LCOV - code coverage report
Current view: top level - src/backend/access/heap - heapam.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 2481 2706 91.7 %
Date: 2025-02-22 07:14:56 Functions: 80 80 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * heapam.c
       4             :  *    heap access method code
       5             :  *
       6             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       7             :  * Portions Copyright (c) 1994, Regents of the University of California
       8             :  *
       9             :  *
      10             :  * IDENTIFICATION
      11             :  *    src/backend/access/heap/heapam.c
      12             :  *
      13             :  *
      14             :  * INTERFACE ROUTINES
      15             :  *      heap_beginscan  - begin relation scan
      16             :  *      heap_rescan     - restart a relation scan
      17             :  *      heap_endscan    - end relation scan
      18             :  *      heap_getnext    - retrieve next tuple in scan
      19             :  *      heap_fetch      - retrieve tuple with given tid
      20             :  *      heap_insert     - insert tuple into a relation
      21             :  *      heap_multi_insert - insert multiple tuples into a relation
      22             :  *      heap_delete     - delete a tuple from a relation
      23             :  *      heap_update     - replace a tuple in a relation with another tuple
      24             :  *
      25             :  * NOTES
      26             :  *    This file contains the heap_ routines which implement
      27             :  *    the POSTGRES heap access method used for all POSTGRES
      28             :  *    relations.
      29             :  *
      30             :  *-------------------------------------------------------------------------
      31             :  */
      32             : #include "postgres.h"
      33             : 
      34             : #include "access/heapam.h"
      35             : #include "access/heaptoast.h"
      36             : #include "access/hio.h"
      37             : #include "access/multixact.h"
      38             : #include "access/subtrans.h"
      39             : #include "access/syncscan.h"
      40             : #include "access/valid.h"
      41             : #include "access/visibilitymap.h"
      42             : #include "access/xloginsert.h"
      43             : #include "catalog/pg_database.h"
      44             : #include "catalog/pg_database_d.h"
      45             : #include "commands/vacuum.h"
      46             : #include "pgstat.h"
      47             : #include "port/pg_bitutils.h"
      48             : #include "storage/lmgr.h"
      49             : #include "storage/predicate.h"
      50             : #include "storage/procarray.h"
      51             : #include "utils/datum.h"
      52             : #include "utils/injection_point.h"
      53             : #include "utils/inval.h"
      54             : #include "utils/spccache.h"
      55             : #include "utils/syscache.h"
      56             : 
      57             : 
      58             : static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup,
      59             :                                      TransactionId xid, CommandId cid, int options);
      60             : static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
      61             :                                   Buffer newbuf, HeapTuple oldtup,
      62             :                                   HeapTuple newtup, HeapTuple old_key_tuple,
      63             :                                   bool all_visible_cleared, bool new_all_visible_cleared);
      64             : #ifdef USE_ASSERT_CHECKING
      65             : static void check_lock_if_inplace_updateable_rel(Relation relation,
      66             :                                                  ItemPointer otid,
      67             :                                                  HeapTuple newtup);
      68             : static void check_inplace_rel_lock(HeapTuple oldtup);
      69             : #endif
      70             : static Bitmapset *HeapDetermineColumnsInfo(Relation relation,
      71             :                                            Bitmapset *interesting_cols,
      72             :                                            Bitmapset *external_cols,
      73             :                                            HeapTuple oldtup, HeapTuple newtup,
      74             :                                            bool *has_external);
      75             : static bool heap_acquire_tuplock(Relation relation, ItemPointer tid,
      76             :                                  LockTupleMode mode, LockWaitPolicy wait_policy,
      77             :                                  bool *have_tuple_lock);
      78             : static inline BlockNumber heapgettup_advance_block(HeapScanDesc scan,
      79             :                                                    BlockNumber block,
      80             :                                                    ScanDirection dir);
      81             : static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan,
      82             :                                                         ScanDirection dir);
      83             : static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
      84             :                                       uint16 old_infomask2, TransactionId add_to_xmax,
      85             :                                       LockTupleMode mode, bool is_update,
      86             :                                       TransactionId *result_xmax, uint16 *result_infomask,
      87             :                                       uint16 *result_infomask2);
      88             : static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple,
      89             :                                          ItemPointer ctid, TransactionId xid,
      90             :                                          LockTupleMode mode);
      91             : static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
      92             :                                    uint16 *new_infomask2);
      93             : static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax,
      94             :                                              uint16 t_infomask);
      95             : static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
      96             :                                     LockTupleMode lockmode, bool *current_is_member);
      97             : static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
      98             :                             Relation rel, ItemPointer ctid, XLTW_Oper oper,
      99             :                             int *remaining);
     100             : static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
     101             :                                        uint16 infomask, Relation rel, int *remaining);
     102             : static void index_delete_sort(TM_IndexDeleteOp *delstate);
     103             : static int  bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
     104             : static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
     105             : static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
     106             :                                         bool *copy);
     107             : 
     108             : 
     109             : /*
     110             :  * Each tuple lock mode has a corresponding heavyweight lock, and one or two
     111             :  * corresponding MultiXactStatuses (one to merely lock tuples, another one to
     112             :  * update them).  This table (and the macros below) helps us determine the
     113             :  * heavyweight lock mode and MultiXactStatus values to use for any particular
     114             :  * tuple lock strength.
     115             :  *
     116             :  * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
     117             :  *
     118             :  * Don't look at lockstatus/updstatus directly!  Use get_mxact_status_for_lock
     119             :  * instead.
     120             :  */
     121             : static const struct
     122             : {
     123             :     LOCKMODE    hwlock;
     124             :     int         lockstatus;
     125             :     int         updstatus;
     126             : }
     127             : 
     128             :             tupleLockExtraInfo[MaxLockTupleMode + 1] =
     129             : {
     130             :     {                           /* LockTupleKeyShare */
     131             :         AccessShareLock,
     132             :         MultiXactStatusForKeyShare,
     133             :         -1                      /* KeyShare does not allow updating tuples */
     134             :     },
     135             :     {                           /* LockTupleShare */
     136             :         RowShareLock,
     137             :         MultiXactStatusForShare,
     138             :         -1                      /* Share does not allow updating tuples */
     139             :     },
     140             :     {                           /* LockTupleNoKeyExclusive */
     141             :         ExclusiveLock,
     142             :         MultiXactStatusForNoKeyUpdate,
     143             :         MultiXactStatusNoKeyUpdate
     144             :     },
     145             :     {                           /* LockTupleExclusive */
     146             :         AccessExclusiveLock,
     147             :         MultiXactStatusForUpdate,
     148             :         MultiXactStatusUpdate
     149             :     }
     150             : };
     151             : 
     152             : /* Get the LOCKMODE for a given MultiXactStatus */
     153             : #define LOCKMODE_from_mxstatus(status) \
     154             :             (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
     155             : 
     156             : /*
     157             :  * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
     158             :  * This is more readable than having every caller translate it to lock.h's
     159             :  * LOCKMODE.
     160             :  */
     161             : #define LockTupleTuplock(rel, tup, mode) \
     162             :     LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     163             : #define UnlockTupleTuplock(rel, tup, mode) \
     164             :     UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     165             : #define ConditionalLockTupleTuplock(rel, tup, mode) \
     166             :     ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
     167             : 
     168             : #ifdef USE_PREFETCH
     169             : /*
     170             :  * heap_index_delete_tuples and index_delete_prefetch_buffer use this
     171             :  * structure to coordinate prefetching activity
     172             :  */
     173             : typedef struct
     174             : {
     175             :     BlockNumber cur_hblkno;
     176             :     int         next_item;
     177             :     int         ndeltids;
     178             :     TM_IndexDelete *deltids;
     179             : } IndexDeletePrefetchState;
     180             : #endif
     181             : 
     182             : /* heap_index_delete_tuples bottom-up index deletion costing constants */
     183             : #define BOTTOMUP_MAX_NBLOCKS            6
     184             : #define BOTTOMUP_TOLERANCE_NBLOCKS      3
     185             : 
     186             : /*
     187             :  * heap_index_delete_tuples uses this when determining which heap blocks it
     188             :  * must visit to help its bottom-up index deletion caller
     189             :  */
     190             : typedef struct IndexDeleteCounts
     191             : {
     192             :     int16       npromisingtids; /* Number of "promising" TIDs in group */
     193             :     int16       ntids;          /* Number of TIDs in group */
     194             :     int16       ifirsttid;      /* Offset to group's first deltid */
     195             : } IndexDeleteCounts;
     196             : 
     197             : /*
     198             :  * This table maps tuple lock strength values for each particular
     199             :  * MultiXactStatus value.
     200             :  */
     201             : static const int MultiXactStatusLock[MaxMultiXactStatus + 1] =
     202             : {
     203             :     LockTupleKeyShare,          /* ForKeyShare */
     204             :     LockTupleShare,             /* ForShare */
     205             :     LockTupleNoKeyExclusive,    /* ForNoKeyUpdate */
     206             :     LockTupleExclusive,         /* ForUpdate */
     207             :     LockTupleNoKeyExclusive,    /* NoKeyUpdate */
     208             :     LockTupleExclusive          /* Update */
     209             : };
     210             : 
     211             : /* Get the LockTupleMode for a given MultiXactStatus */
     212             : #define TUPLOCK_from_mxstatus(status) \
     213             :             (MultiXactStatusLock[(status)])
     214             : 
     215             : /* ----------------------------------------------------------------
     216             :  *                       heap support routines
     217             :  * ----------------------------------------------------------------
     218             :  */
     219             : 
     220             : /*
     221             :  * Streaming read API callback for parallel sequential scans. Returns the next
     222             :  * block the caller wants from the read stream or InvalidBlockNumber when done.
     223             :  */
     224             : static BlockNumber
     225      201252 : heap_scan_stream_read_next_parallel(ReadStream *stream,
     226             :                                     void *callback_private_data,
     227             :                                     void *per_buffer_data)
     228             : {
     229      201252 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     230             : 
     231             :     Assert(ScanDirectionIsForward(scan->rs_dir));
     232             :     Assert(scan->rs_base.rs_parallel);
     233             : 
     234      201252 :     if (unlikely(!scan->rs_inited))
     235             :     {
     236             :         /* parallel scan */
     237        2810 :         table_block_parallelscan_startblock_init(scan->rs_base.rs_rd,
     238        2810 :                                                  scan->rs_parallelworkerdata,
     239        2810 :                                                  (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     240             : 
     241             :         /* may return InvalidBlockNumber if there are no more blocks */
     242        5620 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     243        2810 :                                                                     scan->rs_parallelworkerdata,
     244        2810 :                                                                     (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel);
     245        2810 :         scan->rs_inited = true;
     246             :     }
     247             :     else
     248             :     {
     249      198442 :         scan->rs_prefetch_block = table_block_parallelscan_nextpage(scan->rs_base.rs_rd,
     250      198442 :                                                                     scan->rs_parallelworkerdata, (ParallelBlockTableScanDesc)
     251      198442 :                                                                     scan->rs_base.rs_parallel);
     252             :     }
     253             : 
     254      201252 :     return scan->rs_prefetch_block;
     255             : }
     256             : 
     257             : /*
     258             :  * Streaming read API callback for serial sequential and TID range scans.
     259             :  * Returns the next block the caller wants from the read stream or
     260             :  * InvalidBlockNumber when done.
     261             :  */
     262             : static BlockNumber
     263     6803784 : heap_scan_stream_read_next_serial(ReadStream *stream,
     264             :                                   void *callback_private_data,
     265             :                                   void *per_buffer_data)
     266             : {
     267     6803784 :     HeapScanDesc scan = (HeapScanDesc) callback_private_data;
     268             : 
     269     6803784 :     if (unlikely(!scan->rs_inited))
     270             :     {
     271     1718698 :         scan->rs_prefetch_block = heapgettup_initial_block(scan, scan->rs_dir);
     272     1718698 :         scan->rs_inited = true;
     273             :     }
     274             :     else
     275     5085086 :         scan->rs_prefetch_block = heapgettup_advance_block(scan,
     276             :                                                            scan->rs_prefetch_block,
     277             :                                                            scan->rs_dir);
     278             : 
     279     6803784 :     return scan->rs_prefetch_block;
     280             : }
     281             : 
     282             : /* ----------------
     283             :  *      initscan - scan code common to heap_beginscan and heap_rescan
     284             :  * ----------------
     285             :  */
     286             : static void
     287     1764344 : initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
     288             : {
     289     1764344 :     ParallelBlockTableScanDesc bpscan = NULL;
     290             :     bool        allow_strat;
     291             :     bool        allow_sync;
     292             : 
     293             :     /*
     294             :      * Determine the number of blocks we have to scan.
     295             :      *
     296             :      * It is sufficient to do this once at scan start, since any tuples added
     297             :      * while the scan is in progress will be invisible to my snapshot anyway.
     298             :      * (That is not true when using a non-MVCC snapshot.  However, we couldn't
     299             :      * guarantee to return tuples added after scan start anyway, since they
     300             :      * might go into pages we already scanned.  To guarantee consistent
     301             :      * results for a non-MVCC snapshot, the caller must hold some higher-level
     302             :      * lock that ensures the interesting tuple(s) won't change.)
     303             :      */
     304     1764344 :     if (scan->rs_base.rs_parallel != NULL)
     305             :     {
     306        4006 :         bpscan = (ParallelBlockTableScanDesc) scan->rs_base.rs_parallel;
     307        4006 :         scan->rs_nblocks = bpscan->phs_nblocks;
     308             :     }
     309             :     else
     310     1760338 :         scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_base.rs_rd);
     311             : 
     312             :     /*
     313             :      * If the table is large relative to NBuffers, use a bulk-read access
     314             :      * strategy and enable synchronized scanning (see syncscan.c).  Although
     315             :      * the thresholds for these features could be different, we make them the
     316             :      * same so that there are only two behaviors to tune rather than four.
     317             :      * (However, some callers need to be able to disable one or both of these
     318             :      * behaviors, independently of the size of the table; also there is a GUC
     319             :      * variable that can disable synchronized scanning.)
     320             :      *
     321             :      * Note that table_block_parallelscan_initialize has a very similar test;
     322             :      * if you change this, consider changing that one, too.
     323             :      */
     324     1764340 :     if (!RelationUsesLocalBuffers(scan->rs_base.rs_rd) &&
     325     1752058 :         scan->rs_nblocks > NBuffers / 4)
     326             :     {
     327       23848 :         allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
     328       23848 :         allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
     329             :     }
     330             :     else
     331     1740492 :         allow_strat = allow_sync = false;
     332             : 
     333     1764340 :     if (allow_strat)
     334             :     {
     335             :         /* During a rescan, keep the previous strategy object. */
     336       21346 :         if (scan->rs_strategy == NULL)
     337       21068 :             scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
     338             :     }
     339             :     else
     340             :     {
     341     1742994 :         if (scan->rs_strategy != NULL)
     342           0 :             FreeAccessStrategy(scan->rs_strategy);
     343     1742994 :         scan->rs_strategy = NULL;
     344             :     }
     345             : 
     346     1764340 :     if (scan->rs_base.rs_parallel != NULL)
     347             :     {
     348             :         /* For parallel scan, believe whatever ParallelTableScanDesc says. */
     349        4006 :         if (scan->rs_base.rs_parallel->phs_syncscan)
     350           4 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     351             :         else
     352        4002 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     353             :     }
     354     1760334 :     else if (keep_startblock)
     355             :     {
     356             :         /*
     357             :          * When rescanning, we want to keep the previous startblock setting,
     358             :          * so that rewinding a cursor doesn't generate surprising results.
     359             :          * Reset the active syncscan setting, though.
     360             :          */
     361     1058978 :         if (allow_sync && synchronize_seqscans)
     362          40 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     363             :         else
     364     1058938 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     365             :     }
     366      701356 :     else if (allow_sync && synchronize_seqscans)
     367             :     {
     368         118 :         scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
     369         118 :         scan->rs_startblock = ss_get_location(scan->rs_base.rs_rd, scan->rs_nblocks);
     370             :     }
     371             :     else
     372             :     {
     373      701238 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     374      701238 :         scan->rs_startblock = 0;
     375             :     }
     376             : 
     377     1764340 :     scan->rs_numblocks = InvalidBlockNumber;
     378     1764340 :     scan->rs_inited = false;
     379     1764340 :     scan->rs_ctup.t_data = NULL;
     380     1764340 :     ItemPointerSetInvalid(&scan->rs_ctup.t_self);
     381     1764340 :     scan->rs_cbuf = InvalidBuffer;
     382     1764340 :     scan->rs_cblock = InvalidBlockNumber;
     383     1764340 :     scan->rs_ntuples = 0;
     384     1764340 :     scan->rs_cindex = 0;
     385             : 
     386             :     /*
     387             :      * Initialize to ForwardScanDirection because it is most common and
     388             :      * because heap scans go forward before going backward (e.g. CURSORs).
     389             :      */
     390     1764340 :     scan->rs_dir = ForwardScanDirection;
     391     1764340 :     scan->rs_prefetch_block = InvalidBlockNumber;
     392             : 
     393             :     /* page-at-a-time fields are always invalid when not rs_inited */
     394             : 
     395             :     /*
     396             :      * copy the scan key, if appropriate
     397             :      */
     398     1764340 :     if (key != NULL && scan->rs_base.rs_nkeys > 0)
     399      389320 :         memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
     400             : 
     401             :     /*
     402             :      * Currently, we only have a stats counter for sequential heap scans (but
     403             :      * e.g for bitmap scans the underlying bitmap index scans will be counted,
     404             :      * and for sample scans we update stats for tuple fetches).
     405             :      */
     406     1764340 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
     407     1722770 :         pgstat_count_heap_scan(scan->rs_base.rs_rd);
     408     1764340 : }
     409             : 
     410             : /*
     411             :  * heap_setscanlimits - restrict range of a heapscan
     412             :  *
     413             :  * startBlk is the page to start at
     414             :  * numBlks is number of pages to scan (InvalidBlockNumber means "all")
     415             :  */
     416             : void
     417        3772 : heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
     418             : {
     419        3772 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     420             : 
     421             :     Assert(!scan->rs_inited);    /* else too late to change */
     422             :     /* else rs_startblock is significant */
     423             :     Assert(!(scan->rs_base.rs_flags & SO_ALLOW_SYNC));
     424             : 
     425             :     /* Check startBlk is valid (but allow case of zero blocks...) */
     426             :     Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
     427             : 
     428        3772 :     scan->rs_startblock = startBlk;
     429        3772 :     scan->rs_numblocks = numBlks;
     430        3772 : }
     431             : 
     432             : /*
     433             :  * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
     434             :  * multiple times, with constant arguments for all_visible,
     435             :  * check_serializable.
     436             :  */
     437             : pg_attribute_always_inline
     438             : static int
     439     5084232 : page_collect_tuples(HeapScanDesc scan, Snapshot snapshot,
     440             :                     Page page, Buffer buffer,
     441             :                     BlockNumber block, int lines,
     442             :                     bool all_visible, bool check_serializable)
     443             : {
     444     5084232 :     int         ntup = 0;
     445             :     OffsetNumber lineoff;
     446             : 
     447   255087764 :     for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
     448             :     {
     449   250003548 :         ItemId      lpp = PageGetItemId(page, lineoff);
     450             :         HeapTupleData loctup;
     451             :         bool        valid;
     452             : 
     453   250003548 :         if (!ItemIdIsNormal(lpp))
     454    56103708 :             continue;
     455             : 
     456   193899840 :         loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     457   193899840 :         loctup.t_len = ItemIdGetLength(lpp);
     458   193899840 :         loctup.t_tableOid = RelationGetRelid(scan->rs_base.rs_rd);
     459   193899840 :         ItemPointerSet(&(loctup.t_self), block, lineoff);
     460             : 
     461   193899840 :         if (all_visible)
     462    70066298 :             valid = true;
     463             :         else
     464   123833542 :             valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
     465             : 
     466   193899840 :         if (check_serializable)
     467        2810 :             HeapCheckForSerializableConflictOut(valid, scan->rs_base.rs_rd,
     468             :                                                 &loctup, buffer, snapshot);
     469             : 
     470   193899824 :         if (valid)
     471             :         {
     472   177201392 :             scan->rs_vistuples[ntup] = lineoff;
     473   177201392 :             ntup++;
     474             :         }
     475             :     }
     476             : 
     477             :     Assert(ntup <= MaxHeapTuplesPerPage);
     478             : 
     479     5084216 :     return ntup;
     480             : }
     481             : 
     482             : /*
     483             :  * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
     484             :  *
     485             :  * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
     486             :  * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
     487             :  */
     488             : void
     489     5084232 : heap_prepare_pagescan(TableScanDesc sscan)
     490             : {
     491     5084232 :     HeapScanDesc scan = (HeapScanDesc) sscan;
     492     5084232 :     Buffer      buffer = scan->rs_cbuf;
     493     5084232 :     BlockNumber block = scan->rs_cblock;
     494             :     Snapshot    snapshot;
     495             :     Page        page;
     496             :     int         lines;
     497             :     bool        all_visible;
     498             :     bool        check_serializable;
     499             : 
     500             :     Assert(BufferGetBlockNumber(buffer) == block);
     501             : 
     502             :     /* ensure we're not accidentally being used when not in pagemode */
     503             :     Assert(scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE);
     504     5084232 :     snapshot = scan->rs_base.rs_snapshot;
     505             : 
     506             :     /*
     507             :      * Prune and repair fragmentation for the whole page, if possible.
     508             :      */
     509     5084232 :     heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
     510             : 
     511             :     /*
     512             :      * We must hold share lock on the buffer content while examining tuple
     513             :      * visibility.  Afterwards, however, the tuples we have found to be
     514             :      * visible are guaranteed good as long as we hold the buffer pin.
     515             :      */
     516     5084232 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
     517             : 
     518     5084232 :     page = BufferGetPage(buffer);
     519     5084232 :     lines = PageGetMaxOffsetNumber(page);
     520             : 
     521             :     /*
     522             :      * If the all-visible flag indicates that all tuples on the page are
     523             :      * visible to everyone, we can skip the per-tuple visibility tests.
     524             :      *
     525             :      * Note: In hot standby, a tuple that's already visible to all
     526             :      * transactions on the primary might still be invisible to a read-only
     527             :      * transaction in the standby. We partly handle this problem by tracking
     528             :      * the minimum xmin of visible tuples as the cut-off XID while marking a
     529             :      * page all-visible on the primary and WAL log that along with the
     530             :      * visibility map SET operation. In hot standby, we wait for (or abort)
     531             :      * all transactions that can potentially may not see one or more tuples on
     532             :      * the page. That's how index-only scans work fine in hot standby. A
     533             :      * crucial difference between index-only scans and heap scans is that the
     534             :      * index-only scan completely relies on the visibility map where as heap
     535             :      * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
     536             :      * the page-level flag can be trusted in the same way, because it might
     537             :      * get propagated somehow without being explicitly WAL-logged, e.g. via a
     538             :      * full page write. Until we can prove that beyond doubt, let's check each
     539             :      * tuple for visibility the hard way.
     540             :      */
     541     5084232 :     all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
     542             :     check_serializable =
     543     5084232 :         CheckForSerializableConflictOutNeeded(scan->rs_base.rs_rd, snapshot);
     544             : 
     545             :     /*
     546             :      * We call page_collect_tuples() with constant arguments, to get the
     547             :      * compiler to constant fold the constant arguments. Separate calls with
     548             :      * constant arguments, rather than variables, are needed on several
     549             :      * compilers to actually perform constant folding.
     550             :      */
     551     5084232 :     if (likely(all_visible))
     552             :     {
     553     1665038 :         if (likely(!check_serializable))
     554     1665038 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     555             :                                                    block, lines, true, false);
     556             :         else
     557           0 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     558             :                                                    block, lines, true, true);
     559             :     }
     560             :     else
     561             :     {
     562     3419194 :         if (likely(!check_serializable))
     563     3417956 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     564             :                                                    block, lines, false, false);
     565             :         else
     566        1238 :             scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
     567             :                                                    block, lines, false, true);
     568             :     }
     569             : 
     570     5084216 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
     571     5084216 : }
     572             : 
     573             : /*
     574             :  * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
     575             :  *
     576             :  * Read the next block of the scan relation from the read stream and save it
     577             :  * in the scan descriptor.  It is already pinned.
     578             :  */
     579             : static inline void
     580     6681686 : heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
     581             : {
     582             :     Assert(scan->rs_read_stream);
     583             : 
     584             :     /* release previous scan buffer, if any */
     585     6681686 :     if (BufferIsValid(scan->rs_cbuf))
     586             :     {
     587     4960174 :         ReleaseBuffer(scan->rs_cbuf);
     588     4960174 :         scan->rs_cbuf = InvalidBuffer;
     589             :     }
     590             : 
     591             :     /*
     592             :      * Be sure to check for interrupts at least once per page.  Checks at
     593             :      * higher code levels won't be able to stop a seqscan that encounters many
     594             :      * pages' worth of consecutive dead tuples.
     595             :      */
     596     6681686 :     CHECK_FOR_INTERRUPTS();
     597             : 
     598             :     /*
     599             :      * If the scan direction is changing, reset the prefetch block to the
     600             :      * current block. Otherwise, we will incorrectly prefetch the blocks
     601             :      * between the prefetch block and the current block again before
     602             :      * prefetching blocks in the new, correct scan direction.
     603             :      */
     604     6681680 :     if (unlikely(scan->rs_dir != dir))
     605             :     {
     606         154 :         scan->rs_prefetch_block = scan->rs_cblock;
     607         154 :         read_stream_reset(scan->rs_read_stream);
     608             :     }
     609             : 
     610     6681680 :     scan->rs_dir = dir;
     611             : 
     612     6681680 :     scan->rs_cbuf = read_stream_next_buffer(scan->rs_read_stream, NULL);
     613     6681680 :     if (BufferIsValid(scan->rs_cbuf))
     614     5262364 :         scan->rs_cblock = BufferGetBlockNumber(scan->rs_cbuf);
     615     6681680 : }
     616             : 
     617             : /*
     618             :  * heapgettup_initial_block - return the first BlockNumber to scan
     619             :  *
     620             :  * Returns InvalidBlockNumber when there are no blocks to scan.  This can
     621             :  * occur with empty tables and in parallel scans when parallel workers get all
     622             :  * of the pages before we can get a chance to get our first page.
     623             :  */
     624             : static pg_noinline BlockNumber
     625     1718698 : heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
     626             : {
     627             :     Assert(!scan->rs_inited);
     628             :     Assert(scan->rs_base.rs_parallel == NULL);
     629             : 
     630             :     /* When there are no pages to scan, return InvalidBlockNumber */
     631     1718698 :     if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
     632      790430 :         return InvalidBlockNumber;
     633             : 
     634      928268 :     if (ScanDirectionIsForward(dir))
     635             :     {
     636      928204 :         return scan->rs_startblock;
     637             :     }
     638             :     else
     639             :     {
     640             :         /*
     641             :          * Disable reporting to syncscan logic in a backwards scan; it's not
     642             :          * very likely anyone else is doing the same thing at the same time,
     643             :          * and much more likely that we'll just bollix things for forward
     644             :          * scanners.
     645             :          */
     646          64 :         scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
     647             : 
     648             :         /*
     649             :          * Start from last page of the scan.  Ensure we take into account
     650             :          * rs_numblocks if it's been adjusted by heap_setscanlimits().
     651             :          */
     652          64 :         if (scan->rs_numblocks != InvalidBlockNumber)
     653           6 :             return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
     654             : 
     655          58 :         if (scan->rs_startblock > 0)
     656           0 :             return scan->rs_startblock - 1;
     657             : 
     658          58 :         return scan->rs_nblocks - 1;
     659             :     }
     660             : }
     661             : 
     662             : 
     663             : /*
     664             :  * heapgettup_start_page - helper function for heapgettup()
     665             :  *
     666             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     667             :  * to the number of tuples on this page.  Also set *lineoff to the first
     668             :  * offset to scan with forward scans getting the first offset and backward
     669             :  * getting the final offset on the page.
     670             :  */
     671             : static Page
     672      186686 : heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     673             :                       OffsetNumber *lineoff)
     674             : {
     675             :     Page        page;
     676             : 
     677             :     Assert(scan->rs_inited);
     678             :     Assert(BufferIsValid(scan->rs_cbuf));
     679             : 
     680             :     /* Caller is responsible for ensuring buffer is locked if needed */
     681      186686 :     page = BufferGetPage(scan->rs_cbuf);
     682             : 
     683      186686 :     *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
     684             : 
     685      186686 :     if (ScanDirectionIsForward(dir))
     686      186686 :         *lineoff = FirstOffsetNumber;
     687             :     else
     688           0 :         *lineoff = (OffsetNumber) (*linesleft);
     689             : 
     690             :     /* lineoff now references the physically previous or next tid */
     691      186686 :     return page;
     692             : }
     693             : 
     694             : 
     695             : /*
     696             :  * heapgettup_continue_page - helper function for heapgettup()
     697             :  *
     698             :  * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
     699             :  * to the number of tuples left to scan on this page.  Also set *lineoff to
     700             :  * the next offset to scan according to the ScanDirection in 'dir'.
     701             :  */
     702             : static inline Page
     703    15599848 : heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft,
     704             :                          OffsetNumber *lineoff)
     705             : {
     706             :     Page        page;
     707             : 
     708             :     Assert(scan->rs_inited);
     709             :     Assert(BufferIsValid(scan->rs_cbuf));
     710             : 
     711             :     /* Caller is responsible for ensuring buffer is locked if needed */
     712    15599848 :     page = BufferGetPage(scan->rs_cbuf);
     713             : 
     714    15599848 :     if (ScanDirectionIsForward(dir))
     715             :     {
     716    15599848 :         *lineoff = OffsetNumberNext(scan->rs_coffset);
     717    15599848 :         *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
     718             :     }
     719             :     else
     720             :     {
     721             :         /*
     722             :          * The previous returned tuple may have been vacuumed since the
     723             :          * previous scan when we use a non-MVCC snapshot, so we must
     724             :          * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
     725             :          */
     726           0 :         *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
     727           0 :         *linesleft = *lineoff;
     728             :     }
     729             : 
     730             :     /* lineoff now references the physically previous or next tid */
     731    15599848 :     return page;
     732             : }
     733             : 
     734             : /*
     735             :  * heapgettup_advance_block - helper for heap_fetch_next_buffer()
     736             :  *
     737             :  * Given the current block number, the scan direction, and various information
     738             :  * contained in the scan descriptor, calculate the BlockNumber to scan next
     739             :  * and return it.  If there are no further blocks to scan, return
     740             :  * InvalidBlockNumber to indicate this fact to the caller.
     741             :  *
     742             :  * This should not be called to determine the initial block number -- only for
     743             :  * subsequent blocks.
     744             :  *
     745             :  * This also adjusts rs_numblocks when a limit has been imposed by
     746             :  * heap_setscanlimits().
     747             :  */
     748             : static inline BlockNumber
     749     5085086 : heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
     750             : {
     751             :     Assert(scan->rs_base.rs_parallel == NULL);
     752             : 
     753     5085086 :     if (likely(ScanDirectionIsForward(dir)))
     754             :     {
     755     5084968 :         block++;
     756             : 
     757             :         /* wrap back to the start of the heap */
     758     5084968 :         if (block >= scan->rs_nblocks)
     759      749956 :             block = 0;
     760             : 
     761             :         /*
     762             :          * Report our new scan position for synchronization purposes. We don't
     763             :          * do that when moving backwards, however. That would just mess up any
     764             :          * other forward-moving scanners.
     765             :          *
     766             :          * Note: we do this before checking for end of scan so that the final
     767             :          * state of the position hint is back at the start of the rel.  That's
     768             :          * not strictly necessary, but otherwise when you run the same query
     769             :          * multiple times the starting position would shift a little bit
     770             :          * backwards on every invocation, which is confusing. We don't
     771             :          * guarantee any specific ordering in general, though.
     772             :          */
     773     5084968 :         if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
     774       17574 :             ss_report_location(scan->rs_base.rs_rd, block);
     775             : 
     776             :         /* we're done if we're back at where we started */
     777     5084968 :         if (block == scan->rs_startblock)
     778      749874 :             return InvalidBlockNumber;
     779             : 
     780             :         /* check if the limit imposed by heap_setscanlimits() is met */
     781     4335094 :         if (scan->rs_numblocks != InvalidBlockNumber)
     782             :         {
     783        3180 :             if (--scan->rs_numblocks == 0)
     784        3052 :                 return InvalidBlockNumber;
     785             :         }
     786             : 
     787     4332042 :         return block;
     788             :     }
     789             :     else
     790             :     {
     791             :         /* we're done if the last block is the start position */
     792         118 :         if (block == scan->rs_startblock)
     793         118 :             return InvalidBlockNumber;
     794             : 
     795             :         /* check if the limit imposed by heap_setscanlimits() is met */
     796           0 :         if (scan->rs_numblocks != InvalidBlockNumber)
     797             :         {
     798           0 :             if (--scan->rs_numblocks == 0)
     799           0 :                 return InvalidBlockNumber;
     800             :         }
     801             : 
     802             :         /* wrap to the end of the heap when the last page was page 0 */
     803           0 :         if (block == 0)
     804           0 :             block = scan->rs_nblocks;
     805             : 
     806           0 :         block--;
     807             : 
     808           0 :         return block;
     809             :     }
     810             : }
     811             : 
     812             : /* ----------------
     813             :  *      heapgettup - fetch next heap tuple
     814             :  *
     815             :  *      Initialize the scan if not already done; then advance to the next
     816             :  *      tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
     817             :  *      or set scan->rs_ctup.t_data = NULL if no more tuples.
     818             :  *
     819             :  * Note: the reason nkeys/key are passed separately, even though they are
     820             :  * kept in the scan descriptor, is that the caller may not want us to check
     821             :  * the scankeys.
     822             :  *
     823             :  * Note: when we fall off the end of the scan in either direction, we
     824             :  * reset rs_inited.  This means that a further request with the same
     825             :  * scan direction will restart the scan, which is a bit odd, but a
     826             :  * request with the opposite scan direction will start a fresh scan
     827             :  * in the proper direction.  The latter is required behavior for cursors,
     828             :  * while the former case is generally undefined behavior in Postgres
     829             :  * so we don't care too much.
     830             :  * ----------------
     831             :  */
     832             : static void
     833    15639802 : heapgettup(HeapScanDesc scan,
     834             :            ScanDirection dir,
     835             :            int nkeys,
     836             :            ScanKey key)
     837             : {
     838    15639802 :     HeapTuple   tuple = &(scan->rs_ctup);
     839             :     Page        page;
     840             :     OffsetNumber lineoff;
     841             :     int         linesleft;
     842             : 
     843    15639802 :     if (likely(scan->rs_inited))
     844             :     {
     845             :         /* continue from previously returned page/tuple */
     846    15599848 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     847    15599848 :         page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
     848    15599848 :         goto continue_page;
     849             :     }
     850             : 
     851             :     /*
     852             :      * advance the scan until we find a qualifying tuple or run out of stuff
     853             :      * to scan
     854             :      */
     855             :     while (true)
     856             :     {
     857      226340 :         heap_fetch_next_buffer(scan, dir);
     858             : 
     859             :         /* did we run out of blocks to scan? */
     860      226340 :         if (!BufferIsValid(scan->rs_cbuf))
     861       39654 :             break;
     862             : 
     863             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     864             : 
     865      186686 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
     866      186686 :         page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
     867    15786534 : continue_page:
     868             : 
     869             :         /*
     870             :          * Only continue scanning the page while we have lines left.
     871             :          *
     872             :          * Note that this protects us from accessing line pointers past
     873             :          * PageGetMaxOffsetNumber(); both for forward scans when we resume the
     874             :          * table scan, and for when we start scanning a new page.
     875             :          */
     876    15881514 :         for (; linesleft > 0; linesleft--, lineoff += dir)
     877             :         {
     878             :             bool        visible;
     879    15695128 :             ItemId      lpp = PageGetItemId(page, lineoff);
     880             : 
     881    15695128 :             if (!ItemIdIsNormal(lpp))
     882       84524 :                 continue;
     883             : 
     884    15610604 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
     885    15610604 :             tuple->t_len = ItemIdGetLength(lpp);
     886    15610604 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
     887             : 
     888    15610604 :             visible = HeapTupleSatisfiesVisibility(tuple,
     889             :                                                    scan->rs_base.rs_snapshot,
     890             :                                                    scan->rs_cbuf);
     891             : 
     892    15610604 :             HeapCheckForSerializableConflictOut(visible, scan->rs_base.rs_rd,
     893             :                                                 tuple, scan->rs_cbuf,
     894             :                                                 scan->rs_base.rs_snapshot);
     895             : 
     896             :             /* skip tuples not visible to this snapshot */
     897    15610604 :             if (!visible)
     898       10456 :                 continue;
     899             : 
     900             :             /* skip any tuples that don't match the scan key */
     901    15600148 :             if (key != NULL &&
     902           0 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
     903             :                              nkeys, key))
     904           0 :                 continue;
     905             : 
     906    15600148 :             LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     907    15600148 :             scan->rs_coffset = lineoff;
     908    15600148 :             return;
     909             :         }
     910             : 
     911             :         /*
     912             :          * if we get here, it means we've exhausted the items on this page and
     913             :          * it's time to move to the next.
     914             :          */
     915      186386 :         LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
     916             :     }
     917             : 
     918             :     /* end of scan */
     919       39654 :     if (BufferIsValid(scan->rs_cbuf))
     920           0 :         ReleaseBuffer(scan->rs_cbuf);
     921             : 
     922       39654 :     scan->rs_cbuf = InvalidBuffer;
     923       39654 :     scan->rs_cblock = InvalidBlockNumber;
     924       39654 :     scan->rs_prefetch_block = InvalidBlockNumber;
     925       39654 :     tuple->t_data = NULL;
     926       39654 :     scan->rs_inited = false;
     927             : }
     928             : 
     929             : /* ----------------
     930             :  *      heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
     931             :  *
     932             :  *      Same API as heapgettup, but used in page-at-a-time mode
     933             :  *
     934             :  * The internal logic is much the same as heapgettup's too, but there are some
     935             :  * differences: we do not take the buffer content lock (that only needs to
     936             :  * happen inside heap_prepare_pagescan), and we iterate through just the
     937             :  * tuples listed in rs_vistuples[] rather than all tuples on the page.  Notice
     938             :  * that lineindex is 0-based, where the corresponding loop variable lineoff in
     939             :  * heapgettup is 1-based.
     940             :  * ----------------
     941             :  */
     942             : static void
     943    90388372 : heapgettup_pagemode(HeapScanDesc scan,
     944             :                     ScanDirection dir,
     945             :                     int nkeys,
     946             :                     ScanKey key)
     947             : {
     948    90388372 :     HeapTuple   tuple = &(scan->rs_ctup);
     949             :     Page        page;
     950             :     uint32      lineindex;
     951             :     uint32      linesleft;
     952             : 
     953    90388372 :     if (likely(scan->rs_inited))
     954             :     {
     955             :         /* continue from previously returned page/tuple */
     956    88706814 :         page = BufferGetPage(scan->rs_cbuf);
     957             : 
     958    88706814 :         lineindex = scan->rs_cindex + dir;
     959    88706814 :         if (ScanDirectionIsForward(dir))
     960    88706156 :             linesleft = scan->rs_ntuples - lineindex;
     961             :         else
     962         658 :             linesleft = scan->rs_cindex;
     963             :         /* lineindex now references the next or previous visible tid */
     964             : 
     965    88706814 :         goto continue_page;
     966             :     }
     967             : 
     968             :     /*
     969             :      * advance the scan until we find a qualifying tuple or run out of stuff
     970             :      * to scan
     971             :      */
     972             :     while (true)
     973             :     {
     974     6455346 :         heap_fetch_next_buffer(scan, dir);
     975             : 
     976             :         /* did we run out of blocks to scan? */
     977     6455340 :         if (!BufferIsValid(scan->rs_cbuf))
     978     1379662 :             break;
     979             : 
     980             :         Assert(BufferGetBlockNumber(scan->rs_cbuf) == scan->rs_cblock);
     981             : 
     982             :         /* prune the page and determine visible tuple offsets */
     983     5075678 :         heap_prepare_pagescan((TableScanDesc) scan);
     984     5075662 :         page = BufferGetPage(scan->rs_cbuf);
     985     5075662 :         linesleft = scan->rs_ntuples;
     986     5075662 :         lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
     987             : 
     988             :         /* lineindex now references the next or previous visible tid */
     989    93782476 : continue_page:
     990             : 
     991   176212662 :         for (; linesleft > 0; linesleft--, lineindex += dir)
     992             :         {
     993             :             ItemId      lpp;
     994             :             OffsetNumber lineoff;
     995             : 
     996             :             Assert(lineindex <= scan->rs_ntuples);
     997   171438874 :             lineoff = scan->rs_vistuples[lineindex];
     998   171438874 :             lpp = PageGetItemId(page, lineoff);
     999             :             Assert(ItemIdIsNormal(lpp));
    1000             : 
    1001   171438874 :             tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
    1002   171438874 :             tuple->t_len = ItemIdGetLength(lpp);
    1003   171438874 :             ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
    1004             : 
    1005             :             /* skip any tuples that don't match the scan key */
    1006   171438874 :             if (key != NULL &&
    1007    83089216 :                 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
    1008             :                              nkeys, key))
    1009    82430186 :                 continue;
    1010             : 
    1011    89008688 :             scan->rs_cindex = lineindex;
    1012    89008688 :             return;
    1013             :         }
    1014             :     }
    1015             : 
    1016             :     /* end of scan */
    1017     1379662 :     if (BufferIsValid(scan->rs_cbuf))
    1018           0 :         ReleaseBuffer(scan->rs_cbuf);
    1019     1379662 :     scan->rs_cbuf = InvalidBuffer;
    1020     1379662 :     scan->rs_cblock = InvalidBlockNumber;
    1021     1379662 :     scan->rs_prefetch_block = InvalidBlockNumber;
    1022     1379662 :     tuple->t_data = NULL;
    1023     1379662 :     scan->rs_inited = false;
    1024             : }
    1025             : 
    1026             : 
    1027             : /* ----------------------------------------------------------------
    1028             :  *                   heap access method interface
    1029             :  * ----------------------------------------------------------------
    1030             :  */
    1031             : 
    1032             : 
    1033             : TableScanDesc
    1034      705258 : heap_beginscan(Relation relation, Snapshot snapshot,
    1035             :                int nkeys, ScanKey key,
    1036             :                ParallelTableScanDesc parallel_scan,
    1037             :                uint32 flags)
    1038             : {
    1039             :     HeapScanDesc scan;
    1040             : 
    1041             :     /*
    1042             :      * increment relation ref count while scanning relation
    1043             :      *
    1044             :      * This is just to make really sure the relcache entry won't go away while
    1045             :      * the scan has a pointer to it.  Caller should be holding the rel open
    1046             :      * anyway, so this is redundant in all normal scenarios...
    1047             :      */
    1048      705258 :     RelationIncrementReferenceCount(relation);
    1049             : 
    1050             :     /*
    1051             :      * allocate and initialize scan descriptor
    1052             :      */
    1053      705258 :     if (flags & SO_TYPE_BITMAPSCAN)
    1054             :     {
    1055       21322 :         BitmapHeapScanDesc bscan = palloc(sizeof(BitmapHeapScanDescData));
    1056             : 
    1057       21322 :         bscan->rs_vmbuffer = InvalidBuffer;
    1058       21322 :         bscan->rs_empty_tuples_pending = 0;
    1059       21322 :         scan = (HeapScanDesc) bscan;
    1060             :     }
    1061             :     else
    1062      683936 :         scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
    1063             : 
    1064      705258 :     scan->rs_base.rs_rd = relation;
    1065      705258 :     scan->rs_base.rs_snapshot = snapshot;
    1066      705258 :     scan->rs_base.rs_nkeys = nkeys;
    1067      705258 :     scan->rs_base.rs_flags = flags;
    1068      705258 :     scan->rs_base.rs_parallel = parallel_scan;
    1069      705258 :     scan->rs_strategy = NULL;    /* set in initscan */
    1070             : 
    1071             :     /*
    1072             :      * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
    1073             :      */
    1074      705258 :     if (!(snapshot && IsMVCCSnapshot(snapshot)))
    1075       54856 :         scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1076             : 
    1077             :     /*
    1078             :      * For seqscan and sample scans in a serializable transaction, acquire a
    1079             :      * predicate lock on the entire relation. This is required not only to
    1080             :      * lock all the matching tuples, but also to conflict with new insertions
    1081             :      * into the table. In an indexscan, we take page locks on the index pages
    1082             :      * covering the range specified in the scan qual, but in a heap scan there
    1083             :      * is nothing more fine-grained to lock. A bitmap scan is a different
    1084             :      * story, there we have already scanned the index and locked the index
    1085             :      * pages covering the predicate. But in that case we still have to lock
    1086             :      * any matching heap tuples. For sample scan we could optimize the locking
    1087             :      * to be at least page-level granularity, but we'd need to add per-tuple
    1088             :      * locking for that.
    1089             :      */
    1090      705258 :     if (scan->rs_base.rs_flags & (SO_TYPE_SEQSCAN | SO_TYPE_SAMPLESCAN))
    1091             :     {
    1092             :         /*
    1093             :          * Ensure a missing snapshot is noticed reliably, even if the
    1094             :          * isolation mode means predicate locking isn't performed (and
    1095             :          * therefore the snapshot isn't used here).
    1096             :          */
    1097             :         Assert(snapshot);
    1098      668196 :         PredicateLockRelation(relation, snapshot);
    1099             :     }
    1100             : 
    1101             :     /* we only need to set this up once */
    1102      705258 :     scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
    1103             : 
    1104             :     /*
    1105             :      * Allocate memory to keep track of page allocation for parallel workers
    1106             :      * when doing a parallel scan.
    1107             :      */
    1108      705258 :     if (parallel_scan != NULL)
    1109        3898 :         scan->rs_parallelworkerdata = palloc(sizeof(ParallelBlockTableScanWorkerData));
    1110             :     else
    1111      701360 :         scan->rs_parallelworkerdata = NULL;
    1112             : 
    1113             :     /*
    1114             :      * we do this here instead of in initscan() because heap_rescan also calls
    1115             :      * initscan() and we don't want to allocate memory again
    1116             :      */
    1117      705258 :     if (nkeys > 0)
    1118      389320 :         scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
    1119             :     else
    1120      315938 :         scan->rs_base.rs_key = NULL;
    1121             : 
    1122      705258 :     initscan(scan, key, false);
    1123             : 
    1124      705254 :     scan->rs_read_stream = NULL;
    1125             : 
    1126             :     /*
    1127             :      * Set up a read stream for sequential scans and TID range scans. This
    1128             :      * should be done after initscan() because initscan() allocates the
    1129             :      * BufferAccessStrategy object passed to the read stream API.
    1130             :      */
    1131      705254 :     if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
    1132       37208 :         scan->rs_base.rs_flags & SO_TYPE_TIDRANGESCAN)
    1133             :     {
    1134             :         ReadStreamBlockNumberCB cb;
    1135             : 
    1136      668158 :         if (scan->rs_base.rs_parallel)
    1137        3898 :             cb = heap_scan_stream_read_next_parallel;
    1138             :         else
    1139      664260 :             cb = heap_scan_stream_read_next_serial;
    1140             : 
    1141      668158 :         scan->rs_read_stream = read_stream_begin_relation(READ_STREAM_SEQUENTIAL,
    1142             :                                                           scan->rs_strategy,
    1143             :                                                           scan->rs_base.rs_rd,
    1144             :                                                           MAIN_FORKNUM,
    1145             :                                                           cb,
    1146             :                                                           scan,
    1147             :                                                           0);
    1148             :     }
    1149             : 
    1150             : 
    1151      705254 :     return (TableScanDesc) scan;
    1152             : }
    1153             : 
    1154             : void
    1155     1059086 : heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
    1156             :             bool allow_strat, bool allow_sync, bool allow_pagemode)
    1157             : {
    1158     1059086 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1159             : 
    1160     1059086 :     if (set_params)
    1161             :     {
    1162          30 :         if (allow_strat)
    1163          30 :             scan->rs_base.rs_flags |= SO_ALLOW_STRAT;
    1164             :         else
    1165           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
    1166             : 
    1167          30 :         if (allow_sync)
    1168          12 :             scan->rs_base.rs_flags |= SO_ALLOW_SYNC;
    1169             :         else
    1170          18 :             scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
    1171             : 
    1172          30 :         if (allow_pagemode && scan->rs_base.rs_snapshot &&
    1173          30 :             IsMVCCSnapshot(scan->rs_base.rs_snapshot))
    1174          30 :             scan->rs_base.rs_flags |= SO_ALLOW_PAGEMODE;
    1175             :         else
    1176           0 :             scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
    1177             :     }
    1178             : 
    1179             :     /*
    1180             :      * unpin scan buffers
    1181             :      */
    1182     1059086 :     if (BufferIsValid(scan->rs_cbuf))
    1183       10144 :         ReleaseBuffer(scan->rs_cbuf);
    1184             : 
    1185     1059086 :     if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1186             :     {
    1187        4260 :         BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) scan;
    1188             : 
    1189             :         /*
    1190             :          * Reset empty_tuples_pending, a field only used by bitmap heap scan,
    1191             :          * to avoid incorrectly emitting NULL-filled tuples from a previous
    1192             :          * scan on rescan.
    1193             :          */
    1194        4260 :         bscan->rs_empty_tuples_pending = 0;
    1195             : 
    1196        4260 :         if (BufferIsValid(bscan->rs_vmbuffer))
    1197             :         {
    1198          54 :             ReleaseBuffer(bscan->rs_vmbuffer);
    1199          54 :             bscan->rs_vmbuffer = InvalidBuffer;
    1200             :         }
    1201             :     }
    1202             : 
    1203             :     /*
    1204             :      * The read stream is reset on rescan. This must be done before
    1205             :      * initscan(), as some state referred to by read_stream_reset() is reset
    1206             :      * in initscan().
    1207             :      */
    1208     1059086 :     if (scan->rs_read_stream)
    1209     1054790 :         read_stream_reset(scan->rs_read_stream);
    1210             : 
    1211             :     /*
    1212             :      * reinitialize scan descriptor
    1213             :      */
    1214     1059086 :     initscan(scan, key, true);
    1215     1059086 : }
    1216             : 
    1217             : void
    1218      702486 : heap_endscan(TableScanDesc sscan)
    1219             : {
    1220      702486 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1221             : 
    1222             :     /* Note: no locking manipulations needed */
    1223             : 
    1224             :     /*
    1225             :      * unpin scan buffers
    1226             :      */
    1227      702486 :     if (BufferIsValid(scan->rs_cbuf))
    1228      305844 :         ReleaseBuffer(scan->rs_cbuf);
    1229             : 
    1230      702486 :     if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
    1231             :     {
    1232       21208 :         BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) sscan;
    1233             : 
    1234       21208 :         bscan->rs_empty_tuples_pending = 0;
    1235       21208 :         if (BufferIsValid(bscan->rs_vmbuffer))
    1236          54 :             ReleaseBuffer(bscan->rs_vmbuffer);
    1237             :     }
    1238             : 
    1239             :     /*
    1240             :      * Must free the read stream before freeing the BufferAccessStrategy.
    1241             :      */
    1242      702486 :     if (scan->rs_read_stream)
    1243      665594 :         read_stream_end(scan->rs_read_stream);
    1244             : 
    1245             :     /*
    1246             :      * decrement relation reference count and free scan descriptor storage
    1247             :      */
    1248      702486 :     RelationDecrementReferenceCount(scan->rs_base.rs_rd);
    1249             : 
    1250      702486 :     if (scan->rs_base.rs_key)
    1251      389260 :         pfree(scan->rs_base.rs_key);
    1252             : 
    1253      702486 :     if (scan->rs_strategy != NULL)
    1254       21050 :         FreeAccessStrategy(scan->rs_strategy);
    1255             : 
    1256      702486 :     if (scan->rs_parallelworkerdata != NULL)
    1257        3898 :         pfree(scan->rs_parallelworkerdata);
    1258             : 
    1259      702486 :     if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
    1260       69864 :         UnregisterSnapshot(scan->rs_base.rs_snapshot);
    1261             : 
    1262      702486 :     pfree(scan);
    1263      702486 : }
    1264             : 
    1265             : HeapTuple
    1266    18813372 : heap_getnext(TableScanDesc sscan, ScanDirection direction)
    1267             : {
    1268    18813372 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1269             : 
    1270             :     /*
    1271             :      * This is still widely used directly, without going through table AM, so
    1272             :      * add a safety check.  It's possible we should, at a later point,
    1273             :      * downgrade this to an assert. The reason for checking the AM routine,
    1274             :      * rather than the AM oid, is that this allows to write regression tests
    1275             :      * that create another AM reusing the heap handler.
    1276             :      */
    1277    18813372 :     if (unlikely(sscan->rs_rd->rd_tableam != GetHeapamTableAmRoutine()))
    1278           0 :         ereport(ERROR,
    1279             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1280             :                  errmsg_internal("only heap AM is supported")));
    1281             : 
    1282             :     /*
    1283             :      * We don't expect direct calls to heap_getnext with valid CheckXidAlive
    1284             :      * for catalog or regular tables.  See detailed comments in xact.c where
    1285             :      * these variables are declared.  Normally we have such a check at tableam
    1286             :      * level API but this is called from many places so we need to ensure it
    1287             :      * here.
    1288             :      */
    1289    18813372 :     if (unlikely(TransactionIdIsValid(CheckXidAlive) && !bsysscan))
    1290           0 :         elog(ERROR, "unexpected heap_getnext call during logical decoding");
    1291             : 
    1292             :     /* Note: no locking manipulations needed */
    1293             : 
    1294    18813372 :     if (scan->rs_base.rs_flags & SO_ALLOW_PAGEMODE)
    1295     4151626 :         heapgettup_pagemode(scan, direction,
    1296     4151626 :                             scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1297             :     else
    1298    14661746 :         heapgettup(scan, direction,
    1299    14661746 :                    scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
    1300             : 
    1301    18813372 :     if (scan->rs_ctup.t_data == NULL)
    1302      119964 :         return NULL;
    1303             : 
    1304             :     /*
    1305             :      * if we get here it means we have a new current scan tuple, so point to
    1306             :      * the proper return buffer and return the tuple.
    1307             :      */
    1308             : 
    1309    18693408 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1310             : 
    1311    18693408 :     return &scan->rs_ctup;
    1312             : }
    1313             : 
    1314             : bool
    1315    87208676 : heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
    1316             : {
    1317    87208676 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1318             : 
    1319             :     /* Note: no locking manipulations needed */
    1320             : 
    1321    87208676 :     if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1322    86230620 :         heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1323             :     else
    1324      978056 :         heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1325             : 
    1326    87208654 :     if (scan->rs_ctup.t_data == NULL)
    1327             :     {
    1328     1299258 :         ExecClearTuple(slot);
    1329     1299258 :         return false;
    1330             :     }
    1331             : 
    1332             :     /*
    1333             :      * if we get here it means we have a new current scan tuple, so point to
    1334             :      * the proper return buffer and return the tuple.
    1335             :      */
    1336             : 
    1337    85909396 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1338             : 
    1339    85909396 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
    1340             :                              scan->rs_cbuf);
    1341    85909396 :     return true;
    1342             : }
    1343             : 
    1344             : void
    1345         178 : heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid,
    1346             :                   ItemPointer maxtid)
    1347             : {
    1348         178 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1349             :     BlockNumber startBlk;
    1350             :     BlockNumber numBlks;
    1351             :     ItemPointerData highestItem;
    1352             :     ItemPointerData lowestItem;
    1353             : 
    1354             :     /*
    1355             :      * For relations without any pages, we can simply leave the TID range
    1356             :      * unset.  There will be no tuples to scan, therefore no tuples outside
    1357             :      * the given TID range.
    1358             :      */
    1359         178 :     if (scan->rs_nblocks == 0)
    1360          48 :         return;
    1361             : 
    1362             :     /*
    1363             :      * Set up some ItemPointers which point to the first and last possible
    1364             :      * tuples in the heap.
    1365             :      */
    1366         166 :     ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
    1367         166 :     ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
    1368             : 
    1369             :     /*
    1370             :      * If the given maximum TID is below the highest possible TID in the
    1371             :      * relation, then restrict the range to that, otherwise we scan to the end
    1372             :      * of the relation.
    1373             :      */
    1374         166 :     if (ItemPointerCompare(maxtid, &highestItem) < 0)
    1375         132 :         ItemPointerCopy(maxtid, &highestItem);
    1376             : 
    1377             :     /*
    1378             :      * If the given minimum TID is above the lowest possible TID in the
    1379             :      * relation, then restrict the range to only scan for TIDs above that.
    1380             :      */
    1381         166 :     if (ItemPointerCompare(mintid, &lowestItem) > 0)
    1382          52 :         ItemPointerCopy(mintid, &lowestItem);
    1383             : 
    1384             :     /*
    1385             :      * Check for an empty range and protect from would be negative results
    1386             :      * from the numBlks calculation below.
    1387             :      */
    1388         166 :     if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
    1389             :     {
    1390             :         /* Set an empty range of blocks to scan */
    1391          36 :         heap_setscanlimits(sscan, 0, 0);
    1392          36 :         return;
    1393             :     }
    1394             : 
    1395             :     /*
    1396             :      * Calculate the first block and the number of blocks we must scan. We
    1397             :      * could be more aggressive here and perform some more validation to try
    1398             :      * and further narrow the scope of blocks to scan by checking if the
    1399             :      * lowestItem has an offset above MaxOffsetNumber.  In this case, we could
    1400             :      * advance startBlk by one.  Likewise, if highestItem has an offset of 0
    1401             :      * we could scan one fewer blocks.  However, such an optimization does not
    1402             :      * seem worth troubling over, currently.
    1403             :      */
    1404         130 :     startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
    1405             : 
    1406         130 :     numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
    1407         130 :         ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
    1408             : 
    1409             :     /* Set the start block and number of blocks to scan */
    1410         130 :     heap_setscanlimits(sscan, startBlk, numBlks);
    1411             : 
    1412             :     /* Finally, set the TID range in sscan */
    1413         130 :     ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
    1414         130 :     ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
    1415             : }
    1416             : 
    1417             : bool
    1418        5940 : heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction,
    1419             :                           TupleTableSlot *slot)
    1420             : {
    1421        5940 :     HeapScanDesc scan = (HeapScanDesc) sscan;
    1422        5940 :     ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
    1423        5940 :     ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
    1424             : 
    1425             :     /* Note: no locking manipulations needed */
    1426             :     for (;;)
    1427             :     {
    1428        6126 :         if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
    1429        6126 :             heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1430             :         else
    1431           0 :             heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
    1432             : 
    1433        6126 :         if (scan->rs_ctup.t_data == NULL)
    1434             :         {
    1435          94 :             ExecClearTuple(slot);
    1436          94 :             return false;
    1437             :         }
    1438             : 
    1439             :         /*
    1440             :          * heap_set_tidrange will have used heap_setscanlimits to limit the
    1441             :          * range of pages we scan to only ones that can contain the TID range
    1442             :          * we're scanning for.  Here we must filter out any tuples from these
    1443             :          * pages that are outside of that range.
    1444             :          */
    1445        6032 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
    1446             :         {
    1447         186 :             ExecClearTuple(slot);
    1448             : 
    1449             :             /*
    1450             :              * When scanning backwards, the TIDs will be in descending order.
    1451             :              * Future tuples in this direction will be lower still, so we can
    1452             :              * just return false to indicate there will be no more tuples.
    1453             :              */
    1454         186 :             if (ScanDirectionIsBackward(direction))
    1455           0 :                 return false;
    1456             : 
    1457         186 :             continue;
    1458             :         }
    1459             : 
    1460             :         /*
    1461             :          * Likewise for the final page, we must filter out TIDs greater than
    1462             :          * maxtid.
    1463             :          */
    1464        5846 :         if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
    1465             :         {
    1466          72 :             ExecClearTuple(slot);
    1467             : 
    1468             :             /*
    1469             :              * When scanning forward, the TIDs will be in ascending order.
    1470             :              * Future tuples in this direction will be higher still, so we can
    1471             :              * just return false to indicate there will be no more tuples.
    1472             :              */
    1473          72 :             if (ScanDirectionIsForward(direction))
    1474          72 :                 return false;
    1475           0 :             continue;
    1476             :         }
    1477             : 
    1478        5774 :         break;
    1479             :     }
    1480             : 
    1481             :     /*
    1482             :      * if we get here it means we have a new current scan tuple, so point to
    1483             :      * the proper return buffer and return the tuple.
    1484             :      */
    1485        5774 :     pgstat_count_heap_getnext(scan->rs_base.rs_rd);
    1486             : 
    1487        5774 :     ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
    1488        5774 :     return true;
    1489             : }
    1490             : 
    1491             : /*
    1492             :  *  heap_fetch      - retrieve tuple with given tid
    1493             :  *
    1494             :  * On entry, tuple->t_self is the TID to fetch.  We pin the buffer holding
    1495             :  * the tuple, fill in the remaining fields of *tuple, and check the tuple
    1496             :  * against the specified snapshot.
    1497             :  *
    1498             :  * If successful (tuple found and passes snapshot time qual), then *userbuf
    1499             :  * is set to the buffer holding the tuple and true is returned.  The caller
    1500             :  * must unpin the buffer when done with the tuple.
    1501             :  *
    1502             :  * If the tuple is not found (ie, item number references a deleted slot),
    1503             :  * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
    1504             :  * and false is returned.
    1505             :  *
    1506             :  * If the tuple is found but fails the time qual check, then the behavior
    1507             :  * depends on the keep_buf parameter.  If keep_buf is false, the results
    1508             :  * are the same as for the tuple-not-found case.  If keep_buf is true,
    1509             :  * then tuple->t_data and *userbuf are returned as for the success case,
    1510             :  * and again the caller must unpin the buffer; but false is returned.
    1511             :  *
    1512             :  * heap_fetch does not follow HOT chains: only the exact TID requested will
    1513             :  * be fetched.
    1514             :  *
    1515             :  * It is somewhat inconsistent that we ereport() on invalid block number but
    1516             :  * return false on invalid item number.  There are a couple of reasons though.
    1517             :  * One is that the caller can relatively easily check the block number for
    1518             :  * validity, but cannot check the item number without reading the page
    1519             :  * himself.  Another is that when we are following a t_ctid link, we can be
    1520             :  * reasonably confident that the page number is valid (since VACUUM shouldn't
    1521             :  * truncate off the destination page without having killed the referencing
    1522             :  * tuple first), but the item number might well not be good.
    1523             :  */
    1524             : bool
    1525      348552 : heap_fetch(Relation relation,
    1526             :            Snapshot snapshot,
    1527             :            HeapTuple tuple,
    1528             :            Buffer *userbuf,
    1529             :            bool keep_buf)
    1530             : {
    1531      348552 :     ItemPointer tid = &(tuple->t_self);
    1532             :     ItemId      lp;
    1533             :     Buffer      buffer;
    1534             :     Page        page;
    1535             :     OffsetNumber offnum;
    1536             :     bool        valid;
    1537             : 
    1538             :     /*
    1539             :      * Fetch and pin the appropriate page of the relation.
    1540             :      */
    1541      348552 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    1542             : 
    1543             :     /*
    1544             :      * Need share lock on buffer to examine tuple commit status.
    1545             :      */
    1546      348552 :     LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1547      348552 :     page = BufferGetPage(buffer);
    1548             : 
    1549             :     /*
    1550             :      * We'd better check for out-of-range offnum in case of VACUUM since the
    1551             :      * TID was obtained.
    1552             :      */
    1553      348552 :     offnum = ItemPointerGetOffsetNumber(tid);
    1554      348552 :     if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1555             :     {
    1556           6 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1557           6 :         ReleaseBuffer(buffer);
    1558           6 :         *userbuf = InvalidBuffer;
    1559           6 :         tuple->t_data = NULL;
    1560           6 :         return false;
    1561             :     }
    1562             : 
    1563             :     /*
    1564             :      * get the item line pointer corresponding to the requested tid
    1565             :      */
    1566      348546 :     lp = PageGetItemId(page, offnum);
    1567             : 
    1568             :     /*
    1569             :      * Must check for deleted tuple.
    1570             :      */
    1571      348546 :     if (!ItemIdIsNormal(lp))
    1572             :     {
    1573         668 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1574         668 :         ReleaseBuffer(buffer);
    1575         668 :         *userbuf = InvalidBuffer;
    1576         668 :         tuple->t_data = NULL;
    1577         668 :         return false;
    1578             :     }
    1579             : 
    1580             :     /*
    1581             :      * fill in *tuple fields
    1582             :      */
    1583      347878 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1584      347878 :     tuple->t_len = ItemIdGetLength(lp);
    1585      347878 :     tuple->t_tableOid = RelationGetRelid(relation);
    1586             : 
    1587             :     /*
    1588             :      * check tuple visibility, then release lock
    1589             :      */
    1590      347878 :     valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
    1591             : 
    1592      347878 :     if (valid)
    1593      347784 :         PredicateLockTID(relation, &(tuple->t_self), snapshot,
    1594      347784 :                          HeapTupleHeaderGetXmin(tuple->t_data));
    1595             : 
    1596      347878 :     HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
    1597             : 
    1598      347878 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    1599             : 
    1600      347878 :     if (valid)
    1601             :     {
    1602             :         /*
    1603             :          * All checks passed, so return the tuple as valid. Caller is now
    1604             :          * responsible for releasing the buffer.
    1605             :          */
    1606      347784 :         *userbuf = buffer;
    1607             : 
    1608      347784 :         return true;
    1609             :     }
    1610             : 
    1611             :     /* Tuple failed time qual, but maybe caller wants to see it anyway. */
    1612          94 :     if (keep_buf)
    1613          58 :         *userbuf = buffer;
    1614             :     else
    1615             :     {
    1616          36 :         ReleaseBuffer(buffer);
    1617          36 :         *userbuf = InvalidBuffer;
    1618          36 :         tuple->t_data = NULL;
    1619             :     }
    1620             : 
    1621          94 :     return false;
    1622             : }
    1623             : 
    1624             : /*
    1625             :  *  heap_hot_search_buffer  - search HOT chain for tuple satisfying snapshot
    1626             :  *
    1627             :  * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
    1628             :  * of a HOT chain), and buffer is the buffer holding this tuple.  We search
    1629             :  * for the first chain member satisfying the given snapshot.  If one is
    1630             :  * found, we update *tid to reference that tuple's offset number, and
    1631             :  * return true.  If no match, return false without modifying *tid.
    1632             :  *
    1633             :  * heapTuple is a caller-supplied buffer.  When a match is found, we return
    1634             :  * the tuple here, in addition to updating *tid.  If no match is found, the
    1635             :  * contents of this buffer on return are undefined.
    1636             :  *
    1637             :  * If all_dead is not NULL, we check non-visible tuples to see if they are
    1638             :  * globally dead; *all_dead is set true if all members of the HOT chain
    1639             :  * are vacuumable, false if not.
    1640             :  *
    1641             :  * Unlike heap_fetch, the caller must already have pin and (at least) share
    1642             :  * lock on the buffer; it is still pinned/locked at exit.
    1643             :  */
    1644             : bool
    1645    40855376 : heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer,
    1646             :                        Snapshot snapshot, HeapTuple heapTuple,
    1647             :                        bool *all_dead, bool first_call)
    1648             : {
    1649    40855376 :     Page        page = BufferGetPage(buffer);
    1650    40855376 :     TransactionId prev_xmax = InvalidTransactionId;
    1651             :     BlockNumber blkno;
    1652             :     OffsetNumber offnum;
    1653             :     bool        at_chain_start;
    1654             :     bool        valid;
    1655             :     bool        skip;
    1656    40855376 :     GlobalVisState *vistest = NULL;
    1657             : 
    1658             :     /* If this is not the first call, previous call returned a (live!) tuple */
    1659    40855376 :     if (all_dead)
    1660    35030296 :         *all_dead = first_call;
    1661             : 
    1662    40855376 :     blkno = ItemPointerGetBlockNumber(tid);
    1663    40855376 :     offnum = ItemPointerGetOffsetNumber(tid);
    1664    40855376 :     at_chain_start = first_call;
    1665    40855376 :     skip = !first_call;
    1666             : 
    1667             :     /* XXX: we should assert that a snapshot is pushed or registered */
    1668             :     Assert(TransactionIdIsValid(RecentXmin));
    1669             :     Assert(BufferGetBlockNumber(buffer) == blkno);
    1670             : 
    1671             :     /* Scan through possible multiple members of HOT-chain */
    1672             :     for (;;)
    1673     2685512 :     {
    1674             :         ItemId      lp;
    1675             : 
    1676             :         /* check for bogus TID */
    1677    43540888 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1678             :             break;
    1679             : 
    1680    43540888 :         lp = PageGetItemId(page, offnum);
    1681             : 
    1682             :         /* check for unused, dead, or redirected items */
    1683    43540888 :         if (!ItemIdIsNormal(lp))
    1684             :         {
    1685             :             /* We should only see a redirect at start of chain */
    1686     1810096 :             if (ItemIdIsRedirected(lp) && at_chain_start)
    1687             :             {
    1688             :                 /* Follow the redirect */
    1689      880262 :                 offnum = ItemIdGetRedirect(lp);
    1690      880262 :                 at_chain_start = false;
    1691      880262 :                 continue;
    1692             :             }
    1693             :             /* else must be end of chain */
    1694      929834 :             break;
    1695             :         }
    1696             : 
    1697             :         /*
    1698             :          * Update heapTuple to point to the element of the HOT chain we're
    1699             :          * currently investigating. Having t_self set correctly is important
    1700             :          * because the SSI checks and the *Satisfies routine for historical
    1701             :          * MVCC snapshots need the correct tid to decide about the visibility.
    1702             :          */
    1703    41730792 :         heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1704    41730792 :         heapTuple->t_len = ItemIdGetLength(lp);
    1705    41730792 :         heapTuple->t_tableOid = RelationGetRelid(relation);
    1706    41730792 :         ItemPointerSet(&heapTuple->t_self, blkno, offnum);
    1707             : 
    1708             :         /*
    1709             :          * Shouldn't see a HEAP_ONLY tuple at chain start.
    1710             :          */
    1711    41730792 :         if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
    1712           0 :             break;
    1713             : 
    1714             :         /*
    1715             :          * The xmin should match the previous xmax value, else chain is
    1716             :          * broken.
    1717             :          */
    1718    43536042 :         if (TransactionIdIsValid(prev_xmax) &&
    1719     1805250 :             !TransactionIdEquals(prev_xmax,
    1720             :                                  HeapTupleHeaderGetXmin(heapTuple->t_data)))
    1721           0 :             break;
    1722             : 
    1723             :         /*
    1724             :          * When first_call is true (and thus, skip is initially false) we'll
    1725             :          * return the first tuple we find.  But on later passes, heapTuple
    1726             :          * will initially be pointing to the tuple we returned last time.
    1727             :          * Returning it again would be incorrect (and would loop forever), so
    1728             :          * we skip it and return the next match we find.
    1729             :          */
    1730    41730792 :         if (!skip)
    1731             :         {
    1732             :             /* If it's visible per the snapshot, we must return it */
    1733    41574544 :             valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
    1734    41574544 :             HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
    1735             :                                                 buffer, snapshot);
    1736             : 
    1737    41574534 :             if (valid)
    1738             :             {
    1739    27558746 :                 ItemPointerSetOffsetNumber(tid, offnum);
    1740    27558746 :                 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
    1741    27558746 :                                  HeapTupleHeaderGetXmin(heapTuple->t_data));
    1742    27558746 :                 if (all_dead)
    1743    22292092 :                     *all_dead = false;
    1744    27558746 :                 return true;
    1745             :             }
    1746             :         }
    1747    14172036 :         skip = false;
    1748             : 
    1749             :         /*
    1750             :          * If we can't see it, maybe no one else can either.  At caller
    1751             :          * request, check whether all chain members are dead to all
    1752             :          * transactions.
    1753             :          *
    1754             :          * Note: if you change the criterion here for what is "dead", fix the
    1755             :          * planner's get_actual_variable_range() function to match.
    1756             :          */
    1757    14172036 :         if (all_dead && *all_dead)
    1758             :         {
    1759    12813530 :             if (!vistest)
    1760    12563382 :                 vistest = GlobalVisTestFor(relation);
    1761             : 
    1762    12813530 :             if (!HeapTupleIsSurelyDead(heapTuple, vistest))
    1763    12058306 :                 *all_dead = false;
    1764             :         }
    1765             : 
    1766             :         /*
    1767             :          * Check to see if HOT chain continues past this tuple; if so fetch
    1768             :          * the next offnum and loop around.
    1769             :          */
    1770    14172036 :         if (HeapTupleIsHotUpdated(heapTuple))
    1771             :         {
    1772             :             Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) ==
    1773             :                    blkno);
    1774     1805250 :             offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
    1775     1805250 :             at_chain_start = false;
    1776     1805250 :             prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
    1777             :         }
    1778             :         else
    1779    12366786 :             break;              /* end of chain */
    1780             :     }
    1781             : 
    1782    13296620 :     return false;
    1783             : }
    1784             : 
    1785             : /*
    1786             :  *  heap_get_latest_tid -  get the latest tid of a specified tuple
    1787             :  *
    1788             :  * Actually, this gets the latest version that is visible according to the
    1789             :  * scan's snapshot.  Create a scan using SnapshotDirty to get the very latest,
    1790             :  * possibly uncommitted version.
    1791             :  *
    1792             :  * *tid is both an input and an output parameter: it is updated to
    1793             :  * show the latest version of the row.  Note that it will not be changed
    1794             :  * if no version of the row passes the snapshot test.
    1795             :  */
    1796             : void
    1797         300 : heap_get_latest_tid(TableScanDesc sscan,
    1798             :                     ItemPointer tid)
    1799             : {
    1800         300 :     Relation    relation = sscan->rs_rd;
    1801         300 :     Snapshot    snapshot = sscan->rs_snapshot;
    1802             :     ItemPointerData ctid;
    1803             :     TransactionId priorXmax;
    1804             : 
    1805             :     /*
    1806             :      * table_tuple_get_latest_tid() verified that the passed in tid is valid.
    1807             :      * Assume that t_ctid links are valid however - there shouldn't be invalid
    1808             :      * ones in the table.
    1809             :      */
    1810             :     Assert(ItemPointerIsValid(tid));
    1811             : 
    1812             :     /*
    1813             :      * Loop to chase down t_ctid links.  At top of loop, ctid is the tuple we
    1814             :      * need to examine, and *tid is the TID we will return if ctid turns out
    1815             :      * to be bogus.
    1816             :      *
    1817             :      * Note that we will loop until we reach the end of the t_ctid chain.
    1818             :      * Depending on the snapshot passed, there might be at most one visible
    1819             :      * version of the row, but we don't try to optimize for that.
    1820             :      */
    1821         300 :     ctid = *tid;
    1822         300 :     priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    1823             :     for (;;)
    1824          90 :     {
    1825             :         Buffer      buffer;
    1826             :         Page        page;
    1827             :         OffsetNumber offnum;
    1828             :         ItemId      lp;
    1829             :         HeapTupleData tp;
    1830             :         bool        valid;
    1831             : 
    1832             :         /*
    1833             :          * Read, pin, and lock the page.
    1834             :          */
    1835         390 :         buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
    1836         390 :         LockBuffer(buffer, BUFFER_LOCK_SHARE);
    1837         390 :         page = BufferGetPage(buffer);
    1838             : 
    1839             :         /*
    1840             :          * Check for bogus item number.  This is not treated as an error
    1841             :          * condition because it can happen while following a t_ctid link. We
    1842             :          * just assume that the prior tid is OK and return it unchanged.
    1843             :          */
    1844         390 :         offnum = ItemPointerGetOffsetNumber(&ctid);
    1845         390 :         if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
    1846             :         {
    1847           0 :             UnlockReleaseBuffer(buffer);
    1848           0 :             break;
    1849             :         }
    1850         390 :         lp = PageGetItemId(page, offnum);
    1851         390 :         if (!ItemIdIsNormal(lp))
    1852             :         {
    1853           0 :             UnlockReleaseBuffer(buffer);
    1854           0 :             break;
    1855             :         }
    1856             : 
    1857             :         /* OK to access the tuple */
    1858         390 :         tp.t_self = ctid;
    1859         390 :         tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    1860         390 :         tp.t_len = ItemIdGetLength(lp);
    1861         390 :         tp.t_tableOid = RelationGetRelid(relation);
    1862             : 
    1863             :         /*
    1864             :          * After following a t_ctid link, we might arrive at an unrelated
    1865             :          * tuple.  Check for XMIN match.
    1866             :          */
    1867         480 :         if (TransactionIdIsValid(priorXmax) &&
    1868          90 :             !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
    1869             :         {
    1870           0 :             UnlockReleaseBuffer(buffer);
    1871           0 :             break;
    1872             :         }
    1873             : 
    1874             :         /*
    1875             :          * Check tuple visibility; if visible, set it as the new result
    1876             :          * candidate.
    1877             :          */
    1878         390 :         valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
    1879         390 :         HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
    1880         390 :         if (valid)
    1881         276 :             *tid = ctid;
    1882             : 
    1883             :         /*
    1884             :          * If there's a valid t_ctid link, follow it, else we're done.
    1885             :          */
    1886         552 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    1887         276 :             HeapTupleHeaderIsOnlyLocked(tp.t_data) ||
    1888         228 :             HeapTupleHeaderIndicatesMovedPartitions(tp.t_data) ||
    1889         114 :             ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    1890             :         {
    1891         300 :             UnlockReleaseBuffer(buffer);
    1892         300 :             break;
    1893             :         }
    1894             : 
    1895          90 :         ctid = tp.t_data->t_ctid;
    1896          90 :         priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    1897          90 :         UnlockReleaseBuffer(buffer);
    1898             :     }                           /* end of loop */
    1899         300 : }
    1900             : 
    1901             : 
    1902             : /*
    1903             :  * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
    1904             :  *
    1905             :  * This is called after we have waited for the XMAX transaction to terminate.
    1906             :  * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
    1907             :  * be set on exit.  If the transaction committed, we set the XMAX_COMMITTED
    1908             :  * hint bit if possible --- but beware that that may not yet be possible,
    1909             :  * if the transaction committed asynchronously.
    1910             :  *
    1911             :  * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
    1912             :  * even if it commits.
    1913             :  *
    1914             :  * Hence callers should look only at XMAX_INVALID.
    1915             :  *
    1916             :  * Note this is not allowed for tuples whose xmax is a multixact.
    1917             :  */
    1918             : static void
    1919         350 : UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
    1920             : {
    1921             :     Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid));
    1922             :     Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI));
    1923             : 
    1924         350 :     if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
    1925             :     {
    1926         634 :         if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
    1927         284 :             TransactionIdDidCommit(xid))
    1928         232 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
    1929             :                                  xid);
    1930             :         else
    1931         118 :             HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
    1932             :                                  InvalidTransactionId);
    1933             :     }
    1934         350 : }
    1935             : 
    1936             : 
    1937             : /*
    1938             :  * GetBulkInsertState - prepare status object for a bulk insert
    1939             :  */
    1940             : BulkInsertState
    1941        4352 : GetBulkInsertState(void)
    1942             : {
    1943             :     BulkInsertState bistate;
    1944             : 
    1945        4352 :     bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
    1946        4352 :     bistate->strategy = GetAccessStrategy(BAS_BULKWRITE);
    1947        4352 :     bistate->current_buf = InvalidBuffer;
    1948        4352 :     bistate->next_free = InvalidBlockNumber;
    1949        4352 :     bistate->last_free = InvalidBlockNumber;
    1950        4352 :     bistate->already_extended_by = 0;
    1951        4352 :     return bistate;
    1952             : }
    1953             : 
    1954             : /*
    1955             :  * FreeBulkInsertState - clean up after finishing a bulk insert
    1956             :  */
    1957             : void
    1958        4092 : FreeBulkInsertState(BulkInsertState bistate)
    1959             : {
    1960        4092 :     if (bistate->current_buf != InvalidBuffer)
    1961        3358 :         ReleaseBuffer(bistate->current_buf);
    1962        4092 :     FreeAccessStrategy(bistate->strategy);
    1963        4092 :     pfree(bistate);
    1964        4092 : }
    1965             : 
    1966             : /*
    1967             :  * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
    1968             :  */
    1969             : void
    1970      161512 : ReleaseBulkInsertStatePin(BulkInsertState bistate)
    1971             : {
    1972      161512 :     if (bistate->current_buf != InvalidBuffer)
    1973       60042 :         ReleaseBuffer(bistate->current_buf);
    1974      161512 :     bistate->current_buf = InvalidBuffer;
    1975             : 
    1976             :     /*
    1977             :      * Despite the name, we also reset bulk relation extension state.
    1978             :      * Otherwise we can end up erroring out due to looking for free space in
    1979             :      * ->next_free of one partition, even though ->next_free was set when
    1980             :      * extending another partition. It could obviously also be bad for
    1981             :      * efficiency to look at existing blocks at offsets from another
    1982             :      * partition, even if we don't error out.
    1983             :      */
    1984      161512 :     bistate->next_free = InvalidBlockNumber;
    1985      161512 :     bistate->last_free = InvalidBlockNumber;
    1986      161512 : }
    1987             : 
    1988             : 
    1989             : /*
    1990             :  *  heap_insert     - insert tuple into a heap
    1991             :  *
    1992             :  * The new tuple is stamped with current transaction ID and the specified
    1993             :  * command ID.
    1994             :  *
    1995             :  * See table_tuple_insert for comments about most of the input flags, except
    1996             :  * that this routine directly takes a tuple rather than a slot.
    1997             :  *
    1998             :  * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
    1999             :  * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
    2000             :  * implement table_tuple_insert_speculative().
    2001             :  *
    2002             :  * On return the header fields of *tup are updated to match the stored tuple;
    2003             :  * in particular tup->t_self receives the actual TID where the tuple was
    2004             :  * stored.  But note that any toasting of fields within the tuple data is NOT
    2005             :  * reflected into *tup.
    2006             :  */
    2007             : void
    2008    15630066 : heap_insert(Relation relation, HeapTuple tup, CommandId cid,
    2009             :             int options, BulkInsertState bistate)
    2010             : {
    2011    15630066 :     TransactionId xid = GetCurrentTransactionId();
    2012             :     HeapTuple   heaptup;
    2013             :     Buffer      buffer;
    2014    15630050 :     Buffer      vmbuffer = InvalidBuffer;
    2015    15630050 :     bool        all_visible_cleared = false;
    2016             : 
    2017             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    2018             :     Assert(HeapTupleHeaderGetNatts(tup->t_data) <=
    2019             :            RelationGetNumberOfAttributes(relation));
    2020             : 
    2021             :     /*
    2022             :      * Fill in tuple header fields and toast the tuple if necessary.
    2023             :      *
    2024             :      * Note: below this point, heaptup is the data we actually intend to store
    2025             :      * into the relation; tup is the caller's original untoasted data.
    2026             :      */
    2027    15630050 :     heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
    2028             : 
    2029             :     /*
    2030             :      * Find buffer to insert this tuple into.  If the page is all visible,
    2031             :      * this will also pin the requisite visibility map page.
    2032             :      */
    2033    15630050 :     buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
    2034             :                                        InvalidBuffer, options, bistate,
    2035             :                                        &vmbuffer, NULL,
    2036             :                                        0);
    2037             : 
    2038             :     /*
    2039             :      * We're about to do the actual insert -- but check for conflict first, to
    2040             :      * avoid possibly having to roll back work we've just done.
    2041             :      *
    2042             :      * This is safe without a recheck as long as there is no possibility of
    2043             :      * another process scanning the page between this check and the insert
    2044             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2045             :      * continuously held from this point until the tuple insert is visible).
    2046             :      *
    2047             :      * For a heap insert, we only need to check for table-level SSI locks. Our
    2048             :      * new tuple can't possibly conflict with existing tuple locks, and heap
    2049             :      * page locks are only consolidated versions of tuple locks; they do not
    2050             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2051             :      * buffer when making the call, which makes for a faster check.
    2052             :      */
    2053    15630050 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2054             : 
    2055             :     /* NO EREPORT(ERROR) from here till changes are logged */
    2056    15630026 :     START_CRIT_SECTION();
    2057             : 
    2058    15630026 :     RelationPutHeapTuple(relation, buffer, heaptup,
    2059    15630026 :                          (options & HEAP_INSERT_SPECULATIVE) != 0);
    2060             : 
    2061    15630026 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    2062             :     {
    2063       12898 :         all_visible_cleared = true;
    2064       12898 :         PageClearAllVisible(BufferGetPage(buffer));
    2065       12898 :         visibilitymap_clear(relation,
    2066       12898 :                             ItemPointerGetBlockNumber(&(heaptup->t_self)),
    2067             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2068             :     }
    2069             : 
    2070             :     /*
    2071             :      * XXX Should we set PageSetPrunable on this page ?
    2072             :      *
    2073             :      * The inserting transaction may eventually abort thus making this tuple
    2074             :      * DEAD and hence available for pruning. Though we don't want to optimize
    2075             :      * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
    2076             :      * aborted tuple will never be pruned until next vacuum is triggered.
    2077             :      *
    2078             :      * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
    2079             :      */
    2080             : 
    2081    15630026 :     MarkBufferDirty(buffer);
    2082             : 
    2083             :     /* XLOG stuff */
    2084    15630026 :     if (RelationNeedsWAL(relation))
    2085             :     {
    2086             :         xl_heap_insert xlrec;
    2087             :         xl_heap_header xlhdr;
    2088             :         XLogRecPtr  recptr;
    2089    13612390 :         Page        page = BufferGetPage(buffer);
    2090    13612390 :         uint8       info = XLOG_HEAP_INSERT;
    2091    13612390 :         int         bufflags = 0;
    2092             : 
    2093             :         /*
    2094             :          * If this is a catalog, we need to transmit combo CIDs to properly
    2095             :          * decode, so log that as well.
    2096             :          */
    2097    13612390 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    2098        6386 :             log_heap_new_cid(relation, heaptup);
    2099             : 
    2100             :         /*
    2101             :          * If this is the single and first tuple on page, we can reinit the
    2102             :          * page instead of restoring the whole thing.  Set flag, and hide
    2103             :          * buffer references from XLogInsert.
    2104             :          */
    2105    13784952 :         if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
    2106      172562 :             PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    2107             :         {
    2108      171282 :             info |= XLOG_HEAP_INIT_PAGE;
    2109      171282 :             bufflags |= REGBUF_WILL_INIT;
    2110             :         }
    2111             : 
    2112    13612390 :         xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2113    13612390 :         xlrec.flags = 0;
    2114    13612390 :         if (all_visible_cleared)
    2115       12892 :             xlrec.flags |= XLH_INSERT_ALL_VISIBLE_CLEARED;
    2116    13612390 :         if (options & HEAP_INSERT_SPECULATIVE)
    2117        4110 :             xlrec.flags |= XLH_INSERT_IS_SPECULATIVE;
    2118             :         Assert(ItemPointerGetBlockNumber(&heaptup->t_self) == BufferGetBlockNumber(buffer));
    2119             : 
    2120             :         /*
    2121             :          * For logical decoding, we need the tuple even if we're doing a full
    2122             :          * page write, so make sure it's included even if we take a full-page
    2123             :          * image. (XXX We could alternatively store a pointer into the FPW).
    2124             :          */
    2125    13612390 :         if (RelationIsLogicallyLogged(relation) &&
    2126      499734 :             !(options & HEAP_INSERT_NO_LOGICAL))
    2127             :         {
    2128      499680 :             xlrec.flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2129      499680 :             bufflags |= REGBUF_KEEP_DATA;
    2130             : 
    2131      499680 :             if (IsToastRelation(relation))
    2132        3572 :                 xlrec.flags |= XLH_INSERT_ON_TOAST_RELATION;
    2133             :         }
    2134             : 
    2135    13612390 :         XLogBeginInsert();
    2136    13612390 :         XLogRegisterData(&xlrec, SizeOfHeapInsert);
    2137             : 
    2138    13612390 :         xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
    2139    13612390 :         xlhdr.t_infomask = heaptup->t_data->t_infomask;
    2140    13612390 :         xlhdr.t_hoff = heaptup->t_data->t_hoff;
    2141             : 
    2142             :         /*
    2143             :          * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
    2144             :          * write the whole page to the xlog, we don't need to store
    2145             :          * xl_heap_header in the xlog.
    2146             :          */
    2147    13612390 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2148    13612390 :         XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    2149             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    2150    13612390 :         XLogRegisterBufData(0,
    2151    13612390 :                             (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2152    13612390 :                             heaptup->t_len - SizeofHeapTupleHeader);
    2153             : 
    2154             :         /* filtering by origin on a row level is much more efficient */
    2155    13612390 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2156             : 
    2157    13612390 :         recptr = XLogInsert(RM_HEAP_ID, info);
    2158             : 
    2159    13612390 :         PageSetLSN(page, recptr);
    2160             :     }
    2161             : 
    2162    15630026 :     END_CRIT_SECTION();
    2163             : 
    2164    15630026 :     UnlockReleaseBuffer(buffer);
    2165    15630026 :     if (vmbuffer != InvalidBuffer)
    2166       13474 :         ReleaseBuffer(vmbuffer);
    2167             : 
    2168             :     /*
    2169             :      * If tuple is cachable, mark it for invalidation from the caches in case
    2170             :      * we abort.  Note it is OK to do this after releasing the buffer, because
    2171             :      * the heaptup data structure is all in local memory, not in the shared
    2172             :      * buffer.
    2173             :      */
    2174    15630026 :     CacheInvalidateHeapTuple(relation, heaptup, NULL);
    2175             : 
    2176             :     /* Note: speculative insertions are counted too, even if aborted later */
    2177    15630026 :     pgstat_count_heap_insert(relation, 1);
    2178             : 
    2179             :     /*
    2180             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    2181             :      * back to the caller's image, too.
    2182             :      */
    2183    15630026 :     if (heaptup != tup)
    2184             :     {
    2185       34028 :         tup->t_self = heaptup->t_self;
    2186       34028 :         heap_freetuple(heaptup);
    2187             :     }
    2188    15630026 : }
    2189             : 
    2190             : /*
    2191             :  * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
    2192             :  * tuple header fields and toasts the tuple if necessary.  Returns a toasted
    2193             :  * version of the tuple if it was toasted, or the original tuple if not. Note
    2194             :  * that in any case, the header fields are also set in the original tuple.
    2195             :  */
    2196             : static HeapTuple
    2197    18466556 : heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid,
    2198             :                     CommandId cid, int options)
    2199             : {
    2200             :     /*
    2201             :      * To allow parallel inserts, we need to ensure that they are safe to be
    2202             :      * performed in workers. We have the infrastructure to allow parallel
    2203             :      * inserts in general except for the cases where inserts generate a new
    2204             :      * CommandId (eg. inserts into a table having a foreign key column).
    2205             :      */
    2206    18466556 :     if (IsParallelWorker())
    2207           0 :         ereport(ERROR,
    2208             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2209             :                  errmsg("cannot insert tuples in a parallel worker")));
    2210             : 
    2211    18466556 :     tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    2212    18466556 :     tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    2213    18466556 :     tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
    2214    18466556 :     HeapTupleHeaderSetXmin(tup->t_data, xid);
    2215    18466556 :     if (options & HEAP_INSERT_FROZEN)
    2216      204222 :         HeapTupleHeaderSetXminFrozen(tup->t_data);
    2217             : 
    2218    18466556 :     HeapTupleHeaderSetCmin(tup->t_data, cid);
    2219    18466556 :     HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
    2220    18466556 :     tup->t_tableOid = RelationGetRelid(relation);
    2221             : 
    2222             :     /*
    2223             :      * If the new tuple is too big for storage or contains already toasted
    2224             :      * out-of-line attributes from some other relation, invoke the toaster.
    2225             :      */
    2226    18466556 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    2227       57038 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    2228             :     {
    2229             :         /* toast table entries should never be recursively toasted */
    2230             :         Assert(!HeapTupleHasExternal(tup));
    2231       56942 :         return tup;
    2232             :     }
    2233    18409614 :     else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
    2234       34110 :         return heap_toast_insert_or_update(relation, tup, NULL, options);
    2235             :     else
    2236    18375504 :         return tup;
    2237             : }
    2238             : 
    2239             : /*
    2240             :  * Helper for heap_multi_insert() that computes the number of entire pages
    2241             :  * that inserting the remaining heaptuples requires. Used to determine how
    2242             :  * much the relation needs to be extended by.
    2243             :  */
    2244             : static int
    2245      679884 : heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
    2246             : {
    2247      679884 :     size_t      page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2248      679884 :     int         npages = 1;
    2249             : 
    2250     4685642 :     for (int i = done; i < ntuples; i++)
    2251             :     {
    2252     4005758 :         size_t      tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
    2253             : 
    2254     4005758 :         if (page_avail < tup_sz)
    2255             :         {
    2256       30960 :             npages++;
    2257       30960 :             page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
    2258             :         }
    2259     4005758 :         page_avail -= tup_sz;
    2260             :     }
    2261             : 
    2262      679884 :     return npages;
    2263             : }
    2264             : 
    2265             : /*
    2266             :  *  heap_multi_insert   - insert multiple tuples into a heap
    2267             :  *
    2268             :  * This is like heap_insert(), but inserts multiple tuples in one operation.
    2269             :  * That's faster than calling heap_insert() in a loop, because when multiple
    2270             :  * tuples can be inserted on a single page, we can write just a single WAL
    2271             :  * record covering all of them, and only need to lock/unlock the page once.
    2272             :  *
    2273             :  * Note: this leaks memory into the current memory context. You can create a
    2274             :  * temporary context before calling this, if that's a problem.
    2275             :  */
    2276             : void
    2277      667728 : heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
    2278             :                   CommandId cid, int options, BulkInsertState bistate)
    2279             : {
    2280      667728 :     TransactionId xid = GetCurrentTransactionId();
    2281             :     HeapTuple  *heaptuples;
    2282             :     int         i;
    2283             :     int         ndone;
    2284             :     PGAlignedBlock scratch;
    2285             :     Page        page;
    2286      667728 :     Buffer      vmbuffer = InvalidBuffer;
    2287             :     bool        needwal;
    2288             :     Size        saveFreeSpace;
    2289      667728 :     bool        need_tuple_data = RelationIsLogicallyLogged(relation);
    2290      667728 :     bool        need_cids = RelationIsAccessibleInLogicalDecoding(relation);
    2291      667728 :     bool        starting_with_empty_page = false;
    2292      667728 :     int         npages = 0;
    2293      667728 :     int         npages_used = 0;
    2294             : 
    2295             :     /* currently not needed (thus unsupported) for heap_multi_insert() */
    2296             :     Assert(!(options & HEAP_INSERT_NO_LOGICAL));
    2297             : 
    2298      667728 :     needwal = RelationNeedsWAL(relation);
    2299      667728 :     saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
    2300             :                                                    HEAP_DEFAULT_FILLFACTOR);
    2301             : 
    2302             :     /* Toast and set header data in all the slots */
    2303      667728 :     heaptuples = palloc(ntuples * sizeof(HeapTuple));
    2304     3504234 :     for (i = 0; i < ntuples; i++)
    2305             :     {
    2306             :         HeapTuple   tuple;
    2307             : 
    2308     2836506 :         tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
    2309     2836506 :         slots[i]->tts_tableOid = RelationGetRelid(relation);
    2310     2836506 :         tuple->t_tableOid = slots[i]->tts_tableOid;
    2311     2836506 :         heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
    2312             :                                             options);
    2313             :     }
    2314             : 
    2315             :     /*
    2316             :      * We're about to do the actual inserts -- but check for conflict first,
    2317             :      * to minimize the possibility of having to roll back work we've just
    2318             :      * done.
    2319             :      *
    2320             :      * A check here does not definitively prevent a serialization anomaly;
    2321             :      * that check MUST be done at least past the point of acquiring an
    2322             :      * exclusive buffer content lock on every buffer that will be affected,
    2323             :      * and MAY be done after all inserts are reflected in the buffers and
    2324             :      * those locks are released; otherwise there is a race condition.  Since
    2325             :      * multiple buffers can be locked and unlocked in the loop below, and it
    2326             :      * would not be feasible to identify and lock all of those buffers before
    2327             :      * the loop, we must do a final check at the end.
    2328             :      *
    2329             :      * The check here could be omitted with no loss of correctness; it is
    2330             :      * present strictly as an optimization.
    2331             :      *
    2332             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2333             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2334             :      * page locks are only consolidated versions of tuple locks; they do not
    2335             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2336             :      * buffer when making the call, which makes for a faster check.
    2337             :      */
    2338      667728 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2339             : 
    2340      667728 :     ndone = 0;
    2341     1363924 :     while (ndone < ntuples)
    2342             :     {
    2343             :         Buffer      buffer;
    2344      696196 :         bool        all_visible_cleared = false;
    2345      696196 :         bool        all_frozen_set = false;
    2346             :         int         nthispage;
    2347             : 
    2348      696196 :         CHECK_FOR_INTERRUPTS();
    2349             : 
    2350             :         /*
    2351             :          * Compute number of pages needed to fit the to-be-inserted tuples in
    2352             :          * the worst case.  This will be used to determine how much to extend
    2353             :          * the relation by in RelationGetBufferForTuple(), if needed.  If we
    2354             :          * filled a prior page from scratch, we can just update our last
    2355             :          * computation, but if we started with a partially filled page,
    2356             :          * recompute from scratch, the number of potentially required pages
    2357             :          * can vary due to tuples needing to fit onto the page, page headers
    2358             :          * etc.
    2359             :          */
    2360      696196 :         if (ndone == 0 || !starting_with_empty_page)
    2361             :         {
    2362      679884 :             npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
    2363             :                                              saveFreeSpace);
    2364      679884 :             npages_used = 0;
    2365             :         }
    2366             :         else
    2367       16312 :             npages_used++;
    2368             : 
    2369             :         /*
    2370             :          * Find buffer where at least the next tuple will fit.  If the page is
    2371             :          * all-visible, this will also pin the requisite visibility map page.
    2372             :          *
    2373             :          * Also pin visibility map page if COPY FREEZE inserts tuples into an
    2374             :          * empty page. See all_frozen_set below.
    2375             :          */
    2376      696196 :         buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
    2377             :                                            InvalidBuffer, options, bistate,
    2378             :                                            &vmbuffer, NULL,
    2379             :                                            npages - npages_used);
    2380      696196 :         page = BufferGetPage(buffer);
    2381             : 
    2382      696196 :         starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
    2383             : 
    2384      696196 :         if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
    2385        3322 :             all_frozen_set = true;
    2386             : 
    2387             :         /* NO EREPORT(ERROR) from here till changes are logged */
    2388      696196 :         START_CRIT_SECTION();
    2389             : 
    2390             :         /*
    2391             :          * RelationGetBufferForTuple has ensured that the first tuple fits.
    2392             :          * Put that on the page, and then as many other tuples as fit.
    2393             :          */
    2394      696196 :         RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
    2395             : 
    2396             :         /*
    2397             :          * For logical decoding we need combo CIDs to properly decode the
    2398             :          * catalog.
    2399             :          */
    2400      696196 :         if (needwal && need_cids)
    2401        9466 :             log_heap_new_cid(relation, heaptuples[ndone]);
    2402             : 
    2403     2836506 :         for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
    2404             :         {
    2405     2168778 :             HeapTuple   heaptup = heaptuples[ndone + nthispage];
    2406             : 
    2407     2168778 :             if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
    2408       28468 :                 break;
    2409             : 
    2410     2140310 :             RelationPutHeapTuple(relation, buffer, heaptup, false);
    2411             : 
    2412             :             /*
    2413             :              * For logical decoding we need combo CIDs to properly decode the
    2414             :              * catalog.
    2415             :              */
    2416     2140310 :             if (needwal && need_cids)
    2417        9068 :                 log_heap_new_cid(relation, heaptup);
    2418             :         }
    2419             : 
    2420             :         /*
    2421             :          * If the page is all visible, need to clear that, unless we're only
    2422             :          * going to add further frozen rows to it.
    2423             :          *
    2424             :          * If we're only adding already frozen rows to a previously empty
    2425             :          * page, mark it as all-visible.
    2426             :          */
    2427      696196 :         if (PageIsAllVisible(page) && !(options & HEAP_INSERT_FROZEN))
    2428             :         {
    2429        4924 :             all_visible_cleared = true;
    2430        4924 :             PageClearAllVisible(page);
    2431        4924 :             visibilitymap_clear(relation,
    2432             :                                 BufferGetBlockNumber(buffer),
    2433             :                                 vmbuffer, VISIBILITYMAP_VALID_BITS);
    2434             :         }
    2435      691272 :         else if (all_frozen_set)
    2436        3322 :             PageSetAllVisible(page);
    2437             : 
    2438             :         /*
    2439             :          * XXX Should we set PageSetPrunable on this page ? See heap_insert()
    2440             :          */
    2441             : 
    2442      696196 :         MarkBufferDirty(buffer);
    2443             : 
    2444             :         /* XLOG stuff */
    2445      696196 :         if (needwal)
    2446             :         {
    2447             :             XLogRecPtr  recptr;
    2448             :             xl_heap_multi_insert *xlrec;
    2449      688554 :             uint8       info = XLOG_HEAP2_MULTI_INSERT;
    2450             :             char       *tupledata;
    2451             :             int         totaldatalen;
    2452      688554 :             char       *scratchptr = scratch.data;
    2453             :             bool        init;
    2454      688554 :             int         bufflags = 0;
    2455             : 
    2456             :             /*
    2457             :              * If the page was previously empty, we can reinit the page
    2458             :              * instead of restoring the whole thing.
    2459             :              */
    2460      688554 :             init = starting_with_empty_page;
    2461             : 
    2462             :             /* allocate xl_heap_multi_insert struct from the scratch area */
    2463      688554 :             xlrec = (xl_heap_multi_insert *) scratchptr;
    2464      688554 :             scratchptr += SizeOfHeapMultiInsert;
    2465             : 
    2466             :             /*
    2467             :              * Allocate offsets array. Unless we're reinitializing the page,
    2468             :              * in that case the tuples are stored in order starting at
    2469             :              * FirstOffsetNumber and we don't need to store the offsets
    2470             :              * explicitly.
    2471             :              */
    2472      688554 :             if (!init)
    2473      663126 :                 scratchptr += nthispage * sizeof(OffsetNumber);
    2474             : 
    2475             :             /* the rest of the scratch space is used for tuple data */
    2476      688554 :             tupledata = scratchptr;
    2477             : 
    2478             :             /* check that the mutually exclusive flags are not both set */
    2479             :             Assert(!(all_visible_cleared && all_frozen_set));
    2480             : 
    2481      688554 :             xlrec->flags = 0;
    2482      688554 :             if (all_visible_cleared)
    2483        4924 :                 xlrec->flags = XLH_INSERT_ALL_VISIBLE_CLEARED;
    2484      688554 :             if (all_frozen_set)
    2485          26 :                 xlrec->flags = XLH_INSERT_ALL_FROZEN_SET;
    2486             : 
    2487      688554 :             xlrec->ntuples = nthispage;
    2488             : 
    2489             :             /*
    2490             :              * Write out an xl_multi_insert_tuple and the tuple data itself
    2491             :              * for each tuple.
    2492             :              */
    2493     3114258 :             for (i = 0; i < nthispage; i++)
    2494             :             {
    2495     2425704 :                 HeapTuple   heaptup = heaptuples[ndone + i];
    2496             :                 xl_multi_insert_tuple *tuphdr;
    2497             :                 int         datalen;
    2498             : 
    2499     2425704 :                 if (!init)
    2500     1392092 :                     xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
    2501             :                 /* xl_multi_insert_tuple needs two-byte alignment. */
    2502     2425704 :                 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
    2503     2425704 :                 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
    2504             : 
    2505     2425704 :                 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
    2506     2425704 :                 tuphdr->t_infomask = heaptup->t_data->t_infomask;
    2507     2425704 :                 tuphdr->t_hoff = heaptup->t_data->t_hoff;
    2508             : 
    2509             :                 /* write bitmap [+ padding] [+ oid] + data */
    2510     2425704 :                 datalen = heaptup->t_len - SizeofHeapTupleHeader;
    2511     2425704 :                 memcpy(scratchptr,
    2512     2425704 :                        (char *) heaptup->t_data + SizeofHeapTupleHeader,
    2513             :                        datalen);
    2514     2425704 :                 tuphdr->datalen = datalen;
    2515     2425704 :                 scratchptr += datalen;
    2516             :             }
    2517      688554 :             totaldatalen = scratchptr - tupledata;
    2518             :             Assert((scratchptr - scratch.data) < BLCKSZ);
    2519             : 
    2520      688554 :             if (need_tuple_data)
    2521         144 :                 xlrec->flags |= XLH_INSERT_CONTAINS_NEW_TUPLE;
    2522             : 
    2523             :             /*
    2524             :              * Signal that this is the last xl_heap_multi_insert record
    2525             :              * emitted by this call to heap_multi_insert(). Needed for logical
    2526             :              * decoding so it knows when to cleanup temporary data.
    2527             :              */
    2528      688554 :             if (ndone + nthispage == ntuples)
    2529      666904 :                 xlrec->flags |= XLH_INSERT_LAST_IN_MULTI;
    2530             : 
    2531      688554 :             if (init)
    2532             :             {
    2533       25428 :                 info |= XLOG_HEAP_INIT_PAGE;
    2534       25428 :                 bufflags |= REGBUF_WILL_INIT;
    2535             :             }
    2536             : 
    2537             :             /*
    2538             :              * If we're doing logical decoding, include the new tuple data
    2539             :              * even if we take a full-page image of the page.
    2540             :              */
    2541      688554 :             if (need_tuple_data)
    2542         144 :                 bufflags |= REGBUF_KEEP_DATA;
    2543             : 
    2544      688554 :             XLogBeginInsert();
    2545      688554 :             XLogRegisterData(xlrec, tupledata - scratch.data);
    2546      688554 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
    2547             : 
    2548      688554 :             XLogRegisterBufData(0, tupledata, totaldatalen);
    2549             : 
    2550             :             /* filtering by origin on a row level is much more efficient */
    2551      688554 :             XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    2552             : 
    2553      688554 :             recptr = XLogInsert(RM_HEAP2_ID, info);
    2554             : 
    2555      688554 :             PageSetLSN(page, recptr);
    2556             :         }
    2557             : 
    2558      696196 :         END_CRIT_SECTION();
    2559             : 
    2560             :         /*
    2561             :          * If we've frozen everything on the page, update the visibilitymap.
    2562             :          * We're already holding pin on the vmbuffer.
    2563             :          */
    2564      696196 :         if (all_frozen_set)
    2565             :         {
    2566             :             Assert(PageIsAllVisible(page));
    2567             :             Assert(visibilitymap_pin_ok(BufferGetBlockNumber(buffer), vmbuffer));
    2568             : 
    2569             :             /*
    2570             :              * It's fine to use InvalidTransactionId here - this is only used
    2571             :              * when HEAP_INSERT_FROZEN is specified, which intentionally
    2572             :              * violates visibility rules.
    2573             :              */
    2574        3322 :             visibilitymap_set(relation, BufferGetBlockNumber(buffer), buffer,
    2575             :                               InvalidXLogRecPtr, vmbuffer,
    2576             :                               InvalidTransactionId,
    2577             :                               VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
    2578             :         }
    2579             : 
    2580      696196 :         UnlockReleaseBuffer(buffer);
    2581      696196 :         ndone += nthispage;
    2582             : 
    2583             :         /*
    2584             :          * NB: Only release vmbuffer after inserting all tuples - it's fairly
    2585             :          * likely that we'll insert into subsequent heap pages that are likely
    2586             :          * to use the same vm page.
    2587             :          */
    2588             :     }
    2589             : 
    2590             :     /* We're done with inserting all tuples, so release the last vmbuffer. */
    2591      667728 :     if (vmbuffer != InvalidBuffer)
    2592        5142 :         ReleaseBuffer(vmbuffer);
    2593             : 
    2594             :     /*
    2595             :      * We're done with the actual inserts.  Check for conflicts again, to
    2596             :      * ensure that all rw-conflicts in to these inserts are detected.  Without
    2597             :      * this final check, a sequential scan of the heap may have locked the
    2598             :      * table after the "before" check, missing one opportunity to detect the
    2599             :      * conflict, and then scanned the table before the new tuples were there,
    2600             :      * missing the other chance to detect the conflict.
    2601             :      *
    2602             :      * For heap inserts, we only need to check for table-level SSI locks. Our
    2603             :      * new tuples can't possibly conflict with existing tuple locks, and heap
    2604             :      * page locks are only consolidated versions of tuple locks; they do not
    2605             :      * lock "gaps" as index page locks do.  So we don't need to specify a
    2606             :      * buffer when making the call.
    2607             :      */
    2608      667728 :     CheckForSerializableConflictIn(relation, NULL, InvalidBlockNumber);
    2609             : 
    2610             :     /*
    2611             :      * If tuples are cachable, mark them for invalidation from the caches in
    2612             :      * case we abort.  Note it is OK to do this after releasing the buffer,
    2613             :      * because the heaptuples data structure is all in local memory, not in
    2614             :      * the shared buffer.
    2615             :      */
    2616      667728 :     if (IsCatalogRelation(relation))
    2617             :     {
    2618     2306256 :         for (i = 0; i < ntuples; i++)
    2619     1640946 :             CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
    2620             :     }
    2621             : 
    2622             :     /* copy t_self fields back to the caller's slots */
    2623     3504234 :     for (i = 0; i < ntuples; i++)
    2624     2836506 :         slots[i]->tts_tid = heaptuples[i]->t_self;
    2625             : 
    2626      667728 :     pgstat_count_heap_insert(relation, ntuples);
    2627      667728 : }
    2628             : 
    2629             : /*
    2630             :  *  simple_heap_insert - insert a tuple
    2631             :  *
    2632             :  * Currently, this routine differs from heap_insert only in supplying
    2633             :  * a default command ID and not allowing access to the speedup options.
    2634             :  *
    2635             :  * This should be used rather than using heap_insert directly in most places
    2636             :  * where we are modifying system catalogs.
    2637             :  */
    2638             : void
    2639     1623600 : simple_heap_insert(Relation relation, HeapTuple tup)
    2640             : {
    2641     1623600 :     heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
    2642     1623600 : }
    2643             : 
    2644             : /*
    2645             :  * Given infomask/infomask2, compute the bits that must be saved in the
    2646             :  * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
    2647             :  * xl_heap_lock_updated WAL records.
    2648             :  *
    2649             :  * See fix_infomask_from_infobits.
    2650             :  */
    2651             : static uint8
    2652     3795464 : compute_infobits(uint16 infomask, uint16 infomask2)
    2653             : {
    2654             :     return
    2655     3795464 :         ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
    2656     3795464 :         ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
    2657     3795464 :         ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
    2658             :     /* note we ignore HEAP_XMAX_SHR_LOCK here */
    2659     7590928 :         ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
    2660             :         ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
    2661     3795464 :          XLHL_KEYS_UPDATED : 0);
    2662             : }
    2663             : 
    2664             : /*
    2665             :  * Given two versions of the same t_infomask for a tuple, compare them and
    2666             :  * return whether the relevant status for a tuple Xmax has changed.  This is
    2667             :  * used after a buffer lock has been released and reacquired: we want to ensure
    2668             :  * that the tuple state continues to be the same it was when we previously
    2669             :  * examined it.
    2670             :  *
    2671             :  * Note the Xmax field itself must be compared separately.
    2672             :  */
    2673             : static inline bool
    2674       10658 : xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
    2675             : {
    2676       10658 :     const uint16 interesting =
    2677             :         HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_LOCK_MASK;
    2678             : 
    2679       10658 :     if ((new_infomask & interesting) != (old_infomask & interesting))
    2680          26 :         return true;
    2681             : 
    2682       10632 :     return false;
    2683             : }
    2684             : 
    2685             : /*
    2686             :  *  heap_delete - delete a tuple
    2687             :  *
    2688             :  * See table_tuple_delete() for an explanation of the parameters, except that
    2689             :  * this routine directly takes a tuple rather than a slot.
    2690             :  *
    2691             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    2692             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    2693             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    2694             :  * generated by another transaction).
    2695             :  */
    2696             : TM_Result
    2697     2929442 : heap_delete(Relation relation, ItemPointer tid,
    2698             :             CommandId cid, Snapshot crosscheck, bool wait,
    2699             :             TM_FailureData *tmfd, bool changingPart)
    2700             : {
    2701             :     TM_Result   result;
    2702     2929442 :     TransactionId xid = GetCurrentTransactionId();
    2703             :     ItemId      lp;
    2704             :     HeapTupleData tp;
    2705             :     Page        page;
    2706             :     BlockNumber block;
    2707             :     Buffer      buffer;
    2708     2929442 :     Buffer      vmbuffer = InvalidBuffer;
    2709             :     TransactionId new_xmax;
    2710             :     uint16      new_infomask,
    2711             :                 new_infomask2;
    2712     2929442 :     bool        have_tuple_lock = false;
    2713             :     bool        iscombo;
    2714     2929442 :     bool        all_visible_cleared = false;
    2715     2929442 :     HeapTuple   old_key_tuple = NULL;   /* replica identity of the tuple */
    2716     2929442 :     bool        old_key_copied = false;
    2717             : 
    2718             :     Assert(ItemPointerIsValid(tid));
    2719             : 
    2720             :     /*
    2721             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    2722             :      * Other workers might need that combo CID for visibility checks, and we
    2723             :      * have no provision for broadcasting it to them.
    2724             :      */
    2725     2929442 :     if (IsInParallelMode())
    2726           0 :         ereport(ERROR,
    2727             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    2728             :                  errmsg("cannot delete tuples during a parallel operation")));
    2729             : 
    2730     2929442 :     block = ItemPointerGetBlockNumber(tid);
    2731     2929442 :     buffer = ReadBuffer(relation, block);
    2732     2929442 :     page = BufferGetPage(buffer);
    2733             : 
    2734             :     /*
    2735             :      * Before locking the buffer, pin the visibility map page if it appears to
    2736             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    2737             :      * in the middle of changing this, so we'll need to recheck after we have
    2738             :      * the lock.
    2739             :      */
    2740     2929442 :     if (PageIsAllVisible(page))
    2741         614 :         visibilitymap_pin(relation, block, &vmbuffer);
    2742             : 
    2743     2929442 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2744             : 
    2745     2929442 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    2746             :     Assert(ItemIdIsNormal(lp));
    2747             : 
    2748     2929442 :     tp.t_tableOid = RelationGetRelid(relation);
    2749     2929442 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    2750     2929442 :     tp.t_len = ItemIdGetLength(lp);
    2751     2929442 :     tp.t_self = *tid;
    2752             : 
    2753     2929444 : l1:
    2754             : 
    2755             :     /*
    2756             :      * If we didn't pin the visibility map page and the page has become all
    2757             :      * visible while we were busy locking the buffer, we'll have to unlock and
    2758             :      * re-lock, to avoid holding the buffer lock across an I/O.  That's a bit
    2759             :      * unfortunate, but hopefully shouldn't happen often.
    2760             :      */
    2761     2929444 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    2762             :     {
    2763           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2764           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    2765           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2766             :     }
    2767             : 
    2768     2929444 :     result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
    2769             : 
    2770     2929444 :     if (result == TM_Invisible)
    2771             :     {
    2772           0 :         UnlockReleaseBuffer(buffer);
    2773           0 :         ereport(ERROR,
    2774             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    2775             :                  errmsg("attempted to delete invisible tuple")));
    2776             :     }
    2777     2929444 :     else if (result == TM_BeingModified && wait)
    2778             :     {
    2779             :         TransactionId xwait;
    2780             :         uint16      infomask;
    2781             : 
    2782             :         /* must copy state data before unlocking buffer */
    2783       81110 :         xwait = HeapTupleHeaderGetRawXmax(tp.t_data);
    2784       81110 :         infomask = tp.t_data->t_infomask;
    2785             : 
    2786             :         /*
    2787             :          * Sleep until concurrent transaction ends -- except when there's a
    2788             :          * single locker and it's our own transaction.  Note we don't care
    2789             :          * which lock mode the locker has, because we need the strongest one.
    2790             :          *
    2791             :          * Before sleeping, we need to acquire tuple lock to establish our
    2792             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    2793             :          * release us when we are next-in-line for the tuple.
    2794             :          *
    2795             :          * If we are forced to "start over" below, we keep the tuple lock;
    2796             :          * this arranges that we stay at the head of the line while rechecking
    2797             :          * tuple state.
    2798             :          */
    2799       81110 :         if (infomask & HEAP_XMAX_IS_MULTI)
    2800             :         {
    2801          16 :             bool        current_is_member = false;
    2802             : 
    2803          16 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    2804             :                                         LockTupleExclusive, &current_is_member))
    2805             :             {
    2806          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2807             : 
    2808             :                 /*
    2809             :                  * Acquire the lock, if necessary (but skip it when we're
    2810             :                  * requesting a lock and already have one; avoids deadlock).
    2811             :                  */
    2812          16 :                 if (!current_is_member)
    2813          12 :                     heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2814             :                                          LockWaitBlock, &have_tuple_lock);
    2815             : 
    2816             :                 /* wait for multixact */
    2817          16 :                 MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, infomask,
    2818             :                                 relation, &(tp.t_self), XLTW_Delete,
    2819             :                                 NULL);
    2820          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2821             : 
    2822             :                 /*
    2823             :                  * If xwait had just locked the tuple then some other xact
    2824             :                  * could update this tuple before we get to this point.  Check
    2825             :                  * for xmax change, and start over if so.
    2826             :                  *
    2827             :                  * We also must start over if we didn't pin the VM page, and
    2828             :                  * the page has become all visible.
    2829             :                  */
    2830          32 :                 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2831          32 :                     xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2832          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2833             :                                          xwait))
    2834           0 :                     goto l1;
    2835             :             }
    2836             : 
    2837             :             /*
    2838             :              * You might think the multixact is necessarily done here, but not
    2839             :              * so: it could have surviving members, namely our own xact or
    2840             :              * other subxacts of this backend.  It is legal for us to delete
    2841             :              * the tuple in either case, however (the latter case is
    2842             :              * essentially a situation of upgrading our former shared lock to
    2843             :              * exclusive).  We don't bother changing the on-disk hint bits
    2844             :              * since we are about to overwrite the xmax altogether.
    2845             :              */
    2846             :         }
    2847       81094 :         else if (!TransactionIdIsCurrentTransactionId(xwait))
    2848             :         {
    2849             :             /*
    2850             :              * Wait for regular transaction to end; but first, acquire tuple
    2851             :              * lock.
    2852             :              */
    2853          80 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    2854          80 :             heap_acquire_tuplock(relation, &(tp.t_self), LockTupleExclusive,
    2855             :                                  LockWaitBlock, &have_tuple_lock);
    2856          80 :             XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
    2857          72 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    2858             : 
    2859             :             /*
    2860             :              * xwait is done, but if xwait had just locked the tuple then some
    2861             :              * other xact could update this tuple before we get to this point.
    2862             :              * Check for xmax change, and start over if so.
    2863             :              *
    2864             :              * We also must start over if we didn't pin the VM page, and the
    2865             :              * page has become all visible.
    2866             :              */
    2867         144 :             if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
    2868         142 :                 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
    2869          70 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data),
    2870             :                                      xwait))
    2871           2 :                 goto l1;
    2872             : 
    2873             :             /* Otherwise check if it committed or aborted */
    2874          70 :             UpdateXmaxHintBits(tp.t_data, buffer, xwait);
    2875             :         }
    2876             : 
    2877             :         /*
    2878             :          * We may overwrite if previous xmax aborted, or if it committed but
    2879             :          * only locked the tuple without updating it.
    2880             :          */
    2881      162172 :         if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    2882       81122 :             HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) ||
    2883          50 :             HeapTupleHeaderIsOnlyLocked(tp.t_data))
    2884       81058 :             result = TM_Ok;
    2885          42 :         else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
    2886          34 :             result = TM_Updated;
    2887             :         else
    2888           8 :             result = TM_Deleted;
    2889             :     }
    2890             : 
    2891             :     /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    2892             :     if (result != TM_Ok)
    2893             :     {
    2894             :         Assert(result == TM_SelfModified ||
    2895             :                result == TM_Updated ||
    2896             :                result == TM_Deleted ||
    2897             :                result == TM_BeingModified);
    2898             :         Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
    2899             :         Assert(result != TM_Updated ||
    2900             :                !ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid));
    2901             :     }
    2902             : 
    2903     2929434 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    2904             :     {
    2905             :         /* Perform additional check for transaction-snapshot mode RI updates */
    2906           2 :         if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
    2907           2 :             result = TM_Updated;
    2908             :     }
    2909             : 
    2910     2929434 :     if (result != TM_Ok)
    2911             :     {
    2912         112 :         tmfd->ctid = tp.t_data->t_ctid;
    2913         112 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
    2914         112 :         if (result == TM_SelfModified)
    2915          42 :             tmfd->cmax = HeapTupleHeaderGetCmax(tp.t_data);
    2916             :         else
    2917          70 :             tmfd->cmax = InvalidCommandId;
    2918         112 :         UnlockReleaseBuffer(buffer);
    2919         112 :         if (have_tuple_lock)
    2920          42 :             UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    2921         112 :         if (vmbuffer != InvalidBuffer)
    2922           0 :             ReleaseBuffer(vmbuffer);
    2923         112 :         return result;
    2924             :     }
    2925             : 
    2926             :     /*
    2927             :      * We're about to do the actual delete -- check for conflict first, to
    2928             :      * avoid possibly having to roll back work we've just done.
    2929             :      *
    2930             :      * This is safe without a recheck as long as there is no possibility of
    2931             :      * another process scanning the page between this check and the delete
    2932             :      * being visible to the scan (i.e., an exclusive buffer content lock is
    2933             :      * continuously held from this point until the tuple delete is visible).
    2934             :      */
    2935     2929322 :     CheckForSerializableConflictIn(relation, tid, BufferGetBlockNumber(buffer));
    2936             : 
    2937             :     /* replace cid with a combo CID if necessary */
    2938     2929294 :     HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
    2939             : 
    2940             :     /*
    2941             :      * Compute replica identity tuple before entering the critical section so
    2942             :      * we don't PANIC upon a memory allocation failure.
    2943             :      */
    2944     2929294 :     old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
    2945             : 
    2946             :     /*
    2947             :      * If this is the first possibly-multixact-able operation in the current
    2948             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    2949             :      * certain that the transaction will never become a member of any older
    2950             :      * MultiXactIds than that.  (We have to do this even if we end up just
    2951             :      * using our own TransactionId below, since some other backend could
    2952             :      * incorporate our XID into a MultiXact immediately afterwards.)
    2953             :      */
    2954     2929294 :     MultiXactIdSetOldestMember();
    2955             : 
    2956     2929294 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data),
    2957     2929294 :                               tp.t_data->t_infomask, tp.t_data->t_infomask2,
    2958             :                               xid, LockTupleExclusive, true,
    2959             :                               &new_xmax, &new_infomask, &new_infomask2);
    2960             : 
    2961     2929294 :     START_CRIT_SECTION();
    2962             : 
    2963             :     /*
    2964             :      * If this transaction commits, the tuple will become DEAD sooner or
    2965             :      * later.  Set flag that this page is a candidate for pruning once our xid
    2966             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    2967             :      * the subsequent page pruning will be a no-op and the hint will be
    2968             :      * cleared.
    2969             :      */
    2970     2929294 :     PageSetPrunable(page, xid);
    2971             : 
    2972     2929294 :     if (PageIsAllVisible(page))
    2973             :     {
    2974         614 :         all_visible_cleared = true;
    2975         614 :         PageClearAllVisible(page);
    2976         614 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    2977             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    2978             :     }
    2979             : 
    2980             :     /* store transaction information of xact deleting the tuple */
    2981     2929294 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    2982     2929294 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    2983     2929294 :     tp.t_data->t_infomask |= new_infomask;
    2984     2929294 :     tp.t_data->t_infomask2 |= new_infomask2;
    2985     2929294 :     HeapTupleHeaderClearHotUpdated(tp.t_data);
    2986     2929294 :     HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
    2987     2929294 :     HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
    2988             :     /* Make sure there is no forward chain link in t_ctid */
    2989     2929294 :     tp.t_data->t_ctid = tp.t_self;
    2990             : 
    2991             :     /* Signal that this is actually a move into another partition */
    2992     2929294 :     if (changingPart)
    2993         964 :         HeapTupleHeaderSetMovedPartitions(tp.t_data);
    2994             : 
    2995     2929294 :     MarkBufferDirty(buffer);
    2996             : 
    2997             :     /*
    2998             :      * XLOG stuff
    2999             :      *
    3000             :      * NB: heap_abort_speculative() uses the same xlog record and replay
    3001             :      * routines.
    3002             :      */
    3003     2929294 :     if (RelationNeedsWAL(relation))
    3004             :     {
    3005             :         xl_heap_delete xlrec;
    3006             :         xl_heap_header xlhdr;
    3007             :         XLogRecPtr  recptr;
    3008             : 
    3009             :         /*
    3010             :          * For logical decode we need combo CIDs to properly decode the
    3011             :          * catalog
    3012             :          */
    3013     2808076 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    3014       12112 :             log_heap_new_cid(relation, &tp);
    3015             : 
    3016     2808076 :         xlrec.flags = 0;
    3017     2808076 :         if (all_visible_cleared)
    3018         614 :             xlrec.flags |= XLH_DELETE_ALL_VISIBLE_CLEARED;
    3019     2808076 :         if (changingPart)
    3020         964 :             xlrec.flags |= XLH_DELETE_IS_PARTITION_MOVE;
    3021     5616152 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    3022     2808076 :                                               tp.t_data->t_infomask2);
    3023     2808076 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    3024     2808076 :         xlrec.xmax = new_xmax;
    3025             : 
    3026     2808076 :         if (old_key_tuple != NULL)
    3027             :         {
    3028       94028 :             if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    3029         256 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_TUPLE;
    3030             :             else
    3031       93772 :                 xlrec.flags |= XLH_DELETE_CONTAINS_OLD_KEY;
    3032             :         }
    3033             : 
    3034     2808076 :         XLogBeginInsert();
    3035     2808076 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    3036             : 
    3037     2808076 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3038             : 
    3039             :         /*
    3040             :          * Log replica identity of the deleted tuple if there is one
    3041             :          */
    3042     2808076 :         if (old_key_tuple != NULL)
    3043             :         {
    3044       94028 :             xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    3045       94028 :             xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
    3046       94028 :             xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
    3047             : 
    3048       94028 :             XLogRegisterData(&xlhdr, SizeOfHeapHeader);
    3049       94028 :             XLogRegisterData((char *) old_key_tuple->t_data
    3050             :                              + SizeofHeapTupleHeader,
    3051       94028 :                              old_key_tuple->t_len
    3052             :                              - SizeofHeapTupleHeader);
    3053             :         }
    3054             : 
    3055             :         /* filtering by origin on a row level is much more efficient */
    3056     2808076 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    3057             : 
    3058     2808076 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    3059             : 
    3060     2808076 :         PageSetLSN(page, recptr);
    3061             :     }
    3062             : 
    3063     2929294 :     END_CRIT_SECTION();
    3064             : 
    3065     2929294 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3066             : 
    3067     2929294 :     if (vmbuffer != InvalidBuffer)
    3068         614 :         ReleaseBuffer(vmbuffer);
    3069             : 
    3070             :     /*
    3071             :      * If the tuple has toasted out-of-line attributes, we need to delete
    3072             :      * those items too.  We have to do this before releasing the buffer
    3073             :      * because we need to look at the contents of the tuple, but it's OK to
    3074             :      * release the content lock on the buffer first.
    3075             :      */
    3076     2929294 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3077        4530 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3078             :     {
    3079             :         /* toast table entries should never be recursively toasted */
    3080             :         Assert(!HeapTupleHasExternal(&tp));
    3081             :     }
    3082     2924784 :     else if (HeapTupleHasExternal(&tp))
    3083         578 :         heap_toast_delete(relation, &tp, false);
    3084             : 
    3085             :     /*
    3086             :      * Mark tuple for invalidation from system caches at next command
    3087             :      * boundary. We have to do this before releasing the buffer because we
    3088             :      * need to look at the contents of the tuple.
    3089             :      */
    3090     2929294 :     CacheInvalidateHeapTuple(relation, &tp, NULL);
    3091             : 
    3092             :     /* Now we can release the buffer */
    3093     2929294 :     ReleaseBuffer(buffer);
    3094             : 
    3095             :     /*
    3096             :      * Release the lmgr tuple lock, if we had it.
    3097             :      */
    3098     2929294 :     if (have_tuple_lock)
    3099          40 :         UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive);
    3100             : 
    3101     2929294 :     pgstat_count_heap_delete(relation);
    3102             : 
    3103     2929294 :     if (old_key_tuple != NULL && old_key_copied)
    3104       93774 :         heap_freetuple(old_key_tuple);
    3105             : 
    3106     2929294 :     return TM_Ok;
    3107             : }
    3108             : 
    3109             : /*
    3110             :  *  simple_heap_delete - delete a tuple
    3111             :  *
    3112             :  * This routine may be used to delete a tuple when concurrent updates of
    3113             :  * the target tuple are not expected (for example, because we have a lock
    3114             :  * on the relation associated with the tuple).  Any failure is reported
    3115             :  * via ereport().
    3116             :  */
    3117             : void
    3118     1208862 : simple_heap_delete(Relation relation, ItemPointer tid)
    3119             : {
    3120             :     TM_Result   result;
    3121             :     TM_FailureData tmfd;
    3122             : 
    3123     1208862 :     result = heap_delete(relation, tid,
    3124             :                          GetCurrentCommandId(true), InvalidSnapshot,
    3125             :                          true /* wait for commit */ ,
    3126             :                          &tmfd, false /* changingPart */ );
    3127     1208862 :     switch (result)
    3128             :     {
    3129           0 :         case TM_SelfModified:
    3130             :             /* Tuple was already updated in current command? */
    3131           0 :             elog(ERROR, "tuple already updated by self");
    3132             :             break;
    3133             : 
    3134     1208862 :         case TM_Ok:
    3135             :             /* done successfully */
    3136     1208862 :             break;
    3137             : 
    3138           0 :         case TM_Updated:
    3139           0 :             elog(ERROR, "tuple concurrently updated");
    3140             :             break;
    3141             : 
    3142           0 :         case TM_Deleted:
    3143           0 :             elog(ERROR, "tuple concurrently deleted");
    3144             :             break;
    3145             : 
    3146           0 :         default:
    3147           0 :             elog(ERROR, "unrecognized heap_delete status: %u", result);
    3148             :             break;
    3149             :     }
    3150     1208862 : }
    3151             : 
    3152             : /*
    3153             :  *  heap_update - replace a tuple
    3154             :  *
    3155             :  * See table_tuple_update() for an explanation of the parameters, except that
    3156             :  * this routine directly takes a tuple rather than a slot.
    3157             :  *
    3158             :  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
    3159             :  * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
    3160             :  * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
    3161             :  * generated by another transaction).
    3162             :  */
    3163             : TM_Result
    3164      579512 : heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
    3165             :             CommandId cid, Snapshot crosscheck, bool wait,
    3166             :             TM_FailureData *tmfd, LockTupleMode *lockmode,
    3167             :             TU_UpdateIndexes *update_indexes)
    3168             : {
    3169             :     TM_Result   result;
    3170      579512 :     TransactionId xid = GetCurrentTransactionId();
    3171             :     Bitmapset  *hot_attrs;
    3172             :     Bitmapset  *sum_attrs;
    3173             :     Bitmapset  *key_attrs;
    3174             :     Bitmapset  *id_attrs;
    3175             :     Bitmapset  *interesting_attrs;
    3176             :     Bitmapset  *modified_attrs;
    3177             :     ItemId      lp;
    3178             :     HeapTupleData oldtup;
    3179             :     HeapTuple   heaptup;
    3180      579512 :     HeapTuple   old_key_tuple = NULL;
    3181      579512 :     bool        old_key_copied = false;
    3182             :     Page        page;
    3183             :     BlockNumber block;
    3184             :     MultiXactStatus mxact_status;
    3185             :     Buffer      buffer,
    3186             :                 newbuf,
    3187      579512 :                 vmbuffer = InvalidBuffer,
    3188      579512 :                 vmbuffer_new = InvalidBuffer;
    3189             :     bool        need_toast;
    3190             :     Size        newtupsize,
    3191             :                 pagefree;
    3192      579512 :     bool        have_tuple_lock = false;
    3193             :     bool        iscombo;
    3194      579512 :     bool        use_hot_update = false;
    3195      579512 :     bool        summarized_update = false;
    3196             :     bool        key_intact;
    3197      579512 :     bool        all_visible_cleared = false;
    3198      579512 :     bool        all_visible_cleared_new = false;
    3199             :     bool        checked_lockers;
    3200             :     bool        locker_remains;
    3201      579512 :     bool        id_has_external = false;
    3202             :     TransactionId xmax_new_tuple,
    3203             :                 xmax_old_tuple;
    3204             :     uint16      infomask_old_tuple,
    3205             :                 infomask2_old_tuple,
    3206             :                 infomask_new_tuple,
    3207             :                 infomask2_new_tuple;
    3208             : 
    3209             :     Assert(ItemPointerIsValid(otid));
    3210             : 
    3211             :     /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
    3212             :     Assert(HeapTupleHeaderGetNatts(newtup->t_data) <=
    3213             :            RelationGetNumberOfAttributes(relation));
    3214             : 
    3215             :     /*
    3216             :      * Forbid this during a parallel operation, lest it allocate a combo CID.
    3217             :      * Other workers might need that combo CID for visibility checks, and we
    3218             :      * have no provision for broadcasting it to them.
    3219             :      */
    3220      579512 :     if (IsInParallelMode())
    3221           0 :         ereport(ERROR,
    3222             :                 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
    3223             :                  errmsg("cannot update tuples during a parallel operation")));
    3224             : 
    3225             : #ifdef USE_ASSERT_CHECKING
    3226             :     check_lock_if_inplace_updateable_rel(relation, otid, newtup);
    3227             : #endif
    3228             : 
    3229             :     /*
    3230             :      * Fetch the list of attributes to be checked for various operations.
    3231             :      *
    3232             :      * For HOT considerations, this is wasted effort if we fail to update or
    3233             :      * have to put the new tuple on a different page.  But we must compute the
    3234             :      * list before obtaining buffer lock --- in the worst case, if we are
    3235             :      * doing an update on one of the relevant system catalogs, we could
    3236             :      * deadlock if we try to fetch the list later.  In any case, the relcache
    3237             :      * caches the data so this is usually pretty cheap.
    3238             :      *
    3239             :      * We also need columns used by the replica identity and columns that are
    3240             :      * considered the "key" of rows in the table.
    3241             :      *
    3242             :      * Note that we get copies of each bitmap, so we need not worry about
    3243             :      * relcache flush happening midway through.
    3244             :      */
    3245      579512 :     hot_attrs = RelationGetIndexAttrBitmap(relation,
    3246             :                                            INDEX_ATTR_BITMAP_HOT_BLOCKING);
    3247      579512 :     sum_attrs = RelationGetIndexAttrBitmap(relation,
    3248             :                                            INDEX_ATTR_BITMAP_SUMMARIZED);
    3249      579512 :     key_attrs = RelationGetIndexAttrBitmap(relation, INDEX_ATTR_BITMAP_KEY);
    3250      579512 :     id_attrs = RelationGetIndexAttrBitmap(relation,
    3251             :                                           INDEX_ATTR_BITMAP_IDENTITY_KEY);
    3252      579512 :     interesting_attrs = NULL;
    3253      579512 :     interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
    3254      579512 :     interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
    3255      579512 :     interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
    3256      579512 :     interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
    3257             : 
    3258      579512 :     block = ItemPointerGetBlockNumber(otid);
    3259      579512 :     INJECTION_POINT("heap_update-before-pin");
    3260      579512 :     buffer = ReadBuffer(relation, block);
    3261      579512 :     page = BufferGetPage(buffer);
    3262             : 
    3263             :     /*
    3264             :      * Before locking the buffer, pin the visibility map page if it appears to
    3265             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    3266             :      * in the middle of changing this, so we'll need to recheck after we have
    3267             :      * the lock.
    3268             :      */
    3269      579512 :     if (PageIsAllVisible(page))
    3270        2928 :         visibilitymap_pin(relation, block, &vmbuffer);
    3271             : 
    3272      579512 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3273             : 
    3274      579512 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
    3275             : 
    3276             :     /*
    3277             :      * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
    3278             :      * we see LP_NORMAL here.  When the otid origin is a syscache, we may have
    3279             :      * neither a pin nor a snapshot.  Hence, we may see other LP_ states, each
    3280             :      * of which indicates concurrent pruning.
    3281             :      *
    3282             :      * Failing with TM_Updated would be most accurate.  However, unlike other
    3283             :      * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
    3284             :      * LP_DEAD cases.  While the distinction between TM_Updated and TM_Deleted
    3285             :      * does matter to SQL statements UPDATE and MERGE, those SQL statements
    3286             :      * hold a snapshot that ensures LP_NORMAL.  Hence, the choice between
    3287             :      * TM_Updated and TM_Deleted affects only the wording of error messages.
    3288             :      * Settle on TM_Deleted, for two reasons.  First, it avoids complicating
    3289             :      * the specification of when tmfd->ctid is valid.  Second, it creates
    3290             :      * error log evidence that we took this branch.
    3291             :      *
    3292             :      * Since it's possible to see LP_UNUSED at otid, it's also possible to see
    3293             :      * LP_NORMAL for a tuple that replaced LP_UNUSED.  If it's a tuple for an
    3294             :      * unrelated row, we'll fail with "duplicate key value violates unique".
    3295             :      * XXX if otid is the live, newer version of the newtup row, we'll discard
    3296             :      * changes originating in versions of this catalog row after the version
    3297             :      * the caller got from syscache.  See syscache-update-pruned.spec.
    3298             :      */
    3299      579512 :     if (!ItemIdIsNormal(lp))
    3300             :     {
    3301             :         Assert(RelationSupportsSysCache(RelationGetRelid(relation)));
    3302             : 
    3303           2 :         UnlockReleaseBuffer(buffer);
    3304             :         Assert(!have_tuple_lock);
    3305           2 :         if (vmbuffer != InvalidBuffer)
    3306           2 :             ReleaseBuffer(vmbuffer);
    3307           2 :         tmfd->ctid = *otid;
    3308           2 :         tmfd->xmax = InvalidTransactionId;
    3309           2 :         tmfd->cmax = InvalidCommandId;
    3310           2 :         *update_indexes = TU_None;
    3311             : 
    3312           2 :         bms_free(hot_attrs);
    3313           2 :         bms_free(sum_attrs);
    3314           2 :         bms_free(key_attrs);
    3315           2 :         bms_free(id_attrs);
    3316             :         /* modified_attrs not yet initialized */
    3317           2 :         bms_free(interesting_attrs);
    3318           2 :         return TM_Deleted;
    3319             :     }
    3320             : 
    3321             :     /*
    3322             :      * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
    3323             :      * properly.
    3324             :      */
    3325      579510 :     oldtup.t_tableOid = RelationGetRelid(relation);
    3326      579510 :     oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    3327      579510 :     oldtup.t_len = ItemIdGetLength(lp);
    3328      579510 :     oldtup.t_self = *otid;
    3329             : 
    3330             :     /* the new tuple is ready, except for this: */
    3331      579510 :     newtup->t_tableOid = RelationGetRelid(relation);
    3332             : 
    3333             :     /*
    3334             :      * Determine columns modified by the update.  Additionally, identify
    3335             :      * whether any of the unmodified replica identity key attributes in the
    3336             :      * old tuple is externally stored or not.  This is required because for
    3337             :      * such attributes the flattened value won't be WAL logged as part of the
    3338             :      * new tuple so we must include it as part of the old_key_tuple.  See
    3339             :      * ExtractReplicaIdentity.
    3340             :      */
    3341      579510 :     modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
    3342             :                                               id_attrs, &oldtup,
    3343             :                                               newtup, &id_has_external);
    3344             : 
    3345             :     /*
    3346             :      * If we're not updating any "key" column, we can grab a weaker lock type.
    3347             :      * This allows for more concurrency when we are running simultaneously
    3348             :      * with foreign key checks.
    3349             :      *
    3350             :      * Note that if a column gets detoasted while executing the update, but
    3351             :      * the value ends up being the same, this test will fail and we will use
    3352             :      * the stronger lock.  This is acceptable; the important case to optimize
    3353             :      * is updates that don't manipulate key columns, not those that
    3354             :      * serendipitously arrive at the same key values.
    3355             :      */
    3356      579510 :     if (!bms_overlap(modified_attrs, key_attrs))
    3357             :     {
    3358      571214 :         *lockmode = LockTupleNoKeyExclusive;
    3359      571214 :         mxact_status = MultiXactStatusNoKeyUpdate;
    3360      571214 :         key_intact = true;
    3361             : 
    3362             :         /*
    3363             :          * If this is the first possibly-multixact-able operation in the
    3364             :          * current transaction, set my per-backend OldestMemberMXactId
    3365             :          * setting. We can be certain that the transaction will never become a
    3366             :          * member of any older MultiXactIds than that.  (We have to do this
    3367             :          * even if we end up just using our own TransactionId below, since
    3368             :          * some other backend could incorporate our XID into a MultiXact
    3369             :          * immediately afterwards.)
    3370             :          */
    3371      571214 :         MultiXactIdSetOldestMember();
    3372             :     }
    3373             :     else
    3374             :     {
    3375        8296 :         *lockmode = LockTupleExclusive;
    3376        8296 :         mxact_status = MultiXactStatusUpdate;
    3377        8296 :         key_intact = false;
    3378             :     }
    3379             : 
    3380             :     /*
    3381             :      * Note: beyond this point, use oldtup not otid to refer to old tuple.
    3382             :      * otid may very well point at newtup->t_self, which we will overwrite
    3383             :      * with the new tuple's location, so there's great risk of confusion if we
    3384             :      * use otid anymore.
    3385             :      */
    3386             : 
    3387      579510 : l2:
    3388      579512 :     checked_lockers = false;
    3389      579512 :     locker_remains = false;
    3390      579512 :     result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
    3391             : 
    3392             :     /* see below about the "no wait" case */
    3393             :     Assert(result != TM_BeingModified || wait);
    3394             : 
    3395      579512 :     if (result == TM_Invisible)
    3396             :     {
    3397           0 :         UnlockReleaseBuffer(buffer);
    3398           0 :         ereport(ERROR,
    3399             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    3400             :                  errmsg("attempted to update invisible tuple")));
    3401             :     }
    3402      579512 :     else if (result == TM_BeingModified && wait)
    3403             :     {
    3404             :         TransactionId xwait;
    3405             :         uint16      infomask;
    3406       71878 :         bool        can_continue = false;
    3407             : 
    3408             :         /*
    3409             :          * XXX note that we don't consider the "no wait" case here.  This
    3410             :          * isn't a problem currently because no caller uses that case, but it
    3411             :          * should be fixed if such a caller is introduced.  It wasn't a
    3412             :          * problem previously because this code would always wait, but now
    3413             :          * that some tuple locks do not conflict with one of the lock modes we
    3414             :          * use, it is possible that this case is interesting to handle
    3415             :          * specially.
    3416             :          *
    3417             :          * This may cause failures with third-party code that calls
    3418             :          * heap_update directly.
    3419             :          */
    3420             : 
    3421             :         /* must copy state data before unlocking buffer */
    3422       71878 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3423       71878 :         infomask = oldtup.t_data->t_infomask;
    3424             : 
    3425             :         /*
    3426             :          * Now we have to do something about the existing locker.  If it's a
    3427             :          * multi, sleep on it; we might be awakened before it is completely
    3428             :          * gone (or even not sleep at all in some cases); we need to preserve
    3429             :          * it as locker, unless it is gone completely.
    3430             :          *
    3431             :          * If it's not a multi, we need to check for sleeping conditions
    3432             :          * before actually going to sleep.  If the update doesn't conflict
    3433             :          * with the locks, we just continue without sleeping (but making sure
    3434             :          * it is preserved).
    3435             :          *
    3436             :          * Before sleeping, we need to acquire tuple lock to establish our
    3437             :          * priority for the tuple (see heap_lock_tuple).  LockTuple will
    3438             :          * release us when we are next-in-line for the tuple.  Note we must
    3439             :          * not acquire the tuple lock until we're sure we're going to sleep;
    3440             :          * otherwise we're open for race conditions with other transactions
    3441             :          * holding the tuple lock which sleep on us.
    3442             :          *
    3443             :          * If we are forced to "start over" below, we keep the tuple lock;
    3444             :          * this arranges that we stay at the head of the line while rechecking
    3445             :          * tuple state.
    3446             :          */
    3447       71878 :         if (infomask & HEAP_XMAX_IS_MULTI)
    3448             :         {
    3449             :             TransactionId update_xact;
    3450             :             int         remain;
    3451         120 :             bool        current_is_member = false;
    3452             : 
    3453         120 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    3454             :                                         *lockmode, &current_is_member))
    3455             :             {
    3456          16 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3457             : 
    3458             :                 /*
    3459             :                  * Acquire the lock, if necessary (but skip it when we're
    3460             :                  * requesting a lock and already have one; avoids deadlock).
    3461             :                  */
    3462          16 :                 if (!current_is_member)
    3463           0 :                     heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3464             :                                          LockWaitBlock, &have_tuple_lock);
    3465             : 
    3466             :                 /* wait for multixact */
    3467          16 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    3468             :                                 relation, &oldtup.t_self, XLTW_Update,
    3469             :                                 &remain);
    3470          16 :                 checked_lockers = true;
    3471          16 :                 locker_remains = remain != 0;
    3472          16 :                 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3473             : 
    3474             :                 /*
    3475             :                  * If xwait had just locked the tuple then some other xact
    3476             :                  * could update this tuple before we get to this point.  Check
    3477             :                  * for xmax change, and start over if so.
    3478             :                  */
    3479          16 :                 if (xmax_infomask_changed(oldtup.t_data->t_infomask,
    3480          16 :                                           infomask) ||
    3481          16 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3482             :                                          xwait))
    3483           0 :                     goto l2;
    3484             :             }
    3485             : 
    3486             :             /*
    3487             :              * Note that the multixact may not be done by now.  It could have
    3488             :              * surviving members; our own xact or other subxacts of this
    3489             :              * backend, and also any other concurrent transaction that locked
    3490             :              * the tuple with LockTupleKeyShare if we only got
    3491             :              * LockTupleNoKeyExclusive.  If this is the case, we have to be
    3492             :              * careful to mark the updated tuple with the surviving members in
    3493             :              * Xmax.
    3494             :              *
    3495             :              * Note that there could have been another update in the
    3496             :              * MultiXact. In that case, we need to check whether it committed
    3497             :              * or aborted. If it aborted we are safe to update it again;
    3498             :              * otherwise there is an update conflict, and we have to return
    3499             :              * TableTuple{Deleted, Updated} below.
    3500             :              *
    3501             :              * In the LockTupleExclusive case, we still need to preserve the
    3502             :              * surviving members: those would include the tuple locks we had
    3503             :              * before this one, which are important to keep in case this
    3504             :              * subxact aborts.
    3505             :              */
    3506         120 :             if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask))
    3507          16 :                 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
    3508             :             else
    3509         104 :                 update_xact = InvalidTransactionId;
    3510             : 
    3511             :             /*
    3512             :              * There was no UPDATE in the MultiXact; or it aborted. No
    3513             :              * TransactionIdIsInProgress() call needed here, since we called
    3514             :              * MultiXactIdWait() above.
    3515             :              */
    3516         136 :             if (!TransactionIdIsValid(update_xact) ||
    3517          16 :                 TransactionIdDidAbort(update_xact))
    3518         106 :                 can_continue = true;
    3519             :         }
    3520       71758 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    3521             :         {
    3522             :             /*
    3523             :              * The only locker is ourselves; we can avoid grabbing the tuple
    3524             :              * lock here, but must preserve our locking information.
    3525             :              */
    3526       71574 :             checked_lockers = true;
    3527       71574 :             locker_remains = true;
    3528       71574 :             can_continue = true;
    3529             :         }
    3530         184 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
    3531             :         {
    3532             :             /*
    3533             :              * If it's just a key-share locker, and we're not changing the key
    3534             :              * columns, we don't need to wait for it to end; but we need to
    3535             :              * preserve it as locker.
    3536             :              */
    3537          58 :             checked_lockers = true;
    3538          58 :             locker_remains = true;
    3539          58 :             can_continue = true;
    3540             :         }
    3541             :         else
    3542             :         {
    3543             :             /*
    3544             :              * Wait for regular transaction to end; but first, acquire tuple
    3545             :              * lock.
    3546             :              */
    3547         126 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3548         126 :             heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
    3549             :                                  LockWaitBlock, &have_tuple_lock);
    3550         126 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    3551             :                               XLTW_Update);
    3552         126 :             checked_lockers = true;
    3553         126 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3554             : 
    3555             :             /*
    3556             :              * xwait is done, but if xwait had just locked the tuple then some
    3557             :              * other xact could update this tuple before we get to this point.
    3558             :              * Check for xmax change, and start over if so.
    3559             :              */
    3560         250 :             if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
    3561         124 :                 !TransactionIdEquals(xwait,
    3562             :                                      HeapTupleHeaderGetRawXmax(oldtup.t_data)))
    3563           2 :                 goto l2;
    3564             : 
    3565             :             /* Otherwise check if it committed or aborted */
    3566         124 :             UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
    3567         124 :             if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
    3568          30 :                 can_continue = true;
    3569             :         }
    3570             : 
    3571       71876 :         if (can_continue)
    3572       71768 :             result = TM_Ok;
    3573         108 :         else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
    3574          98 :             result = TM_Updated;
    3575             :         else
    3576          10 :             result = TM_Deleted;
    3577             :     }
    3578             : 
    3579             :     /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
    3580             :     if (result != TM_Ok)
    3581             :     {
    3582             :         Assert(result == TM_SelfModified ||
    3583             :                result == TM_Updated ||
    3584             :                result == TM_Deleted ||
    3585             :                result == TM_BeingModified);
    3586             :         Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
    3587             :         Assert(result != TM_Updated ||
    3588             :                !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
    3589             :     }
    3590             : 
    3591      579510 :     if (crosscheck != InvalidSnapshot && result == TM_Ok)
    3592             :     {
    3593             :         /* Perform additional check for transaction-snapshot mode RI updates */
    3594           2 :         if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
    3595           2 :             result = TM_Updated;
    3596             :     }
    3597             : 
    3598      579510 :     if (result != TM_Ok)
    3599             :     {
    3600         302 :         tmfd->ctid = oldtup.t_data->t_ctid;
    3601         302 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
    3602         302 :         if (result == TM_SelfModified)
    3603         104 :             tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
    3604             :         else
    3605         198 :             tmfd->cmax = InvalidCommandId;
    3606         302 :         UnlockReleaseBuffer(buffer);
    3607         302 :         if (have_tuple_lock)
    3608          94 :             UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    3609         302 :         if (vmbuffer != InvalidBuffer)
    3610           0 :             ReleaseBuffer(vmbuffer);
    3611         302 :         *update_indexes = TU_None;
    3612             : 
    3613         302 :         bms_free(hot_attrs);
    3614         302 :         bms_free(sum_attrs);
    3615         302 :         bms_free(key_attrs);
    3616         302 :         bms_free(id_attrs);
    3617         302 :         bms_free(modified_attrs);
    3618         302 :         bms_free(interesting_attrs);
    3619         302 :         return result;
    3620             :     }
    3621             : 
    3622             :     /*
    3623             :      * If we didn't pin the visibility map page and the page has become all
    3624             :      * visible while we were busy locking the buffer, or during some
    3625             :      * subsequent window during which we had it unlocked, we'll have to unlock
    3626             :      * and re-lock, to avoid holding the buffer lock across an I/O.  That's a
    3627             :      * bit unfortunate, especially since we'll now have to recheck whether the
    3628             :      * tuple has been locked or updated under us, but hopefully it won't
    3629             :      * happen very often.
    3630             :      */
    3631      579208 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3632             :     {
    3633           0 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3634           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    3635           0 :         LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3636           0 :         goto l2;
    3637             :     }
    3638             : 
    3639             :     /* Fill in transaction status data */
    3640             : 
    3641             :     /*
    3642             :      * If the tuple we're updating is locked, we need to preserve the locking
    3643             :      * info in the old tuple's Xmax.  Prepare a new Xmax value for this.
    3644             :      */
    3645      579208 :     compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3646      579208 :                               oldtup.t_data->t_infomask,
    3647      579208 :                               oldtup.t_data->t_infomask2,
    3648             :                               xid, *lockmode, true,
    3649             :                               &xmax_old_tuple, &infomask_old_tuple,
    3650             :                               &infomask2_old_tuple);
    3651             : 
    3652             :     /*
    3653             :      * And also prepare an Xmax value for the new copy of the tuple.  If there
    3654             :      * was no xmax previously, or there was one but all lockers are now gone,
    3655             :      * then use InvalidTransactionId; otherwise, get the xmax from the old
    3656             :      * tuple.  (In rare cases that might also be InvalidTransactionId and yet
    3657             :      * not have the HEAP_XMAX_INVALID bit set; that's fine.)
    3658             :      */
    3659      650946 :     if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
    3660      143476 :         HEAP_LOCKED_UPGRADED(oldtup.t_data->t_infomask) ||
    3661       71634 :         (checked_lockers && !locker_remains))
    3662      507470 :         xmax_new_tuple = InvalidTransactionId;
    3663             :     else
    3664       71738 :         xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    3665             : 
    3666      579208 :     if (!TransactionIdIsValid(xmax_new_tuple))
    3667             :     {
    3668      507470 :         infomask_new_tuple = HEAP_XMAX_INVALID;
    3669      507470 :         infomask2_new_tuple = 0;
    3670             :     }
    3671             :     else
    3672             :     {
    3673             :         /*
    3674             :          * If we found a valid Xmax for the new tuple, then the infomask bits
    3675             :          * to use on the new tuple depend on what was there on the old one.
    3676             :          * Note that since we're doing an update, the only possibility is that
    3677             :          * the lockers had FOR KEY SHARE lock.
    3678             :          */
    3679       71738 :         if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
    3680             :         {
    3681         106 :             GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
    3682             :                                    &infomask2_new_tuple);
    3683             :         }
    3684             :         else
    3685             :         {
    3686       71632 :             infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
    3687       71632 :             infomask2_new_tuple = 0;
    3688             :         }
    3689             :     }
    3690             : 
    3691             :     /*
    3692             :      * Prepare the new tuple with the appropriate initial values of Xmin and
    3693             :      * Xmax, as well as initial infomask bits as computed above.
    3694             :      */
    3695      579208 :     newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
    3696      579208 :     newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
    3697      579208 :     HeapTupleHeaderSetXmin(newtup->t_data, xid);
    3698      579208 :     HeapTupleHeaderSetCmin(newtup->t_data, cid);
    3699      579208 :     newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
    3700      579208 :     newtup->t_data->t_infomask2 |= infomask2_new_tuple;
    3701      579208 :     HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
    3702             : 
    3703             :     /*
    3704             :      * Replace cid with a combo CID if necessary.  Note that we already put
    3705             :      * the plain cid into the new tuple.
    3706             :      */
    3707      579208 :     HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
    3708             : 
    3709             :     /*
    3710             :      * If the toaster needs to be activated, OR if the new tuple will not fit
    3711             :      * on the same page as the old, then we need to release the content lock
    3712             :      * (but not the pin!) on the old tuple's buffer while we are off doing
    3713             :      * TOAST and/or table-file-extension work.  We must mark the old tuple to
    3714             :      * show that it's locked, else other processes may try to update it
    3715             :      * themselves.
    3716             :      *
    3717             :      * We need to invoke the toaster if there are already any out-of-line
    3718             :      * toasted values present, or if the new tuple is over-threshold.
    3719             :      */
    3720      579208 :     if (relation->rd_rel->relkind != RELKIND_RELATION &&
    3721           0 :         relation->rd_rel->relkind != RELKIND_MATVIEW)
    3722             :     {
    3723             :         /* toast table entries should never be recursively toasted */
    3724             :         Assert(!HeapTupleHasExternal(&oldtup));
    3725             :         Assert(!HeapTupleHasExternal(newtup));
    3726           0 :         need_toast = false;
    3727             :     }
    3728             :     else
    3729     1737042 :         need_toast = (HeapTupleHasExternal(&oldtup) ||
    3730     1157834 :                       HeapTupleHasExternal(newtup) ||
    3731      578578 :                       newtup->t_len > TOAST_TUPLE_THRESHOLD);
    3732             : 
    3733      579208 :     pagefree = PageGetHeapFreeSpace(page);
    3734             : 
    3735      579208 :     newtupsize = MAXALIGN(newtup->t_len);
    3736             : 
    3737      579208 :     if (need_toast || newtupsize > pagefree)
    3738      285280 :     {
    3739             :         TransactionId xmax_lock_old_tuple;
    3740             :         uint16      infomask_lock_old_tuple,
    3741             :                     infomask2_lock_old_tuple;
    3742      285280 :         bool        cleared_all_frozen = false;
    3743             : 
    3744             :         /*
    3745             :          * To prevent concurrent sessions from updating the tuple, we have to
    3746             :          * temporarily mark it locked, while we release the page-level lock.
    3747             :          *
    3748             :          * To satisfy the rule that any xid potentially appearing in a buffer
    3749             :          * written out to disk, we unfortunately have to WAL log this
    3750             :          * temporary modification.  We can reuse xl_heap_lock for this
    3751             :          * purpose.  If we crash/error before following through with the
    3752             :          * actual update, xmax will be of an aborted transaction, allowing
    3753             :          * other sessions to proceed.
    3754             :          */
    3755             : 
    3756             :         /*
    3757             :          * Compute xmax / infomask appropriate for locking the tuple. This has
    3758             :          * to be done separately from the combo that's going to be used for
    3759             :          * updating, because the potentially created multixact would otherwise
    3760             :          * be wrong.
    3761             :          */
    3762      285280 :         compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data),
    3763      285280 :                                   oldtup.t_data->t_infomask,
    3764      285280 :                                   oldtup.t_data->t_infomask2,
    3765             :                                   xid, *lockmode, false,
    3766             :                                   &xmax_lock_old_tuple, &infomask_lock_old_tuple,
    3767             :                                   &infomask2_lock_old_tuple);
    3768             : 
    3769             :         Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
    3770             : 
    3771      285280 :         START_CRIT_SECTION();
    3772             : 
    3773             :         /* Clear obsolete visibility flags ... */
    3774      285280 :         oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    3775      285280 :         oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    3776      285280 :         HeapTupleClearHotUpdated(&oldtup);
    3777             :         /* ... and store info about transaction updating this tuple */
    3778             :         Assert(TransactionIdIsValid(xmax_lock_old_tuple));
    3779      285280 :         HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
    3780      285280 :         oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
    3781      285280 :         oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
    3782      285280 :         HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    3783             : 
    3784             :         /* temporarily make it look not-updated, but locked */
    3785      285280 :         oldtup.t_data->t_ctid = oldtup.t_self;
    3786             : 
    3787             :         /*
    3788             :          * Clear all-frozen bit on visibility map if needed. We could
    3789             :          * immediately reset ALL_VISIBLE, but given that the WAL logging
    3790             :          * overhead would be unchanged, that doesn't seem necessarily
    3791             :          * worthwhile.
    3792             :          */
    3793      286714 :         if (PageIsAllVisible(page) &&
    3794        1434 :             visibilitymap_clear(relation, block, vmbuffer,
    3795             :                                 VISIBILITYMAP_ALL_FROZEN))
    3796        1122 :             cleared_all_frozen = true;
    3797             : 
    3798      285280 :         MarkBufferDirty(buffer);
    3799             : 
    3800      285280 :         if (RelationNeedsWAL(relation))
    3801             :         {
    3802             :             xl_heap_lock xlrec;
    3803             :             XLogRecPtr  recptr;
    3804             : 
    3805      265024 :             XLogBeginInsert();
    3806      265024 :             XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    3807             : 
    3808      265024 :             xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
    3809      265024 :             xlrec.xmax = xmax_lock_old_tuple;
    3810      530048 :             xlrec.infobits_set = compute_infobits(oldtup.t_data->t_infomask,
    3811      265024 :                                                   oldtup.t_data->t_infomask2);
    3812      265024 :             xlrec.flags =
    3813      265024 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    3814      265024 :             XLogRegisterData(&xlrec, SizeOfHeapLock);
    3815      265024 :             recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    3816      265024 :             PageSetLSN(page, recptr);
    3817             :         }
    3818             : 
    3819      285280 :         END_CRIT_SECTION();
    3820             : 
    3821      285280 :         LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3822             : 
    3823             :         /*
    3824             :          * Let the toaster do its thing, if needed.
    3825             :          *
    3826             :          * Note: below this point, heaptup is the data we actually intend to
    3827             :          * store into the relation; newtup is the caller's original untoasted
    3828             :          * data.
    3829             :          */
    3830      285280 :         if (need_toast)
    3831             :         {
    3832             :             /* Note we always use WAL and FSM during updates */
    3833        2776 :             heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
    3834        2776 :             newtupsize = MAXALIGN(heaptup->t_len);
    3835             :         }
    3836             :         else
    3837      282504 :             heaptup = newtup;
    3838             : 
    3839             :         /*
    3840             :          * Now, do we need a new page for the tuple, or not?  This is a bit
    3841             :          * tricky since someone else could have added tuples to the page while
    3842             :          * we weren't looking.  We have to recheck the available space after
    3843             :          * reacquiring the buffer lock.  But don't bother to do that if the
    3844             :          * former amount of free space is still not enough; it's unlikely
    3845             :          * there's more free now than before.
    3846             :          *
    3847             :          * What's more, if we need to get a new page, we will need to acquire
    3848             :          * buffer locks on both old and new pages.  To avoid deadlock against
    3849             :          * some other backend trying to get the same two locks in the other
    3850             :          * order, we must be consistent about the order we get the locks in.
    3851             :          * We use the rule "lock the lower-numbered page of the relation
    3852             :          * first".  To implement this, we must do RelationGetBufferForTuple
    3853             :          * while not holding the lock on the old page, and we must rely on it
    3854             :          * to get the locks on both pages in the correct order.
    3855             :          *
    3856             :          * Another consideration is that we need visibility map page pin(s) if
    3857             :          * we will have to clear the all-visible flag on either page.  If we
    3858             :          * call RelationGetBufferForTuple, we rely on it to acquire any such
    3859             :          * pins; but if we don't, we have to handle that here.  Hence we need
    3860             :          * a loop.
    3861             :          */
    3862             :         for (;;)
    3863             :         {
    3864      285280 :             if (newtupsize > pagefree)
    3865             :             {
    3866             :                 /* It doesn't fit, must use RelationGetBufferForTuple. */
    3867      284382 :                 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
    3868             :                                                    buffer, 0, NULL,
    3869             :                                                    &vmbuffer_new, &vmbuffer,
    3870             :                                                    0);
    3871             :                 /* We're all done. */
    3872      284382 :                 break;
    3873             :             }
    3874             :             /* Acquire VM page pin if needed and we don't have it. */
    3875         898 :             if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    3876           0 :                 visibilitymap_pin(relation, block, &vmbuffer);
    3877             :             /* Re-acquire the lock on the old tuple's page. */
    3878         898 :             LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    3879             :             /* Re-check using the up-to-date free space */
    3880         898 :             pagefree = PageGetHeapFreeSpace(page);
    3881         898 :             if (newtupsize > pagefree ||
    3882         898 :                 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
    3883             :             {
    3884             :                 /*
    3885             :                  * Rats, it doesn't fit anymore, or somebody just now set the
    3886             :                  * all-visible flag.  We must now unlock and loop to avoid
    3887             :                  * deadlock.  Fortunately, this path should seldom be taken.
    3888             :                  */
    3889           0 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    3890             :             }
    3891             :             else
    3892             :             {
    3893             :                 /* We're all done. */
    3894         898 :                 newbuf = buffer;
    3895         898 :                 break;
    3896             :             }
    3897             :         }
    3898             :     }
    3899             :     else
    3900             :     {
    3901             :         /* No TOAST work needed, and it'll fit on same page */
    3902      293928 :         newbuf = buffer;
    3903      293928 :         heaptup = newtup;
    3904             :     }
    3905             : 
    3906             :     /*
    3907             :      * We're about to do the actual update -- check for conflict first, to
    3908             :      * avoid possibly having to roll back work we've just done.
    3909             :      *
    3910             :      * This is safe without a recheck as long as there is no possibility of
    3911             :      * another process scanning the pages between this check and the update
    3912             :      * being visible to the scan (i.e., exclusive buffer content lock(s) are
    3913             :      * continuously held from this point until the tuple update is visible).
    3914             :      *
    3915             :      * For the new tuple the only check needed is at the relation level, but
    3916             :      * since both tuples are in the same relation and the check for oldtup
    3917             :      * will include checking the relation level, there is no benefit to a
    3918             :      * separate check for the new tuple.
    3919             :      */
    3920      579208 :     CheckForSerializableConflictIn(relation, &oldtup.t_self,
    3921             :                                    BufferGetBlockNumber(buffer));
    3922             : 
    3923             :     /*
    3924             :      * At this point newbuf and buffer are both pinned and locked, and newbuf
    3925             :      * has enough space for the new tuple.  If they are the same buffer, only
    3926             :      * one pin is held.
    3927             :      */
    3928             : 
    3929      579184 :     if (newbuf == buffer)
    3930             :     {
    3931             :         /*
    3932             :          * Since the new tuple is going into the same page, we might be able
    3933             :          * to do a HOT update.  Check if any of the index columns have been
    3934             :          * changed.
    3935             :          */
    3936      294802 :         if (!bms_overlap(modified_attrs, hot_attrs))
    3937             :         {
    3938      270782 :             use_hot_update = true;
    3939             : 
    3940             :             /*
    3941             :              * If none of the columns that are used in hot-blocking indexes
    3942             :              * were updated, we can apply HOT, but we do still need to check
    3943             :              * if we need to update the summarizing indexes, and update those
    3944             :              * indexes if the columns were updated, or we may fail to detect
    3945             :              * e.g. value bound changes in BRIN minmax indexes.
    3946             :              */
    3947      270782 :             if (bms_overlap(modified_attrs, sum_attrs))
    3948        3282 :                 summarized_update = true;
    3949             :         }
    3950             :     }
    3951             :     else
    3952             :     {
    3953             :         /* Set a hint that the old page could use prune/defrag */
    3954      284382 :         PageSetFull(page);
    3955             :     }
    3956             : 
    3957             :     /*
    3958             :      * Compute replica identity tuple before entering the critical section so
    3959             :      * we don't PANIC upon a memory allocation failure.
    3960             :      * ExtractReplicaIdentity() will return NULL if nothing needs to be
    3961             :      * logged.  Pass old key required as true only if the replica identity key
    3962             :      * columns are modified or it has external data.
    3963             :      */
    3964      579184 :     old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
    3965      579184 :                                            bms_overlap(modified_attrs, id_attrs) ||
    3966             :                                            id_has_external,
    3967             :                                            &old_key_copied);
    3968             : 
    3969             :     /* NO EREPORT(ERROR) from here till changes are logged */
    3970      579184 :     START_CRIT_SECTION();
    3971             : 
    3972             :     /*
    3973             :      * If this transaction commits, the old tuple will become DEAD sooner or
    3974             :      * later.  Set flag that this page is a candidate for pruning once our xid
    3975             :      * falls below the OldestXmin horizon.  If the transaction finally aborts,
    3976             :      * the subsequent page pruning will be a no-op and the hint will be
    3977             :      * cleared.
    3978             :      *
    3979             :      * XXX Should we set hint on newbuf as well?  If the transaction aborts,
    3980             :      * there would be a prunable tuple in the newbuf; but for now we choose
    3981             :      * not to optimize for aborts.  Note that heap_xlog_update must be kept in
    3982             :      * sync if this decision changes.
    3983             :      */
    3984      579184 :     PageSetPrunable(page, xid);
    3985             : 
    3986      579184 :     if (use_hot_update)
    3987             :     {
    3988             :         /* Mark the old tuple as HOT-updated */
    3989      270782 :         HeapTupleSetHotUpdated(&oldtup);
    3990             :         /* And mark the new tuple as heap-only */
    3991      270782 :         HeapTupleSetHeapOnly(heaptup);
    3992             :         /* Mark the caller's copy too, in case different from heaptup */
    3993      270782 :         HeapTupleSetHeapOnly(newtup);
    3994             :     }
    3995             :     else
    3996             :     {
    3997             :         /* Make sure tuples are correctly marked as not-HOT */
    3998      308402 :         HeapTupleClearHotUpdated(&oldtup);
    3999      308402 :         HeapTupleClearHeapOnly(heaptup);
    4000      308402 :         HeapTupleClearHeapOnly(newtup);
    4001             :     }
    4002             : 
    4003      579184 :     RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
    4004             : 
    4005             : 
    4006             :     /* Clear obsolete visibility flags, possibly set by ourselves above... */
    4007      579184 :     oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    4008      579184 :     oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    4009             :     /* ... and store info about transaction updating this tuple */
    4010             :     Assert(TransactionIdIsValid(xmax_old_tuple));
    4011      579184 :     HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
    4012      579184 :     oldtup.t_data->t_infomask |= infomask_old_tuple;
    4013      579184 :     oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
    4014      579184 :     HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
    4015             : 
    4016             :     /* record address of new tuple in t_ctid of old one */
    4017      579184 :     oldtup.t_data->t_ctid = heaptup->t_self;
    4018             : 
    4019             :     /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
    4020      579184 :     if (PageIsAllVisible(BufferGetPage(buffer)))
    4021             :     {
    4022        2926 :         all_visible_cleared = true;
    4023        2926 :         PageClearAllVisible(BufferGetPage(buffer));
    4024        2926 :         visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
    4025             :                             vmbuffer, VISIBILITYMAP_VALID_BITS);
    4026             :     }
    4027      579184 :     if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
    4028             :     {
    4029        1124 :         all_visible_cleared_new = true;
    4030        1124 :         PageClearAllVisible(BufferGetPage(newbuf));
    4031        1124 :         visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
    4032             :                             vmbuffer_new, VISIBILITYMAP_VALID_BITS);
    4033             :     }
    4034             : 
    4035      579184 :     if (newbuf != buffer)
    4036      284382 :         MarkBufferDirty(newbuf);
    4037      579184 :     MarkBufferDirty(buffer);
    4038             : 
    4039             :     /* XLOG stuff */
    4040      579184 :     if (RelationNeedsWAL(relation))
    4041             :     {
    4042             :         XLogRecPtr  recptr;
    4043             : 
    4044             :         /*
    4045             :          * For logical decoding we need combo CIDs to properly decode the
    4046             :          * catalog.
    4047             :          */
    4048      556514 :         if (RelationIsAccessibleInLogicalDecoding(relation))
    4049             :         {
    4050        4972 :             log_heap_new_cid(relation, &oldtup);
    4051        4972 :             log_heap_new_cid(relation, heaptup);
    4052             :         }
    4053             : 
    4054      556514 :         recptr = log_heap_update(relation, buffer,
    4055             :                                  newbuf, &oldtup, heaptup,
    4056             :                                  old_key_tuple,
    4057             :                                  all_visible_cleared,
    4058             :                                  all_visible_cleared_new);
    4059      556514 :         if (newbuf != buffer)
    4060             :         {
    4061      264138 :             PageSetLSN(BufferGetPage(newbuf), recptr);
    4062             :         }
    4063      556514 :         PageSetLSN(BufferGetPage(buffer), recptr);
    4064             :     }
    4065             : 
    4066      579184 :     END_CRIT_SECTION();
    4067             : 
    4068      579184 :     if (newbuf != buffer)
    4069      284382 :         LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
    4070      579184 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    4071             : 
    4072             :     /*
    4073             :      * Mark old tuple for invalidation from system caches at next command
    4074             :      * boundary, and mark the new tuple for invalidation in case we abort. We
    4075             :      * have to do this before releasing the buffer because oldtup is in the
    4076             :      * buffer.  (heaptup is all in local memory, but it's necessary to process
    4077             :      * both tuple versions in one call to inval.c so we can avoid redundant
    4078             :      * sinval messages.)
    4079             :      */
    4080      579184 :     CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
    4081             : 
    4082             :     /* Now we can release the buffer(s) */
    4083      579184 :     if (newbuf != buffer)
    4084      284382 :         ReleaseBuffer(newbuf);
    4085      579184 :     ReleaseBuffer(buffer);
    4086      579184 :     if (BufferIsValid(vmbuffer_new))
    4087        1124 :         ReleaseBuffer(vmbuffer_new);
    4088      579184 :     if (BufferIsValid(vmbuffer))
    4089        2926 :         ReleaseBuffer(vmbuffer);
    4090             : 
    4091             :     /*
    4092             :      * Release the lmgr tuple lock, if we had it.
    4093             :      */
    4094      579184 :     if (have_tuple_lock)
    4095          30 :         UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
    4096             : 
    4097      579184 :     pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
    4098             : 
    4099             :     /*
    4100             :      * If heaptup is a private copy, release it.  Don't forget to copy t_self
    4101             :      * back to the caller's image, too.
    4102             :      */
    4103      579184 :     if (heaptup != newtup)
    4104             :     {
    4105        2682 :         newtup->t_self = heaptup->t_self;
    4106        2682 :         heap_freetuple(heaptup);
    4107             :     }
    4108             : 
    4109             :     /*
    4110             :      * If it is a HOT update, the update may still need to update summarized
    4111             :      * indexes, lest we fail to update those summaries and get incorrect
    4112             :      * results (for example, minmax bounds of the block may change with this
    4113             :      * update).
    4114             :      */
    4115      579184 :     if (use_hot_update)
    4116             :     {
    4117      270782 :         if (summarized_update)
    4118        3282 :             *update_indexes = TU_Summarizing;
    4119             :         else
    4120      267500 :             *update_indexes = TU_None;
    4121             :     }
    4122             :     else
    4123      308402 :         *update_indexes = TU_All;
    4124             : 
    4125      579184 :     if (old_key_tuple != NULL && old_key_copied)
    4126         164 :         heap_freetuple(old_key_tuple);
    4127             : 
    4128      579184 :     bms_free(hot_attrs);
    4129      579184 :     bms_free(sum_attrs);
    4130      579184 :     bms_free(key_attrs);
    4131      579184 :     bms_free(id_attrs);
    4132      579184 :     bms_free(modified_attrs);
    4133      579184 :     bms_free(interesting_attrs);
    4134             : 
    4135      579184 :     return TM_Ok;
    4136             : }
    4137             : 
    4138             : #ifdef USE_ASSERT_CHECKING
    4139             : /*
    4140             :  * Confirm adequate lock held during heap_update(), per rules from
    4141             :  * README.tuplock section "Locking to write inplace-updated tables".
    4142             :  */
    4143             : static void
    4144             : check_lock_if_inplace_updateable_rel(Relation relation,
    4145             :                                      ItemPointer otid,
    4146             :                                      HeapTuple newtup)
    4147             : {
    4148             :     /* LOCKTAG_TUPLE acceptable for any catalog */
    4149             :     switch (RelationGetRelid(relation))
    4150             :     {
    4151             :         case RelationRelationId:
    4152             :         case DatabaseRelationId:
    4153             :             {
    4154             :                 LOCKTAG     tuptag;
    4155             : 
    4156             :                 SET_LOCKTAG_TUPLE(tuptag,
    4157             :                                   relation->rd_lockInfo.lockRelId.dbId,
    4158             :                                   relation->rd_lockInfo.lockRelId.relId,
    4159             :                                   ItemPointerGetBlockNumber(otid),
    4160             :                                   ItemPointerGetOffsetNumber(otid));
    4161             :                 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
    4162             :                     return;
    4163             :             }
    4164             :             break;
    4165             :         default:
    4166             :             Assert(!IsInplaceUpdateRelation(relation));
    4167             :             return;
    4168             :     }
    4169             : 
    4170             :     switch (RelationGetRelid(relation))
    4171             :     {
    4172             :         case RelationRelationId:
    4173             :             {
    4174             :                 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
    4175             :                 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
    4176             :                 Oid         relid = classForm->oid;
    4177             :                 Oid         dbid;
    4178             :                 LOCKTAG     tag;
    4179             : 
    4180             :                 if (IsSharedRelation(relid))
    4181             :                     dbid = InvalidOid;
    4182             :                 else
    4183             :                     dbid = MyDatabaseId;
    4184             : 
    4185             :                 if (classForm->relkind == RELKIND_INDEX)
    4186             :                 {
    4187             :                     Relation    irel = index_open(relid, AccessShareLock);
    4188             : 
    4189             :                     SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4190             :                     index_close(irel, AccessShareLock);
    4191             :                 }
    4192             :                 else
    4193             :                     SET_LOCKTAG_RELATION(tag, dbid, relid);
    4194             : 
    4195             :                 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
    4196             :                     !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
    4197             :                     elog(WARNING,
    4198             :                          "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4199             :                          NameStr(classForm->relname),
    4200             :                          relid,
    4201             :                          classForm->relkind,
    4202             :                          ItemPointerGetBlockNumber(otid),
    4203             :                          ItemPointerGetOffsetNumber(otid));
    4204             :             }
    4205             :             break;
    4206             :         case DatabaseRelationId:
    4207             :             {
    4208             :                 /* LOCKTAG_TUPLE required */
    4209             :                 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
    4210             : 
    4211             :                 elog(WARNING,
    4212             :                      "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
    4213             :                      NameStr(dbForm->datname),
    4214             :                      dbForm->oid,
    4215             :                      ItemPointerGetBlockNumber(otid),
    4216             :                      ItemPointerGetOffsetNumber(otid));
    4217             :             }
    4218             :             break;
    4219             :     }
    4220             : }
    4221             : 
    4222             : /*
    4223             :  * Confirm adequate relation lock held, per rules from README.tuplock section
    4224             :  * "Locking to write inplace-updated tables".
    4225             :  */
    4226             : static void
    4227             : check_inplace_rel_lock(HeapTuple oldtup)
    4228             : {
    4229             :     Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
    4230             :     Oid         relid = classForm->oid;
    4231             :     Oid         dbid;
    4232             :     LOCKTAG     tag;
    4233             : 
    4234             :     if (IsSharedRelation(relid))
    4235             :         dbid = InvalidOid;
    4236             :     else
    4237             :         dbid = MyDatabaseId;
    4238             : 
    4239             :     if (classForm->relkind == RELKIND_INDEX)
    4240             :     {
    4241             :         Relation    irel = index_open(relid, AccessShareLock);
    4242             : 
    4243             :         SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
    4244             :         index_close(irel, AccessShareLock);
    4245             :     }
    4246             :     else
    4247             :         SET_LOCKTAG_RELATION(tag, dbid, relid);
    4248             : 
    4249             :     if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
    4250             :         elog(WARNING,
    4251             :              "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
    4252             :              NameStr(classForm->relname),
    4253             :              relid,
    4254             :              classForm->relkind,
    4255             :              ItemPointerGetBlockNumber(&oldtup->t_self),
    4256             :              ItemPointerGetOffsetNumber(&oldtup->t_self));
    4257             : }
    4258             : #endif
    4259             : 
    4260             : /*
    4261             :  * Check if the specified attribute's values are the same.  Subroutine for
    4262             :  * HeapDetermineColumnsInfo.
    4263             :  */
    4264             : static bool
    4265     1354822 : heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
    4266             :                  bool isnull1, bool isnull2)
    4267             : {
    4268             :     /*
    4269             :      * If one value is NULL and other is not, then they are certainly not
    4270             :      * equal
    4271             :      */
    4272     1354822 :     if (isnull1 != isnull2)
    4273          90 :         return false;
    4274             : 
    4275             :     /*
    4276             :      * If both are NULL, they can be considered equal.
    4277             :      */
    4278     1354732 :     if (isnull1)
    4279        9982 :         return true;
    4280             : 
    4281             :     /*
    4282             :      * We do simple binary comparison of the two datums.  This may be overly
    4283             :      * strict because there can be multiple binary representations for the
    4284             :      * same logical value.  But we should be OK as long as there are no false
    4285             :      * positives.  Using a type-specific equality operator is messy because
    4286             :      * there could be multiple notions of equality in different operator
    4287             :      * classes; furthermore, we cannot safely invoke user-defined functions
    4288             :      * while holding exclusive buffer lock.
    4289             :      */
    4290     1344750 :     if (attrnum <= 0)
    4291             :     {
    4292             :         /* The only allowed system columns are OIDs, so do this */
    4293           0 :         return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
    4294             :     }
    4295             :     else
    4296             :     {
    4297             :         CompactAttribute *att;
    4298             : 
    4299             :         Assert(attrnum <= tupdesc->natts);
    4300     1344750 :         att = TupleDescCompactAttr(tupdesc, attrnum - 1);
    4301     1344750 :         return datumIsEqual(value1, value2, att->attbyval, att->attlen);
    4302             :     }
    4303             : }
    4304             : 
    4305             : /*
    4306             :  * Check which columns are being updated.
    4307             :  *
    4308             :  * Given an updated tuple, determine (and return into the output bitmapset),
    4309             :  * from those listed as interesting, the set of columns that changed.
    4310             :  *
    4311             :  * has_external indicates if any of the unmodified attributes (from those
    4312             :  * listed as interesting) of the old tuple is a member of external_cols and is
    4313             :  * stored externally.
    4314             :  */
    4315             : static Bitmapset *
    4316      579510 : HeapDetermineColumnsInfo(Relation relation,
    4317             :                          Bitmapset *interesting_cols,
    4318             :                          Bitmapset *external_cols,
    4319             :                          HeapTuple oldtup, HeapTuple newtup,
    4320             :                          bool *has_external)
    4321             : {
    4322             :     int         attidx;
    4323      579510 :     Bitmapset  *modified = NULL;
    4324      579510 :     TupleDesc   tupdesc = RelationGetDescr(relation);
    4325             : 
    4326      579510 :     attidx = -1;
    4327     1934332 :     while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
    4328             :     {
    4329             :         /* attidx is zero-based, attrnum is the normal attribute number */
    4330     1354822 :         AttrNumber  attrnum = attidx + FirstLowInvalidHeapAttributeNumber;
    4331             :         Datum       value1,
    4332             :                     value2;
    4333             :         bool        isnull1,
    4334             :                     isnull2;
    4335             : 
    4336             :         /*
    4337             :          * If it's a whole-tuple reference, say "not equal".  It's not really
    4338             :          * worth supporting this case, since it could only succeed after a
    4339             :          * no-op update, which is hardly a case worth optimizing for.
    4340             :          */
    4341     1354822 :         if (attrnum == 0)
    4342             :         {
    4343           0 :             modified = bms_add_member(modified, attidx);
    4344     1293472 :             continue;
    4345             :         }
    4346             : 
    4347             :         /*
    4348             :          * Likewise, automatically say "not equal" for any system attribute
    4349             :          * other than tableOID; we cannot expect these to be consistent in a
    4350             :          * HOT chain, or even to be set correctly yet in the new tuple.
    4351             :          */
    4352     1354822 :         if (attrnum < 0)
    4353             :         {
    4354           0 :             if (attrnum != TableOidAttributeNumber)
    4355             :             {
    4356           0 :                 modified = bms_add_member(modified, attidx);
    4357           0 :                 continue;
    4358             :             }
    4359             :         }
    4360             : 
    4361             :         /*
    4362             :          * Extract the corresponding values.  XXX this is pretty inefficient
    4363             :          * if there are many indexed columns.  Should we do a single
    4364             :          * heap_deform_tuple call on each tuple, instead?   But that doesn't
    4365             :          * work for system columns ...
    4366             :          */
    4367     1354822 :         value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
    4368     1354822 :         value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
    4369             : 
    4370     1354822 :         if (!heap_attr_equals(tupdesc, attrnum, value1,
    4371             :                               value2, isnull1, isnull2))
    4372             :         {
    4373       53472 :             modified = bms_add_member(modified, attidx);
    4374       53472 :             continue;
    4375             :         }
    4376             : 
    4377             :         /*
    4378             :          * No need to check attributes that can't be stored externally. Note
    4379             :          * that system attributes can't be stored externally.
    4380             :          */
    4381     1301350 :         if (attrnum < 0 || isnull1 ||
    4382     1291368 :             TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
    4383     1240000 :             continue;
    4384             : 
    4385             :         /*
    4386             :          * Check if the old tuple's attribute is stored externally and is a
    4387             :          * member of external_cols.
    4388             :          */
    4389       61360 :         if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
    4390          10 :             bms_is_member(attidx, external_cols))
    4391           4 :             *has_external = true;
    4392             :     }
    4393             : 
    4394      579510 :     return modified;
    4395             : }
    4396             : 
    4397             : /*
    4398             :  *  simple_heap_update - replace a tuple
    4399             :  *
    4400             :  * This routine may be used to update a tuple when concurrent updates of
    4401             :  * the target tuple are not expected (for example, because we have a lock
    4402             :  * on the relation associated with the tuple).  Any failure is reported
    4403             :  * via ereport().
    4404             :  */
    4405             : void
    4406      199340 : simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup,
    4407             :                    TU_UpdateIndexes *update_indexes)
    4408             : {
    4409             :     TM_Result   result;
    4410             :     TM_FailureData tmfd;
    4411             :     LockTupleMode lockmode;
    4412             : 
    4413      199340 :     result = heap_update(relation, otid, tup,
    4414             :                          GetCurrentCommandId(true), InvalidSnapshot,
    4415             :                          true /* wait for commit */ ,
    4416             :                          &tmfd, &lockmode, update_indexes);
    4417      199340 :     switch (result)
    4418             :     {
    4419           0 :         case TM_SelfModified:
    4420             :             /* Tuple was already updated in current command? */
    4421           0 :             elog(ERROR, "tuple already updated by self");
    4422             :             break;
    4423             : 
    4424      199338 :         case TM_Ok:
    4425             :             /* done successfully */
    4426      199338 :             break;
    4427             : 
    4428           0 :         case TM_Updated:
    4429           0 :             elog(ERROR, "tuple concurrently updated");
    4430             :             break;
    4431             : 
    4432           2 :         case TM_Deleted:
    4433           2 :             elog(ERROR, "tuple concurrently deleted");
    4434             :             break;
    4435             : 
    4436           0 :         default:
    4437           0 :             elog(ERROR, "unrecognized heap_update status: %u", result);
    4438             :             break;
    4439             :     }
    4440      199338 : }
    4441             : 
    4442             : 
    4443             : /*
    4444             :  * Return the MultiXactStatus corresponding to the given tuple lock mode.
    4445             :  */
    4446             : static MultiXactStatus
    4447        2414 : get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
    4448             : {
    4449             :     int         retval;
    4450             : 
    4451        2414 :     if (is_update)
    4452         192 :         retval = tupleLockExtraInfo[mode].updstatus;
    4453             :     else
    4454        2222 :         retval = tupleLockExtraInfo[mode].lockstatus;
    4455             : 
    4456        2414 :     if (retval == -1)
    4457           0 :         elog(ERROR, "invalid lock tuple mode %d/%s", mode,
    4458             :              is_update ? "true" : "false");
    4459             : 
    4460        2414 :     return (MultiXactStatus) retval;
    4461             : }
    4462             : 
    4463             : /*
    4464             :  *  heap_lock_tuple - lock a tuple in shared or exclusive mode
    4465             :  *
    4466             :  * Note that this acquires a buffer pin, which the caller must release.
    4467             :  *
    4468             :  * Input parameters:
    4469             :  *  relation: relation containing tuple (caller must hold suitable lock)
    4470             :  *  tid: TID of tuple to lock
    4471             :  *  cid: current command ID (used for visibility test, and stored into
    4472             :  *      tuple's cmax if lock is successful)
    4473             :  *  mode: indicates if shared or exclusive tuple lock is desired
    4474             :  *  wait_policy: what to do if tuple lock is not available
    4475             :  *  follow_updates: if true, follow the update chain to also lock descendant
    4476             :  *      tuples.
    4477             :  *
    4478             :  * Output parameters:
    4479             :  *  *tuple: all fields filled in
    4480             :  *  *buffer: set to buffer holding tuple (pinned but not locked at exit)
    4481             :  *  *tmfd: filled in failure cases (see below)
    4482             :  *
    4483             :  * Function results are the same as the ones for table_tuple_lock().
    4484             :  *
    4485             :  * In the failure cases other than TM_Invisible, the routine fills
    4486             :  * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
    4487             :  * if necessary), and t_cmax (the last only for TM_SelfModified,
    4488             :  * since we cannot obtain cmax from a combo CID generated by another
    4489             :  * transaction).
    4490             :  * See comments for struct TM_FailureData for additional info.
    4491             :  *
    4492             :  * See README.tuplock for a thorough explanation of this mechanism.
    4493             :  */
    4494             : TM_Result
    4495      169834 : heap_lock_tuple(Relation relation, HeapTuple tuple,
    4496             :                 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
    4497             :                 bool follow_updates,
    4498             :                 Buffer *buffer, TM_FailureData *tmfd)
    4499             : {
    4500             :     TM_Result   result;
    4501      169834 :     ItemPointer tid = &(tuple->t_self);
    4502             :     ItemId      lp;
    4503             :     Page        page;
    4504      169834 :     Buffer      vmbuffer = InvalidBuffer;
    4505             :     BlockNumber block;
    4506             :     TransactionId xid,
    4507             :                 xmax;
    4508             :     uint16      old_infomask,
    4509             :                 new_infomask,
    4510             :                 new_infomask2;
    4511      169834 :     bool        first_time = true;
    4512      169834 :     bool        skip_tuple_lock = false;
    4513      169834 :     bool        have_tuple_lock = false;
    4514      169834 :     bool        cleared_all_frozen = false;
    4515             : 
    4516      169834 :     *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    4517      169834 :     block = ItemPointerGetBlockNumber(tid);
    4518             : 
    4519             :     /*
    4520             :      * Before locking the buffer, pin the visibility map page if it appears to
    4521             :      * be necessary.  Since we haven't got the lock yet, someone else might be
    4522             :      * in the middle of changing this, so we'll need to recheck after we have
    4523             :      * the lock.
    4524             :      */
    4525      169834 :     if (PageIsAllVisible(BufferGetPage(*buffer)))
    4526        3316 :         visibilitymap_pin(relation, block, &vmbuffer);
    4527             : 
    4528      169834 :     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4529             : 
    4530      169834 :     page = BufferGetPage(*buffer);
    4531      169834 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    4532             :     Assert(ItemIdIsNormal(lp));
    4533             : 
    4534      169834 :     tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
    4535      169834 :     tuple->t_len = ItemIdGetLength(lp);
    4536      169834 :     tuple->t_tableOid = RelationGetRelid(relation);
    4537             : 
    4538      169860 : l3:
    4539      169860 :     result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
    4540             : 
    4541      169860 :     if (result == TM_Invisible)
    4542             :     {
    4543             :         /*
    4544             :          * This is possible, but only when locking a tuple for ON CONFLICT
    4545             :          * UPDATE.  We return this value here rather than throwing an error in
    4546             :          * order to give that case the opportunity to throw a more specific
    4547             :          * error.
    4548             :          */
    4549          24 :         result = TM_Invisible;
    4550          24 :         goto out_locked;
    4551             :     }
    4552      169836 :     else if (result == TM_BeingModified ||
    4553      154150 :              result == TM_Updated ||
    4554             :              result == TM_Deleted)
    4555             :     {
    4556             :         TransactionId xwait;
    4557             :         uint16      infomask;
    4558             :         uint16      infomask2;
    4559             :         bool        require_sleep;
    4560             :         ItemPointerData t_ctid;
    4561             : 
    4562             :         /* must copy state data before unlocking buffer */
    4563       15688 :         xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
    4564       15688 :         infomask = tuple->t_data->t_infomask;
    4565       15688 :         infomask2 = tuple->t_data->t_infomask2;
    4566       15688 :         ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
    4567             : 
    4568       15688 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    4569             : 
    4570             :         /*
    4571             :          * If any subtransaction of the current top transaction already holds
    4572             :          * a lock as strong as or stronger than what we're requesting, we
    4573             :          * effectively hold the desired lock already.  We *must* succeed
    4574             :          * without trying to take the tuple lock, else we will deadlock
    4575             :          * against anyone wanting to acquire a stronger lock.
    4576             :          *
    4577             :          * Note we only do this the first time we loop on the HTSU result;
    4578             :          * there is no point in testing in subsequent passes, because
    4579             :          * evidently our own transaction cannot have acquired a new lock after
    4580             :          * the first time we checked.
    4581             :          */
    4582       15688 :         if (first_time)
    4583             :         {
    4584       15670 :             first_time = false;
    4585             : 
    4586       15670 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4587             :             {
    4588             :                 int         i;
    4589             :                 int         nmembers;
    4590             :                 MultiXactMember *members;
    4591             : 
    4592             :                 /*
    4593             :                  * We don't need to allow old multixacts here; if that had
    4594             :                  * been the case, HeapTupleSatisfiesUpdate would have returned
    4595             :                  * MayBeUpdated and we wouldn't be here.
    4596             :                  */
    4597             :                 nmembers =
    4598         178 :                     GetMultiXactIdMembers(xwait, &members, false,
    4599         178 :                                           HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    4600             : 
    4601         538 :                 for (i = 0; i < nmembers; i++)
    4602             :                 {
    4603             :                     /* only consider members of our own transaction */
    4604         388 :                     if (!TransactionIdIsCurrentTransactionId(members[i].xid))
    4605         290 :                         continue;
    4606             : 
    4607          98 :                     if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
    4608             :                     {
    4609          28 :                         pfree(members);
    4610          28 :                         result = TM_Ok;
    4611          28 :                         goto out_unlocked;
    4612             :                     }
    4613             :                     else
    4614             :                     {
    4615             :                         /*
    4616             :                          * Disable acquisition of the heavyweight tuple lock.
    4617             :                          * Otherwise, when promoting a weaker lock, we might
    4618             :                          * deadlock with another locker that has acquired the
    4619             :                          * heavyweight tuple lock and is waiting for our
    4620             :                          * transaction to finish.
    4621             :                          *
    4622             :                          * Note that in this case we still need to wait for
    4623             :                          * the multixact if required, to avoid acquiring
    4624             :                          * conflicting locks.
    4625             :                          */
    4626          70 :                         skip_tuple_lock = true;
    4627             :                     }
    4628             :                 }
    4629             : 
    4630         150 :                 if (members)
    4631         150 :                     pfree(members);
    4632             :             }
    4633       15492 :             else if (TransactionIdIsCurrentTransactionId(xwait))
    4634             :             {
    4635       13042 :                 switch (mode)
    4636             :                 {
    4637         324 :                     case LockTupleKeyShare:
    4638             :                         Assert(HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) ||
    4639             :                                HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4640             :                                HEAP_XMAX_IS_EXCL_LOCKED(infomask));
    4641         324 :                         result = TM_Ok;
    4642         324 :                         goto out_unlocked;
    4643          12 :                     case LockTupleShare:
    4644          24 :                         if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
    4645          12 :                             HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4646             :                         {
    4647           0 :                             result = TM_Ok;
    4648           0 :                             goto out_unlocked;
    4649             :                         }
    4650          12 :                         break;
    4651         122 :                     case LockTupleNoKeyExclusive:
    4652         122 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4653             :                         {
    4654         100 :                             result = TM_Ok;
    4655         100 :                             goto out_unlocked;
    4656             :                         }
    4657          22 :                         break;
    4658       12584 :                     case LockTupleExclusive:
    4659       12584 :                         if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
    4660        2504 :                             infomask2 & HEAP_KEYS_UPDATED)
    4661             :                         {
    4662        2462 :                             result = TM_Ok;
    4663        2462 :                             goto out_unlocked;
    4664             :                         }
    4665       10122 :                         break;
    4666             :                 }
    4667        2468 :             }
    4668             :         }
    4669             : 
    4670             :         /*
    4671             :          * Initially assume that we will have to wait for the locking
    4672             :          * transaction(s) to finish.  We check various cases below in which
    4673             :          * this can be turned off.
    4674             :          */
    4675       12774 :         require_sleep = true;
    4676       12774 :         if (mode == LockTupleKeyShare)
    4677             :         {
    4678             :             /*
    4679             :              * If we're requesting KeyShare, and there's no update present, we
    4680             :              * don't need to wait.  Even if there is an update, we can still
    4681             :              * continue if the key hasn't been modified.
    4682             :              *
    4683             :              * However, if there are updates, we need to walk the update chain
    4684             :              * to mark future versions of the row as locked, too.  That way,
    4685             :              * if somebody deletes that future version, we're protected
    4686             :              * against the key going away.  This locking of future versions
    4687             :              * could block momentarily, if a concurrent transaction is
    4688             :              * deleting a key; or it could return a value to the effect that
    4689             :              * the transaction deleting the key has already committed.  So we
    4690             :              * do this before re-locking the buffer; otherwise this would be
    4691             :              * prone to deadlocks.
    4692             :              *
    4693             :              * Note that the TID we're locking was grabbed before we unlocked
    4694             :              * the buffer.  For it to change while we're not looking, the
    4695             :              * other properties we're testing for below after re-locking the
    4696             :              * buffer would also change, in which case we would restart this
    4697             :              * loop above.
    4698             :              */
    4699        1174 :             if (!(infomask2 & HEAP_KEYS_UPDATED))
    4700             :             {
    4701             :                 bool        updated;
    4702             : 
    4703        1112 :                 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
    4704             : 
    4705             :                 /*
    4706             :                  * If there are updates, follow the update chain; bail out if
    4707             :                  * that cannot be done.
    4708             :                  */
    4709        1112 :                 if (follow_updates && updated)
    4710             :                 {
    4711             :                     TM_Result   res;
    4712             : 
    4713         100 :                     res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4714             :                                                   GetCurrentTransactionId(),
    4715             :                                                   mode);
    4716         100 :                     if (res != TM_Ok)
    4717             :                     {
    4718          12 :                         result = res;
    4719             :                         /* recovery code expects to have buffer lock held */
    4720          12 :                         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4721         358 :                         goto failed;
    4722             :                     }
    4723             :                 }
    4724             : 
    4725        1100 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4726             : 
    4727             :                 /*
    4728             :                  * Make sure it's still an appropriate lock, else start over.
    4729             :                  * Also, if it wasn't updated before we released the lock, but
    4730             :                  * is updated now, we start over too; the reason is that we
    4731             :                  * now need to follow the update chain to lock the new
    4732             :                  * versions.
    4733             :                  */
    4734        1100 :                 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
    4735          86 :                     ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
    4736          86 :                      !updated))
    4737          26 :                     goto l3;
    4738             : 
    4739             :                 /* Things look okay, so we can skip sleeping */
    4740        1100 :                 require_sleep = false;
    4741             : 
    4742             :                 /*
    4743             :                  * Note we allow Xmax to change here; other updaters/lockers
    4744             :                  * could have modified it before we grabbed the buffer lock.
    4745             :                  * However, this is not a problem, because with the recheck we
    4746             :                  * just did we ensure that they still don't conflict with the
    4747             :                  * lock we want.
    4748             :                  */
    4749             :             }
    4750             :         }
    4751       11600 :         else if (mode == LockTupleShare)
    4752             :         {
    4753             :             /*
    4754             :              * If we're requesting Share, we can similarly avoid sleeping if
    4755             :              * there's no update and no exclusive lock present.
    4756             :              */
    4757         882 :             if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
    4758         882 :                 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
    4759             :             {
    4760         870 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4761             : 
    4762             :                 /*
    4763             :                  * Make sure it's still an appropriate lock, else start over.
    4764             :                  * See above about allowing xmax to change.
    4765             :                  */
    4766        1740 :                 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    4767         870 :                     HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask))
    4768           0 :                     goto l3;
    4769         870 :                 require_sleep = false;
    4770             :             }
    4771             :         }
    4772       10718 :         else if (mode == LockTupleNoKeyExclusive)
    4773             :         {
    4774             :             /*
    4775             :              * If we're requesting NoKeyExclusive, we might also be able to
    4776             :              * avoid sleeping; just ensure that there no conflicting lock
    4777             :              * already acquired.
    4778             :              */
    4779         308 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4780             :             {
    4781          52 :                 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    4782             :                                              mode, NULL))
    4783             :                 {
    4784             :                     /*
    4785             :                      * No conflict, but if the xmax changed under us in the
    4786             :                      * meantime, start over.
    4787             :                      */
    4788          26 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4789          52 :                     if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4790          26 :                         !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4791             :                                              xwait))
    4792           0 :                         goto l3;
    4793             : 
    4794             :                     /* otherwise, we're good */
    4795          26 :                     require_sleep = false;
    4796             :                 }
    4797             :             }
    4798         256 :             else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    4799             :             {
    4800          34 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4801             : 
    4802             :                 /* if the xmax changed in the meantime, start over */
    4803          68 :                 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4804          34 :                     !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4805             :                                          xwait))
    4806           0 :                     goto l3;
    4807             :                 /* otherwise, we're good */
    4808          34 :                 require_sleep = false;
    4809             :             }
    4810             :         }
    4811             : 
    4812             :         /*
    4813             :          * As a check independent from those above, we can also avoid sleeping
    4814             :          * if the current transaction is the sole locker of the tuple.  Note
    4815             :          * that the strength of the lock already held is irrelevant; this is
    4816             :          * not about recording the lock in Xmax (which will be done regardless
    4817             :          * of this optimization, below).  Also, note that the cases where we
    4818             :          * hold a lock stronger than we are requesting are already handled
    4819             :          * above by not doing anything.
    4820             :          *
    4821             :          * Note we only deal with the non-multixact case here; MultiXactIdWait
    4822             :          * is well equipped to deal with this situation on its own.
    4823             :          */
    4824       23412 :         if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
    4825       10650 :             TransactionIdIsCurrentTransactionId(xwait))
    4826             :         {
    4827             :             /* ... but if the xmax changed in the meantime, start over */
    4828       10122 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4829       20244 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4830       10122 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4831             :                                      xwait))
    4832           0 :                 goto l3;
    4833             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask));
    4834       10122 :             require_sleep = false;
    4835             :         }
    4836             : 
    4837             :         /*
    4838             :          * Time to sleep on the other transaction/multixact, if necessary.
    4839             :          *
    4840             :          * If the other transaction is an update/delete that's already
    4841             :          * committed, then sleeping cannot possibly do any good: if we're
    4842             :          * required to sleep, get out to raise an error instead.
    4843             :          *
    4844             :          * By here, we either have already acquired the buffer exclusive lock,
    4845             :          * or we must wait for the locking transaction or multixact; so below
    4846             :          * we ensure that we grab buffer lock after the sleep.
    4847             :          */
    4848       12762 :         if (require_sleep && (result == TM_Updated || result == TM_Deleted))
    4849             :         {
    4850         270 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4851         270 :             goto failed;
    4852             :         }
    4853       12492 :         else if (require_sleep)
    4854             :         {
    4855             :             /*
    4856             :              * Acquire tuple lock to establish our priority for the tuple, or
    4857             :              * die trying.  LockTuple will release us when we are next-in-line
    4858             :              * for the tuple.  We must do this even if we are share-locking,
    4859             :              * but not if we already have a weaker lock on the tuple.
    4860             :              *
    4861             :              * If we are forced to "start over" below, we keep the tuple lock;
    4862             :              * this arranges that we stay at the head of the line while
    4863             :              * rechecking tuple state.
    4864             :              */
    4865         340 :             if (!skip_tuple_lock &&
    4866         308 :                 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
    4867             :                                       &have_tuple_lock))
    4868             :             {
    4869             :                 /*
    4870             :                  * This can only happen if wait_policy is Skip and the lock
    4871             :                  * couldn't be obtained.
    4872             :                  */
    4873           2 :                 result = TM_WouldBlock;
    4874             :                 /* recovery code expects to have buffer lock held */
    4875           2 :                 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4876           2 :                 goto failed;
    4877             :             }
    4878             : 
    4879         336 :             if (infomask & HEAP_XMAX_IS_MULTI)
    4880             :             {
    4881          80 :                 MultiXactStatus status = get_mxact_status_for_lock(mode, false);
    4882             : 
    4883             :                 /* We only ever lock tuples, never update them */
    4884          80 :                 if (status >= MultiXactStatusNoKeyUpdate)
    4885           0 :                     elog(ERROR, "invalid lock mode in heap_lock_tuple");
    4886             : 
    4887             :                 /* wait for multixact to end, or die trying  */
    4888          80 :                 switch (wait_policy)
    4889             :                 {
    4890          72 :                     case LockWaitBlock:
    4891          72 :                         MultiXactIdWait((MultiXactId) xwait, status, infomask,
    4892             :                                         relation, &tuple->t_self, XLTW_Lock, NULL);
    4893          72 :                         break;
    4894           4 :                     case LockWaitSkip:
    4895           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4896             :                                                         status, infomask, relation,
    4897             :                                                         NULL))
    4898             :                         {
    4899           4 :                             result = TM_WouldBlock;
    4900             :                             /* recovery code expects to have buffer lock held */
    4901           4 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4902           4 :                             goto failed;
    4903             :                         }
    4904           0 :                         break;
    4905           4 :                     case LockWaitError:
    4906           4 :                         if (!ConditionalMultiXactIdWait((MultiXactId) xwait,
    4907             :                                                         status, infomask, relation,
    4908             :                                                         NULL))
    4909           4 :                             ereport(ERROR,
    4910             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4911             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4912             :                                             RelationGetRelationName(relation))));
    4913             : 
    4914           0 :                         break;
    4915             :                 }
    4916             : 
    4917             :                 /*
    4918             :                  * Of course, the multixact might not be done here: if we're
    4919             :                  * requesting a light lock mode, other transactions with light
    4920             :                  * locks could still be alive, as well as locks owned by our
    4921             :                  * own xact or other subxacts of this backend.  We need to
    4922             :                  * preserve the surviving MultiXact members.  Note that it
    4923             :                  * isn't absolutely necessary in the latter case, but doing so
    4924             :                  * is simpler.
    4925             :                  */
    4926          72 :             }
    4927             :             else
    4928             :             {
    4929             :                 /* wait for regular transaction to end, or die trying */
    4930         256 :                 switch (wait_policy)
    4931             :                 {
    4932         178 :                     case LockWaitBlock:
    4933         178 :                         XactLockTableWait(xwait, relation, &tuple->t_self,
    4934             :                                           XLTW_Lock);
    4935         178 :                         break;
    4936          66 :                     case LockWaitSkip:
    4937          66 :                         if (!ConditionalXactLockTableWait(xwait))
    4938             :                         {
    4939          66 :                             result = TM_WouldBlock;
    4940             :                             /* recovery code expects to have buffer lock held */
    4941          66 :                             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4942          66 :                             goto failed;
    4943             :                         }
    4944           0 :                         break;
    4945          12 :                     case LockWaitError:
    4946          12 :                         if (!ConditionalXactLockTableWait(xwait))
    4947          12 :                             ereport(ERROR,
    4948             :                                     (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    4949             :                                      errmsg("could not obtain lock on row in relation \"%s\"",
    4950             :                                             RelationGetRelationName(relation))));
    4951           0 :                         break;
    4952             :                 }
    4953         250 :             }
    4954             : 
    4955             :             /* if there are updates, follow the update chain */
    4956         250 :             if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
    4957             :             {
    4958             :                 TM_Result   res;
    4959             : 
    4960          80 :                 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
    4961             :                                               GetCurrentTransactionId(),
    4962             :                                               mode);
    4963          80 :                 if (res != TM_Ok)
    4964             :                 {
    4965           4 :                     result = res;
    4966             :                     /* recovery code expects to have buffer lock held */
    4967           4 :                     LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4968           4 :                     goto failed;
    4969             :                 }
    4970             :             }
    4971             : 
    4972         246 :             LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    4973             : 
    4974             :             /*
    4975             :              * xwait is done, but if xwait had just locked the tuple then some
    4976             :              * other xact could update this tuple before we get to this point.
    4977             :              * Check for xmax change, and start over if so.
    4978             :              */
    4979         470 :             if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
    4980         224 :                 !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data),
    4981             :                                      xwait))
    4982          26 :                 goto l3;
    4983             : 
    4984         220 :             if (!(infomask & HEAP_XMAX_IS_MULTI))
    4985             :             {
    4986             :                 /*
    4987             :                  * Otherwise check if it committed or aborted.  Note we cannot
    4988             :                  * be here if the tuple was only locked by somebody who didn't
    4989             :                  * conflict with us; that would have been handled above.  So
    4990             :                  * that transaction must necessarily be gone by now.  But
    4991             :                  * don't check for this in the multixact case, because some
    4992             :                  * locker transactions might still be running.
    4993             :                  */
    4994         156 :                 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
    4995             :             }
    4996             :         }
    4997             : 
    4998             :         /* By here, we're certain that we hold buffer exclusive lock again */
    4999             : 
    5000             :         /*
    5001             :          * We may lock if previous xmax aborted, or if it committed but only
    5002             :          * locked the tuple without updating it; or if we didn't have to wait
    5003             :          * at all for whatever reason.
    5004             :          */
    5005       12372 :         if (!require_sleep ||
    5006         380 :             (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
    5007         288 :             HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) ||
    5008         128 :             HeapTupleHeaderIsOnlyLocked(tuple->t_data))
    5009       12256 :             result = TM_Ok;
    5010         116 :         else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
    5011          92 :             result = TM_Updated;
    5012             :         else
    5013          24 :             result = TM_Deleted;
    5014             :     }
    5015             : 
    5016      154148 : failed:
    5017      166878 :     if (result != TM_Ok)
    5018             :     {
    5019             :         Assert(result == TM_SelfModified || result == TM_Updated ||
    5020             :                result == TM_Deleted || result == TM_WouldBlock);
    5021             : 
    5022             :         /*
    5023             :          * When locking a tuple under LockWaitSkip semantics and we fail with
    5024             :          * TM_WouldBlock above, it's possible for concurrent transactions to
    5025             :          * release the lock and set HEAP_XMAX_INVALID in the meantime.  So
    5026             :          * this assert is slightly different from the equivalent one in
    5027             :          * heap_delete and heap_update.
    5028             :          */
    5029             :         Assert((result == TM_WouldBlock) ||
    5030             :                !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
    5031             :         Assert(result != TM_Updated ||
    5032             :                !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
    5033         486 :         tmfd->ctid = tuple->t_data->t_ctid;
    5034         486 :         tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    5035         486 :         if (result == TM_SelfModified)
    5036          12 :             tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
    5037             :         else
    5038         474 :             tmfd->cmax = InvalidCommandId;
    5039         486 :         goto out_locked;
    5040             :     }
    5041             : 
    5042             :     /*
    5043             :      * If we didn't pin the visibility map page and the page has become all
    5044             :      * visible while we were busy locking the buffer, or during some
    5045             :      * subsequent window during which we had it unlocked, we'll have to unlock
    5046             :      * and re-lock, to avoid holding the buffer lock across I/O.  That's a bit
    5047             :      * unfortunate, especially since we'll now have to recheck whether the
    5048             :      * tuple has been locked or updated under us, but hopefully it won't
    5049             :      * happen very often.
    5050             :      */
    5051      166392 :     if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
    5052             :     {
    5053           0 :         LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5054           0 :         visibilitymap_pin(relation, block, &vmbuffer);
    5055           0 :         LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
    5056           0 :         goto l3;
    5057             :     }
    5058             : 
    5059      166392 :     xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
    5060      166392 :     old_infomask = tuple->t_data->t_infomask;
    5061             : 
    5062             :     /*
    5063             :      * If this is the first possibly-multixact-able operation in the current
    5064             :      * transaction, set my per-backend OldestMemberMXactId setting. We can be
    5065             :      * certain that the transaction will never become a member of any older
    5066             :      * MultiXactIds than that.  (We have to do this even if we end up just
    5067             :      * using our own TransactionId below, since some other backend could
    5068             :      * incorporate our XID into a MultiXact immediately afterwards.)
    5069             :      */
    5070      166392 :     MultiXactIdSetOldestMember();
    5071             : 
    5072             :     /*
    5073             :      * Compute the new xmax and infomask to store into the tuple.  Note we do
    5074             :      * not modify the tuple just yet, because that would leave it in the wrong
    5075             :      * state if multixact.c elogs.
    5076             :      */
    5077      166392 :     compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
    5078             :                               GetCurrentTransactionId(), mode, false,
    5079             :                               &xid, &new_infomask, &new_infomask2);
    5080             : 
    5081      166392 :     START_CRIT_SECTION();
    5082             : 
    5083             :     /*
    5084             :      * Store transaction information of xact locking the tuple.
    5085             :      *
    5086             :      * Note: Cmax is meaningless in this context, so don't set it; this avoids
    5087             :      * possibly generating a useless combo CID.  Moreover, if we're locking a
    5088             :      * previously updated tuple, it's important to preserve the Cmax.
    5089             :      *
    5090             :      * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
    5091             :      * we would break the HOT chain.
    5092             :      */
    5093      166392 :     tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5094      166392 :     tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5095      166392 :     tuple->t_data->t_infomask |= new_infomask;
    5096      166392 :     tuple->t_data->t_infomask2 |= new_infomask2;
    5097      166392 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5098      166314 :         HeapTupleHeaderClearHotUpdated(tuple->t_data);
    5099      166392 :     HeapTupleHeaderSetXmax(tuple->t_data, xid);
    5100             : 
    5101             :     /*
    5102             :      * Make sure there is no forward chain link in t_ctid.  Note that in the
    5103             :      * cases where the tuple has been updated, we must not overwrite t_ctid,
    5104             :      * because it was set by the updater.  Moreover, if the tuple has been
    5105             :      * updated, we need to follow the update chain to lock the new versions of
    5106             :      * the tuple as well.
    5107             :      */
    5108      166392 :     if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
    5109      166314 :         tuple->t_data->t_ctid = *tid;
    5110             : 
    5111             :     /* Clear only the all-frozen bit on visibility map if needed */
    5112      169708 :     if (PageIsAllVisible(page) &&
    5113        3316 :         visibilitymap_clear(relation, block, vmbuffer,
    5114             :                             VISIBILITYMAP_ALL_FROZEN))
    5115          28 :         cleared_all_frozen = true;
    5116             : 
    5117             : 
    5118      166392 :     MarkBufferDirty(*buffer);
    5119             : 
    5120             :     /*
    5121             :      * XLOG stuff.  You might think that we don't need an XLOG record because
    5122             :      * there is no state change worth restoring after a crash.  You would be
    5123             :      * wrong however: we have just written either a TransactionId or a
    5124             :      * MultiXactId that may never have been seen on disk before, and we need
    5125             :      * to make sure that there are XLOG entries covering those ID numbers.
    5126             :      * Else the same IDs might be re-used after a crash, which would be
    5127             :      * disastrous if this page made it to disk before the crash.  Essentially
    5128             :      * we have to enforce the WAL log-before-data rule even in this case.
    5129             :      * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
    5130             :      * entries for everything anyway.)
    5131             :      */
    5132      166392 :     if (RelationNeedsWAL(relation))
    5133             :     {
    5134             :         xl_heap_lock xlrec;
    5135             :         XLogRecPtr  recptr;
    5136             : 
    5137      165704 :         XLogBeginInsert();
    5138      165704 :         XLogRegisterBuffer(0, *buffer, REGBUF_STANDARD);
    5139             : 
    5140      165704 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    5141      165704 :         xlrec.xmax = xid;
    5142      331408 :         xlrec.infobits_set = compute_infobits(new_infomask,
    5143      165704 :                                               tuple->t_data->t_infomask2);
    5144      165704 :         xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5145      165704 :         XLogRegisterData(&xlrec, SizeOfHeapLock);
    5146             : 
    5147             :         /* we don't decode row locks atm, so no need to log the origin */
    5148             : 
    5149      165704 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
    5150             : 
    5151      165704 :         PageSetLSN(page, recptr);
    5152             :     }
    5153             : 
    5154      166392 :     END_CRIT_SECTION();
    5155             : 
    5156      166392 :     result = TM_Ok;
    5157             : 
    5158      166902 : out_locked:
    5159      166902 :     LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
    5160             : 
    5161      169816 : out_unlocked:
    5162      169816 :     if (BufferIsValid(vmbuffer))
    5163        3316 :         ReleaseBuffer(vmbuffer);
    5164             : 
    5165             :     /*
    5166             :      * Don't update the visibility map here. Locking a tuple doesn't change
    5167             :      * visibility info.
    5168             :      */
    5169             : 
    5170             :     /*
    5171             :      * Now that we have successfully marked the tuple as locked, we can
    5172             :      * release the lmgr tuple lock, if we had it.
    5173             :      */
    5174      169816 :     if (have_tuple_lock)
    5175         278 :         UnlockTupleTuplock(relation, tid, mode);
    5176             : 
    5177      169816 :     return result;
    5178             : }
    5179             : 
    5180             : /*
    5181             :  * Acquire heavyweight lock on the given tuple, in preparation for acquiring
    5182             :  * its normal, Xmax-based tuple lock.
    5183             :  *
    5184             :  * have_tuple_lock is an input and output parameter: on input, it indicates
    5185             :  * whether the lock has previously been acquired (and this function does
    5186             :  * nothing in that case).  If this function returns success, have_tuple_lock
    5187             :  * has been flipped to true.
    5188             :  *
    5189             :  * Returns false if it was unable to obtain the lock; this can only happen if
    5190             :  * wait_policy is Skip.
    5191             :  */
    5192             : static bool
    5193         526 : heap_acquire_tuplock(Relation relation, ItemPointer tid, LockTupleMode mode,
    5194             :                      LockWaitPolicy wait_policy, bool *have_tuple_lock)
    5195             : {
    5196         526 :     if (*have_tuple_lock)
    5197          18 :         return true;
    5198             : 
    5199         508 :     switch (wait_policy)
    5200             :     {
    5201         426 :         case LockWaitBlock:
    5202         426 :             LockTupleTuplock(relation, tid, mode);
    5203         426 :             break;
    5204             : 
    5205          68 :         case LockWaitSkip:
    5206          68 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5207           2 :                 return false;
    5208          66 :             break;
    5209             : 
    5210          14 :         case LockWaitError:
    5211          14 :             if (!ConditionalLockTupleTuplock(relation, tid, mode))
    5212           2 :                 ereport(ERROR,
    5213             :                         (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
    5214             :                          errmsg("could not obtain lock on row in relation \"%s\"",
    5215             :                                 RelationGetRelationName(relation))));
    5216          12 :             break;
    5217             :     }
    5218         504 :     *have_tuple_lock = true;
    5219             : 
    5220         504 :     return true;
    5221             : }
    5222             : 
    5223             : /*
    5224             :  * Given an original set of Xmax and infomask, and a transaction (identified by
    5225             :  * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
    5226             :  * corresponding infomasks to use on the tuple.
    5227             :  *
    5228             :  * Note that this might have side effects such as creating a new MultiXactId.
    5229             :  *
    5230             :  * Most callers will have called HeapTupleSatisfiesUpdate before this function;
    5231             :  * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
    5232             :  * but it was not running anymore. There is a race condition, which is that the
    5233             :  * MultiXactId may have finished since then, but that uncommon case is handled
    5234             :  * either here, or within MultiXactIdExpand.
    5235             :  *
    5236             :  * There is a similar race condition possible when the old xmax was a regular
    5237             :  * TransactionId.  We test TransactionIdIsInProgress again just to narrow the
    5238             :  * window, but it's still possible to end up creating an unnecessary
    5239             :  * MultiXactId.  Fortunately this is harmless.
    5240             :  */
    5241             : static void
    5242     4168210 : compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
    5243             :                           uint16 old_infomask2, TransactionId add_to_xmax,
    5244             :                           LockTupleMode mode, bool is_update,
    5245             :                           TransactionId *result_xmax, uint16 *result_infomask,
    5246             :                           uint16 *result_infomask2)
    5247             : {
    5248             :     TransactionId new_xmax;
    5249             :     uint16      new_infomask,
    5250             :                 new_infomask2;
    5251             : 
    5252             :     Assert(TransactionIdIsCurrentTransactionId(add_to_xmax));
    5253             : 
    5254     4168210 : l5:
    5255     4168210 :     new_infomask = 0;
    5256     4168210 :     new_infomask2 = 0;
    5257     4168210 :     if (old_infomask & HEAP_XMAX_INVALID)
    5258             :     {
    5259             :         /*
    5260             :          * No previous locker; we just insert our own TransactionId.
    5261             :          *
    5262             :          * Note that it's critical that this case be the first one checked,
    5263             :          * because there are several blocks below that come back to this one
    5264             :          * to implement certain optimizations; old_infomask might contain
    5265             :          * other dirty bits in those cases, but we don't really care.
    5266             :          */
    5267     3958030 :         if (is_update)
    5268             :         {
    5269     3508310 :             new_xmax = add_to_xmax;
    5270     3508310 :             if (mode == LockTupleExclusive)
    5271     3001660 :                 new_infomask2 |= HEAP_KEYS_UPDATED;
    5272             :         }
    5273             :         else
    5274             :         {
    5275      449720 :             new_infomask |= HEAP_XMAX_LOCK_ONLY;
    5276      449720 :             switch (mode)
    5277             :             {
    5278        5184 :                 case LockTupleKeyShare:
    5279        5184 :                     new_xmax = add_to_xmax;
    5280        5184 :                     new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
    5281        5184 :                     break;
    5282        1430 :                 case LockTupleShare:
    5283        1430 :                     new_xmax = add_to_xmax;
    5284        1430 :                     new_infomask |= HEAP_XMAX_SHR_LOCK;
    5285        1430 :                     break;
    5286      251880 :                 case LockTupleNoKeyExclusive:
    5287      251880 :                     new_xmax = add_to_xmax;
    5288      251880 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5289      251880 :                     break;
    5290      191226 :                 case LockTupleExclusive:
    5291      191226 :                     new_xmax = add_to_xmax;
    5292      191226 :                     new_infomask |= HEAP_XMAX_EXCL_LOCK;
    5293      191226 :                     new_infomask2 |= HEAP_KEYS_UPDATED;
    5294      191226 :                     break;
    5295           0 :                 default:
    5296           0 :                     new_xmax = InvalidTransactionId;    /* silence compiler */
    5297           0 :                     elog(ERROR, "invalid lock mode");
    5298             :             }
    5299             :         }
    5300             :     }
    5301      210180 :     else if (old_infomask & HEAP_XMAX_IS_MULTI)
    5302             :     {
    5303             :         MultiXactStatus new_status;
    5304             : 
    5305             :         /*
    5306             :          * Currently we don't allow XMAX_COMMITTED to be set for multis, so
    5307             :          * cross-check.
    5308             :          */
    5309             :         Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
    5310             : 
    5311             :         /*
    5312             :          * A multixact together with LOCK_ONLY set but neither lock bit set
    5313             :          * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
    5314             :          * anymore.  This check is critical for databases upgraded by
    5315             :          * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
    5316             :          * that such multis are never passed.
    5317             :          */
    5318         252 :         if (HEAP_LOCKED_UPGRADED(old_infomask))
    5319             :         {
    5320           0 :             old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5321           0 :             old_infomask |= HEAP_XMAX_INVALID;
    5322           0 :             goto l5;
    5323             :         }
    5324             : 
    5325             :         /*
    5326             :          * If the XMAX is already a MultiXactId, then we need to expand it to
    5327             :          * include add_to_xmax; but if all the members were lockers and are
    5328             :          * all gone, we can do away with the IS_MULTI bit and just set
    5329             :          * add_to_xmax as the only locker/updater.  If all lockers are gone
    5330             :          * and we have an updater that aborted, we can also do without a
    5331             :          * multi.
    5332             :          *
    5333             :          * The cost of doing GetMultiXactIdMembers would be paid by
    5334             :          * MultiXactIdExpand if we weren't to do this, so this check is not
    5335             :          * incurring extra work anyhow.
    5336             :          */
    5337         252 :         if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
    5338             :         {
    5339          48 :             if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
    5340          16 :                 !TransactionIdDidCommit(MultiXactIdGetUpdateXid(xmax,
    5341             :                                                                 old_infomask)))
    5342             :             {
    5343             :                 /*
    5344             :                  * Reset these bits and restart; otherwise fall through to
    5345             :                  * create a new multi below.
    5346             :                  */
    5347          48 :                 old_infomask &= ~HEAP_XMAX_IS_MULTI;
    5348          48 :                 old_infomask |= HEAP_XMAX_INVALID;
    5349          48 :                 goto l5;
    5350             :             }
    5351             :         }
    5352             : 
    5353         204 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5354             : 
    5355         204 :         new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
    5356             :                                      new_status);
    5357         204 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5358             :     }
    5359      209928 :     else if (old_infomask & HEAP_XMAX_COMMITTED)
    5360             :     {
    5361             :         /*
    5362             :          * It's a committed update, so we need to preserve him as updater of
    5363             :          * the tuple.
    5364             :          */
    5365             :         MultiXactStatus status;
    5366             :         MultiXactStatus new_status;
    5367             : 
    5368          26 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5369           0 :             status = MultiXactStatusUpdate;
    5370             :         else
    5371          26 :             status = MultiXactStatusNoKeyUpdate;
    5372             : 
    5373          26 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5374             : 
    5375             :         /*
    5376             :          * since it's not running, it's obviously impossible for the old
    5377             :          * updater to be identical to the current one, so we need not check
    5378             :          * for that case as we do in the block above.
    5379             :          */
    5380          26 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5381          26 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5382             :     }
    5383      209902 :     else if (TransactionIdIsInProgress(xmax))
    5384             :     {
    5385             :         /*
    5386             :          * If the XMAX is a valid, in-progress TransactionId, then we need to
    5387             :          * create a new MultiXactId that includes both the old locker or
    5388             :          * updater and our own TransactionId.
    5389             :          */
    5390             :         MultiXactStatus new_status;
    5391             :         MultiXactStatus old_status;
    5392             :         LockTupleMode old_mode;
    5393             : 
    5394      209884 :         if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5395             :         {
    5396      209832 :             if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5397       11242 :                 old_status = MultiXactStatusForKeyShare;
    5398      198590 :             else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5399         862 :                 old_status = MultiXactStatusForShare;
    5400      197728 :             else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5401             :             {
    5402      197728 :                 if (old_infomask2 & HEAP_KEYS_UPDATED)
    5403      185520 :                     old_status = MultiXactStatusForUpdate;
    5404             :                 else
    5405       12208 :                     old_status = MultiXactStatusForNoKeyUpdate;
    5406             :             }
    5407             :             else
    5408             :             {
    5409             :                 /*
    5410             :                  * LOCK_ONLY can be present alone only when a page has been
    5411             :                  * upgraded by pg_upgrade.  But in that case,
    5412             :                  * TransactionIdIsInProgress() should have returned false.  We
    5413             :                  * assume it's no longer locked in this case.
    5414             :                  */
    5415           0 :                 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
    5416           0 :                 old_infomask |= HEAP_XMAX_INVALID;
    5417           0 :                 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
    5418           0 :                 goto l5;
    5419             :             }
    5420             :         }
    5421             :         else
    5422             :         {
    5423             :             /* it's an update, but which kind? */
    5424          52 :             if (old_infomask2 & HEAP_KEYS_UPDATED)
    5425           0 :                 old_status = MultiXactStatusUpdate;
    5426             :             else
    5427          52 :                 old_status = MultiXactStatusNoKeyUpdate;
    5428             :         }
    5429             : 
    5430      209884 :         old_mode = TUPLOCK_from_mxstatus(old_status);
    5431             : 
    5432             :         /*
    5433             :          * If the lock to be acquired is for the same TransactionId as the
    5434             :          * existing lock, there's an optimization possible: consider only the
    5435             :          * strongest of both locks as the only one present, and restart.
    5436             :          */
    5437      209884 :         if (xmax == add_to_xmax)
    5438             :         {
    5439             :             /*
    5440             :              * Note that it's not possible for the original tuple to be
    5441             :              * updated: we wouldn't be here because the tuple would have been
    5442             :              * invisible and we wouldn't try to update it.  As a subtlety,
    5443             :              * this code can also run when traversing an update chain to lock
    5444             :              * future versions of a tuple.  But we wouldn't be here either,
    5445             :              * because the add_to_xmax would be different from the original
    5446             :              * updater.
    5447             :              */
    5448             :             Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5449             : 
    5450             :             /* acquire the strongest of both */
    5451      207846 :             if (mode < old_mode)
    5452      104372 :                 mode = old_mode;
    5453             :             /* mustn't touch is_update */
    5454             : 
    5455      207846 :             old_infomask |= HEAP_XMAX_INVALID;
    5456      207846 :             goto l5;
    5457             :         }
    5458             : 
    5459             :         /* otherwise, just fall back to creating a new multixact */
    5460        2038 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5461        2038 :         new_xmax = MultiXactIdCreate(xmax, old_status,
    5462             :                                      add_to_xmax, new_status);
    5463        2038 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5464             :     }
    5465          28 :     else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
    5466          10 :              TransactionIdDidCommit(xmax))
    5467           2 :     {
    5468             :         /*
    5469             :          * It's a committed update, so we gotta preserve him as updater of the
    5470             :          * tuple.
    5471             :          */
    5472             :         MultiXactStatus status;
    5473             :         MultiXactStatus new_status;
    5474             : 
    5475           2 :         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5476           0 :             status = MultiXactStatusUpdate;
    5477             :         else
    5478           2 :             status = MultiXactStatusNoKeyUpdate;
    5479             : 
    5480           2 :         new_status = get_mxact_status_for_lock(mode, is_update);
    5481             : 
    5482             :         /*
    5483             :          * since it's not running, it's obviously impossible for the old
    5484             :          * updater to be identical to the current one, so we need not check
    5485             :          * for that case as we do in the block above.
    5486             :          */
    5487           2 :         new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
    5488           2 :         GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
    5489             :     }
    5490             :     else
    5491             :     {
    5492             :         /*
    5493             :          * Can get here iff the locking/updating transaction was running when
    5494             :          * the infomask was extracted from the tuple, but finished before
    5495             :          * TransactionIdIsInProgress got to run.  Deal with it as if there was
    5496             :          * no locker at all in the first place.
    5497             :          */
    5498          16 :         old_infomask |= HEAP_XMAX_INVALID;
    5499          16 :         goto l5;
    5500             :     }
    5501             : 
    5502     3960300 :     *result_infomask = new_infomask;
    5503     3960300 :     *result_infomask2 = new_infomask2;
    5504     3960300 :     *result_xmax = new_xmax;
    5505     3960300 : }
    5506             : 
    5507             : /*
    5508             :  * Subroutine for heap_lock_updated_tuple_rec.
    5509             :  *
    5510             :  * Given a hypothetical multixact status held by the transaction identified
    5511             :  * with the given xid, does the current transaction need to wait, fail, or can
    5512             :  * it continue if it wanted to acquire a lock of the given mode?  "needwait"
    5513             :  * is set to true if waiting is necessary; if it can continue, then TM_Ok is
    5514             :  * returned.  If the lock is already held by the current transaction, return
    5515             :  * TM_SelfModified.  In case of a conflict with another transaction, a
    5516             :  * different HeapTupleSatisfiesUpdate return code is returned.
    5517             :  *
    5518             :  * The held status is said to be hypothetical because it might correspond to a
    5519             :  * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
    5520             :  * way for simplicity of API.
    5521             :  */
    5522             : static TM_Result
    5523          64 : test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid,
    5524             :                            LockTupleMode mode, HeapTuple tup,
    5525             :                            bool *needwait)
    5526             : {
    5527             :     MultiXactStatus wantedstatus;
    5528             : 
    5529          64 :     *needwait = false;
    5530          64 :     wantedstatus = get_mxact_status_for_lock(mode, false);
    5531             : 
    5532             :     /*
    5533             :      * Note: we *must* check TransactionIdIsInProgress before
    5534             :      * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
    5535             :      * for an explanation.
    5536             :      */
    5537          64 :     if (TransactionIdIsCurrentTransactionId(xid))
    5538             :     {
    5539             :         /*
    5540             :          * The tuple has already been locked by our own transaction.  This is
    5541             :          * very rare but can happen if multiple transactions are trying to
    5542             :          * lock an ancient version of the same tuple.
    5543             :          */
    5544           0 :         return TM_SelfModified;
    5545             :     }
    5546          64 :     else if (TransactionIdIsInProgress(xid))
    5547             :     {
    5548             :         /*
    5549             :          * If the locking transaction is running, what we do depends on
    5550             :          * whether the lock modes conflict: if they do, then we must wait for
    5551             :          * it to finish; otherwise we can fall through to lock this tuple
    5552             :          * version without waiting.
    5553             :          */
    5554          32 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5555          32 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5556             :         {
    5557          16 :             *needwait = true;
    5558             :         }
    5559             : 
    5560             :         /*
    5561             :          * If we set needwait above, then this value doesn't matter;
    5562             :          * otherwise, this value signals to caller that it's okay to proceed.
    5563             :          */
    5564          32 :         return TM_Ok;
    5565             :     }
    5566          32 :     else if (TransactionIdDidAbort(xid))
    5567           6 :         return TM_Ok;
    5568          26 :     else if (TransactionIdDidCommit(xid))
    5569             :     {
    5570             :         /*
    5571             :          * The other transaction committed.  If it was only a locker, then the
    5572             :          * lock is completely gone now and we can return success; but if it
    5573             :          * was an update, then what we do depends on whether the two lock
    5574             :          * modes conflict.  If they conflict, then we must report error to
    5575             :          * caller. But if they don't, we can fall through to allow the current
    5576             :          * transaction to lock the tuple.
    5577             :          *
    5578             :          * Note: the reason we worry about ISUPDATE here is because as soon as
    5579             :          * a transaction ends, all its locks are gone and meaningless, and
    5580             :          * thus we can ignore them; whereas its updates persist.  In the
    5581             :          * TransactionIdIsInProgress case, above, we don't need to check
    5582             :          * because we know the lock is still "alive" and thus a conflict needs
    5583             :          * always be checked.
    5584             :          */
    5585          26 :         if (!ISUPDATE_from_mxstatus(status))
    5586           8 :             return TM_Ok;
    5587             : 
    5588          18 :         if (DoLockModesConflict(LOCKMODE_from_mxstatus(status),
    5589          18 :                                 LOCKMODE_from_mxstatus(wantedstatus)))
    5590             :         {
    5591             :             /* bummer */
    5592          16 :             if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
    5593          12 :                 return TM_Updated;
    5594             :             else
    5595           4 :                 return TM_Deleted;
    5596             :         }
    5597             : 
    5598           2 :         return TM_Ok;
    5599             :     }
    5600             : 
    5601             :     /* Not in progress, not aborted, not committed -- must have crashed */
    5602           0 :     return TM_Ok;
    5603             : }
    5604             : 
    5605             : 
    5606             : /*
    5607             :  * Recursive part of heap_lock_updated_tuple
    5608             :  *
    5609             :  * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
    5610             :  * xid with the given mode; if this tuple is updated, recurse to lock the new
    5611             :  * version as well.
    5612             :  */
    5613             : static TM_Result
    5614         162 : heap_lock_updated_tuple_rec(Relation rel, ItemPointer tid, TransactionId xid,
    5615             :                             LockTupleMode mode)
    5616             : {
    5617             :     TM_Result   result;
    5618             :     ItemPointerData tupid;
    5619             :     HeapTupleData mytup;
    5620             :     Buffer      buf;
    5621             :     uint16      new_infomask,
    5622             :                 new_infomask2,
    5623             :                 old_infomask,
    5624             :                 old_infomask2;
    5625             :     TransactionId xmax,
    5626             :                 new_xmax;
    5627         162 :     TransactionId priorXmax = InvalidTransactionId;
    5628         162 :     bool        cleared_all_frozen = false;
    5629             :     bool        pinned_desired_page;
    5630         162 :     Buffer      vmbuffer = InvalidBuffer;
    5631             :     BlockNumber block;
    5632             : 
    5633         162 :     ItemPointerCopy(tid, &tupid);
    5634             : 
    5635             :     for (;;)
    5636             :     {
    5637         168 :         new_infomask = 0;
    5638         168 :         new_xmax = InvalidTransactionId;
    5639         168 :         block = ItemPointerGetBlockNumber(&tupid);
    5640         168 :         ItemPointerCopy(&tupid, &(mytup.t_self));
    5641             : 
    5642         168 :         if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
    5643             :         {
    5644             :             /*
    5645             :              * if we fail to find the updated version of the tuple, it's
    5646             :              * because it was vacuumed/pruned away after its creator
    5647             :              * transaction aborted.  So behave as if we got to the end of the
    5648             :              * chain, and there's no further tuple to lock: return success to
    5649             :              * caller.
    5650             :              */
    5651           0 :             result = TM_Ok;
    5652           0 :             goto out_unlocked;
    5653             :         }
    5654             : 
    5655         168 : l4:
    5656         184 :         CHECK_FOR_INTERRUPTS();
    5657             : 
    5658             :         /*
    5659             :          * Before locking the buffer, pin the visibility map page if it
    5660             :          * appears to be necessary.  Since we haven't got the lock yet,
    5661             :          * someone else might be in the middle of changing this, so we'll need
    5662             :          * to recheck after we have the lock.
    5663             :          */
    5664         184 :         if (PageIsAllVisible(BufferGetPage(buf)))
    5665             :         {
    5666           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5667           0 :             pinned_desired_page = true;
    5668             :         }
    5669             :         else
    5670         184 :             pinned_desired_page = false;
    5671             : 
    5672         184 :         LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5673             : 
    5674             :         /*
    5675             :          * If we didn't pin the visibility map page and the page has become
    5676             :          * all visible while we were busy locking the buffer, we'll have to
    5677             :          * unlock and re-lock, to avoid holding the buffer lock across I/O.
    5678             :          * That's a bit unfortunate, but hopefully shouldn't happen often.
    5679             :          *
    5680             :          * Note: in some paths through this function, we will reach here
    5681             :          * holding a pin on a vm page that may or may not be the one matching
    5682             :          * this page.  If this page isn't all-visible, we won't use the vm
    5683             :          * page, but we hold onto such a pin till the end of the function.
    5684             :          */
    5685         184 :         if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
    5686             :         {
    5687           0 :             LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5688           0 :             visibilitymap_pin(rel, block, &vmbuffer);
    5689           0 :             LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
    5690             :         }
    5691             : 
    5692             :         /*
    5693             :          * Check the tuple XMIN against prior XMAX, if any.  If we reached the
    5694             :          * end of the chain, we're done, so return success.
    5695             :          */
    5696         190 :         if (TransactionIdIsValid(priorXmax) &&
    5697           6 :             !TransactionIdEquals(HeapTupleHeaderGetXmin(mytup.t_data),
    5698             :                                  priorXmax))
    5699             :         {
    5700           0 :             result = TM_Ok;
    5701           0 :             goto out_locked;
    5702             :         }
    5703             : 
    5704             :         /*
    5705             :          * Also check Xmin: if this tuple was created by an aborted
    5706             :          * (sub)transaction, then we already locked the last live one in the
    5707             :          * chain, thus we're done, so return success.
    5708             :          */
    5709         184 :         if (TransactionIdDidAbort(HeapTupleHeaderGetXmin(mytup.t_data)))
    5710             :         {
    5711          26 :             result = TM_Ok;
    5712          26 :             goto out_locked;
    5713             :         }
    5714             : 
    5715         158 :         old_infomask = mytup.t_data->t_infomask;
    5716         158 :         old_infomask2 = mytup.t_data->t_infomask2;
    5717         158 :         xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5718             : 
    5719             :         /*
    5720             :          * If this tuple version has been updated or locked by some concurrent
    5721             :          * transaction(s), what we do depends on whether our lock mode
    5722             :          * conflicts with what those other transactions hold, and also on the
    5723             :          * status of them.
    5724             :          */
    5725         158 :         if (!(old_infomask & HEAP_XMAX_INVALID))
    5726             :         {
    5727             :             TransactionId rawxmax;
    5728             :             bool        needwait;
    5729             : 
    5730          60 :             rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
    5731          60 :             if (old_infomask & HEAP_XMAX_IS_MULTI)
    5732             :             {
    5733             :                 int         nmembers;
    5734             :                 int         i;
    5735             :                 MultiXactMember *members;
    5736             : 
    5737             :                 /*
    5738             :                  * We don't need a test for pg_upgrade'd tuples: this is only
    5739             :                  * applied to tuples after the first in an update chain.  Said
    5740             :                  * first tuple in the chain may well be locked-in-9.2-and-
    5741             :                  * pg_upgraded, but that one was already locked by our caller,
    5742             :                  * not us; and any subsequent ones cannot be because our
    5743             :                  * caller must necessarily have obtained a snapshot later than
    5744             :                  * the pg_upgrade itself.
    5745             :                  */
    5746             :                 Assert(!HEAP_LOCKED_UPGRADED(mytup.t_data->t_infomask));
    5747             : 
    5748           2 :                 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
    5749           2 :                                                  HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
    5750           8 :                 for (i = 0; i < nmembers; i++)
    5751             :                 {
    5752           6 :                     result = test_lockmode_for_conflict(members[i].status,
    5753           6 :                                                         members[i].xid,
    5754             :                                                         mode,
    5755             :                                                         &mytup,
    5756             :                                                         &needwait);
    5757             : 
    5758             :                     /*
    5759             :                      * If the tuple was already locked by ourselves in a
    5760             :                      * previous iteration of this (say heap_lock_tuple was
    5761             :                      * forced to restart the locking loop because of a change
    5762             :                      * in xmax), then we hold the lock already on this tuple
    5763             :                      * version and we don't need to do anything; and this is
    5764             :                      * not an error condition either.  We just need to skip
    5765             :                      * this tuple and continue locking the next version in the
    5766             :                      * update chain.
    5767             :                      */
    5768           6 :                     if (result == TM_SelfModified)
    5769             :                     {
    5770           0 :                         pfree(members);
    5771           0 :                         goto next;
    5772             :                     }
    5773             : 
    5774           6 :                     if (needwait)
    5775             :                     {
    5776           0 :                         LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5777           0 :                         XactLockTableWait(members[i].xid, rel,
    5778             :                                           &mytup.t_self,
    5779             :                                           XLTW_LockUpdated);
    5780           0 :                         pfree(members);
    5781           0 :                         goto l4;
    5782             :                     }
    5783           6 :                     if (result != TM_Ok)
    5784             :                     {
    5785           0 :                         pfree(members);
    5786           0 :                         goto out_locked;
    5787             :                     }
    5788             :                 }
    5789           2 :                 if (members)
    5790           2 :                     pfree(members);
    5791             :             }
    5792             :             else
    5793             :             {
    5794             :                 MultiXactStatus status;
    5795             : 
    5796             :                 /*
    5797             :                  * For a non-multi Xmax, we first need to compute the
    5798             :                  * corresponding MultiXactStatus by using the infomask bits.
    5799             :                  */
    5800          58 :                 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
    5801             :                 {
    5802          20 :                     if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
    5803          20 :                         status = MultiXactStatusForKeyShare;
    5804           0 :                     else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
    5805           0 :                         status = MultiXactStatusForShare;
    5806           0 :                     else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
    5807             :                     {
    5808           0 :                         if (old_infomask2 & HEAP_KEYS_UPDATED)
    5809           0 :                             status = MultiXactStatusForUpdate;
    5810             :                         else
    5811           0 :                             status = MultiXactStatusForNoKeyUpdate;
    5812             :                     }
    5813             :                     else
    5814             :                     {
    5815             :                         /*
    5816             :                          * LOCK_ONLY present alone (a pg_upgraded tuple marked
    5817             :                          * as share-locked in the old cluster) shouldn't be
    5818             :                          * seen in the middle of an update chain.
    5819             :                          */
    5820           0 :                         elog(ERROR, "invalid lock status in tuple");
    5821             :                     }
    5822             :                 }
    5823             :                 else
    5824             :                 {
    5825             :                     /* it's an update, but which kind? */
    5826          38 :                     if (old_infomask2 & HEAP_KEYS_UPDATED)
    5827          28 :                         status = MultiXactStatusUpdate;
    5828             :                     else
    5829          10 :                         status = MultiXactStatusNoKeyUpdate;
    5830             :                 }
    5831             : 
    5832          58 :                 result = test_lockmode_for_conflict(status, rawxmax, mode,
    5833             :                                                     &mytup, &needwait);
    5834             : 
    5835             :                 /*
    5836             :                  * If the tuple was already locked by ourselves in a previous
    5837             :                  * iteration of this (say heap_lock_tuple was forced to
    5838             :                  * restart the locking loop because of a change in xmax), then
    5839             :                  * we hold the lock already on this tuple version and we don't
    5840             :                  * need to do anything; and this is not an error condition
    5841             :                  * either.  We just need to skip this tuple and continue
    5842             :                  * locking the next version in the update chain.
    5843             :                  */
    5844          58 :                 if (result == TM_SelfModified)
    5845           0 :                     goto next;
    5846             : 
    5847          58 :                 if (needwait)
    5848             :                 {
    5849          16 :                     LockBuffer(buf, BUFFER_LOCK_UNLOCK);
    5850          16 :                     XactLockTableWait(rawxmax, rel, &mytup.t_self,
    5851             :                                       XLTW_LockUpdated);
    5852          16 :                     goto l4;
    5853             :                 }
    5854          42 :                 if (result != TM_Ok)
    5855             :                 {
    5856          16 :                     goto out_locked;
    5857             :                 }
    5858             :             }
    5859             :         }
    5860             : 
    5861             :         /* compute the new Xmax and infomask values for the tuple ... */
    5862         126 :         compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
    5863             :                                   xid, mode, false,
    5864             :                                   &new_xmax, &new_infomask, &new_infomask2);
    5865             : 
    5866         126 :         if (PageIsAllVisible(BufferGetPage(buf)) &&
    5867           0 :             visibilitymap_clear(rel, block, vmbuffer,
    5868             :                                 VISIBILITYMAP_ALL_FROZEN))
    5869           0 :             cleared_all_frozen = true;
    5870             : 
    5871         126 :         START_CRIT_SECTION();
    5872             : 
    5873             :         /* ... and set them */
    5874         126 :         HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
    5875         126 :         mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
    5876         126 :         mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    5877         126 :         mytup.t_data->t_infomask |= new_infomask;
    5878         126 :         mytup.t_data->t_infomask2 |= new_infomask2;
    5879             : 
    5880         126 :         MarkBufferDirty(buf);
    5881             : 
    5882             :         /* XLOG stuff */
    5883         126 :         if (RelationNeedsWAL(rel))
    5884             :         {
    5885             :             xl_heap_lock_updated xlrec;
    5886             :             XLogRecPtr  recptr;
    5887         126 :             Page        page = BufferGetPage(buf);
    5888             : 
    5889         126 :             XLogBeginInsert();
    5890         126 :             XLogRegisterBuffer(0, buf, REGBUF_STANDARD);
    5891             : 
    5892         126 :             xlrec.offnum = ItemPointerGetOffsetNumber(&mytup.t_self);
    5893         126 :             xlrec.xmax = new_xmax;
    5894         126 :             xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
    5895         126 :             xlrec.flags =
    5896         126 :                 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
    5897             : 
    5898         126 :             XLogRegisterData(&xlrec, SizeOfHeapLockUpdated);
    5899             : 
    5900         126 :             recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
    5901             : 
    5902         126 :             PageSetLSN(page, recptr);
    5903             :         }
    5904             : 
    5905         126 :         END_CRIT_SECTION();
    5906             : 
    5907         126 : next:
    5908             :         /* if we find the end of update chain, we're done. */
    5909         252 :         if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
    5910         252 :             HeapTupleHeaderIndicatesMovedPartitions(mytup.t_data) ||
    5911         134 :             ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
    5912           8 :             HeapTupleHeaderIsOnlyLocked(mytup.t_data))
    5913             :         {
    5914         120 :             result = TM_Ok;
    5915         120 :             goto out_locked;
    5916             :         }
    5917             : 
    5918             :         /* tail recursion */
    5919           6 :         priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
    5920           6 :         ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
    5921           6 :         UnlockReleaseBuffer(buf);
    5922             :     }
    5923             : 
    5924             :     result = TM_Ok;
    5925             : 
    5926         162 : out_locked:
    5927         162 :     UnlockReleaseBuffer(buf);
    5928             : 
    5929         162 : out_unlocked:
    5930         162 :     if (vmbuffer != InvalidBuffer)
    5931           0 :         ReleaseBuffer(vmbuffer);
    5932             : 
    5933         162 :     return result;
    5934             : }
    5935             : 
    5936             : /*
    5937             :  * heap_lock_updated_tuple
    5938             :  *      Follow update chain when locking an updated tuple, acquiring locks (row
    5939             :  *      marks) on the updated versions.
    5940             :  *
    5941             :  * The initial tuple is assumed to be already locked.
    5942             :  *
    5943             :  * This function doesn't check visibility, it just unconditionally marks the
    5944             :  * tuple(s) as locked.  If any tuple in the updated chain is being deleted
    5945             :  * concurrently (or updated with the key being modified), sleep until the
    5946             :  * transaction doing it is finished.
    5947             :  *
    5948             :  * Note that we don't acquire heavyweight tuple locks on the tuples we walk
    5949             :  * when we have to wait for other transactions to release them, as opposed to
    5950             :  * what heap_lock_tuple does.  The reason is that having more than one
    5951             :  * transaction walking the chain is probably uncommon enough that risk of
    5952             :  * starvation is not likely: one of the preconditions for being here is that
    5953             :  * the snapshot in use predates the update that created this tuple (because we
    5954             :  * started at an earlier version of the tuple), but at the same time such a
    5955             :  * transaction cannot be using repeatable read or serializable isolation
    5956             :  * levels, because that would lead to a serializability failure.
    5957             :  */
    5958             : static TM_Result
    5959         180 : heap_lock_updated_tuple(Relation rel, HeapTuple tuple, ItemPointer ctid,
    5960             :                         TransactionId xid, LockTupleMode mode)
    5961             : {
    5962             :     /*
    5963             :      * If the tuple has not been updated, or has moved into another partition
    5964             :      * (effectively a delete) stop here.
    5965             :      */
    5966         180 :     if (!HeapTupleHeaderIndicatesMovedPartitions(tuple->t_data) &&
    5967         176 :         !ItemPointerEquals(&tuple->t_self, ctid))
    5968             :     {
    5969             :         /*
    5970             :          * If this is the first possibly-multixact-able operation in the
    5971             :          * current transaction, set my per-backend OldestMemberMXactId
    5972             :          * setting. We can be certain that the transaction will never become a
    5973             :          * member of any older MultiXactIds than that.  (We have to do this
    5974             :          * even if we end up just using our own TransactionId below, since
    5975             :          * some other backend could incorporate our XID into a MultiXact
    5976             :          * immediately afterwards.)
    5977             :          */
    5978         162 :         MultiXactIdSetOldestMember();
    5979             : 
    5980         162 :         return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
    5981             :     }
    5982             : 
    5983             :     /* nothing to lock */
    5984          18 :     return TM_Ok;
    5985             : }
    5986             : 
    5987             : /*
    5988             :  *  heap_finish_speculative - mark speculative insertion as successful
    5989             :  *
    5990             :  * To successfully finish a speculative insertion we have to clear speculative
    5991             :  * token from tuple.  To do so the t_ctid field, which will contain a
    5992             :  * speculative token value, is modified in place to point to the tuple itself,
    5993             :  * which is characteristic of a newly inserted ordinary tuple.
    5994             :  *
    5995             :  * NB: It is not ok to commit without either finishing or aborting a
    5996             :  * speculative insertion.  We could treat speculative tuples of committed
    5997             :  * transactions implicitly as completed, but then we would have to be prepared
    5998             :  * to deal with speculative tokens on committed tuples.  That wouldn't be
    5999             :  * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
    6000             :  * but clearing the token at completion isn't very expensive either.
    6001             :  * An explicit confirmation WAL record also makes logical decoding simpler.
    6002             :  */
    6003             : void
    6004        4112 : heap_finish_speculative(Relation relation, ItemPointer tid)
    6005             : {
    6006             :     Buffer      buffer;
    6007             :     Page        page;
    6008             :     OffsetNumber offnum;
    6009        4112 :     ItemId      lp = NULL;
    6010             :     HeapTupleHeader htup;
    6011             : 
    6012        4112 :     buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
    6013        4112 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6014        4112 :     page = (Page) BufferGetPage(buffer);
    6015             : 
    6016        4112 :     offnum = ItemPointerGetOffsetNumber(tid);
    6017        4112 :     if (PageGetMaxOffsetNumber(page) >= offnum)
    6018        4112 :         lp = PageGetItemId(page, offnum);
    6019             : 
    6020        4112 :     if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
    6021           0 :         elog(ERROR, "invalid lp");
    6022             : 
    6023        4112 :     htup = (HeapTupleHeader) PageGetItem(page, lp);
    6024             : 
    6025             :     /* NO EREPORT(ERROR) from here till changes are logged */
    6026        4112 :     START_CRIT_SECTION();
    6027             : 
    6028             :     Assert(HeapTupleHeaderIsSpeculative(htup));
    6029             : 
    6030        4112 :     MarkBufferDirty(buffer);
    6031             : 
    6032             :     /*
    6033             :      * Replace the speculative insertion token with a real t_ctid, pointing to
    6034             :      * itself like it does on regular tuples.
    6035             :      */
    6036        4112 :     htup->t_ctid = *tid;
    6037             : 
    6038             :     /* XLOG stuff */
    6039        4112 :     if (RelationNeedsWAL(relation))
    6040             :     {
    6041             :         xl_heap_confirm xlrec;
    6042             :         XLogRecPtr  recptr;
    6043             : 
    6044        4094 :         xlrec.offnum = ItemPointerGetOffsetNumber(tid);
    6045             : 
    6046        4094 :         XLogBeginInsert();
    6047             : 
    6048             :         /* We want the same filtering on this as on a plain insert */
    6049        4094 :         XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    6050             : 
    6051        4094 :         XLogRegisterData(&xlrec, SizeOfHeapConfirm);
    6052        4094 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6053             : 
    6054        4094 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
    6055             : 
    6056        4094 :         PageSetLSN(page, recptr);
    6057             :     }
    6058             : 
    6059        4112 :     END_CRIT_SECTION();
    6060             : 
    6061        4112 :     UnlockReleaseBuffer(buffer);
    6062        4112 : }
    6063             : 
    6064             : /*
    6065             :  *  heap_abort_speculative - kill a speculatively inserted tuple
    6066             :  *
    6067             :  * Marks a tuple that was speculatively inserted in the same command as dead,
    6068             :  * by setting its xmin as invalid.  That makes it immediately appear as dead
    6069             :  * to all transactions, including our own.  In particular, it makes
    6070             :  * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
    6071             :  * inserting a duplicate key value won't unnecessarily wait for our whole
    6072             :  * transaction to finish (it'll just wait for our speculative insertion to
    6073             :  * finish).
    6074             :  *
    6075             :  * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
    6076             :  * that arise due to a mutual dependency that is not user visible.  By
    6077             :  * definition, unprincipled deadlocks cannot be prevented by the user
    6078             :  * reordering lock acquisition in client code, because the implementation level
    6079             :  * lock acquisitions are not under the user's direct control.  If speculative
    6080             :  * inserters did not take this precaution, then under high concurrency they
    6081             :  * could deadlock with each other, which would not be acceptable.
    6082             :  *
    6083             :  * This is somewhat redundant with heap_delete, but we prefer to have a
    6084             :  * dedicated routine with stripped down requirements.  Note that this is also
    6085             :  * used to delete the TOAST tuples created during speculative insertion.
    6086             :  *
    6087             :  * This routine does not affect logical decoding as it only looks at
    6088             :  * confirmation records.
    6089             :  */
    6090             : void
    6091          20 : heap_abort_speculative(Relation relation, ItemPointer tid)
    6092             : {
    6093          20 :     TransactionId xid = GetCurrentTransactionId();
    6094             :     ItemId      lp;
    6095             :     HeapTupleData tp;
    6096             :     Page        page;
    6097             :     BlockNumber block;
    6098             :     Buffer      buffer;
    6099             : 
    6100             :     Assert(ItemPointerIsValid(tid));
    6101             : 
    6102          20 :     block = ItemPointerGetBlockNumber(tid);
    6103          20 :     buffer = ReadBuffer(relation, block);
    6104          20 :     page = BufferGetPage(buffer);
    6105             : 
    6106          20 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6107             : 
    6108             :     /*
    6109             :      * Page can't be all visible, we just inserted into it, and are still
    6110             :      * running.
    6111             :      */
    6112             :     Assert(!PageIsAllVisible(page));
    6113             : 
    6114          20 :     lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid));
    6115             :     Assert(ItemIdIsNormal(lp));
    6116             : 
    6117          20 :     tp.t_tableOid = RelationGetRelid(relation);
    6118          20 :     tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
    6119          20 :     tp.t_len = ItemIdGetLength(lp);
    6120          20 :     tp.t_self = *tid;
    6121             : 
    6122             :     /*
    6123             :      * Sanity check that the tuple really is a speculatively inserted tuple,
    6124             :      * inserted by us.
    6125             :      */
    6126          20 :     if (tp.t_data->t_choice.t_heap.t_xmin != xid)
    6127           0 :         elog(ERROR, "attempted to kill a tuple inserted by another transaction");
    6128          20 :     if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
    6129           0 :         elog(ERROR, "attempted to kill a non-speculative tuple");
    6130             :     Assert(!HeapTupleHeaderIsHeapOnly(tp.t_data));
    6131             : 
    6132             :     /*
    6133             :      * No need to check for serializable conflicts here.  There is never a
    6134             :      * need for a combo CID, either.  No need to extract replica identity, or
    6135             :      * do anything special with infomask bits.
    6136             :      */
    6137             : 
    6138          20 :     START_CRIT_SECTION();
    6139             : 
    6140             :     /*
    6141             :      * The tuple will become DEAD immediately.  Flag that this page is a
    6142             :      * candidate for pruning by setting xmin to TransactionXmin. While not
    6143             :      * immediately prunable, it is the oldest xid we can cheaply determine
    6144             :      * that's safe against wraparound / being older than the table's
    6145             :      * relfrozenxid.  To defend against the unlikely case of a new relation
    6146             :      * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
    6147             :      * if so (vacuum can't subsequently move relfrozenxid to beyond
    6148             :      * TransactionXmin, so there's no race here).
    6149             :      */
    6150             :     Assert(TransactionIdIsValid(TransactionXmin));
    6151             :     {
    6152          20 :         TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
    6153             :         TransactionId prune_xid;
    6154             : 
    6155          20 :         if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
    6156           0 :             prune_xid = relfrozenxid;
    6157             :         else
    6158          20 :             prune_xid = TransactionXmin;
    6159          20 :         PageSetPrunable(page, prune_xid);
    6160             :     }
    6161             : 
    6162             :     /* store transaction information of xact deleting the tuple */
    6163          20 :     tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED);
    6164          20 :     tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    6165             : 
    6166             :     /*
    6167             :      * Set the tuple header xmin to InvalidTransactionId.  This makes the
    6168             :      * tuple immediately invisible everyone.  (In particular, to any
    6169             :      * transactions waiting on the speculative token, woken up later.)
    6170             :      */
    6171          20 :     HeapTupleHeaderSetXmin(tp.t_data, InvalidTransactionId);
    6172             : 
    6173             :     /* Clear the speculative insertion token too */
    6174          20 :     tp.t_data->t_ctid = tp.t_self;
    6175             : 
    6176          20 :     MarkBufferDirty(buffer);
    6177             : 
    6178             :     /*
    6179             :      * XLOG stuff
    6180             :      *
    6181             :      * The WAL records generated here match heap_delete().  The same recovery
    6182             :      * routines are used.
    6183             :      */
    6184          20 :     if (RelationNeedsWAL(relation))
    6185             :     {
    6186             :         xl_heap_delete xlrec;
    6187             :         XLogRecPtr  recptr;
    6188             : 
    6189          20 :         xlrec.flags = XLH_DELETE_IS_SUPER;
    6190          40 :         xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask,
    6191          20 :                                               tp.t_data->t_infomask2);
    6192          20 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tp.t_self);
    6193          20 :         xlrec.xmax = xid;
    6194             : 
    6195          20 :         XLogBeginInsert();
    6196          20 :         XLogRegisterData(&xlrec, SizeOfHeapDelete);
    6197          20 :         XLogRegisterBuffer(0, buffer, REGBUF_STANDARD);
    6198             : 
    6199             :         /* No replica identity & replication origin logged */
    6200             : 
    6201          20 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
    6202             : 
    6203          20 :         PageSetLSN(page, recptr);
    6204             :     }
    6205             : 
    6206          20 :     END_CRIT_SECTION();
    6207             : 
    6208          20 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6209             : 
    6210          20 :     if (HeapTupleHasExternal(&tp))
    6211             :     {
    6212             :         Assert(!IsToastRelation(relation));
    6213           2 :         heap_toast_delete(relation, &tp, true);
    6214             :     }
    6215             : 
    6216             :     /*
    6217             :      * Never need to mark tuple for invalidation, since catalogs don't support
    6218             :      * speculative insertion
    6219             :      */
    6220             : 
    6221             :     /* Now we can release the buffer */
    6222          20 :     ReleaseBuffer(buffer);
    6223             : 
    6224             :     /* count deletion, as we counted the insertion too */
    6225          20 :     pgstat_count_heap_delete(relation);
    6226          20 : }
    6227             : 
    6228             : /*
    6229             :  * heap_inplace_lock - protect inplace update from concurrent heap_update()
    6230             :  *
    6231             :  * Evaluate whether the tuple's state is compatible with a no-key update.
    6232             :  * Current transaction rowmarks are fine, as is KEY SHARE from any
    6233             :  * transaction.  If compatible, return true with the buffer exclusive-locked,
    6234             :  * and the caller must release that by calling
    6235             :  * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
    6236             :  * an error.  Otherwise, call release_callback(arg), wait for blocking
    6237             :  * transactions to end, and return false.
    6238             :  *
    6239             :  * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
    6240             :  * DDL, this doesn't guarantee any particular predicate locking.
    6241             :  *
    6242             :  * One could modify this to return true for tuples with delete in progress,
    6243             :  * All inplace updaters take a lock that conflicts with DROP.  If explicit
    6244             :  * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
    6245             :  * update.
    6246             :  *
    6247             :  * Readers of inplace-updated fields expect changes to those fields are
    6248             :  * durable.  For example, vac_truncate_clog() reads datfrozenxid from
    6249             :  * pg_database tuples via catalog snapshots.  A future snapshot must not
    6250             :  * return a lower datfrozenxid for the same database OID (lower in the
    6251             :  * FullTransactionIdPrecedes() sense).  We achieve that since no update of a
    6252             :  * tuple can start while we hold a lock on its buffer.  In cases like
    6253             :  * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
    6254             :  * to this transaction.  ROLLBACK then is one case where it's okay to lose
    6255             :  * inplace updates.  (Restoring relhasindex=false on ROLLBACK is fine, since
    6256             :  * any concurrent CREATE INDEX would have blocked, then inplace-updated the
    6257             :  * committed tuple.)
    6258             :  *
    6259             :  * In principle, we could avoid waiting by overwriting every tuple in the
    6260             :  * updated tuple chain.  Reader expectations permit updating a tuple only if
    6261             :  * it's aborted, is the tail of the chain, or we already updated the tuple
    6262             :  * referenced in its t_ctid.  Hence, we would need to overwrite the tuples in
    6263             :  * order from tail to head.  That would imply either (a) mutating all tuples
    6264             :  * in one critical section or (b) accepting a chance of partial completion.
    6265             :  * Partial completion of a relfrozenxid update would have the weird
    6266             :  * consequence that the table's next VACUUM could see the table's relfrozenxid
    6267             :  * move forward between vacuum_get_cutoffs() and finishing.
    6268             :  */
    6269             : bool
    6270      266980 : heap_inplace_lock(Relation relation,
    6271             :                   HeapTuple oldtup_ptr, Buffer buffer,
    6272             :                   void (*release_callback) (void *), void *arg)
    6273             : {
    6274      266980 :     HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
    6275             :     TM_Result   result;
    6276             :     bool        ret;
    6277             : 
    6278             : #ifdef USE_ASSERT_CHECKING
    6279             :     if (RelationGetRelid(relation) == RelationRelationId)
    6280             :         check_inplace_rel_lock(oldtup_ptr);
    6281             : #endif
    6282             : 
    6283             :     Assert(BufferIsValid(buffer));
    6284             : 
    6285             :     /*
    6286             :      * Construct shared cache inval if necessary.  Because we pass a tuple
    6287             :      * version without our own inplace changes or inplace changes other
    6288             :      * sessions complete while we wait for locks, inplace update mustn't
    6289             :      * change catcache lookup keys.  But we aren't bothering with index
    6290             :      * updates either, so that's true a fortiori.  After LockBuffer(), it
    6291             :      * would be too late, because this might reach a
    6292             :      * CatalogCacheInitializeCache() that locks "buffer".
    6293             :      */
    6294      266980 :     CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
    6295             : 
    6296      266980 :     LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6297      266980 :     LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
    6298             : 
    6299             :     /*----------
    6300             :      * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
    6301             :      *
    6302             :      * - wait unconditionally
    6303             :      * - already locked tuple above, since inplace needs that unconditionally
    6304             :      * - don't recheck header after wait: simpler to defer to next iteration
    6305             :      * - don't try to continue even if the updater aborts: likewise
    6306             :      * - no crosscheck
    6307             :      */
    6308      266980 :     result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
    6309             :                                       buffer);
    6310             : 
    6311      266980 :     if (result == TM_Invisible)
    6312             :     {
    6313             :         /* no known way this can happen */
    6314           0 :         ereport(ERROR,
    6315             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6316             :                  errmsg_internal("attempted to overwrite invisible tuple")));
    6317             :     }
    6318      266980 :     else if (result == TM_SelfModified)
    6319             :     {
    6320             :         /*
    6321             :          * CREATE INDEX might reach this if an expression is silly enough to
    6322             :          * call e.g. SELECT ... FROM pg_class FOR SHARE.  C code of other SQL
    6323             :          * statements might get here after a heap_update() of the same row, in
    6324             :          * the absence of an intervening CommandCounterIncrement().
    6325             :          */
    6326           0 :         ereport(ERROR,
    6327             :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    6328             :                  errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
    6329             :     }
    6330      266980 :     else if (result == TM_BeingModified)
    6331             :     {
    6332             :         TransactionId xwait;
    6333             :         uint16      infomask;
    6334             : 
    6335          48 :         xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
    6336          48 :         infomask = oldtup.t_data->t_infomask;
    6337             : 
    6338          48 :         if (infomask & HEAP_XMAX_IS_MULTI)
    6339             :         {
    6340          10 :             LockTupleMode lockmode = LockTupleNoKeyExclusive;
    6341          10 :             MultiXactStatus mxact_status = MultiXactStatusNoKeyUpdate;
    6342             :             int         remain;
    6343             : 
    6344          10 :             if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
    6345             :                                         lockmode, NULL))
    6346             :             {
    6347           4 :                 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6348           4 :                 release_callback(arg);
    6349           4 :                 ret = false;
    6350           4 :                 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
    6351             :                                 relation, &oldtup.t_self, XLTW_Update,
    6352             :                                 &remain);
    6353             :             }
    6354             :             else
    6355           6 :                 ret = true;
    6356             :         }
    6357          38 :         else if (TransactionIdIsCurrentTransactionId(xwait))
    6358           2 :             ret = true;
    6359          36 :         else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
    6360           2 :             ret = true;
    6361             :         else
    6362             :         {
    6363          34 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6364          34 :             release_callback(arg);
    6365          34 :             ret = false;
    6366          34 :             XactLockTableWait(xwait, relation, &oldtup.t_self,
    6367             :                               XLTW_Update);
    6368             :         }
    6369             :     }
    6370             :     else
    6371             :     {
    6372      266932 :         ret = (result == TM_Ok);
    6373      266932 :         if (!ret)
    6374             :         {
    6375           4 :             LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6376           4 :             release_callback(arg);
    6377             :         }
    6378             :     }
    6379             : 
    6380             :     /*
    6381             :      * GetCatalogSnapshot() relies on invalidation messages to know when to
    6382             :      * take a new snapshot.  COMMIT of xwait is responsible for sending the
    6383             :      * invalidation.  We're not acquiring heavyweight locks sufficient to
    6384             :      * block if not yet sent, so we must take a new snapshot to ensure a later
    6385             :      * attempt has a fair chance.  While we don't need this if xwait aborted,
    6386             :      * don't bother optimizing that.
    6387             :      */
    6388      266980 :     if (!ret)
    6389             :     {
    6390          42 :         UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
    6391          42 :         ForgetInplace_Inval();
    6392          42 :         InvalidateCatalogSnapshot();
    6393             :     }
    6394      266980 :     return ret;
    6395             : }
    6396             : 
    6397             : /*
    6398             :  * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
    6399             :  *
    6400             :  * The tuple cannot change size, and therefore its header fields and null
    6401             :  * bitmap (if any) don't change either.
    6402             :  *
    6403             :  * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
    6404             :  */
    6405             : void
    6406      154264 : heap_inplace_update_and_unlock(Relation relation,
    6407             :                                HeapTuple oldtup, HeapTuple tuple,
    6408             :                                Buffer buffer)
    6409             : {
    6410      154264 :     HeapTupleHeader htup = oldtup->t_data;
    6411             :     uint32      oldlen;
    6412             :     uint32      newlen;
    6413             :     char       *dst;
    6414             :     char       *src;
    6415      154264 :     int         nmsgs = 0;
    6416      154264 :     SharedInvalidationMessage *invalMessages = NULL;
    6417      154264 :     bool        RelcacheInitFileInval = false;
    6418             : 
    6419             :     Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
    6420      154264 :     oldlen = oldtup->t_len - htup->t_hoff;
    6421      154264 :     newlen = tuple->t_len - tuple->t_data->t_hoff;
    6422      154264 :     if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
    6423           0 :         elog(ERROR, "wrong tuple length");
    6424             : 
    6425      154264 :     dst = (char *) htup + htup->t_hoff;
    6426      154264 :     src = (char *) tuple->t_data + tuple->t_data->t_hoff;
    6427             : 
    6428             :     /* Like RecordTransactionCommit(), log only if needed */
    6429      154264 :     if (XLogStandbyInfoActive())
    6430       91930 :         nmsgs = inplaceGetInvalidationMessages(&invalMessages,
    6431             :                                                &RelcacheInitFileInval);
    6432             : 
    6433             :     /*
    6434             :      * Unlink relcache init files as needed.  If unlinking, acquire
    6435             :      * RelCacheInitLock until after associated invalidations.  By doing this
    6436             :      * in advance, if we checkpoint and then crash between inplace
    6437             :      * XLogInsert() and inval, we don't rely on StartupXLOG() ->
    6438             :      * RelationCacheInitFileRemove().  That uses elevel==LOG, so replay would
    6439             :      * neglect to PANIC on EIO.
    6440             :      */
    6441      154264 :     PreInplace_Inval();
    6442             : 
    6443             :     /*----------
    6444             :      * NO EREPORT(ERROR) from here till changes are complete
    6445             :      *
    6446             :      * Our buffer lock won't stop a reader having already pinned and checked
    6447             :      * visibility for this tuple.  Hence, we write WAL first, then mutate the
    6448             :      * buffer.  Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
    6449             :      * checkpoint delay makes that acceptable.  With the usual order of
    6450             :      * changes, a crash after memcpy() and before XLogInsert() could allow
    6451             :      * datfrozenxid to overtake relfrozenxid:
    6452             :      *
    6453             :      * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
    6454             :      * ["R" is a VACUUM tbl]
    6455             :      * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
    6456             :      * D: systable_getnext() returns pg_class tuple of tbl
    6457             :      * R: memcpy() into pg_class tuple of tbl
    6458             :      * D: raise pg_database.datfrozenxid, XLogInsert(), finish
    6459             :      * [crash]
    6460             :      * [recovery restores datfrozenxid w/o relfrozenxid]
    6461             :      *
    6462             :      * Like in MarkBufferDirtyHint() subroutine XLogSaveBufferForHint(), copy
    6463             :      * the buffer to the stack before logging.  Here, that facilitates a FPI
    6464             :      * of the post-mutation block before we accept other sessions seeing it.
    6465             :      */
    6466             :     Assert((MyProc->delayChkptFlags & DELAY_CHKPT_START) == 0);
    6467      154264 :     START_CRIT_SECTION();
    6468      154264 :     MyProc->delayChkptFlags |= DELAY_CHKPT_START;
    6469             : 
    6470             :     /* XLOG stuff */
    6471      154264 :     if (RelationNeedsWAL(relation))
    6472             :     {
    6473             :         xl_heap_inplace xlrec;
    6474             :         PGAlignedBlock copied_buffer;
    6475      154248 :         char       *origdata = (char *) BufferGetBlock(buffer);
    6476      154248 :         Page        page = BufferGetPage(buffer);
    6477      154248 :         uint16      lower = ((PageHeader) page)->pd_lower;
    6478      154248 :         uint16      upper = ((PageHeader) page)->pd_upper;
    6479             :         uintptr_t   dst_offset_in_block;
    6480             :         RelFileLocator rlocator;
    6481             :         ForkNumber  forkno;
    6482             :         BlockNumber blkno;
    6483             :         XLogRecPtr  recptr;
    6484             : 
    6485      154248 :         xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
    6486      154248 :         xlrec.dbId = MyDatabaseId;
    6487      154248 :         xlrec.tsId = MyDatabaseTableSpace;
    6488      154248 :         xlrec.relcacheInitFileInval = RelcacheInitFileInval;
    6489      154248 :         xlrec.nmsgs = nmsgs;
    6490             : 
    6491      154248 :         XLogBeginInsert();
    6492      154248 :         XLogRegisterData(&xlrec, MinSizeOfHeapInplace);
    6493      154248 :         if (nmsgs != 0)
    6494       65290 :             XLogRegisterData(invalMessages,
    6495             :                              nmsgs * sizeof(SharedInvalidationMessage));
    6496             : 
    6497             :         /* register block matching what buffer will look like after changes */
    6498      154248 :         memcpy(copied_buffer.data, origdata, lower);
    6499      154248 :         memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
    6500      154248 :         dst_offset_in_block = dst - origdata;
    6501      154248 :         memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
    6502      154248 :         BufferGetTag(buffer, &rlocator, &forkno, &blkno);
    6503             :         Assert(forkno == MAIN_FORKNUM);
    6504      154248 :         XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
    6505             :                           REGBUF_STANDARD);
    6506      154248 :         XLogRegisterBufData(0, src, newlen);
    6507             : 
    6508             :         /* inplace updates aren't decoded atm, don't log the origin */
    6509             : 
    6510      154248 :         recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
    6511             : 
    6512      154248 :         PageSetLSN(page, recptr);
    6513             :     }
    6514             : 
    6515      154264 :     memcpy(dst, src, newlen);
    6516             : 
    6517      154264 :     MarkBufferDirty(buffer);
    6518             : 
    6519      154264 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6520             : 
    6521             :     /*
    6522             :      * Send invalidations to shared queue.  SearchSysCacheLocked1() assumes we
    6523             :      * do this before UnlockTuple().
    6524             :      *
    6525             :      * If we're mutating a tuple visible only to this transaction, there's an
    6526             :      * equivalent transactional inval from the action that created the tuple,
    6527             :      * and this inval is superfluous.
    6528             :      */
    6529      154264 :     AtInplace_Inval();
    6530             : 
    6531      154264 :     MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
    6532      154264 :     END_CRIT_SECTION();
    6533      154264 :     UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
    6534             : 
    6535      154264 :     AcceptInvalidationMessages();   /* local processing of just-sent inval */
    6536             : 
    6537             :     /*
    6538             :      * Queue a transactional inval.  The immediate invalidation we just sent
    6539             :      * is the only one known to be necessary.  To reduce risk from the
    6540             :      * transition to immediate invalidation, continue sending a transactional
    6541             :      * invalidation like we've long done.  Third-party code might rely on it.
    6542             :      */
    6543      154264 :     if (!IsBootstrapProcessingMode())
    6544      127624 :         CacheInvalidateHeapTuple(relation, tuple, NULL);
    6545      154264 : }
    6546             : 
    6547             : /*
    6548             :  * heap_inplace_unlock - reverse of heap_inplace_lock
    6549             :  */
    6550             : void
    6551      112674 : heap_inplace_unlock(Relation relation,
    6552             :                     HeapTuple oldtup, Buffer buffer)
    6553             : {
    6554      112674 :     LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
    6555      112674 :     UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
    6556      112674 :     ForgetInplace_Inval();
    6557      112674 : }
    6558             : 
    6559             : #define     FRM_NOOP                0x0001
    6560             : #define     FRM_INVALIDATE_XMAX     0x0002
    6561             : #define     FRM_RETURN_IS_XID       0x0004
    6562             : #define     FRM_RETURN_IS_MULTI     0x0008
    6563             : #define     FRM_MARK_COMMITTED      0x0010
    6564             : 
    6565             : /*
    6566             :  * FreezeMultiXactId
    6567             :  *      Determine what to do during freezing when a tuple is marked by a
    6568             :  *      MultiXactId.
    6569             :  *
    6570             :  * "flags" is an output value; it's used to tell caller what to do on return.
    6571             :  * "pagefrz" is an input/output value, used to manage page level freezing.
    6572             :  *
    6573             :  * Possible values that we can set in "flags":
    6574             :  * FRM_NOOP
    6575             :  *      don't do anything -- keep existing Xmax
    6576             :  * FRM_INVALIDATE_XMAX
    6577             :  *      mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
    6578             :  * FRM_RETURN_IS_XID
    6579             :  *      The Xid return value is a single update Xid to set as xmax.
    6580             :  * FRM_MARK_COMMITTED
    6581             :  *      Xmax can be marked as HEAP_XMAX_COMMITTED
    6582             :  * FRM_RETURN_IS_MULTI
    6583             :  *      The return value is a new MultiXactId to set as new Xmax.
    6584             :  *      (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
    6585             :  *
    6586             :  * Caller delegates control of page freezing to us.  In practice we always
    6587             :  * force freezing of caller's page unless FRM_NOOP processing is indicated.
    6588             :  * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
    6589             :  * can never be left behind.  We freely choose when and how to process each
    6590             :  * Multi, without ever violating the cutoff postconditions for freezing.
    6591             :  *
    6592             :  * It's useful to remove Multis on a proactive timeline (relative to freezing
    6593             :  * XIDs) to keep MultiXact member SLRU buffer misses to a minimum.  It can also
    6594             :  * be cheaper in the short run, for us, since we too can avoid SLRU buffer
    6595             :  * misses through eager processing.
    6596             :  *
    6597             :  * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
    6598             :  * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
    6599             :  * This can usually be put off, which is usually enough to avoid it altogether.
    6600             :  * Allocating new multis during VACUUM should be avoided on general principle;
    6601             :  * only VACUUM can advance relminmxid, so allocating new Multis here comes with
    6602             :  * its own special risks.
    6603             :  *
    6604             :  * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
    6605             :  * using heap_tuple_should_freeze when we haven't forced page-level freezing.
    6606             :  *
    6607             :  * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
    6608             :  * have already forced page-level freezing, since that might incur the same
    6609             :  * SLRU buffer misses that we specifically intended to avoid by freezing.
    6610             :  */
    6611             : static TransactionId
    6612          12 : FreezeMultiXactId(MultiXactId multi, uint16 t_infomask,
    6613             :                   const struct VacuumCutoffs *cutoffs, uint16 *flags,
    6614             :                   HeapPageFreeze *pagefrz)
    6615             : {
    6616             :     TransactionId newxmax;
    6617             :     MultiXactMember *members;
    6618             :     int         nmembers;
    6619             :     bool        need_replace;
    6620             :     int         nnewmembers;
    6621             :     MultiXactMember *newmembers;
    6622             :     bool        has_lockers;
    6623             :     TransactionId update_xid;
    6624             :     bool        update_committed;
    6625             :     TransactionId FreezePageRelfrozenXid;
    6626             : 
    6627          12 :     *flags = 0;
    6628             : 
    6629             :     /* We should only be called in Multis */
    6630             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    6631             : 
    6632          24 :     if (!MultiXactIdIsValid(multi) ||
    6633          12 :         HEAP_LOCKED_UPGRADED(t_infomask))
    6634             :     {
    6635           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6636           0 :         pagefrz->freeze_required = true;
    6637           0 :         return InvalidTransactionId;
    6638             :     }
    6639          12 :     else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
    6640           0 :         ereport(ERROR,
    6641             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    6642             :                  errmsg_internal("found multixact %u from before relminmxid %u",
    6643             :                                  multi, cutoffs->relminmxid)));
    6644          12 :     else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
    6645             :     {
    6646             :         TransactionId update_xact;
    6647             : 
    6648             :         /*
    6649             :          * This old multi cannot possibly have members still running, but
    6650             :          * verify just in case.  If it was a locker only, it can be removed
    6651             :          * without any further consideration; but if it contained an update,
    6652             :          * we might need to preserve it.
    6653             :          */
    6654           8 :         if (MultiXactIdIsRunning(multi,
    6655           8 :                                  HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
    6656           0 :             ereport(ERROR,
    6657             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6658             :                      errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
    6659             :                                      multi, cutoffs->OldestMxact)));
    6660             : 
    6661           8 :         if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
    6662             :         {
    6663           8 :             *flags |= FRM_INVALIDATE_XMAX;
    6664           8 :             pagefrz->freeze_required = true;
    6665           8 :             return InvalidTransactionId;
    6666             :         }
    6667             : 
    6668             :         /* replace multi with single XID for its updater? */
    6669           0 :         update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
    6670           0 :         if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
    6671           0 :             ereport(ERROR,
    6672             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6673             :                      errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
    6674             :                                      multi, update_xact,
    6675             :                                      cutoffs->relfrozenxid)));
    6676           0 :         else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
    6677             :         {
    6678             :             /*
    6679             :              * Updater XID has to have aborted (otherwise the tuple would have
    6680             :              * been pruned away instead, since updater XID is < OldestXmin).
    6681             :              * Just remove xmax.
    6682             :              */
    6683           0 :             if (TransactionIdDidCommit(update_xact))
    6684           0 :                 ereport(ERROR,
    6685             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    6686             :                          errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6687             :                                          multi, update_xact,
    6688             :                                          cutoffs->OldestXmin)));
    6689           0 :             *flags |= FRM_INVALIDATE_XMAX;
    6690           0 :             pagefrz->freeze_required = true;
    6691           0 :             return InvalidTransactionId;
    6692             :         }
    6693             : 
    6694             :         /* Have to keep updater XID as new xmax */
    6695           0 :         *flags |= FRM_RETURN_IS_XID;
    6696           0 :         pagefrz->freeze_required = true;
    6697           0 :         return update_xact;
    6698             :     }
    6699             : 
    6700             :     /*
    6701             :      * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
    6702             :      * need to walk the whole members array to figure out what to do, if
    6703             :      * anything.
    6704             :      */
    6705             :     nmembers =
    6706           4 :         GetMultiXactIdMembers(multi, &members, false,
    6707           4 :                               HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
    6708           4 :     if (nmembers <= 0)
    6709             :     {
    6710             :         /* Nothing worth keeping */
    6711           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6712           0 :         pagefrz->freeze_required = true;
    6713           0 :         return InvalidTransactionId;
    6714             :     }
    6715             : 
    6716             :     /*
    6717             :      * The FRM_NOOP case is the only case where we might need to ratchet back
    6718             :      * FreezePageRelfrozenXid or FreezePageRelminMxid.  It is also the only
    6719             :      * case where our caller might ratchet back its NoFreezePageRelfrozenXid
    6720             :      * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
    6721             :      * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
    6722             :      * trackers managed by VACUUM being ratcheting back by xmax to the degree
    6723             :      * required to make it safe to leave xmax undisturbed, independent of
    6724             :      * whether or not page freezing is triggered somewhere else.
    6725             :      *
    6726             :      * Our policy is to force freezing in every case other than FRM_NOOP,
    6727             :      * which obviates the need to maintain either set of trackers, anywhere.
    6728             :      * Every other case will reliably execute a freeze plan for xmax that
    6729             :      * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
    6730             :      * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
    6731             :      * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
    6732             :      * OldestXmin/OldestMxact, so later values never need to be tracked here.)
    6733             :      */
    6734           4 :     need_replace = false;
    6735           4 :     FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
    6736           8 :     for (int i = 0; i < nmembers; i++)
    6737             :     {
    6738           6 :         TransactionId xid = members[i].xid;
    6739             : 
    6740             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6741             : 
    6742           6 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    6743             :         {
    6744             :             /* Can't violate the FreezeLimit postcondition */
    6745           2 :             need_replace = true;
    6746           2 :             break;
    6747             :         }
    6748           4 :         if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
    6749           0 :             FreezePageRelfrozenXid = xid;
    6750             :     }
    6751             : 
    6752             :     /* Can't violate the MultiXactCutoff postcondition, either */
    6753           4 :     if (!need_replace)
    6754           2 :         need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
    6755             : 
    6756           4 :     if (!need_replace)
    6757             :     {
    6758             :         /*
    6759             :          * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
    6760             :          * both together to make it safe to retain this particular multi after
    6761             :          * freezing its page
    6762             :          */
    6763           2 :         *flags |= FRM_NOOP;
    6764           2 :         pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
    6765           2 :         if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
    6766           0 :             pagefrz->FreezePageRelminMxid = multi;
    6767           2 :         pfree(members);
    6768           2 :         return multi;
    6769             :     }
    6770             : 
    6771             :     /*
    6772             :      * Do a more thorough second pass over the multi to figure out which
    6773             :      * member XIDs actually need to be kept.  Checking the precise status of
    6774             :      * individual members might even show that we don't need to keep anything.
    6775             :      * That is quite possible even though the Multi must be >= OldestMxact,
    6776             :      * since our second pass only keeps member XIDs when it's truly necessary;
    6777             :      * even member XIDs >= OldestXmin often won't be kept by second pass.
    6778             :      */
    6779           2 :     nnewmembers = 0;
    6780           2 :     newmembers = palloc(sizeof(MultiXactMember) * nmembers);
    6781           2 :     has_lockers = false;
    6782           2 :     update_xid = InvalidTransactionId;
    6783           2 :     update_committed = false;
    6784             : 
    6785             :     /*
    6786             :      * Determine whether to keep each member xid, or to ignore it instead
    6787             :      */
    6788           6 :     for (int i = 0; i < nmembers; i++)
    6789             :     {
    6790           4 :         TransactionId xid = members[i].xid;
    6791           4 :         MultiXactStatus mstatus = members[i].status;
    6792             : 
    6793             :         Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
    6794             : 
    6795           4 :         if (!ISUPDATE_from_mxstatus(mstatus))
    6796             :         {
    6797             :             /*
    6798             :              * Locker XID (not updater XID).  We only keep lockers that are
    6799             :              * still running.
    6800             :              */
    6801           8 :             if (TransactionIdIsCurrentTransactionId(xid) ||
    6802           4 :                 TransactionIdIsInProgress(xid))
    6803             :             {
    6804           2 :                 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6805           0 :                     ereport(ERROR,
    6806             :                             (errcode(ERRCODE_DATA_CORRUPTED),
    6807             :                              errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
    6808             :                                              multi, xid,
    6809             :                                              cutoffs->OldestXmin)));
    6810           2 :                 newmembers[nnewmembers++] = members[i];
    6811           2 :                 has_lockers = true;
    6812             :             }
    6813             : 
    6814           4 :             continue;
    6815             :         }
    6816             : 
    6817             :         /*
    6818             :          * Updater XID (not locker XID).  Should we keep it?
    6819             :          *
    6820             :          * Since the tuple wasn't totally removed when vacuum pruned, the
    6821             :          * update Xid cannot possibly be older than OldestXmin cutoff unless
    6822             :          * the updater XID aborted.  If the updater transaction is known
    6823             :          * aborted or crashed then it's okay to ignore it, otherwise not.
    6824             :          *
    6825             :          * In any case the Multi should never contain two updaters, whatever
    6826             :          * their individual commit status.  Check for that first, in passing.
    6827             :          */
    6828           0 :         if (TransactionIdIsValid(update_xid))
    6829           0 :             ereport(ERROR,
    6830             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6831             :                      errmsg_internal("multixact %u has two or more updating members",
    6832             :                                      multi),
    6833             :                      errdetail_internal("First updater XID=%u second updater XID=%u.",
    6834             :                                         update_xid, xid)));
    6835             : 
    6836             :         /*
    6837             :          * As with all tuple visibility routines, it's critical to test
    6838             :          * TransactionIdIsInProgress before TransactionIdDidCommit, because of
    6839             :          * race conditions explained in detail in heapam_visibility.c.
    6840             :          */
    6841           0 :         if (TransactionIdIsCurrentTransactionId(xid) ||
    6842           0 :             TransactionIdIsInProgress(xid))
    6843           0 :             update_xid = xid;
    6844           0 :         else if (TransactionIdDidCommit(xid))
    6845             :         {
    6846             :             /*
    6847             :              * The transaction committed, so we can tell caller to set
    6848             :              * HEAP_XMAX_COMMITTED.  (We can only do this because we know the
    6849             :              * transaction is not running.)
    6850             :              */
    6851           0 :             update_committed = true;
    6852           0 :             update_xid = xid;
    6853             :         }
    6854             :         else
    6855             :         {
    6856             :             /*
    6857             :              * Not in progress, not committed -- must be aborted or crashed;
    6858             :              * we can ignore it.
    6859             :              */
    6860           0 :             continue;
    6861             :         }
    6862             : 
    6863             :         /*
    6864             :          * We determined that updater must be kept -- add it to pending new
    6865             :          * members list
    6866             :          */
    6867           0 :         if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
    6868           0 :             ereport(ERROR,
    6869             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6870             :                      errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
    6871             :                                      multi, xid, cutoffs->OldestXmin)));
    6872           0 :         newmembers[nnewmembers++] = members[i];
    6873             :     }
    6874             : 
    6875           2 :     pfree(members);
    6876             : 
    6877             :     /*
    6878             :      * Determine what to do with caller's multi based on information gathered
    6879             :      * during our second pass
    6880             :      */
    6881           2 :     if (nnewmembers == 0)
    6882             :     {
    6883             :         /* Nothing worth keeping */
    6884           0 :         *flags |= FRM_INVALIDATE_XMAX;
    6885           0 :         newxmax = InvalidTransactionId;
    6886             :     }
    6887           2 :     else if (TransactionIdIsValid(update_xid) && !has_lockers)
    6888             :     {
    6889             :         /*
    6890             :          * If there's a single member and it's an update, pass it back alone
    6891             :          * without creating a new Multi.  (XXX we could do this when there's a
    6892             :          * single remaining locker, too, but that would complicate the API too
    6893             :          * much; moreover, the case with the single updater is more
    6894             :          * interesting, because those are longer-lived.)
    6895             :          */
    6896             :         Assert(nnewmembers == 1);
    6897           0 :         *flags |= FRM_RETURN_IS_XID;
    6898           0 :         if (update_committed)
    6899           0 :             *flags |= FRM_MARK_COMMITTED;
    6900           0 :         newxmax = update_xid;
    6901             :     }
    6902             :     else
    6903             :     {
    6904             :         /*
    6905             :          * Create a new multixact with the surviving members of the previous
    6906             :          * one, to set as new Xmax in the tuple
    6907             :          */
    6908           2 :         newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
    6909           2 :         *flags |= FRM_RETURN_IS_MULTI;
    6910             :     }
    6911             : 
    6912           2 :     pfree(newmembers);
    6913             : 
    6914           2 :     pagefrz->freeze_required = true;
    6915           2 :     return newxmax;
    6916             : }
    6917             : 
    6918             : /*
    6919             :  * heap_prepare_freeze_tuple
    6920             :  *
    6921             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    6922             :  * are older than the OldestXmin and/or OldestMxact freeze cutoffs.  If so,
    6923             :  * setup enough state (in the *frz output argument) to enable caller to
    6924             :  * process this tuple as part of freezing its page, and return true.  Return
    6925             :  * false if nothing can be changed about the tuple right now.
    6926             :  *
    6927             :  * Also sets *totally_frozen to true if the tuple will be totally frozen once
    6928             :  * caller executes returned freeze plan (or if the tuple was already totally
    6929             :  * frozen by an earlier VACUUM).  This indicates that there are no remaining
    6930             :  * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
    6931             :  *
    6932             :  * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
    6933             :  * tuple that we returned true for, and then execute freezing.  Caller must
    6934             :  * initialize pagefrz fields for page as a whole before first call here for
    6935             :  * each heap page.
    6936             :  *
    6937             :  * VACUUM caller decides on whether or not to freeze the page as a whole.
    6938             :  * We'll often prepare freeze plans for a page that caller just discards.
    6939             :  * However, VACUUM doesn't always get to make a choice; it must freeze when
    6940             :  * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
    6941             :  * MXIDs < MultiXactCutoff) can never be left behind.  We help to make sure
    6942             :  * that VACUUM always follows that rule.
    6943             :  *
    6944             :  * We sometimes force freezing of xmax MultiXactId values long before it is
    6945             :  * strictly necessary to do so just to ensure the FreezeLimit postcondition.
    6946             :  * It's worth processing MultiXactIds proactively when it is cheap to do so,
    6947             :  * and it's convenient to make that happen by piggy-backing it on the "force
    6948             :  * freezing" mechanism.  Conversely, we sometimes delay freezing MultiXactIds
    6949             :  * because it is expensive right now (though only when it's still possible to
    6950             :  * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
    6951             :  *
    6952             :  * It is assumed that the caller has checked the tuple with
    6953             :  * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
    6954             :  * (else we should be removing the tuple, not freezing it).
    6955             :  *
    6956             :  * NB: This function has side effects: it might allocate a new MultiXactId.
    6957             :  * It will be set as tuple's new xmax when our *frz output is processed within
    6958             :  * heap_execute_freeze_tuple later on.  If the tuple is in a shared buffer
    6959             :  * then caller had better have an exclusive lock on it already.
    6960             :  */
    6961             : bool
    6962    32720034 : heap_prepare_freeze_tuple(HeapTupleHeader tuple,
    6963             :                           const struct VacuumCutoffs *cutoffs,
    6964             :                           HeapPageFreeze *pagefrz,
    6965             :                           HeapTupleFreeze *frz, bool *totally_frozen)
    6966             : {
    6967    32720034 :     bool        xmin_already_frozen = false,
    6968    32720034 :                 xmax_already_frozen = false;
    6969    32720034 :     bool        freeze_xmin = false,
    6970    32720034 :                 replace_xvac = false,
    6971    32720034 :                 replace_xmax = false,
    6972    32720034 :                 freeze_xmax = false;
    6973             :     TransactionId xid;
    6974             : 
    6975    32720034 :     frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
    6976    32720034 :     frz->t_infomask2 = tuple->t_infomask2;
    6977    32720034 :     frz->t_infomask = tuple->t_infomask;
    6978    32720034 :     frz->frzflags = 0;
    6979    32720034 :     frz->checkflags = 0;
    6980             : 
    6981             :     /*
    6982             :      * Process xmin, while keeping track of whether it's already frozen, or
    6983             :      * will become frozen iff our freeze plan is executed by caller (could be
    6984             :      * neither).
    6985             :      */
    6986    32720034 :     xid = HeapTupleHeaderGetXmin(tuple);
    6987    32720034 :     if (!TransactionIdIsNormal(xid))
    6988    27855576 :         xmin_already_frozen = true;
    6989             :     else
    6990             :     {
    6991     4864458 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    6992           0 :             ereport(ERROR,
    6993             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    6994             :                      errmsg_internal("found xmin %u from before relfrozenxid %u",
    6995             :                                      xid, cutoffs->relfrozenxid)));
    6996             : 
    6997             :         /* Will set freeze_xmin flags in freeze plan below */
    6998     4864458 :         freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    6999             : 
    7000             :         /* Verify that xmin committed if and when freeze plan is executed */
    7001     4864458 :         if (freeze_xmin)
    7002     3781002 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMIN_COMMITTED;
    7003             :     }
    7004             : 
    7005             :     /*
    7006             :      * Old-style VACUUM FULL is gone, but we have to process xvac for as long
    7007             :      * as we support having MOVED_OFF/MOVED_IN tuples in the database
    7008             :      */
    7009    32720034 :     xid = HeapTupleHeaderGetXvac(tuple);
    7010    32720034 :     if (TransactionIdIsNormal(xid))
    7011             :     {
    7012             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7013             :         Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
    7014             : 
    7015             :         /*
    7016             :          * For Xvac, we always freeze proactively.  This allows totally_frozen
    7017             :          * tracking to ignore xvac.
    7018             :          */
    7019           0 :         replace_xvac = pagefrz->freeze_required = true;
    7020             : 
    7021             :         /* Will set replace_xvac flags in freeze plan below */
    7022             :     }
    7023             : 
    7024             :     /* Now process xmax */
    7025    32720034 :     xid = frz->xmax;
    7026    32720034 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7027             :     {
    7028             :         /* Raw xmax is a MultiXactId */
    7029             :         TransactionId newxmax;
    7030             :         uint16      flags;
    7031             : 
    7032             :         /*
    7033             :          * We will either remove xmax completely (in the "freeze_xmax" path),
    7034             :          * process xmax by replacing it (in the "replace_xmax" path), or
    7035             :          * perform no-op xmax processing.  The only constraint is that the
    7036             :          * FreezeLimit/MultiXactCutoff postcondition must never be violated.
    7037             :          */
    7038          12 :         newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
    7039             :                                     &flags, pagefrz);
    7040             : 
    7041          12 :         if (flags & FRM_NOOP)
    7042             :         {
    7043             :             /*
    7044             :              * xmax is a MultiXactId, and nothing about it changes for now.
    7045             :              * This is the only case where 'freeze_required' won't have been
    7046             :              * set for us by FreezeMultiXactId, as well as the only case where
    7047             :              * neither freeze_xmax nor replace_xmax are set (given a multi).
    7048             :              *
    7049             :              * This is a no-op, but the call to FreezeMultiXactId might have
    7050             :              * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
    7051             :              * for us (the "freeze page" variants, specifically).  That'll
    7052             :              * make it safe for our caller to freeze the page later on, while
    7053             :              * leaving this particular xmax undisturbed.
    7054             :              *
    7055             :              * FreezeMultiXactId is _not_ responsible for the "no freeze"
    7056             :              * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
    7057             :              * job.  A call to heap_tuple_should_freeze for this same tuple
    7058             :              * will take place below if 'freeze_required' isn't set already.
    7059             :              * (This repeats work from FreezeMultiXactId, but allows "no
    7060             :              * freeze" tracker maintenance to happen in only one place.)
    7061             :              */
    7062             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
    7063             :             Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
    7064             :         }
    7065          10 :         else if (flags & FRM_RETURN_IS_XID)
    7066             :         {
    7067             :             /*
    7068             :              * xmax will become an updater Xid (original MultiXact's updater
    7069             :              * member Xid will be carried forward as a simple Xid in Xmax).
    7070             :              */
    7071             :             Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
    7072             : 
    7073             :             /*
    7074             :              * NB -- some of these transformations are only valid because we
    7075             :              * know the return Xid is a tuple updater (i.e. not merely a
    7076             :              * locker.) Also note that the only reason we don't explicitly
    7077             :              * worry about HEAP_KEYS_UPDATED is because it lives in
    7078             :              * t_infomask2 rather than t_infomask.
    7079             :              */
    7080           0 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7081           0 :             frz->xmax = newxmax;
    7082           0 :             if (flags & FRM_MARK_COMMITTED)
    7083           0 :                 frz->t_infomask |= HEAP_XMAX_COMMITTED;
    7084           0 :             replace_xmax = true;
    7085             :         }
    7086          10 :         else if (flags & FRM_RETURN_IS_MULTI)
    7087             :         {
    7088             :             uint16      newbits;
    7089             :             uint16      newbits2;
    7090             : 
    7091             :             /*
    7092             :              * xmax is an old MultiXactId that we have to replace with a new
    7093             :              * MultiXactId, to carry forward two or more original member XIDs.
    7094             :              */
    7095             :             Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
    7096             : 
    7097             :             /*
    7098             :              * We can't use GetMultiXactIdHintBits directly on the new multi
    7099             :              * here; that routine initializes the masks to all zeroes, which
    7100             :              * would lose other bits we need.  Doing it this way ensures all
    7101             :              * unrelated bits remain untouched.
    7102             :              */
    7103           2 :             frz->t_infomask &= ~HEAP_XMAX_BITS;
    7104           2 :             frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7105           2 :             GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
    7106           2 :             frz->t_infomask |= newbits;
    7107           2 :             frz->t_infomask2 |= newbits2;
    7108           2 :             frz->xmax = newxmax;
    7109           2 :             replace_xmax = true;
    7110             :         }
    7111             :         else
    7112             :         {
    7113             :             /*
    7114             :              * Freeze plan for tuple "freezes xmax" in the strictest sense:
    7115             :              * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
    7116             :              */
    7117             :             Assert(flags & FRM_INVALIDATE_XMAX);
    7118             :             Assert(!TransactionIdIsValid(newxmax));
    7119             : 
    7120             :             /* Will set freeze_xmax flags in freeze plan below */
    7121           8 :             freeze_xmax = true;
    7122             :         }
    7123             : 
    7124             :         /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
    7125             :         Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
    7126             :     }
    7127    32720022 :     else if (TransactionIdIsNormal(xid))
    7128             :     {
    7129             :         /* Raw xmax is normal XID */
    7130    12636276 :         if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
    7131           0 :             ereport(ERROR,
    7132             :                     (errcode(ERRCODE_DATA_CORRUPTED),
    7133             :                      errmsg_internal("found xmax %u from before relfrozenxid %u",
    7134             :                                      xid, cutoffs->relfrozenxid)));
    7135             : 
    7136             :         /* Will set freeze_xmax flags in freeze plan below */
    7137    12636276 :         freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
    7138             : 
    7139             :         /*
    7140             :          * Verify that xmax aborted if and when freeze plan is executed,
    7141             :          * provided it's from an update. (A lock-only xmax can be removed
    7142             :          * independent of this, since the lock is released at xact end.)
    7143             :          */
    7144    12636276 :         if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
    7145        1268 :             frz->checkflags |= HEAP_FREEZE_CHECK_XMAX_ABORTED;
    7146             :     }
    7147    20083746 :     else if (!TransactionIdIsValid(xid))
    7148             :     {
    7149             :         /* Raw xmax is InvalidTransactionId XID */
    7150             :         Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
    7151    20083746 :         xmax_already_frozen = true;
    7152             :     }
    7153             :     else
    7154           0 :         ereport(ERROR,
    7155             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    7156             :                  errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
    7157             :                                  xid, tuple->t_infomask)));
    7158             : 
    7159    32720034 :     if (freeze_xmin)
    7160             :     {
    7161             :         Assert(!xmin_already_frozen);
    7162             : 
    7163     3781002 :         frz->t_infomask |= HEAP_XMIN_FROZEN;
    7164             :     }
    7165    32720034 :     if (replace_xvac)
    7166             :     {
    7167             :         /*
    7168             :          * If a MOVED_OFF tuple is not dead, the xvac transaction must have
    7169             :          * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
    7170             :          * transaction succeeded.
    7171             :          */
    7172             :         Assert(pagefrz->freeze_required);
    7173           0 :         if (tuple->t_infomask & HEAP_MOVED_OFF)
    7174           0 :             frz->frzflags |= XLH_INVALID_XVAC;
    7175             :         else
    7176           0 :             frz->frzflags |= XLH_FREEZE_XVAC;
    7177             :     }
    7178             :     if (replace_xmax)
    7179             :     {
    7180             :         Assert(!xmax_already_frozen && !freeze_xmax);
    7181             :         Assert(pagefrz->freeze_required);
    7182             : 
    7183             :         /* Already set replace_xmax flags in freeze plan earlier */
    7184             :     }
    7185    32720034 :     if (freeze_xmax)
    7186             :     {
    7187             :         Assert(!xmax_already_frozen && !replace_xmax);
    7188             : 
    7189        3206 :         frz->xmax = InvalidTransactionId;
    7190             : 
    7191             :         /*
    7192             :          * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
    7193             :          * LOCKED.  Normalize to INVALID just to be sure no one gets confused.
    7194             :          * Also get rid of the HEAP_KEYS_UPDATED bit.
    7195             :          */
    7196        3206 :         frz->t_infomask &= ~HEAP_XMAX_BITS;
    7197        3206 :         frz->t_infomask |= HEAP_XMAX_INVALID;
    7198        3206 :         frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
    7199        3206 :         frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
    7200             :     }
    7201             : 
    7202             :     /*
    7203             :      * Determine if this tuple is already totally frozen, or will become
    7204             :      * totally frozen (provided caller executes freeze plans for the page)
    7205             :      */
    7206    64353406 :     *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
    7207    31633372 :                        (freeze_xmax || xmax_already_frozen));
    7208             : 
    7209    32720034 :     if (!pagefrz->freeze_required && !(xmin_already_frozen &&
    7210             :                                        xmax_already_frozen))
    7211             :     {
    7212             :         /*
    7213             :          * So far no previous tuple from the page made freezing mandatory.
    7214             :          * Does this tuple force caller to freeze the entire page?
    7215             :          */
    7216    15086646 :         pagefrz->freeze_required =
    7217    15086646 :             heap_tuple_should_freeze(tuple, cutoffs,
    7218             :                                      &pagefrz->NoFreezePageRelfrozenXid,
    7219             :                                      &pagefrz->NoFreezePageRelminMxid);
    7220             :     }
    7221             : 
    7222             :     /* Tell caller if this tuple has a usable freeze plan set in *frz */
    7223    32720034 :     return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
    7224             : }
    7225             : 
    7226             : /*
    7227             :  * Perform xmin/xmax XID status sanity checks before actually executing freeze
    7228             :  * plans.
    7229             :  *
    7230             :  * heap_prepare_freeze_tuple doesn't perform these checks directly because
    7231             :  * pg_xact lookups are relatively expensive.  They shouldn't be repeated by
    7232             :  * successive VACUUMs that each decide against freezing the same page.
    7233             :  */
    7234             : void
    7235       32786 : heap_pre_freeze_checks(Buffer buffer,
    7236             :                        HeapTupleFreeze *tuples, int ntuples)
    7237             : {
    7238       32786 :     Page        page = BufferGetPage(buffer);
    7239             : 
    7240     1395346 :     for (int i = 0; i < ntuples; i++)
    7241             :     {
    7242     1362560 :         HeapTupleFreeze *frz = tuples + i;
    7243     1362560 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7244             :         HeapTupleHeader htup;
    7245             : 
    7246     1362560 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7247             : 
    7248             :         /* Deliberately avoid relying on tuple hint bits here */
    7249     1362560 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMIN_COMMITTED)
    7250             :         {
    7251     1362556 :             TransactionId xmin = HeapTupleHeaderGetRawXmin(htup);
    7252             : 
    7253             :             Assert(!HeapTupleHeaderXminFrozen(htup));
    7254     1362556 :             if (unlikely(!TransactionIdDidCommit(xmin)))
    7255           0 :                 ereport(ERROR,
    7256             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7257             :                          errmsg_internal("uncommitted xmin %u needs to be frozen",
    7258             :                                          xmin)));
    7259             :         }
    7260             : 
    7261             :         /*
    7262             :          * TransactionIdDidAbort won't work reliably in the presence of XIDs
    7263             :          * left behind by transactions that were in progress during a crash,
    7264             :          * so we can only check that xmax didn't commit
    7265             :          */
    7266     1362560 :         if (frz->checkflags & HEAP_FREEZE_CHECK_XMAX_ABORTED)
    7267             :         {
    7268         400 :             TransactionId xmax = HeapTupleHeaderGetRawXmax(htup);
    7269             : 
    7270             :             Assert(TransactionIdIsNormal(xmax));
    7271         400 :             if (unlikely(TransactionIdDidCommit(xmax)))
    7272           0 :                 ereport(ERROR,
    7273             :                         (errcode(ERRCODE_DATA_CORRUPTED),
    7274             :                          errmsg_internal("cannot freeze committed xmax %u",
    7275             :                                          xmax)));
    7276             :         }
    7277             :     }
    7278       32786 : }
    7279             : 
    7280             : /*
    7281             :  * Helper which executes freezing of one or more heap tuples on a page on
    7282             :  * behalf of caller.  Caller passes an array of tuple plans from
    7283             :  * heap_prepare_freeze_tuple.  Caller must set 'offset' in each plan for us.
    7284             :  * Must be called in a critical section that also marks the buffer dirty and,
    7285             :  * if needed, emits WAL.
    7286             :  */
    7287             : void
    7288       32786 : heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
    7289             : {
    7290       32786 :     Page        page = BufferGetPage(buffer);
    7291             : 
    7292     1395346 :     for (int i = 0; i < ntuples; i++)
    7293             :     {
    7294     1362560 :         HeapTupleFreeze *frz = tuples + i;
    7295     1362560 :         ItemId      itemid = PageGetItemId(page, frz->offset);
    7296             :         HeapTupleHeader htup;
    7297             : 
    7298     1362560 :         htup = (HeapTupleHeader) PageGetItem(page, itemid);
    7299     1362560 :         heap_execute_freeze_tuple(htup, frz);
    7300             :     }
    7301       32786 : }
    7302             : 
    7303             : /*
    7304             :  * heap_freeze_tuple
    7305             :  *      Freeze tuple in place, without WAL logging.
    7306             :  *
    7307             :  * Useful for callers like CLUSTER that perform their own WAL logging.
    7308             :  */
    7309             : bool
    7310      739166 : heap_freeze_tuple(HeapTupleHeader tuple,
    7311             :                   TransactionId relfrozenxid, TransactionId relminmxid,
    7312             :                   TransactionId FreezeLimit, TransactionId MultiXactCutoff)
    7313             : {
    7314             :     HeapTupleFreeze frz;
    7315             :     bool        do_freeze;
    7316             :     bool        totally_frozen;
    7317             :     struct VacuumCutoffs cutoffs;
    7318             :     HeapPageFreeze pagefrz;
    7319             : 
    7320      739166 :     cutoffs.relfrozenxid = relfrozenxid;
    7321      739166 :     cutoffs.relminmxid = relminmxid;
    7322      739166 :     cutoffs.OldestXmin = FreezeLimit;
    7323      739166 :     cutoffs.OldestMxact = MultiXactCutoff;
    7324      739166 :     cutoffs.FreezeLimit = FreezeLimit;
    7325      739166 :     cutoffs.MultiXactCutoff = MultiXactCutoff;
    7326             : 
    7327      739166 :     pagefrz.freeze_required = true;
    7328      739166 :     pagefrz.FreezePageRelfrozenXid = FreezeLimit;
    7329      739166 :     pagefrz.FreezePageRelminMxid = MultiXactCutoff;
    7330      739166 :     pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
    7331      739166 :     pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
    7332             : 
    7333      739166 :     do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
    7334             :                                           &pagefrz, &frz, &totally_frozen);
    7335             : 
    7336             :     /*
    7337             :      * Note that because this is not a WAL-logged operation, we don't need to
    7338             :      * fill in the offset in the freeze record.
    7339             :      */
    7340             : 
    7341      739166 :     if (do_freeze)
    7342      523940 :         heap_execute_freeze_tuple(tuple, &frz);
    7343      739166 :     return do_freeze;
    7344             : }
    7345             : 
    7346             : /*
    7347             :  * For a given MultiXactId, return the hint bits that should be set in the
    7348             :  * tuple's infomask.
    7349             :  *
    7350             :  * Normally this should be called for a multixact that was just created, and
    7351             :  * so is on our local cache, so the GetMembers call is fast.
    7352             :  */
    7353             : static void
    7354        2378 : GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
    7355             :                        uint16 *new_infomask2)
    7356             : {
    7357             :     int         nmembers;
    7358             :     MultiXactMember *members;
    7359             :     int         i;
    7360        2378 :     uint16      bits = HEAP_XMAX_IS_MULTI;
    7361        2378 :     uint16      bits2 = 0;
    7362        2378 :     bool        has_update = false;
    7363        2378 :     LockTupleMode strongest = LockTupleKeyShare;
    7364             : 
    7365             :     /*
    7366             :      * We only use this in multis we just created, so they cannot be values
    7367             :      * pre-pg_upgrade.
    7368             :      */
    7369        2378 :     nmembers = GetMultiXactIdMembers(multi, &members, false, false);
    7370             : 
    7371        7286 :     for (i = 0; i < nmembers; i++)
    7372             :     {
    7373             :         LockTupleMode mode;
    7374             : 
    7375             :         /*
    7376             :          * Remember the strongest lock mode held by any member of the
    7377             :          * multixact.
    7378             :          */
    7379        4908 :         mode = TUPLOCK_from_mxstatus(members[i].status);
    7380        4908 :         if (mode > strongest)
    7381        1318 :             strongest = mode;
    7382             : 
    7383             :         /* See what other bits we need */
    7384        4908 :         switch (members[i].status)
    7385             :         {
    7386        4526 :             case MultiXactStatusForKeyShare:
    7387             :             case MultiXactStatusForShare:
    7388             :             case MultiXactStatusForNoKeyUpdate:
    7389        4526 :                 break;
    7390             : 
    7391         104 :             case MultiXactStatusForUpdate:
    7392         104 :                 bits2 |= HEAP_KEYS_UPDATED;
    7393         104 :                 break;
    7394             : 
    7395         258 :             case MultiXactStatusNoKeyUpdate:
    7396         258 :                 has_update = true;
    7397         258 :                 break;
    7398             : 
    7399          20 :             case MultiXactStatusUpdate:
    7400          20 :                 bits2 |= HEAP_KEYS_UPDATED;
    7401          20 :                 has_update = true;
    7402          20 :                 break;
    7403             :         }
    7404        4908 :     }
    7405             : 
    7406        2378 :     if (strongest == LockTupleExclusive ||
    7407             :         strongest == LockTupleNoKeyExclusive)
    7408         438 :         bits |= HEAP_XMAX_EXCL_LOCK;
    7409        1940 :     else if (strongest == LockTupleShare)
    7410         874 :         bits |= HEAP_XMAX_SHR_LOCK;
    7411        1066 :     else if (strongest == LockTupleKeyShare)
    7412        1066 :         bits |= HEAP_XMAX_KEYSHR_LOCK;
    7413             : 
    7414        2378 :     if (!has_update)
    7415        2100 :         bits |= HEAP_XMAX_LOCK_ONLY;
    7416             : 
    7417        2378 :     if (nmembers > 0)
    7418        2378 :         pfree(members);
    7419             : 
    7420        2378 :     *new_infomask = bits;
    7421        2378 :     *new_infomask2 = bits2;
    7422        2378 : }
    7423             : 
    7424             : /*
    7425             :  * MultiXactIdGetUpdateXid
    7426             :  *
    7427             :  * Given a multixact Xmax and corresponding infomask, which does not have the
    7428             :  * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
    7429             :  * transaction.
    7430             :  *
    7431             :  * Caller is expected to check the status of the updating transaction, if
    7432             :  * necessary.
    7433             :  */
    7434             : static TransactionId
    7435        1094 : MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
    7436             : {
    7437        1094 :     TransactionId update_xact = InvalidTransactionId;
    7438             :     MultiXactMember *members;
    7439             :     int         nmembers;
    7440             : 
    7441             :     Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
    7442             :     Assert(t_infomask & HEAP_XMAX_IS_MULTI);
    7443             : 
    7444             :     /*
    7445             :      * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
    7446             :      * pre-pg_upgrade.
    7447             :      */
    7448        1094 :     nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
    7449             : 
    7450        1094 :     if (nmembers > 0)
    7451             :     {
    7452             :         int         i;
    7453             : 
    7454        2890 :         for (i = 0; i < nmembers; i++)
    7455             :         {
    7456             :             /* Ignore lockers */
    7457        2890 :             if (!ISUPDATE_from_mxstatus(members[i].status))
    7458        1796 :                 continue;
    7459             : 
    7460             :             /* there can be at most one updater */
    7461             :             Assert(update_xact == InvalidTransactionId);
    7462        1094 :             update_xact = members[i].xid;
    7463             : #ifndef USE_ASSERT_CHECKING
    7464             : 
    7465             :             /*
    7466             :              * in an assert-enabled build, walk the whole array to ensure
    7467             :              * there's no other updater.
    7468             :              */
    7469        1094 :             break;
    7470             : #endif
    7471             :         }
    7472             : 
    7473        1094 :         pfree(members);
    7474             :     }
    7475             : 
    7476        1094 :     return update_xact;
    7477             : }
    7478             : 
    7479             : /*
    7480             :  * HeapTupleGetUpdateXid
    7481             :  *      As above, but use a HeapTupleHeader
    7482             :  *
    7483             :  * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
    7484             :  * checking the hint bits.
    7485             :  */
    7486             : TransactionId
    7487        1078 : HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
    7488             : {
    7489        1078 :     return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tup),
    7490        1078 :                                    tup->t_infomask);
    7491             : }
    7492             : 
    7493             : /*
    7494             :  * Does the given multixact conflict with the current transaction grabbing a
    7495             :  * tuple lock of the given strength?
    7496             :  *
    7497             :  * The passed infomask pairs up with the given multixact in the tuple header.
    7498             :  *
    7499             :  * If current_is_member is not NULL, it is set to 'true' if the current
    7500             :  * transaction is a member of the given multixact.
    7501             :  */
    7502             : static bool
    7503         198 : DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
    7504             :                         LockTupleMode lockmode, bool *current_is_member)
    7505             : {
    7506             :     int         nmembers;
    7507             :     MultiXactMember *members;
    7508         198 :     bool        result = false;
    7509         198 :     LOCKMODE    wanted = tupleLockExtraInfo[lockmode].hwlock;
    7510             : 
    7511         198 :     if (HEAP_LOCKED_UPGRADED(infomask))
    7512           0 :         return false;
    7513             : 
    7514         198 :     nmembers = GetMultiXactIdMembers(multi, &members, false,
    7515         198 :                                      HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7516         198 :     if (nmembers >= 0)
    7517             :     {
    7518             :         int         i;
    7519             : 
    7520         618 :         for (i = 0; i < nmembers; i++)
    7521             :         {
    7522             :             TransactionId memxid;
    7523             :             LOCKMODE    memlockmode;
    7524             : 
    7525         434 :             if (result && (current_is_member == NULL || *current_is_member))
    7526             :                 break;
    7527             : 
    7528         420 :             memlockmode = LOCKMODE_from_mxstatus(members[i].status);
    7529             : 
    7530             :             /* ignore members from current xact (but track their presence) */
    7531         420 :             memxid = members[i].xid;
    7532         420 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7533             :             {
    7534         184 :                 if (current_is_member != NULL)
    7535         156 :                     *current_is_member = true;
    7536         184 :                 continue;
    7537             :             }
    7538         236 :             else if (result)
    7539          16 :                 continue;
    7540             : 
    7541             :             /* ignore members that don't conflict with the lock we want */
    7542         220 :             if (!DoLockModesConflict(memlockmode, wanted))
    7543         142 :                 continue;
    7544             : 
    7545          78 :             if (ISUPDATE_from_mxstatus(members[i].status))
    7546             :             {
    7547             :                 /* ignore aborted updaters */
    7548          34 :                 if (TransactionIdDidAbort(memxid))
    7549           2 :                     continue;
    7550             :             }
    7551             :             else
    7552             :             {
    7553             :                 /* ignore lockers-only that are no longer in progress */
    7554          44 :                 if (!TransactionIdIsInProgress(memxid))
    7555          14 :                     continue;
    7556             :             }
    7557             : 
    7558             :             /*
    7559             :              * Whatever remains are either live lockers that conflict with our
    7560             :              * wanted lock, and updaters that are not aborted.  Those conflict
    7561             :              * with what we want.  Set up to return true, but keep going to
    7562             :              * look for the current transaction among the multixact members,
    7563             :              * if needed.
    7564             :              */
    7565          62 :             result = true;
    7566             :         }
    7567         198 :         pfree(members);
    7568             :     }
    7569             : 
    7570         198 :     return result;
    7571             : }
    7572             : 
    7573             : /*
    7574             :  * Do_MultiXactIdWait
    7575             :  *      Actual implementation for the two functions below.
    7576             :  *
    7577             :  * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
    7578             :  * needed to ensure we only sleep on conflicting members, and the infomask is
    7579             :  * used to optimize multixact access in case it's a lock-only multi); 'nowait'
    7580             :  * indicates whether to use conditional lock acquisition, to allow callers to
    7581             :  * fail if lock is unavailable.  'rel', 'ctid' and 'oper' are used to set up
    7582             :  * context information for error messages.  'remaining', if not NULL, receives
    7583             :  * the number of members that are still running, including any (non-aborted)
    7584             :  * subtransactions of our own transaction.
    7585             :  *
    7586             :  * We do this by sleeping on each member using XactLockTableWait.  Any
    7587             :  * members that belong to the current backend are *not* waited for, however;
    7588             :  * this would not merely be useless but would lead to Assert failure inside
    7589             :  * XactLockTableWait.  By the time this returns, it is certain that all
    7590             :  * transactions *of other backends* that were members of the MultiXactId
    7591             :  * that conflict with the requested status are dead (and no new ones can have
    7592             :  * been added, since it is not legal to add members to an existing
    7593             :  * MultiXactId).
    7594             :  *
    7595             :  * But by the time we finish sleeping, someone else may have changed the Xmax
    7596             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7597             :  *
    7598             :  * Note that in case we return false, the number of remaining members is
    7599             :  * not to be trusted.
    7600             :  */
    7601             : static bool
    7602         116 : Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7603             :                    uint16 infomask, bool nowait,
    7604             :                    Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7605             :                    int *remaining)
    7606             : {
    7607         116 :     bool        result = true;
    7608             :     MultiXactMember *members;
    7609             :     int         nmembers;
    7610         116 :     int         remain = 0;
    7611             : 
    7612             :     /* for pre-pg_upgrade tuples, no need to sleep at all */
    7613         116 :     nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
    7614         116 :         GetMultiXactIdMembers(multi, &members, false,
    7615         116 :                               HEAP_XMAX_IS_LOCKED_ONLY(infomask));
    7616             : 
    7617         116 :     if (nmembers >= 0)
    7618             :     {
    7619             :         int         i;
    7620             : 
    7621         374 :         for (i = 0; i < nmembers; i++)
    7622             :         {
    7623         266 :             TransactionId memxid = members[i].xid;
    7624         266 :             MultiXactStatus memstatus = members[i].status;
    7625             : 
    7626         266 :             if (TransactionIdIsCurrentTransactionId(memxid))
    7627             :             {
    7628          48 :                 remain++;
    7629          48 :                 continue;
    7630             :             }
    7631             : 
    7632         218 :             if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus),
    7633         218 :                                      LOCKMODE_from_mxstatus(status)))
    7634             :             {
    7635          44 :                 if (remaining && TransactionIdIsInProgress(memxid))
    7636          16 :                     remain++;
    7637          44 :                 continue;
    7638             :             }
    7639             : 
    7640             :             /*
    7641             :              * This member conflicts with our multi, so we have to sleep (or
    7642             :              * return failure, if asked to avoid waiting.)
    7643             :              *
    7644             :              * Note that we don't set up an error context callback ourselves,
    7645             :              * but instead we pass the info down to XactLockTableWait.  This
    7646             :              * might seem a bit wasteful because the context is set up and
    7647             :              * tore down for each member of the multixact, but in reality it
    7648             :              * should be barely noticeable, and it avoids duplicate code.
    7649             :              */
    7650         174 :             if (nowait)
    7651             :             {
    7652           8 :                 result = ConditionalXactLockTableWait(memxid);
    7653           8 :                 if (!result)
    7654           8 :                     break;
    7655             :             }
    7656             :             else
    7657         166 :                 XactLockTableWait(memxid, rel, ctid, oper);
    7658             :         }
    7659             : 
    7660         116 :         pfree(members);
    7661             :     }
    7662             : 
    7663         116 :     if (remaining)
    7664          20 :         *remaining = remain;
    7665             : 
    7666         116 :     return result;
    7667             : }
    7668             : 
    7669             : /*
    7670             :  * MultiXactIdWait
    7671             :  *      Sleep on a MultiXactId.
    7672             :  *
    7673             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7674             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7675             :  *
    7676             :  * We return (in *remaining, if not NULL) the number of members that are still
    7677             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7678             :  */
    7679             : static void
    7680         108 : MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
    7681             :                 Relation rel, ItemPointer ctid, XLTW_Oper oper,
    7682             :                 int *remaining)
    7683             : {
    7684         108 :     (void) Do_MultiXactIdWait(multi, status, infomask, false,
    7685             :                               rel, ctid, oper, remaining);
    7686         108 : }
    7687             : 
    7688             : /*
    7689             :  * ConditionalMultiXactIdWait
    7690             :  *      As above, but only lock if we can get the lock without blocking.
    7691             :  *
    7692             :  * By the time we finish sleeping, someone else may have changed the Xmax
    7693             :  * of the containing tuple, so the caller needs to iterate on us somehow.
    7694             :  *
    7695             :  * If the multixact is now all gone, return true.  Returns false if some
    7696             :  * transactions might still be running.
    7697             :  *
    7698             :  * We return (in *remaining, if not NULL) the number of members that are still
    7699             :  * running, including any (non-aborted) subtransactions of our own transaction.
    7700             :  */
    7701             : static bool
    7702           8 : ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status,
    7703             :                            uint16 infomask, Relation rel, int *remaining)
    7704             : {
    7705           8 :     return Do_MultiXactIdWait(multi, status, infomask, true,
    7706             :                               rel, NULL, XLTW_None, remaining);
    7707             : }
    7708             : 
    7709             : /*
    7710             :  * heap_tuple_needs_eventual_freeze
    7711             :  *
    7712             :  * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
    7713             :  * will eventually require freezing (if tuple isn't removed by pruning first).
    7714             :  */
    7715             : bool
    7716      215142 : heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
    7717             : {
    7718             :     TransactionId xid;
    7719             : 
    7720             :     /*
    7721             :      * If xmin is a normal transaction ID, this tuple is definitely not
    7722             :      * frozen.
    7723             :      */
    7724      215142 :     xid = HeapTupleHeaderGetXmin(tuple);
    7725      215142 :     if (TransactionIdIsNormal(xid))
    7726        4934 :         return true;
    7727             : 
    7728             :     /*
    7729             :      * If xmax is a valid xact or multixact, this tuple is also not frozen.
    7730             :      */
    7731      210208 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7732             :     {
    7733             :         MultiXactId multi;
    7734             : 
    7735           0 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7736           0 :         if (MultiXactIdIsValid(multi))
    7737           0 :             return true;
    7738             :     }
    7739             :     else
    7740             :     {
    7741      210208 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7742      210208 :         if (TransactionIdIsNormal(xid))
    7743          14 :             return true;
    7744             :     }
    7745             : 
    7746      210194 :     if (tuple->t_infomask & HEAP_MOVED)
    7747             :     {
    7748           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7749           0 :         if (TransactionIdIsNormal(xid))
    7750           0 :             return true;
    7751             :     }
    7752             : 
    7753      210194 :     return false;
    7754             : }
    7755             : 
    7756             : /*
    7757             :  * heap_tuple_should_freeze
    7758             :  *
    7759             :  * Return value indicates if heap_prepare_freeze_tuple sibling function would
    7760             :  * (or should) force freezing of the heap page that contains caller's tuple.
    7761             :  * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
    7762             :  * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
    7763             :  *
    7764             :  * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
    7765             :  * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
    7766             :  * Our working assumption is that caller won't decide to freeze this tuple.
    7767             :  * It's up to caller to only ratchet back its own top-level trackers after the
    7768             :  * point that it fully commits to not freezing the tuple/page in question.
    7769             :  */
    7770             : bool
    7771    15086868 : heap_tuple_should_freeze(HeapTupleHeader tuple,
    7772             :                          const struct VacuumCutoffs *cutoffs,
    7773             :                          TransactionId *NoFreezePageRelfrozenXid,
    7774             :                          MultiXactId *NoFreezePageRelminMxid)
    7775             : {
    7776             :     TransactionId xid;
    7777             :     MultiXactId multi;
    7778    15086868 :     bool        freeze = false;
    7779             : 
    7780             :     /* First deal with xmin */
    7781    15086868 :     xid = HeapTupleHeaderGetXmin(tuple);
    7782    15086868 :     if (TransactionIdIsNormal(xid))
    7783             :     {
    7784             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7785     3027856 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7786       33466 :             *NoFreezePageRelfrozenXid = xid;
    7787     3027856 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7788       30320 :             freeze = true;
    7789             :     }
    7790             : 
    7791             :     /* Now deal with xmax */
    7792    15086868 :     xid = InvalidTransactionId;
    7793    15086868 :     multi = InvalidMultiXactId;
    7794    15086868 :     if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
    7795           4 :         multi = HeapTupleHeaderGetRawXmax(tuple);
    7796             :     else
    7797    15086864 :         xid = HeapTupleHeaderGetRawXmax(tuple);
    7798             : 
    7799    15086868 :     if (TransactionIdIsNormal(xid))
    7800             :     {
    7801             :         Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7802             :         /* xmax is a non-permanent XID */
    7803    12478826 :         if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7804           8 :             *NoFreezePageRelfrozenXid = xid;
    7805    12478826 :         if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7806           8 :             freeze = true;
    7807             :     }
    7808     2608042 :     else if (!MultiXactIdIsValid(multi))
    7809             :     {
    7810             :         /* xmax is a permanent XID or invalid MultiXactId/XID */
    7811             :     }
    7812           4 :     else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
    7813             :     {
    7814             :         /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
    7815           0 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7816           0 :             *NoFreezePageRelminMxid = multi;
    7817             :         /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
    7818           0 :         freeze = true;
    7819             :     }
    7820             :     else
    7821             :     {
    7822             :         /* xmax is a MultiXactId that may have an updater XID */
    7823             :         MultiXactMember *members;
    7824             :         int         nmembers;
    7825             : 
    7826             :         Assert(MultiXactIdPrecedesOrEquals(cutoffs->relminmxid, multi));
    7827           4 :         if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
    7828           4 :             *NoFreezePageRelminMxid = multi;
    7829           4 :         if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
    7830           4 :             freeze = true;
    7831             : 
    7832             :         /* need to check whether any member of the mxact is old */
    7833           4 :         nmembers = GetMultiXactIdMembers(multi, &members, false,
    7834           4 :                                          HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask));
    7835             : 
    7836          10 :         for (int i = 0; i < nmembers; i++)
    7837             :         {
    7838           6 :             xid = members[i].xid;
    7839             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7840           6 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7841           0 :                 *NoFreezePageRelfrozenXid = xid;
    7842           6 :             if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
    7843           0 :                 freeze = true;
    7844             :         }
    7845           4 :         if (nmembers > 0)
    7846           2 :             pfree(members);
    7847             :     }
    7848             : 
    7849    15086868 :     if (tuple->t_infomask & HEAP_MOVED)
    7850             :     {
    7851           0 :         xid = HeapTupleHeaderGetXvac(tuple);
    7852           0 :         if (TransactionIdIsNormal(xid))
    7853             :         {
    7854             :             Assert(TransactionIdPrecedesOrEquals(cutoffs->relfrozenxid, xid));
    7855           0 :             if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
    7856           0 :                 *NoFreezePageRelfrozenXid = xid;
    7857             :             /* heap_prepare_freeze_tuple forces xvac freezing */
    7858           0 :             freeze = true;
    7859             :         }
    7860             :     }
    7861             : 
    7862    15086868 :     return freeze;
    7863             : }
    7864             : 
    7865             : /*
    7866             :  * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
    7867             :  * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
    7868             :  * that caller is in the process of physically removing, e.g. via HOT pruning
    7869             :  * or index deletion.
    7870             :  *
    7871             :  * Caller must initialize its value to InvalidTransactionId, which is
    7872             :  * generally interpreted as "definitely no need for a recovery conflict".
    7873             :  * Final value must reflect all heap tuples that caller will physically remove
    7874             :  * (or remove TID references to) via its ongoing pruning/deletion operation.
    7875             :  * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
    7876             :  * caller's WAL record) by REDO routine when it replays caller's operation.
    7877             :  */
    7878             : void
    7879     3024106 : HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple,
    7880             :                                       TransactionId *snapshotConflictHorizon)
    7881             : {
    7882     3024106 :     TransactionId xmin = HeapTupleHeaderGetXmin(tuple);
    7883     3024106 :     TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple);
    7884     3024106 :     TransactionId xvac = HeapTupleHeaderGetXvac(tuple);
    7885             : 
    7886     3024106 :     if (tuple->t_infomask & HEAP_MOVED)
    7887             :     {
    7888           0 :         if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
    7889           0 :             *snapshotConflictHorizon = xvac;
    7890             :     }
    7891             : 
    7892             :     /*
    7893             :      * Ignore tuples inserted by an aborted transaction or if the tuple was
    7894             :      * updated/deleted by the inserting transaction.
    7895             :      *
    7896             :      * Look for a committed hint bit, or if no xmin bit is set, check clog.
    7897             :      */
    7898     3024106 :     if (HeapTupleHeaderXminCommitted(tuple) ||
    7899      204580 :         (!HeapTupleHeaderXminInvalid(tuple) && TransactionIdDidCommit(xmin)))
    7900             :     {
    7901     5409286 :         if (xmax != xmin &&
    7902     2533434 :             TransactionIdFollows(xmax, *snapshotConflictHorizon))
    7903      182860 :             *snapshotConflictHorizon = xmax;
    7904             :     }
    7905     3024106 : }
    7906             : 
    7907             : #ifdef USE_PREFETCH
    7908             : /*
    7909             :  * Helper function for heap_index_delete_tuples.  Issues prefetch requests for
    7910             :  * prefetch_count buffers.  The prefetch_state keeps track of all the buffers
    7911             :  * we can prefetch, and which have already been prefetched; each call to this
    7912             :  * function picks up where the previous call left off.
    7913             :  *
    7914             :  * Note: we expect the deltids array to be sorted in an order that groups TIDs
    7915             :  * by heap block, with all TIDs for each block appearing together in exactly
    7916             :  * one group.
    7917             :  */
    7918             : static void
    7919       36362 : index_delete_prefetch_buffer(Relation rel,
    7920             :                              IndexDeletePrefetchState *prefetch_state,
    7921             :                              int prefetch_count)
    7922             : {
    7923       36362 :     BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
    7924       36362 :     int         count = 0;
    7925             :     int         i;
    7926       36362 :     int         ndeltids = prefetch_state->ndeltids;
    7927       36362 :     TM_IndexDelete *deltids = prefetch_state->deltids;
    7928             : 
    7929     1292170 :     for (i = prefetch_state->next_item;
    7930     1263780 :          i < ndeltids && count < prefetch_count;
    7931     1255808 :          i++)
    7932             :     {
    7933     1255808 :         ItemPointer htid = &deltids[i].tid;
    7934             : 
    7935     2500568 :         if (cur_hblkno == InvalidBlockNumber ||
    7936     1244760 :             ItemPointerGetBlockNumber(htid) != cur_hblkno)
    7937             :         {
    7938       32850 :             cur_hblkno = ItemPointerGetBlockNumber(htid);
    7939       32850 :             PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
    7940       32850 :             count++;
    7941             :         }
    7942             :     }
    7943             : 
    7944             :     /*
    7945             :      * Save the prefetch position so that next time we can continue from that
    7946             :      * position.
    7947             :      */
    7948       36362 :     prefetch_state->next_item = i;
    7949       36362 :     prefetch_state->cur_hblkno = cur_hblkno;
    7950       36362 : }
    7951             : #endif
    7952             : 
    7953             : /*
    7954             :  * Helper function for heap_index_delete_tuples.  Checks for index corruption
    7955             :  * involving an invalid TID in index AM caller's index page.
    7956             :  *
    7957             :  * This is an ideal place for these checks.  The index AM must hold a buffer
    7958             :  * lock on the index page containing the TIDs we examine here, so we don't
    7959             :  * have to worry about concurrent VACUUMs at all.  We can be sure that the
    7960             :  * index is corrupt when htid points directly to an LP_UNUSED item or
    7961             :  * heap-only tuple, which is not the case during standard index scans.
    7962             :  */
    7963             : static inline void
    7964     1051616 : index_delete_check_htid(TM_IndexDeleteOp *delstate,
    7965             :                         Page page, OffsetNumber maxoff,
    7966             :                         ItemPointer htid, TM_IndexStatus *istatus)
    7967             : {
    7968     1051616 :     OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
    7969             :     ItemId      iid;
    7970             : 
    7971             :     Assert(OffsetNumberIsValid(istatus->idxoffnum));
    7972             : 
    7973     1051616 :     if (unlikely(indexpagehoffnum > maxoff))
    7974           0 :         ereport(ERROR,
    7975             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7976             :                  errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
    7977             :                                  ItemPointerGetBlockNumber(htid),
    7978             :                                  indexpagehoffnum,
    7979             :                                  istatus->idxoffnum, delstate->iblknum,
    7980             :                                  RelationGetRelationName(delstate->irel))));
    7981             : 
    7982     1051616 :     iid = PageGetItemId(page, indexpagehoffnum);
    7983     1051616 :     if (unlikely(!ItemIdIsUsed(iid)))
    7984           0 :         ereport(ERROR,
    7985             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    7986             :                  errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
    7987             :                                  ItemPointerGetBlockNumber(htid),
    7988             :                                  indexpagehoffnum,
    7989             :                                  istatus->idxoffnum, delstate->iblknum,
    7990             :                                  RelationGetRelationName(delstate->irel))));
    7991             : 
    7992     1051616 :     if (ItemIdHasStorage(iid))
    7993             :     {
    7994             :         HeapTupleHeader htup;
    7995             : 
    7996             :         Assert(ItemIdIsNormal(iid));
    7997      615496 :         htup = (HeapTupleHeader) PageGetItem(page, iid);
    7998             : 
    7999      615496 :         if (unlikely(HeapTupleHeaderIsHeapOnly(htup)))
    8000           0 :             ereport(ERROR,
    8001             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    8002             :                      errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
    8003             :                                      ItemPointerGetBlockNumber(htid),
    8004             :                                      indexpagehoffnum,
    8005             :                                      istatus->idxoffnum, delstate->iblknum,
    8006             :                                      RelationGetRelationName(delstate->irel))));
    8007             :     }
    8008     1051616 : }
    8009             : 
    8010             : /*
    8011             :  * heapam implementation of tableam's index_delete_tuples interface.
    8012             :  *
    8013             :  * This helper function is called by index AMs during index tuple deletion.
    8014             :  * See tableam header comments for an explanation of the interface implemented
    8015             :  * here and a general theory of operation.  Note that each call here is either
    8016             :  * a simple index deletion call, or a bottom-up index deletion call.
    8017             :  *
    8018             :  * It's possible for this to generate a fair amount of I/O, since we may be
    8019             :  * deleting hundreds of tuples from a single index block.  To amortize that
    8020             :  * cost to some degree, this uses prefetching and combines repeat accesses to
    8021             :  * the same heap block.
    8022             :  */
    8023             : TransactionId
    8024       11048 : heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
    8025             : {
    8026             :     /* Initial assumption is that earlier pruning took care of conflict */
    8027       11048 :     TransactionId snapshotConflictHorizon = InvalidTransactionId;
    8028       11048 :     BlockNumber blkno = InvalidBlockNumber;
    8029       11048 :     Buffer      buf = InvalidBuffer;
    8030       11048 :     Page        page = NULL;
    8031       11048 :     OffsetNumber maxoff = InvalidOffsetNumber;
    8032             :     TransactionId priorXmax;
    8033             : #ifdef USE_PREFETCH
    8034             :     IndexDeletePrefetchState prefetch_state;
    8035             :     int         prefetch_distance;
    8036             : #endif
    8037             :     SnapshotData SnapshotNonVacuumable;
    8038       11048 :     int         finalndeltids = 0,
    8039       11048 :                 nblocksaccessed = 0;
    8040             : 
    8041             :     /* State that's only used in bottom-up index deletion case */
    8042       11048 :     int         nblocksfavorable = 0;
    8043       11048 :     int         curtargetfreespace = delstate->bottomupfreespace,
    8044       11048 :                 lastfreespace = 0,
    8045       11048 :                 actualfreespace = 0;
    8046       11048 :     bool        bottomup_final_block = false;
    8047             : 
    8048       11048 :     InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
    8049             : 
    8050             :     /* Sort caller's deltids array by TID for further processing */
    8051       11048 :     index_delete_sort(delstate);
    8052             : 
    8053             :     /*
    8054             :      * Bottom-up case: resort deltids array in an order attuned to where the
    8055             :      * greatest number of promising TIDs are to be found, and determine how
    8056             :      * many blocks from the start of sorted array should be considered
    8057             :      * favorable.  This will also shrink the deltids array in order to
    8058             :      * eliminate completely unfavorable blocks up front.
    8059             :      */
    8060       11048 :     if (delstate->bottomup)
    8061        3840 :         nblocksfavorable = bottomup_sort_and_shrink(delstate);
    8062             : 
    8063             : #ifdef USE_PREFETCH
    8064             :     /* Initialize prefetch state. */
    8065       11048 :     prefetch_state.cur_hblkno = InvalidBlockNumber;
    8066       11048 :     prefetch_state.next_item = 0;
    8067       11048 :     prefetch_state.ndeltids = delstate->ndeltids;
    8068       11048 :     prefetch_state.deltids = delstate->deltids;
    8069             : 
    8070             :     /*
    8071             :      * Determine the prefetch distance that we will attempt to maintain.
    8072             :      *
    8073             :      * Since the caller holds a buffer lock somewhere in rel, we'd better make
    8074             :      * sure that isn't a catalog relation before we call code that does
    8075             :      * syscache lookups, to avoid risk of deadlock.
    8076             :      */
    8077       11048 :     if (IsCatalogRelation(rel))
    8078        7804 :         prefetch_distance = maintenance_io_concurrency;
    8079             :     else
    8080             :         prefetch_distance =
    8081        3244 :             get_tablespace_maintenance_io_concurrency(rel->rd_rel->reltablespace);
    8082             : 
    8083             :     /* Cap initial prefetch distance for bottom-up deletion caller */
    8084       11048 :     if (delstate->bottomup)
    8085             :     {
    8086             :         Assert(nblocksfavorable >= 1);
    8087             :         Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
    8088        3840 :         prefetch_distance = Min(prefetch_distance, nblocksfavorable);
    8089             :     }
    8090             : 
    8091             :     /* Start prefetching. */
    8092       11048 :     index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
    8093             : #endif
    8094             : 
    8095             :     /* Iterate over deltids, determine which to delete, check their horizon */
    8096             :     Assert(delstate->ndeltids > 0);
    8097     1062664 :     for (int i = 0; i < delstate->ndeltids; i++)
    8098             :     {
    8099     1055456 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8100     1055456 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8101     1055456 :         ItemPointer htid = &ideltid->tid;
    8102             :         OffsetNumber offnum;
    8103             : 
    8104             :         /*
    8105             :          * Read buffer, and perform required extra steps each time a new block
    8106             :          * is encountered.  Avoid refetching if it's the same block as the one
    8107             :          * from the last htid.
    8108             :          */
    8109     2099864 :         if (blkno == InvalidBlockNumber ||
    8110     1044408 :             ItemPointerGetBlockNumber(htid) != blkno)
    8111             :         {
    8112             :             /*
    8113             :              * Consider giving up early for bottom-up index deletion caller
    8114             :              * first. (Only prefetch next-next block afterwards, when it
    8115             :              * becomes clear that we're at least going to access the next
    8116             :              * block in line.)
    8117             :              *
    8118             :              * Sometimes the first block frees so much space for bottom-up
    8119             :              * caller that the deletion process can end without accessing any
    8120             :              * more blocks.  It is usually necessary to access 2 or 3 blocks
    8121             :              * per bottom-up deletion operation, though.
    8122             :              */
    8123       29154 :             if (delstate->bottomup)
    8124             :             {
    8125             :                 /*
    8126             :                  * We often allow caller to delete a few additional items
    8127             :                  * whose entries we reached after the point that space target
    8128             :                  * from caller was satisfied.  The cost of accessing the page
    8129             :                  * was already paid at that point, so it made sense to finish
    8130             :                  * it off.  When that happened, we finalize everything here
    8131             :                  * (by finishing off the whole bottom-up deletion operation
    8132             :                  * without needlessly paying the cost of accessing any more
    8133             :                  * blocks).
    8134             :                  */
    8135        8234 :                 if (bottomup_final_block)
    8136         304 :                     break;
    8137             : 
    8138             :                 /*
    8139             :                  * Give up when we didn't enable our caller to free any
    8140             :                  * additional space as a result of processing the page that we
    8141             :                  * just finished up with.  This rule is the main way in which
    8142             :                  * we keep the cost of bottom-up deletion under control.
    8143             :                  */
    8144        7930 :                 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
    8145        3536 :                     break;
    8146        4394 :                 lastfreespace = actualfreespace;    /* for next time */
    8147             : 
    8148             :                 /*
    8149             :                  * Deletion operation (which is bottom-up) will definitely
    8150             :                  * access the next block in line.  Prepare for that now.
    8151             :                  *
    8152             :                  * Decay target free space so that we don't hang on for too
    8153             :                  * long with a marginal case. (Space target is only truly
    8154             :                  * helpful when it allows us to recognize that we don't need
    8155             :                  * to access more than 1 or 2 blocks to satisfy caller due to
    8156             :                  * agreeable workload characteristics.)
    8157             :                  *
    8158             :                  * We are a bit more patient when we encounter contiguous
    8159             :                  * blocks, though: these are treated as favorable blocks.  The
    8160             :                  * decay process is only applied when the next block in line
    8161             :                  * is not a favorable/contiguous block.  This is not an
    8162             :                  * exception to the general rule; we still insist on finding
    8163             :                  * at least one deletable item per block accessed.  See
    8164             :                  * bottomup_nblocksfavorable() for full details of the theory
    8165             :                  * behind favorable blocks and heap block locality in general.
    8166             :                  *
    8167             :                  * Note: The first block in line is always treated as a
    8168             :                  * favorable block, so the earliest possible point that the
    8169             :                  * decay can be applied is just before we access the second
    8170             :                  * block in line.  The Assert() verifies this for us.
    8171             :                  */
    8172             :                 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
    8173        4394 :                 if (nblocksfavorable > 0)
    8174        4142 :                     nblocksfavorable--;
    8175             :                 else
    8176         252 :                     curtargetfreespace /= 2;
    8177             :             }
    8178             : 
    8179             :             /* release old buffer */
    8180       25314 :             if (BufferIsValid(buf))
    8181       14266 :                 UnlockReleaseBuffer(buf);
    8182             : 
    8183       25314 :             blkno = ItemPointerGetBlockNumber(htid);
    8184       25314 :             buf = ReadBuffer(rel, blkno);
    8185       25314 :             nblocksaccessed++;
    8186             :             Assert(!delstate->bottomup ||
    8187             :                    nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
    8188             : 
    8189             : #ifdef USE_PREFETCH
    8190             : 
    8191             :             /*
    8192             :              * To maintain the prefetch distance, prefetch one more page for
    8193             :              * each page we read.
    8194             :              */
    8195       25314 :             index_delete_prefetch_buffer(rel, &prefetch_state, 1);
    8196             : #endif
    8197             : 
    8198       25314 :             LockBuffer(buf, BUFFER_LOCK_SHARE);
    8199             : 
    8200       25314 :             page = BufferGetPage(buf);
    8201       25314 :             maxoff = PageGetMaxOffsetNumber(page);
    8202             :         }
    8203             : 
    8204             :         /*
    8205             :          * In passing, detect index corruption involving an index page with a
    8206             :          * TID that points to a location in the heap that couldn't possibly be
    8207             :          * correct.  We only do this with actual TIDs from caller's index page
    8208             :          * (not items reached by traversing through a HOT chain).
    8209             :          */
    8210     1051616 :         index_delete_check_htid(delstate, page, maxoff, htid, istatus);
    8211             : 
    8212     1051616 :         if (istatus->knowndeletable)
    8213             :             Assert(!delstate->bottomup && !istatus->promising);
    8214             :         else
    8215             :         {
    8216      790928 :             ItemPointerData tmp = *htid;
    8217             :             HeapTupleData heapTuple;
    8218             : 
    8219             :             /* Are any tuples from this HOT chain non-vacuumable? */
    8220      790928 :             if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
    8221             :                                        &heapTuple, NULL, true))
    8222      470726 :                 continue;       /* can't delete entry */
    8223             : 
    8224             :             /* Caller will delete, since whole HOT chain is vacuumable */
    8225      320202 :             istatus->knowndeletable = true;
    8226             : 
    8227             :             /* Maintain index free space info for bottom-up deletion case */
    8228      320202 :             if (delstate->bottomup)
    8229             :             {
    8230             :                 Assert(istatus->freespace > 0);
    8231       15086 :                 actualfreespace += istatus->freespace;
    8232       15086 :                 if (actualfreespace >= curtargetfreespace)
    8233        4658 :                     bottomup_final_block = true;
    8234             :             }
    8235             :         }
    8236             : 
    8237             :         /*
    8238             :          * Maintain snapshotConflictHorizon value for deletion operation as a
    8239             :          * whole by advancing current value using heap tuple headers.  This is
    8240             :          * loosely based on the logic for pruning a HOT chain.
    8241             :          */
    8242      580890 :         offnum = ItemPointerGetOffsetNumber(htid);
    8243      580890 :         priorXmax = InvalidTransactionId;   /* cannot check first XMIN */
    8244             :         for (;;)
    8245       40580 :         {
    8246             :             ItemId      lp;
    8247             :             HeapTupleHeader htup;
    8248             : 
    8249             :             /* Sanity check (pure paranoia) */
    8250      621470 :             if (offnum < FirstOffsetNumber)
    8251           0 :                 break;
    8252             : 
    8253             :             /*
    8254             :              * An offset past the end of page's line pointer array is possible
    8255             :              * when the array was truncated
    8256             :              */
    8257      621470 :             if (offnum > maxoff)
    8258           0 :                 break;
    8259             : 
    8260      621470 :             lp = PageGetItemId(page, offnum);
    8261      621470 :             if (ItemIdIsRedirected(lp))
    8262             :             {
    8263       18134 :                 offnum = ItemIdGetRedirect(lp);
    8264       18134 :                 continue;
    8265             :             }
    8266             : 
    8267             :             /*
    8268             :              * We'll often encounter LP_DEAD line pointers (especially with an
    8269             :              * entry marked knowndeletable by our caller up front).  No heap
    8270             :              * tuple headers get examined for an htid that leads us to an
    8271             :              * LP_DEAD item.  This is okay because the earlier pruning
    8272             :              * operation that made the line pointer LP_DEAD in the first place
    8273             :              * must have considered the original tuple header as part of
    8274             :              * generating its own snapshotConflictHorizon value.
    8275             :              *
    8276             :              * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
    8277             :              * the same strategy that index vacuuming uses in all cases. Index
    8278             :              * VACUUM WAL records don't even have a snapshotConflictHorizon
    8279             :              * field of their own for this reason.
    8280             :              */
    8281      603336 :             if (!ItemIdIsNormal(lp))
    8282      391604 :                 break;
    8283             : 
    8284      211732 :             htup = (HeapTupleHeader) PageGetItem(page, lp);
    8285             : 
    8286             :             /*
    8287             :              * Check the tuple XMIN against prior XMAX, if any
    8288             :              */
    8289      234178 :             if (TransactionIdIsValid(priorXmax) &&
    8290       22446 :                 !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax))
    8291           0 :                 break;
    8292             : 
    8293      211732 :             HeapTupleHeaderAdvanceConflictHorizon(htup,
    8294             :                                                   &snapshotConflictHorizon);
    8295             : 
    8296             :             /*
    8297             :              * If the tuple is not HOT-updated, then we are at the end of this
    8298             :              * HOT-chain.  No need to visit later tuples from the same update
    8299             :              * chain (they get their own index entries) -- just move on to
    8300             :              * next htid from index AM caller.
    8301             :              */
    8302      211732 :             if (!HeapTupleHeaderIsHotUpdated(htup))
    8303      189286 :                 break;
    8304             : 
    8305             :             /* Advance to next HOT chain member */
    8306             :             Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
    8307       22446 :             offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
    8308       22446 :             priorXmax = HeapTupleHeaderGetUpdateXid(htup);
    8309             :         }
    8310             : 
    8311             :         /* Enable further/final shrinking of deltids for caller */
    8312      580890 :         finalndeltids = i + 1;
    8313             :     }
    8314             : 
    8315       11048 :     UnlockReleaseBuffer(buf);
    8316             : 
    8317             :     /*
    8318             :      * Shrink deltids array to exclude non-deletable entries at the end.  This
    8319             :      * is not just a minor optimization.  Final deltids array size might be
    8320             :      * zero for a bottom-up caller.  Index AM is explicitly allowed to rely on
    8321             :      * ndeltids being zero in all cases with zero total deletable entries.
    8322             :      */
    8323             :     Assert(finalndeltids > 0 || delstate->bottomup);
    8324       11048 :     delstate->ndeltids = finalndeltids;
    8325             : 
    8326       11048 :     return snapshotConflictHorizon;
    8327             : }
    8328             : 
    8329             : /*
    8330             :  * Specialized inlineable comparison function for index_delete_sort()
    8331             :  */
    8332             : static inline int
    8333    24958484 : index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
    8334             : {
    8335    24958484 :     ItemPointer tid1 = &deltid1->tid;
    8336    24958484 :     ItemPointer tid2 = &deltid2->tid;
    8337             : 
    8338             :     {
    8339    24958484 :         BlockNumber blk1 = ItemPointerGetBlockNumber(tid1);
    8340    24958484 :         BlockNumber blk2 = ItemPointerGetBlockNumber(tid2);
    8341             : 
    8342    24958484 :         if (blk1 != blk2)
    8343    10250852 :             return (blk1 < blk2) ? -1 : 1;
    8344             :     }
    8345             :     {
    8346    14707632 :         OffsetNumber pos1 = ItemPointerGetOffsetNumber(tid1);
    8347    14707632 :         OffsetNumber pos2 = ItemPointerGetOffsetNumber(tid2);
    8348             : 
    8349    14707632 :         if (pos1 != pos2)
    8350    14707632 :             return (pos1 < pos2) ? -1 : 1;
    8351             :     }
    8352             : 
    8353             :     Assert(false);
    8354             : 
    8355           0 :     return 0;
    8356             : }
    8357             : 
    8358             : /*
    8359             :  * Sort deltids array from delstate by TID.  This prepares it for further
    8360             :  * processing by heap_index_delete_tuples().
    8361             :  *
    8362             :  * This operation becomes a noticeable consumer of CPU cycles with some
    8363             :  * workloads, so we go to the trouble of specialization/micro optimization.
    8364             :  * We use shellsort for this because it's easy to specialize, compiles to
    8365             :  * relatively few instructions, and is adaptive to presorted inputs/subsets
    8366             :  * (which are typical here).
    8367             :  */
    8368             : static void
    8369       11048 : index_delete_sort(TM_IndexDeleteOp *delstate)
    8370             : {
    8371       11048 :     TM_IndexDelete *deltids = delstate->deltids;
    8372       11048 :     int         ndeltids = delstate->ndeltids;
    8373             : 
    8374             :     /*
    8375             :      * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
    8376             :      *
    8377             :      * This implementation is fast with array sizes up to ~4500.  This covers
    8378             :      * all supported BLCKSZ values.
    8379             :      */
    8380       11048 :     const int   gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
    8381             : 
    8382             :     /* Think carefully before changing anything here -- keep swaps cheap */
    8383             :     StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
    8384             :                      "element size exceeds 8 bytes");
    8385             : 
    8386      110480 :     for (int g = 0; g < lengthof(gaps); g++)
    8387             :     {
    8388    14967720 :         for (int hi = gaps[g], i = hi; i < ndeltids; i++)
    8389             :         {
    8390    14868288 :             TM_IndexDelete d = deltids[i];
    8391    14868288 :             int         j = i;
    8392             : 
    8393    25667804 :             while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
    8394             :             {
    8395    10799516 :                 deltids[j] = deltids[j - hi];
    8396    10799516 :                 j -= hi;
    8397             :             }
    8398    14868288 :             deltids[j] = d;
    8399             :         }
    8400             :     }
    8401       11048 : }
    8402             : 
    8403             : /*
    8404             :  * Returns how many blocks should be considered favorable/contiguous for a
    8405             :  * bottom-up index deletion pass.  This is a number of heap blocks that starts
    8406             :  * from and includes the first block in line.
    8407             :  *
    8408             :  * There is always at least one favorable block during bottom-up index
    8409             :  * deletion.  In the worst case (i.e. with totally random heap blocks) the
    8410             :  * first block in line (the only favorable block) can be thought of as a
    8411             :  * degenerate array of contiguous blocks that consists of a single block.
    8412             :  * heap_index_delete_tuples() will expect this.
    8413             :  *
    8414             :  * Caller passes blockgroups, a description of the final order that deltids
    8415             :  * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
    8416             :  * processing.  Note that deltids need not actually be sorted just yet (caller
    8417             :  * only passes deltids to us so that we can interpret blockgroups).
    8418             :  *
    8419             :  * You might guess that the existence of contiguous blocks cannot matter much,
    8420             :  * since in general the main factor that determines which blocks we visit is
    8421             :  * the number of promising TIDs, which is a fixed hint from the index AM.
    8422             :  * We're not really targeting the general case, though -- the actual goal is
    8423             :  * to adapt our behavior to a wide variety of naturally occurring conditions.
    8424             :  * The effects of most of the heuristics we apply are only noticeable in the
    8425             :  * aggregate, over time and across many _related_ bottom-up index deletion
    8426             :  * passes.
    8427             :  *
    8428             :  * Deeming certain blocks favorable allows heapam to recognize and adapt to
    8429             :  * workloads where heap blocks visited during bottom-up index deletion can be
    8430             :  * accessed contiguously, in the sense that each newly visited block is the
    8431             :  * neighbor of the block that bottom-up deletion just finished processing (or
    8432             :  * close enough to it).  It will likely be cheaper to access more favorable
    8433             :  * blocks sooner rather than later (e.g. in this pass, not across a series of
    8434             :  * related bottom-up passes).  Either way it is probably only a matter of time
    8435             :  * (or a matter of further correlated version churn) before all blocks that
    8436             :  * appear together as a single large batch of favorable blocks get accessed by
    8437             :  * _some_ bottom-up pass.  Large batches of favorable blocks tend to either
    8438             :  * appear almost constantly or not even once (it all depends on per-index
    8439             :  * workload characteristics).
    8440             :  *
    8441             :  * Note that the blockgroups sort order applies a power-of-two bucketing
    8442             :  * scheme that creates opportunities for contiguous groups of blocks to get
    8443             :  * batched together, at least with workloads that are naturally amenable to
    8444             :  * being driven by heap block locality.  This doesn't just enhance the spatial
    8445             :  * locality of bottom-up heap block processing in the obvious way.  It also
    8446             :  * enables temporal locality of access, since sorting by heap block number
    8447             :  * naturally tends to make the bottom-up processing order deterministic.
    8448             :  *
    8449             :  * Consider the following example to get a sense of how temporal locality
    8450             :  * might matter: There is a heap relation with several indexes, each of which
    8451             :  * is low to medium cardinality.  It is subject to constant non-HOT updates.
    8452             :  * The updates are skewed (in one part of the primary key, perhaps).  None of
    8453             :  * the indexes are logically modified by the UPDATE statements (if they were
    8454             :  * then bottom-up index deletion would not be triggered in the first place).
    8455             :  * Naturally, each new round of index tuples (for each heap tuple that gets a
    8456             :  * heap_update() call) will have the same heap TID in each and every index.
    8457             :  * Since these indexes are low cardinality and never get logically modified,
    8458             :  * heapam processing during bottom-up deletion passes will access heap blocks
    8459             :  * in approximately sequential order.  Temporal locality of access occurs due
    8460             :  * to bottom-up deletion passes behaving very similarly across each of the
    8461             :  * indexes at any given moment.  This keeps the number of buffer misses needed
    8462             :  * to visit heap blocks to a minimum.
    8463             :  */
    8464             : static int
    8465        3840 : bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
    8466             :                           TM_IndexDelete *deltids)
    8467             : {
    8468        3840 :     int64       lastblock = -1;
    8469        3840 :     int         nblocksfavorable = 0;
    8470             : 
    8471             :     Assert(nblockgroups >= 1);
    8472             :     Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
    8473             : 
    8474             :     /*
    8475             :      * We tolerate heap blocks that will be accessed only slightly out of
    8476             :      * physical order.  Small blips occur when a pair of almost-contiguous
    8477             :      * blocks happen to fall into different buckets (perhaps due only to a
    8478             :      * small difference in npromisingtids that the bucketing scheme didn't
    8479             :      * quite manage to ignore).  We effectively ignore these blips by applying
    8480             :      * a small tolerance.  The precise tolerance we use is a little arbitrary,
    8481             :      * but it works well enough in practice.
    8482             :      */
    8483       12018 :     for (int b = 0; b < nblockgroups; b++)
    8484             :     {
    8485       11500 :         IndexDeleteCounts *group = blockgroups + b;
    8486       11500 :         TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
    8487       11500 :         BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
    8488             : 
    8489       11500 :         if (lastblock != -1 &&
    8490        7660 :             ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
    8491        6444 :              (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
    8492             :             break;
    8493             : 
    8494        8178 :         nblocksfavorable++;
    8495        8178 :         lastblock = block;
    8496             :     }
    8497             : 
    8498             :     /* Always indicate that there is at least 1 favorable block */
    8499             :     Assert(nblocksfavorable >= 1);
    8500             : 
    8501        3840 :     return nblocksfavorable;
    8502             : }
    8503             : 
    8504             : /*
    8505             :  * qsort comparison function for bottomup_sort_and_shrink()
    8506             :  */
    8507             : static int
    8508      396756 : bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
    8509             : {
    8510      396756 :     const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
    8511      396756 :     const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
    8512             : 
    8513             :     /*
    8514             :      * Most significant field is npromisingtids (which we invert the order of
    8515             :      * so as to sort in desc order).
    8516             :      *
    8517             :      * Caller should have already normalized npromisingtids fields into
    8518             :      * power-of-two values (buckets).
    8519             :      */
    8520      396756 :     if (group1->npromisingtids > group2->npromisingtids)
    8521       17194 :         return -1;
    8522      379562 :     if (group1->npromisingtids < group2->npromisingtids)
    8523       20760 :         return 1;
    8524             : 
    8525             :     /*
    8526             :      * Tiebreak: desc ntids sort order.
    8527             :      *
    8528             :      * We cannot expect power-of-two values for ntids fields.  We should
    8529             :      * behave as if they were already rounded up for us instead.
    8530             :      */
    8531      358802 :     if (group1->ntids != group2->ntids)
    8532             :     {
    8533      257442 :         uint32      ntids1 = pg_nextpower2_32((uint32) group1->ntids);
    8534      257442 :         uint32      ntids2 = pg_nextpower2_32((uint32) group2->ntids);
    8535             : 
    8536      257442 :         if (ntids1 > ntids2)
    8537       39326 :             return -1;
    8538      218116 :         if (ntids1 < ntids2)
    8539       48096 :             return 1;
    8540             :     }
    8541             : 
    8542             :     /*
    8543             :      * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
    8544             :      * block in deltids array) order.
    8545             :      *
    8546             :      * This is equivalent to sorting in ascending heap block number order
    8547             :      * (among otherwise equal subsets of the array).  This approach allows us
    8548             :      * to avoid accessing the out-of-line TID.  (We rely on the assumption
    8549             :      * that the deltids array was sorted in ascending heap TID order when
    8550             :      * these offsets to the first TID from each heap block group were formed.)
    8551             :      */
    8552      271380 :     if (group1->ifirsttid > group2->ifirsttid)
    8553      135344 :         return 1;
    8554      136036 :     if (group1->ifirsttid < group2->ifirsttid)
    8555      136036 :         return -1;
    8556             : 
    8557           0 :     pg_unreachable();
    8558             : 
    8559             :     return 0;
    8560             : }
    8561             : 
    8562             : /*
    8563             :  * heap_index_delete_tuples() helper function for bottom-up deletion callers.
    8564             :  *
    8565             :  * Sorts deltids array in the order needed for useful processing by bottom-up
    8566             :  * deletion.  The array should already be sorted in TID order when we're
    8567             :  * called.  The sort process groups heap TIDs from deltids into heap block
    8568             :  * groupings.  Earlier/more-promising groups/blocks are usually those that are
    8569             :  * known to have the most "promising" TIDs.
    8570             :  *
    8571             :  * Sets new size of deltids array (ndeltids) in state.  deltids will only have
    8572             :  * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
    8573             :  * return.  This often means that deltids will be shrunk to a small fraction
    8574             :  * of its original size (we eliminate many heap blocks from consideration for
    8575             :  * caller up front).
    8576             :  *
    8577             :  * Returns the number of "favorable" blocks.  See bottomup_nblocksfavorable()
    8578             :  * for a definition and full details.
    8579             :  */
    8580             : static int
    8581        3840 : bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
    8582             : {
    8583             :     IndexDeleteCounts *blockgroups;
    8584             :     TM_IndexDelete *reordereddeltids;
    8585        3840 :     BlockNumber curblock = InvalidBlockNumber;
    8586        3840 :     int         nblockgroups = 0;
    8587        3840 :     int         ncopied = 0;
    8588        3840 :     int         nblocksfavorable = 0;
    8589             : 
    8590             :     Assert(delstate->bottomup);
    8591             :     Assert(delstate->ndeltids > 0);
    8592             : 
    8593             :     /* Calculate per-heap-block count of TIDs */
    8594        3840 :     blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
    8595     1852744 :     for (int i = 0; i < delstate->ndeltids; i++)
    8596             :     {
    8597     1848904 :         TM_IndexDelete *ideltid = &delstate->deltids[i];
    8598     1848904 :         TM_IndexStatus *istatus = delstate->status + ideltid->id;
    8599     1848904 :         ItemPointer htid = &ideltid->tid;
    8600     1848904 :         bool        promising = istatus->promising;
    8601             : 
    8602     1848904 :         if (curblock != ItemPointerGetBlockNumber(htid))
    8603             :         {
    8604             :             /* New block group */
    8605       76618 :             nblockgroups++;
    8606             : 
    8607             :             Assert(curblock < ItemPointerGetBlockNumber(htid) ||
    8608             :                    !BlockNumberIsValid(curblock));
    8609             : 
    8610       76618 :             curblock = ItemPointerGetBlockNumber(htid);
    8611       76618 :             blockgroups[nblockgroups - 1].ifirsttid = i;
    8612       76618 :             blockgroups[nblockgroups - 1].ntids = 1;
    8613       76618 :             blockgroups[nblockgroups - 1].npromisingtids = 0;
    8614             :         }
    8615             :         else
    8616             :         {
    8617     1772286 :             blockgroups[nblockgroups - 1].ntids++;
    8618             :         }
    8619             : 
    8620     1848904 :         if (promising)
    8621      226978 :             blockgroups[nblockgroups - 1].npromisingtids++;
    8622             :     }
    8623             : 
    8624             :     /*
    8625             :      * We're about ready to sort block groups to determine the optimal order
    8626             :      * for visiting heap blocks.  But before we do, round the number of
    8627             :      * promising tuples for each block group up to the next power-of-two,
    8628             :      * unless it is very low (less than 4), in which case we round up to 4.
    8629             :      * npromisingtids is far too noisy to trust when choosing between a pair
    8630             :      * of block groups that both have very low values.
    8631             :      *
    8632             :      * This scheme divides heap blocks/block groups into buckets.  Each bucket
    8633             :      * contains blocks that have _approximately_ the same number of promising
    8634             :      * TIDs as each other.  The goal is to ignore relatively small differences
    8635             :      * in the total number of promising entries, so that the whole process can
    8636             :      * give a little weight to heapam factors (like heap block locality)
    8637             :      * instead.  This isn't a trade-off, really -- we have nothing to lose. It
    8638             :      * would be foolish to interpret small differences in npromisingtids
    8639             :      * values as anything more than noise.
    8640             :      *
    8641             :      * We tiebreak on nhtids when sorting block group subsets that have the
    8642             :      * same npromisingtids, but this has the same issues as npromisingtids,
    8643             :      * and so nhtids is subject to the same power-of-two bucketing scheme. The
    8644             :      * only reason that we don't fix nhtids in the same way here too is that
    8645             :      * we'll need accurate nhtids values after the sort.  We handle nhtids
    8646             :      * bucketization dynamically instead (in the sort comparator).
    8647             :      *
    8648             :      * See bottomup_nblocksfavorable() for a full explanation of when and how
    8649             :      * heap locality/favorable blocks can significantly influence when and how
    8650             :      * heap blocks are accessed.
    8651             :      */
    8652       80458 :     for (int b = 0; b < nblockgroups; b++)
    8653             :     {
    8654       76618 :         IndexDeleteCounts *group = blockgroups + b;
    8655             : 
    8656             :         /* Better off falling back on nhtids with low npromisingtids */
    8657       76618 :         if (group->npromisingtids <= 4)
    8658       66206 :             group->npromisingtids = 4;
    8659             :         else
    8660       10412 :             group->npromisingtids =
    8661       10412 :                 pg_nextpower2_32((uint32) group->npromisingtids);
    8662             :     }
    8663             : 
    8664             :     /* Sort groups and rearrange caller's deltids array */
    8665        3840 :     qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
    8666             :           bottomup_sort_and_shrink_cmp);
    8667        3840 :     reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
    8668             : 
    8669        3840 :     nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
    8670             :     /* Determine number of favorable blocks at the start of final deltids */
    8671        3840 :     nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
    8672             :                                                  delstate->deltids);
    8673             : 
    8674       25660 :     for (int b = 0; b < nblockgroups; b++)
    8675             :     {
    8676       21820 :         IndexDeleteCounts *group = blockgroups + b;
    8677       21820 :         TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
    8678             : 
    8679       21820 :         memcpy(reordereddeltids + ncopied, firstdtid,
    8680       21820 :                sizeof(TM_IndexDelete) * group->ntids);
    8681       21820 :         ncopied += group->ntids;
    8682             :     }
    8683             : 
    8684             :     /* Copy final grouped and sorted TIDs back into start of caller's array */
    8685        3840 :     memcpy(delstate->deltids, reordereddeltids,
    8686             :            sizeof(TM_IndexDelete) * ncopied);
    8687        3840 :     delstate->ndeltids = ncopied;
    8688             : 
    8689        3840 :     pfree(reordereddeltids);
    8690        3840 :     pfree(blockgroups);
    8691             : 
    8692        3840 :     return nblocksfavorable;
    8693             : }
    8694             : 
    8695             : /*
    8696             :  * Perform XLogInsert for a heap-visible operation.  'block' is the block
    8697             :  * being marked all-visible, and vm_buffer is the buffer containing the
    8698             :  * corresponding visibility map block.  Both should have already been modified
    8699             :  * and dirtied.
    8700             :  *
    8701             :  * snapshotConflictHorizon comes from the largest xmin on the page being
    8702             :  * marked all-visible.  REDO routine uses it to generate recovery conflicts.
    8703             :  *
    8704             :  * If checksums or wal_log_hints are enabled, we may also generate a full-page
    8705             :  * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
    8706             :  * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
    8707             :  * update the heap page's LSN.
    8708             :  */
    8709             : XLogRecPtr
    8710       73662 : log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
    8711             :                  TransactionId snapshotConflictHorizon, uint8 vmflags)
    8712             : {
    8713             :     xl_heap_visible xlrec;
    8714             :     XLogRecPtr  recptr;
    8715             :     uint8       flags;
    8716             : 
    8717             :     Assert(BufferIsValid(heap_buffer));
    8718             :     Assert(BufferIsValid(vm_buffer));
    8719             : 
    8720       73662 :     xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
    8721       73662 :     xlrec.flags = vmflags;
    8722       73662 :     if (RelationIsAccessibleInLogicalDecoding(rel))
    8723         248 :         xlrec.flags |= VISIBILITYMAP_XLOG_CATALOG_REL;
    8724       73662 :     XLogBeginInsert();
    8725       73662 :     XLogRegisterData(&xlrec, SizeOfHeapVisible);
    8726             : 
    8727       73662 :     XLogRegisterBuffer(0, vm_buffer, 0);
    8728             : 
    8729       73662 :     flags = REGBUF_STANDARD;
    8730       73662 :     if (!XLogHintBitIsNeeded())
    8731        5844 :         flags |= REGBUF_NO_IMAGE;
    8732       73662 :     XLogRegisterBuffer(1, heap_buffer, flags);
    8733             : 
    8734       73662 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
    8735             : 
    8736       73662 :     return recptr;
    8737             : }
    8738             : 
    8739             : /*
    8740             :  * Perform XLogInsert for a heap-update operation.  Caller must already
    8741             :  * have modified the buffer(s) and marked them dirty.
    8742             :  */
    8743             : static XLogRecPtr
    8744      556514 : log_heap_update(Relation reln, Buffer oldbuf,
    8745             :                 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
    8746             :                 HeapTuple old_key_tuple,
    8747             :                 bool all_visible_cleared, bool new_all_visible_cleared)
    8748             : {
    8749             :     xl_heap_update xlrec;
    8750             :     xl_heap_header xlhdr;
    8751             :     xl_heap_header xlhdr_idx;
    8752             :     uint8       info;
    8753             :     uint16      prefix_suffix[2];
    8754      556514 :     uint16      prefixlen = 0,
    8755      556514 :                 suffixlen = 0;
    8756             :     XLogRecPtr  recptr;
    8757      556514 :     Page        page = BufferGetPage(newbuf);
    8758      556514 :     bool        need_tuple_data = RelationIsLogicallyLogged(reln);
    8759             :     bool        init;
    8760             :     int         bufflags;
    8761             : 
    8762             :     /* Caller should not call me on a non-WAL-logged relation */
    8763             :     Assert(RelationNeedsWAL(reln));
    8764             : 
    8765      556514 :     XLogBeginInsert();
    8766             : 
    8767      556514 :     if (HeapTupleIsHeapOnly(newtup))
    8768      268466 :         info = XLOG_HEAP_HOT_UPDATE;
    8769             :     else
    8770      288048 :         info = XLOG_HEAP_UPDATE;
    8771             : 
    8772             :     /*
    8773             :      * If the old and new tuple are on the same page, we only need to log the
    8774             :      * parts of the new tuple that were changed.  That saves on the amount of
    8775             :      * WAL we need to write.  Currently, we just count any unchanged bytes in
    8776             :      * the beginning and end of the tuple.  That's quick to check, and
    8777             :      * perfectly covers the common case that only one field is updated.
    8778             :      *
    8779             :      * We could do this even if the old and new tuple are on different pages,
    8780             :      * but only if we don't make a full-page image of the old page, which is
    8781             :      * difficult to know in advance.  Also, if the old tuple is corrupt for
    8782             :      * some reason, it would allow the corruption to propagate the new page,
    8783             :      * so it seems best to avoid.  Under the general assumption that most
    8784             :      * updates tend to create the new tuple version on the same page, there
    8785             :      * isn't much to be gained by doing this across pages anyway.
    8786             :      *
    8787             :      * Skip this if we're taking a full-page image of the new page, as we
    8788             :      * don't include the new tuple in the WAL record in that case.  Also
    8789             :      * disable if wal_level='logical', as logical decoding needs to be able to
    8790             :      * read the new tuple in whole from the WAL record alone.
    8791             :      */
    8792      556514 :     if (oldbuf == newbuf && !need_tuple_data &&
    8793      268494 :         !XLogCheckBufferNeedsBackup(newbuf))
    8794             :     {
    8795      267820 :         char       *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
    8796      267820 :         char       *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
    8797      267820 :         int         oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
    8798      267820 :         int         newlen = newtup->t_len - newtup->t_data->t_hoff;
    8799             : 
    8800             :         /* Check for common prefix between old and new tuple */
    8801    21028888 :         for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
    8802             :         {
    8803    20983664 :             if (newp[prefixlen] != oldp[prefixlen])
    8804      222596 :                 break;
    8805             :         }
    8806             : 
    8807             :         /*
    8808             :          * Storing the length of the prefix takes 2 bytes, so we need to save
    8809             :          * at least 3 bytes or there's no point.
    8810             :          */
    8811      267820 :         if (prefixlen < 3)
    8812       44164 :             prefixlen = 0;
    8813             : 
    8814             :         /* Same for suffix */
    8815     8725144 :         for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
    8816             :         {
    8817     8679460 :             if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
    8818      222136 :                 break;
    8819             :         }
    8820      267820 :         if (suffixlen < 3)
    8821       63584 :             suffixlen = 0;
    8822             :     }
    8823             : 
    8824             :     /* Prepare main WAL data chain */
    8825      556514 :     xlrec.flags = 0;
    8826      556514 :     if (all_visible_cleared)
    8827        2924 :         xlrec.flags |= XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED;
    8828      556514 :     if (new_all_visible_cleared)
    8829        1124 :         xlrec.flags |= XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED;
    8830      556514 :     if (prefixlen > 0)
    8831      223656 :         xlrec.flags |= XLH_UPDATE_PREFIX_FROM_OLD;
    8832      556514 :     if (suffixlen > 0)
    8833      204236 :         xlrec.flags |= XLH_UPDATE_SUFFIX_FROM_OLD;
    8834      556514 :     if (need_tuple_data)
    8835             :     {
    8836       94042 :         xlrec.flags |= XLH_UPDATE_CONTAINS_NEW_TUPLE;
    8837       94042 :         if (old_key_tuple)
    8838             :         {
    8839         284 :             if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
    8840         126 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_TUPLE;
    8841             :             else
    8842         158 :                 xlrec.flags |= XLH_UPDATE_CONTAINS_OLD_KEY;
    8843             :         }
    8844             :     }
    8845             : 
    8846             :     /* If new tuple is the single and first tuple on page... */
    8847      562896 :     if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
    8848        6382 :         PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
    8849             :     {
    8850        6166 :         info |= XLOG_HEAP_INIT_PAGE;
    8851        6166 :         init = true;
    8852             :     }
    8853             :     else
    8854      550348 :         init = false;
    8855             : 
    8856             :     /* Prepare WAL data for the old page */
    8857      556514 :     xlrec.old_offnum = ItemPointerGetOffsetNumber(&oldtup->t_self);
    8858      556514 :     xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
    8859     1113028 :     xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask,
    8860      556514 :                                               oldtup->t_data->t_infomask2);
    8861             : 
    8862             :     /* Prepare WAL data for the new page */
    8863      556514 :     xlrec.new_offnum = ItemPointerGetOffsetNumber(&newtup->t_self);
    8864      556514 :     xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
    8865             : 
    8866      556514 :     bufflags = REGBUF_STANDARD;
    8867      556514 :     if (init)
    8868        6166 :         bufflags |= REGBUF_WILL_INIT;
    8869      556514 :     if (need_tuple_data)
    8870       94042 :         bufflags |= REGBUF_KEEP_DATA;
    8871             : 
    8872      556514 :     XLogRegisterBuffer(0, newbuf, bufflags);
    8873      556514 :     if (oldbuf != newbuf)
    8874      264138 :         XLogRegisterBuffer(1, oldbuf, REGBUF_STANDARD);
    8875             : 
    8876      556514 :     XLogRegisterData(&xlrec, SizeOfHeapUpdate);
    8877             : 
    8878             :     /*
    8879             :      * Prepare WAL data for the new tuple.
    8880             :      */
    8881      556514 :     if (prefixlen > 0 || suffixlen > 0)
    8882             :     {
    8883      266910 :         if (prefixlen > 0 && suffixlen > 0)
    8884             :         {
    8885      160982 :             prefix_suffix[0] = prefixlen;
    8886      160982 :             prefix_suffix[1] = suffixlen;
    8887      160982 :             XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
    8888             :         }
    8889      105928 :         else if (prefixlen > 0)
    8890             :         {
    8891       62674 :             XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
    8892             :         }
    8893             :         else
    8894             :         {
    8895       43254 :             XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
    8896             :         }
    8897             :     }
    8898             : 
    8899      556514 :     xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
    8900      556514 :     xlhdr.t_infomask = newtup->t_data->t_infomask;
    8901      556514 :     xlhdr.t_hoff = newtup->t_data->t_hoff;
    8902             :     Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
    8903             : 
    8904             :     /*
    8905             :      * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
    8906             :      *
    8907             :      * The 'data' doesn't include the common prefix or suffix.
    8908             :      */
    8909      556514 :     XLogRegisterBufData(0, &xlhdr, SizeOfHeapHeader);
    8910      556514 :     if (prefixlen == 0)
    8911             :     {
    8912      332858 :         XLogRegisterBufData(0,
    8913      332858 :                             (char *) newtup->t_data + SizeofHeapTupleHeader,
    8914      332858 :                             newtup->t_len - SizeofHeapTupleHeader - suffixlen);
    8915             :     }
    8916             :     else
    8917             :     {
    8918             :         /*
    8919             :          * Have to write the null bitmap and data after the common prefix as
    8920             :          * two separate rdata entries.
    8921             :          */
    8922             :         /* bitmap [+ padding] [+ oid] */
    8923      223656 :         if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
    8924             :         {
    8925      223656 :             XLogRegisterBufData(0,
    8926      223656 :                                 (char *) newtup->t_data + SizeofHeapTupleHeader,
    8927      223656 :                                 newtup->t_data->t_hoff - SizeofHeapTupleHeader);
    8928             :         }
    8929             : 
    8930             :         /* data after common prefix */
    8931      223656 :         XLogRegisterBufData(0,
    8932      223656 :                             (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
    8933      223656 :                             newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
    8934             :     }
    8935             : 
    8936             :     /* We need to log a tuple identity */
    8937      556514 :     if (need_tuple_data && old_key_tuple)
    8938             :     {
    8939             :         /* don't really need this, but its more comfy to decode */
    8940         284 :         xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
    8941         284 :         xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
    8942         284 :         xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
    8943             : 
    8944         284 :         XLogRegisterData(&xlhdr_idx, SizeOfHeapHeader);
    8945             : 
    8946             :         /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
    8947         284 :         XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
    8948         284 :                          old_key_tuple->t_len - SizeofHeapTupleHeader);
    8949             :     }
    8950             : 
    8951             :     /* filtering by origin on a row level is much more efficient */
    8952      556514 :     XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
    8953             : 
    8954      556514 :     recptr = XLogInsert(RM_HEAP_ID, info);
    8955             : 
    8956      556514 :     return recptr;
    8957             : }
    8958             : 
    8959             : /*
    8960             :  * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
    8961             :  *
    8962             :  * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
    8963             :  * tuples.
    8964             :  */
    8965             : static XLogRecPtr
    8966       46976 : log_heap_new_cid(Relation relation, HeapTuple tup)
    8967             : {
    8968             :     xl_heap_new_cid xlrec;
    8969             : 
    8970             :     XLogRecPtr  recptr;
    8971       46976 :     HeapTupleHeader hdr = tup->t_data;
    8972             : 
    8973             :     Assert(ItemPointerIsValid(&tup->t_self));
    8974             :     Assert(tup->t_tableOid != InvalidOid);
    8975             : 
    8976       46976 :     xlrec.top_xid = GetTopTransactionId();
    8977       46976 :     xlrec.target_locator = relation->rd_locator;
    8978       46976 :     xlrec.target_tid = tup->t_self;
    8979             : 
    8980             :     /*
    8981             :      * If the tuple got inserted & deleted in the same TX we definitely have a
    8982             :      * combo CID, set cmin and cmax.
    8983             :      */
    8984       46976 :     if (hdr->t_infomask & HEAP_COMBOCID)
    8985             :     {
    8986             :         Assert(!(hdr->t_infomask & HEAP_XMAX_INVALID));
    8987             :         Assert(!HeapTupleHeaderXminInvalid(hdr));
    8988        4010 :         xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
    8989        4010 :         xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
    8990        4010 :         xlrec.combocid = HeapTupleHeaderGetRawCommandId(hdr);
    8991             :     }
    8992             :     /* No combo CID, so only cmin or cmax can be set by this TX */
    8993             :     else
    8994             :     {
    8995             :         /*
    8996             :          * Tuple inserted.
    8997             :          *
    8998             :          * We need to check for LOCK ONLY because multixacts might be
    8999             :          * transferred to the new tuple in case of FOR KEY SHARE updates in
    9000             :          * which case there will be an xmax, although the tuple just got
    9001             :          * inserted.
    9002             :          */
    9003       56042 :         if (hdr->t_infomask & HEAP_XMAX_INVALID ||
    9004       13076 :             HEAP_XMAX_IS_LOCKED_ONLY(hdr->t_infomask))
    9005             :         {
    9006       29892 :             xlrec.cmin = HeapTupleHeaderGetRawCommandId(hdr);
    9007       29892 :             xlrec.cmax = InvalidCommandId;
    9008             :         }
    9009             :         /* Tuple from a different tx updated or deleted. */
    9010             :         else
    9011             :         {
    9012       13074 :             xlrec.cmin = InvalidCommandId;
    9013       13074 :             xlrec.cmax = HeapTupleHeaderGetRawCommandId(hdr);
    9014             :         }
    9015       42966 :         xlrec.combocid = InvalidCommandId;
    9016             :     }
    9017             : 
    9018             :     /*
    9019             :      * Note that we don't need to register the buffer here, because this
    9020             :      * operation does not modify the page. The insert/update/delete that
    9021             :      * called us certainly did, but that's WAL-logged separately.
    9022             :      */
    9023       46976 :     XLogBeginInsert();
    9024       46976 :     XLogRegisterData(&xlrec, SizeOfHeapNewCid);
    9025             : 
    9026             :     /* will be looked at irrespective of origin */
    9027             : 
    9028       46976 :     recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
    9029             : 
    9030       46976 :     return recptr;
    9031             : }
    9032             : 
    9033             : /*
    9034             :  * Build a heap tuple representing the configured REPLICA IDENTITY to represent
    9035             :  * the old tuple in an UPDATE or DELETE.
    9036             :  *
    9037             :  * Returns NULL if there's no need to log an identity or if there's no suitable
    9038             :  * key defined.
    9039             :  *
    9040             :  * Pass key_required true if any replica identity columns changed value, or if
    9041             :  * any of them have any external data.  Delete must always pass true.
    9042             :  *
    9043             :  * *copy is set to true if the returned tuple is a modified copy rather than
    9044             :  * the same tuple that was passed in.
    9045             :  */
    9046             : static HeapTuple
    9047     3508478 : ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
    9048             :                        bool *copy)
    9049             : {
    9050     3508478 :     TupleDesc   desc = RelationGetDescr(relation);
    9051     3508478 :     char        replident = relation->rd_rel->relreplident;
    9052             :     Bitmapset  *idattrs;
    9053             :     HeapTuple   key_tuple;
    9054             :     bool        nulls[MaxHeapAttributeNumber];
    9055             :     Datum       values[MaxHeapAttributeNumber];
    9056             : 
    9057     3508478 :     *copy = false;
    9058             : 
    9059     3508478 :     if (!RelationIsLogicallyLogged(relation))
    9060     3307904 :         return NULL;
    9061             : 
    9062      200574 :     if (replident == REPLICA_IDENTITY_NOTHING)
    9063         462 :         return NULL;
    9064             : 
    9065      200112 :     if (replident == REPLICA_IDENTITY_FULL)
    9066             :     {
    9067             :         /*
    9068             :          * When logging the entire old tuple, it very well could contain
    9069             :          * toasted columns. If so, force them to be inlined.
    9070             :          */
    9071         382 :         if (HeapTupleHasExternal(tp))
    9072             :         {
    9073           8 :             *copy = true;
    9074           8 :             tp = toast_flatten_tuple(tp, desc);
    9075             :         }
    9076         382 :         return tp;
    9077             :     }
    9078             : 
    9079             :     /* if the key isn't required and we're only logging the key, we're done */
    9080      199730 :     if (!key_required)
    9081       93758 :         return NULL;
    9082             : 
    9083             :     /* find out the replica identity columns */
    9084      105972 :     idattrs = RelationGetIndexAttrBitmap(relation,
    9085             :                                          INDEX_ATTR_BITMAP_IDENTITY_KEY);
    9086             : 
    9087             :     /*
    9088             :      * If there's no defined replica identity columns, treat as !key_required.
    9089             :      * (This case should not be reachable from heap_update, since that should
    9090             :      * calculate key_required accurately.  But heap_delete just passes
    9091             :      * constant true for key_required, so we can hit this case in deletes.)
    9092             :      */
    9093      105972 :     if (bms_is_empty(idattrs))
    9094       12042 :         return NULL;
    9095             : 
    9096             :     /*
    9097             :      * Construct a new tuple containing only the replica identity columns,
    9098             :      * with nulls elsewhere.  While we're at it, assert that the replica
    9099             :      * identity columns aren't null.
    9100             :      */
    9101       93930 :     heap_deform_tuple(tp, desc, values, nulls);
    9102             : 
    9103      301774 :     for (int i = 0; i < desc->natts; i++)
    9104             :     {
    9105      207844 :         if (bms_is_member(i + 1 - FirstLowInvalidHeapAttributeNumber,
    9106             :                           idattrs))
    9107             :             Assert(!nulls[i]);
    9108             :         else
    9109      113890 :             nulls[i] = true;
    9110             :     }
    9111             : 
    9112       93930 :     key_tuple = heap_form_tuple(desc, values, nulls);
    9113       93930 :     *copy = true;
    9114             : 
    9115       93930 :     bms_free(idattrs);
    9116             : 
    9117             :     /*
    9118             :      * If the tuple, which by here only contains indexed columns, still has
    9119             :      * toasted columns, force them to be inlined. This is somewhat unlikely
    9120             :      * since there's limits on the size of indexed columns, so we don't
    9121             :      * duplicate toast_flatten_tuple()s functionality in the above loop over
    9122             :      * the indexed columns, even if it would be more efficient.
    9123             :      */
    9124       93930 :     if (HeapTupleHasExternal(key_tuple))
    9125             :     {
    9126           8 :         HeapTuple   oldtup = key_tuple;
    9127             : 
    9128           8 :         key_tuple = toast_flatten_tuple(oldtup, desc);
    9129           8 :         heap_freetuple(oldtup);
    9130             :     }
    9131             : 
    9132       93930 :     return key_tuple;
    9133             : }
    9134             : 
    9135             : /*
    9136             :  * HeapCheckForSerializableConflictOut
    9137             :  *      We are reading a tuple.  If it's not visible, there may be a
    9138             :  *      rw-conflict out with the inserter.  Otherwise, if it is visible to us
    9139             :  *      but has been deleted, there may be a rw-conflict out with the deleter.
    9140             :  *
    9141             :  * We will determine the top level xid of the writing transaction with which
    9142             :  * we may be in conflict, and ask CheckForSerializableConflictOut() to check
    9143             :  * for overlap with our own transaction.
    9144             :  *
    9145             :  * This function should be called just about anywhere in heapam.c where a
    9146             :  * tuple has been read. The caller must hold at least a shared lock on the
    9147             :  * buffer, because this function might set hint bits on the tuple. There is
    9148             :  * currently no known reason to call this function from an index AM.
    9149             :  */
    9150             : void
    9151    58589892 : HeapCheckForSerializableConflictOut(bool visible, Relation relation,
    9152             :                                     HeapTuple tuple, Buffer buffer,
    9153             :                                     Snapshot snapshot)
    9154             : {
    9155             :     TransactionId xid;
    9156             :     HTSV_Result htsvResult;
    9157             : 
    9158    58589892 :     if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
    9159    58539222 :         return;
    9160             : 
    9161             :     /*
    9162             :      * Check to see whether the tuple has been written to by a concurrent
    9163             :      * transaction, either to create it not visible to us, or to delete it
    9164             :      * while it is visible to us.  The "visible" bool indicates whether the
    9165             :      * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
    9166             :      * is going on with it.
    9167             :      *
    9168             :      * In the event of a concurrently inserted tuple that also happens to have
    9169             :      * been concurrently updated (by a separate transaction), the xmin of the
    9170             :      * tuple will be used -- not the updater's xid.
    9171             :      */
    9172       50670 :     htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
    9173       50670 :     switch (htsvResult)
    9174             :     {
    9175       49066 :         case HEAPTUPLE_LIVE:
    9176       49066 :             if (visible)
    9177       49040 :                 return;
    9178          26 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9179          26 :             break;
    9180         704 :         case HEAPTUPLE_RECENTLY_DEAD:
    9181             :         case HEAPTUPLE_DELETE_IN_PROGRESS:
    9182         704 :             if (visible)
    9183         562 :                 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
    9184             :             else
    9185         142 :                 xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9186             : 
    9187         704 :             if (TransactionIdPrecedes(xid, TransactionXmin))
    9188             :             {
    9189             :                 /* This is like the HEAPTUPLE_DEAD case */
    9190             :                 Assert(!visible);
    9191         124 :                 return;
    9192             :             }
    9193         580 :             break;
    9194         652 :         case HEAPTUPLE_INSERT_IN_PROGRESS:
    9195         652 :             xid = HeapTupleHeaderGetXmin(tuple->t_data);
    9196         652 :             break;
    9197         248 :         case HEAPTUPLE_DEAD:
    9198             :             Assert(!visible);
    9199         248 :             return;
    9200           0 :         default:
    9201             : 
    9202             :             /*
    9203             :              * The only way to get to this default clause is if a new value is
    9204             :              * added to the enum type without adding it to this switch
    9205             :              * statement.  That's a bug, so elog.
    9206             :              */
    9207           0 :             elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
    9208             : 
    9209             :             /*
    9210             :              * In spite of having all enum values covered and calling elog on
    9211             :              * this default, some compilers think this is a code path which
    9212             :              * allows xid to be used below without initialization. Silence
    9213             :              * that warning.
    9214             :              */
    9215             :             xid = InvalidTransactionId;
    9216             :     }
    9217             : 
    9218             :     Assert(TransactionIdIsValid(xid));
    9219             :     Assert(TransactionIdFollowsOrEquals(xid, TransactionXmin));
    9220             : 
    9221             :     /*
    9222             :      * Find top level xid.  Bail out if xid is too early to be a conflict, or
    9223             :      * if it's our own xid.
    9224             :      */
    9225        1258 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    9226         124 :         return;
    9227        1134 :     xid = SubTransGetTopmostTransaction(xid);
    9228        1134 :     if (TransactionIdPrecedes(xid, TransactionXmin))
    9229           0 :         return;
    9230             : 
    9231        1134 :     CheckForSerializableConflictOut(relation, xid, snapshot);
    9232             : }

Generated by: LCOV version 1.14