LCOV - code coverage report
Current view: top level - src/backend/access/brin - brin_minmax_multi.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 649 753 86.2 %
Date: 2025-04-01 16:15:31 Functions: 46 51 90.2 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * brin_minmax_multi.c
       3             :  *      Implementation of Multi Min/Max opclass for BRIN
       4             :  *
       5             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
       6             :  * Portions Copyright (c) 1994, Regents of the University of California
       7             :  *
       8             :  *
       9             :  * Implements a variant of minmax opclass, where the summary is composed of
      10             :  * multiple smaller intervals. This allows us to handle outliers, which
      11             :  * usually make the simple minmax opclass inefficient.
      12             :  *
      13             :  * Consider for example page range with simple minmax interval [1000,2000],
      14             :  * and assume a new row gets inserted into the range with value 1000000.
      15             :  * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
      16             :  * got 1000x wider and won't be useful to eliminate scan keys between 2001
      17             :  * and 1000000.
      18             :  *
      19             :  * With minmax-multi opclass, we may have [1000,2000] interval initially,
      20             :  * but after adding the new row we start tracking it as two interval:
      21             :  *
      22             :  *   [1000,2000] and [1000000,1000000]
      23             :  *
      24             :  * This allows us to still eliminate the page range when the scan keys hit
      25             :  * the gap between 2000 and 1000000, making it useful in cases when the
      26             :  * simple minmax opclass gets inefficient.
      27             :  *
      28             :  * The number of intervals tracked per page range is somewhat flexible.
      29             :  * What is restricted is the number of values per page range, and the limit
      30             :  * is currently 32 (see values_per_range reloption). Collapsed intervals
      31             :  * (with equal minimum and maximum value) are stored as a single value,
      32             :  * while regular intervals require two values.
      33             :  *
      34             :  * When the number of values gets too high (by adding new values to the
      35             :  * summary), we merge some of the intervals to free space for more values.
      36             :  * This is done in a greedy way - we simply pick the two closest intervals,
      37             :  * merge them, and repeat this until the number of values to store gets
      38             :  * sufficiently low (below 50% of maximum values), but that is mostly
      39             :  * arbitrary threshold and may be changed easily).
      40             :  *
      41             :  * To pick the closest intervals we use the "distance" support procedure,
      42             :  * which measures space between two ranges (i.e. the length of an interval).
      43             :  * The computed value may be an approximation - in the worst case we will
      44             :  * merge two ranges that are slightly less optimal at that step, but the
      45             :  * index should still produce correct results.
      46             :  *
      47             :  * The compactions (reducing the number of values) is fairly expensive, as
      48             :  * it requires calling the distance functions, sorting etc. So when building
      49             :  * the summary, we use a significantly larger buffer, and only enforce the
      50             :  * exact limit at the very end. This improves performance, and it also helps
      51             :  * with building better ranges (due to the greedy approach).
      52             :  *
      53             :  *
      54             :  * IDENTIFICATION
      55             :  *    src/backend/access/brin/brin_minmax_multi.c
      56             :  */
      57             : #include "postgres.h"
      58             : 
      59             : /* needed for PGSQL_AF_INET */
      60             : #include <sys/socket.h>
      61             : 
      62             : #include "access/brin.h"
      63             : #include "access/brin_internal.h"
      64             : #include "access/brin_tuple.h"
      65             : #include "access/genam.h"
      66             : #include "access/htup_details.h"
      67             : #include "access/reloptions.h"
      68             : #include "access/stratnum.h"
      69             : #include "catalog/pg_am.h"
      70             : #include "catalog/pg_amop.h"
      71             : #include "catalog/pg_type.h"
      72             : #include "utils/array.h"
      73             : #include "utils/builtins.h"
      74             : #include "utils/date.h"
      75             : #include "utils/datum.h"
      76             : #include "utils/float.h"
      77             : #include "utils/inet.h"
      78             : #include "utils/lsyscache.h"
      79             : #include "utils/memutils.h"
      80             : #include "utils/pg_lsn.h"
      81             : #include "utils/rel.h"
      82             : #include "utils/syscache.h"
      83             : #include "utils/timestamp.h"
      84             : #include "utils/uuid.h"
      85             : 
      86             : /*
      87             :  * Additional SQL level support functions
      88             :  *
      89             :  * Procedure numbers must not use values reserved for BRIN itself; see
      90             :  * brin_internal.h.
      91             :  */
      92             : #define     MINMAX_MAX_PROCNUMS     1   /* maximum support procs we need */
      93             : #define     PROCNUM_DISTANCE        11  /* required, distance between values */
      94             : 
      95             : /*
      96             :  * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
      97             :  * (Must be equal to minimum of private procnums).
      98             :  */
      99             : #define     PROCNUM_BASE            11
     100             : 
     101             : /*
     102             :  * Sizing the insert buffer - we use 10x the number of values specified
     103             :  * in the reloption, but we cap it to 8192 not to get too large. When
     104             :  * the buffer gets full, we reduce the number of values by half.
     105             :  */
     106             : #define     MINMAX_BUFFER_FACTOR            10
     107             : #define     MINMAX_BUFFER_MIN               256
     108             : #define     MINMAX_BUFFER_MAX               8192
     109             : #define     MINMAX_BUFFER_LOAD_FACTOR       0.5
     110             : 
     111             : typedef struct MinmaxMultiOpaque
     112             : {
     113             :     FmgrInfo    extra_procinfos[MINMAX_MAX_PROCNUMS];
     114             :     Oid         cached_subtype;
     115             :     FmgrInfo    strategy_procinfos[BTMaxStrategyNumber];
     116             : } MinmaxMultiOpaque;
     117             : 
     118             : /*
     119             :  * Storage type for BRIN's minmax reloptions
     120             :  */
     121             : typedef struct MinMaxMultiOptions
     122             : {
     123             :     int32       vl_len_;        /* varlena header (do not touch directly!) */
     124             :     int         valuesPerRange; /* number of values per range */
     125             : } MinMaxMultiOptions;
     126             : 
     127             : #define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE        32
     128             : 
     129             : #define MinMaxMultiGetValuesPerRange(opts) \
     130             :         ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
     131             :          ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
     132             :          MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
     133             : 
     134             : #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
     135             : 
     136             : /*
     137             :  * The summary of minmax-multi indexes has two representations - Ranges for
     138             :  * convenient processing, and SerializedRanges for storage in bytea value.
     139             :  *
     140             :  * The Ranges struct stores the boundary values in a single array, but we
     141             :  * treat regular and single-point ranges differently to save space. For
     142             :  * regular ranges (with different boundary values) we have to store both
     143             :  * the lower and upper bound of the range, while for "single-point ranges"
     144             :  * we only need to store a single value.
     145             :  *
     146             :  * The 'values' array stores boundary values for regular ranges first (there
     147             :  * are 2*nranges values to store), and then the nvalues boundary values for
     148             :  * single-point ranges. That is, we have (2*nranges + nvalues) boundary
     149             :  * values in the array.
     150             :  *
     151             :  * +-------------------------+----------------------------------+
     152             :  * | ranges (2 * nranges of) | single point values (nvalues of) |
     153             :  * +-------------------------+----------------------------------+
     154             :  *
     155             :  * This allows us to quickly add new values, and store outliers without
     156             :  * having to widen any of the existing range values.
     157             :  *
     158             :  * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
     159             :  * When nsorted == nvalues, all single point values are sorted.
     160             :  *
     161             :  * We never store more than maxvalues values (as set by values_per_range
     162             :  * reloption). If needed we merge some of the ranges.
     163             :  *
     164             :  * To minimize palloc overhead, we always allocate the full array with
     165             :  * space for maxvalues elements. This should be fine as long as the
     166             :  * maxvalues is reasonably small (64 seems fine), which is the case
     167             :  * thanks to values_per_range reloption being limited to 256.
     168             :  */
     169             : typedef struct Ranges
     170             : {
     171             :     /* Cache information that we need quite often. */
     172             :     Oid         typid;
     173             :     Oid         colloid;
     174             :     AttrNumber  attno;
     175             :     FmgrInfo   *cmp;
     176             : 
     177             :     /* (2*nranges + nvalues) <= maxvalues */
     178             :     int         nranges;        /* number of ranges in the values[] array */
     179             :     int         nsorted;        /* number of nvalues which are sorted */
     180             :     int         nvalues;        /* number of point values in values[] array */
     181             :     int         maxvalues;      /* number of elements in the values[] array */
     182             : 
     183             :     /*
     184             :      * We simply add the values into a large buffer, without any expensive
     185             :      * steps (sorting, deduplication, ...). The buffer is a multiple of the
     186             :      * target number of values, so the compaction happens less often,
     187             :      * amortizing the costs. We keep the actual target and compact to the
     188             :      * requested number of values at the very end, before serializing to
     189             :      * on-disk representation.
     190             :      */
     191             :     /* requested number of values */
     192             :     int         target_maxvalues;
     193             : 
     194             :     /* values stored for this range - either raw values, or ranges */
     195             :     Datum       values[FLEXIBLE_ARRAY_MEMBER];
     196             : } Ranges;
     197             : 
     198             : /*
     199             :  * On-disk the summary is stored as a bytea value, with a simple header
     200             :  * with basic metadata, followed by the boundary values. It has a varlena
     201             :  * header, so can be treated as varlena directly.
     202             :  *
     203             :  * See brin_range_serialize/brin_range_deserialize for serialization details.
     204             :  */
     205             : typedef struct SerializedRanges
     206             : {
     207             :     /* varlena header (do not touch directly!) */
     208             :     int32       vl_len_;
     209             : 
     210             :     /* type of values stored in the data array */
     211             :     Oid         typid;
     212             : 
     213             :     /* (2*nranges + nvalues) <= maxvalues */
     214             :     int         nranges;        /* number of ranges in the array (stored) */
     215             :     int         nvalues;        /* number of values in the data array (all) */
     216             :     int         maxvalues;      /* maximum number of values (reloption) */
     217             : 
     218             :     /* contains the actual data */
     219             :     char        data[FLEXIBLE_ARRAY_MEMBER];
     220             : } SerializedRanges;
     221             : 
     222             : static SerializedRanges *brin_range_serialize(Ranges *range);
     223             : 
     224             : static Ranges *brin_range_deserialize(int maxvalues,
     225             :                                       SerializedRanges *serialized);
     226             : 
     227             : 
     228             : /*
     229             :  * Used to represent ranges expanded to make merging and combining easier.
     230             :  *
     231             :  * Each expanded range is essentially an interval, represented by min/max
     232             :  * values, along with a flag whether it's a collapsed range (in which case
     233             :  * the min and max values are equal). We have the flag to handle by-ref
     234             :  * data types - we can't simply compare the datums, and this saves some
     235             :  * calls to the type-specific comparator function.
     236             :  */
     237             : typedef struct ExpandedRange
     238             : {
     239             :     Datum       minval;         /* lower boundary */
     240             :     Datum       maxval;         /* upper boundary */
     241             :     bool        collapsed;      /* true if minval==maxval */
     242             : } ExpandedRange;
     243             : 
     244             : /*
     245             :  * Represents a distance between two ranges (identified by index into
     246             :  * an array of extended ranges).
     247             :  */
     248             : typedef struct DistanceValue
     249             : {
     250             :     int         index;
     251             :     double      value;
     252             : } DistanceValue;
     253             : 
     254             : 
     255             : /* Cache for support and strategy procedures. */
     256             : 
     257             : static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
     258             :                                            uint16 procnum);
     259             : 
     260             : static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
     261             :                                                     uint16 attno, Oid subtype,
     262             :                                                     uint16 strategynum);
     263             : 
     264             : typedef struct compare_context
     265             : {
     266             :     FmgrInfo   *cmpFn;
     267             :     Oid         colloid;
     268             : } compare_context;
     269             : 
     270             : static int  compare_values(const void *a, const void *b, void *arg);
     271             : 
     272             : 
     273             : #ifdef USE_ASSERT_CHECKING
     274             : /*
     275             :  * Check that the order of the array values is correct, using the cmp
     276             :  * function (which should be BTLessStrategyNumber).
     277             :  */
     278             : static void
     279             : AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
     280             : {
     281             :     int         i;
     282             :     Datum       lt;
     283             : 
     284             :     for (i = 0; i < (nvalues - 1); i++)
     285             :     {
     286             :         lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
     287             :         Assert(DatumGetBool(lt));
     288             :     }
     289             : }
     290             : #endif
     291             : 
     292             : /*
     293             :  * Comprehensive check of the Ranges structure.
     294             :  */
     295             : static void
     296      271212 : AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
     297             : {
     298             : #ifdef USE_ASSERT_CHECKING
     299             :     int         i;
     300             : 
     301             :     /* some basic sanity checks */
     302             :     Assert(ranges->nranges >= 0);
     303             :     Assert(ranges->nsorted >= 0);
     304             :     Assert(ranges->nvalues >= ranges->nsorted);
     305             :     Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
     306             :     Assert(ranges->typid != InvalidOid);
     307             : 
     308             :     /*
     309             :      * First the ranges - there are 2*nranges boundary values, and the values
     310             :      * have to be strictly ordered (equal values would mean the range is
     311             :      * collapsed, and should be stored as a point). This also guarantees that
     312             :      * the ranges do not overlap.
     313             :      */
     314             :     AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
     315             : 
     316             :     /* then the single-point ranges (with nvalues boundary values ) */
     317             :     AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
     318             :                      ranges->nsorted);
     319             : 
     320             :     /*
     321             :      * Check that none of the values are not covered by ranges (both sorted
     322             :      * and unsorted)
     323             :      */
     324             :     if (ranges->nranges > 0)
     325             :     {
     326             :         for (i = 0; i < ranges->nvalues; i++)
     327             :         {
     328             :             Datum       compar;
     329             :             int         start,
     330             :                         end;
     331             :             Datum       minvalue = ranges->values[0];
     332             :             Datum       maxvalue = ranges->values[2 * ranges->nranges - 1];
     333             :             Datum       value = ranges->values[2 * ranges->nranges + i];
     334             : 
     335             :             compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
     336             : 
     337             :             /*
     338             :              * If the value is smaller than the lower bound in the first range
     339             :              * then it cannot possibly be in any of the ranges.
     340             :              */
     341             :             if (DatumGetBool(compar))
     342             :                 continue;
     343             : 
     344             :             compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
     345             : 
     346             :             /*
     347             :              * Likewise, if the value is larger than the upper bound of the
     348             :              * final range, then it cannot possibly be inside any of the
     349             :              * ranges.
     350             :              */
     351             :             if (DatumGetBool(compar))
     352             :                 continue;
     353             : 
     354             :             /* bsearch the ranges to see if 'value' fits within any of them */
     355             :             start = 0;          /* first range */
     356             :             end = ranges->nranges - 1;   /* last range */
     357             :             while (true)
     358             :             {
     359             :                 int         midpoint = (start + end) / 2;
     360             : 
     361             :                 /* this means we ran out of ranges in the last step */
     362             :                 if (start > end)
     363             :                     break;
     364             : 
     365             :                 /* copy the min/max values from the ranges */
     366             :                 minvalue = ranges->values[2 * midpoint];
     367             :                 maxvalue = ranges->values[2 * midpoint + 1];
     368             : 
     369             :                 /*
     370             :                  * Is the value smaller than the minval? If yes, we'll recurse
     371             :                  * to the left side of range array.
     372             :                  */
     373             :                 compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
     374             : 
     375             :                 /* smaller than the smallest value in this range */
     376             :                 if (DatumGetBool(compar))
     377             :                 {
     378             :                     end = (midpoint - 1);
     379             :                     continue;
     380             :                 }
     381             : 
     382             :                 /*
     383             :                  * Is the value greater than the minval? If yes, we'll recurse
     384             :                  * to the right side of range array.
     385             :                  */
     386             :                 compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
     387             : 
     388             :                 /* larger than the largest value in this range */
     389             :                 if (DatumGetBool(compar))
     390             :                 {
     391             :                     start = (midpoint + 1);
     392             :                     continue;
     393             :                 }
     394             : 
     395             :                 /* hey, we found a matching range */
     396             :                 Assert(false);
     397             :             }
     398             :         }
     399             :     }
     400             : 
     401             :     /* and values in the unsorted part must not be in the sorted part */
     402             :     if (ranges->nsorted > 0)
     403             :     {
     404             :         compare_context cxt;
     405             : 
     406             :         cxt.colloid = ranges->colloid;
     407             :         cxt.cmpFn = ranges->cmp;
     408             : 
     409             :         for (i = ranges->nsorted; i < ranges->nvalues; i++)
     410             :         {
     411             :             Datum       value = ranges->values[2 * ranges->nranges + i];
     412             : 
     413             :             Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
     414             :                                ranges->nsorted, sizeof(Datum),
     415             :                                compare_values, &cxt) == NULL);
     416             :         }
     417             :     }
     418             : #endif
     419      271212 : }
     420             : 
     421             : /*
     422             :  * Check that the expanded ranges (built when reducing the number of ranges
     423             :  * by combining some of them) are correctly sorted and do not overlap.
     424             :  */
     425             : static void
     426         492 : AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
     427             :                           Form_pg_attribute attr, ExpandedRange *ranges,
     428             :                           int nranges)
     429             : {
     430             : #ifdef USE_ASSERT_CHECKING
     431             :     int         i;
     432             :     FmgrInfo   *eq;
     433             :     FmgrInfo   *lt;
     434             : 
     435             :     eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
     436             :                                             BTEqualStrategyNumber);
     437             : 
     438             :     lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
     439             :                                             BTLessStrategyNumber);
     440             : 
     441             :     /*
     442             :      * Each range independently should be valid, i.e. that for the boundary
     443             :      * values (lower <= upper).
     444             :      */
     445             :     for (i = 0; i < nranges; i++)
     446             :     {
     447             :         Datum       r;
     448             :         Datum       minval = ranges[i].minval;
     449             :         Datum       maxval = ranges[i].maxval;
     450             : 
     451             :         if (ranges[i].collapsed)    /* collapsed: minval == maxval */
     452             :             r = FunctionCall2Coll(eq, colloid, minval, maxval);
     453             :         else                    /* non-collapsed: minval < maxval */
     454             :             r = FunctionCall2Coll(lt, colloid, minval, maxval);
     455             : 
     456             :         Assert(DatumGetBool(r));
     457             :     }
     458             : 
     459             :     /*
     460             :      * And the ranges should be ordered and must not overlap, i.e. upper <
     461             :      * lower for boundaries of consecutive ranges.
     462             :      */
     463             :     for (i = 0; i < nranges - 1; i++)
     464             :     {
     465             :         Datum       r;
     466             :         Datum       maxval = ranges[i].maxval;
     467             :         Datum       minval = ranges[i + 1].minval;
     468             : 
     469             :         r = FunctionCall2Coll(lt, colloid, maxval, minval);
     470             : 
     471             :         Assert(DatumGetBool(r));
     472             :     }
     473             : #endif
     474         492 : }
     475             : 
     476             : 
     477             : /*
     478             :  * minmax_multi_init
     479             :  *      Initialize the deserialized range list, allocate all the memory.
     480             :  *
     481             :  * This is only in-memory representation of the ranges, so we allocate
     482             :  * enough space for the maximum number of values (so as not to have to do
     483             :  * repallocs as the ranges grow).
     484             :  */
     485             : static Ranges *
     486       50722 : minmax_multi_init(int maxvalues)
     487             : {
     488             :     Size        len;
     489             :     Ranges     *ranges;
     490             : 
     491             :     Assert(maxvalues > 0);
     492             : 
     493       50722 :     len = offsetof(Ranges, values); /* fixed header */
     494       50722 :     len += maxvalues * sizeof(Datum);   /* Datum values */
     495             : 
     496       50722 :     ranges = (Ranges *) palloc0(len);
     497             : 
     498       50722 :     ranges->maxvalues = maxvalues;
     499             : 
     500       50722 :     return ranges;
     501             : }
     502             : 
     503             : 
     504             : /*
     505             :  * range_deduplicate_values
     506             :  *      Deduplicate the part with values in the simple points.
     507             :  *
     508             :  * This is meant to be a cheaper way of reducing the size of the ranges. It
     509             :  * does not touch the ranges, and only sorts the other values - it does not
     510             :  * call the distance functions, which may be quite expensive, etc.
     511             :  *
     512             :  * We do know the values are not duplicate with the ranges, because we check
     513             :  * that before adding a new value. Same for the sorted part of values.
     514             :  */
     515             : static void
     516       18268 : range_deduplicate_values(Ranges *range)
     517             : {
     518             :     int         i,
     519             :                 n;
     520             :     int         start;
     521             :     compare_context cxt;
     522             : 
     523             :     /*
     524             :      * If there are no unsorted values, we're done (this probably can't
     525             :      * happen, as we're adding values to unsorted part).
     526             :      */
     527       18268 :     if (range->nsorted == range->nvalues)
     528       18022 :         return;
     529             : 
     530             :     /* sort the values */
     531         246 :     cxt.colloid = range->colloid;
     532         246 :     cxt.cmpFn = range->cmp;
     533             : 
     534             :     /* the values start right after the ranges (which are always sorted) */
     535         246 :     start = 2 * range->nranges;
     536             : 
     537             :     /*
     538             :      * XXX This might do a merge sort, to leverage that the first part of the
     539             :      * array is already sorted. If the sorted part is large, it might be quite
     540             :      * a bit faster.
     541             :      */
     542         246 :     qsort_arg(&range->values[start],
     543         246 :               range->nvalues, sizeof(Datum),
     544             :               compare_values, &cxt);
     545             : 
     546         246 :     n = 1;
     547       78240 :     for (i = 1; i < range->nvalues; i++)
     548             :     {
     549             :         /* same as preceding value, so store it */
     550       77994 :         if (compare_values(&range->values[start + i - 1],
     551       77994 :                            &range->values[start + i],
     552             :                            &cxt) == 0)
     553           0 :             continue;
     554             : 
     555       77994 :         range->values[start + n] = range->values[start + i];
     556             : 
     557       77994 :         n++;
     558             :     }
     559             : 
     560             :     /* now all the values are sorted */
     561         246 :     range->nvalues = n;
     562         246 :     range->nsorted = n;
     563             : 
     564         246 :     AssertCheckRanges(range, range->cmp, range->colloid);
     565             : }
     566             : 
     567             : 
     568             : /*
     569             :  * brin_range_serialize
     570             :  *    Serialize the in-memory representation into a compact varlena value.
     571             :  *
     572             :  * Simply copy the header and then also the individual values, as stored
     573             :  * in the in-memory value array.
     574             :  */
     575             : static SerializedRanges *
     576       18022 : brin_range_serialize(Ranges *range)
     577             : {
     578             :     Size        len;
     579             :     int         nvalues;
     580             :     SerializedRanges *serialized;
     581             :     Oid         typid;
     582             :     int         typlen;
     583             :     bool        typbyval;
     584             : 
     585             :     char       *ptr;
     586             : 
     587             :     /* simple sanity checks */
     588             :     Assert(range->nranges >= 0);
     589             :     Assert(range->nsorted >= 0);
     590             :     Assert(range->nvalues >= 0);
     591             :     Assert(range->maxvalues > 0);
     592             :     Assert(range->target_maxvalues > 0);
     593             : 
     594             :     /* at this point the range should be compacted to the target size */
     595             :     Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
     596             : 
     597             :     Assert(range->target_maxvalues <= range->maxvalues);
     598             : 
     599             :     /* range boundaries are always sorted */
     600             :     Assert(range->nvalues >= range->nsorted);
     601             : 
     602             :     /* deduplicate values, if there's unsorted part */
     603       18022 :     range_deduplicate_values(range);
     604             : 
     605             :     /* see how many Datum values we actually have */
     606       18022 :     nvalues = 2 * range->nranges + range->nvalues;
     607             : 
     608       18022 :     typid = range->typid;
     609       18022 :     typbyval = get_typbyval(typid);
     610       18022 :     typlen = get_typlen(typid);
     611             : 
     612             :     /* header is always needed */
     613       18022 :     len = offsetof(SerializedRanges, data);
     614             : 
     615             :     /*
     616             :      * The space needed depends on data type - for fixed-length data types
     617             :      * (by-value and some by-reference) it's pretty simple, just multiply
     618             :      * (attlen * nvalues) and we're done. For variable-length by-reference
     619             :      * types we need to actually walk all the values and sum the lengths.
     620             :      */
     621       18022 :     if (typlen == -1)           /* varlena */
     622             :     {
     623             :         int         i;
     624             : 
     625       11888 :         for (i = 0; i < nvalues; i++)
     626             :         {
     627        9314 :             len += VARSIZE_ANY(range->values[i]);
     628             :         }
     629             :     }
     630       15448 :     else if (typlen == -2)      /* cstring */
     631             :     {
     632             :         int         i;
     633             : 
     634           0 :         for (i = 0; i < nvalues; i++)
     635             :         {
     636             :             /* don't forget to include the null terminator ;-) */
     637           0 :             len += strlen(DatumGetCString(range->values[i])) + 1;
     638             :         }
     639             :     }
     640             :     else                        /* fixed-length types (even by-reference) */
     641             :     {
     642             :         Assert(typlen > 0);
     643       15448 :         len += nvalues * typlen;
     644             :     }
     645             : 
     646             :     /*
     647             :      * Allocate the serialized object, copy the basic information. The
     648             :      * serialized object is a varlena, so update the header.
     649             :      */
     650       18022 :     serialized = (SerializedRanges *) palloc0(len);
     651       18022 :     SET_VARSIZE(serialized, len);
     652             : 
     653       18022 :     serialized->typid = typid;
     654       18022 :     serialized->nranges = range->nranges;
     655       18022 :     serialized->nvalues = range->nvalues;
     656       18022 :     serialized->maxvalues = range->target_maxvalues;
     657             : 
     658             :     /*
     659             :      * And now copy also the boundary values (like the length calculation this
     660             :      * depends on the particular data type).
     661             :      */
     662       18022 :     ptr = serialized->data;      /* start of the serialized data */
     663             : 
     664       89038 :     for (int i = 0; i < nvalues; i++)
     665             :     {
     666       71016 :         if (typbyval)           /* simple by-value data types */
     667             :         {
     668             :             Datum       tmp;
     669             : 
     670             :             /*
     671             :              * For byval types, we need to copy just the significant bytes -
     672             :              * we can't use memcpy directly, as that assumes little-endian
     673             :              * behavior.  store_att_byval does almost what we need, but it
     674             :              * requires a properly aligned buffer - the output buffer does not
     675             :              * guarantee that. So we simply use a local Datum variable (which
     676             :              * guarantees proper alignment), and then copy the value from it.
     677             :              */
     678       44256 :             store_att_byval(&tmp, range->values[i], typlen);
     679             : 
     680       44256 :             memcpy(ptr, &tmp, typlen);
     681       44256 :             ptr += typlen;
     682             :         }
     683       26760 :         else if (typlen > 0) /* fixed-length by-ref types */
     684             :         {
     685       17446 :             memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
     686       17446 :             ptr += typlen;
     687             :         }
     688        9314 :         else if (typlen == -1)  /* varlena */
     689             :         {
     690        9314 :             int         tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
     691             : 
     692        9314 :             memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
     693        9314 :             ptr += tmp;
     694             :         }
     695           0 :         else if (typlen == -2)  /* cstring */
     696             :         {
     697           0 :             int         tmp = strlen(DatumGetCString(range->values[i])) + 1;
     698             : 
     699           0 :             memcpy(ptr, DatumGetCString(range->values[i]), tmp);
     700           0 :             ptr += tmp;
     701             :         }
     702             : 
     703             :         /* make sure we haven't overflown the buffer end */
     704             :         Assert(ptr <= ((char *) serialized + len));
     705             :     }
     706             : 
     707             :     /* exact size */
     708             :     Assert(ptr == ((char *) serialized + len));
     709             : 
     710       18022 :     return serialized;
     711             : }
     712             : 
     713             : /*
     714             :  * brin_range_deserialize
     715             :  *    Serialize the in-memory representation into a compact varlena value.
     716             :  *
     717             :  * Simply copy the header and then also the individual values, as stored
     718             :  * in the in-memory value array.
     719             :  */
     720             : static Ranges *
     721       45846 : brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
     722             : {
     723             :     int         i,
     724             :                 nvalues;
     725             :     char       *ptr,
     726             :                *dataptr;
     727             :     bool        typbyval;
     728             :     int         typlen;
     729             :     Size        datalen;
     730             : 
     731             :     Ranges     *range;
     732             : 
     733             :     Assert(serialized->nranges >= 0);
     734             :     Assert(serialized->nvalues >= 0);
     735             :     Assert(serialized->maxvalues > 0);
     736             : 
     737       45846 :     nvalues = 2 * serialized->nranges + serialized->nvalues;
     738             : 
     739             :     Assert(nvalues <= serialized->maxvalues);
     740             :     Assert(serialized->maxvalues <= maxvalues);
     741             : 
     742       45846 :     range = minmax_multi_init(maxvalues);
     743             : 
     744             :     /* copy the header info */
     745       45846 :     range->nranges = serialized->nranges;
     746       45846 :     range->nvalues = serialized->nvalues;
     747       45846 :     range->nsorted = serialized->nvalues;
     748       45846 :     range->maxvalues = maxvalues;
     749       45846 :     range->target_maxvalues = serialized->maxvalues;
     750             : 
     751       45846 :     range->typid = serialized->typid;
     752             : 
     753       45846 :     typbyval = get_typbyval(serialized->typid);
     754       45846 :     typlen = get_typlen(serialized->typid);
     755             : 
     756             :     /*
     757             :      * And now deconstruct the values into Datum array. We have to copy the
     758             :      * data because the serialized representation ignores alignment, and we
     759             :      * don't want to rely on it being kept around anyway.
     760             :      */
     761       45846 :     ptr = serialized->data;
     762             : 
     763             :     /*
     764             :      * We don't want to allocate many pieces, so we just allocate everything
     765             :      * in one chunk. How much space will we need?
     766             :      *
     767             :      * XXX We don't need to copy simple by-value data types.
     768             :      */
     769       45846 :     datalen = 0;
     770       45846 :     dataptr = NULL;
     771      105632 :     for (i = 0; (i < nvalues) && (!typbyval); i++)
     772             :     {
     773       59786 :         if (typlen > 0)          /* fixed-length by-ref types */
     774       36158 :             datalen += MAXALIGN(typlen);
     775       23628 :         else if (typlen == -1)  /* varlena */
     776             :         {
     777       23628 :             datalen += MAXALIGN(VARSIZE_ANY(ptr));
     778       23628 :             ptr += VARSIZE_ANY(ptr);
     779             :         }
     780           0 :         else if (typlen == -2)  /* cstring */
     781             :         {
     782           0 :             Size        slen = strlen(ptr) + 1;
     783             : 
     784           0 :             datalen += MAXALIGN(slen);
     785           0 :             ptr += slen;
     786             :         }
     787             :     }
     788             : 
     789       45846 :     if (datalen > 0)
     790       17394 :         dataptr = palloc(datalen);
     791             : 
     792             :     /*
     793             :      * Restore the source pointer (might have been modified when calculating
     794             :      * the space we need to allocate).
     795             :      */
     796       45846 :     ptr = serialized->data;
     797             : 
     798      236972 :     for (i = 0; i < nvalues; i++)
     799             :     {
     800      191126 :         if (typbyval)           /* simple by-value data types */
     801             :         {
     802      131340 :             Datum       v = 0;
     803             : 
     804      131340 :             memcpy(&v, ptr, typlen);
     805             : 
     806      131340 :             range->values[i] = fetch_att(&v, true, typlen);
     807      131340 :             ptr += typlen;
     808             :         }
     809       59786 :         else if (typlen > 0) /* fixed-length by-ref types */
     810             :         {
     811       36158 :             range->values[i] = PointerGetDatum(dataptr);
     812             : 
     813       36158 :             memcpy(dataptr, ptr, typlen);
     814       36158 :             dataptr += MAXALIGN(typlen);
     815             : 
     816       36158 :             ptr += typlen;
     817             :         }
     818       23628 :         else if (typlen == -1)  /* varlena */
     819             :         {
     820       23628 :             range->values[i] = PointerGetDatum(dataptr);
     821             : 
     822       23628 :             memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
     823       23628 :             dataptr += MAXALIGN(VARSIZE_ANY(ptr));
     824       23628 :             ptr += VARSIZE_ANY(ptr);
     825             :         }
     826           0 :         else if (typlen == -2)  /* cstring */
     827             :         {
     828           0 :             Size        slen = strlen(ptr) + 1;
     829             : 
     830           0 :             range->values[i] = PointerGetDatum(dataptr);
     831             : 
     832           0 :             memcpy(dataptr, ptr, slen);
     833           0 :             dataptr += MAXALIGN(slen);
     834           0 :             ptr += slen;
     835             :         }
     836             : 
     837             :         /* make sure we haven't overflown the buffer end */
     838             :         Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
     839             :     }
     840             : 
     841             :     /* should have consumed the whole input value exactly */
     842             :     Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
     843             : 
     844             :     /* return the deserialized value */
     845       45846 :     return range;
     846             : }
     847             : 
     848             : /*
     849             :  * compare_expanded_ranges
     850             :  *    Compare the expanded ranges - first by minimum, then by maximum.
     851             :  *
     852             :  * We do guarantee that ranges in a single Ranges object do not overlap, so it
     853             :  * may seem strange that we don't order just by minimum. But when merging two
     854             :  * Ranges (which happens in the union function), the ranges may in fact
     855             :  * overlap. So we do compare both.
     856             :  */
     857             : static int
     858      834942 : compare_expanded_ranges(const void *a, const void *b, void *arg)
     859             : {
     860      834942 :     ExpandedRange *ra = (ExpandedRange *) a;
     861      834942 :     ExpandedRange *rb = (ExpandedRange *) b;
     862             :     Datum       r;
     863             : 
     864      834942 :     compare_context *cxt = (compare_context *) arg;
     865             : 
     866             :     /* first compare minvals */
     867      834942 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
     868             : 
     869      834942 :     if (DatumGetBool(r))
     870      539176 :         return -1;
     871             : 
     872      295766 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
     873             : 
     874      295766 :     if (DatumGetBool(r))
     875      231486 :         return 1;
     876             : 
     877             :     /* then compare maxvals */
     878       64280 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
     879             : 
     880       64280 :     if (DatumGetBool(r))
     881           0 :         return -1;
     882             : 
     883       64280 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
     884             : 
     885       64280 :     if (DatumGetBool(r))
     886           0 :         return 1;
     887             : 
     888       64280 :     return 0;
     889             : }
     890             : 
     891             : /*
     892             :  * compare_values
     893             :  *    Compare the values.
     894             :  */
     895             : static int
     896     1142304 : compare_values(const void *a, const void *b, void *arg)
     897             : {
     898     1142304 :     Datum      *da = (Datum *) a;
     899     1142304 :     Datum      *db = (Datum *) b;
     900             :     Datum       r;
     901             : 
     902     1142304 :     compare_context *cxt = (compare_context *) arg;
     903             : 
     904     1142304 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
     905             : 
     906     1142304 :     if (DatumGetBool(r))
     907      607344 :         return -1;
     908             : 
     909      534960 :     r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
     910             : 
     911      534960 :     if (DatumGetBool(r))
     912      467730 :         return 1;
     913             : 
     914       67230 :     return 0;
     915             : }
     916             : 
     917             : /*
     918             :  * Check if the new value matches one of the existing ranges.
     919             :  */
     920             : static bool
     921      140498 : has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
     922             :                    Datum newval, AttrNumber attno, Oid typid)
     923             : {
     924             :     Datum       compar;
     925             : 
     926             :     Datum       minvalue;
     927             :     Datum       maxvalue;
     928             : 
     929             :     FmgrInfo   *cmpLessFn;
     930             :     FmgrInfo   *cmpGreaterFn;
     931             : 
     932             :     /* binary search on ranges */
     933             :     int         start,
     934             :                 end;
     935             : 
     936      140498 :     if (ranges->nranges == 0)
     937       81548 :         return false;
     938             : 
     939       58950 :     minvalue = ranges->values[0];
     940       58950 :     maxvalue = ranges->values[2 * ranges->nranges - 1];
     941             : 
     942             :     /*
     943             :      * Otherwise, need to compare the new value with boundaries of all the
     944             :      * ranges. First check if it's less than the absolute minimum, which is
     945             :      * the first value in the array.
     946             :      */
     947       58950 :     cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
     948             :                                                    BTLessStrategyNumber);
     949       58950 :     compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
     950             : 
     951             :     /* smaller than the smallest value in the range list */
     952       58950 :     if (DatumGetBool(compar))
     953          18 :         return false;
     954             : 
     955             :     /*
     956             :      * And now compare it to the existing maximum (last value in the data
     957             :      * array). But only if we haven't already ruled out a possible match in
     958             :      * the minvalue check.
     959             :      */
     960       58932 :     cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
     961             :                                                       BTGreaterStrategyNumber);
     962       58932 :     compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
     963             : 
     964       58932 :     if (DatumGetBool(compar))
     965       58206 :         return false;
     966             : 
     967             :     /*
     968             :      * So we know it's in the general min/max, the question is whether it
     969             :      * falls in one of the ranges or gaps. We'll do a binary search on
     970             :      * individual ranges - for each range we check equality (value falls into
     971             :      * the range), and then check ranges either above or below the current
     972             :      * range.
     973             :      */
     974         726 :     start = 0;                  /* first range */
     975         726 :     end = (ranges->nranges - 1); /* last range */
     976             :     while (true)
     977        1554 :     {
     978        2280 :         int         midpoint = (start + end) / 2;
     979             : 
     980             :         /* this means we ran out of ranges in the last step */
     981        2280 :         if (start > end)
     982         288 :             return false;
     983             : 
     984             :         /* copy the min/max values from the ranges */
     985        1992 :         minvalue = ranges->values[2 * midpoint];
     986        1992 :         maxvalue = ranges->values[2 * midpoint + 1];
     987             : 
     988             :         /*
     989             :          * Is the value smaller than the minval? If yes, we'll recurse to the
     990             :          * left side of range array.
     991             :          */
     992        1992 :         compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
     993             : 
     994             :         /* smaller than the smallest value in this range */
     995        1992 :         if (DatumGetBool(compar))
     996             :         {
     997         582 :             end = (midpoint - 1);
     998         582 :             continue;
     999             :         }
    1000             : 
    1001             :         /*
    1002             :          * Is the value greater than the minval? If yes, we'll recurse to the
    1003             :          * right side of range array.
    1004             :          */
    1005        1410 :         compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
    1006             : 
    1007             :         /* larger than the largest value in this range */
    1008        1410 :         if (DatumGetBool(compar))
    1009             :         {
    1010         972 :             start = (midpoint + 1);
    1011         972 :             continue;
    1012             :         }
    1013             : 
    1014             :         /* hey, we found a matching range */
    1015         438 :         return true;
    1016             :     }
    1017             : 
    1018             :     return false;
    1019             : }
    1020             : 
    1021             : 
    1022             : /*
    1023             :  * range_contains_value
    1024             :  *      See if the new value is already contained in the range list.
    1025             :  *
    1026             :  * We first inspect the list of intervals. We use a small trick - we check
    1027             :  * the value against min/max of the whole range (min of the first interval,
    1028             :  * max of the last one) first, and only inspect the individual intervals if
    1029             :  * this passes.
    1030             :  *
    1031             :  * If the value matches none of the intervals, we check the exact values.
    1032             :  * We simply loop through them and invoke equality operator on them.
    1033             :  *
    1034             :  * The last parameter (full) determines whether we need to search all the
    1035             :  * values, including the unsorted part. With full=false, the unsorted part
    1036             :  * is not searched, which may produce false negatives and duplicate values
    1037             :  * (in the unsorted part only), but when we're building the range that's
    1038             :  * fine - we'll deduplicate before serialization, and it can only happen
    1039             :  * if there already are unsorted values (so it was already modified).
    1040             :  *
    1041             :  * Serialized ranges don't have any unsorted values, so this can't cause
    1042             :  * false negatives during querying.
    1043             :  */
    1044             : static bool
    1045      140498 : range_contains_value(BrinDesc *bdesc, Oid colloid,
    1046             :                      AttrNumber attno, Form_pg_attribute attr,
    1047             :                      Ranges *ranges, Datum newval, bool full)
    1048             : {
    1049             :     int         i;
    1050             :     FmgrInfo   *cmpEqualFn;
    1051      140498 :     Oid         typid = attr->atttypid;
    1052             : 
    1053             :     /*
    1054             :      * First inspect the ranges, if there are any. We first check the whole
    1055             :      * range, and only when there's still a chance of getting a match we
    1056             :      * inspect the individual ranges.
    1057             :      */
    1058      140498 :     if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
    1059         438 :         return true;
    1060             : 
    1061      140060 :     cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
    1062             :                                                     BTEqualStrategyNumber);
    1063             : 
    1064             :     /*
    1065             :      * There is no matching range, so let's inspect the sorted values.
    1066             :      *
    1067             :      * We do a sequential search for small numbers of values, and binary
    1068             :      * search once we have more than 16 values. This threshold is somewhat
    1069             :      * arbitrary, as it depends on how expensive the comparison function is.
    1070             :      *
    1071             :      * XXX If we use the threshold here, maybe we should do the same thing in
    1072             :      * has_matching_range? Or maybe we should do the bin search all the time?
    1073             :      *
    1074             :      * XXX We could use the same optimization as for ranges, to check if the
    1075             :      * value is between min/max, to maybe rule out all sorted values without
    1076             :      * having to inspect all of them.
    1077             :      */
    1078      140060 :     if (ranges->nsorted >= 16)
    1079             :     {
    1080             :         compare_context cxt;
    1081             : 
    1082       58092 :         cxt.colloid = ranges->colloid;
    1083       58092 :         cxt.cmpFn = ranges->cmp;
    1084             : 
    1085       58092 :         if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
    1086       58092 :                         ranges->nsorted, sizeof(Datum),
    1087             :                         compare_values, &cxt) != NULL)
    1088           0 :             return true;
    1089             :     }
    1090             :     else
    1091             :     {
    1092      162994 :         for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
    1093             :         {
    1094             :             Datum       compar;
    1095             : 
    1096       96884 :             compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
    1097             : 
    1098             :             /* found an exact match */
    1099       96884 :             if (DatumGetBool(compar))
    1100       15858 :                 return true;
    1101             :         }
    1102             :     }
    1103             : 
    1104             :     /* If not asked to inspect the unsorted part, we're done. */
    1105      124202 :     if (!full)
    1106      124202 :         return false;
    1107             : 
    1108             :     /* Inspect the unsorted part. */
    1109           0 :     for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
    1110             :     {
    1111             :         Datum       compar;
    1112             : 
    1113           0 :         compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
    1114             : 
    1115             :         /* found an exact match */
    1116           0 :         if (DatumGetBool(compar))
    1117           0 :             return true;
    1118             :     }
    1119             : 
    1120             :     /* the value is not covered by this BRIN tuple */
    1121           0 :     return false;
    1122             : }
    1123             : 
    1124             : /*
    1125             :  * Expand ranges from Ranges into ExpandedRange array. This expects the
    1126             :  * eranges to be pre-allocated and with the correct size - there needs to be
    1127             :  * (nranges + nvalues) elements.
    1128             :  *
    1129             :  * The order of expanded ranges is arbitrary. We do expand the ranges first,
    1130             :  * and this part is sorted. But then we expand the values, and this part may
    1131             :  * be unsorted.
    1132             :  */
    1133             : static void
    1134        6266 : fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
    1135             : {
    1136             :     int         idx;
    1137             :     int         i;
    1138             : 
    1139             :     /* Check that the output array has the right size. */
    1140             :     Assert(neranges == (ranges->nranges + ranges->nvalues));
    1141             : 
    1142        6266 :     idx = 0;
    1143        8534 :     for (i = 0; i < ranges->nranges; i++)
    1144             :     {
    1145        2268 :         eranges[idx].minval = ranges->values[2 * i];
    1146        2268 :         eranges[idx].maxval = ranges->values[2 * i + 1];
    1147        2268 :         eranges[idx].collapsed = false;
    1148        2268 :         idx++;
    1149             : 
    1150             :         Assert(idx <= neranges);
    1151             :     }
    1152             : 
    1153      156932 :     for (i = 0; i < ranges->nvalues; i++)
    1154             :     {
    1155      150666 :         eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
    1156      150666 :         eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
    1157      150666 :         eranges[idx].collapsed = true;
    1158      150666 :         idx++;
    1159             : 
    1160             :         Assert(idx <= neranges);
    1161             :     }
    1162             : 
    1163             :     /* Did we produce the expected number of elements? */
    1164             :     Assert(idx == neranges);
    1165             : 
    1166        6266 :     return;
    1167             : }
    1168             : 
    1169             : /*
    1170             :  * Sort and deduplicate expanded ranges.
    1171             :  *
    1172             :  * The ranges may be deduplicated - we're simply appending values, without
    1173             :  * checking for duplicates etc. So maybe the deduplication will reduce the
    1174             :  * number of ranges enough, and we won't have to compute the distances etc.
    1175             :  *
    1176             :  * Returns the number of expanded ranges.
    1177             :  */
    1178             : static int
    1179        6266 : sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
    1180             :                      ExpandedRange *eranges, int neranges)
    1181             : {
    1182             :     int         n;
    1183             :     int         i;
    1184             :     compare_context cxt;
    1185             : 
    1186             :     Assert(neranges > 0);
    1187             : 
    1188             :     /* sort the values */
    1189        6266 :     cxt.colloid = colloid;
    1190        6266 :     cxt.cmpFn = cmp;
    1191             : 
    1192             :     /*
    1193             :      * XXX We do qsort on all the values, but we could also leverage the fact
    1194             :      * that some of the input data is already sorted (all the ranges and maybe
    1195             :      * some of the points) and do merge sort.
    1196             :      */
    1197        6266 :     qsort_arg(eranges, neranges, sizeof(ExpandedRange),
    1198             :               compare_expanded_ranges, &cxt);
    1199             : 
    1200             :     /*
    1201             :      * Deduplicate the ranges - simply compare each range to the preceding
    1202             :      * one, and skip the duplicate ones.
    1203             :      */
    1204        6266 :     n = 1;
    1205      152934 :     for (i = 1; i < neranges; i++)
    1206             :     {
    1207             :         /* if the current range is equal to the preceding one, do nothing */
    1208      146668 :         if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], &cxt))
    1209       29576 :             continue;
    1210             : 
    1211             :         /* otherwise, copy it to n-th place (if not already there) */
    1212      117092 :         if (i != n)
    1213        9234 :             memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
    1214             : 
    1215      117092 :         n++;
    1216             :     }
    1217             : 
    1218             :     Assert((n > 0) && (n <= neranges));
    1219             : 
    1220        6266 :     return n;
    1221             : }
    1222             : 
    1223             : /*
    1224             :  * When combining multiple Range values (in union function), some of the
    1225             :  * ranges may overlap. We simply merge the overlapping ranges to fix that.
    1226             :  *
    1227             :  * XXX This assumes the expanded ranges were previously sorted (by minval
    1228             :  * and then maxval). We leverage this when detecting overlap.
    1229             :  */
    1230             : static int
    1231           0 : merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
    1232             :                          ExpandedRange *eranges, int neranges)
    1233             : {
    1234             :     int         idx;
    1235             : 
    1236             :     /* Merge ranges (idx) and (idx+1) if they overlap. */
    1237           0 :     idx = 0;
    1238           0 :     while (idx < (neranges - 1))
    1239             :     {
    1240             :         Datum       r;
    1241             : 
    1242             :         /*
    1243             :          * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
    1244             :          * < maxval)
    1245             :          */
    1246           0 :         r = FunctionCall2Coll(cmp, colloid,
    1247           0 :                               eranges[idx].maxval,
    1248           0 :                               eranges[idx + 1].minval);
    1249             : 
    1250             :         /*
    1251             :          * Nope, maxval < minval, so no overlap. And we know the ranges are
    1252             :          * ordered, so there are no more overlaps, because all the remaining
    1253             :          * ranges have greater or equal minval.
    1254             :          */
    1255           0 :         if (DatumGetBool(r))
    1256             :         {
    1257             :             /* proceed to the next range */
    1258           0 :             idx += 1;
    1259           0 :             continue;
    1260             :         }
    1261             : 
    1262             :         /*
    1263             :          * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
    1264             :          * 'idx+1' is contained in 'idx', or if they overlap only partially.
    1265             :          * So compare the upper bounds and keep the larger one.
    1266             :          */
    1267           0 :         r = FunctionCall2Coll(cmp, colloid,
    1268           0 :                               eranges[idx].maxval,
    1269           0 :                               eranges[idx + 1].maxval);
    1270             : 
    1271           0 :         if (DatumGetBool(r))
    1272           0 :             eranges[idx].maxval = eranges[idx + 1].maxval;
    1273             : 
    1274             :         /*
    1275             :          * The range certainly is no longer collapsed (irrespectively of the
    1276             :          * previous state).
    1277             :          */
    1278           0 :         eranges[idx].collapsed = false;
    1279             : 
    1280             :         /*
    1281             :          * Now get rid of the (idx+1) range entirely by shifting the remaining
    1282             :          * ranges by 1. There are neranges elements, and we need to move
    1283             :          * elements from (idx+2). That means the number of elements to move is
    1284             :          * [ncranges - (idx+2)].
    1285             :          */
    1286           0 :         memmove(&eranges[idx + 1], &eranges[idx + 2],
    1287           0 :                 (neranges - (idx + 2)) * sizeof(ExpandedRange));
    1288             : 
    1289             :         /*
    1290             :          * Decrease the number of ranges, and repeat (with the same range, as
    1291             :          * it might overlap with additional ranges thanks to the merge).
    1292             :          */
    1293           0 :         neranges--;
    1294             :     }
    1295             : 
    1296           0 :     return neranges;
    1297             : }
    1298             : 
    1299             : /*
    1300             :  * Simple comparator for distance values, comparing the double value.
    1301             :  * This is intentionally sorting the distances in descending order, i.e.
    1302             :  * the longer gaps will be at the front.
    1303             :  */
    1304             : static int
    1305      172412 : compare_distances(const void *a, const void *b)
    1306             : {
    1307      172412 :     DistanceValue *da = (DistanceValue *) a;
    1308      172412 :     DistanceValue *db = (DistanceValue *) b;
    1309             : 
    1310      172412 :     if (da->value < db->value)
    1311       41000 :         return 1;
    1312      131412 :     else if (da->value > db->value)
    1313       27798 :         return -1;
    1314             : 
    1315      103614 :     return 0;
    1316             : }
    1317             : 
    1318             : /*
    1319             :  * Given an array of expanded ranges, compute size of the gaps between each
    1320             :  * range.  For neranges there are (neranges-1) gaps.
    1321             :  *
    1322             :  * We simply call the "distance" function to compute the (max-min) for pairs
    1323             :  * of consecutive ranges. The function may be fairly expensive, so we do that
    1324             :  * just once (and then use it to pick as many ranges to merge as possible).
    1325             :  *
    1326             :  * See reduce_expanded_ranges for details.
    1327             :  */
    1328             : static DistanceValue *
    1329        6266 : build_distances(FmgrInfo *distanceFn, Oid colloid,
    1330             :                 ExpandedRange *eranges, int neranges)
    1331             : {
    1332             :     int         i;
    1333             :     int         ndistances;
    1334             :     DistanceValue *distances;
    1335             : 
    1336             :     Assert(neranges > 0);
    1337             : 
    1338             :     /* If there's only a single range, there's no distance to calculate. */
    1339        6266 :     if (neranges == 1)
    1340           0 :         return NULL;
    1341             : 
    1342        6266 :     ndistances = (neranges - 1);
    1343        6266 :     distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
    1344             : 
    1345             :     /*
    1346             :      * Walk through the ranges once and compute the distance between the
    1347             :      * ranges so that we can sort them once.
    1348             :      */
    1349      123358 :     for (i = 0; i < ndistances; i++)
    1350             :     {
    1351             :         Datum       a1,
    1352             :                     a2,
    1353             :                     r;
    1354             : 
    1355      117092 :         a1 = eranges[i].maxval;
    1356      117092 :         a2 = eranges[i + 1].minval;
    1357             : 
    1358             :         /* compute length of the gap (between max/min) */
    1359      117092 :         r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
    1360             : 
    1361             :         /* remember the index of the gap the distance is for */
    1362      117092 :         distances[i].index = i;
    1363      117092 :         distances[i].value = DatumGetFloat8(r);
    1364             :     }
    1365             : 
    1366             :     /*
    1367             :      * Sort the distances in descending order, so that the longest gaps are at
    1368             :      * the front.
    1369             :      */
    1370        6266 :     qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
    1371             : 
    1372        6266 :     return distances;
    1373             : }
    1374             : 
    1375             : /*
    1376             :  * Builds expanded ranges for the existing ranges (and single-point ranges),
    1377             :  * and also the new value (which did not fit into the array).  This expanded
    1378             :  * representation makes the processing a bit easier, as it allows handling
    1379             :  * ranges and points the same way.
    1380             :  *
    1381             :  * We sort and deduplicate the expanded ranges - this is necessary, because
    1382             :  * the points may be unsorted. And moreover the two parts (ranges and
    1383             :  * points) are sorted on their own.
    1384             :  */
    1385             : static ExpandedRange *
    1386        6266 : build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
    1387             :                       int *nranges)
    1388             : {
    1389             :     int         neranges;
    1390             :     ExpandedRange *eranges;
    1391             : 
    1392             :     /* both ranges and points are expanded into a separate element */
    1393        6266 :     neranges = ranges->nranges + ranges->nvalues;
    1394             : 
    1395        6266 :     eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
    1396             : 
    1397             :     /* fill the expanded ranges */
    1398        6266 :     fill_expanded_ranges(eranges, neranges, ranges);
    1399             : 
    1400             :     /* sort and deduplicate the expanded ranges */
    1401        6266 :     neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
    1402             : 
    1403             :     /* remember how many ranges we built */
    1404        6266 :     *nranges = neranges;
    1405             : 
    1406        6266 :     return eranges;
    1407             : }
    1408             : 
    1409             : #ifdef USE_ASSERT_CHECKING
    1410             : /*
    1411             :  * Counts boundary values needed to store the ranges. Each single-point
    1412             :  * range is stored using a single value, each regular range needs two.
    1413             :  */
    1414             : static int
    1415             : count_values(ExpandedRange *cranges, int ncranges)
    1416             : {
    1417             :     int         i;
    1418             :     int         count;
    1419             : 
    1420             :     count = 0;
    1421             :     for (i = 0; i < ncranges; i++)
    1422             :     {
    1423             :         if (cranges[i].collapsed)
    1424             :             count += 1;
    1425             :         else
    1426             :             count += 2;
    1427             :     }
    1428             : 
    1429             :     return count;
    1430             : }
    1431             : #endif
    1432             : 
    1433             : /*
    1434             :  * reduce_expanded_ranges
    1435             :  *      reduce the ranges until the number of values is low enough
    1436             :  *
    1437             :  * Combines ranges until the number of boundary values drops below the
    1438             :  * threshold specified by max_values. This happens by merging enough
    1439             :  * ranges by the distance between them.
    1440             :  *
    1441             :  * Returns the number of result ranges.
    1442             :  *
    1443             :  * We simply use the global min/max and then add boundaries for enough
    1444             :  * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
    1445             :  * distances. Then we simply sort all the values - each two values are
    1446             :  * a boundary of a range (possibly collapsed).
    1447             :  *
    1448             :  * XXX Some of the ranges may be collapsed (i.e. the min/max values are
    1449             :  * equal), but we ignore that for now. We could repeat the process,
    1450             :  * adding a couple more gaps recursively.
    1451             :  *
    1452             :  * XXX The ranges to merge are selected solely using the distance. But
    1453             :  * that may not be the best strategy, for example when multiple gaps
    1454             :  * are of equal (or very similar) length.
    1455             :  *
    1456             :  * Consider for example points 1, 2, 3, .., 64, which have gaps of the
    1457             :  * same length 1 of course. In that case, we tend to pick the first
    1458             :  * gap of that length, which leads to this:
    1459             :  *
    1460             :  *    step 1:  [1, 2], 3, 4, 5, .., 64
    1461             :  *    step 2:  [1, 3], 4, 5,    .., 64
    1462             :  *    step 3:  [1, 4], 5,       .., 64
    1463             :  *    ...
    1464             :  *
    1465             :  * So in the end we'll have one "large" range and multiple small points.
    1466             :  * That may be fine, but it seems a bit strange and non-optimal. Maybe
    1467             :  * we should consider other things when picking ranges to merge - e.g.
    1468             :  * length of the ranges? Or perhaps randomize the choice of ranges, with
    1469             :  * probability inversely proportional to the distance (the gap lengths
    1470             :  * may be very close, but not exactly the same).
    1471             :  *
    1472             :  * XXX Or maybe we could just handle this by using random value as a
    1473             :  * tie-break, or by adding random noise to the actual distance.
    1474             :  */
    1475             : static int
    1476        6266 : reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
    1477             :                        DistanceValue *distances, int max_values,
    1478             :                        FmgrInfo *cmp, Oid colloid)
    1479             : {
    1480             :     int         i;
    1481             :     int         nvalues;
    1482             :     Datum      *values;
    1483             : 
    1484             :     compare_context cxt;
    1485             : 
    1486             :     /* total number of gaps between ranges */
    1487        6266 :     int         ndistances = (neranges - 1);
    1488             : 
    1489             :     /* number of gaps to keep */
    1490        6266 :     int         keep = (max_values / 2 - 1);
    1491             : 
    1492             :     /*
    1493             :      * Maybe we have a sufficiently low number of ranges already?
    1494             :      *
    1495             :      * XXX This should happen before we actually do the expensive stuff like
    1496             :      * sorting, so maybe this should be just an assert.
    1497             :      */
    1498        6266 :     if (keep >= ndistances)
    1499        5420 :         return neranges;
    1500             : 
    1501             :     /* sort the values */
    1502         846 :     cxt.colloid = colloid;
    1503         846 :     cxt.cmpFn = cmp;
    1504             : 
    1505             :     /* allocate space for the boundary values */
    1506         846 :     nvalues = 0;
    1507         846 :     values = (Datum *) palloc(sizeof(Datum) * max_values);
    1508             : 
    1509             :     /* add the global min/max values, from the first/last range */
    1510         846 :     values[nvalues++] = eranges[0].minval;
    1511         846 :     values[nvalues++] = eranges[neranges - 1].maxval;
    1512             : 
    1513             :     /* add boundary values for enough gaps */
    1514       29280 :     for (i = 0; i < keep; i++)
    1515             :     {
    1516             :         /* index of the gap between (index) and (index+1) ranges */
    1517       28434 :         int         index = distances[i].index;
    1518             : 
    1519             :         Assert((index >= 0) && ((index + 1) < neranges));
    1520             : 
    1521             :         /* add max from the preceding range, minval from the next one */
    1522       28434 :         values[nvalues++] = eranges[index].maxval;
    1523       28434 :         values[nvalues++] = eranges[index + 1].minval;
    1524             : 
    1525             :         Assert(nvalues <= max_values);
    1526             :     }
    1527             : 
    1528             :     /* We should have an even number of range values. */
    1529             :     Assert(nvalues % 2 == 0);
    1530             : 
    1531             :     /*
    1532             :      * Sort the values using the comparator function, and form ranges from the
    1533             :      * sorted result.
    1534             :      */
    1535         846 :     qsort_arg(values, nvalues, sizeof(Datum),
    1536             :               compare_values, &cxt);
    1537             : 
    1538             :     /* We have nvalues boundary values, which means nvalues/2 ranges. */
    1539       30126 :     for (i = 0; i < (nvalues / 2); i++)
    1540             :     {
    1541       29280 :         eranges[i].minval = values[2 * i];
    1542       29280 :         eranges[i].maxval = values[2 * i + 1];
    1543             : 
    1544             :         /* if the boundary values are the same, it's a collapsed range */
    1545       58560 :         eranges[i].collapsed = (compare_values(&values[2 * i],
    1546       29280 :                                                &values[2 * i + 1],
    1547       29280 :                                                &cxt) == 0);
    1548             :     }
    1549             : 
    1550         846 :     return (nvalues / 2);
    1551             : }
    1552             : 
    1553             : /*
    1554             :  * Store the boundary values from ExpandedRanges back into 'ranges' (using
    1555             :  * only the minimal number of values needed).
    1556             :  */
    1557             : static void
    1558        6266 : store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
    1559             : {
    1560             :     int         i;
    1561        6266 :     int         idx = 0;
    1562             : 
    1563             :     /* first copy in the regular ranges */
    1564        6266 :     ranges->nranges = 0;
    1565       55788 :     for (i = 0; i < neranges; i++)
    1566             :     {
    1567       49522 :         if (!eranges[i].collapsed)
    1568             :         {
    1569        4416 :             ranges->values[idx++] = eranges[i].minval;
    1570        4416 :             ranges->values[idx++] = eranges[i].maxval;
    1571        4416 :             ranges->nranges++;
    1572             :         }
    1573             :     }
    1574             : 
    1575             :     /* now copy in the collapsed ones */
    1576        6266 :     ranges->nvalues = 0;
    1577       55788 :     for (i = 0; i < neranges; i++)
    1578             :     {
    1579       49522 :         if (eranges[i].collapsed)
    1580             :         {
    1581       45106 :             ranges->values[idx++] = eranges[i].minval;
    1582       45106 :             ranges->nvalues++;
    1583             :         }
    1584             :     }
    1585             : 
    1586             :     /* all the values are sorted */
    1587        6266 :     ranges->nsorted = ranges->nvalues;
    1588             : 
    1589             :     Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
    1590             :     Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
    1591        6266 : }
    1592             : 
    1593             : 
    1594             : /*
    1595             :  * Consider freeing space in the ranges. Checks if there's space for at least
    1596             :  * one new value, and performs compaction if needed.
    1597             :  *
    1598             :  * Returns true if the value was actually modified.
    1599             :  */
    1600             : static bool
    1601      140498 : ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
    1602             :                             AttrNumber attno, Form_pg_attribute attr,
    1603             :                             Ranges *range)
    1604             : {
    1605             :     MemoryContext ctx;
    1606             :     MemoryContext oldctx;
    1607             : 
    1608             :     FmgrInfo   *cmpFn,
    1609             :                *distanceFn;
    1610             : 
    1611             :     /* expanded ranges */
    1612             :     ExpandedRange *eranges;
    1613             :     int         neranges;
    1614             :     DistanceValue *distances;
    1615             : 
    1616             :     /*
    1617             :      * If there is free space in the buffer, we're done without having to
    1618             :      * modify anything.
    1619             :      */
    1620      140498 :     if (2 * range->nranges + range->nvalues < range->maxvalues)
    1621      140252 :         return false;
    1622             : 
    1623             :     /* we'll certainly need the comparator, so just look it up now */
    1624         246 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    1625             :                                                BTLessStrategyNumber);
    1626             : 
    1627             :     /* deduplicate values, if there's an unsorted part */
    1628         246 :     range_deduplicate_values(range);
    1629             : 
    1630             :     /*
    1631             :      * Did we reduce enough free space by just the deduplication?
    1632             :      *
    1633             :      * We don't simply check against range->maxvalues again. The deduplication
    1634             :      * might have freed very little space (e.g. just one value), forcing us to
    1635             :      * do deduplication very often. In that case, it's better to do the
    1636             :      * compaction and reduce more space.
    1637             :      */
    1638         246 :     if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
    1639           0 :         return true;
    1640             : 
    1641             :     /*
    1642             :      * We need to combine some of the existing ranges, to reduce the number of
    1643             :      * values we have to store.
    1644             :      *
    1645             :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    1646             :      * allocate quite a bit of memory, and we must not leak it (we might have
    1647             :      * to do this repeatedly, even for a single BRIN page range). Otherwise
    1648             :      * we'd have problems e.g. when building new indexes. So we use a memory
    1649             :      * context and make sure we free the memory at the end (so if we call the
    1650             :      * distance function many times, it might be an issue, but meh).
    1651             :      */
    1652         246 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    1653             :                                 "minmax-multi context",
    1654             :                                 ALLOCSET_DEFAULT_SIZES);
    1655             : 
    1656         246 :     oldctx = MemoryContextSwitchTo(ctx);
    1657             : 
    1658             :     /* build the expanded ranges */
    1659         246 :     eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
    1660             : 
    1661             :     /* Is the expanded representation of ranges correct? */
    1662         246 :     AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
    1663             : 
    1664             :     /* and we'll also need the 'distance' procedure */
    1665         246 :     distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
    1666             : 
    1667             :     /* build array of gap distances and sort them in ascending order */
    1668         246 :     distances = build_distances(distanceFn, colloid, eranges, neranges);
    1669             : 
    1670             :     /*
    1671             :      * Combine ranges until we release at least 50% of the space. This
    1672             :      * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
    1673             :      * too low or high value.
    1674             :      */
    1675         492 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    1676         246 :                                       range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
    1677             :                                       cmpFn, colloid);
    1678             : 
    1679             :     /* Is the result of reducing expanded ranges correct? */
    1680         246 :     AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
    1681             : 
    1682             :     /* Make sure we've sufficiently reduced the number of ranges. */
    1683             :     Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
    1684             : 
    1685             :     /* decompose the expanded ranges into regular ranges and single values */
    1686         246 :     store_expanded_ranges(range, eranges, neranges);
    1687             : 
    1688         246 :     MemoryContextSwitchTo(oldctx);
    1689         246 :     MemoryContextDelete(ctx);
    1690             : 
    1691             :     /* Did we break the ranges somehow? */
    1692         246 :     AssertCheckRanges(range, cmpFn, colloid);
    1693             : 
    1694         246 :     return true;
    1695             : }
    1696             : 
    1697             : /*
    1698             :  * range_add_value
    1699             :  *      Add the new value to the minmax-multi range.
    1700             :  */
    1701             : static bool
    1702      140498 : range_add_value(BrinDesc *bdesc, Oid colloid,
    1703             :                 AttrNumber attno, Form_pg_attribute attr,
    1704             :                 Ranges *ranges, Datum newval)
    1705             : {
    1706             :     FmgrInfo   *cmpFn;
    1707      140498 :     bool        modified = false;
    1708             : 
    1709             :     /* we'll certainly need the comparator, so just look it up now */
    1710      140498 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    1711             :                                                BTLessStrategyNumber);
    1712             : 
    1713             :     /* comprehensive checks of the input ranges */
    1714      140498 :     AssertCheckRanges(ranges, cmpFn, colloid);
    1715             : 
    1716             :     /*
    1717             :      * Make sure there's enough free space in the buffer. We only trigger this
    1718             :      * when the buffer is full, which means it had to be modified as we size
    1719             :      * it to be larger than what is stored on disk.
    1720             :      *
    1721             :      * This needs to happen before we check if the value is contained in the
    1722             :      * range, because the value might be in the unsorted part, and we don't
    1723             :      * check that in range_contains_value. The deduplication would then move
    1724             :      * it to the sorted part, and we'd add the value too, which violates the
    1725             :      * rule that we never have duplicates with the ranges or sorted values.
    1726             :      *
    1727             :      * We might also deduplicate and recheck if the value is contained, but
    1728             :      * that seems like overkill. We'd need to deduplicate anyway, so why not
    1729             :      * do it now.
    1730             :      */
    1731      140498 :     modified = ensure_free_space_in_buffer(bdesc, colloid,
    1732             :                                            attno, attr, ranges);
    1733             : 
    1734             :     /*
    1735             :      * Bail out if the value already is covered by the range.
    1736             :      *
    1737             :      * We could also add values until we hit values_per_range, and then do the
    1738             :      * deduplication in a batch, hoping for better efficiency. But that would
    1739             :      * mean we actually modify the range every time, which means having to
    1740             :      * serialize the value, which does palloc, walks the values, copies them,
    1741             :      * etc. Not exactly cheap.
    1742             :      *
    1743             :      * So instead we do the check, which should be fairly cheap - assuming the
    1744             :      * comparator function is not very expensive.
    1745             :      *
    1746             :      * This also implies the values array can't contain duplicate values.
    1747             :      */
    1748      140498 :     if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
    1749       16296 :         return modified;
    1750             : 
    1751             :     /* Make a copy of the value, if needed. */
    1752      124202 :     newval = datumCopy(newval, attr->attbyval, attr->attlen);
    1753             : 
    1754             :     /*
    1755             :      * If there's space in the values array, copy it in and we're done.
    1756             :      *
    1757             :      * We do want to keep the values sorted (to speed up searches), so we do a
    1758             :      * simple insertion sort. We could do something more elaborate, e.g. by
    1759             :      * sorting the values only now and then, but for small counts (e.g. when
    1760             :      * maxvalues is 64) this should be fine.
    1761             :      */
    1762      124202 :     ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
    1763      124202 :     ranges->nvalues++;
    1764             : 
    1765             :     /* If we added the first value, we can consider it as sorted. */
    1766      124202 :     if (ranges->nvalues == 1)
    1767        4876 :         ranges->nsorted = 1;
    1768             : 
    1769             :     /*
    1770             :      * Check we haven't broken the ordering of boundary values (checks both
    1771             :      * parts, but that doesn't hurt).
    1772             :      */
    1773      124202 :     AssertCheckRanges(ranges, cmpFn, colloid);
    1774             : 
    1775             :     /* Check the range contains the value we just added. */
    1776             :     Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
    1777             : 
    1778             :     /* yep, we've modified the range */
    1779      124202 :     return true;
    1780             : }
    1781             : 
    1782             : /*
    1783             :  * Generate range representation of data collected during "batch mode".
    1784             :  * This is similar to reduce_expanded_ranges, except that we can't assume
    1785             :  * the values are sorted and there may be duplicate values.
    1786             :  */
    1787             : static void
    1788       18022 : compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
    1789             : {
    1790             :     FmgrInfo   *cmpFn,
    1791             :                *distanceFn;
    1792             : 
    1793             :     /* expanded ranges */
    1794             :     ExpandedRange *eranges;
    1795             :     int         neranges;
    1796             :     DistanceValue *distances;
    1797             : 
    1798             :     MemoryContext ctx;
    1799             :     MemoryContext oldctx;
    1800             : 
    1801             :     /*
    1802             :      * Do we need to actually compactify anything?
    1803             :      *
    1804             :      * There are two reasons why compaction may be needed - firstly, there may
    1805             :      * be too many values, or some of the values may be unsorted.
    1806             :      */
    1807       18022 :     if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
    1808       17554 :         (ranges->nsorted == ranges->nvalues))
    1809       12002 :         return;
    1810             : 
    1811             :     /* we'll certainly need the comparator, so just look it up now */
    1812        6020 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
    1813             :                                                BTLessStrategyNumber);
    1814             : 
    1815             :     /* and we'll also need the 'distance' procedure */
    1816        6020 :     distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
    1817             : 
    1818             :     /*
    1819             :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    1820             :      * allocate quite a bit of memory, and we must not leak it. Otherwise,
    1821             :      * we'd have problems e.g. when building indexes. So we create a local
    1822             :      * memory context and make sure we free the memory before leaving this
    1823             :      * function (not after every call).
    1824             :      */
    1825        6020 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    1826             :                                 "minmax-multi context",
    1827             :                                 ALLOCSET_DEFAULT_SIZES);
    1828             : 
    1829        6020 :     oldctx = MemoryContextSwitchTo(ctx);
    1830             : 
    1831             :     /* build the expanded ranges */
    1832        6020 :     eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
    1833             : 
    1834             :     /* build array of gap distances and sort them in ascending order */
    1835        6020 :     distances = build_distances(distanceFn, ranges->colloid,
    1836             :                                 eranges, neranges);
    1837             : 
    1838             :     /*
    1839             :      * Combine ranges until we get below max_values. We don't use any scale
    1840             :      * factor, because this is used during serialization, and we don't expect
    1841             :      * more tuples to be inserted anytime soon.
    1842             :      */
    1843        6020 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    1844             :                                       max_values, cmpFn, ranges->colloid);
    1845             : 
    1846             :     Assert(count_values(eranges, neranges) <= max_values);
    1847             : 
    1848             :     /* transform back into regular ranges and single values */
    1849        6020 :     store_expanded_ranges(ranges, eranges, neranges);
    1850             : 
    1851             :     /* check all the range invariants */
    1852        6020 :     AssertCheckRanges(ranges, cmpFn, ranges->colloid);
    1853             : 
    1854        6020 :     MemoryContextSwitchTo(oldctx);
    1855        6020 :     MemoryContextDelete(ctx);
    1856             : }
    1857             : 
    1858             : Datum
    1859       19428 : brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
    1860             : {
    1861             :     BrinOpcInfo *result;
    1862             : 
    1863             :     /*
    1864             :      * opaque->strategy_procinfos is initialized lazily; here it is set to
    1865             :      * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
    1866             :      */
    1867             : 
    1868       19428 :     result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
    1869             :                      sizeof(MinmaxMultiOpaque));
    1870       19428 :     result->oi_nstored = 1;
    1871       19428 :     result->oi_regular_nulls = true;
    1872       19428 :     result->oi_opaque = (MinmaxMultiOpaque *)
    1873       19428 :         MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
    1874       19428 :     result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
    1875             : 
    1876       19428 :     PG_RETURN_POINTER(result);
    1877             : }
    1878             : 
    1879             : /*
    1880             :  * Compute the distance between two float4 values (plain subtraction).
    1881             :  */
    1882             : Datum
    1883         700 : brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
    1884             : {
    1885         700 :     float       a1 = PG_GETARG_FLOAT4(0);
    1886         700 :     float       a2 = PG_GETARG_FLOAT4(1);
    1887             : 
    1888             :     /* if both values are NaN, then we consider them the same */
    1889         700 :     if (isnan(a1) && isnan(a2))
    1890           0 :         PG_RETURN_FLOAT8(0.0);
    1891             : 
    1892             :     /* if one value is NaN, use infinite distance */
    1893         700 :     if (isnan(a1) || isnan(a2))
    1894           6 :         PG_RETURN_FLOAT8(get_float8_infinity());
    1895             : 
    1896             :     /*
    1897             :      * We know the values are range boundaries, but the range may be collapsed
    1898             :      * (i.e. single points), with equal values.
    1899             :      */
    1900             :     Assert(a1 <= a2);
    1901             : 
    1902         694 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1903             : }
    1904             : 
    1905             : /*
    1906             :  * Compute the distance between two float8 values (plain subtraction).
    1907             :  */
    1908             : Datum
    1909        1048 : brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
    1910             : {
    1911        1048 :     double      a1 = PG_GETARG_FLOAT8(0);
    1912        1048 :     double      a2 = PG_GETARG_FLOAT8(1);
    1913             : 
    1914             :     /* if both values are NaN, then we consider them the same */
    1915        1048 :     if (isnan(a1) && isnan(a2))
    1916           0 :         PG_RETURN_FLOAT8(0.0);
    1917             : 
    1918             :     /* if one value is NaN, use infinite distance */
    1919        1048 :     if (isnan(a1) || isnan(a2))
    1920           6 :         PG_RETURN_FLOAT8(get_float8_infinity());
    1921             : 
    1922             :     /*
    1923             :      * We know the values are range boundaries, but the range may be collapsed
    1924             :      * (i.e. single points), with equal values.
    1925             :      */
    1926             :     Assert(a1 <= a2);
    1927             : 
    1928        1042 :     PG_RETURN_FLOAT8(a2 - a1);
    1929             : }
    1930             : 
    1931             : /*
    1932             :  * Compute the distance between two int2 values (plain subtraction).
    1933             :  */
    1934             : Datum
    1935        1018 : brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
    1936             : {
    1937        1018 :     int16       a1 = PG_GETARG_INT16(0);
    1938        1018 :     int16       a2 = PG_GETARG_INT16(1);
    1939             : 
    1940             :     /*
    1941             :      * We know the values are range boundaries, but the range may be collapsed
    1942             :      * (i.e. single points), with equal values.
    1943             :      */
    1944             :     Assert(a1 <= a2);
    1945             : 
    1946        1018 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1947             : }
    1948             : 
    1949             : /*
    1950             :  * Compute the distance between two int4 values (plain subtraction).
    1951             :  */
    1952             : Datum
    1953       86762 : brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
    1954             : {
    1955       86762 :     int32       a1 = PG_GETARG_INT32(0);
    1956       86762 :     int32       a2 = PG_GETARG_INT32(1);
    1957             : 
    1958             :     /*
    1959             :      * We know the values are range boundaries, but the range may be collapsed
    1960             :      * (i.e. single points), with equal values.
    1961             :      */
    1962             :     Assert(a1 <= a2);
    1963             : 
    1964       86762 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1965             : }
    1966             : 
    1967             : /*
    1968             :  * Compute the distance between two int8 values (plain subtraction).
    1969             :  */
    1970             : Datum
    1971       11020 : brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
    1972             : {
    1973       11020 :     int64       a1 = PG_GETARG_INT64(0);
    1974       11020 :     int64       a2 = PG_GETARG_INT64(1);
    1975             : 
    1976             :     /*
    1977             :      * We know the values are range boundaries, but the range may be collapsed
    1978             :      * (i.e. single points), with equal values.
    1979             :      */
    1980             :     Assert(a1 <= a2);
    1981             : 
    1982       11020 :     PG_RETURN_FLOAT8((double) a2 - (double) a1);
    1983             : }
    1984             : 
    1985             : /*
    1986             :  * Compute the distance between two tid values (by mapping them to float8 and
    1987             :  * then subtracting them).
    1988             :  */
    1989             : Datum
    1990        1030 : brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
    1991             : {
    1992             :     double      da1,
    1993             :                 da2;
    1994             : 
    1995        1030 :     ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
    1996        1030 :     ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);
    1997             : 
    1998             :     /*
    1999             :      * We know the values are range boundaries, but the range may be collapsed
    2000             :      * (i.e. single points), with equal values.
    2001             :      */
    2002             :     Assert(ItemPointerCompare(pa1, pa2) <= 0);
    2003             : 
    2004             :     /*
    2005             :      * We use the no-check variants here, because user-supplied values may
    2006             :      * have (ip_posid == 0). See ItemPointerCompare.
    2007             :      */
    2008        1030 :     da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
    2009        1030 :         ItemPointerGetOffsetNumberNoCheck(pa1);
    2010             : 
    2011        1030 :     da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
    2012        1030 :         ItemPointerGetOffsetNumberNoCheck(pa2);
    2013             : 
    2014        1030 :     PG_RETURN_FLOAT8(da2 - da1);
    2015             : }
    2016             : 
    2017             : /*
    2018             :  * Compute the distance between two numeric values (plain subtraction).
    2019             :  */
    2020             : Datum
    2021        1030 : brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
    2022             : {
    2023             :     Datum       d;
    2024        1030 :     Datum       a1 = PG_GETARG_DATUM(0);
    2025        1030 :     Datum       a2 = PG_GETARG_DATUM(1);
    2026             : 
    2027             :     /*
    2028             :      * We know the values are range boundaries, but the range may be collapsed
    2029             :      * (i.e. single points), with equal values.
    2030             :      */
    2031             :     Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));
    2032             : 
    2033        1030 :     d = DirectFunctionCall2(numeric_sub, a2, a1);   /* a2 - a1 */
    2034             : 
    2035        1030 :     PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
    2036             : }
    2037             : 
    2038             : /*
    2039             :  * Compute the approximate distance between two UUID values.
    2040             :  *
    2041             :  * XXX We do not need a perfectly accurate value, so we approximate the
    2042             :  * deltas (which would have to be 128-bit integers) with a 64-bit float.
    2043             :  * The small inaccuracies do not matter in practice, in the worst case
    2044             :  * we'll decide to merge ranges that are not the closest ones.
    2045             :  */
    2046             : Datum
    2047        1730 : brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
    2048             : {
    2049             :     int         i;
    2050        1730 :     float8      delta = 0;
    2051             : 
    2052        1730 :     Datum       a1 = PG_GETARG_DATUM(0);
    2053        1730 :     Datum       a2 = PG_GETARG_DATUM(1);
    2054             : 
    2055        1730 :     pg_uuid_t  *u1 = DatumGetUUIDP(a1);
    2056        1730 :     pg_uuid_t  *u2 = DatumGetUUIDP(a2);
    2057             : 
    2058             :     /*
    2059             :      * We know the values are range boundaries, but the range may be collapsed
    2060             :      * (i.e. single points), with equal values.
    2061             :      */
    2062             :     Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));
    2063             : 
    2064             :     /* compute approximate delta as a double precision value */
    2065       29410 :     for (i = UUID_LEN - 1; i >= 0; i--)
    2066             :     {
    2067       27680 :         delta += (int) u2->data[i] - (int) u1->data[i];
    2068       27680 :         delta /= 256;
    2069             :     }
    2070             : 
    2071             :     Assert(delta >= 0);
    2072             : 
    2073        1730 :     PG_RETURN_FLOAT8(delta);
    2074             : }
    2075             : 
    2076             : /*
    2077             :  * Compute the approximate distance between two dates.
    2078             :  */
    2079             : Datum
    2080        1630 : brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
    2081             : {
    2082        1630 :     float8      delta = 0;
    2083        1630 :     DateADT     dateVal1 = PG_GETARG_DATEADT(0);
    2084        1630 :     DateADT     dateVal2 = PG_GETARG_DATEADT(1);
    2085             : 
    2086        1630 :     delta = (float8) dateVal2 - (float8) dateVal1;
    2087             : 
    2088             :     Assert(delta >= 0);
    2089             : 
    2090        1630 :     PG_RETURN_FLOAT8(delta);
    2091             : }
    2092             : 
    2093             : /*
    2094             :  * Compute the approximate distance between two time (without tz) values.
    2095             :  *
    2096             :  * TimeADT is just an int64, so we simply subtract the values directly.
    2097             :  */
    2098             : Datum
    2099        1018 : brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
    2100             : {
    2101        1018 :     float8      delta = 0;
    2102             : 
    2103        1018 :     TimeADT     ta = PG_GETARG_TIMEADT(0);
    2104        1018 :     TimeADT     tb = PG_GETARG_TIMEADT(1);
    2105             : 
    2106        1018 :     delta = (tb - ta);
    2107             : 
    2108             :     Assert(delta >= 0);
    2109             : 
    2110        1018 :     PG_RETURN_FLOAT8(delta);
    2111             : }
    2112             : 
    2113             : /*
    2114             :  * Compute the approximate distance between two timetz values.
    2115             :  *
    2116             :  * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
    2117             :  */
    2118             : Datum
    2119         790 : brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
    2120             : {
    2121         790 :     float8      delta = 0;
    2122             : 
    2123         790 :     TimeTzADT  *ta = PG_GETARG_TIMETZADT_P(0);
    2124         790 :     TimeTzADT  *tb = PG_GETARG_TIMETZADT_P(1);
    2125             : 
    2126         790 :     delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
    2127             : 
    2128             :     Assert(delta >= 0);
    2129             : 
    2130         790 :     PG_RETURN_FLOAT8(delta);
    2131             : }
    2132             : 
    2133             : /*
    2134             :  * Compute the distance between two timestamp values.
    2135             :  */
    2136             : Datum
    2137        2648 : brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
    2138             : {
    2139        2648 :     float8      delta = 0;
    2140             : 
    2141        2648 :     Timestamp   dt1 = PG_GETARG_TIMESTAMP(0);
    2142        2648 :     Timestamp   dt2 = PG_GETARG_TIMESTAMP(1);
    2143             : 
    2144        2648 :     delta = (float8) dt2 - (float8) dt1;
    2145             : 
    2146             :     Assert(delta >= 0);
    2147             : 
    2148        2648 :     PG_RETURN_FLOAT8(delta);
    2149             : }
    2150             : 
    2151             : /*
    2152             :  * Compute the distance between two interval values.
    2153             :  */
    2154             : Datum
    2155        1528 : brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
    2156             : {
    2157        1528 :     float8      delta = 0;
    2158             : 
    2159        1528 :     Interval   *ia = PG_GETARG_INTERVAL_P(0);
    2160        1528 :     Interval   *ib = PG_GETARG_INTERVAL_P(1);
    2161             : 
    2162             :     int64       dayfraction;
    2163             :     int64       days;
    2164             : 
    2165             :     /*
    2166             :      * Delta is (fractional) number of days between the intervals. Assume
    2167             :      * months have 30 days for consistency with interval_cmp_internal. We
    2168             :      * don't need to be exact, in the worst case we'll build a bit less
    2169             :      * efficient ranges. But we should not contradict interval_cmp.
    2170             :      */
    2171        1528 :     dayfraction = (ib->time % USECS_PER_DAY) - (ia->time % USECS_PER_DAY);
    2172        1528 :     days = (ib->time / USECS_PER_DAY) - (ia->time / USECS_PER_DAY);
    2173        1528 :     days += (int64) ib->day - (int64) ia->day;
    2174        1528 :     days += ((int64) ib->month - (int64) ia->month) * INT64CONST(30);
    2175             : 
    2176             :     /* convert to double precision */
    2177        1528 :     delta = (double) days + dayfraction / (double) USECS_PER_DAY;
    2178             : 
    2179             :     Assert(delta >= 0);
    2180             : 
    2181        1528 :     PG_RETURN_FLOAT8(delta);
    2182             : }
    2183             : 
    2184             : /*
    2185             :  * Compute the distance between two pg_lsn values.
    2186             :  *
    2187             :  * LSN is just an int64 encoding position in the stream, so just subtract
    2188             :  * those int64 values directly.
    2189             :  */
    2190             : Datum
    2191        1030 : brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
    2192             : {
    2193        1030 :     float8      delta = 0;
    2194             : 
    2195        1030 :     XLogRecPtr  lsna = PG_GETARG_LSN(0);
    2196        1030 :     XLogRecPtr  lsnb = PG_GETARG_LSN(1);
    2197             : 
    2198        1030 :     delta = (lsnb - lsna);
    2199             : 
    2200             :     Assert(delta >= 0);
    2201             : 
    2202        1030 :     PG_RETURN_FLOAT8(delta);
    2203             : }
    2204             : 
    2205             : /*
    2206             :  * Compute the distance between two macaddr values.
    2207             :  *
    2208             :  * mac addresses are treated as 6 unsigned chars, so do the same thing we
    2209             :  * already do for UUID values.
    2210             :  */
    2211             : Datum
    2212         790 : brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
    2213             : {
    2214             :     float8      delta;
    2215             : 
    2216         790 :     macaddr    *a = PG_GETARG_MACADDR_P(0);
    2217         790 :     macaddr    *b = PG_GETARG_MACADDR_P(1);
    2218             : 
    2219         790 :     delta = ((float8) b->f - (float8) a->f);
    2220         790 :     delta /= 256;
    2221             : 
    2222         790 :     delta += ((float8) b->e - (float8) a->e);
    2223         790 :     delta /= 256;
    2224             : 
    2225         790 :     delta += ((float8) b->d - (float8) a->d);
    2226         790 :     delta /= 256;
    2227             : 
    2228         790 :     delta += ((float8) b->c - (float8) a->c);
    2229         790 :     delta /= 256;
    2230             : 
    2231         790 :     delta += ((float8) b->b - (float8) a->b);
    2232         790 :     delta /= 256;
    2233             : 
    2234         790 :     delta += ((float8) b->a - (float8) a->a);
    2235         790 :     delta /= 256;
    2236             : 
    2237             :     Assert(delta >= 0);
    2238             : 
    2239         790 :     PG_RETURN_FLOAT8(delta);
    2240             : }
    2241             : 
    2242             : /*
    2243             :  * Compute the distance between two macaddr8 values.
    2244             :  *
    2245             :  * macaddr8 addresses are 8 unsigned chars, so do the same thing we
    2246             :  * already do for UUID values.
    2247             :  */
    2248             : Datum
    2249        1030 : brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
    2250             : {
    2251             :     float8      delta;
    2252             : 
    2253        1030 :     macaddr8   *a = PG_GETARG_MACADDR8_P(0);
    2254        1030 :     macaddr8   *b = PG_GETARG_MACADDR8_P(1);
    2255             : 
    2256        1030 :     delta = ((float8) b->h - (float8) a->h);
    2257        1030 :     delta /= 256;
    2258             : 
    2259        1030 :     delta += ((float8) b->g - (float8) a->g);
    2260        1030 :     delta /= 256;
    2261             : 
    2262        1030 :     delta += ((float8) b->f - (float8) a->f);
    2263        1030 :     delta /= 256;
    2264             : 
    2265        1030 :     delta += ((float8) b->e - (float8) a->e);
    2266        1030 :     delta /= 256;
    2267             : 
    2268        1030 :     delta += ((float8) b->d - (float8) a->d);
    2269        1030 :     delta /= 256;
    2270             : 
    2271        1030 :     delta += ((float8) b->c - (float8) a->c);
    2272        1030 :     delta /= 256;
    2273             : 
    2274        1030 :     delta += ((float8) b->b - (float8) a->b);
    2275        1030 :     delta /= 256;
    2276             : 
    2277        1030 :     delta += ((float8) b->a - (float8) a->a);
    2278        1030 :     delta /= 256;
    2279             : 
    2280             :     Assert(delta >= 0);
    2281             : 
    2282        1030 :     PG_RETURN_FLOAT8(delta);
    2283             : }
    2284             : 
    2285             : /*
    2286             :  * Compute the distance between two inet values.
    2287             :  *
    2288             :  * The distance is defined as the difference between 32-bit/128-bit values,
    2289             :  * depending on the IP version. The distance is computed by subtracting
    2290             :  * the bytes and normalizing it to [0,1] range for each IP family.
    2291             :  * Addresses from different families are considered to be in maximum
    2292             :  * distance, which is 1.0.
    2293             :  *
    2294             :  * XXX Does this need to consider the mask (bits)?  For now, it's ignored.
    2295             :  */
    2296             : Datum
    2297        2290 : brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
    2298             : {
    2299             :     float8      delta;
    2300             :     int         i;
    2301             :     int         len;
    2302             :     unsigned char *addra,
    2303             :                *addrb;
    2304             : 
    2305        2290 :     inet       *ipa = PG_GETARG_INET_PP(0);
    2306        2290 :     inet       *ipb = PG_GETARG_INET_PP(1);
    2307             : 
    2308             :     int         lena,
    2309             :                 lenb;
    2310             : 
    2311             :     /*
    2312             :      * If the addresses are from different families, consider them to be in
    2313             :      * maximal possible distance (which is 1.0).
    2314             :      */
    2315        2290 :     if (ip_family(ipa) != ip_family(ipb))
    2316         184 :         PG_RETURN_FLOAT8(1.0);
    2317             : 
    2318        2106 :     addra = (unsigned char *) palloc(ip_addrsize(ipa));
    2319        2106 :     memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
    2320             : 
    2321        2106 :     addrb = (unsigned char *) palloc(ip_addrsize(ipb));
    2322        2106 :     memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
    2323             : 
    2324             :     /*
    2325             :      * The length is calculated from the mask length, because we sort the
    2326             :      * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
    2327             :      * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
    2328             :      * to produce a negative delta in this case, so we just cut the extra
    2329             :      * bytes.
    2330             :      *
    2331             :      * XXX Maybe this should be a bit more careful and cut the bits, not just
    2332             :      * whole bytes.
    2333             :      */
    2334        2106 :     lena = ip_bits(ipa);
    2335        2106 :     lenb = ip_bits(ipb);
    2336             : 
    2337        2106 :     len = ip_addrsize(ipa);
    2338             : 
    2339             :     /* apply the network mask to both addresses */
    2340       15906 :     for (i = 0; i < len; i++)
    2341             :     {
    2342             :         unsigned char mask;
    2343             :         int         nbits;
    2344             : 
    2345       13800 :         nbits = Max(0, lena - (i * 8));
    2346       13800 :         if (nbits < 8)
    2347             :         {
    2348        1658 :             mask = (0xFF << (8 - nbits));
    2349        1658 :             addra[i] = (addra[i] & mask);
    2350             :         }
    2351             : 
    2352       13800 :         nbits = Max(0, lenb - (i * 8));
    2353       13800 :         if (nbits < 8)
    2354             :         {
    2355        1652 :             mask = (0xFF << (8 - nbits));
    2356        1652 :             addrb[i] = (addrb[i] & mask);
    2357             :         }
    2358             :     }
    2359             : 
    2360             :     /* Calculate the difference between the addresses. */
    2361        2106 :     delta = 0;
    2362       15906 :     for (i = len - 1; i >= 0; i--)
    2363             :     {
    2364       13800 :         unsigned char a = addra[i];
    2365       13800 :         unsigned char b = addrb[i];
    2366             : 
    2367       13800 :         delta += (float8) b - (float8) a;
    2368       13800 :         delta /= 256;
    2369             :     }
    2370             : 
    2371             :     Assert((delta >= 0) && (delta <= 1));
    2372             : 
    2373        2106 :     pfree(addra);
    2374        2106 :     pfree(addrb);
    2375             : 
    2376        2106 :     PG_RETURN_FLOAT8(delta);
    2377             : }
    2378             : 
    2379             : static void
    2380       18022 : brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
    2381             : {
    2382       18022 :     Ranges     *ranges = (Ranges *) DatumGetPointer(src);
    2383             :     SerializedRanges *s;
    2384             : 
    2385             :     /*
    2386             :      * In batch mode, we need to compress the accumulated values to the
    2387             :      * actually requested number of values/ranges.
    2388             :      */
    2389       18022 :     compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
    2390             : 
    2391             :     /* At this point everything has to be fully sorted. */
    2392             :     Assert(ranges->nsorted == ranges->nvalues);
    2393             : 
    2394       18022 :     s = brin_range_serialize(ranges);
    2395       18022 :     dst[0] = PointerGetDatum(s);
    2396       18022 : }
    2397             : 
    2398             : static int
    2399        4876 : brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
    2400             : {
    2401        4876 :     return MinMaxMultiGetValuesPerRange(opts);
    2402             : }
    2403             : 
    2404             : /*
    2405             :  * Examine the given index tuple (which contains the partial status of a
    2406             :  * certain page range) by comparing it to the given value that comes from
    2407             :  * another heap tuple.  If the new value is outside the min/max range
    2408             :  * specified by the existing tuple values, update the index tuple and return
    2409             :  * true.  Otherwise, return false and do not modify in this case.
    2410             :  */
    2411             : Datum
    2412      140498 : brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
    2413             : {
    2414      140498 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2415      140498 :     BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
    2416      140498 :     Datum       newval = PG_GETARG_DATUM(2);
    2417      140498 :     bool        isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
    2418      140498 :     MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
    2419      140498 :     Oid         colloid = PG_GET_COLLATION();
    2420      140498 :     bool        modified = false;
    2421             :     Form_pg_attribute attr;
    2422             :     AttrNumber  attno;
    2423             :     Ranges     *ranges;
    2424      140498 :     SerializedRanges *serialized = NULL;
    2425             : 
    2426             :     Assert(!isnull);
    2427             : 
    2428      140498 :     attno = column->bv_attno;
    2429      140498 :     attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2430             : 
    2431             :     /* use the already deserialized value, if possible */
    2432      140498 :     ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
    2433             : 
    2434             :     /*
    2435             :      * If this is the first non-null value, we need to initialize the range
    2436             :      * list. Otherwise, just extract the existing range list from BrinValues.
    2437             :      *
    2438             :      * When starting with an empty range, we assume this is a batch mode and
    2439             :      * we use a larger buffer. The buffer size is derived from the BRIN range
    2440             :      * size, number of rows per page, with some sensible min/max values. A
    2441             :      * small buffer would be bad for performance, but a large buffer might
    2442             :      * require a lot of memory (because of keeping all the values).
    2443             :      */
    2444      140498 :     if (column->bv_allnulls)
    2445             :     {
    2446             :         MemoryContext oldctx;
    2447             : 
    2448             :         int         target_maxvalues;
    2449             :         int         maxvalues;
    2450        4876 :         BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
    2451             : 
    2452             :         /* what was specified as a reloption? */
    2453        4876 :         target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
    2454             : 
    2455             :         /*
    2456             :          * Determine the insert buffer size - we use 10x the target, capped to
    2457             :          * the maximum number of values in the heap range. This is more than
    2458             :          * enough, considering the actual number of rows per page is likely
    2459             :          * much lower, but meh.
    2460             :          */
    2461        4876 :         maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
    2462             :                         MaxHeapTuplesPerPage * pagesPerRange);
    2463             : 
    2464             :         /* but always at least the original value */
    2465        4876 :         maxvalues = Max(maxvalues, target_maxvalues);
    2466             : 
    2467             :         /* always cap by MIN/MAX */
    2468        4876 :         maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
    2469        4876 :         maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
    2470             : 
    2471        4876 :         oldctx = MemoryContextSwitchTo(column->bv_context);
    2472        4876 :         ranges = minmax_multi_init(maxvalues);
    2473        4876 :         ranges->attno = attno;
    2474        4876 :         ranges->colloid = colloid;
    2475        4876 :         ranges->typid = attr->atttypid;
    2476        4876 :         ranges->target_maxvalues = target_maxvalues;
    2477             : 
    2478             :         /* we'll certainly need the comparator, so just look it up now */
    2479        4876 :         ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2480             :                                                          BTLessStrategyNumber);
    2481             : 
    2482        4876 :         MemoryContextSwitchTo(oldctx);
    2483             : 
    2484        4876 :         column->bv_allnulls = false;
    2485        4876 :         modified = true;
    2486             : 
    2487        4876 :         column->bv_mem_value = PointerGetDatum(ranges);
    2488        4876 :         column->bv_serialize = brin_minmax_multi_serialize;
    2489             :     }
    2490      135622 :     else if (!ranges)
    2491             :     {
    2492             :         MemoryContext oldctx;
    2493             : 
    2494             :         int         maxvalues;
    2495       14220 :         BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
    2496             : 
    2497       14220 :         oldctx = MemoryContextSwitchTo(column->bv_context);
    2498             : 
    2499       14220 :         serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
    2500             : 
    2501             :         /*
    2502             :          * Determine the insert buffer size - we use 10x the target, capped to
    2503             :          * the maximum number of values in the heap range. This is more than
    2504             :          * enough, considering the actual number of rows per page is likely
    2505             :          * much lower, but meh.
    2506             :          */
    2507       14220 :         maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
    2508             :                         MaxHeapTuplesPerPage * pagesPerRange);
    2509             : 
    2510             :         /* but always at least the original value */
    2511       14220 :         maxvalues = Max(maxvalues, serialized->maxvalues);
    2512             : 
    2513             :         /* always cap by MIN/MAX */
    2514       14220 :         maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
    2515       14220 :         maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
    2516             : 
    2517       14220 :         ranges = brin_range_deserialize(maxvalues, serialized);
    2518             : 
    2519       14220 :         ranges->attno = attno;
    2520       14220 :         ranges->colloid = colloid;
    2521       14220 :         ranges->typid = attr->atttypid;
    2522             : 
    2523             :         /* we'll certainly need the comparator, so just look it up now */
    2524       14220 :         ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2525             :                                                          BTLessStrategyNumber);
    2526             : 
    2527       14220 :         column->bv_mem_value = PointerGetDatum(ranges);
    2528       14220 :         column->bv_serialize = brin_minmax_multi_serialize;
    2529             : 
    2530       14220 :         MemoryContextSwitchTo(oldctx);
    2531             :     }
    2532             : 
    2533             :     /*
    2534             :      * Try to add the new value to the range. We need to update the modified
    2535             :      * flag, so that we serialize the updated summary later.
    2536             :      */
    2537      140498 :     modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
    2538             : 
    2539             : 
    2540      140498 :     PG_RETURN_BOOL(modified);
    2541             : }
    2542             : 
    2543             : /*
    2544             :  * Given an index tuple corresponding to a certain page range and a scan key,
    2545             :  * return whether the scan key is consistent with the index tuple's min/max
    2546             :  * values.  Return true if so, false otherwise.
    2547             :  */
    2548             : Datum
    2549       31386 : brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
    2550             : {
    2551       31386 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2552       31386 :     BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
    2553       31386 :     ScanKey    *keys = (ScanKey *) PG_GETARG_POINTER(2);
    2554       31386 :     int         nkeys = PG_GETARG_INT32(3);
    2555             : 
    2556       31386 :     Oid         colloid = PG_GET_COLLATION(),
    2557             :                 subtype;
    2558             :     AttrNumber  attno;
    2559             :     Datum       value;
    2560             :     FmgrInfo   *finfo;
    2561             :     SerializedRanges *serialized;
    2562             :     Ranges     *ranges;
    2563             :     int         keyno;
    2564             :     int         rangeno;
    2565             :     int         i;
    2566             : 
    2567       31386 :     attno = column->bv_attno;
    2568             : 
    2569       31386 :     serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
    2570       31386 :     ranges = brin_range_deserialize(serialized->maxvalues, serialized);
    2571             : 
    2572             :     /* inspect the ranges, and for each one evaluate the scan keys */
    2573       34008 :     for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
    2574             :     {
    2575        3312 :         Datum       minval = ranges->values[2 * rangeno];
    2576        3312 :         Datum       maxval = ranges->values[2 * rangeno + 1];
    2577             : 
    2578             :         /* assume the range is matching, and we'll try to prove otherwise */
    2579        3312 :         bool        matching = true;
    2580             : 
    2581        4002 :         for (keyno = 0; keyno < nkeys; keyno++)
    2582             :         {
    2583             :             bool        matches;
    2584        3312 :             ScanKey     key = keys[keyno];
    2585             : 
    2586             :             /* NULL keys are handled and filtered-out in bringetbitmap */
    2587             :             Assert(!(key->sk_flags & SK_ISNULL));
    2588             : 
    2589        3312 :             attno = key->sk_attno;
    2590        3312 :             subtype = key->sk_subtype;
    2591        3312 :             value = key->sk_argument;
    2592        3312 :             switch (key->sk_strategy)
    2593             :             {
    2594         918 :                 case BTLessStrategyNumber:
    2595             :                 case BTLessEqualStrategyNumber:
    2596         918 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2597         918 :                                                                key->sk_strategy);
    2598             :                     /* first value from the array */
    2599         918 :                     matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, minval, value));
    2600         918 :                     break;
    2601             : 
    2602         990 :                 case BTEqualStrategyNumber:
    2603             :                     {
    2604             :                         Datum       compar;
    2605             :                         FmgrInfo   *cmpFn;
    2606             : 
    2607             :                         /* by default this range does not match */
    2608         990 :                         matches = false;
    2609             : 
    2610             :                         /*
    2611             :                          * Otherwise, need to compare the new value with
    2612             :                          * boundaries of all the ranges. First check if it's
    2613             :                          * less than the absolute minimum, which is the first
    2614             :                          * value in the array.
    2615             :                          */
    2616         990 :                         cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2617             :                                                                    BTGreaterStrategyNumber);
    2618         990 :                         compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
    2619             : 
    2620             :                         /* smaller than the smallest value in this range */
    2621         990 :                         if (DatumGetBool(compar))
    2622         120 :                             break;
    2623             : 
    2624         870 :                         cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2625             :                                                                    BTLessStrategyNumber);
    2626         870 :                         compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
    2627             : 
    2628             :                         /* larger than the largest value in this range */
    2629         870 :                         if (DatumGetBool(compar))
    2630         822 :                             break;
    2631             : 
    2632             :                         /*
    2633             :                          * We haven't managed to eliminate this range, so
    2634             :                          * consider it matching.
    2635             :                          */
    2636          48 :                         matches = true;
    2637             : 
    2638          48 :                         break;
    2639             :                     }
    2640        1404 :                 case BTGreaterEqualStrategyNumber:
    2641             :                 case BTGreaterStrategyNumber:
    2642        1404 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2643        1404 :                                                                key->sk_strategy);
    2644             :                     /* last value from the array */
    2645        1404 :                     matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, maxval, value));
    2646        1404 :                     break;
    2647             : 
    2648           0 :                 default:
    2649             :                     /* shouldn't happen */
    2650           0 :                     elog(ERROR, "invalid strategy number %d", key->sk_strategy);
    2651             :                     matches = false;
    2652             :                     break;
    2653             :             }
    2654             : 
    2655             :             /* the range has to match all the scan keys */
    2656        3312 :             matching &= matches;
    2657             : 
    2658             :             /* once we find a non-matching key, we're done */
    2659        3312 :             if (!matching)
    2660        2622 :                 break;
    2661             :         }
    2662             : 
    2663             :         /*
    2664             :          * have we found a range matching all scan keys? if yes, we're done
    2665             :          */
    2666        3312 :         if (matching)
    2667         690 :             PG_RETURN_BOOL(true);
    2668             :     }
    2669             : 
    2670             :     /*
    2671             :      * And now inspect the values. We don't bother with doing a binary search
    2672             :      * here, because we're dealing with serialized / fully compacted ranges,
    2673             :      * so there should be only very few values.
    2674             :      */
    2675       62308 :     for (i = 0; i < ranges->nvalues; i++)
    2676             :     {
    2677       55406 :         Datum       val = ranges->values[2 * ranges->nranges + i];
    2678             : 
    2679             :         /* assume the range is matching, and we'll try to prove otherwise */
    2680       55406 :         bool        matching = true;
    2681             : 
    2682       79200 :         for (keyno = 0; keyno < nkeys; keyno++)
    2683             :         {
    2684             :             bool        matches;
    2685       55406 :             ScanKey     key = keys[keyno];
    2686             : 
    2687             :             /* we've already dealt with NULL keys at the beginning */
    2688       55406 :             if (key->sk_flags & SK_ISNULL)
    2689           0 :                 continue;
    2690             : 
    2691       55406 :             attno = key->sk_attno;
    2692       55406 :             subtype = key->sk_subtype;
    2693       55406 :             value = key->sk_argument;
    2694       55406 :             switch (key->sk_strategy)
    2695             :             {
    2696       55406 :                 case BTLessStrategyNumber:
    2697             :                 case BTLessEqualStrategyNumber:
    2698             :                 case BTEqualStrategyNumber:
    2699             :                 case BTGreaterEqualStrategyNumber:
    2700             :                 case BTGreaterStrategyNumber:
    2701             : 
    2702       55406 :                     finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
    2703       55406 :                                                                key->sk_strategy);
    2704       55406 :                     matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, val, value));
    2705       55406 :                     break;
    2706             : 
    2707           0 :                 default:
    2708             :                     /* shouldn't happen */
    2709           0 :                     elog(ERROR, "invalid strategy number %d", key->sk_strategy);
    2710             :                     matches = false;
    2711             :                     break;
    2712             :             }
    2713             : 
    2714             :             /* the range has to match all the scan keys */
    2715       55406 :             matching &= matches;
    2716             : 
    2717             :             /* once we find a non-matching key, we're done */
    2718       55406 :             if (!matching)
    2719       31612 :                 break;
    2720             :         }
    2721             : 
    2722             :         /* have we found a range matching all scan keys? if yes, we're done */
    2723       55406 :         if (matching)
    2724       23794 :             PG_RETURN_BOOL(true);
    2725             :     }
    2726             : 
    2727        6902 :     PG_RETURN_BOOL(false);
    2728             : }
    2729             : 
    2730             : /*
    2731             :  * Given two BrinValues, update the first of them as a union of the summary
    2732             :  * values contained in both.  The second one is untouched.
    2733             :  */
    2734             : Datum
    2735           0 : brin_minmax_multi_union(PG_FUNCTION_ARGS)
    2736             : {
    2737           0 :     BrinDesc   *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
    2738           0 :     BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
    2739           0 :     BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
    2740             : 
    2741           0 :     Oid         colloid = PG_GET_COLLATION();
    2742             :     SerializedRanges *serialized_a;
    2743             :     SerializedRanges *serialized_b;
    2744             :     Ranges     *ranges_a;
    2745             :     Ranges     *ranges_b;
    2746             :     AttrNumber  attno;
    2747             :     Form_pg_attribute attr;
    2748             :     ExpandedRange *eranges;
    2749             :     int         neranges;
    2750             :     FmgrInfo   *cmpFn,
    2751             :                *distanceFn;
    2752             :     DistanceValue *distances;
    2753             :     MemoryContext ctx;
    2754             :     MemoryContext oldctx;
    2755             : 
    2756             :     Assert(col_a->bv_attno == col_b->bv_attno);
    2757             :     Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
    2758             : 
    2759           0 :     attno = col_a->bv_attno;
    2760           0 :     attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2761             : 
    2762           0 :     serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
    2763           0 :     serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
    2764             : 
    2765           0 :     ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
    2766           0 :     ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
    2767             : 
    2768             :     /* make sure neither of the ranges is NULL */
    2769             :     Assert(ranges_a && ranges_b);
    2770             : 
    2771           0 :     neranges = (ranges_a->nranges + ranges_a->nvalues) +
    2772           0 :         (ranges_b->nranges + ranges_b->nvalues);
    2773             : 
    2774             :     /*
    2775             :      * The distanceFn calls (which may internally call e.g. numeric_le) may
    2776             :      * allocate quite a bit of memory, and we must not leak it. Otherwise,
    2777             :      * we'd have problems e.g. when building indexes. So we create a local
    2778             :      * memory context and make sure we free the memory before leaving this
    2779             :      * function (not after every call).
    2780             :      */
    2781           0 :     ctx = AllocSetContextCreate(CurrentMemoryContext,
    2782             :                                 "minmax-multi context",
    2783             :                                 ALLOCSET_DEFAULT_SIZES);
    2784             : 
    2785           0 :     oldctx = MemoryContextSwitchTo(ctx);
    2786             : 
    2787             :     /* allocate and fill */
    2788           0 :     eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
    2789             : 
    2790             :     /* fill the expanded ranges with entries for the first range */
    2791           0 :     fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
    2792             :                          ranges_a);
    2793             : 
    2794             :     /* and now add combine ranges for the second range */
    2795           0 :     fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
    2796           0 :                          ranges_b->nranges + ranges_b->nvalues,
    2797             :                          ranges_b);
    2798             : 
    2799           0 :     cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
    2800             :                                                BTLessStrategyNumber);
    2801             : 
    2802             :     /* sort the expanded ranges */
    2803           0 :     neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
    2804             : 
    2805             :     /*
    2806             :      * We've loaded two different lists of expanded ranges, so some of them
    2807             :      * may be overlapping. So walk through them and merge them.
    2808             :      */
    2809           0 :     neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
    2810             : 
    2811             :     /* check that the combine ranges are correct (no overlaps, ordering) */
    2812           0 :     AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
    2813             : 
    2814             :     /*
    2815             :      * If needed, reduce some of the ranges.
    2816             :      *
    2817             :      * XXX This may be fairly expensive, so maybe we should do it only when
    2818             :      * it's actually needed (when we have too many ranges).
    2819             :      */
    2820             : 
    2821             :     /* build array of gap distances and sort them in ascending order */
    2822           0 :     distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
    2823           0 :     distances = build_distances(distanceFn, colloid, eranges, neranges);
    2824             : 
    2825             :     /*
    2826             :      * See how many values would be needed to store the current ranges, and if
    2827             :      * needed combine as many of them to get below the threshold. The
    2828             :      * collapsed ranges will be stored as a single value.
    2829             :      *
    2830             :      * XXX This does not apply the load factor, as we don't expect to add more
    2831             :      * values to the range, so we prefer to keep as many ranges as possible.
    2832             :      *
    2833             :      * XXX Can the maxvalues be different in the two ranges? Perhaps we should
    2834             :      * use maximum of those?
    2835             :      */
    2836           0 :     neranges = reduce_expanded_ranges(eranges, neranges, distances,
    2837             :                                       ranges_a->maxvalues,
    2838             :                                       cmpFn, colloid);
    2839             : 
    2840             :     /* Is the result of reducing expanded ranges correct? */
    2841           0 :     AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
    2842             : 
    2843             :     /* update the first range summary */
    2844           0 :     store_expanded_ranges(ranges_a, eranges, neranges);
    2845             : 
    2846           0 :     MemoryContextSwitchTo(oldctx);
    2847           0 :     MemoryContextDelete(ctx);
    2848             : 
    2849             :     /* cleanup and update the serialized value */
    2850           0 :     pfree(serialized_a);
    2851           0 :     col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
    2852             : 
    2853           0 :     PG_RETURN_VOID();
    2854             : }
    2855             : 
    2856             : /*
    2857             :  * Cache and return minmax multi opclass support procedure
    2858             :  *
    2859             :  * Return the procedure corresponding to the given function support number
    2860             :  * or null if it does not exist.
    2861             :  */
    2862             : static FmgrInfo *
    2863        6266 : minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
    2864             : {
    2865             :     MinmaxMultiOpaque *opaque;
    2866        6266 :     uint16      basenum = procnum - PROCNUM_BASE;
    2867             : 
    2868             :     /*
    2869             :      * We cache these in the opaque struct, to avoid repetitive syscache
    2870             :      * lookups.
    2871             :      */
    2872        6266 :     opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
    2873             : 
    2874        6266 :     if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
    2875             :     {
    2876         508 :         if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
    2877             :                                                 procnum)))
    2878         508 :             fmgr_info_copy(&opaque->extra_procinfos[basenum],
    2879             :                            index_getprocinfo(bdesc->bd_index, attno, procnum),
    2880             :                            bdesc->bd_context);
    2881             :         else
    2882           0 :             ereport(ERROR,
    2883             :                     errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
    2884             :                     errmsg_internal("invalid opclass definition"),
    2885             :                     errdetail_internal("The operator class is missing support function %d for column %d.",
    2886             :                                        procnum, attno));
    2887             :     }
    2888             : 
    2889        6266 :     return &opaque->extra_procinfos[basenum];
    2890             : }
    2891             : 
    2892             : /*
    2893             :  * Cache and return the procedure for the given strategy.
    2894             :  *
    2895             :  * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
    2896             :  * there.  If changes are made here, see that function too.
    2897             :  */
    2898             : static FmgrInfo *
    2899      483390 : minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
    2900             :                                    uint16 strategynum)
    2901             : {
    2902             :     MinmaxMultiOpaque *opaque;
    2903             : 
    2904             :     Assert(strategynum >= 1 &&
    2905             :            strategynum <= BTMaxStrategyNumber);
    2906             : 
    2907      483390 :     opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
    2908             : 
    2909             :     /*
    2910             :      * We cache the procedures for the previous subtype in the opaque struct,
    2911             :      * to avoid repetitive syscache lookups.  If the subtype changed,
    2912             :      * invalidate all the cached entries.
    2913             :      */
    2914      483390 :     if (opaque->cached_subtype != subtype)
    2915             :     {
    2916             :         uint16      i;
    2917             : 
    2918       11292 :         for (i = 1; i <= BTMaxStrategyNumber; i++)
    2919        9410 :             opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
    2920        1882 :         opaque->cached_subtype = subtype;
    2921             :     }
    2922             : 
    2923      483390 :     if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
    2924             :     {
    2925             :         Form_pg_attribute attr;
    2926             :         HeapTuple   tuple;
    2927             :         Oid         opfamily,
    2928             :                     oprid;
    2929             : 
    2930        2714 :         opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
    2931        2714 :         attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
    2932        2714 :         tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
    2933             :                                 ObjectIdGetDatum(attr->atttypid),
    2934             :                                 ObjectIdGetDatum(subtype),
    2935             :                                 Int16GetDatum(strategynum));
    2936        2714 :         if (!HeapTupleIsValid(tuple))
    2937           0 :             elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
    2938             :                  strategynum, attr->atttypid, subtype, opfamily);
    2939             : 
    2940        2714 :         oprid = DatumGetObjectId(SysCacheGetAttrNotNull(AMOPSTRATEGY, tuple,
    2941             :                                                         Anum_pg_amop_amopopr));
    2942        2714 :         ReleaseSysCache(tuple);
    2943             :         Assert(RegProcedureIsValid(oprid));
    2944             : 
    2945        2714 :         fmgr_info_cxt(get_opcode(oprid),
    2946        2714 :                       &opaque->strategy_procinfos[strategynum - 1],
    2947             :                       bdesc->bd_context);
    2948             :     }
    2949             : 
    2950      483390 :     return &opaque->strategy_procinfos[strategynum - 1];
    2951             : }
    2952             : 
    2953             : Datum
    2954        1264 : brin_minmax_multi_options(PG_FUNCTION_ARGS)
    2955             : {
    2956        1264 :     local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
    2957             : 
    2958        1264 :     init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
    2959             : 
    2960        1264 :     add_local_int_reloption(relopts, "values_per_range", "desc",
    2961             :                             MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
    2962             :                             offsetof(MinMaxMultiOptions, valuesPerRange));
    2963             : 
    2964        1264 :     PG_RETURN_VOID();
    2965             : }
    2966             : 
    2967             : /*
    2968             :  * brin_minmax_multi_summary_in
    2969             :  *      - input routine for type brin_minmax_multi_summary.
    2970             :  *
    2971             :  * brin_minmax_multi_summary is only used internally to represent summaries
    2972             :  * in BRIN minmax-multi indexes, so it has no operations of its own, and we
    2973             :  * disallow input too.
    2974             :  */
    2975             : Datum
    2976           0 : brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
    2977             : {
    2978             :     /*
    2979             :      * brin_minmax_multi_summary stores the data in binary form and parsing
    2980             :      * text input is not needed, so disallow this.
    2981             :      */
    2982           0 :     ereport(ERROR,
    2983             :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    2984             :              errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
    2985             : 
    2986             :     PG_RETURN_VOID();           /* keep compiler quiet */
    2987             : }
    2988             : 
    2989             : 
    2990             : /*
    2991             :  * brin_minmax_multi_summary_out
    2992             :  *      - output routine for type brin_minmax_multi_summary.
    2993             :  *
    2994             :  * BRIN minmax-multi summaries are serialized into a bytea value, but we
    2995             :  * want to output something nicer humans can understand.
    2996             :  */
    2997             : Datum
    2998         240 : brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
    2999             : {
    3000             :     int         i;
    3001             :     int         idx;
    3002             :     SerializedRanges *ranges;
    3003             :     Ranges     *ranges_deserialized;
    3004             :     StringInfoData str;
    3005             :     bool        isvarlena;
    3006             :     Oid         outfunc;
    3007             :     FmgrInfo    fmgrinfo;
    3008         240 :     ArrayBuildState *astate_values = NULL;
    3009             : 
    3010         240 :     initStringInfo(&str);
    3011         240 :     appendStringInfoChar(&str, '{');
    3012             : 
    3013             :     /*
    3014             :      * Detoast to get value with full 4B header (can't be stored in a toast
    3015             :      * table, but can use 1B header).
    3016             :      */
    3017         240 :     ranges = (SerializedRanges *) PG_DETOAST_DATUM(PG_GETARG_DATUM(0));
    3018             : 
    3019             :     /* lookup output func for the type */
    3020         240 :     getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
    3021         240 :     fmgr_info(outfunc, &fmgrinfo);
    3022             : 
    3023             :     /* deserialize the range info easy-to-process pieces */
    3024         240 :     ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
    3025             : 
    3026         240 :     appendStringInfo(&str, "nranges: %d  nvalues: %d  maxvalues: %d",
    3027             :                      ranges_deserialized->nranges,
    3028             :                      ranges_deserialized->nvalues,
    3029             :                      ranges_deserialized->maxvalues);
    3030             : 
    3031             :     /* serialize ranges */
    3032         240 :     idx = 0;
    3033         240 :     for (i = 0; i < ranges_deserialized->nranges; i++)
    3034             :     {
    3035             :         char       *a,
    3036             :                    *b;
    3037             :         text       *c;
    3038             :         StringInfoData buf;
    3039             : 
    3040           0 :         initStringInfo(&buf);
    3041             : 
    3042           0 :         a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
    3043           0 :         b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
    3044             : 
    3045           0 :         appendStringInfo(&buf, "%s ... %s", a, b);
    3046             : 
    3047           0 :         c = cstring_to_text_with_len(buf.data, buf.len);
    3048             : 
    3049           0 :         astate_values = accumArrayResult(astate_values,
    3050             :                                          PointerGetDatum(c),
    3051             :                                          false,
    3052             :                                          TEXTOID,
    3053             :                                          CurrentMemoryContext);
    3054             :     }
    3055             : 
    3056         240 :     if (ranges_deserialized->nranges > 0)
    3057             :     {
    3058             :         Oid         typoutput;
    3059             :         bool        typIsVarlena;
    3060             :         Datum       val;
    3061             :         char       *extval;
    3062             : 
    3063           0 :         getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
    3064             : 
    3065           0 :         val = makeArrayResult(astate_values, CurrentMemoryContext);
    3066             : 
    3067           0 :         extval = OidOutputFunctionCall(typoutput, val);
    3068             : 
    3069           0 :         appendStringInfo(&str, " ranges: %s", extval);
    3070             :     }
    3071             : 
    3072             :     /* serialize individual values */
    3073         240 :     astate_values = NULL;
    3074             : 
    3075        2592 :     for (i = 0; i < ranges_deserialized->nvalues; i++)
    3076             :     {
    3077             :         Datum       a;
    3078             :         text       *b;
    3079             : 
    3080        2352 :         a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
    3081        2352 :         b = cstring_to_text(DatumGetCString(a));
    3082             : 
    3083        2352 :         astate_values = accumArrayResult(astate_values,
    3084             :                                          PointerGetDatum(b),
    3085             :                                          false,
    3086             :                                          TEXTOID,
    3087             :                                          CurrentMemoryContext);
    3088             :     }
    3089             : 
    3090         240 :     if (ranges_deserialized->nvalues > 0)
    3091             :     {
    3092             :         Oid         typoutput;
    3093             :         bool        typIsVarlena;
    3094             :         Datum       val;
    3095             :         char       *extval;
    3096             : 
    3097         240 :         getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
    3098             : 
    3099         240 :         val = makeArrayResult(astate_values, CurrentMemoryContext);
    3100             : 
    3101         240 :         extval = OidOutputFunctionCall(typoutput, val);
    3102             : 
    3103         240 :         appendStringInfo(&str, " values: %s", extval);
    3104             :     }
    3105             : 
    3106             : 
    3107         240 :     appendStringInfoChar(&str, '}');
    3108             : 
    3109         240 :     PG_RETURN_CSTRING(str.data);
    3110             : }
    3111             : 
    3112             : /*
    3113             :  * brin_minmax_multi_summary_recv
    3114             :  *      - binary input routine for type brin_minmax_multi_summary.
    3115             :  */
    3116             : Datum
    3117           0 : brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
    3118             : {
    3119           0 :     ereport(ERROR,
    3120             :             (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    3121             :              errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
    3122             : 
    3123             :     PG_RETURN_VOID();           /* keep compiler quiet */
    3124             : }
    3125             : 
    3126             : /*
    3127             :  * brin_minmax_multi_summary_send
    3128             :  *      - binary output routine for type brin_minmax_multi_summary.
    3129             :  *
    3130             :  * BRIN minmax-multi summaries are serialized in a bytea value (although
    3131             :  * the type is named differently), so let's just send that.
    3132             :  */
    3133             : Datum
    3134           0 : brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
    3135             : {
    3136           0 :     return byteasend(fcinfo);
    3137             : }

Generated by: LCOV version 1.14