          * heavyweight tuple lock and is waiting for our
    4573             :                          * transaction to finish.
    4574             :                          *
    4575             :                          * Note that in this case we still need to wait for
    4576             :                          * the multixact if required, to avoid acquiring
    4577             :                          * conflicting locks.
    4578             :                          */
    4579          70 :                         skip_tuple_lock = true;
    4580             :                     }
    4581             :                 }
    4582             : 
    4583         138 :                 if (members)
    4584         138 :                     pfree(members);
    4585             :             }
    4586       15952 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4587             :             {
    4588       13492 :                 switch (mode)
    4589             :                 {
    4590         314 :                     case LockTupleKeyShare:
    4591             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4592             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4593             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4594         314 :                         result = TM_Ok;
    4595         314 :                         goto out_unlocked;
    4596         232 :                     case LockTupleShare:
    4597         232 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4598          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4599             :                         {
    4600         220 :                             result = TM_Ok;
    4601         220 :                             goto out_unlocked;
    4602             :                         }
    4603          12 :                         break;
    4604         122 :                     case LockTupleNoKeyExclusive:
    4605         122 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4606             :                         {
    4607         100 :                             result = TM_Ok;
    4608         100 :                             goto out_unlocked;
    4609             :                         }
    4610          22 :                         break;
    4611       12824 :                     case LockTupleExclusive:
    4612       12824 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4613        2744 :                             infomask2 & HEAP_KEYS_UPDATED)
    4614             :                         {
    4615        2702 :                             result = TM_Ok;
    4616        2702 :                             goto out_unlocked;
    4617             :                         }
    4618       10122 :                         break;
    4619             :                 }
    4620        2478 :             }
    4621             :         }
    4622             : 
    4623             :         /*
    4624             :          * Initially assume that we will have to wait for the locking
    4625             :          * transaction(s) to finish.  We check various cases below in which
    4626             :          * this can be turned off.
    4627             :          */
    4628       12772 :         require_sleep = true;
    4629       12772 :         if (mode == LockTupleKeyShare)
    4630             :         {
    4631             :             /*
    4632             :              * If we're requesting KeyShare, and there's no update present, we
    4633             :              * don't need to wait.  Even if there is an update, we can still
    4634             :              * continue if the key hasn't been modified.
    4635             :              *
    4636             :              * However, if there are updates, we need to walk the update chain
    4637             :              * to mark future versions of the row as locked, too.  That way,
    4638             :              * if somebody deletes that future version, we're protected
    4639             :              * against the key going away.  This locking of future versions
    4640             :              * could block momentarily, if a concurrent transaction is
    4641             :              * deleting a key; or it could return a value to the effect that
    4642             :              * the transaction deleting the key has already committed.  So we
    4643             :              * do this before re-locking the buffer; otherwise this would be
    4644             :              * prone to deadlocks.
    4645             :              *
    4646             :              * Note that the TID we're locking was grabbed before we unlocked
    4647             :              * the buffer.  For it to change while we're not looking, the
    4648             :              * other properties we're testing for below after re-locking the
    4649             :              * buffer would also change, in which case we would restart this
    4650             :              * loop above.
    4651             :              */
    4652        1164 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4653             :             {
    4654             :                 bool        updated;
    4655             : 
    4656        1102 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4657             : 
    4658             :                 /*
    4659             :                  * If there are updates, follow the update chain; bail out if
    4660             :                  * that cannot be done.
    4661             :                  */
    4662        1102 :                 if (follow_updates && updated)
    4663             :                 {
    4664             :                     TM_Result   res;
    4665             : 
    4666         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4667             :                                                   GetCurrentTransactionId(),
    4668             :                                                   mode);
    4669         100 :                     if (res != TM_Ok)
    4670             :                     {
    4671          12 :                         result = res;
    4672             :                         /* recovery code expects to have buffer lock held */
    4673          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4674         366 :                         goto failed;
    4675             :                     }
    4676             :                 }
    4677             : 
    4678        1090 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4679             : 
    4680             :                 /*
    4681             :                  * Make sure it's still an appropriate lock, else start over.
    4682             :                  * Also, if it wasn't updated before we released the lock, but
    4683             :                  * is updated now, we start over too; the reason is that we
    4684             :                  * now need to follow the update chain to lock the new
    4685             :                  * versions.
    4686             :                  */
    4687        1090 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4688          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4689          86 :                      !updated))
    4690          28 :                     goto l3;
    4691             : 
    4692             :                 /* Things look okay, so we can skip sleeping */
    4693        1090 :                 require_sleep = false;
    4694             : 
    4695             :                 /*
    4696             :                  * Note we allow Xmax to change here; other updaters/lockers
    4697             :                  * could have modified it before we grabbed the buffer lock.
    4698             :                  * However, this is not a problem, because with the recheck we
    4699             :                  * just did we ensure that they still don't conflict with the
    4700             :                  * lock we want.
    4701             :                  */
    4702             :             }
    4703             :         }
    4704       11608 :         else if (mode == LockTupleShare)
    4705             :         {
    4706             :             /*
    4707             :              * If we're requesting Share, we can similarly avoid sleeping if
    4708             :              * there's no update and no exclusive lock present.
    4709             :              */
    4710         882 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4711         882 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4712             :             {
    4713         870 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4714             : 
    4715             :                 /*
    4716             :                  * Make sure it's still an appropriate lock, else start over.
    4717             :                  * See above about allowing xmax to change.
    4718             :                  */
    4719         870 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4720         870 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4721           0 :                     goto l3;
    4722         870 :                 require_sleep = false;
    4723             :             }
    4724             :         }
    4725       10726 :         else if (mode == LockTupleNoKeyExclusive)
    4726             :         {
    4727             :             /*
    4728             :              * If we're requesting NoKeyExclusive, we might also be able to
    4729             :              * avoid sleeping; just ensure that there no conflicting lock
    4730             :              * already acquired.
    4731             :              */
    4732         316 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4733             :             {
    4734          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4735             :                                              mode, NULL))
    4736             :                 {
    4737             :                     /*
    4738             :                      * No conflict, but if the xmax changed under us in the
    4739             :                      * meantime, start over.
    4740             :                      */
    4741          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4742          26 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4743          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4744             :                                              xwait))
    4745           0 :                         goto l3;
    4746             : 
    4747             :                     /* otherwise, we're good */
    4748          26 :                     require_sleep = false;
    4749             :                 }
    4750             :             }
    4751         264 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4752             :             {
    4753          34 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4754             : 
    4755             :                 /* if the xmax changed in the meantime, start over */
    4756          34 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4757          34 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4758             :                                          xwait))
    4759           0 :                     goto l3;
    4760             :                 /* otherwise, we're good */
    4761          34 :                 require_sleep = false;
    4762             :             }
    4763             :         }
    4764             : 
    4765             :         /*
    4766             :          * As a check independent from those above, we can also avoid sleeping
    4767             :          * if the current transaction is the sole locker of the tuple.  Note
    4768             :          * that the strength of the lock already held is irrelevant; this is
    4769             :          * not about recording the lock in Xmax (which will be done regardless
    4770             :          * of this optimization, below).  Also, note that the cases where we
    4771             :          * hold a lock stronger than we are requesting are already handled
    4772             :          * above by not doing anything.
    4773             :          *
    4774             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4775             :          * is well equipped to deal with this situation on its own.
    4776             :          */
    4777       23418 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4778       10658 :             TransactionIdIsCurrentTransactionId(xwait))
    4779             :         {
    4780             :             /* ... but if the xmax changed in the meantime, start over */
    4781       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4782       10122 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4783       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4784             :                                      xwait))
    4785           0 :                 goto l3;
    4786             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4787       10122 :             require_sleep = false;
    4788             :         }
    4789             : 
    4790             :         /*
    4791             :          * Time to sleep on the other transaction/multixact, if necessary.
    4792             :          *
    4793             :          * If the other transaction is an update/delete that's already
    4794             :          * committed, then sleeping cannot possibly do any good: if we're
    4795             :          * required to sleep, get out to raise an error instead.
    4796             :          *
    4797             :          * By here, we either have already acquired the buffer exclusive lock,
    4798             :          * or we must wait for the locking transaction or multixact; so below
    4799             :          * we ensure that we grab buffer lock after the sleep.
    4800             :          */
    4801       12760 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4802             :         {
    4803         278 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4804         278 :             goto failed;
    4805             :         }
    4806       12482 :         else if (require_sleep)
    4807             :         {
    4808             :             /*
    4809             :              * Acquire tuple lock to establish our priority for the tuple, or
    4810             :              * die trying.  LockTuple will release us when we are next-in-line
    4811             :              * for the tuple.  We must do this even if we are share-locking,
    4812             :              * but not if we already have a weaker lock on the tuple.
    4813             :              *
    4814             :              * If we are forced to "start over" below, we keep the tuple lock;
    4815             :              * this arranges that we stay at the head of the line while
    4816             :              * rechecking tuple state.
    4817             :              */
    4818         340 :             if (!skip_tuple_lock &&
    4819         308 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4820             :                                       &have_tuple_lock))
    4821             :             {
    4822             :                 /*
    4823             :                  * This can only happen if wait_policy is Skip and the lock
    4824             :                  * couldn't be obtained.
    4825             :                  */
    4826           2 :                 result = TM_WouldBlock;
    4827             :                 /* recovery code expects to have buffer lock held */
    4828           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4829           2 :                 goto failed;
    4830             :             }
    4831             : 
    4832         336 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4833             :             {
    4834          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4835             : 
    4836             :                 /* We only ever lock tuples, never update them */
    4837          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4838           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4839             : 
    4840             :                 /* wait for multixact to end, or die trying  */
    4841          80 :                 switch (wait_policy)
    4842             :                 {
    4843          72 :                     case LockWaitBlock:
    4844          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4845             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4846          72 :                         break;
    4847           4 :                     case LockWaitSkip:
    4848           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4849             :                                                         status, infomask, relation,
    4850             :                                                         NULL))
    4851             :                         {
    4852           4 :                             result = TM_WouldBlock;
    4853             :                             /* recovery code expects to have buffer lock held */
    4854           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4855           4 :                             goto failed;
    4856             :                         }
    4857           0 :                         break;
    4858           4 :                     case LockWaitError:
    4859           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4860             :                                                         status, infomask, relation,
    4861             :                                                         NULL))
    4862           4 :                             ereport(ERROR,
    4863             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4864             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4865             :                                             RelationGetRelationName(relation))));
    4866             : 
    4867           0 :                         break;
    4868             :                 }
    4869             : 
    4870             :                 /*
    4871             :                  * Of course, the multixact might not be done here: if we're
    4872             :                  * requesting a light lock mode, other transactions with light
    4873             :                  * locks could still be alive, as well as locks owned by our
    4874             :                  * own xact or other subxacts of this backend.  We need to
    4875             :                  * preserve the surviving MultiXact members.  Note that it
    4876             :                  * isn't absolutely necessary in the latter case, but doing so
    4877             :                  * is simpler.
    4878             :                  */
    4879          72 :             }
    4880             :             else
    4881             :             {
    4882             :                 /* wait for regular transaction to end, or die trying */
    4883         256 :                 switch (wait_policy)
    4884             :                 {
    4885         178 :                     case LockWaitBlock:
    4886         178 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    4887             :                                           XLTW_Lock);
    4888         178 :                         break;
    4889          66 :                     case LockWaitSkip:
    4890          66 :                         if (!ConditionalXactLockTableWait(xwait))
    4891             :                         {
    4892          66 :                             result = TM_WouldBlock;
    4893             :                             /* recovery code expects to have buffer lock held */
    4894          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4895          66 :                             goto failed;
    4896             :                         }
    4897           0 :                         break;
    4898          12 :                     case LockWaitError:
    4899          12 :                         if (!ConditionalXactLockTableWait(xwait))
    4900          12 :                             ereport(ERROR,
    4901             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4902             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4903             :                                             RelationGetRelationName(relation))));
    4904           0 :                         break;
    4905             :                 }
    4906         250 :             }
    4907             : 
    4908             :             /* if there are updates, follow the update chain */
    4909         250 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    4910             :             {
    4911             :                 TM_Result   res;
    4912             : 
    4913          80 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4914             :                                               GetCurrentTransactionId(),
    4915             :                                               mode);
    4916          80 :                 if (res != TM_Ok)
    4917             :                 {
    4918           4 :                     result = res;
    4919             :                     /* recovery code expects to have buffer lock held */
    4920           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4921           4 :                     goto failed;
    4922             :                 }
    4923             :             }
    4924             : 
    4925         246 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4926             : 
    4927             :             /*
    4928             :              * xwait is done, but if xwait had just locked the tuple then some
    4929             :              * other xact could update this tuple before we get to this point.
    4930             :              * Check for xmax change, and start over if so.
    4931             :              */
    4932         246 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4933         222 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4934             :                                      xwait))
    4935          28 :                 goto l3;
    4936             : 
    4937         218 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    4938             :             {
    4939             :                 /*
    4940             :                  * Otherwise check if it committed or aborted.  Note we cannot
    4941             :                  * be here if the tuple was only locked by somebody who didn't
    4942             :                  * conflict with us; that would have been handled above.  So
    4943             :                  * that transaction must necessarily be gone by now.  But
    4944             :                  * don't check for this in the multixact case, because some
    4945             :                  * locker transactions might still be running.
    4946             :                  */
    4947         156 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    4948             :             }
    4949             :         }
    4950             : 
    4951             :         /* By here, we're certain that we hold buffer exclusive lock again */
    4952             : 
    4953             :         /*
    4954             :          * We may lock if previous xmax aborted, or if it committed but only
    4955             :          * locked the tuple without updating it; or if we didn't have to wait
    4956             :          * at all for whatever reason.
    4957             :          */
    4958       12360 :         if (!require_sleep ||
    4959         218 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    4960         286 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4961         128 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    4962       12244 :             result = TM_Ok;
    4963         116 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    4964          92 :             result = TM_Updated;
    4965             :         else
    4966          24 :             result = TM_Deleted;
    4967             :     }
    4968             : 
    4969      154034 : failed:
    4970      166760 :     if (result != TM_Ok)
    4971             :     {
    4972             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    4973             :                result == TM_Deleted || result == TM_WouldBlock);
    4974             : 
    4975             :         /*
    4976             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    4977             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    4978             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    4979             :          * this assert is slightly different from the equivalent one in
    4980             :          * heap_delete and heap_update.
    4981             :          */
    4982             :         Assert((result == TM_WouldBlock) ||
    4983             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    4984             :         Assert(result != TM_Updated ||
    4985             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    4986         494 :         tmfd->ctid = tuple->t_data->t_ctid;
    4987         494 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    4988         494 :         if (result == TM_SelfModified)
    4989          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    4990             :         else
    4991         482 :             tmfd->cmax = InvalidCommandId;
    4992         494 :         goto out_locked;
    4993             :     }
    4994             : 
    4995             :     /*
    4996             :      * If we didn't pin the visibility map page and the page has become all
    4997             :      * visible while we were busy locking the buffer, or during some
    4998             :      * subsequent window during which we had it unlocked, we'll have to unlock
    4999             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5000             :      * unfortunate, especially since we'll now have to recheck whether the
    5001             :      * tuple has been locked or updated under us, but hopefully it won't
    5002             :      * happen very often.
    5003             :      */
    5004      166266 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5005             :     {
    5006           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5007           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5008           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5009           0 :         goto l3;
    5010             :     }
    5011             : 
    5012      166266 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5013      166266 :     old_infomask = tuple->t_data->t_infomask;
    5014             : 
    5015             :     /*
    5016             :      * If this is the first possibly-multixact-able operation in the current
    5017             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5018             :      * certain that the transaction will never become a member of any older
    5019             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5020             :      * using our own TransactionId below, since some other backend could
    5021             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5022             :      */
    5023      166266 :     MultiXactIdSetOldestMember();
    5024             : 
    5025             :     /*
    5026             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5027             :      * not modify the tuple just yet, because that would leave it in the wrong
    5028             :      * state if multixact.c elogs.
    5029             :      */
    5030      166266 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5031             :                               GetCurrentTransactionId(), mode, false,
    5032             :                               &xid, &new_infomask, &new_infomask2);
    5033             : 
    5034      166266 :     START_CRIT_SECTION();
    5035             : 
    5036             :     /*
    5037             :      * Store transaction information of xact locking the tuple.
    5038             :      *
    5039             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5040             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5041             :      * previously updated tuple, it's important to preserve the Cmax.
    5042             :      *
    5043             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5044             :      * we would break the HOT chain.
    5045             :      */
    5046      166266 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5047      166266 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5048      166266 :     tuple->t_data->t_infomask |= new_infomask;
    5049      166266 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5050      166266 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5051      166188 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5052      166266 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5053             : 
    5054             :     /*
    5055             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5056             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5057             :      * because it was set by the updater.  Moreover, if the tuple has been
    5058             :      * updated, we need to follow the update chain to lock the new versions of
    5059             :      * the tuple as well.
    5060             :      */
    5061      166266 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5062      166188 :         tuple->t_data->t_ctid = *tid;
    5063             : 
    5064             :     /* Clear only the all-frozen bit on visibility map if needed */
    5065      169582 :     if (PageIsAllVisible(page) &&
    5066        3316 :         visibilitymap_clear(relation, block, vmbuffer,
    5067             :                             VISIBILITYMAP_ALL_FROZEN))
    5068          28 :         cleared_all_frozen = true;
    5069             : 
    5070             : 
    5071      166266 :     MarkBufferDirty(*buffer);
    5072             : 
    5073             :     /*
    5074             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5075             :      * there is no state change worth restoring after a crash.  You would be
    5076             :      * wrong however: we have just written either a TransactionId or a
    5077             :      * MultiXactId that may never have been seen on disk before, and we need
    5078             :      * to make sure that there are XLOG entries covering those ID numbers.
    5079             :      * Else the same IDs might be re-used after a crash, which would be
    5080             :      * disastrous if this page made it to disk before the crash.  Essentially
    5081             :      * we have to enforce the WAL log-before-data rule even in this case.
    5082             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5083             :      * entries for everything anyway.)
    5084             :      */
    5085      166266 :     if (RelationNeedsWAL(relation))
    5086             :     {
    5087             :         xl_heap_lock xlrec;
    5088             :         XLogRecPtr  recptr;
    5089             : 
    5090      165578 :         XLogBeginInsert();
    5091      165578 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5092             : 
    5093      165578 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5094      165578 :         xlrec.xmax = xid;
    5095      331156 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5096      165578 :                                               tuple->t_data->t_infomask2);
    5097      165578 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5098      165578 :         XLogRegisterData((char *) &xlrec, SizeOfHeapLock);
    5099             : 
    5100             :         /* we don't decode row locks atm, so no need to log the origin */
    5101             : 
    5102      165578 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5103             : 
    5104      165578 :         PageSetLSN(page, recptr);
    5105             :     }
    5106             : 
    5107      166266 :     END_CRIT_SECTION();
    5108             : 
    5109      166266 :     result = TM_Ok;
    5110             : 
    5111      166784 : out_locked:
    5112      166784 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5113             : 
    5114      170148 : out_unlocked:
    5115      170148 :     if (BufferIsValid(vmbuffer))
    5116        3316 :         ReleaseBuffer(vmbuffer);
    5117             : 
    5118             :     /*
    5119             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5120             :      * visibility info.
    5121             :      */
    5122             : 
    5123             :     /*
    5124             :      * Now that we have successfully marked the tuple as locked, we can
    5125             :      * release the lmgr tuple lock, if we had it.
    5126             :      */
    5127      170148 :     if (have_tuple_lock)
    5128         278 :         UnlockTupleTuplock(relation, tid, mode);
    5129             : 
    5130      170148 :     return result;
    5131             : }
    5132             : 
    5133             : /*
    5134             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5135             :  * its normal, Xmax-based tuple lock.
    5136             :  *
    5137             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5138             :  * whether the lock has previously been acquired (and this function does
    5139             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5140             :  * has been flipped to true.
    5141             :  *
    5142             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5143             :  * wait_policy is Skip.
    5144             :  */
    5145             : static bool
    5146         534 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5147             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5148             : {
    5149         534 :     if (*have_tuple_lock)
    5150          18 :         return true;
    5151             : 
    5152         516 :     switch (wait_policy)
    5153             :     {
    5154         434 :         case LockWaitBlock:
    5155         434 :             LockTupleTuplock(relation, tid, mode);
    5156         434 :             break;
    5157             : 
    5158          68 :         case LockWaitSkip:
    5159          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5160           2 :                 return false;
    5161          66 :             break;
    5162             : 
    5163          14 :         case LockWaitError:
    5164          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5165           2 :                 ereport(ERROR,
    5166             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5167             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5168             :                                 RelationGetRelationName(relation))));
    5169          12 :             break;
    5170             :     }
    5171         512 :     *have_tuple_lock = true;
    5172             : 
    5173         512 :     return true;
    5174             : }
    5175             : 
    5176             : /*
    5177             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5178             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5179             :  * corresponding infomasks to use on the tuple.
    5180             :  *
    5181             :  * Note that this might have side effects such as creating a new MultiXactId.
    5182             :  *
    5183             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5184             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5185             :  * but it was not running anymore. There is a race condition, which is that the
    5186             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5187             :  * either here, or within MultiXactIdExpand.
    5188             :  *
    5189             :  * There is a similar race condition possible when the old xmax was a regular
    5190             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5191             :  * window, but it's still possible to end up creating an unnecessary
    5192             :  * MultiXactId.  Fortunately this is harmless.
    5193             :  */
    5194             : static void
    5195     4135582 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5196             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5197             :                           LockTupleMode mode, bool is_update,
    5198             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5199             :                           uint16 *result_infomask2)
    5200             : {
    5201             :     TransactionId new_xmax;
    5202             :     uint16      new_infomask,
    5203             :                 new_infomask2;
    5204             : 
    5205             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5206             : 
    5207     4135582 : l5:
    5208     4135582 :     new_infomask = 0;
    5209     4135582 :     new_infomask2 = 0;
    5210     4135582 :     if (old_infomask & HEAP_XMAX_INVALID)
    5211             :     {
    5212             :         /*
    5213             :          * No previous locker; we just insert our own TransactionId.
    5214             :          *
    5215             :          * Note that it's critical that this case be the first one checked,
    5216             :          * because there are several blocks below that come back to this one
    5217             :          * to implement certain optimizations; old_infomask might contain
    5218             :          * other dirty bits in those cases, but we don't really care.
    5219             :          */
    5220     3925552 :         if (is_update)
    5221             :         {
    5222     3478324 :             new_xmax = add_to_xmax;
    5223     3478324 :             if (mode == LockTupleExclusive)
    5224     2978008 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5225             :         }
    5226             :         else
    5227             :         {
    5228      447228 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5229      447228 :             switch (mode)
    5230             :             {
    5231        5096 :                 case LockTupleKeyShare:
    5232        5096 :                     new_xmax = add_to_xmax;
    5233        5096 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5234        5096 :                     break;
    5235        1430 :                 case LockTupleShare:
    5236        1430 :                     new_xmax = add_to_xmax;
    5237        1430 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5238        1430 :                     break;
    5239      249604 :                 case LockTupleNoKeyExclusive:
    5240      249604 :                     new_xmax = add_to_xmax;
    5241      249604 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5242      249604 :                     break;
    5243      191098 :                 case LockTupleExclusive:
    5244      191098 :                     new_xmax = add_to_xmax;
    5245      191098 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5246      191098 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5247      191098 :                     break;
    5248           0 :                 default:
    5249           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5250           0 :                     elog(ERROR, "invalid lock mode");
    5251             :             }
    5252             :         }
    5253             :     }
    5254      210030 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5255             :     {
    5256             :         MultiXactStatus new_status;
    5257             : 
    5258             :         /*
    5259             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5260             :          * cross-check.
    5261             :          */
    5262             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5263             : 
    5264             :         /*
    5265             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5266             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5267             :          * anymore.  This check is critical for databases upgraded by
    5268             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5269             :          * that such multis are never passed.
    5270             :          */
    5271         238 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5272             :         {
    5273           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5274           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5275           0 :             goto l5;
    5276             :         }
    5277             : 
    5278             :         /*
    5279             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5280             :          * include add_to_xmax; but if all the members were lockers and are
    5281             :          * all gone, we can do away with the IS_MULTI bit and just set
    5282             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5283             :          * and we have an updater that aborted, we can also do without a
    5284             :          * multi.
    5285             :          *
    5286             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5287             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5288             :          * incurring extra work anyhow.
    5289             :          */
    5290         238 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5291             :         {
    5292          46 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5293          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5294             :                                                                 old_infomask)))
    5295             :             {
    5296             :                 /*
    5297             :                  * Reset these bits and restart; otherwise fall through to
    5298             :                  * create a new multi below.
    5299             :                  */
    5300          46 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5301          46 :                 old_infomask |= HEAP_XMAX_INVALID;
    5302          46 :                 goto l5;
    5303             :             }
    5304             :         }
    5305             : 
    5306         192 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5307             : 
    5308         192 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5309             :                                      new_status);
    5310         192 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5311             :     }
    5312      209792 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5313             :     {
    5314             :         /*
    5315             :          * It's a committed update, so we need to preserve him as updater of
    5316             :          * the tuple.
    5317             :          */
    5318             :         MultiXactStatus status;
    5319             :         MultiXactStatus new_status;
    5320             : 
    5321          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5322           0 :             status = MultiXactStatusUpdate;
    5323             :         else
    5324          26 :             status = MultiXactStatusNoKeyUpdate;
    5325             : 
    5326          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5327             : 
    5328             :         /*
    5329             :          * since it's not running, it's obviously impossible for the old
    5330             :          * updater to be identical to the current one, so we need not check
    5331             :          * for that case as we do in the block above.
    5332             :          */
    5333          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5334          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5335             :     }
    5336      209766 :     else if (TransactionIdIsInProgress(xmax))
    5337             :     {
    5338             :         /*
    5339             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5340             :          * create a new MultiXactId that includes both the old locker or
    5341             :          * updater and our own TransactionId.
    5342             :          */
    5343             :         MultiXactStatus new_status;
    5344             :         MultiXactStatus old_status;
    5345             :         LockTupleMode old_mode;
    5346             : 
    5347      209748 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5348             :         {
    5349      209696 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5350       11244 :                 old_status = MultiXactStatusForKeyShare;
    5351      198452 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5352         862 :                 old_status = MultiXactStatusForShare;
    5353      197590 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5354             :             {
    5355      197590 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5356      185380 :                     old_status = MultiXactStatusForUpdate;
    5357             :                 else
    5358       12210 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5359             :             }
    5360             :             else
    5361             :             {
    5362             :                 /*
    5363             :                  * LOCK_ONLY can be present alone only when a page has been
    5364             :                  * upgraded by pg_upgrade.  But in that case,
    5365             :                  * TransactionIdIsInProgress() should have returned false.  We
    5366             :                  * assume it's no longer locked in this case.
    5367             :                  */
    5368           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5369           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5370           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5371           0 :                 goto l5;
    5372             :             }
    5373             :         }
    5374             :         else
    5375             :         {
    5376             :             /* it's an update, but which kind? */
    5377          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5378           0 :                 old_status = MultiXactStatusUpdate;
    5379             :             else
    5380          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5381             :         }
    5382             : 
    5383      209748 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5384             : 
    5385             :         /*
    5386             :          * If the lock to be acquired is for the same TransactionId as the
    5387             :          * existing lock, there's an optimization possible: consider only the
    5388             :          * strongest of both locks as the only one present, and restart.
    5389             :          */
    5390      209748 :         if (xmax == add_to_xmax)
    5391             :         {
    5392             :             /*
    5393             :              * Note that it's not possible for the original tuple to be
    5394             :              * updated: we wouldn't be here because the tuple would have been
    5395             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5396             :              * this code can also run when traversing an update chain to lock
    5397             :              * future versions of a tuple.  But we wouldn't be here either,
    5398             :              * because the add_to_xmax would be different from the original
    5399             :              * updater.
    5400             :              */
    5401             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5402             : 
    5403             :             /* acquire the strongest of both */
    5404      207708 :             if (mode < old_mode)
    5405      104250 :                 mode = old_mode;
    5406             :             /* mustn't touch is_update */
    5407             : 
    5408      207708 :             old_infomask |= HEAP_XMAX_INVALID;
    5409      207708 :             goto l5;
    5410             :         }
    5411             : 
    5412             :         /* otherwise, just fall back to creating a new multixact */
    5413        2040 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5414        2040 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5415             :                                      add_to_xmax, new_status);
    5416        2040 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5417             :     }
    5418          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5419          10 :              TransactionIdDidCommit(xmax))
    5420           2 :     {
    5421             :         /*
    5422             :          * It's a committed update, so we gotta preserve him as updater of the
    5423             :          * tuple.
    5424             :          */
    5425             :         MultiXactStatus status;
    5426             :         MultiXactStatus new_status;
    5427             : 
    5428           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5429           0 :             status = MultiXactStatusUpdate;
    5430             :         else
    5431           2 :             status = MultiXactStatusNoKeyUpdate;
    5432             : 
    5433           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5434             : 
    5435             :         /*
    5436             :          * since it's not running, it's obviously impossible for the old
    5437             :          * updater to be identical to the current one, so we need not check
    5438             :          * for that case as we do in the block above.
    5439             :          */
    5440           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5441           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5442             :     }
    5443             :     else
    5444             :     {
    5445             :         /*
    5446             :          * Can get here iff the locking/updating transaction was running when
    5447             :          * the infomask was extracted from the tuple, but finished before
    5448             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5449             :          * no locker at all in the first place.
    5450             :          */
    5451          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5452          16 :         goto l5;
    5453             :     }
    5454             : 
    5455     3927812 :     *result_infomask = new_infomask;
    5456     3927812 :     *result_infomask2 = new_infomask2;
    5457     3927812 :     *result_xmax = new_xmax;
    5458     3927812 : }
    5459             : 
    5460             : /*
    5461             :  * Subroutine for heap_lock_updated_tuple_rec.
    5462             :  *
    5463             :  * Given a hypothetical multixact status held by the transaction identified
    5464             :  * with the given xid, does the current transaction need to wait, fail, or can
    5465             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5466             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5467             :  * returned.  If the lock is already held by the current transaction, return
    5468             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5469             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5470             :  *
    5471             :  * The held status is said to be hypothetical because it might correspond to a
    5472             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5473             :  * way for simplicity of API.
    5474             :  */
    5475             : static TM_Result
    5476          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5477             :                            LockTupleMode mode, HeapTuple tup,
    5478             :                            bool *needwait)
    5479             : {
    5480             :     MultiXactStatus wantedstatus;
    5481             : 
    5482          64 :     *needwait = false;
    5483          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5484             : 
    5485             :     /*
    5486             :      * Note: we *must* check TransactionIdIsInProgress before
    5487             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5488             :      * for an explanation.
    5489             :      */
    5490          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5491             :     {
    5492             :         /*
    5493             :          * The tuple has already been locked by our own transaction.  This is
    5494             :          * very rare but can happen if multiple transactions are trying to
    5495             :          * lock an ancient version of the same tuple.
    5496             :          */
    5497           0 :         return TM_SelfModified;
    5498             :     }
    5499          64 :     else if (TransactionIdIsInProgress(xid))
    5500             :     {
    5501             :         /*
    5502             :          * If the locking transaction is running, what we do depends on
    5503             :          * whether the lock modes conflict: if they do, then we must wait for
    5504             :          * it to finish; otherwise we can fall through to lock this tuple
    5505             :          * version without waiting.
    5506             :          */
    5507          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5508          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5509             :         {
    5510          16 :             *needwait = true;
    5511             :         }
    5512             : 
    5513             :         /*
    5514             :          * If we set needwait above, then this value doesn't matter;
    5515             :          * otherwise, this value signals to caller that it's okay to proceed.
    5516             :          */
    5517          32 :         return TM_Ok;
    5518             :     }
    5519          32 :     else if (TransactionIdDidAbort(xid))
    5520           6 :         return TM_Ok;
    5521          26 :     else if (TransactionIdDidCommit(xid))
    5522             :     {
    5523             :         /*
    5524             :          * The other transaction committed.  If it was only a locker, then the
    5525             :          * lock is completely gone now and we can return success; but if it
    5526             :          * was an update, then what we do depends on whether the two lock
    5527             :          * modes conflict.  If they conflict, then we must report error to
    5528             :          * caller. But if they don't, we can fall through to allow the current
    5529             :          * transaction to lock the tuple.
    5530             :          *
    5531             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5532             :          * a transaction ends, all its locks are gone and meaningless, and
    5533             :          * thus we can ignore them; whereas its updates persist.  In the
    5534             :          * TransactionIdIsInProgress case, above, we don't need to check
    5535             :          * because we know the lock is still "alive" and thus a conflict needs
    5536             :          * always be checked.
    5537             :          */
    5538          26 :         if (!ISUPDATE_from_mxstatus(status))
    5539           8 :             return TM_Ok;
    5540             : 
    5541          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5542          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5543             :         {
    5544             :             /* bummer */
    5545          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5546          12 :                 return TM_Updated;
    5547             :             else
    5548           4 :                 return TM_Deleted;
    5549             :         }
    5550             : 
    5551           2 :         return TM_Ok;
    5552             :     }
    5553             : 
    5554             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5555           0 :     return TM_Ok;
    5556             : }
    5557             : 
    5558             : 
    5559             : /*
    5560             :  * Recursive part of heap_lock_updated_tuple
    5561             :  *
    5562             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5563             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5564             :  * version as well.
    5565             :  */
    5566             : static TM_Result
    5567         162 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5568             :                             LockTupleMode mode)
    5569             : {
    5570             :     TM_Result   result;
    5571             :     ItemPointerData tupid;
    5572             :     HeapTupleData mytup;
    5573             :     Buffer      buf;
    5574             :     uint16      new_infomask,
    5575             :                 new_infomask2,
    5576             :                 old_infomask,
    5577             :                 old_infomask2;
    5578             :     TransactionId xmax,
    5579             :                 new_xmax;
    5580         162 :     TransactionId priorXmax = InvalidTransactionId;
    5581         162 :     bool        cleared_all_frozen = false;
    5582             :     bool        pinned_desired_page;
    5583         162 :     Buffer      vmbuffer = InvalidBuffer;
    5584             :     BlockNumber block;
    5585             : 
    5586         162 :     ItemPointerCopy(tid, &tupid);
    5587             : 
    5588             :     for (;;)
    5589             :     {
    5590         168 :         new_infomask = 0;
    5591         168 :         new_xmax = InvalidTransactionId;
    5592         168 :         block = ItemPointerGetBlockNumber(&tupid);
    5593         168 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5594             : 
    5595         168 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5596             :         {
    5597             :             /*
    5598             :              * if we fail to find the updated version of the tuple, it's
    5599             :              * because it was vacuumed/pruned away after its creator
    5600             :              * transaction aborted.  So behave as if we got to the end of the
    5601             :              * chain, and there's no further tuple to lock: return success to
    5602             :              * caller.
    5603             :              */
    5604           0 :             result = TM_Ok;
    5605           0 :             goto out_unlocked;
    5606             :         }
    5607             : 
    5608         168 : l4:
    5609         184 :         CHECK_FOR_INTERRUPTS();
    5610             : 
    5611             :         /*
    5612             :          * Before locking the buffer, pin the visibility map page if it
    5613             :          * appears to be necessary.  Since we haven't got the lock yet,
    5614             :          * someone else might be in the middle of changing this, so we'll need
    5615             :          * to recheck after we have the lock.
    5616             :          */
    5617         184 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5618             :         {
    5619           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5620           0 :             pinned_desired_page = true;
    5621             :         }
    5622             :         else
    5623         184 :             pinned_desired_page = false;
    5624             : 
    5625         184 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5626             : 
    5627             :         /*
    5628             :          * If we didn't pin the visibility map page and the page has become
    5629             :          * all visible while we were busy locking the buffer, we'll have to
    5630             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5631             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5632             :          *
    5633             :          * Note: in some paths through this function, we will reach here
    5634             :          * holding a pin on a vm page that may or may not be the one matching
    5635             :          * this page.  If this page isn't all-visible, we won't use the vm
    5636             :          * page, but we hold onto such a pin till the end of the function.
    5637             :          */
    5638         184 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5639             :         {
    5640           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5641           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5642           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5643             :         }
    5644             : 
    5645             :         /*
    5646             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5647             :          * end of the chain, we're done, so return success.
    5648             :          */
    5649         190 :         if (TransactionIdIsValid(priorXmax) &&
    5650           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5651             :                                  priorXmax))
    5652             :         {
    5653           0 :             result = TM_Ok;
    5654           0 :             goto out_locked;
    5655             :         }
    5656             : 
    5657             :         /*
    5658             :          * Also check Xmin: if this tuple was created by an aborted
    5659             :          * (sub)transaction, then we already locked the last live one in the
    5660             :          * chain, thus we're done, so return success.
    5661             :          */
    5662         184 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5663             :         {
    5664          26 :             result = TM_Ok;
    5665          26 :             goto out_locked;
    5666             :         }
    5667             : 
    5668         158 :         old_infomask = mytup.t_data->t_infomask;
    5669         158 :         old_infomask2 = mytup.t_data->t_infomask2;
    5670         158 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5671             : 
    5672             :         /*
    5673             :          * If this tuple version has been updated or locked by some concurrent
    5674             :          * transaction(s), what we do depends on whether our lock mode
    5675             :          * conflicts with what those other transactions hold, and also on the
    5676             :          * status of them.
    5677             :          */
    5678         158 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5679             :         {
    5680             :             TransactionId rawxmax;
    5681             :             bool        needwait;
    5682             : 
    5683          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5684          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5685             :             {
    5686             :                 int         nmembers;
    5687             :                 int         i;
    5688             :                 MultiXactMember *members;
    5689             : 
    5690             :                 /*
    5691             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5692             :                  * applied to tuples after the first in an update chain.  Said
    5693             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5694             :                  * pg_upgraded, but that one was already locked by our caller,
    5695             :                  * not us; and any subsequent ones cannot be because our
    5696             :                  * caller must necessarily have obtained a snapshot later than
    5697             :                  * the pg_upgrade itself.
    5698             :                  */
    5699             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5700             : 
    5701           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5702           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5703           8 :                 for (i = 0; i < nmembers; i++)
    5704             :                 {
    5705           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5706           6 :                                                         members[i].xid,
    5707             :                                                         mode,
    5708             :                                                         &mytup,
    5709             :                                                         &needwait);
    5710             : 
    5711             :                     /*
    5712             :                      * If the tuple was already locked by ourselves in a
    5713             :                      * previous iteration of this (say heap_lock_tuple was
    5714             :                      * forced to restart the locking loop because of a change
    5715             :                      * in xmax), then we hold the lock already on this tuple
    5716             :                      * version and we don't need to do anything; and this is
    5717             :                      * not an error condition either.  We just need to skip
    5718             :                      * this tuple and continue locking the next version in the
    5719             :                      * update chain.
    5720             :                      */
    5721           6 :                     if (result == TM_SelfModified)
    5722             :                     {
    5723           0 :                         pfree(members);
    5724           0 :                         goto next;
    5725             :                     }
    5726             : 
    5727           6 :                     if (needwait)
    5728             :                     {
    5729           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5730           0 :                         XactLockTableWait(members[i].xid, rel,
    5731             :                                           &mytup.t_self,
    5732             :                                           XLTW_LockUpdated);
    5733           0 :                         pfree(members);
    5734           0 :                         goto l4;
    5735             :                     }
    5736           6 :                     if (result != TM_Ok)
    5737             :                     {
    5738           0 :                         pfree(members);
    5739           0 :                         goto out_locked;
    5740             :                     }
    5741             :                 }
    5742           2 :                 if (members)
    5743           2 :                     pfree(members);
    5744             :             }
    5745             :             else
    5746             :             {
    5747             :                 MultiXactStatus status;
    5748             : 
    5749             :                 /*
    5750             :                  * For a non-multi Xmax, we first need to compute the
    5751             :                  * corresponding MultiXactStatus by using the infomask bits.
    5752             :                  */
    5753          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5754             :                 {
    5755          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5756          20 :                         status = MultiXactStatusForKeyShare;
    5757           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5758           0 :                         status = MultiXactStatusForShare;
    5759           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5760             :                     {
    5761           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5762           0 :                             status = MultiXactStatusForUpdate;
    5763             :                         else
    5764           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5765             :                     }
    5766             :                     else
    5767             :                     {
    5768             :                         /*
    5769             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5770             :                          * as share-locked in the old cluster) shouldn't be
    5771             :                          * seen in the middle of an update chain.
    5772             :                          */
    5773           0 :                         elog(ERROR, "invalid lock status in tuple");
    5774             :                     }
    5775             :                 }
    5776             :                 else
    5777             :                 {
    5778             :                     /* it's an update, but which kind? */
    5779          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5780          28 :                         status = MultiXactStatusUpdate;
    5781             :                     else
    5782          10 :                         status = MultiXactStatusNoKeyUpdate;
    5783             :                 }
    5784             : 
    5785          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5786             :                                                     &mytup, &needwait);
    5787             : 
    5788             :                 /*
    5789             :                  * If the tuple was already locked by ourselves in a previous
    5790             :                  * iteration of this (say heap_lock_tuple was forced to
    5791             :                  * restart the locking loop because of a change in xmax), then
    5792             :                  * we hold the lock already on this tuple version and we don't
    5793             :                  * need to do anything; and this is not an error condition
    5794             :                  * either.  We just need to skip this tuple and continue
    5795             :                  * locking the next version in the update chain.
    5796             :                  */
    5797          58 :                 if (result == TM_SelfModified)
    5798           0 :                     goto next;
    5799             : 
    5800          58 :                 if (needwait)
    5801             :                 {
    5802          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5803          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5804             :                                       XLTW_LockUpdated);
    5805          16 :                     goto l4;
    5806             :                 }
    5807          42 :                 if (result != TM_Ok)
    5808             :                 {
    5809          16 :                     goto out_locked;
    5810             :                 }
    5811             :             }
    5812             :         }
    5813             : 
    5814             :         /* compute the new Xmax and infomask values for the tuple ... */
    5815         126 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5816             :                                   xid, mode, false,
    5817             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5818             : 
    5819         126 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5820           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5821             :                                 VISIBILITYMAP_ALL_FROZEN))
    5822           0 :             cleared_all_frozen = true;
    5823             : 
    5824         126 :         START_CRIT_SECTION();
    5825             : 
    5826             :         /* ... and set them */
    5827         126 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5828         126 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5829         126 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5830         126 :         mytup.t_data->t_infomask |= new_infomask;
    5831         126 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5832             : 
    5833         126 :         MarkBufferDirty(buf);
    5834             : 
    5835             :         /* XLOG stuff */
    5836         126 :         if (RelationNeedsWAL(rel))
    5837             :         {
    5838             :             xl_heap_lock_updated xlrec;
    5839             :             XLogRecPtr  recptr;
    5840         126 :             Page        page = BufferGetPage(buf);
    5841             : 
    5842         126 :             XLogBeginInsert();
    5843         126 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5844             : 
    5845         126 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5846         126 :             xlrec.xmax = new_xmax;
    5847         126 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5848         126 :             xlrec.flags =
    5849         126 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5850             : 
    5851         126 :             XLogRegisterData((char *) &xlrec, SizeOfHeapLockUpdated);
    5852             : 
    5853         126 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5854             : 
    5855         126 :             PageSetLSN(page, recptr);
    5856             :         }
    5857             : 
    5858         126 :         END_CRIT_SECTION();
    5859             : 
    5860         126 : next:
    5861             :         /* if we find the end of update chain, we're done. */
    5862         252 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    5863         252 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    5864         134 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    5865           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    5866             :         {
    5867         120 :             result = TM_Ok;
    5868         120 :             goto out_locked;
    5869             :         }
    5870             : 
    5871             :         /* tail recursion */
    5872           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    5873           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    5874           6 :         UnlockReleaseBuffer(buf);
    5875             :     }
    5876             : 
    5877             :     result = TM_Ok;
    5878             : 
    5879         162 : out_locked:
    5880         162 :     UnlockReleaseBuffer(buf);
    5881             : 
    5882         162 : out_unlocked:
    5883         162 :     if (vmbuffer != InvalidBuffer)
    5884           0 :         ReleaseBuffer(vmbuffer);
    5885             : 
    5886         162 :     return result;
    5887             : }
    5888             : 
    5889             : /*
    5890             :  * heap_lock_updated_tuple
    5891             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    5892             :  *      marks) on the updated versions.
    5893             :  *
    5894             :  * The initial tuple is assumed to be already locked.
    5895             :  *
    5896             :  * This function doesn't check visibility, it just unconditionally marks the
    5897             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    5898             :  * concurrently (or updated with the key being modified), sleep until the
    5899             :  * transaction doing it is finished.
    5900             :  *
    5901             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    5902             :  * when we have to wait for other transactions to release them, as opposed to
    5903             :  * what heap_lock_tuple does.  The reason is that having more than one
    5904             :  * transaction walking the chain is probably uncommon enough that risk of
    5905             :  * starvation is not likely: one of the preconditions for being here is that
    5906             :  * the snapshot in use predates the update that created this tuple (because we
    5907             :  * started at an earlier version of the tuple), but at the same time such a
    5908             :  * transaction cannot be using repeatable read or serializable isolation
    5909             :  * levels, because that would lead to a serializability failure.
    5910             :  */
    5911             : static TM_Result
    5912         180 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    5913             :                         TransactionId xid, LockTupleMode mode)
    5914             : {
    5915             :     /*
    5916             :      * If the tuple has not been updated, or has moved into another partition
    5917             :      * (effectively a delete) stop here.
    5918             :      */
    5919         180 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    5920         176 :         !ItemPointerEquals(&tuple->t_self, ctid))
    5921             :     {
    5922             :         /*
    5923             :          * If this is the first possibly-multixact-able operation in the
    5924             :          * current transaction, set my per-backend OldestMemberMXactId
    5925             :          * setting. We can be certain that the transaction will never become a
    5926             :          * member of any older MultiXactIds than that.  (We have to do this
    5927             :          * even if we end up just using our own TransactionId below, since
    5928             :          * some other backend could incorporate our XID into a MultiXact
    5929             :          * immediately afterwards.)
    5930             :          */
    5931         162 :         MultiXactIdSetOldestMember();
    5932             : 
    5933         162 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    5934             :     }
    5935             : 
    5936             :     /* nothing to lock */
    5937          18 :     return TM_Ok;
    5938             : }
    5939             : 
    5940             : /*
    5941             :  *  heap_finish_speculative - mark speculative insertion as successful
    5942             :  *
    5943             :  * To successfully finish a speculative insertion we have to clear speculative
    5944             :  * token from tuple.  To do so the t_ctid field, which will contain a
    5945             :  * speculative token value, is modified in place to point to the tuple itself,
    5946             :  * which is characteristic of a newly inserted ordinary tuple.
    5947             :  *
    5948             :  * NB: It is not ok to commit without either finishing or aborting a
    5949             :  * speculative insertion.  We could treat speculative tuples of committed
    5950             :  * transactions implicitly as completed, but then we would have to be prepared
    5951             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    5952             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    5953             :  * but clearing the token at completion isn't very expensive either.
    5954             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    5955             :  */
    5956             : void
    5957        4112 : heap_finish_speculative(Relation relation, ItemPointer tid)
    5958             : {
    5959             :     Buffer      buffer;
    5960             :     Page        page;
    5961             :     OffsetNumber offnum;
    5962        4112 :     ItemId      lp = NULL;
    5963             :     HeapTupleHeader htup;
    5964             : 
    5965        4112 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    5966        4112 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    5967        4112 :     page = (Page) BufferGetPage(buffer);
    5968             : 
    5969        4112 :     offnum = ItemPointerGetOffsetNumber(tid);
    5970        4112 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    5971        4112 :         lp = PageGetItemId(page, offnum);
    5972             : 
    5973        4112 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    5974           0 :         elog(ERROR, "invalid lp");
    5975             : 
    5976        4112 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    5977             : 
    5978             :     /* NO EREPORT(ERROR) from here till changes are logged */
    5979        4112 :     START_CRIT_SECTION();
    5980             : 
    5981             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    5982             : 
    5983        4112 :     MarkBufferDirty(buffer);
    5984             : 
    5985             :     /*
    5986             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    5987             :      * itself like it does on regular tuples.
    5988             :      */
    5989        4112 :     htup->t_ctid = *tid;
    5990             : 
    5991             :     /* XLOG stuff */
    5992        4112 :     if (RelationNeedsWAL(relation))
    5993             :     {
    5994             :         xl_heap_confirm xlrec;
    5995             :         XLogRecPtr  recptr;
    5996             : 
    5997        4094 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    5998             : 
    5999        4094 :         XLogBeginInsert();
    6000             : 
    6001             :         /* We want the same filtering on this as on a plain insert */
    6002        4094 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6003             : 
    6004        4094 :         XLogRegisterData((char *) &xlrec, SizeOfHeapConfirm);
    6005        4094 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6006             : 
    6007        4094 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6008             : 
    6009        4094 :         PageSetLSN(page, recptr);
    6010             :     }
    6011             : 
    6012        4112 :     END_CRIT_SECTION();
    6013             : 
    6014        4112 :     UnlockReleaseBuffer(buffer);
    6015        4112 : }
    6016             : 
    6017             : /*
    6018             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6019             :  *
    6020             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6021             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6022             :  * to all transactions, including our own.  In particular, it makes
    6023             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6024             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6025             :  * transaction to finish (it'll just wait for our speculative insertion to
    6026             :  * finish).
    6027             :  *
    6028             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6029             :  * that arise due to a mutual dependency that is not user visible.  By
    6030             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6031             :  * reordering lock acquisition in client code, because the implementation level
    6032             :  * lock acquisitions are not under the user's direct control.  If speculative
    6033             :  * inserters did not take this precaution, then under high concurrency they
    6034             :  * could deadlock with each other, which would not be acceptable.
    6035             :  *
    6036             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6037             :  * dedicated routine with stripped down requirements.  Note that this is also
    6038             :  * used to delete the TOAST tuples created during speculative insertion.
    6039             :  *
    6040             :  * This routine does not affect logical decoding as it only looks at
    6041             :  * confirmation records.
    6042             :  */
    6043             : void
    6044          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6045             : {
    6046          20 :     TransactionId xid = GetCurrentTransactionId();
    6047             :     ItemId      lp;
    6048             :     HeapTupleData tp;
    6049             :     Page        page;
    6050             :     BlockNumber block;
    6051             :     Buffer      buffer;
    6052             : 
    6053             :     Assert(ItemPointerIsValid(tid));
    6054             : 
    6055          20 :     block = ItemPointerGetBlockNumber(tid);
    6056          20 :     buffer = ReadBuffer(relation, block);
    6057          20 :     page = BufferGetPage(buffer);
    6058             : 
    6059          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6060             : 
    6061             :     /*
    6062             :      * Page can't be all visible, we just inserted into it, and are still
    6063             :      * running.
    6064             :      */
    6065             :     Assert(!PageIsAllVisible(page));
    6066             : 
    6067          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6068             :     Assert(ItemIdIsNormal(lp));
    6069             : 
    6070          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6071          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6072          20 :     tp.t_len = ItemIdGetLength(lp);
    6073          20 :     tp.t_self = *tid;
    6074             : 
    6075             :     /*
    6076             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6077             :      * inserted by us.
    6078             :      */
    6079          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6080           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6081          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6082           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6083             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6084             : 
    6085             :     /*
    6086             :      * No need to check for serializable conflicts here.  There is never a
    6087             :      * need for a combo CID, either.  No need to extract replica identity, or
    6088             :      * do anything special with infomask bits.
    6089             :      */
    6090             : 
    6091          20 :     START_CRIT_SECTION();
    6092             : 
    6093             :     /*
    6094             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6095             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6096             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6097             :      * that's safe against wraparound / being older than the table's
    6098             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6099             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6100             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6101             :      * TransactionXmin, so there's no race here).
    6102             :      */
    6103             :     Assert(TransactionIdIsValid(TransactionXmin));
    6104             :     {
    6105          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6106             :         TransactionId prune_xid;
    6107             : 
    6108          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6109           0 :             prune_xid = relfrozenxid;
    6110             :         else
    6111          20 :             prune_xid = TransactionXmin;
    6112          20 :         PageSetPrunable(page, prune_xid);
    6113             :     }
    6114             : 
    6115             :     /* store transaction information of xact deleting the tuple */
    6116          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6117          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6118             : 
    6119             :     /*
    6120             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6121             :      * tuple immediately invisible everyone.  (In particular, to any
    6122             :      * transactions waiting on the speculative token, woken up later.)
    6123             :      */
    6124          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6125             : 
    6126             :     /* Clear the speculative insertion token too */
    6127          20 :     tp.t_data->t_ctid = tp.t_self;
    6128             : 
    6129          20 :     MarkBufferDirty(buffer);
    6130             : 
    6131             :     /*
    6132             :      * XLOG stuff
    6133             :      *
    6134             :      * The WAL records generated here match heap_delete().  The same recovery
    6135             :      * routines are used.
    6136             :      */
    6137          20 :     if (RelationNeedsWAL(relation))
    6138             :     {
    6139             :         xl_heap_delete xlrec;
    6140             :         XLogRecPtr  recptr;
    6141             : 
    6142          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6143          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6144          20 :                                               tp.t_data->t_infomask2);
    6145          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6146          20 :         xlrec.xmax = xid;
    6147             : 
    6148          20 :         XLogBeginInsert();
    6149          20 :         XLogRegisterData((char *) &xlrec, SizeOfHeapDelete);
    6150          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6151             : 
    6152             :         /* No replica identity & replication origin logged */
    6153             : 
    6154          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6155             : 
    6156          20 :         PageSetLSN(page, recptr);
    6157             :     }
    6158             : 
    6159          20 :     END_CRIT_SECTION();
    6160             : 
    6161          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6162             : 
    6163          20 :     if (HeapTupleHasExternal(&tp))
    6164             :     {
    6165             :         Assert(!IsToastRelation(relation));
    6166           2 :         heap_toast_delete(relation, &tp, true);
    6167             :     }
    6168             : 
    6169             :     /*
    6170             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6171             :      * speculative insertion
    6172             :      */
    6173             : 
    6174             :     /* Now we can release the buffer */
    6175          20 :     ReleaseBuffer(buffer);
    6176             : 
    6177             :     /* count deletion, as we counted the insertion too */
    6178          20 :     pgstat_count_heap_delete(relation);
    6179          20 : }
    6180             : 
    6181             : /*
    6182             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6183             :  *
    6184             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6185             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6186             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6187             :  * and the caller must release that by calling
    6188             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6189             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6190             :  * transactions to end, and return false.
    6191             :  *
    6192             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6193             :  * DDL, this doesn't guarantee any particular predicate locking.
    6194             :  *
    6195             :  * One could modify this to return true for tuples with delete in progress,
    6196             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6197             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6198             :  * update.
    6199             :  *
    6200             :  * Readers of inplace-updated fields expect changes to those fields are
    6201             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6202             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6203             :  * return a lower datfrozenxid for the same database OID (lower in the
    6204             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6205             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6206             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6207             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6208             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6209             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6210             :  * committed tuple.)
    6211             :  *
    6212             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6213             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6214             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6215             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6216             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6217             :  * in one critical section or (b) accepting a chance of partial completion.
    6218             :  * Partial completion of a relfrozenxid update would have the weird
    6219             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6220             :  * move forward between vacuum_get_cutoffs() and finishing.
    6221             :  */
    6222             : bool
    6223      260084 : heap_inplace_lock(Relation relation,
    6224             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6225             :                   void (*release_callback) (void *), void *arg)
    6226             : {
    6227      260084 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6228             :     TM_Result   result;
    6229             :     bool        ret;
    6230             : 
    6231             : #ifdef USE_ASSERT_CHECKING
    6232             :     if (RelationGetRelid(relation) == RelationRelationId)
    6233             :         check_inplace_rel_lock(oldtup_ptr);
    6234             : #endif
    6235             : 
    6236             :     Assert(BufferIsValid(buffer));
    6237             : 
    6238             :     /*
    6239             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6240             :      * version without our own inplace changes or inplace changes other
    6241             :      * sessions complete while we wait for locks, inplace update mustn't
    6242             :      * change catcache lookup keys.  But we aren't bothering with index
    6243             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6244             :      * would be too late, because this might reach a
    6245             :      * CatalogCacheInitializeCache() that locks "buffer".
    6246             :      */
    6247      260084 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6248             : 
    6249      260084 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6250      260084 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6251             : 
    6252             :     /*----------
    6253             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6254             :      *
    6255             :      * - wait unconditionally
    6256             :      * - already locked tuple above, since inplace needs that unconditionally
    6257             :      * - don't recheck header after wait: simpler to defer to next iteration
    6258             :      * - don't try to continue even if the updater aborts: likewise
    6259             :      * - no crosscheck
    6260             :      */
    6261      260084 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6262             :                                       buffer);
    6263             : 
    6264      260084 :     if (result == TM_Invisible)
    6265             :     {
    6266             :         /* no known way this can happen */
    6267           0 :         ereport(ERROR,
    6268             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6269             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6270             :     }
    6271      260084 :     else if (result == TM_SelfModified)
    6272             :     {
    6273             :         /*
    6274             :          * CREATE INDEX might reach this if an expression is silly enough to
    6275             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6276             :          * statements might get here after a heap_update() of the same row, in
    6277             :          * the absence of an intervening CommandCounterIncrement().
    6278             :          */
    6279           0 :         ereport(ERROR,
    6280             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6281             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6282             :     }
    6283      260084 :     else if (result == TM_BeingModified)
    6284             :     {
    6285             :         TransactionId xwait;
    6286             :         uint16      infomask;
    6287             : 
    6288          78 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6289          78 :         infomask = oldtup.t_data->t_infomask;
    6290             : 
    6291          78 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6292             :         {
    6293          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6294          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6295             :             int         remain;
    6296             : 
    6297          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6298             :                                         lockmode, NULL))
    6299             :             {
    6300           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6301           4 :                 release_callback(arg);
    6302           4 :                 ret = false;
    6303           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6304             :                                 relation, &oldtup.t_self, XLTW_Update,
    6305             :                                 &remain);
    6306             :             }
    6307             :             else
    6308           6 :                 ret = true;
    6309             :         }
    6310          68 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6311           2 :             ret = true;
    6312          66 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6313           2 :             ret = true;
    6314             :         else
    6315             :         {
    6316          64 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6317          64 :             release_callback(arg);
    6318          64 :             ret = false;
    6319          64 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6320             :                               XLTW_Update);
    6321             :         }
    6322             :     }
    6323             :     else
    6324             :     {
    6325      260006 :         ret = (result == TM_Ok);
    6326      260006 :         if (!ret)
    6327             :         {
    6328           0 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6329           0 :             release_callback(arg);
    6330             :         }
    6331             :     }
    6332             : 
    6333             :     /*
    6334             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6335             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6336             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6337             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6338             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6339             :      * don't bother optimizing that.
    6340             :      */
    6341      260084 :     if (!ret)
    6342             :     {
    6343          68 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6344          68 :         ForgetInplace_Inval();
    6345          68 :         InvalidateCatalogSnapshot();
    6346             :     }
    6347      260084 :     return ret;
    6348             : }
    6349             : 
    6350             : /*
    6351             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6352             :  *
    6353             :  * The tuple cannot change size, and therefore its header fields and null
    6354             :  * bitmap (if any) don't change either.
    6355             :  *
    6356             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6357             :  */
    6358             : void
    6359      152104 : heap_inplace_update_and_unlock(Relation relation,
    6360             :                                HeapTuple oldtup, HeapTuple tuple,
    6361             :                                Buffer buffer)
    6362             : {
    6363      152104 :     HeapTupleHeader htup = oldtup->t_data;
    6364             :     uint32      oldlen;
    6365             :     uint32      newlen;
    6366             :     char       *dst;
    6367             :     char       *src;
    6368      152104 :     int         nmsgs = 0;
    6369      152104 :     SharedInvalidationMessage *invalMessages = NULL;
    6370      152104 :     bool        RelcacheInitFileInval = false;
    6371             : 
    6372             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6373      152104 :     oldlen = oldtup->t_len - htup->t_hoff;
    6374      152104 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6375      152104 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6376           0 :         elog(ERROR, "wrong tuple length");
    6377             : 
    6378      152104 :     dst = (char *) htup + htup->t_hoff;
    6379      152104 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6380             : 
    6381             :     /* Like RecordTransactionCommit(), log only if needed */
    6382      152104 :     if (XLogStandbyInfoActive())
    6383       91532 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6384             :                                                &RelcacheInitFileInval);
    6385             : 
    6386             :     /*
    6387             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6388             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6389             :      * in advance, if we checkpoint and then crash between inplace
    6390             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6391             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6392             :      * neglect to PANIC on EIO.
    6393             :      */
    6394      152104 :     PreInplace_Inval();
    6395             : 
    6396             :     /*----------
    6397             :      * NO EREPORT(ERROR) from here till changes are complete
    6398             :      *
    6399             :      * Our buffer lock won't stop a reader having already pinned and checked
    6400             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6401             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6402             :      * checkpoint delay makes that acceptable.  With the usual order of
    6403             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6404             :      * datfrozenxid to overtake relfrozenxid:
    6405             :      *
    6406             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6407             :      * ["R" is a VACUUM tbl]
    6408             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6409             :      * D: systable_getnext() returns pg_class tuple of tbl
    6410             :      * R: memcpy() into pg_class tuple of tbl
    6411             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6412             :      * [crash]
    6413             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6414             :      *
    6415             :      * Like in MarkBufferDirtyHint() subroutine XLogSaveBufferForHint(), copy
    6416             :      * the buffer to the stack before logging.  Here, that facilitates a FPI
    6417             :      * of the post-mutation block before we accept other sessions seeing it.
    6418             :      */
    6419             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6420      152104 :     START_CRIT_SECTION();
    6421      152104 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6422             : 
    6423             :     /* XLOG stuff */
    6424      152104 :     if (RelationNeedsWAL(relation))
    6425             :     {
    6426             :         xl_heap_inplace xlrec;
    6427             :         PGAlignedBlock copied_buffer;
    6428      152088 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6429      152088 :         Page        page = BufferGetPage(buffer);
    6430      152088 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6431      152088 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6432             :         uintptr_t   dst_offset_in_block;
    6433             :         RelFileLocator rlocator;
    6434             :         ForkNumber  forkno;
    6435             :         BlockNumber blkno;
    6436             :         XLogRecPtr  recptr;
    6437             : 
    6438      152088 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6439      152088 :         xlrec.dbId = MyDatabaseId;
    6440      152088 :         xlrec.tsId = MyDatabaseTableSpace;
    6441      152088 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6442      152088 :         xlrec.nmsgs = nmsgs;
    6443             : 
    6444      152088 :         XLogBeginInsert();
    6445      152088 :         XLogRegisterData((char *) &xlrec, MinSizeOfHeapInplace);
    6446      152088 :         if (nmsgs != 0)
    6447       64892 :             XLogRegisterData((char *) invalMessages,
    6448             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6449             : 
    6450             :         /* register block matching what buffer will look like after changes */
    6451      152088 :         memcpy(copied_buffer.data, origdata, lower);
    6452      152088 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6453      152088 :         dst_offset_in_block = dst - origdata;
    6454      152088 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6455      152088 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6456             :         Assert(forkno == MAIN_FORKNUM);
    6457      152088 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6458             :                           REGBUF_STANDARD);
    6459      152088 :         XLogRegisterBufData(0, src, newlen);
    6460             : 
    6461             :         /* inplace updates aren't decoded atm, don't log the origin */
    6462             : 
    6463      152088 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6464             : 
    6465      152088 :         PageSetLSN(page, recptr);
    6466             :     }
    6467             : 
    6468      152104 :     memcpy(dst, src, newlen);
    6469             : 
    6470      152104 :     MarkBufferDirty(buffer);
    6471             : 
    6472      152104 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6473             : 
    6474             :     /*
    6475             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6476             :      * do this before UnlockTuple().
    6477             :      *
    6478             :      * If we're mutating a tuple visible only to this transaction, there's an
    6479             :      * equivalent transactional inval from the action that created the tuple,
    6480             :      * and this inval is superfluous.
    6481             :      */
    6482      152104 :     AtInplace_Inval();
    6483             : 
    6484      152104 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6485      152104 :     END_CRIT_SECTION();
    6486      152104 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6487             : 
    6488      152104 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6489             : 
    6490             :     /*
    6491             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6492             :      * is the only one known to be necessary.  To reduce risk from the
    6493             :      * transition to immediate invalidation, continue sending a transactional
    6494             :      * invalidation like we've long done.  Third-party code might rely on it.
    6495             :      */
    6496      152104 :     if (!IsBootstrapProcessingMode())
    6497      125464 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6498      152104 : }
    6499             : 
    6500             : /*
    6501             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6502             :  */
    6503             : void
    6504      107912 : heap_inplace_unlock(Relation relation,
    6505             :                     HeapTuple oldtup, Buffer buffer)
    6506             : {
    6507      107912 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6508      107912 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6509      107912 :     ForgetInplace_Inval();
    6510      107912 : }
    6511             : 
    6512             : #define     FRM_NOOP                0x0001
    6513             : #define     FRM_INVALIDATE_XMAX     0x0002
    6514             : #define     FRM_RETURN_IS_XID       0x0004
    6515             : #define     FRM_RETURN_IS_MULTI     0x0008
    6516             : #define     FRM_MARK_COMMITTED      0x0010
    6517             : 
    6518             : /*
    6519             :  * FreezeMultiXactId
    6520             :  *      Determine what to do during freezing when a tuple is marked by a
    6521             :  *      MultiXactId.
    6522             :  *
    6523             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6524             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6525             :  *
    6526             :  * Possible values that we can set in "flags":
    6527             :  * FRM_NOOP
    6528             :  *      don't do anything -- keep existing Xmax
    6529             :  * FRM_INVALIDATE_XMAX
    6530             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6531             :  * FRM_RETURN_IS_XID
    6532             :  *      The Xid return value is a single update Xid to set as xmax.
    6533             :  * FRM_MARK_COMMITTED
    6534             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6535             :  * FRM_RETURN_IS_MULTI
    6536             :  *      The return value is a new MultiXactId to set as new Xmax.
    6537             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6538             :  *
    6539             :  * Caller delegates control of page freezing to us.  In practice we always
    6540             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6541             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6542             :  * can never be left behind.  We freely choose when and how to process each
    6543             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6544             :  *
    6545             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6546             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6547             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6548             :  * misses through eager processing.
    6549             :  *
    6550             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6551             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6552             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6553             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6554             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6555             :  * its own special risks.
    6556             :  *
    6557             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6558             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6559             :  *
    6560             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6561             :  * have already forced page-level freezing, since that might incur the same
    6562             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6563             :  */
    6564             : static TransactionId
    6565          14 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6566             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6567             :                   HeapPageFreeze *pagefrz)
    6568             : {
    6569             :     TransactionId newxmax;
    6570             :     MultiXactMember *members;
    6571             :     int         nmembers;
    6572             :     bool        need_replace;
    6573             :     int         nnewmembers;
    6574             :     MultiXactMember *newmembers;
    6575             :     bool        has_lockers;
    6576             :     TransactionId update_xid;
    6577             :     bool        update_committed;
    6578             :     TransactionId FreezePageRelfrozenXid;
    6579             : 
    6580          14 :     *flags = 0;
    6581             : 
    6582             :     /* We should only be called in Multis */
    6583             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6584             : 
    6585          14 :     if (!MultiXactIdIsValid(multi) ||
    6586          14 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6587             :     {
    6588           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6589           0 :         pagefrz->freeze_required = true;
    6590           0 :         return InvalidTransactionId;
    6591             :     }
    6592          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6593           0 :         ereport(ERROR,
    6594             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6595             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6596             :                                  multi, cutoffs->relminmxid)));
    6597          14 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6598             :     {
    6599             :         TransactionId update_xact;
    6600             : 
    6601             :         /*
    6602             :          * This old multi cannot possibly have members still running, but
    6603             :          * verify just in case.  If it was a locker only, it can be removed
    6604             :          * without any further consideration; but if it contained an update,
    6605             :          * we might need to preserve it.
    6606             :          */
    6607          10 :         if (MultiXactIdIsRunning(multi,
    6608          10 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6609           0 :             ereport(ERROR,
    6610             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6611             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6612             :                                      multi, cutoffs->OldestMxact)));
    6613             : 
    6614          10 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6615             :         {
    6616          10 :             *flags |= FRM_INVALIDATE_XMAX;
    6617          10 :             pagefrz->freeze_required = true;
    6618          10 :             return InvalidTransactionId;
    6619             :         }
    6620             : 
    6621             :         /* replace multi with single XID for its updater? */
    6622           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6623           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6624           0 :             ereport(ERROR,
    6625             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6626             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6627             :                                      multi, update_xact,
    6628             :                                      cutoffs->relfrozenxid)));
    6629           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6630             :         {
    6631             :             /*
    6632             :              * Updater XID has to have aborted (otherwise the tuple would have
    6633             :              * been pruned away instead, since updater XID is < OldestXmin).
    6634             :              * Just remove xmax.
    6635             :              */
    6636           0 :             if (TransactionIdDidCommit(update_xact))
    6637           0 :                 ereport(ERROR,
    6638             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6639             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6640             :                                          multi, update_xact,
    6641             :                                          cutoffs->OldestXmin)));
    6642           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6643           0 :             pagefrz->freeze_required = true;
    6644           0 :             return InvalidTransactionId;
    6645             :         }
    6646             : 
    6647             :         /* Have to keep updater XID as new xmax */
    6648           0 :         *flags |= FRM_RETURN_IS_XID;
    6649           0 :         pagefrz->freeze_required = true;
    6650           0 :         return update_xact;
    6651             :     }
    6652             : 
    6653             :     /*
    6654             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6655             :      * need to walk the whole members array to figure out what to do, if
    6656             :      * anything.
    6657             :      */
    6658             :     nmembers =
    6659           4 :         GetMultiXactIdMembers(multi, &members, false,
    6660           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6661           4 :     if (nmembers <= 0)
    6662             :     {
    6663             :         /* Nothing worth keeping */
    6664           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6665           0 :         pagefrz->freeze_required = true;
    6666           0 :         return InvalidTransactionId;
    6667             :     }
    6668             : 
    6669             :     /*
    6670             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6671             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6672             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6673             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6674             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6675             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6676             :      * required to make it safe to leave xmax undisturbed, independent of
    6677             :      * whether or not page freezing is triggered somewhere else.
    6678             :      *
    6679             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6680             :      * which obviates the need to maintain either set of trackers, anywhere.
    6681             :      * Every other case will reliably execute a freeze plan for xmax that
    6682             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6683             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6684             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6685             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6686             :      */
    6687           4 :     need_replace = false;
    6688           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6689           8 :     for (int i = 0; i < nmembers; i++)
    6690             :     {
    6691           6 :         TransactionId xid = members[i].xid;
    6692             : 
    6693             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6694             : 
    6695           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6696             :         {
    6697             :             /* Can't violate the FreezeLimit postcondition */
    6698           2 :             need_replace = true;
    6699           2 :             break;
    6700             :         }
    6701           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6702           0 :             FreezePageRelfrozenXid = xid;
    6703             :     }
    6704             : 
    6705             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6706           4 :     if (!need_replace)
    6707           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6708             : 
    6709           4 :     if (!need_replace)
    6710             :     {
    6711             :         /*
    6712             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6713             :          * both together to make it safe to retain this particular multi after
    6714             :          * freezing its page
    6715             :          */
    6716           2 :         *flags |= FRM_NOOP;
    6717           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6718           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6719           0 :             pagefrz->FreezePageRelminMxid = multi;
    6720           2 :         pfree(members);
    6721           2 :         return multi;
    6722             :     }
    6723             : 
    6724             :     /*
    6725             :      * Do a more thorough second pass over the multi to figure out which
    6726             :      * member XIDs actually need to be kept.  Checking the precise status of
    6727             :      * individual members might even show that we don't need to keep anything.
    6728             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6729             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6730             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6731             :      */
    6732           2 :     nnewmembers = 0;
    6733           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6734           2 :     has_lockers = false;
    6735           2 :     update_xid = InvalidTransactionId;
    6736           2 :     update_committed = false;
    6737             : 
    6738             :     /*
    6739             :      * Determine whether to keep each member xid, or to ignore it instead
    6740             :      */
    6741           6 :     for (int i = 0; i < nmembers; i++)
    6742             :     {
    6743           4 :         TransactionId xid = members[i].xid;
    6744           4 :         MultiXactStatus mstatus = members[i].status;
    6745             : 
    6746             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6747             : 
    6748           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6749             :         {
    6750             :             /*
    6751             :              * Locker XID (not updater XID).  We only keep lockers that are
    6752             :              * still running.
    6753             :              */
    6754           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6755           4 :                 TransactionIdIsInProgress(xid))
    6756             :             {
    6757           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6758           0 :                     ereport(ERROR,
    6759             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6760             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6761             :                                              multi, xid,
    6762             :                                              cutoffs->OldestXmin)));
    6763           2 :                 newmembers[nnewmembers++] = members[i];
    6764           2 :                 has_lockers = true;
    6765             :             }
    6766             : 
    6767           4 :             continue;
    6768             :         }
    6769             : 
    6770             :         /*
    6771             :          * Updater XID (not locker XID).  Should we keep it?
    6772             :          *
    6773             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6774             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6775             :          * the updater XID aborted.  If the updater transaction is known
    6776             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6777             :          *
    6778             :          * In any case the Multi should never contain two updaters, whatever
    6779             :          * their individual commit status.  Check for that first, in passing.
    6780             :          */
    6781           0 :         if (TransactionIdIsValid(update_xid))
    6782           0 :             ereport(ERROR,
    6783             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6784             :                      errmsg_internal("multixact %u has two or more updating members",
    6785             :                                      multi),
    6786             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6787             :                                         update_xid, xid)));
    6788             : 
    6789             :         /*
    6790             :          * As with all tuple visibility routines, it's critical to test
    6791             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6792             :          * race conditions explained in detail in heapam_visibility.c.
    6793             :          */
    6794           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6795           0 :             TransactionIdIsInProgress(xid))
    6796           0 :             update_xid = xid;
    6797           0 :         else if (TransactionIdDidCommit(xid))
    6798             :         {
    6799             :             /*
    6800             :              * The transaction committed, so we can tell caller to set
    6801             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6802             :              * transaction is not running.)
    6803             :              */
    6804           0 :             update_committed = true;
    6805           0 :             update_xid = xid;
    6806             :         }
    6807             :         else
    6808             :         {
    6809             :             /*
    6810             :              * Not in progress, not committed -- must be aborted or crashed;
    6811             :              * we can ignore it.
    6812             :              */
    6813           0 :             continue;
    6814             :         }
    6815             : 
    6816             :         /*
    6817             :          * We determined that updater must be kept -- add it to pending new
    6818             :          * members list
    6819             :          */
    6820           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6821           0 :             ereport(ERROR,
    6822             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6823             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6824             :                                      multi, xid, cutoffs->OldestXmin)));
    6825           0 :         newmembers[nnewmembers++] = members[i];
    6826             :     }
    6827             : 
    6828           2 :     pfree(members);
    6829             : 
    6830             :     /*
    6831             :      * Determine what to do with caller's multi based on information gathered
    6832             :      * during our second pass
    6833             :      */
    6834           2 :     if (nnewmembers == 0)
    6835             :     {
    6836             :         /* Nothing worth keeping */
    6837           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6838           0 :         newxmax = InvalidTransactionId;
    6839             :     }
    6840           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6841             :     {
    6842             :         /*
    6843             :          * If there's a single member and it's an update, pass it back alone
    6844             :          * without creating a new Multi.  (XXX we could do this when there's a
    6845             :          * single remaining locker, too, but that would complicate the API too
    6846             :          * much; moreover, the case with the single updater is more
    6847             :          * interesting, because those are longer-lived.)
    6848             :          */
    6849             :         Assert(nnewmembers == 1);
    6850           0 :         *flags |= FRM_RETURN_IS_XID;
    6851           0 :         if (update_committed)
    6852           0 :             *flags |= FRM_MARK_COMMITTED;
    6853           0 :         newxmax = update_xid;
    6854             :     }
    6855             :     else
    6856             :     {
    6857             :         /*
    6858             :          * Create a new multixact with the surviving members of the previous
    6859             :          * one, to set as new Xmax in the tuple
    6860             :          */
    6861           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    6862           2 :         *flags |= FRM_RETURN_IS_MULTI;
    6863             :     }
    6864             : 
    6865           2 :     pfree(newmembers);
    6866             : 
    6867           2 :     pagefrz->freeze_required = true;
    6868           2 :     return newxmax;
    6869             : }
    6870             : 
    6871             : /*
    6872             :  * heap_prepare_freeze_tuple
    6873             :  *
    6874             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    6875             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    6876             :  * setup enough state (in the *frz output argument) to enable caller to
    6877             :  * process this tuple as part of freezing its page, and return true.  Return
    6878             :  * false if nothing can be changed about the tuple right now.
    6879             :  *
    6880             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    6881             :  * caller executes returned freeze plan (or if the tuple was already totally
    6882             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    6883             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    6884             :  *
    6885             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    6886             :  * tuple that we returned true for, and then execute freezing.  Caller must
    6887             :  * initialize pagefrz fields for page as a whole before first call here for
    6888             :  * each heap page.
    6889             :  *
    6890             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    6891             :  * We'll often prepare freeze plans for a page that caller just discards.
    6892             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    6893             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    6894             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    6895             :  * that VACUUM always follows that rule.
    6896             :  *
    6897             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    6898             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    6899             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    6900             :  * and it's convenient to make that happen by piggy-backing it on the "force
    6901             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    6902             :  * because it is expensive right now (though only when it's still possible to
    6903             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    6904             :  *
    6905             :  * It is assumed that the caller has checked the tuple with
    6906             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    6907             :  * (else we should be removing the tuple, not freezing it).
    6908             :  *
    6909             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    6910             :  * It will be set as tuple's new xmax when our *frz output is processed within
    6911             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    6912             :  * then caller had better have an exclusive lock on it already.
    6913             :  */
    6914             : bool
    6915    32178018 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    6916             :                           const struct VacuumCutoffs *cutoffs,
    6917             :                           HeapPageFreeze *pagefrz,
    6918             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    6919             : {
    6920    32178018 :     bool        xmin_already_frozen = false,
    6921    32178018 :                 xmax_already_frozen = false;
    6922    32178018 :     bool        freeze_xmin = false,
    6923    32178018 :                 replace_xvac = false,
    6924    32178018 :                 replace_xmax = false,
    6925    32178018 :                 freeze_xmax = false;
    6926             :     TransactionId xid;
    6927             : 
    6928    32178018 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    6929    32178018 :     frz->t_infomask2 = tuple->t_infomask2;
    6930    32178018 :     frz->t_infomask = tuple->t_infomask;
    6931    32178018 :     frz->frzflags = 0;
    6932    32178018 :     frz->checkflags = 0;
    6933             : 
    6934             :     /*
    6935             :      * Process xmin, while keeping track of whether it's already frozen, or
    6936             :      * will become frozen iff our freeze plan is executed by caller (could be
    6937             :      * neither).
    6938             :      */
    6939    32178018 :     xid = HeapTupleHeaderGetXmin(tuple);
    6940    32178018 :     if (!TransactionIdIsNormal(xid))
    6941    26892100 :         xmin_already_frozen = true;
    6942             :     else
    6943             :     {
    6944     5285918 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    6945           0 :             ereport(ERROR,
    6946             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6947             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    6948             :                                      xid, cutoffs->relfrozenxid)));
    6949             : 
    6950             :         /* Will set freeze_xmin flags in freeze plan below */
    6951     5285918 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    6952             : 
    6953             :         /* Verify that xmin committed if and when freeze plan is executed */
    6954     5285918 :         if (freeze_xmin)
    6955     4190170 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    6956             :     }
    6957             : 
    6958             :     /*
    6959             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    6960             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    6961             :      */
    6962    32178018 :     xid = HeapTupleHeaderGetXvac(tuple);
    6963    32178018 :     if (TransactionIdIsNormal(xid))
    6964             :     {
    6965             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    6966             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    6967             : 
    6968             :         /*
    6969             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    6970             :          * tracking to ignore xvac.
    6971             :          */
    6972           0 :         replace_xvac = pagefrz->freeze_required = true;
    6973             : 
    6974             :         /* Will set replace_xvac flags in freeze plan below */
    6975             :     }
    6976             : 
    6977             :     /* Now process xmax */
    6978    32178018 :     xid = frz->xmax;
    6979    32178018 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    6980             :     {
    6981             :         /* Raw xmax is a MultiXactId */
    6982             :         TransactionId newxmax;
    6983             :         uint16      flags;
    6984             : 
    6985             :         /*
    6986             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    6987             :          * process xmax by replacing it (in the "replace_xmax" path), or
    6988             :          * perform no-op xmax processing.  The only constraint is that the
    6989             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    6990             :          */
    6991          14 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    6992             :                                     &flags, pagefrz);
    6993             : 
    6994          14 :         if (flags & FRM_NOOP)
    6995             :         {
    6996             :             /*
    6997             :              * xmax is a MultiXactId, and nothing about it changes for now.
    6998             :              * This is the only case where 'freeze_required' won't have been
    6999             :              * set for us by FreezeMultiXactId, as well as the only case where
    7000             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7001             :              *
    7002             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7003             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7004             :              * for us (the "freeze page" variants, specifically).  That'll
    7005             :              * make it safe for our caller to freeze the page later on, while
    7006             :              * leaving this particular xmax undisturbed.
    7007             :              *
    7008             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7009             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7010             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7011             :              * will take place below if 'freeze_required' isn't set already.
    7012             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7013             :              * freeze" tracker maintenance to happen in only one place.)
    7014             :              */
    7015             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7016             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7017             :         }
    7018          12 :         else if (flags & FRM_RETURN_IS_XID)
    7019             :         {
    7020             :             /*
    7021             :              * xmax will become an updater Xid (original MultiXact's updater
    7022             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7023             :              */
    7024             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7025             : 
    7026             :             /*
    7027             :              * NB -- some of these transformations are only valid because we
    7028             :              * know the return Xid is a tuple updater (i.e. not merely a
    7029             :              * locker.) Also note that the only reason we don't explicitly
    7030             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7031             :              * t_infomask2 rather than t_infomask.
    7032             :              */
    7033           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7034           0 :             frz->xmax = newxmax;
    7035           0 :             if (flags & FRM_MARK_COMMITTED)
    7036           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7037           0 :             replace_xmax = true;
    7038             :         }
    7039          12 :         else if (flags & FRM_RETURN_IS_MULTI)
    7040             :         {
    7041             :             uint16      newbits;
    7042             :             uint16      newbits2;
    7043             : 
    7044             :             /*
    7045             :              * xmax is an old MultiXactId that we have to replace with a new
    7046             :              * MultiXactId, to carry forward two or more original member XIDs.
    7047             :              */
    7048             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7049             : 
    7050             :             /*
    7051             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7052             :              * here; that routine initializes the masks to all zeroes, which
    7053             :              * would lose other bits we need.  Doing it this way ensures all
    7054             :              * unrelated bits remain untouched.
    7055             :              */
    7056           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7057           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7058           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7059           2 :             frz->t_infomask |= newbits;
    7060           2 :             frz->t_infomask2 |= newbits2;
    7061           2 :             frz->xmax = newxmax;
    7062           2 :             replace_xmax = true;
    7063             :         }
    7064             :         else
    7065             :         {
    7066             :             /*
    7067             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7068             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7069             :              */
    7070             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7071             :             Assert(!TransactionIdIsValid(newxmax));
    7072             : 
    7073             :             /* Will set freeze_xmax flags in freeze plan below */
    7074          10 :             freeze_xmax = true;
    7075             :         }
    7076             : 
    7077             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7078             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7079             :     }
    7080    32178004 :     else if (TransactionIdIsNormal(xid))
    7081             :     {
    7082             :         /* Raw xmax is normal XID */
    7083    12396588 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7084           0 :             ereport(ERROR,
    7085             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7086             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7087             :                                      xid, cutoffs->relfrozenxid)));
    7088             : 
    7089             :         /* Will set freeze_xmax flags in freeze plan below */
    7090    12396588 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7091             : 
    7092             :         /*
    7093             :          * Verify that xmax aborted if and when freeze plan is executed,
    7094             :          * provided it's from an update. (A lock-only xmax can be removed
    7095             :          * independent of this, since the lock is released at xact end.)
    7096             :          */
    7097    12396588 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7098        1828 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7099             :     }
    7100    19781416 :     else if (!TransactionIdIsValid(xid))
    7101             :     {
    7102             :         /* Raw xmax is InvalidTransactionId XID */
    7103             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7104    19781416 :         xmax_already_frozen = true;
    7105             :     }
    7106             :     else
    7107           0 :         ereport(ERROR,
    7108             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7109             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7110             :                                  xid, tuple->t_infomask)));
    7111             : 
    7112    32178018 :     if (freeze_xmin)
    7113             :     {
    7114             :         Assert(!xmin_already_frozen);
    7115             : 
    7116     4190170 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7117             :     }
    7118    32178018 :     if (replace_xvac)
    7119             :     {
    7120             :         /*
    7121             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7122             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7123             :          * transaction succeeded.
    7124             :          */
    7125             :         Assert(pagefrz->freeze_required);
    7126           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7127           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7128             :         else
    7129           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7130             :     }
    7131             :     if (replace_xmax)
    7132             :     {
    7133             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7134             :         Assert(pagefrz->freeze_required);
    7135             : 
    7136             :         /* Already set replace_xmax flags in freeze plan earlier */
    7137             :     }
    7138    32178018 :     if (freeze_xmax)
    7139             :     {
    7140             :         Assert(!xmax_already_frozen && !replace_xmax);
    7141             : 
    7142        3586 :         frz->xmax = InvalidTransactionId;
    7143             : 
    7144             :         /*
    7145             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7146             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7147             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7148             :          */
    7149        3586 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7150        3586 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7151        3586 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7152        3586 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7153             :     }
    7154             : 
    7155             :     /*
    7156             :      * Determine if this tuple is already totally frozen, or will become
    7157             :      * totally frozen (provided caller executes freeze plans for the page)
    7158             :      */
    7159    63256702 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7160    31078684 :                        (freeze_xmax || xmax_already_frozen));
    7161             : 
    7162    32178018 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7163             :                                        xmax_already_frozen))
    7164             :     {
    7165             :         /*
    7166             :          * So far no previous tuple from the page made freezing mandatory.
    7167             :          * Does this tuple force caller to freeze the entire page?
    7168             :          */
    7169    15194918 :         pagefrz->freeze_required =
    7170    15194918 :             heap_tuple_should_freeze(tuple, cutoffs,
    7171             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7172             :                                      &pagefrz->NoFreezePageRelminMxid);
    7173             :     }
    7174             : 
    7175             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7176    32178018 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7177             : }
    7178             : 
    7179             : /*
    7180             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7181             :  * plans.
    7182             :  *
    7183             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7184             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7185             :  * successive VACUUMs that each decide against freezing the same page.
    7186             :  */
    7187             : void
    7188       32006 : heap_pre_freeze_checks(Buffer buffer,
    7189             :                        HeapTupleFreeze *tuples, int ntuples)
    7190             : {
    7191       32006 :     Page        page = BufferGetPage(buffer);
    7192             : 
    7193     1337322 :     for (int i = 0; i < ntuples; i++)
    7194             :     {
    7195     1305316 :         HeapTupleFreeze *frz = tuples + i;
    7196     1305316 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7197             :         HeapTupleHeader htup;
    7198             : 
    7199     1305316 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7200             : 
    7201             :         /* Deliberately avoid relying on tuple hint bits here */
    7202     1305316 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7203             :         {
    7204     1305314 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7205             : 
    7206             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7207     1305314 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7208           0 :                 ereport(ERROR,
    7209             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7210             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7211             :                                          xmin)));
    7212             :         }
    7213             : 
    7214             :         /*
    7215             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7216             :          * left behind by transactions that were in progress during a crash,
    7217             :          * so we can only check that xmax didn't commit
    7218             :          */
    7219     1305316 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7220             :         {
    7221         172 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7222             : 
    7223             :             Assert(TransactionIdIsNormal(xmax));
    7224         172 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7225           0 :                 ereport(ERROR,
    7226             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7227             :                          errmsg_internal("cannot freeze committed xmax %u",
    7228             :                                          xmax)));
    7229             :         }
    7230             :     }
    7231       32006 : }
    7232             : 
    7233             : /*
    7234             :  * Helper which executes freezing of one or more heap tuples on a page on
    7235             :  * behalf of caller.  Caller passes an array of tuple plans from
    7236             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7237             :  * Must be called in a critical section that also marks the buffer dirty and,
    7238             :  * if needed, emits WAL.
    7239             :  */
    7240             : void
    7241       32006 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7242             : {
    7243       32006 :     Page        page = BufferGetPage(buffer);
    7244             : 
    7245     1337322 :     for (int i = 0; i < ntuples; i++)
    7246             :     {
    7247     1305316 :         HeapTupleFreeze *frz = tuples + i;
    7248     1305316 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7249             :         HeapTupleHeader htup;
    7250             : 
    7251     1305316 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7252     1305316 :         heap_execute_freeze_tuple(htup, frz);
    7253             :     }
    7254       32006 : }
    7255             : 
    7256             : /*
    7257             :  * heap_freeze_tuple
    7258             :  *      Freeze tuple in place, without WAL logging.
    7259             :  *
    7260             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7261             :  */
    7262             : bool
    7263      740582 : heap_freeze_tuple(HeapTupleHeader tuple,
    7264             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7265             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7266             : {
    7267             :     HeapTupleFreeze frz;
    7268             :     bool        do_freeze;
    7269             :     bool        totally_frozen;
    7270             :     struct VacuumCutoffs cutoffs;
    7271             :     HeapPageFreeze pagefrz;
    7272             : 
    7273      740582 :     cutoffs.relfrozenxid = relfrozenxid;
    7274      740582 :     cutoffs.relminmxid = relminmxid;
    7275      740582 :     cutoffs.OldestXmin = FreezeLimit;
    7276      740582 :     cutoffs.OldestMxact = MultiXactCutoff;
    7277      740582 :     cutoffs.FreezeLimit = FreezeLimit;
    7278      740582 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7279             : 
    7280      740582 :     pagefrz.freeze_required = true;
    7281      740582 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7282      740582 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7283      740582 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7284      740582 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7285             : 
    7286      740582 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7287             :                                           &pagefrz, &frz, &totally_frozen);
    7288             : 
    7289             :     /*
    7290             :      * Note that because this is not a WAL-logged operation, we don't need to
    7291             :      * fill in the offset in the freeze record.
    7292             :      */
    7293             : 
    7294      740582 :     if (do_freeze)
    7295      528582 :         heap_execute_freeze_tuple(tuple, &frz);
    7296      740582 :     return do_freeze;
    7297             : }
    7298             : 
    7299             : /*
    7300             :  * For a given MultiXactId, return the hint bits that should be set in the
    7301             :  * tuple's infomask.
    7302             :  *
    7303             :  * Normally this should be called for a multixact that was just created, and
    7304             :  * so is on our local cache, so the GetMembers call is fast.
    7305             :  */
    7306             : static void
    7307        2368 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7308             :                        uint16 *new_infomask2)
    7309             : {
    7310             :     int         nmembers;
    7311             :     MultiXactMember *members;
    7312             :     int         i;
    7313        2368 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7314        2368 :     uint16      bits2 = 0;
    7315        2368 :     bool        has_update = false;
    7316        2368 :     LockTupleMode strongest = LockTupleKeyShare;
    7317             : 
    7318             :     /*
    7319             :      * We only use this in multis we just created, so they cannot be values
    7320             :      * pre-pg_upgrade.
    7321             :      */
    7322        2368 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7323             : 
    7324        7230 :     for (i = 0; i < nmembers; i++)
    7325             :     {
    7326             :         LockTupleMode mode;
    7327             : 
    7328             :         /*
    7329             :          * Remember the strongest lock mode held by any member of the
    7330             :          * multixact.
    7331             :          */
    7332        4862 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7333        4862 :         if (mode > strongest)
    7334        1318 :             strongest = mode;
    7335             : 
    7336             :         /* See what other bits we need */
    7337        4862 :         switch (members[i].status)
    7338             :         {
    7339        4480 :             case MultiXactStatusForKeyShare:
    7340             :             case MultiXactStatusForShare:
    7341             :             case MultiXactStatusForNoKeyUpdate:
    7342        4480 :                 break;
    7343             : 
    7344         104 :             case MultiXactStatusForUpdate:
    7345         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7346         104 :                 break;
    7347             : 
    7348         258 :             case MultiXactStatusNoKeyUpdate:
    7349         258 :                 has_update = true;
    7350         258 :                 break;
    7351             : 
    7352          20 :             case MultiXactStatusUpdate:
    7353          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7354          20 :                 has_update = true;
    7355          20 :                 break;
    7356             :         }
    7357        4862 :     }
    7358             : 
    7359        2368 :     if (strongest == LockTupleExclusive ||
    7360             :         strongest == LockTupleNoKeyExclusive)
    7361         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7362        1930 :     else if (strongest == LockTupleShare)
    7363         874 :         bits |= HEAP_XMAX_SHR_LOCK;
    7364        1056 :     else if (strongest == LockTupleKeyShare)
    7365        1056 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7366             : 
    7367        2368 :     if (!has_update)
    7368        2090 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7369             : 
    7370        2368 :     if (nmembers > 0)
    7371        2368 :         pfree(members);
    7372             : 
    7373        2368 :     *new_infomask = bits;
    7374        2368 :     *new_infomask2 = bits2;
    7375        2368 : }
    7376             : 
    7377             : /*
    7378             :  * MultiXactIdGetUpdateXid
    7379             :  *
    7380             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7381             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7382             :  * transaction.
    7383             :  *
    7384             :  * Caller is expected to check the status of the updating transaction, if
    7385             :  * necessary.
    7386             :  */
    7387             : static TransactionId
    7388        1094 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7389             : {
    7390        1094 :     TransactionId update_xact = InvalidTransactionId;
    7391             :     MultiXactMember *members;
    7392             :     int         nmembers;
    7393             : 
    7394             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7395             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7396             : 
    7397             :     /*
    7398             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7399             :      * pre-pg_upgrade.
    7400             :      */
    7401        1094 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7402             : 
    7403        1094 :     if (nmembers > 0)
    7404             :     {
    7405             :         int         i;
    7406             : 
    7407        2890 :         for (i = 0; i < nmembers; i++)
    7408             :         {
    7409             :             /* Ignore lockers */
    7410        2890 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7411        1796 :                 continue;
    7412             : 
    7413             :             /* there can be at most one updater */
    7414             :             Assert(update_xact == InvalidTransactionId);
    7415        1094 :             update_xact = members[i].xid;
    7416             : #ifndef USE_ASSERT_CHECKING
    7417             : 
    7418             :             /*
    7419             :              * in an assert-enabled build, walk the whole array to ensure
    7420             :              * there's no other updater.
    7421             :              */
    7422        1094 :             break;
    7423             : #endif
    7424             :         }
    7425             : 
    7426        1094 :         pfree(members);
    7427             :     }
    7428             : 
    7429        1094 :     return update_xact;
    7430             : }
    7431             : 
    7432             : /*
    7433             :  * HeapTupleGetUpdateXid
    7434             :  *      As above, but use a HeapTupleHeader
    7435             :  *
    7436             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7437             :  * checking the hint bits.
    7438             :  */
    7439             : TransactionId
    7440        1078 : HeapTupleGetUpdateXid(HeapTupleHeader tuple)
    7441             : {
    7442        2156 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tuple),
    7443        1078 :                                    tuple->t_infomask);
    7444             : }
    7445             : 
    7446             : /*
    7447             :  * Does the given multixact conflict with the current transaction grabbing a
    7448             :  * tuple lock of the given strength?
    7449             :  *
    7450             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7451             :  *
    7452             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7453             :  * transaction is a member of the given multixact.
    7454             :  */
    7455             : static bool
    7456         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7457             :                         LockTupleMode lockmode, bool *current_is_member)
    7458             : {
    7459             :     int         nmembers;
    7460             :     MultiXactMember *members;
    7461         198 :     bool        result = false;
    7462         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7463             : 
    7464         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7465           0 :         return false;
    7466             : 
    7467         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7468         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7469         198 :     if (nmembers >= 0)
    7470             :     {
    7471             :         int         i;
    7472             : 
    7473         618 :         for (i = 0; i < nmembers; i++)
    7474             :         {
    7475             :             TransactionId memxid;
    7476             :             LOCKMODE    memlockmode;
    7477             : 
    7478         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7479             :                 break;
    7480             : 
    7481         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7482             : 
    7483             :             /* ignore members from current xact (but track their presence) */
    7484         420 :             memxid = members[i].xid;
    7485         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7486             :             {
    7487         184 :                 if (current_is_member != NULL)
    7488         156 :                     *current_is_member = true;
    7489         184 :                 continue;
    7490             :             }
    7491         236 :             else if (result)
    7492          16 :                 continue;
    7493             : 
    7494             :             /* ignore members that don't conflict with the lock we want */
    7495         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7496         142 :                 continue;
    7497             : 
    7498          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7499             :             {
    7500             :                 /* ignore aborted updaters */
    7501          34 :                 if (TransactionIdDidAbort(memxid))
    7502           2 :                     continue;
    7503             :             }
    7504             :             else
    7505             :             {
    7506             :                 /* ignore lockers-only that are no longer in progress */
    7507          44 :                 if (!TransactionIdIsInProgress(memxid))
    7508          14 :                     continue;
    7509             :             }
    7510             : 
    7511             :             /*
    7512             :              * Whatever remains are either live lockers that conflict with our
    7513             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7514             :              * with what we want.  Set up to return true, but keep going to
    7515             :              * look for the current transaction among the multixact members,
    7516             :              * if needed.
    7517             :              */
    7518          62 :             result = true;
    7519             :         }
    7520         198 :         pfree(members);
    7521             :     }
    7522             : 
    7523         198 :     return result;
    7524             : }
    7525             : 
    7526             : /*
    7527             :  * Do_MultiXactIdWait
    7528             :  *      Actual implementation for the two functions below.
    7529             :  *
    7530             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7531             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7532             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7533             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7534             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7535             :  * context information for error messages.  'remaining', if not NULL, receives
    7536             :  * the number of members that are still running, including any (non-aborted)
    7537             :  * subtransactions of our own transaction.
    7538             :  *
    7539             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7540             :  * members that belong to the current backend are *not* waited for, however;
    7541             :  * this would not merely be useless but would lead to Assert failure inside
    7542             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7543             :  * transactions *of other backends* that were members of the MultiXactId
    7544             :  * that conflict with the requested status are dead (and no new ones can have
    7545             :  * been added, since it is not legal to add members to an existing
    7546             :  * MultiXactId).
    7547             :  *
    7548             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7549             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7550             :  *
    7551             :  * Note that in case we return false, the number of remaining members is
    7552             :  * not to be trusted.
    7553             :  */
    7554             : static bool
    7555         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7556             :                    uint16 infomask, bool nowait,
    7557             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7558             :                    int *remaining)
    7559             : {
    7560         116 :     bool        result = true;
    7561             :     MultiXactMember *members;
    7562             :     int         nmembers;
    7563         116 :     int         remain = 0;
    7564             : 
    7565             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7566         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7567         116 :         GetMultiXactIdMembers(multi, &members, false,
    7568         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7569             : 
    7570         116 :     if (nmembers >= 0)
    7571             :     {
    7572             :         int         i;
    7573             : 
    7574         374 :         for (i = 0; i < nmembers; i++)
    7575             :         {
    7576         266 :             TransactionId memxid = members[i].xid;
    7577         266 :             MultiXactStatus memstatus = members[i].status;
    7578             : 
    7579         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7580             :             {
    7581          48 :                 remain++;
    7582          48 :                 continue;
    7583             :             }
    7584             : 
    7585         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7586         218 :                                      LOCKMODE_from_mxstatus(status)))
    7587             :             {
    7588          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7589          16 :                     remain++;
    7590          44 :                 continue;
    7591             :             }
    7592             : 
    7593             :             /*
    7594             :              * This member conflicts with our multi, so we have to sleep (or
    7595             :              * return failure, if asked to avoid waiting.)
    7596             :              *
    7597             :              * Note that we don't set up an error context callback ourselves,
    7598             :              * but instead we pass the info down to XactLockTableWait.  This
    7599             :              * might seem a bit wasteful because the context is set up and
    7600             :              * tore down for each member of the multixact, but in reality it
    7601             :              * should be barely noticeable, and it avoids duplicate code.
    7602             :              */
    7603         174 :             if (nowait)
    7604             :             {
    7605           8 :                 result = ConditionalXactLockTableWait(memxid);
    7606           8 :                 if (!result)
    7607           8 :                     break;
    7608             :             }
    7609             :             else
    7610         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7611             :         }
    7612             : 
    7613         116 :         pfree(members);
    7614             :     }
    7615             : 
    7616         116 :     if (remaining)
    7617          20 :         *remaining = remain;
    7618             : 
    7619         116 :     return result;
    7620             : }
    7621             : 
    7622             : /*
    7623             :  * MultiXactIdWait
    7624             :  *      Sleep on a MultiXactId.
    7625             :  *
    7626             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7627             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7628             :  *
    7629             :  * We return (in *remaining, if not NULL) the number of members that are still
    7630             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7631             :  */
    7632             : static void
    7633         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7634             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7635             :                 int *remaining)
    7636             : {
    7637         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7638             :                               rel, ctid, oper, remaining);
    7639         108 : }
    7640             : 
    7641             : /*
    7642             :  * ConditionalMultiXactIdWait
    7643             :  *      As above, but only lock if we can get the lock without blocking.
    7644             :  *
    7645             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7646             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7647             :  *
    7648             :  * If the multixact is now all gone, return true.  Returns false if some
    7649             :  * transactions might still be running.
    7650             :  *
    7651             :  * We return (in *remaining, if not NULL) the number of members that are still
    7652             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7653             :  */
    7654             : static bool
    7655           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7656             :                            uint16 infomask, Relation rel, int *remaining)
    7657             : {
    7658           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7659             :                               rel, NULL, XLTW_None, remaining);
    7660             : }
    7661             : 
    7662             : /*
    7663             :  * heap_tuple_needs_eventual_freeze
    7664             :  *
    7665             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7666             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7667             :  */
    7668             : bool
    7669      224416 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7670             : {
    7671             :     TransactionId xid;
    7672             : 
    7673             :     /*
    7674             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7675             :      * frozen.
    7676             :      */
    7677      224416 :     xid = HeapTupleHeaderGetXmin(tuple);
    7678      224416 :     if (TransactionIdIsNormal(xid))
    7679        6048 :         return true;
    7680             : 
    7681             :     /*
    7682             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7683             :      */
    7684      218368 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7685             :     {
    7686             :         MultiXactId multi;
    7687             : 
    7688           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7689           0 :         if (MultiXactIdIsValid(multi))
    7690           0 :             return true;
    7691             :     }
    7692             :     else
    7693             :     {
    7694      218368 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7695      218368 :         if (TransactionIdIsNormal(xid))
    7696          14 :             return true;
    7697             :     }
    7698             : 
    7699      218354 :     if (tuple->t_infomask & HEAP_MOVED)
    7700             :     {
    7701           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7702           0 :         if (TransactionIdIsNormal(xid))
    7703           0 :             return true;
    7704             :     }
    7705             : 
    7706      218354 :     return false;
    7707             : }
    7708             : 
    7709             : /*
    7710             :  * heap_tuple_should_freeze
    7711             :  *
    7712             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7713             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7714             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7715             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7716             :  *
    7717             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7718             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7719             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7720             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7721             :  * point that it fully commits to not freezing the tuple/page in question.
    7722             :  */
    7723             : bool
    7724    15195270 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7725             :                          const struct VacuumCutoffs *cutoffs,
    7726             :                          TransactionId *NoFreezePageRelfrozenXid,
    7727             :                          MultiXactId *NoFreezePageRelminMxid)
    7728             : {
    7729             :     TransactionId xid;
    7730             :     MultiXactId multi;
    7731    15195270 :     bool        freeze = false;
    7732             : 
    7733             :     /* First deal with xmin */
    7734    15195270 :     xid = HeapTupleHeaderGetXmin(tuple);
    7735    15195270 :     if (TransactionIdIsNormal(xid))
    7736             :     {
    7737             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7738     3442610 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7739       32982 :             *NoFreezePageRelfrozenXid = xid;
    7740     3442610 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7741       30146 :             freeze = true;
    7742             :     }
    7743             : 
    7744             :     /* Now deal with xmax */
    7745    15195270 :     xid = InvalidTransactionId;
    7746    15195270 :     multi = InvalidMultiXactId;
    7747    15195270 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7748           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7749             :     else
    7750    15195266 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7751             : 
    7752    15195270 :     if (TransactionIdIsNormal(xid))
    7753             :     {
    7754             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7755             :         /* xmax is a non-permanent XID */
    7756    12235050 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7757           2 :             *NoFreezePageRelfrozenXid = xid;
    7758    12235050 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7759           8 :             freeze = true;
    7760             :     }
    7761     2960220 :     else if (!MultiXactIdIsValid(multi))
    7762             :     {
    7763             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7764             :     }
    7765           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7766             :     {
    7767             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7768           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7769           0 :             *NoFreezePageRelminMxid = multi;
    7770             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7771           0 :         freeze = true;
    7772             :     }
    7773             :     else
    7774             :     {
    7775             :         /* xmax is a MultiXactId that may have an updater XID */
    7776             :         MultiXactMember *members;
    7777             :         int         nmembers;
    7778             : 
    7779             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7780           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7781           4 :             *NoFreezePageRelminMxid = multi;
    7782           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7783           4 :             freeze = true;
    7784             : 
    7785             :         /* need to check whether any member of the mxact is old */
    7786           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7787           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7788             : 
    7789          10 :         for (int i = 0; i < nmembers; i++)
    7790             :         {
    7791           6 :             xid = members[i].xid;
    7792             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7793           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7794           0 :                 *NoFreezePageRelfrozenXid = xid;
    7795           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7796           0 :                 freeze = true;
    7797             :         }
    7798           4 :         if (nmembers > 0)
    7799           2 :             pfree(members);
    7800             :     }
    7801             : 
    7802    15195270 :     if (tuple->t_infomask & HEAP_MOVED)
    7803             :     {
    7804           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7805           0 :         if (TransactionIdIsNormal(xid))
    7806             :         {
    7807             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7808           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7809           0 :                 *NoFreezePageRelfrozenXid = xid;
    7810             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7811           0 :             freeze = true;
    7812             :         }
    7813             :     }
    7814             : 
    7815    15195270 :     return freeze;
    7816             : }
    7817             : 
    7818             : /*
    7819             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7820             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7821             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7822             :  * or index deletion.
    7823             :  *
    7824             :  * Caller must initialize its value to InvalidTransactionId, which is
    7825             :  * generally interpreted as "definitely no need for a recovery conflict".
    7826             :  * Final value must reflect all heap tuples that caller will physically remove
    7827             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7828             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7829             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7830             :  */
    7831             : void
    7832     3108560 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7833             :                                       TransactionId *snapshotConflictHorizon)
    7834             : {
    7835     3108560 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7836     3108560 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7837     3108560 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7838             : 
    7839     3108560 :     if (tuple->t_infomask & HEAP_MOVED)
    7840             :     {
    7841           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7842           0 :             *snapshotConflictHorizon = xvac;
    7843             :     }
    7844             : 
    7845             :     /*
    7846             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7847             :      * updated/deleted by the inserting transaction.
    7848             :      *
    7849             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    7850             :      */
    7851     3108560 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    7852      200090 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    7853             :     {
    7854     5585488 :         if (xmax != xmin &&
    7855     2622998 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    7856      182368 :             *snapshotConflictHorizon = xmax;
    7857             :     }
    7858     3108560 : }
    7859             : 
    7860             : #ifdef USE_PREFETCH
    7861             : /*
    7862             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    7863             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    7864             :  * we can prefetch, and which have already been prefetched; each call to this
    7865             :  * function picks up where the previous call left off.
    7866             :  *
    7867             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    7868             :  * by heap block, with all TIDs for each block appearing together in exactly
    7869             :  * one group.
    7870             :  */
    7871             : static void
    7872       35192 : index_delete_prefetch_buffer(Relation rel,
    7873             :                              IndexDeletePrefetchState *prefetch_state,
    7874             :                              int prefetch_count)
    7875             : {
    7876       35192 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    7877       35192 :     int         count = 0;
    7878             :     int         i;
    7879       35192 :     int         ndeltids = prefetch_state->ndeltids;
    7880       35192 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    7881             : 
    7882     1251042 :     for (i = prefetch_state->next_item;
    7883     1223242 :          i < ndeltids && count < prefetch_count;
    7884     1215850 :          i++)
    7885             :     {
    7886     1215850 :         ItemPointer htid = &deltids[i].tid;
    7887             : 
    7888     2421260 :         if (cur_hblkno == InvalidBlockNumber ||
    7889     1205410 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    7890             :         {
    7891       31684 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    7892       31684 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    7893       31684 :             count++;
    7894             :         }
    7895             :     }
    7896             : 
    7897             :     /*
    7898             :      * Save the prefetch position so that next time we can continue from that
    7899             :      * position.
    7900             :      */
    7901       35192 :     prefetch_state->next_item = i;
    7902       35192 :     prefetch_state->cur_hblkno = cur_hblkno;
    7903       35192 : }
    7904             : #endif
    7905             : 
    7906             : /*
    7907             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    7908             :  * involving an invalid TID in index AM caller's index page.
    7909             :  *
    7910             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    7911             :  * lock on the index page containing the TIDs we examine here, so we don't
    7912             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    7913             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    7914             :  * heap-only tuple, which is not the case during standard index scans.
    7915             :  */
    7916             : static inline void
    7917     1021598 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    7918             :                         Page page, OffsetNumber maxoff,
    7919             :                         ItemPointer htid, TM_IndexStatus *istatus)
    7920             : {
    7921     1021598 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    7922             :     ItemId      iid;
    7923             : 
    7924             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    7925             : 
    7926     1021598 :     if (unlikely(indexpagehoffnum > maxoff))
    7927           0 :         ereport(ERROR,
    7928             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7929             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    7930             :                                  ItemPointerGetBlockNumber(htid),
    7931             :                                  indexpagehoffnum,
    7932             :                                  istatus->idxoffnum, delstate->iblknum,
    7933             :                                  RelationGetRelationName(delstate->irel))));
    7934             : 
    7935     1021598 :     iid = PageGetItemId(page, indexpagehoffnum);
    7936     1021598 :     if (unlikely(!ItemIdIsUsed(iid)))
    7937           0 :         ereport(ERROR,
    7938             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7939             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    7940             :                                  ItemPointerGetBlockNumber(htid),
    7941             :                                  indexpagehoffnum,
    7942             :                                  istatus->idxoffnum, delstate->iblknum,
    7943             :                                  RelationGetRelationName(delstate->irel))));
    7944             : 
    7945     1021598 :     if (ItemIdHasStorage(iid))
    7946             :     {
    7947             :         HeapTupleHeader htup;
    7948             : 
    7949             :         Assert(ItemIdIsNormal(iid));
    7950      599154 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    7951             : 
    7952      599154 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    7953           0 :             ereport(ERROR,
    7954             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    7955             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    7956             :                                      ItemPointerGetBlockNumber(htid),
    7957             :                                      indexpagehoffnum,
    7958             :                                      istatus->idxoffnum, delstate->iblknum,
    7959             :                                      RelationGetRelationName(delstate->irel))));
    7960             :     }
    7961     1021598 : }
    7962             : 
    7963             : /*
    7964             :  * heapam implementation of tableam's index_delete_tuples interface.
    7965             :  *
    7966             :  * This helper function is called by index AMs during index tuple deletion.
    7967             :  * See tableam header comments for an explanation of the interface implemented
    7968             :  * here and a general theory of operation.  Note that each call here is either
    7969             :  * a simple index deletion call, or a bottom-up index deletion call.
    7970             :  *
    7971             :  * It's possible for this to generate a fair amount of I/O, since we may be
    7972             :  * deleting hundreds of tuples from a single index block.  To amortize that
    7973             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    7974             :  * the same heap block.
    7975             :  */
    7976             : TransactionId
    7977       10440 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    7978             : {
    7979             :     /* Initial assumption is that earlier pruning took care of conflict */
    7980       10440 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    7981       10440 :     BlockNumber blkno = InvalidBlockNumber;
    7982       10440 :     Buffer      buf = InvalidBuffer;
    7983       10440 :     Page        page = NULL;
    7984       10440 :     OffsetNumber maxoff = InvalidOffsetNumber;
    7985             :     TransactionId priorXmax;
    7986             : #ifdef USE_PREFETCH
    7987             :     IndexDeletePrefetchState prefetch_state;
    7988             :     int         prefetch_distance;
    7989             : #endif
    7990             :     SnapshotData SnapshotNonVacuumable;
    7991       10440 :     int         finalndeltids = 0,
    7992       10440 :                 nblocksaccessed = 0;
    7993             : 
    7994             :     /* State that's only used in bottom-up index deletion case */
    7995       10440 :     int         nblocksfavorable = 0;
    7996       10440 :     int         curtargetfreespace = delstate->bottomupfreespace,
    7997       10440 :                 lastfreespace = 0,
    7998       10440 :                 actualfreespace = 0;
    7999       10440 :     bool        bottomup_final_block = false;
    8000             : 
    8001       10440 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8002             : 
    8003             :     /* Sort caller's deltids array by TID for further processing */
    8004       10440 :     index_delete_sort(delstate);
    8005             : 
    8006             :     /*
    8007             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8008             :      * greatest number of promising TIDs are to be found, and determine how
    8009             :      * many blocks from the start of sorted array should be considered
    8010             :      * favorable.  This will also shrink the deltids array in order to
    8011             :      * eliminate completely unfavorable blocks up front.
    8012             :      */
    8013       10440 :     if (delstate->bottomup)
    8014        3504 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8015             : 
    8016             : #ifdef USE_PREFETCH
    8017             :     /* Initialize prefetch state. */
    8018       10440 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8019       10440 :     prefetch_state.next_item = 0;
    8020       10440 :     prefetch_state.ndeltids = delstate->ndeltids;
    8021       10440 :     prefetch_state.deltids = delstate->deltids;
    8022             : 
    8023             :     /*
    8024             :      * Determine the prefetch distance that we will attempt to maintain.
    8025             :      *
    8026             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8027             :      * sure that isn't a catalog relation before we call code that does
    8028             :      * syscache lookups, to avoid risk of deadlock.
    8029             :      */
    8030       10440 :     if (IsCatalogRelation(rel))
    8031        7246 :         prefetch_distance = maintenance_io_concurrency;
    8032             :     else
    8033             :         prefetch_distance =
    8034        3194 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8035             : 
    8036             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8037       10440 :     if (delstate->bottomup)
    8038             :     {
    8039             :         Assert(nblocksfavorable >= 1);
    8040             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8041        3504 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8042             :     }
    8043             : 
    8044             :     /* Start prefetching. */
    8045       10440 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8046             : #endif
    8047             : 
    8048             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8049             :     Assert(delstate->ndeltids > 0);
    8050     1032038 :     for (int i = 0; i < delstate->ndeltids; i++)
    8051             :     {
    8052     1025102 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8053     1025102 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8054     1025102 :         ItemPointer htid = &ideltid->tid;
    8055             :         OffsetNumber offnum;
    8056             : 
    8057             :         /*
    8058             :          * Read buffer, and perform required extra steps each time a new block
    8059             :          * is encountered.  Avoid refetching if it's the same block as the one
    8060             :          * from the last htid.
    8061             :          */
    8062     2039764 :         if (blkno == InvalidBlockNumber ||
    8063     1014662 :             ItemPointerGetBlockNumber(htid) != blkno)
    8064             :         {
    8065             :             /*
    8066             :              * Consider giving up early for bottom-up index deletion caller
    8067             :              * first. (Only prefetch next-next block afterwards, when it
    8068             :              * becomes clear that we're at least going to access the next
    8069             :              * block in line.)
    8070             :              *
    8071             :              * Sometimes the first block frees so much space for bottom-up
    8072             :              * caller that the deletion process can end without accessing any
    8073             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8074             :              * per bottom-up deletion operation, though.
    8075             :              */
    8076       28256 :             if (delstate->bottomup)
    8077             :             {
    8078             :                 /*
    8079             :                  * We often allow caller to delete a few additional items
    8080             :                  * whose entries we reached after the point that space target
    8081             :                  * from caller was satisfied.  The cost of accessing the page
    8082             :                  * was already paid at that point, so it made sense to finish
    8083             :                  * it off.  When that happened, we finalize everything here
    8084             :                  * (by finishing off the whole bottom-up deletion operation
    8085             :                  * without needlessly paying the cost of accessing any more
    8086             :                  * blocks).
    8087             :                  */
    8088        7576 :                 if (bottomup_final_block)
    8089         294 :                     break;
    8090             : 
    8091             :                 /*
    8092             :                  * Give up when we didn't enable our caller to free any
    8093             :                  * additional space as a result of processing the page that we
    8094             :                  * just finished up with.  This rule is the main way in which
    8095             :                  * we keep the cost of bottom-up deletion under control.
    8096             :                  */
    8097        7282 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8098        3210 :                     break;
    8099        4072 :                 lastfreespace = actualfreespace;    /* for next time */
    8100             : 
    8101             :                 /*
    8102             :                  * Deletion operation (which is bottom-up) will definitely
    8103             :                  * access the next block in line.  Prepare for that now.
    8104             :                  *
    8105             :                  * Decay target free space so that we don't hang on for too
    8106             :                  * long with a marginal case. (Space target is only truly
    8107             :                  * helpful when it allows us to recognize that we don't need
    8108             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8109             :                  * agreeable workload characteristics.)
    8110             :                  *
    8111             :                  * We are a bit more patient when we encounter contiguous
    8112             :                  * blocks, though: these are treated as favorable blocks.  The
    8113             :                  * decay process is only applied when the next block in line
    8114             :                  * is not a favorable/contiguous block.  This is not an
    8115             :                  * exception to the general rule; we still insist on finding
    8116             :                  * at least one deletable item per block accessed.  See
    8117             :                  * bottomup_nblocksfavorable() for full details of the theory
    8118             :                  * behind favorable blocks and heap block locality in general.
    8119             :                  *
    8120             :                  * Note: The first block in line is always treated as a
    8121             :                  * favorable block, so the earliest possible point that the
    8122             :                  * decay can be applied is just before we access the second
    8123             :                  * block in line.  The Assert() verifies this for us.
    8124             :                  */
    8125             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8126        4072 :                 if (nblocksfavorable > 0)
    8127        3762 :                     nblocksfavorable--;
    8128             :                 else
    8129         310 :                     curtargetfreespace /= 2;
    8130             :             }
    8131             : 
    8132             :             /* release old buffer */
    8133       24752 :             if (BufferIsValid(buf))
    8134       14312 :                 UnlockReleaseBuffer(buf);
    8135             : 
    8136       24752 :             blkno = ItemPointerGetBlockNumber(htid);
    8137       24752 :             buf = ReadBuffer(rel, blkno);
    8138       24752 :             nblocksaccessed++;
    8139             :             Assert(!delstate->bottomup ||
    8140             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8141             : 
    8142             : #ifdef USE_PREFETCH
    8143             : 
    8144             :             /*
    8145             :              * To maintain the prefetch distance, prefetch one more page for
    8146             :              * each page we read.
    8147             :              */
    8148       24752 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8149             : #endif
    8150             : 
    8151       24752 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8152             : 
    8153       24752 :             page = BufferGetPage(buf);
    8154       24752 :             maxoff = PageGetMaxOffsetNumber(page);
    8155             :         }
    8156             : 
    8157             :         /*
    8158             :          * In passing, detect index corruption involving an index page with a
    8159             :          * TID that points to a location in the heap that couldn't possibly be
    8160             :          * correct.  We only do this with actual TIDs from caller's index page
    8161             :          * (not items reached by traversing through a HOT chain).
    8162             :          */
    8163     1021598 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8164             : 
    8165     1021598 :         if (istatus->knowndeletable)
    8166             :             Assert(!delstate->bottomup && !istatus->promising);
    8167             :         else
    8168             :         {
    8169      760838 :             ItemPointerData tmp = *htid;
    8170             :             HeapTupleData heapTuple;
    8171             : 
    8172             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8173      760838 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8174             :                                        &heapTuple, NULL, true))
    8175      449318 :                 continue;       /* can't delete entry */
    8176             : 
    8177             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8178      311520 :             istatus->knowndeletable = true;
    8179             : 
    8180             :             /* Maintain index free space info for bottom-up deletion case */
    8181      311520 :             if (delstate->bottomup)
    8182             :             {
    8183             :                 Assert(istatus->freespace > 0);
    8184       15040 :                 actualfreespace += istatus->freespace;
    8185       15040 :                 if (actualfreespace >= curtargetfreespace)
    8186        4770 :                     bottomup_final_block = true;
    8187             :             }
    8188             :         }
    8189             : 
    8190             :         /*
    8191             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8192             :          * whole by advancing current value using heap tuple headers.  This is
    8193             :          * loosely based on the logic for pruning a HOT chain.
    8194             :          */
    8195      572280 :         offnum = ItemPointerGetOffsetNumber(htid);
    8196      572280 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8197             :         for (;;)
    8198       40252 :         {
    8199             :             ItemId      lp;
    8200             :             HeapTupleHeader htup;
    8201             : 
    8202             :             /* Sanity check (pure paranoia) */
    8203      612532 :             if (offnum < FirstOffsetNumber)
    8204           0 :                 break;
    8205             : 
    8206             :             /*
    8207             :              * An offset past the end of page's line pointer array is possible
    8208             :              * when the array was truncated
    8209             :              */
    8210      612532 :             if (offnum > maxoff)
    8211           0 :                 break;
    8212             : 
    8213      612532 :             lp = PageGetItemId(page, offnum);
    8214      612532 :             if (ItemIdIsRedirected(lp))
    8215             :             {
    8216       18098 :                 offnum = ItemIdGetRedirect(lp);
    8217       18098 :                 continue;
    8218             :             }
    8219             : 
    8220             :             /*
    8221             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8222             :              * entry marked knowndeletable by our caller up front).  No heap
    8223             :              * tuple headers get examined for an htid that leads us to an
    8224             :              * LP_DEAD item.  This is okay because the earlier pruning
    8225             :              * operation that made the line pointer LP_DEAD in the first place
    8226             :              * must have considered the original tuple header as part of
    8227             :              * generating its own snapshotConflictHorizon value.
    8228             :              *
    8229             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8230             :              * the same strategy that index vacuuming uses in all cases. Index
    8231             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8232             :              * field of their own for this reason.
    8233             :              */
    8234      594434 :             if (!ItemIdIsNormal(lp))
    8235      378770 :                 break;
    8236             : 
    8237      215664 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8238             : 
    8239             :             /*
    8240             :              * Check the tuple XMIN against prior XMAX, if any
    8241             :              */
    8242      237818 :             if (TransactionIdIsValid(priorXmax) &&
    8243       22154 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8244           0 :                 break;
    8245             : 
    8246      215664 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8247             :                                                   &snapshotConflictHorizon);
    8248             : 
    8249             :             /*
    8250             :              * If the tuple is not HOT-updated, then we are at the end of this
    8251             :              * HOT-chain.  No need to visit later tuples from the same update
    8252             :              * chain (they get their own index entries) -- just move on to
    8253             :              * next htid from index AM caller.
    8254             :              */
    8255      215664 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8256             :                 break;
    8257             : 
    8258             :             /* Advance to next HOT chain member */
    8259             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8260       22154 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8261       22154 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8262             :         }
    8263             : 
    8264             :         /* Enable further/final shrinking of deltids for caller */
    8265      572280 :         finalndeltids = i + 1;
    8266             :     }
    8267             : 
    8268       10440 :     UnlockReleaseBuffer(buf);
    8269             : 
    8270             :     /*
    8271             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8272             :      * is not just a minor optimization.  Final deltids array size might be
    8273             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8274             :      * ndeltids being zero in all cases with zero total deletable entries.
    8275             :      */
    8276             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8277       10440 :     delstate->ndeltids = finalndeltids;
    8278             : 
    8279       10440 :     return snapshotConflictHorizon;
    8280             : }
    8281             : 
    8282             : /*
    8283             :  * Specialized inlineable comparison function for index_delete_sort()
    8284             :  */
    8285             : static inline int
    8286    23925366 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8287             : {
    8288    23925366 :     ItemPointer tid1 = &deltid1->tid;
    8289    23925366 :     ItemPointer tid2 = &deltid2->tid;
    8290             : 
    8291             :     {
    8292    23925366 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8293    23925366 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8294             : 
    8295    23925366 :         if (blk1 != blk2)
    8296     9707608 :             return (blk1 < blk2) ? -1 : 1;
    8297             :     }
    8298             :     {
    8299    14217758 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8300    14217758 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8301             : 
    8302    14217758 :         if (pos1 != pos2)
    8303    14217758 :             return (pos1 < pos2) ? -1 : 1;
    8304             :     }
    8305             : 
    8306             :     Assert(false);
    8307             : 
    8308           0 :     return 0;
    8309             : }
    8310             : 
    8311             : /*
    8312             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8313             :  * processing by heap_index_delete_tuples().
    8314             :  *
    8315             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8316             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8317             :  * We use shellsort for this because it's easy to specialize, compiles to
    8318             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8319             :  * (which are typical here).
    8320             :  */
    8321             : static void
    8322       10440 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8323             : {
    8324       10440 :     TM_IndexDelete *deltids = delstate->deltids;
    8325       10440 :     int         ndeltids = delstate->ndeltids;
    8326             : 
    8327             :     /*
    8328             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8329             :      *
    8330             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8331             :      * all supported BLCKSZ values.
    8332             :      */
    8333       10440 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8334             : 
    8335             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8336             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8337             :                      "element size exceeds 8 bytes");
    8338             : 
    8339      104400 :     for (int g = 0; g < lengthof(gaps); g++)
    8340             :     {
    8341    14345716 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8342             :         {
    8343    14251756 :             TM_IndexDelete d = deltids[i];
    8344    14251756 :             int         j = i;
    8345             : 
    8346    24608696 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8347             :             {
    8348    10356940 :                 deltids[j] = deltids[j - hi];
    8349    10356940 :                 j -= hi;
    8350             :             }
    8351    14251756 :             deltids[j] = d;
    8352             :         }
    8353             :     }
    8354       10440 : }
    8355             : 
    8356             : /*
    8357             :  * Returns how many blocks should be considered favorable/contiguous for a
    8358             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8359             :  * from and includes the first block in line.
    8360             :  *
    8361             :  * There is always at least one favorable block during bottom-up index
    8362             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8363             :  * first block in line (the only favorable block) can be thought of as a
    8364             :  * degenerate array of contiguous blocks that consists of a single block.
    8365             :  * heap_index_delete_tuples() will expect this.
    8366             :  *
    8367             :  * Caller passes blockgroups, a description of the final order that deltids
    8368             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8369             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8370             :  * only passes deltids to us so that we can interpret blockgroups).
    8371             :  *
    8372             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8373             :  * since in general the main factor that determines which blocks we visit is
    8374             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8375             :  * We're not really targeting the general case, though -- the actual goal is
    8376             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8377             :  * The effects of most of the heuristics we apply are only noticeable in the
    8378             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8379             :  * passes.
    8380             :  *
    8381             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8382             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8383             :  * accessed contiguously, in the sense that each newly visited block is the
    8384             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8385             :  * close enough to it).  It will likely be cheaper to access more favorable
    8386             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8387             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8388             :  * (or a matter of further correlated version churn) before all blocks that
    8389             :  * appear together as a single large batch of favorable blocks get accessed by
    8390             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8391             :  * appear almost constantly or not even once (it all depends on per-index
    8392             :  * workload characteristics).
    8393             :  *
    8394             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8395             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8396             :  * batched together, at least with workloads that are naturally amenable to
    8397             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8398             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8399             :  * enables temporal locality of access, since sorting by heap block number
    8400             :  * naturally tends to make the bottom-up processing order deterministic.
    8401             :  *
    8402             :  * Consider the following example to get a sense of how temporal locality
    8403             :  * might matter: There is a heap relation with several indexes, each of which
    8404             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8405             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8406             :  * the indexes are logically modified by the UPDATE statements (if they were
    8407             :  * then bottom-up index deletion would not be triggered in the first place).
    8408             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8409             :  * heap_update() call) will have the same heap TID in each and every index.
    8410             :  * Since these indexes are low cardinality and never get logically modified,
    8411             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8412             :  * in approximately sequential order.  Temporal locality of access occurs due
    8413             :  * to bottom-up deletion passes behaving very similarly across each of the
    8414             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8415             :  * to visit heap blocks to a minimum.
    8416             :  */
    8417             : static int
    8418        3504 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8419             :                           TM_IndexDelete *deltids)
    8420             : {
    8421        3504 :     int64       lastblock = -1;
    8422        3504 :     int         nblocksfavorable = 0;
    8423             : 
    8424             :     Assert(nblockgroups >= 1);
    8425             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8426             : 
    8427             :     /*
    8428             :      * We tolerate heap blocks that will be accessed only slightly out of
    8429             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8430             :      * blocks happen to fall into different buckets (perhaps due only to a
    8431             :      * small difference in npromisingtids that the bucketing scheme didn't
    8432             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8433             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8434             :      * but it works well enough in practice.
    8435             :      */
    8436       10972 :     for (int b = 0; b < nblockgroups; b++)
    8437             :     {
    8438       10498 :         IndexDeleteCounts *group = blockgroups + b;
    8439       10498 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8440       10498 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8441             : 
    8442       10498 :         if (lastblock != -1 &&
    8443        6994 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8444        6004 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8445             :             break;
    8446             : 
    8447        7468 :         nblocksfavorable++;
    8448        7468 :         lastblock = block;
    8449             :     }
    8450             : 
    8451             :     /* Always indicate that there is at least 1 favorable block */
    8452             :     Assert(nblocksfavorable >= 1);
    8453             : 
    8454        3504 :     return nblocksfavorable;
    8455             : }
    8456             : 
    8457             : /*
    8458             :  * qsort comparison function for bottomup_sort_and_shrink()
    8459             :  */
    8460             : static int
    8461      354544 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8462             : {
    8463      354544 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8464      354544 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8465             : 
    8466             :     /*
    8467             :      * Most significant field is npromisingtids (which we invert the order of
    8468             :      * so as to sort in desc order).
    8469             :      *
    8470             :      * Caller should have already normalized npromisingtids fields into
    8471             :      * power-of-two values (buckets).
    8472             :      */
    8473      354544 :     if (group1->npromisingtids > group2->npromisingtids)
    8474       17054 :         return -1;
    8475      337490 :     if (group1->npromisingtids < group2->npromisingtids)
    8476       21276 :         return 1;
    8477             : 
    8478             :     /*
    8479             :      * Tiebreak: desc ntids sort order.
    8480             :      *
    8481             :      * We cannot expect power-of-two values for ntids fields.  We should
    8482             :      * behave as if they were already rounded up for us instead.
    8483             :      */
    8484      316214 :     if (group1->ntids != group2->ntids)
    8485             :     {
    8486      229276 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8487      229276 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8488             : 
    8489      229276 :         if (ntids1 > ntids2)
    8490       32698 :             return -1;
    8491      196578 :         if (ntids1 < ntids2)
    8492       38452 :             return 1;
    8493             :     }
    8494             : 
    8495             :     /*
    8496             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8497             :      * block in deltids array) order.
    8498             :      *
    8499             :      * This is equivalent to sorting in ascending heap block number order
    8500             :      * (among otherwise equal subsets of the array).  This approach allows us
    8501             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8502             :      * that the deltids array was sorted in ascending heap TID order when
    8503             :      * these offsets to the first TID from each heap block group were formed.)
    8504             :      */
    8505      245064 :     if (group1->ifirsttid > group2->ifirsttid)
    8506      120608 :         return 1;
    8507      124456 :     if (group1->ifirsttid < group2->ifirsttid)
    8508      124456 :         return -1;
    8509             : 
    8510           0 :     pg_unreachable();
    8511             : 
    8512             :     return 0;
    8513             : }
    8514             : 
    8515             : /*
    8516             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8517             :  *
    8518             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8519             :  * deletion.  The array should already be sorted in TID order when we're
    8520             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8521             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8522             :  * known to have the most "promising" TIDs.
    8523             :  *
    8524             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8525             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8526             :  * return.  This often means that deltids will be shrunk to a small fraction
    8527             :  * of its original size (we eliminate many heap blocks from consideration for
    8528             :  * caller up front).
    8529             :  *
    8530             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8531             :  * for a definition and full details.
    8532             :  */
    8533             : static int
    8534        3504 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8535             : {
    8536             :     IndexDeleteCounts *blockgroups;
    8537             :     TM_IndexDelete *reordereddeltids;
    8538        3504 :     BlockNumber curblock = InvalidBlockNumber;
    8539        3504 :     int         nblockgroups = 0;
    8540        3504 :     int         ncopied = 0;
    8541        3504 :     int         nblocksfavorable = 0;
    8542             : 
    8543             :     Assert(delstate->bottomup);
    8544             :     Assert(delstate->ndeltids > 0);
    8545             : 
    8546             :     /* Calculate per-heap-block count of TIDs */
    8547        3504 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8548     1759962 :     for (int i = 0; i < delstate->ndeltids; i++)
    8549             :     {
    8550     1756458 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8551     1756458 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8552     1756458 :         ItemPointer htid = &ideltid->tid;
    8553     1756458 :         bool        promising = istatus->promising;
    8554             : 
    8555     1756458 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8556             :         {
    8557             :             /* New block group */
    8558       67472 :             nblockgroups++;
    8559             : 
    8560             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8561             :                    !BlockNumberIsValid(curblock));
    8562             : 
    8563       67472 :             curblock = ItemPointerGetBlockNumber(htid);
    8564       67472 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8565       67472 :             blockgroups[nblockgroups - 1].ntids = 1;
    8566       67472 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8567             :         }
    8568             :         else
    8569             :         {
    8570     1688986 :             blockgroups[nblockgroups - 1].ntids++;
    8571             :         }
    8572             : 
    8573     1756458 :         if (promising)
    8574      220926 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8575             :     }
    8576             : 
    8577             :     /*
    8578             :      * We're about ready to sort block groups to determine the optimal order
    8579             :      * for visiting heap blocks.  But before we do, round the number of
    8580             :      * promising tuples for each block group up to the next power-of-two,
    8581             :      * unless it is very low (less than 4), in which case we round up to 4.
    8582             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8583             :      * of block groups that both have very low values.
    8584             :      *
    8585             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8586             :      * contains blocks that have _approximately_ the same number of promising
    8587             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8588             :      * in the total number of promising entries, so that the whole process can
    8589             :      * give a little weight to heapam factors (like heap block locality)
    8590             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8591             :      * would be foolish to interpret small differences in npromisingtids
    8592             :      * values as anything more than noise.
    8593             :      *
    8594             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8595             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8596             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8597             :      * only reason that we don't fix nhtids in the same way here too is that
    8598             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8599             :      * bucketization dynamically instead (in the sort comparator).
    8600             :      *
    8601             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8602             :      * heap locality/favorable blocks can significantly influence when and how
    8603             :      * heap blocks are accessed.
    8604             :      */
    8605       70976 :     for (int b = 0; b < nblockgroups; b++)
    8606             :     {
    8607       67472 :         IndexDeleteCounts *group = blockgroups + b;
    8608             : 
    8609             :         /* Better off falling back on nhtids with low npromisingtids */
    8610       67472 :         if (group->npromisingtids <= 4)
    8611       57294 :             group->npromisingtids = 4;
    8612             :         else
    8613       10178 :             group->npromisingtids =
    8614       10178 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8615             :     }
    8616             : 
    8617             :     /* Sort groups and rearrange caller's deltids array */
    8618        3504 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8619             :           bottomup_sort_and_shrink_cmp);
    8620        3504 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8621             : 
    8622        3504 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8623             :     /* Determine number of favorable blocks at the start of final deltids */
    8624        3504 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8625             :                                                  delstate->deltids);
    8626             : 
    8627       23310 :     for (int b = 0; b < nblockgroups; b++)
    8628             :     {
    8629       19806 :         IndexDeleteCounts *group = blockgroups + b;
    8630       19806 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8631             : 
    8632       19806 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8633       19806 :                sizeof(TM_IndexDelete) * group->ntids);
    8634       19806 :         ncopied += group->ntids;
    8635             :     }
    8636             : 
    8637             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8638        3504 :     memcpy(delstate->deltids, reordereddeltids,
    8639             :            sizeof(TM_IndexDelete) * ncopied);
    8640        3504 :     delstate->ndeltids = ncopied;
    8641             : 
    8642        3504 :     pfree(reordereddeltids);
    8643        3504 :     pfree(blockgroups);
    8644             : 
    8645        3504 :     return nblocksfavorable;
    8646             : }
    8647             : 
    8648             : /*
    8649             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8650             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8651             :  * corresponding visibility map block.  Both should have already been modified
    8652             :  * and dirtied.
    8653             :  *
    8654             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8655             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8656             :  *
    8657             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8658             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8659             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8660             :  * update the heap page's LSN.
    8661             :  */
    8662             : XLogRecPtr
    8663       77930 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8664             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8665             : {
    8666             :     xl_heap_visible xlrec;
    8667             :     XLogRecPtr  recptr;
    8668             :     uint8       flags;
    8669             : 
    8670             :     Assert(BufferIsValid(heap_buffer));
    8671             :     Assert(BufferIsValid(vm_buffer));
    8672             : 
    8673       77930 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8674       77930 :     xlrec.flags = vmflags;
    8675       77930 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8676         242 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8677       77930 :     XLogBeginInsert();
    8678       77930 :     XLogRegisterData((char *) &xlrec, SizeOfHeapVisible);
    8679             : 
    8680       77930 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8681             : 
    8682       77930 :     flags = REGBUF_STANDARD;
    8683       77930 :     if (!XLogHintBitIsNeeded())
    8684        5852 :         flags |= REGBUF_NO_IMAGE;
    8685       77930 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8686             : 
    8687       77930 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8688             : 
    8689       77930 :     return recptr;
    8690             : }
    8691             : 
    8692             : /*
    8693             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8694             :  * have modified the buffer(s) and marked them dirty.
    8695             :  */
    8696             : static XLogRecPtr
    8697      550008 : log_heap_update(Relation reln, Buffer oldbuf,
    8698             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8699             :                 HeapTuple old_key_tuple,
    8700             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8701             : {
    8702             :     xl_heap_update xlrec;
    8703             :     xl_heap_header xlhdr;
    8704             :     xl_heap_header xlhdr_idx;
    8705             :     uint8       info;
    8706             :     uint16      prefix_suffix[2];
    8707      550008 :     uint16      prefixlen = 0,
    8708      550008 :                 suffixlen = 0;
    8709             :     XLogRecPtr  recptr;
    8710      550008 :     Page        page = BufferGetPage(newbuf);
    8711      550008 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8712             :     bool        init;
    8713             :     int         bufflags;
    8714             : 
    8715             :     /* Caller should not call me on a non-WAL-logged relation */
    8716             :     Assert(RelationNeedsWAL(reln));
    8717             : 
    8718      550008 :     XLogBeginInsert();
    8719             : 
    8720      550008 :     if (HeapTupleIsHeapOnly(newtup))
    8721      264530 :         info = XLOG_HEAP_HOT_UPDATE;
    8722             :     else
    8723      285478 :         info = XLOG_HEAP_UPDATE;
    8724             : 
    8725             :     /*
    8726             :      * If the old and new tuple are on the same page, we only need to log the
    8727             :      * parts of the new tuple that were changed.  That saves on the amount of
    8728             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8729             :      * the beginning and end of the tuple.  That's quick to check, and
    8730             :      * perfectly covers the common case that only one field is updated.
    8731             :      *
    8732             :      * We could do this even if the old and new tuple are on different pages,
    8733             :      * but only if we don't make a full-page image of the old page, which is
    8734             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8735             :      * some reason, it would allow the corruption to propagate the new page,
    8736             :      * so it seems best to avoid.  Under the general assumption that most
    8737             :      * updates tend to create the new tuple version on the same page, there
    8738             :      * isn't much to be gained by doing this across pages anyway.
    8739             :      *
    8740             :      * Skip this if we're taking a full-page image of the new page, as we
    8741             :      * don't include the new tuple in the WAL record in that case.  Also
    8742             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8743             :      * read the new tuple in whole from the WAL record alone.
    8744             :      */
    8745      550008 :     if (oldbuf == newbuf && !need_tuple_data &&
    8746      264340 :         !XLogCheckBufferNeedsBackup(newbuf))
    8747             :     {
    8748      263714 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8749      263714 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8750      263714 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8751      263714 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8752             : 
    8753             :         /* Check for common prefix between old and new tuple */
    8754    20557770 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8755             :         {
    8756    20513236 :             if (newp[prefixlen] != oldp[prefixlen])
    8757      219180 :                 break;
    8758             :         }
    8759             : 
    8760             :         /*
    8761             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8762             :          * at least 3 bytes or there's no point.
    8763             :          */
    8764      263714 :         if (prefixlen < 3)
    8765       44094 :             prefixlen = 0;
    8766             : 
    8767             :         /* Same for suffix */
    8768     8713062 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8769             :         {
    8770     8668078 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8771      218730 :                 break;
    8772             :         }
    8773      263714 :         if (suffixlen < 3)
    8774       62792 :             suffixlen = 0;
    8775             :     }
    8776             : 
    8777             :     /* Prepare main WAL data chain */
    8778      550008 :     xlrec.flags = 0;
    8779      550008 :     if (all_visible_cleared)
    8780        2386 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8781      550008 :     if (new_all_visible_cleared)
    8782        1196 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8783      550008 :     if (prefixlen > 0)
    8784      219620 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8785      550008 :     if (suffixlen > 0)
    8786      200922 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8787      550008 :     if (need_tuple_data)
    8788             :     {
    8789       94042 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8790       94042 :         if (old_key_tuple)
    8791             :         {
    8792         284 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8793         126 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8794             :             else
    8795         158 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8796             :         }
    8797             :     }
    8798             : 
    8799             :     /* If new tuple is the single and first tuple on page... */
    8800      556256 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8801        6248 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8802             :     {
    8803        5974 :         info |= XLOG_HEAP_INIT_PAGE;
    8804        5974 :         init = true;
    8805             :     }
    8806             :     else
    8807      544034 :         init = false;
    8808             : 
    8809             :     /* Prepare WAL data for the old page */
    8810      550008 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8811      550008 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8812     1100016 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8813      550008 :                                               oldtup->t_data->t_infomask2);
    8814             : 
    8815             :     /* Prepare WAL data for the new page */
    8816      550008 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8817      550008 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8818             : 
    8819      550008 :     bufflags = REGBUF_STANDARD;
    8820      550008 :     if (init)
    8821        5974 :         bufflags |= REGBUF_WILL_INIT;
    8822      550008 :     if (need_tuple_data)
    8823       94042 :         bufflags |= REGBUF_KEEP_DATA;
    8824             : 
    8825      550008 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8826      550008 :     if (oldbuf != newbuf)
    8827      261786 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8828             : 
    8829      550008 :     XLogRegisterData((char *) &xlrec, SizeOfHeapUpdate);
    8830             : 
    8831             :     /*
    8832             :      * Prepare WAL data for the new tuple.
    8833             :      */
    8834      550008 :     if (prefixlen > 0 || suffixlen > 0)
    8835             :     {
    8836      262830 :         if (prefixlen > 0 && suffixlen > 0)
    8837             :         {
    8838      157712 :             prefix_suffix[0] = prefixlen;
    8839      157712 :             prefix_suffix[1] = suffixlen;
    8840      157712 :             XLogRegisterBufData(0, (char *) &prefix_suffix, sizeof(uint16) * 2);
    8841             :         }
    8842      105118 :         else if (prefixlen > 0)
    8843             :         {
    8844       61908 :             XLogRegisterBufData(0, (char *) &prefixlen, sizeof(uint16));
    8845             :         }
    8846             :         else
    8847             :         {
    8848       43210 :             XLogRegisterBufData(0, (char *) &suffixlen, sizeof(uint16));
    8849             :         }
    8850             :     }
    8851             : 
    8852      550008 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    8853      550008 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    8854      550008 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    8855             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    8856             : 
    8857             :     /*
    8858             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    8859             :      *
    8860             :      * The 'data' doesn't include the common prefix or suffix.
    8861             :      */
    8862      550008 :     XLogRegisterBufData(0, (char *) &xlhdr, SizeOfHeapHeader);
    8863      550008 :     if (prefixlen == 0)
    8864             :     {
    8865      330388 :         XLogRegisterBufData(0,
    8866      330388 :                             ((char *) newtup->t_data) + SizeofHeapTupleHeader,
    8867      330388 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    8868             :     }
    8869             :     else
    8870             :     {
    8871             :         /*
    8872             :          * Have to write the null bitmap and data after the common prefix as
    8873             :          * two separate rdata entries.
    8874             :          */
    8875             :         /* bitmap [+ padding] [+ oid] */
    8876      219620 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    8877             :         {
    8878      219620 :             XLogRegisterBufData(0,
    8879      219620 :                                 ((char *) newtup->t_data) + SizeofHeapTupleHeader,
    8880      219620 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    8881             :         }
    8882             : 
    8883             :         /* data after common prefix */
    8884      219620 :         XLogRegisterBufData(0,
    8885      219620 :                             ((char *) newtup->t_data) + newtup->t_data->t_hoff + prefixlen,
    8886      219620 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    8887             :     }
    8888             : 
    8889             :     /* We need to log a tuple identity */
    8890      550008 :     if (need_tuple_data && old_key_tuple)
    8891             :     {
    8892             :         /* don't really need this, but its more comfy to decode */
    8893         284 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    8894         284 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    8895         284 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    8896             : 
    8897         284 :         XLogRegisterData((char *) &xlhdr_idx, SizeOfHeapHeader);
    8898             : 
    8899             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    8900         284 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    8901         284 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    8902             :     }
    8903             : 
    8904             :     /* filtering by origin on a row level is much more efficient */
    8905      550008 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    8906             : 
    8907      550008 :     recptr = XLogInsert(RM_HEAP_ID, info);
    8908             : 
    8909      550008 :     return recptr;
    8910             : }
    8911             : 
    8912             : /*
    8913             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    8914             :  *
    8915             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    8916             :  * tuples.
    8917             :  */
    8918             : static XLogRecPtr
    8919       46250 : log_heap_new_cid(Relation relation, HeapTuple tup)
    8920             : {
    8921             :     xl_heap_new_cid xlrec;
    8922             : 
    8923             :     XLogRecPtr  recptr;
    8924       46250 :     HeapTupleHeader hdr = tup->t_data;
    8925             : 
    8926             :     Assert(ItemPointerIsValid(&tup->t_self));
    8927             :     Assert(tup->t_tableOid != InvalidOid);
    8928             : 
    8929       46250 :     xlrec.top_xid = GetTopTransactionId();
    8930       46250 :     xlrec.target_locator = relation->rd_locator;
    8931       46250 :     xlrec.target_tid = tup->t_self;
    8932             : 
    8933             :     /*
    8934             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    8935             :      * combo CID, set cmin and cmax.
    8936             :      */
    8937       46250 :     if (hdr->t_infomask & HEAP_COMBOCID)
    8938             :     {
    8939             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    8940             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    8941        4000 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    8942        4000 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    8943        4000 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    8944             :     }
    8945             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    8946             :     else
    8947             :     {
    8948             :         /*
    8949             :          * Tuple inserted.
    8950             :          *
    8951             :          * We need to check for LOCK ONLY because multixacts might be
    8952             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    8953             :          * which case there will be an xmax, although the tuple just got
    8954             :          * inserted.
    8955             :          */
    8956       42250 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    8957       12786 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    8958             :         {
    8959       29466 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    8960       29466 :             xlrec.cmax = InvalidCommandId;
    8961             :         }
    8962             :         /* Tuple from a different tx updated or deleted. */
    8963             :         else
    8964             :         {
    8965       12784 :             xlrec.cmin = InvalidCommandId;
    8966       12784 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    8967             :         }
    8968       42250 :         xlrec.combocid = InvalidCommandId;
    8969             :     }
    8970             : 
    8971             :     /*
    8972             :      * Note that we don't need to register the buffer here, because this
    8973             :      * operation does not modify the page. The insert/update/delete that
    8974             :      * called us certainly did, but that's WAL-logged separately.
    8975             :      */
    8976       46250 :     XLogBeginInsert();
    8977       46250 :     XLogRegisterData((char *) &xlrec, SizeOfHeapNewCid);
    8978             : 
    8979             :     /* will be looked at irrespective of origin */
    8980             : 
    8981       46250 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    8982             : 
    8983       46250 :     return recptr;
    8984             : }
    8985             : 
    8986             : /*
    8987             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    8988             :  * the old tuple in an UPDATE or DELETE.
    8989             :  *
    8990             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    8991             :  * key defined.
    8992             :  *
    8993             :  * Pass key_required true if any replica identity columns changed value, or if
    8994             :  * any of them have any external data.  Delete must always pass true.
    8995             :  *
    8996             :  * *copy is set to true if the returned tuple is a modified copy rather than
    8997             :  * the same tuple that was passed in.
    8998             :  */
    8999             : static HeapTuple
    9000     3478492 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9001             :                        bool *copy)
    9002             : {
    9003     3478492 :     TupleDesc   desc = RelationGetDescr(relation);
    9004     3478492 :     char        replident = relation->rd_rel->relreplident;
    9005             :     Bitmapset  *idattrs;
    9006             :     HeapTuple   key_tuple;
    9007             :     bool        nulls[MaxHeapAttributeNumber];
    9008             :     Datum       values[MaxHeapAttributeNumber];
    9009             : 
    9010     3478492 :     *copy = false;
    9011             : 
    9012     3478492 :     if (!RelationIsLogicallyLogged(relation))
    9013     3277918 :         return NULL;
    9014             : 
    9015      200574 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9016         462 :         return NULL;
    9017             : 
    9018      200112 :     if (replident == REPLICA_IDENTITY_FULL)
    9019             :     {
    9020             :         /*
    9021             :          * When logging the entire old tuple, it very well could contain
    9022             :          * toasted columns. If so, force them to be inlined.
    9023             :          */
    9024         382 :         if (HeapTupleHasExternal(tp))
    9025             :         {
    9026           8 :             *copy = true;
    9027           8 :             tp = toast_flatten_tuple(tp, desc);
    9028             :         }
    9029         382 :         return tp;
    9030             :     }
    9031             : 
    9032             :     /* if the key isn't required and we're only logging the key, we're done */
    9033      199730 :     if (!key_required)
    9034       93758 :         return NULL;
    9035             : 
    9036             :     /* find out the replica identity columns */
    9037      105972 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9038             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9039             : 
    9040             :     /*
    9041             :      * If there's no defined replica identity columns, treat as !key_required.
    9042             :      * (This case should not be reachable from heap_update, since that should
    9043             :      * calculate key_required accurately.  But heap_delete just passes
    9044             :      * constant true for key_required, so we can hit this case in deletes.)
    9045             :      */
    9046      105972 :     if (bms_is_empty(idattrs))
    9047       12042 :         return NULL;
    9048             : 
    9049             :     /*
    9050             :      * Construct a new tuple containing only the replica identity columns,
    9051             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9052             :      * identity columns aren't null.
    9053             :      */
    9054       93930 :     heap_deform_tuple(tp, desc, values, nulls);
    9055             : 
    9056      301770 :     for (int i = 0; i < desc->natts; i++)
    9057             :     {
    9058      207840 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9059             :                           idattrs))
    9060             :             Assert(!nulls[i]);
    9061             :         else
    9062      113886 :             nulls[i] = true;
    9063             :     }
    9064             : 
    9065       93930 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9066       93930 :     *copy = true;
    9067             : 
    9068       93930 :     bms_free(idattrs);
    9069             : 
    9070             :     /*
    9071             :      * If the tuple, which by here only contains indexed columns, still has
    9072             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9073             :      * since there's limits on the size of indexed columns, so we don't
    9074             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9075             :      * the indexed columns, even if it would be more efficient.
    9076             :      */
    9077       93930 :     if (HeapTupleHasExternal(key_tuple))
    9078             :     {
    9079           8 :         HeapTuple   oldtup = key_tuple;
    9080             : 
    9081           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9082           8 :         heap_freetuple(oldtup);
    9083             :     }
    9084             : 
    9085       93930 :     return key_tuple;
    9086             : }
    9087             : 
    9088             : /*
    9089             :  * HeapCheckForSerializableConflictOut
    9090             :  *      We are reading a tuple.  If it's not visible, there may be a
    9091             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9092             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9093             :  *
    9094             :  * We will determine the top level xid of the writing transaction with which
    9095             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9096             :  * for overlap with our own transaction.
    9097             :  *
    9098             :  * This function should be called just about anywhere in heapam.c where a
    9099             :  * tuple has been read. The caller must hold at least a shared lock on the
    9100             :  * buffer, because this function might set hint bits on the tuple. There is
    9101             :  * currently no known reason to call this function from an index AM.
    9102             :  */
    9103             : void
    9104    57759114 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9105             :                                     HeapTuple tuple, Buffer buffer,
    9106             :                                     Snapshot snapshot)
    9107             : {
    9108             :     TransactionId xid;
    9109             :     HTSV_Result htsvResult;
    9110             : 
    9111    57759114 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9112    57708444 :         return;
    9113             : 
    9114             :     /*
    9115             :      * Check to see whether the tuple has been written to by a concurrent
    9116             :      * transaction, either to create it not visible to us, or to delete it
    9117             :      * while it is visible to us.  The "visible" bool indicates whether the
    9118             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9119             :      * is going on with it.
    9120             :      *
    9121             :      * In the event of a concurrently inserted tuple that also happens to have
    9122             :      * been concurrently updated (by a separate transaction), the xmin of the
    9123             :      * tuple will be used -- not the updater's xid.
    9124             :      */
    9125       50670 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9126       50670 :     switch (htsvResult)
    9127             :     {
    9128       49066 :         case HEAPTUPLE_LIVE:
    9129       49066 :             if (visible)
    9130       49040 :                 return;
    9131          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9132          26 :             break;
    9133         704 :         case HEAPTUPLE_RECENTLY_DEAD:
    9134             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9135         704 :             if (visible)
    9136         562 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9137             :             else
    9138         142 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9139             : 
    9140         704 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9141             :             {
    9142             :                 /* This is like the HEAPTUPLE_DEAD case */
    9143             :                 Assert(!visible);
    9144         130 :                 return;
    9145             :             }
    9146         574 :             break;
    9147         652 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9148         652 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9149         652 :             break;
    9150         248 :         case HEAPTUPLE_DEAD:
    9151             :             Assert(!visible);
    9152         248 :             return;
    9153           0 :         default:
    9154             : 
    9155             :             /*
    9156             :              * The only way to get to this default clause is if a new value is
    9157             :              * added to the enum type without adding it to this switch
    9158             :              * statement.  That's a bug, so elog.
    9159             :              */
    9160           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9161             : 
    9162             :             /*
    9163             :              * In spite of having all enum values covered and calling elog on
    9164             :              * this default, some compilers think this is a code path which
    9165             :              * allows xid to be used below without initialization. Silence
    9166             :              * that warning.
    9167             :              */
    9168             :             xid = InvalidTransactionId;
    9169             :     }
    9170             : 
    9171             :     Assert(TransactionIdIsValid(xid));
    9172             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9173             : 
    9174             :     /*
    9175             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9176             :      * if it's our own xid.
    9177             :      */
    9178        1252 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9179         124 :         return;
    9180        1128 :     xid = SubTransGetTopmostTransaction(xid);
    9181        1128 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9182           0 :         return;
    9183             : 
    9184        1128 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9185             : }

Generated by: LCOV version 1.14