Line data Source code
1 : /*
2 : * brin_minmax_multi.c
3 : * Implementation of Multi Min/Max opclass for BRIN
4 : *
5 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
6 : * Portions Copyright (c) 1994, Regents of the University of California
7 : *
8 : *
9 : * Implements a variant of minmax opclass, where the summary is composed of
10 : * multiple smaller intervals. This allows us to handle outliers, which
11 : * usually make the simple minmax opclass inefficient.
12 : *
13 : * Consider for example page range with simple minmax interval [1000,2000],
14 : * and assume a new row gets inserted into the range with value 1000000.
15 : * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
16 : * got 1000x wider and won't be useful to eliminate scan keys between 2001
17 : * and 1000000.
18 : *
19 : * With minmax-multi opclass, we may have [1000,2000] interval initially,
20 : * but after adding the new row we start tracking it as two interval:
21 : *
22 : * [1000,2000] and [1000000,1000000]
23 : *
24 : * This allows us to still eliminate the page range when the scan keys hit
25 : * the gap between 2000 and 1000000, making it useful in cases when the
26 : * simple minmax opclass gets inefficient.
27 : *
28 : * The number of intervals tracked per page range is somewhat flexible.
29 : * What is restricted is the number of values per page range, and the limit
30 : * is currently 32 (see values_per_range reloption). Collapsed intervals
31 : * (with equal minimum and maximum value) are stored as a single value,
32 : * while regular intervals require two values.
33 : *
34 : * When the number of values gets too high (by adding new values to the
35 : * summary), we merge some of the intervals to free space for more values.
36 : * This is done in a greedy way - we simply pick the two closest intervals,
37 : * merge them, and repeat this until the number of values to store gets
38 : * sufficiently low (below 50% of maximum values), but that is mostly
39 : * arbitrary threshold and may be changed easily).
40 : *
41 : * To pick the closest intervals we use the "distance" support procedure,
42 : * which measures space between two ranges (i.e. the length of an interval).
43 : * The computed value may be an approximation - in the worst case we will
44 : * merge two ranges that are slightly less optimal at that step, but the
45 : * index should still produce correct results.
46 : *
47 : * The compactions (reducing the number of values) is fairly expensive, as
48 : * it requires calling the distance functions, sorting etc. So when building
49 : * the summary, we use a significantly larger buffer, and only enforce the
50 : * exact limit at the very end. This improves performance, and it also helps
51 : * with building better ranges (due to the greedy approach).
52 : *
53 : *
54 : * IDENTIFICATION
55 : * src/backend/access/brin/brin_minmax_multi.c
56 : */
57 : #include "postgres.h"
58 :
59 : /* needed for PGSQL_AF_INET */
60 : #include <sys/socket.h>
61 :
62 : #include "access/brin.h"
63 : #include "access/brin_internal.h"
64 : #include "access/brin_tuple.h"
65 : #include "access/genam.h"
66 : #include "access/htup_details.h"
67 : #include "access/reloptions.h"
68 : #include "access/stratnum.h"
69 : #include "catalog/pg_am.h"
70 : #include "catalog/pg_amop.h"
71 : #include "catalog/pg_type.h"
72 : #include "utils/array.h"
73 : #include "utils/builtins.h"
74 : #include "utils/date.h"
75 : #include "utils/datum.h"
76 : #include "utils/float.h"
77 : #include "utils/inet.h"
78 : #include "utils/lsyscache.h"
79 : #include "utils/memutils.h"
80 : #include "utils/pg_lsn.h"
81 : #include "utils/rel.h"
82 : #include "utils/syscache.h"
83 : #include "utils/timestamp.h"
84 : #include "utils/uuid.h"
85 :
86 : /*
87 : * Additional SQL level support functions
88 : *
89 : * Procedure numbers must not use values reserved for BRIN itself; see
90 : * brin_internal.h.
91 : */
92 : #define MINMAX_MAX_PROCNUMS 1 /* maximum support procs we need */
93 : #define PROCNUM_DISTANCE 11 /* required, distance between values */
94 :
95 : /*
96 : * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
97 : * (Must be equal to minimum of private procnums).
98 : */
99 : #define PROCNUM_BASE 11
100 :
101 : /*
102 : * Sizing the insert buffer - we use 10x the number of values specified
103 : * in the reloption, but we cap it to 8192 not to get too large. When
104 : * the buffer gets full, we reduce the number of values by half.
105 : */
106 : #define MINMAX_BUFFER_FACTOR 10
107 : #define MINMAX_BUFFER_MIN 256
108 : #define MINMAX_BUFFER_MAX 8192
109 : #define MINMAX_BUFFER_LOAD_FACTOR 0.5
110 :
111 : typedef struct MinmaxMultiOpaque
112 : {
113 : FmgrInfo extra_procinfos[MINMAX_MAX_PROCNUMS];
114 : Oid cached_subtype;
115 : FmgrInfo strategy_procinfos[BTMaxStrategyNumber];
116 : } MinmaxMultiOpaque;
117 :
118 : /*
119 : * Storage type for BRIN's minmax reloptions
120 : */
121 : typedef struct MinMaxMultiOptions
122 : {
123 : int32 vl_len_; /* varlena header (do not touch directly!) */
124 : int valuesPerRange; /* number of values per range */
125 : } MinMaxMultiOptions;
126 :
127 : #define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE 32
128 :
129 : #define MinMaxMultiGetValuesPerRange(opts) \
130 : ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
131 : ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
132 : MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
133 :
134 : #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
135 :
136 : /*
137 : * The summary of minmax-multi indexes has two representations - Ranges for
138 : * convenient processing, and SerializedRanges for storage in bytea value.
139 : *
140 : * The Ranges struct stores the boundary values in a single array, but we
141 : * treat regular and single-point ranges differently to save space. For
142 : * regular ranges (with different boundary values) we have to store both
143 : * the lower and upper bound of the range, while for "single-point ranges"
144 : * we only need to store a single value.
145 : *
146 : * The 'values' array stores boundary values for regular ranges first (there
147 : * are 2*nranges values to store), and then the nvalues boundary values for
148 : * single-point ranges. That is, we have (2*nranges + nvalues) boundary
149 : * values in the array.
150 : *
151 : * +-------------------------+----------------------------------+
152 : * | ranges (2 * nranges of) | single point values (nvalues of) |
153 : * +-------------------------+----------------------------------+
154 : *
155 : * This allows us to quickly add new values, and store outliers without
156 : * having to widen any of the existing range values.
157 : *
158 : * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
159 : * When nsorted == nvalues, all single point values are sorted.
160 : *
161 : * We never store more than maxvalues values (as set by values_per_range
162 : * reloption). If needed we merge some of the ranges.
163 : *
164 : * To minimize palloc overhead, we always allocate the full array with
165 : * space for maxvalues elements. This should be fine as long as the
166 : * maxvalues is reasonably small (64 seems fine), which is the case
167 : * thanks to values_per_range reloption being limited to 256.
168 : */
169 : typedef struct Ranges
170 : {
171 : /* Cache information that we need quite often. */
172 : Oid typid;
173 : Oid colloid;
174 : AttrNumber attno;
175 : FmgrInfo *cmp;
176 :
177 : /* (2*nranges + nvalues) <= maxvalues */
178 : int nranges; /* number of ranges in the values[] array */
179 : int nsorted; /* number of nvalues which are sorted */
180 : int nvalues; /* number of point values in values[] array */
181 : int maxvalues; /* number of elements in the values[] array */
182 :
183 : /*
184 : * We simply add the values into a large buffer, without any expensive
185 : * steps (sorting, deduplication, ...). The buffer is a multiple of the
186 : * target number of values, so the compaction happens less often,
187 : * amortizing the costs. We keep the actual target and compact to the
188 : * requested number of values at the very end, before serializing to
189 : * on-disk representation.
190 : */
191 : /* requested number of values */
192 : int target_maxvalues;
193 :
194 : /* values stored for this range - either raw values, or ranges */
195 : Datum values[FLEXIBLE_ARRAY_MEMBER];
196 : } Ranges;
197 :
198 : /*
199 : * On-disk the summary is stored as a bytea value, with a simple header
200 : * with basic metadata, followed by the boundary values. It has a varlena
201 : * header, so can be treated as varlena directly.
202 : *
203 : * See brin_range_serialize/brin_range_deserialize for serialization details.
204 : */
205 : typedef struct SerializedRanges
206 : {
207 : /* varlena header (do not touch directly!) */
208 : int32 vl_len_;
209 :
210 : /* type of values stored in the data array */
211 : Oid typid;
212 :
213 : /* (2*nranges + nvalues) <= maxvalues */
214 : int nranges; /* number of ranges in the array (stored) */
215 : int nvalues; /* number of values in the data array (all) */
216 : int maxvalues; /* maximum number of values (reloption) */
217 :
218 : /* contains the actual data */
219 : char data[FLEXIBLE_ARRAY_MEMBER];
220 : } SerializedRanges;
221 :
222 : static SerializedRanges *brin_range_serialize(Ranges *range);
223 :
224 : static Ranges *brin_range_deserialize(int maxvalues,
225 : SerializedRanges *serialized);
226 :
227 :
228 : /*
229 : * Used to represent ranges expanded to make merging and combining easier.
230 : *
231 : * Each expanded range is essentially an interval, represented by min/max
232 : * values, along with a flag whether it's a collapsed range (in which case
233 : * the min and max values are equal). We have the flag to handle by-ref
234 : * data types - we can't simply compare the datums, and this saves some
235 : * calls to the type-specific comparator function.
236 : */
237 : typedef struct ExpandedRange
238 : {
239 : Datum minval; /* lower boundary */
240 : Datum maxval; /* upper boundary */
241 : bool collapsed; /* true if minval==maxval */
242 : } ExpandedRange;
243 :
244 : /*
245 : * Represents a distance between two ranges (identified by index into
246 : * an array of extended ranges).
247 : */
248 : typedef struct DistanceValue
249 : {
250 : int index;
251 : double value;
252 : } DistanceValue;
253 :
254 :
255 : /* Cache for support and strategy procedures. */
256 :
257 : static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
258 : uint16 procnum);
259 :
260 : static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
261 : uint16 attno, Oid subtype,
262 : uint16 strategynum);
263 :
264 : typedef struct compare_context
265 : {
266 : FmgrInfo *cmpFn;
267 : Oid colloid;
268 : } compare_context;
269 :
270 : static int compare_values(const void *a, const void *b, void *arg);
271 :
272 :
273 : #ifdef USE_ASSERT_CHECKING
274 : /*
275 : * Check that the order of the array values is correct, using the cmp
276 : * function (which should be BTLessStrategyNumber).
277 : */
278 : static void
279 : AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
280 : {
281 : int i;
282 : Datum lt;
283 :
284 : for (i = 0; i < (nvalues - 1); i++)
285 : {
286 : lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
287 : Assert(DatumGetBool(lt));
288 : }
289 : }
290 : #endif
291 :
292 : /*
293 : * Comprehensive check of the Ranges structure.
294 : */
295 : static void
296 271212 : AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
297 : {
298 : #ifdef USE_ASSERT_CHECKING
299 : int i;
300 :
301 : /* some basic sanity checks */
302 : Assert(ranges->nranges >= 0);
303 : Assert(ranges->nsorted >= 0);
304 : Assert(ranges->nvalues >= ranges->nsorted);
305 : Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
306 : Assert(ranges->typid != InvalidOid);
307 :
308 : /*
309 : * First the ranges - there are 2*nranges boundary values, and the values
310 : * have to be strictly ordered (equal values would mean the range is
311 : * collapsed, and should be stored as a point). This also guarantees that
312 : * the ranges do not overlap.
313 : */
314 : AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
315 :
316 : /* then the single-point ranges (with nvalues boundary values ) */
317 : AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
318 : ranges->nsorted);
319 :
320 : /*
321 : * Check that none of the values are not covered by ranges (both sorted
322 : * and unsorted)
323 : */
324 : if (ranges->nranges > 0)
325 : {
326 : for (i = 0; i < ranges->nvalues; i++)
327 : {
328 : Datum compar;
329 : int start,
330 : end;
331 : Datum minvalue = ranges->values[0];
332 : Datum maxvalue = ranges->values[2 * ranges->nranges - 1];
333 : Datum value = ranges->values[2 * ranges->nranges + i];
334 :
335 : compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
336 :
337 : /*
338 : * If the value is smaller than the lower bound in the first range
339 : * then it cannot possibly be in any of the ranges.
340 : */
341 : if (DatumGetBool(compar))
342 : continue;
343 :
344 : compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
345 :
346 : /*
347 : * Likewise, if the value is larger than the upper bound of the
348 : * final range, then it cannot possibly be inside any of the
349 : * ranges.
350 : */
351 : if (DatumGetBool(compar))
352 : continue;
353 :
354 : /* bsearch the ranges to see if 'value' fits within any of them */
355 : start = 0; /* first range */
356 : end = ranges->nranges - 1; /* last range */
357 : while (true)
358 : {
359 : int midpoint = (start + end) / 2;
360 :
361 : /* this means we ran out of ranges in the last step */
362 : if (start > end)
363 : break;
364 :
365 : /* copy the min/max values from the ranges */
366 : minvalue = ranges->values[2 * midpoint];
367 : maxvalue = ranges->values[2 * midpoint + 1];
368 :
369 : /*
370 : * Is the value smaller than the minval? If yes, we'll recurse
371 : * to the left side of range array.
372 : */
373 : compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
374 :
375 : /* smaller than the smallest value in this range */
376 : if (DatumGetBool(compar))
377 : {
378 : end = (midpoint - 1);
379 : continue;
380 : }
381 :
382 : /*
383 : * Is the value greater than the minval? If yes, we'll recurse
384 : * to the right side of range array.
385 : */
386 : compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
387 :
388 : /* larger than the largest value in this range */
389 : if (DatumGetBool(compar))
390 : {
391 : start = (midpoint + 1);
392 : continue;
393 : }
394 :
395 : /* hey, we found a matching range */
396 : Assert(false);
397 : }
398 : }
399 : }
400 :
401 : /* and values in the unsorted part must not be in the sorted part */
402 : if (ranges->nsorted > 0)
403 : {
404 : compare_context cxt;
405 :
406 : cxt.colloid = ranges->colloid;
407 : cxt.cmpFn = ranges->cmp;
408 :
409 : for (i = ranges->nsorted; i < ranges->nvalues; i++)
410 : {
411 : Datum value = ranges->values[2 * ranges->nranges + i];
412 :
413 : Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
414 : ranges->nsorted, sizeof(Datum),
415 : compare_values, &cxt) == NULL);
416 : }
417 : }
418 : #endif
419 271212 : }
420 :
421 : /*
422 : * Check that the expanded ranges (built when reducing the number of ranges
423 : * by combining some of them) are correctly sorted and do not overlap.
424 : */
425 : static void
426 492 : AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
427 : Form_pg_attribute attr, ExpandedRange *ranges,
428 : int nranges)
429 : {
430 : #ifdef USE_ASSERT_CHECKING
431 : int i;
432 : FmgrInfo *eq;
433 : FmgrInfo *lt;
434 :
435 : eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
436 : BTEqualStrategyNumber);
437 :
438 : lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
439 : BTLessStrategyNumber);
440 :
441 : /*
442 : * Each range independently should be valid, i.e. that for the boundary
443 : * values (lower <= upper).
444 : */
445 : for (i = 0; i < nranges; i++)
446 : {
447 : Datum r;
448 : Datum minval = ranges[i].minval;
449 : Datum maxval = ranges[i].maxval;
450 :
451 : if (ranges[i].collapsed) /* collapsed: minval == maxval */
452 : r = FunctionCall2Coll(eq, colloid, minval, maxval);
453 : else /* non-collapsed: minval < maxval */
454 : r = FunctionCall2Coll(lt, colloid, minval, maxval);
455 :
456 : Assert(DatumGetBool(r));
457 : }
458 :
459 : /*
460 : * And the ranges should be ordered and must not overlap, i.e. upper <
461 : * lower for boundaries of consecutive ranges.
462 : */
463 : for (i = 0; i < nranges - 1; i++)
464 : {
465 : Datum r;
466 : Datum maxval = ranges[i].maxval;
467 : Datum minval = ranges[i + 1].minval;
468 :
469 : r = FunctionCall2Coll(lt, colloid, maxval, minval);
470 :
471 : Assert(DatumGetBool(r));
472 : }
473 : #endif
474 492 : }
475 :
476 :
477 : /*
478 : * minmax_multi_init
479 : * Initialize the deserialized range list, allocate all the memory.
480 : *
481 : * This is only in-memory representation of the ranges, so we allocate
482 : * enough space for the maximum number of values (so as not to have to do
483 : * repallocs as the ranges grow).
484 : */
485 : static Ranges *
486 50722 : minmax_multi_init(int maxvalues)
487 : {
488 : Size len;
489 : Ranges *ranges;
490 :
491 : Assert(maxvalues > 0);
492 :
493 50722 : len = offsetof(Ranges, values); /* fixed header */
494 50722 : len += maxvalues * sizeof(Datum); /* Datum values */
495 :
496 50722 : ranges = (Ranges *) palloc0(len);
497 :
498 50722 : ranges->maxvalues = maxvalues;
499 :
500 50722 : return ranges;
501 : }
502 :
503 :
504 : /*
505 : * range_deduplicate_values
506 : * Deduplicate the part with values in the simple points.
507 : *
508 : * This is meant to be a cheaper way of reducing the size of the ranges. It
509 : * does not touch the ranges, and only sorts the other values - it does not
510 : * call the distance functions, which may be quite expensive, etc.
511 : *
512 : * We do know the values are not duplicate with the ranges, because we check
513 : * that before adding a new value. Same for the sorted part of values.
514 : */
515 : static void
516 18268 : range_deduplicate_values(Ranges *range)
517 : {
518 : int i,
519 : n;
520 : int start;
521 : compare_context cxt;
522 :
523 : /*
524 : * If there are no unsorted values, we're done (this probably can't
525 : * happen, as we're adding values to unsorted part).
526 : */
527 18268 : if (range->nsorted == range->nvalues)
528 18022 : return;
529 :
530 : /* sort the values */
531 246 : cxt.colloid = range->colloid;
532 246 : cxt.cmpFn = range->cmp;
533 :
534 : /* the values start right after the ranges (which are always sorted) */
535 246 : start = 2 * range->nranges;
536 :
537 : /*
538 : * XXX This might do a merge sort, to leverage that the first part of the
539 : * array is already sorted. If the sorted part is large, it might be quite
540 : * a bit faster.
541 : */
542 246 : qsort_arg(&range->values[start],
543 246 : range->nvalues, sizeof(Datum),
544 : compare_values, &cxt);
545 :
546 246 : n = 1;
547 78240 : for (i = 1; i < range->nvalues; i++)
548 : {
549 : /* same as preceding value, so store it */
550 77994 : if (compare_values(&range->values[start + i - 1],
551 77994 : &range->values[start + i],
552 : &cxt) == 0)
553 0 : continue;
554 :
555 77994 : range->values[start + n] = range->values[start + i];
556 :
557 77994 : n++;
558 : }
559 :
560 : /* now all the values are sorted */
561 246 : range->nvalues = n;
562 246 : range->nsorted = n;
563 :
564 246 : AssertCheckRanges(range, range->cmp, range->colloid);
565 : }
566 :
567 :
568 : /*
569 : * brin_range_serialize
570 : * Serialize the in-memory representation into a compact varlena value.
571 : *
572 : * Simply copy the header and then also the individual values, as stored
573 : * in the in-memory value array.
574 : */
575 : static SerializedRanges *
576 18022 : brin_range_serialize(Ranges *range)
577 : {
578 : Size len;
579 : int nvalues;
580 : SerializedRanges *serialized;
581 : Oid typid;
582 : int typlen;
583 : bool typbyval;
584 :
585 : char *ptr;
586 :
587 : /* simple sanity checks */
588 : Assert(range->nranges >= 0);
589 : Assert(range->nsorted >= 0);
590 : Assert(range->nvalues >= 0);
591 : Assert(range->maxvalues > 0);
592 : Assert(range->target_maxvalues > 0);
593 :
594 : /* at this point the range should be compacted to the target size */
595 : Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
596 :
597 : Assert(range->target_maxvalues <= range->maxvalues);
598 :
599 : /* range boundaries are always sorted */
600 : Assert(range->nvalues >= range->nsorted);
601 :
602 : /* deduplicate values, if there's unsorted part */
603 18022 : range_deduplicate_values(range);
604 :
605 : /* see how many Datum values we actually have */
606 18022 : nvalues = 2 * range->nranges + range->nvalues;
607 :
608 18022 : typid = range->typid;
609 18022 : typbyval = get_typbyval(typid);
610 18022 : typlen = get_typlen(typid);
611 :
612 : /* header is always needed */
613 18022 : len = offsetof(SerializedRanges, data);
614 :
615 : /*
616 : * The space needed depends on data type - for fixed-length data types
617 : * (by-value and some by-reference) it's pretty simple, just multiply
618 : * (attlen * nvalues) and we're done. For variable-length by-reference
619 : * types we need to actually walk all the values and sum the lengths.
620 : */
621 18022 : if (typlen == -1) /* varlena */
622 : {
623 : int i;
624 :
625 11888 : for (i = 0; i < nvalues; i++)
626 : {
627 9314 : len += VARSIZE_ANY(range->values[i]);
628 : }
629 : }
630 15448 : else if (typlen == -2) /* cstring */
631 : {
632 : int i;
633 :
634 0 : for (i = 0; i < nvalues; i++)
635 : {
636 : /* don't forget to include the null terminator ;-) */
637 0 : len += strlen(DatumGetCString(range->values[i])) + 1;
638 : }
639 : }
640 : else /* fixed-length types (even by-reference) */
641 : {
642 : Assert(typlen > 0);
643 15448 : len += nvalues * typlen;
644 : }
645 :
646 : /*
647 : * Allocate the serialized object, copy the basic information. The
648 : * serialized object is a varlena, so update the header.
649 : */
650 18022 : serialized = (SerializedRanges *) palloc0(len);
651 18022 : SET_VARSIZE(serialized, len);
652 :
653 18022 : serialized->typid = typid;
654 18022 : serialized->nranges = range->nranges;
655 18022 : serialized->nvalues = range->nvalues;
656 18022 : serialized->maxvalues = range->target_maxvalues;
657 :
658 : /*
659 : * And now copy also the boundary values (like the length calculation this
660 : * depends on the particular data type).
661 : */
662 18022 : ptr = serialized->data; /* start of the serialized data */
663 :
664 89038 : for (int i = 0; i < nvalues; i++)
665 : {
666 71016 : if (typbyval) /* simple by-value data types */
667 : {
668 : Datum tmp;
669 :
670 : /*
671 : * For byval types, we need to copy just the significant bytes -
672 : * we can't use memcpy directly, as that assumes little-endian
673 : * behavior. store_att_byval does almost what we need, but it
674 : * requires a properly aligned buffer - the output buffer does not
675 : * guarantee that. So we simply use a local Datum variable (which
676 : * guarantees proper alignment), and then copy the value from it.
677 : */
678 44256 : store_att_byval(&tmp, range->values[i], typlen);
679 :
680 44256 : memcpy(ptr, &tmp, typlen);
681 44256 : ptr += typlen;
682 : }
683 26760 : else if (typlen > 0) /* fixed-length by-ref types */
684 : {
685 17446 : memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
686 17446 : ptr += typlen;
687 : }
688 9314 : else if (typlen == -1) /* varlena */
689 : {
690 9314 : int tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
691 :
692 9314 : memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
693 9314 : ptr += tmp;
694 : }
695 0 : else if (typlen == -2) /* cstring */
696 : {
697 0 : int tmp = strlen(DatumGetCString(range->values[i])) + 1;
698 :
699 0 : memcpy(ptr, DatumGetCString(range->values[i]), tmp);
700 0 : ptr += tmp;
701 : }
702 :
703 : /* make sure we haven't overflown the buffer end */
704 : Assert(ptr <= ((char *) serialized + len));
705 : }
706 :
707 : /* exact size */
708 : Assert(ptr == ((char *) serialized + len));
709 :
710 18022 : return serialized;
711 : }
712 :
713 : /*
714 : * brin_range_deserialize
715 : * Serialize the in-memory representation into a compact varlena value.
716 : *
717 : * Simply copy the header and then also the individual values, as stored
718 : * in the in-memory value array.
719 : */
720 : static Ranges *
721 45846 : brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
722 : {
723 : int i,
724 : nvalues;
725 : char *ptr,
726 : *dataptr;
727 : bool typbyval;
728 : int typlen;
729 : Size datalen;
730 :
731 : Ranges *range;
732 :
733 : Assert(serialized->nranges >= 0);
734 : Assert(serialized->nvalues >= 0);
735 : Assert(serialized->maxvalues > 0);
736 :
737 45846 : nvalues = 2 * serialized->nranges + serialized->nvalues;
738 :
739 : Assert(nvalues <= serialized->maxvalues);
740 : Assert(serialized->maxvalues <= maxvalues);
741 :
742 45846 : range = minmax_multi_init(maxvalues);
743 :
744 : /* copy the header info */
745 45846 : range->nranges = serialized->nranges;
746 45846 : range->nvalues = serialized->nvalues;
747 45846 : range->nsorted = serialized->nvalues;
748 45846 : range->maxvalues = maxvalues;
749 45846 : range->target_maxvalues = serialized->maxvalues;
750 :
751 45846 : range->typid = serialized->typid;
752 :
753 45846 : typbyval = get_typbyval(serialized->typid);
754 45846 : typlen = get_typlen(serialized->typid);
755 :
756 : /*
757 : * And now deconstruct the values into Datum array. We have to copy the
758 : * data because the serialized representation ignores alignment, and we
759 : * don't want to rely on it being kept around anyway.
760 : */
761 45846 : ptr = serialized->data;
762 :
763 : /*
764 : * We don't want to allocate many pieces, so we just allocate everything
765 : * in one chunk. How much space will we need?
766 : *
767 : * XXX We don't need to copy simple by-value data types.
768 : */
769 45846 : datalen = 0;
770 45846 : dataptr = NULL;
771 105632 : for (i = 0; (i < nvalues) && (!typbyval); i++)
772 : {
773 59786 : if (typlen > 0) /* fixed-length by-ref types */
774 36158 : datalen += MAXALIGN(typlen);
775 23628 : else if (typlen == -1) /* varlena */
776 : {
777 23628 : datalen += MAXALIGN(VARSIZE_ANY(ptr));
778 23628 : ptr += VARSIZE_ANY(ptr);
779 : }
780 0 : else if (typlen == -2) /* cstring */
781 : {
782 0 : Size slen = strlen(ptr) + 1;
783 :
784 0 : datalen += MAXALIGN(slen);
785 0 : ptr += slen;
786 : }
787 : }
788 :
789 45846 : if (datalen > 0)
790 17394 : dataptr = palloc(datalen);
791 :
792 : /*
793 : * Restore the source pointer (might have been modified when calculating
794 : * the space we need to allocate).
795 : */
796 45846 : ptr = serialized->data;
797 :
798 236972 : for (i = 0; i < nvalues; i++)
799 : {
800 191126 : if (typbyval) /* simple by-value data types */
801 : {
802 131340 : Datum v = 0;
803 :
804 131340 : memcpy(&v, ptr, typlen);
805 :
806 131340 : range->values[i] = fetch_att(&v, true, typlen);
807 131340 : ptr += typlen;
808 : }
809 59786 : else if (typlen > 0) /* fixed-length by-ref types */
810 : {
811 36158 : range->values[i] = PointerGetDatum(dataptr);
812 :
813 36158 : memcpy(dataptr, ptr, typlen);
814 36158 : dataptr += MAXALIGN(typlen);
815 :
816 36158 : ptr += typlen;
817 : }
818 23628 : else if (typlen == -1) /* varlena */
819 : {
820 23628 : range->values[i] = PointerGetDatum(dataptr);
821 :
822 23628 : memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
823 23628 : dataptr += MAXALIGN(VARSIZE_ANY(ptr));
824 23628 : ptr += VARSIZE_ANY(ptr);
825 : }
826 0 : else if (typlen == -2) /* cstring */
827 : {
828 0 : Size slen = strlen(ptr) + 1;
829 :
830 0 : range->values[i] = PointerGetDatum(dataptr);
831 :
832 0 : memcpy(dataptr, ptr, slen);
833 0 : dataptr += MAXALIGN(slen);
834 0 : ptr += slen;
835 : }
836 :
837 : /* make sure we haven't overflown the buffer end */
838 : Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
839 : }
840 :
841 : /* should have consumed the whole input value exactly */
842 : Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
843 :
844 : /* return the deserialized value */
845 45846 : return range;
846 : }
847 :
848 : /*
849 : * compare_expanded_ranges
850 : * Compare the expanded ranges - first by minimum, then by maximum.
851 : *
852 : * We do guarantee that ranges in a single Ranges object do not overlap, so it
853 : * may seem strange that we don't order just by minimum. But when merging two
854 : * Ranges (which happens in the union function), the ranges may in fact
855 : * overlap. So we do compare both.
856 : */
857 : static int
858 834942 : compare_expanded_ranges(const void *a, const void *b, void *arg)
859 : {
860 834942 : ExpandedRange *ra = (ExpandedRange *) a;
861 834942 : ExpandedRange *rb = (ExpandedRange *) b;
862 : Datum r;
863 :
864 834942 : compare_context *cxt = (compare_context *) arg;
865 :
866 : /* first compare minvals */
867 834942 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
868 :
869 834942 : if (DatumGetBool(r))
870 539176 : return -1;
871 :
872 295766 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
873 :
874 295766 : if (DatumGetBool(r))
875 231486 : return 1;
876 :
877 : /* then compare maxvals */
878 64280 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
879 :
880 64280 : if (DatumGetBool(r))
881 0 : return -1;
882 :
883 64280 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
884 :
885 64280 : if (DatumGetBool(r))
886 0 : return 1;
887 :
888 64280 : return 0;
889 : }
890 :
891 : /*
892 : * compare_values
893 : * Compare the values.
894 : */
895 : static int
896 1142304 : compare_values(const void *a, const void *b, void *arg)
897 : {
898 1142304 : Datum *da = (Datum *) a;
899 1142304 : Datum *db = (Datum *) b;
900 : Datum r;
901 :
902 1142304 : compare_context *cxt = (compare_context *) arg;
903 :
904 1142304 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
905 :
906 1142304 : if (DatumGetBool(r))
907 607344 : return -1;
908 :
909 534960 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
910 :
911 534960 : if (DatumGetBool(r))
912 467730 : return 1;
913 :
914 67230 : return 0;
915 : }
916 :
917 : /*
918 : * Check if the new value matches one of the existing ranges.
919 : */
920 : static bool
921 140498 : has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
922 : Datum newval, AttrNumber attno, Oid typid)
923 : {
924 : Datum compar;
925 :
926 : Datum minvalue;
927 : Datum maxvalue;
928 :
929 : FmgrInfo *cmpLessFn;
930 : FmgrInfo *cmpGreaterFn;
931 :
932 : /* binary search on ranges */
933 : int start,
934 : end;
935 :
936 140498 : if (ranges->nranges == 0)
937 81548 : return false;
938 :
939 58950 : minvalue = ranges->values[0];
940 58950 : maxvalue = ranges->values[2 * ranges->nranges - 1];
941 :
942 : /*
943 : * Otherwise, need to compare the new value with boundaries of all the
944 : * ranges. First check if it's less than the absolute minimum, which is
945 : * the first value in the array.
946 : */
947 58950 : cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
948 : BTLessStrategyNumber);
949 58950 : compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
950 :
951 : /* smaller than the smallest value in the range list */
952 58950 : if (DatumGetBool(compar))
953 18 : return false;
954 :
955 : /*
956 : * And now compare it to the existing maximum (last value in the data
957 : * array). But only if we haven't already ruled out a possible match in
958 : * the minvalue check.
959 : */
960 58932 : cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
961 : BTGreaterStrategyNumber);
962 58932 : compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
963 :
964 58932 : if (DatumGetBool(compar))
965 58206 : return false;
966 :
967 : /*
968 : * So we know it's in the general min/max, the question is whether it
969 : * falls in one of the ranges or gaps. We'll do a binary search on
970 : * individual ranges - for each range we check equality (value falls into
971 : * the range), and then check ranges either above or below the current
972 : * range.
973 : */
974 726 : start = 0; /* first range */
975 726 : end = (ranges->nranges - 1); /* last range */
976 : while (true)
977 1554 : {
978 2280 : int midpoint = (start + end) / 2;
979 :
980 : /* this means we ran out of ranges in the last step */
981 2280 : if (start > end)
982 288 : return false;
983 :
984 : /* copy the min/max values from the ranges */
985 1992 : minvalue = ranges->values[2 * midpoint];
986 1992 : maxvalue = ranges->values[2 * midpoint + 1];
987 :
988 : /*
989 : * Is the value smaller than the minval? If yes, we'll recurse to the
990 : * left side of range array.
991 : */
992 1992 : compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
993 :
994 : /* smaller than the smallest value in this range */
995 1992 : if (DatumGetBool(compar))
996 : {
997 582 : end = (midpoint - 1);
998 582 : continue;
999 : }
1000 :
1001 : /*
1002 : * Is the value greater than the minval? If yes, we'll recurse to the
1003 : * right side of range array.
1004 : */
1005 1410 : compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
1006 :
1007 : /* larger than the largest value in this range */
1008 1410 : if (DatumGetBool(compar))
1009 : {
1010 972 : start = (midpoint + 1);
1011 972 : continue;
1012 : }
1013 :
1014 : /* hey, we found a matching range */
1015 438 : return true;
1016 : }
1017 :
1018 : return false;
1019 : }
1020 :
1021 :
1022 : /*
1023 : * range_contains_value
1024 : * See if the new value is already contained in the range list.
1025 : *
1026 : * We first inspect the list of intervals. We use a small trick - we check
1027 : * the value against min/max of the whole range (min of the first interval,
1028 : * max of the last one) first, and only inspect the individual intervals if
1029 : * this passes.
1030 : *
1031 : * If the value matches none of the intervals, we check the exact values.
1032 : * We simply loop through them and invoke equality operator on them.
1033 : *
1034 : * The last parameter (full) determines whether we need to search all the
1035 : * values, including the unsorted part. With full=false, the unsorted part
1036 : * is not searched, which may produce false negatives and duplicate values
1037 : * (in the unsorted part only), but when we're building the range that's
1038 : * fine - we'll deduplicate before serialization, and it can only happen
1039 : * if there already are unsorted values (so it was already modified).
1040 : *
1041 : * Serialized ranges don't have any unsorted values, so this can't cause
1042 : * false negatives during querying.
1043 : */
1044 : static bool
1045 140498 : range_contains_value(BrinDesc *bdesc, Oid colloid,
1046 : AttrNumber attno, Form_pg_attribute attr,
1047 : Ranges *ranges, Datum newval, bool full)
1048 : {
1049 : int i;
1050 : FmgrInfo *cmpEqualFn;
1051 140498 : Oid typid = attr->atttypid;
1052 :
1053 : /*
1054 : * First inspect the ranges, if there are any. We first check the whole
1055 : * range, and only when there's still a chance of getting a match we
1056 : * inspect the individual ranges.
1057 : */
1058 140498 : if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
1059 438 : return true;
1060 :
1061 140060 : cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
1062 : BTEqualStrategyNumber);
1063 :
1064 : /*
1065 : * There is no matching range, so let's inspect the sorted values.
1066 : *
1067 : * We do a sequential search for small numbers of values, and binary
1068 : * search once we have more than 16 values. This threshold is somewhat
1069 : * arbitrary, as it depends on how expensive the comparison function is.
1070 : *
1071 : * XXX If we use the threshold here, maybe we should do the same thing in
1072 : * has_matching_range? Or maybe we should do the bin search all the time?
1073 : *
1074 : * XXX We could use the same optimization as for ranges, to check if the
1075 : * value is between min/max, to maybe rule out all sorted values without
1076 : * having to inspect all of them.
1077 : */
1078 140060 : if (ranges->nsorted >= 16)
1079 : {
1080 : compare_context cxt;
1081 :
1082 58092 : cxt.colloid = ranges->colloid;
1083 58092 : cxt.cmpFn = ranges->cmp;
1084 :
1085 58092 : if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
1086 58092 : ranges->nsorted, sizeof(Datum),
1087 : compare_values, &cxt) != NULL)
1088 0 : return true;
1089 : }
1090 : else
1091 : {
1092 162994 : for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
1093 : {
1094 : Datum compar;
1095 :
1096 96884 : compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1097 :
1098 : /* found an exact match */
1099 96884 : if (DatumGetBool(compar))
1100 15858 : return true;
1101 : }
1102 : }
1103 :
1104 : /* If not asked to inspect the unsorted part, we're done. */
1105 124202 : if (!full)
1106 124202 : return false;
1107 :
1108 : /* Inspect the unsorted part. */
1109 0 : for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
1110 : {
1111 : Datum compar;
1112 :
1113 0 : compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1114 :
1115 : /* found an exact match */
1116 0 : if (DatumGetBool(compar))
1117 0 : return true;
1118 : }
1119 :
1120 : /* the value is not covered by this BRIN tuple */
1121 0 : return false;
1122 : }
1123 :
1124 : /*
1125 : * Expand ranges from Ranges into ExpandedRange array. This expects the
1126 : * eranges to be pre-allocated and with the correct size - there needs to be
1127 : * (nranges + nvalues) elements.
1128 : *
1129 : * The order of expanded ranges is arbitrary. We do expand the ranges first,
1130 : * and this part is sorted. But then we expand the values, and this part may
1131 : * be unsorted.
1132 : */
1133 : static void
1134 6266 : fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
1135 : {
1136 : int idx;
1137 : int i;
1138 :
1139 : /* Check that the output array has the right size. */
1140 : Assert(neranges == (ranges->nranges + ranges->nvalues));
1141 :
1142 6266 : idx = 0;
1143 8534 : for (i = 0; i < ranges->nranges; i++)
1144 : {
1145 2268 : eranges[idx].minval = ranges->values[2 * i];
1146 2268 : eranges[idx].maxval = ranges->values[2 * i + 1];
1147 2268 : eranges[idx].collapsed = false;
1148 2268 : idx++;
1149 :
1150 : Assert(idx <= neranges);
1151 : }
1152 :
1153 156932 : for (i = 0; i < ranges->nvalues; i++)
1154 : {
1155 150666 : eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
1156 150666 : eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
1157 150666 : eranges[idx].collapsed = true;
1158 150666 : idx++;
1159 :
1160 : Assert(idx <= neranges);
1161 : }
1162 :
1163 : /* Did we produce the expected number of elements? */
1164 : Assert(idx == neranges);
1165 :
1166 6266 : return;
1167 : }
1168 :
1169 : /*
1170 : * Sort and deduplicate expanded ranges.
1171 : *
1172 : * The ranges may be deduplicated - we're simply appending values, without
1173 : * checking for duplicates etc. So maybe the deduplication will reduce the
1174 : * number of ranges enough, and we won't have to compute the distances etc.
1175 : *
1176 : * Returns the number of expanded ranges.
1177 : */
1178 : static int
1179 6266 : sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
1180 : ExpandedRange *eranges, int neranges)
1181 : {
1182 : int n;
1183 : int i;
1184 : compare_context cxt;
1185 :
1186 : Assert(neranges > 0);
1187 :
1188 : /* sort the values */
1189 6266 : cxt.colloid = colloid;
1190 6266 : cxt.cmpFn = cmp;
1191 :
1192 : /*
1193 : * XXX We do qsort on all the values, but we could also leverage the fact
1194 : * that some of the input data is already sorted (all the ranges and maybe
1195 : * some of the points) and do merge sort.
1196 : */
1197 6266 : qsort_arg(eranges, neranges, sizeof(ExpandedRange),
1198 : compare_expanded_ranges, &cxt);
1199 :
1200 : /*
1201 : * Deduplicate the ranges - simply compare each range to the preceding
1202 : * one, and skip the duplicate ones.
1203 : */
1204 6266 : n = 1;
1205 152934 : for (i = 1; i < neranges; i++)
1206 : {
1207 : /* if the current range is equal to the preceding one, do nothing */
1208 146668 : if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], &cxt))
1209 29576 : continue;
1210 :
1211 : /* otherwise, copy it to n-th place (if not already there) */
1212 117092 : if (i != n)
1213 9234 : memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
1214 :
1215 117092 : n++;
1216 : }
1217 :
1218 : Assert((n > 0) && (n <= neranges));
1219 :
1220 6266 : return n;
1221 : }
1222 :
1223 : /*
1224 : * When combining multiple Range values (in union function), some of the
1225 : * ranges may overlap. We simply merge the overlapping ranges to fix that.
1226 : *
1227 : * XXX This assumes the expanded ranges were previously sorted (by minval
1228 : * and then maxval). We leverage this when detecting overlap.
1229 : */
1230 : static int
1231 0 : merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
1232 : ExpandedRange *eranges, int neranges)
1233 : {
1234 : int idx;
1235 :
1236 : /* Merge ranges (idx) and (idx+1) if they overlap. */
1237 0 : idx = 0;
1238 0 : while (idx < (neranges - 1))
1239 : {
1240 : Datum r;
1241 :
1242 : /*
1243 : * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
1244 : * < maxval)
1245 : */
1246 0 : r = FunctionCall2Coll(cmp, colloid,
1247 0 : eranges[idx].maxval,
1248 0 : eranges[idx + 1].minval);
1249 :
1250 : /*
1251 : * Nope, maxval < minval, so no overlap. And we know the ranges are
1252 : * ordered, so there are no more overlaps, because all the remaining
1253 : * ranges have greater or equal minval.
1254 : */
1255 0 : if (DatumGetBool(r))
1256 : {
1257 : /* proceed to the next range */
1258 0 : idx += 1;
1259 0 : continue;
1260 : }
1261 :
1262 : /*
1263 : * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
1264 : * 'idx+1' is contained in 'idx', or if they overlap only partially.
1265 : * So compare the upper bounds and keep the larger one.
1266 : */
1267 0 : r = FunctionCall2Coll(cmp, colloid,
1268 0 : eranges[idx].maxval,
1269 0 : eranges[idx + 1].maxval);
1270 :
1271 0 : if (DatumGetBool(r))
1272 0 : eranges[idx].maxval = eranges[idx + 1].maxval;
1273 :
1274 : /*
1275 : * The range certainly is no longer collapsed (irrespectively of the
1276 : * previous state).
1277 : */
1278 0 : eranges[idx].collapsed = false;
1279 :
1280 : /*
1281 : * Now get rid of the (idx+1) range entirely by shifting the remaining
1282 : * ranges by 1. There are neranges elements, and we need to move
1283 : * elements from (idx+2). That means the number of elements to move is
1284 : * [ncranges - (idx+2)].
1285 : */
1286 0 : memmove(&eranges[idx + 1], &eranges[idx + 2],
1287 0 : (neranges - (idx + 2)) * sizeof(ExpandedRange));
1288 :
1289 : /*
1290 : * Decrease the number of ranges, and repeat (with the same range, as
1291 : * it might overlap with additional ranges thanks to the merge).
1292 : */
1293 0 : neranges--;
1294 : }
1295 :
1296 0 : return neranges;
1297 : }
1298 :
1299 : /*
1300 : * Simple comparator for distance values, comparing the double value.
1301 : * This is intentionally sorting the distances in descending order, i.e.
1302 : * the longer gaps will be at the front.
1303 : */
1304 : static int
1305 172412 : compare_distances(const void *a, const void *b)
1306 : {
1307 172412 : DistanceValue *da = (DistanceValue *) a;
1308 172412 : DistanceValue *db = (DistanceValue *) b;
1309 :
1310 172412 : if (da->value < db->value)
1311 41000 : return 1;
1312 131412 : else if (da->value > db->value)
1313 27798 : return -1;
1314 :
1315 103614 : return 0;
1316 : }
1317 :
1318 : /*
1319 : * Given an array of expanded ranges, compute size of the gaps between each
1320 : * range. For neranges there are (neranges-1) gaps.
1321 : *
1322 : * We simply call the "distance" function to compute the (max-min) for pairs
1323 : * of consecutive ranges. The function may be fairly expensive, so we do that
1324 : * just once (and then use it to pick as many ranges to merge as possible).
1325 : *
1326 : * See reduce_expanded_ranges for details.
1327 : */
1328 : static DistanceValue *
1329 6266 : build_distances(FmgrInfo *distanceFn, Oid colloid,
1330 : ExpandedRange *eranges, int neranges)
1331 : {
1332 : int i;
1333 : int ndistances;
1334 : DistanceValue *distances;
1335 :
1336 : Assert(neranges > 0);
1337 :
1338 : /* If there's only a single range, there's no distance to calculate. */
1339 6266 : if (neranges == 1)
1340 0 : return NULL;
1341 :
1342 6266 : ndistances = (neranges - 1);
1343 6266 : distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
1344 :
1345 : /*
1346 : * Walk through the ranges once and compute the distance between the
1347 : * ranges so that we can sort them once.
1348 : */
1349 123358 : for (i = 0; i < ndistances; i++)
1350 : {
1351 : Datum a1,
1352 : a2,
1353 : r;
1354 :
1355 117092 : a1 = eranges[i].maxval;
1356 117092 : a2 = eranges[i + 1].minval;
1357 :
1358 : /* compute length of the gap (between max/min) */
1359 117092 : r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
1360 :
1361 : /* remember the index of the gap the distance is for */
1362 117092 : distances[i].index = i;
1363 117092 : distances[i].value = DatumGetFloat8(r);
1364 : }
1365 :
1366 : /*
1367 : * Sort the distances in descending order, so that the longest gaps are at
1368 : * the front.
1369 : */
1370 6266 : qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
1371 :
1372 6266 : return distances;
1373 : }
1374 :
1375 : /*
1376 : * Builds expanded ranges for the existing ranges (and single-point ranges),
1377 : * and also the new value (which did not fit into the array). This expanded
1378 : * representation makes the processing a bit easier, as it allows handling
1379 : * ranges and points the same way.
1380 : *
1381 : * We sort and deduplicate the expanded ranges - this is necessary, because
1382 : * the points may be unsorted. And moreover the two parts (ranges and
1383 : * points) are sorted on their own.
1384 : */
1385 : static ExpandedRange *
1386 6266 : build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
1387 : int *nranges)
1388 : {
1389 : int neranges;
1390 : ExpandedRange *eranges;
1391 :
1392 : /* both ranges and points are expanded into a separate element */
1393 6266 : neranges = ranges->nranges + ranges->nvalues;
1394 :
1395 6266 : eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
1396 :
1397 : /* fill the expanded ranges */
1398 6266 : fill_expanded_ranges(eranges, neranges, ranges);
1399 :
1400 : /* sort and deduplicate the expanded ranges */
1401 6266 : neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
1402 :
1403 : /* remember how many ranges we built */
1404 6266 : *nranges = neranges;
1405 :
1406 6266 : return eranges;
1407 : }
1408 :
1409 : #ifdef USE_ASSERT_CHECKING
1410 : /*
1411 : * Counts boundary values needed to store the ranges. Each single-point
1412 : * range is stored using a single value, each regular range needs two.
1413 : */
1414 : static int
1415 : count_values(ExpandedRange *cranges, int ncranges)
1416 : {
1417 : int i;
1418 : int count;
1419 :
1420 : count = 0;
1421 : for (i = 0; i < ncranges; i++)
1422 : {
1423 : if (cranges[i].collapsed)
1424 : count += 1;
1425 : else
1426 : count += 2;
1427 : }
1428 :
1429 : return count;
1430 : }
1431 : #endif
1432 :
1433 : /*
1434 : * reduce_expanded_ranges
1435 : * reduce the ranges until the number of values is low enough
1436 : *
1437 : * Combines ranges until the number of boundary values drops below the
1438 : * threshold specified by max_values. This happens by merging enough
1439 : * ranges by the distance between them.
1440 : *
1441 : * Returns the number of result ranges.
1442 : *
1443 : * We simply use the global min/max and then add boundaries for enough
1444 : * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
1445 : * distances. Then we simply sort all the values - each two values are
1446 : * a boundary of a range (possibly collapsed).
1447 : *
1448 : * XXX Some of the ranges may be collapsed (i.e. the min/max values are
1449 : * equal), but we ignore that for now. We could repeat the process,
1450 : * adding a couple more gaps recursively.
1451 : *
1452 : * XXX The ranges to merge are selected solely using the distance. But
1453 : * that may not be the best strategy, for example when multiple gaps
1454 : * are of equal (or very similar) length.
1455 : *
1456 : * Consider for example points 1, 2, 3, .., 64, which have gaps of the
1457 : * same length 1 of course. In that case, we tend to pick the first
1458 : * gap of that length, which leads to this:
1459 : *
1460 : * step 1: [1, 2], 3, 4, 5, .., 64
1461 : * step 2: [1, 3], 4, 5, .., 64
1462 : * step 3: [1, 4], 5, .., 64
1463 : * ...
1464 : *
1465 : * So in the end we'll have one "large" range and multiple small points.
1466 : * That may be fine, but it seems a bit strange and non-optimal. Maybe
1467 : * we should consider other things when picking ranges to merge - e.g.
1468 : * length of the ranges? Or perhaps randomize the choice of ranges, with
1469 : * probability inversely proportional to the distance (the gap lengths
1470 : * may be very close, but not exactly the same).
1471 : *
1472 : * XXX Or maybe we could just handle this by using random value as a
1473 : * tie-break, or by adding random noise to the actual distance.
1474 : */
1475 : static int
1476 6266 : reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
1477 : DistanceValue *distances, int max_values,
1478 : FmgrInfo *cmp, Oid colloid)
1479 : {
1480 : int i;
1481 : int nvalues;
1482 : Datum *values;
1483 :
1484 : compare_context cxt;
1485 :
1486 : /* total number of gaps between ranges */
1487 6266 : int ndistances = (neranges - 1);
1488 :
1489 : /* number of gaps to keep */
1490 6266 : int keep = (max_values / 2 - 1);
1491 :
1492 : /*
1493 : * Maybe we have a sufficiently low number of ranges already?
1494 : *
1495 : * XXX This should happen before we actually do the expensive stuff like
1496 : * sorting, so maybe this should be just an assert.
1497 : */
1498 6266 : if (keep >= ndistances)
1499 5420 : return neranges;
1500 :
1501 : /* sort the values */
1502 846 : cxt.colloid = colloid;
1503 846 : cxt.cmpFn = cmp;
1504 :
1505 : /* allocate space for the boundary values */
1506 846 : nvalues = 0;
1507 846 : values = (Datum *) palloc(sizeof(Datum) * max_values);
1508 :
1509 : /* add the global min/max values, from the first/last range */
1510 846 : values[nvalues++] = eranges[0].minval;
1511 846 : values[nvalues++] = eranges[neranges - 1].maxval;
1512 :
1513 : /* add boundary values for enough gaps */
1514 29280 : for (i = 0; i < keep; i++)
1515 : {
1516 : /* index of the gap between (index) and (index+1) ranges */
1517 28434 : int index = distances[i].index;
1518 :
1519 : Assert((index >= 0) && ((index + 1) < neranges));
1520 :
1521 : /* add max from the preceding range, minval from the next one */
1522 28434 : values[nvalues++] = eranges[index].maxval;
1523 28434 : values[nvalues++] = eranges[index + 1].minval;
1524 :
1525 : Assert(nvalues <= max_values);
1526 : }
1527 :
1528 : /* We should have an even number of range values. */
1529 : Assert(nvalues % 2 == 0);
1530 :
1531 : /*
1532 : * Sort the values using the comparator function, and form ranges from the
1533 : * sorted result.
1534 : */
1535 846 : qsort_arg(values, nvalues, sizeof(Datum),
1536 : compare_values, &cxt);
1537 :
1538 : /* We have nvalues boundary values, which means nvalues/2 ranges. */
1539 30126 : for (i = 0; i < (nvalues / 2); i++)
1540 : {
1541 29280 : eranges[i].minval = values[2 * i];
1542 29280 : eranges[i].maxval = values[2 * i + 1];
1543 :
1544 : /* if the boundary values are the same, it's a collapsed range */
1545 58560 : eranges[i].collapsed = (compare_values(&values[2 * i],
1546 29280 : &values[2 * i + 1],
1547 29280 : &cxt) == 0);
1548 : }
1549 :
1550 846 : return (nvalues / 2);
1551 : }
1552 :
1553 : /*
1554 : * Store the boundary values from ExpandedRanges back into 'ranges' (using
1555 : * only the minimal number of values needed).
1556 : */
1557 : static void
1558 6266 : store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
1559 : {
1560 : int i;
1561 6266 : int idx = 0;
1562 :
1563 : /* first copy in the regular ranges */
1564 6266 : ranges->nranges = 0;
1565 55788 : for (i = 0; i < neranges; i++)
1566 : {
1567 49522 : if (!eranges[i].collapsed)
1568 : {
1569 4416 : ranges->values[idx++] = eranges[i].minval;
1570 4416 : ranges->values[idx++] = eranges[i].maxval;
1571 4416 : ranges->nranges++;
1572 : }
1573 : }
1574 :
1575 : /* now copy in the collapsed ones */
1576 6266 : ranges->nvalues = 0;
1577 55788 : for (i = 0; i < neranges; i++)
1578 : {
1579 49522 : if (eranges[i].collapsed)
1580 : {
1581 45106 : ranges->values[idx++] = eranges[i].minval;
1582 45106 : ranges->nvalues++;
1583 : }
1584 : }
1585 :
1586 : /* all the values are sorted */
1587 6266 : ranges->nsorted = ranges->nvalues;
1588 :
1589 : Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
1590 : Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
1591 6266 : }
1592 :
1593 :
1594 : /*
1595 : * Consider freeing space in the ranges. Checks if there's space for at least
1596 : * one new value, and performs compaction if needed.
1597 : *
1598 : * Returns true if the value was actually modified.
1599 : */
1600 : static bool
1601 140498 : ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
1602 : AttrNumber attno, Form_pg_attribute attr,
1603 : Ranges *range)
1604 : {
1605 : MemoryContext ctx;
1606 : MemoryContext oldctx;
1607 :
1608 : FmgrInfo *cmpFn,
1609 : *distanceFn;
1610 :
1611 : /* expanded ranges */
1612 : ExpandedRange *eranges;
1613 : int neranges;
1614 : DistanceValue *distances;
1615 :
1616 : /*
1617 : * If there is free space in the buffer, we're done without having to
1618 : * modify anything.
1619 : */
1620 140498 : if (2 * range->nranges + range->nvalues < range->maxvalues)
1621 140252 : return false;
1622 :
1623 : /* we'll certainly need the comparator, so just look it up now */
1624 246 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1625 : BTLessStrategyNumber);
1626 :
1627 : /* deduplicate values, if there's an unsorted part */
1628 246 : range_deduplicate_values(range);
1629 :
1630 : /*
1631 : * Did we reduce enough free space by just the deduplication?
1632 : *
1633 : * We don't simply check against range->maxvalues again. The deduplication
1634 : * might have freed very little space (e.g. just one value), forcing us to
1635 : * do deduplication very often. In that case, it's better to do the
1636 : * compaction and reduce more space.
1637 : */
1638 246 : if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
1639 0 : return true;
1640 :
1641 : /*
1642 : * We need to combine some of the existing ranges, to reduce the number of
1643 : * values we have to store.
1644 : *
1645 : * The distanceFn calls (which may internally call e.g. numeric_le) may
1646 : * allocate quite a bit of memory, and we must not leak it (we might have
1647 : * to do this repeatedly, even for a single BRIN page range). Otherwise
1648 : * we'd have problems e.g. when building new indexes. So we use a memory
1649 : * context and make sure we free the memory at the end (so if we call the
1650 : * distance function many times, it might be an issue, but meh).
1651 : */
1652 246 : ctx = AllocSetContextCreate(CurrentMemoryContext,
1653 : "minmax-multi context",
1654 : ALLOCSET_DEFAULT_SIZES);
1655 :
1656 246 : oldctx = MemoryContextSwitchTo(ctx);
1657 :
1658 : /* build the expanded ranges */
1659 246 : eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
1660 :
1661 : /* Is the expanded representation of ranges correct? */
1662 246 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1663 :
1664 : /* and we'll also need the 'distance' procedure */
1665 246 : distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
1666 :
1667 : /* build array of gap distances and sort them in ascending order */
1668 246 : distances = build_distances(distanceFn, colloid, eranges, neranges);
1669 :
1670 : /*
1671 : * Combine ranges until we release at least 50% of the space. This
1672 : * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
1673 : * too low or high value.
1674 : */
1675 492 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
1676 246 : range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
1677 : cmpFn, colloid);
1678 :
1679 : /* Is the result of reducing expanded ranges correct? */
1680 246 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1681 :
1682 : /* Make sure we've sufficiently reduced the number of ranges. */
1683 : Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
1684 :
1685 : /* decompose the expanded ranges into regular ranges and single values */
1686 246 : store_expanded_ranges(range, eranges, neranges);
1687 :
1688 246 : MemoryContextSwitchTo(oldctx);
1689 246 : MemoryContextDelete(ctx);
1690 :
1691 : /* Did we break the ranges somehow? */
1692 246 : AssertCheckRanges(range, cmpFn, colloid);
1693 :
1694 246 : return true;
1695 : }
1696 :
1697 : /*
1698 : * range_add_value
1699 : * Add the new value to the minmax-multi range.
1700 : */
1701 : static bool
1702 140498 : range_add_value(BrinDesc *bdesc, Oid colloid,
1703 : AttrNumber attno, Form_pg_attribute attr,
1704 : Ranges *ranges, Datum newval)
1705 : {
1706 : FmgrInfo *cmpFn;
1707 140498 : bool modified = false;
1708 :
1709 : /* we'll certainly need the comparator, so just look it up now */
1710 140498 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1711 : BTLessStrategyNumber);
1712 :
1713 : /* comprehensive checks of the input ranges */
1714 140498 : AssertCheckRanges(ranges, cmpFn, colloid);
1715 :
1716 : /*
1717 : * Make sure there's enough free space in the buffer. We only trigger this
1718 : * when the buffer is full, which means it had to be modified as we size
1719 : * it to be larger than what is stored on disk.
1720 : *
1721 : * This needs to happen before we check if the value is contained in the
1722 : * range, because the value might be in the unsorted part, and we don't
1723 : * check that in range_contains_value. The deduplication would then move
1724 : * it to the sorted part, and we'd add the value too, which violates the
1725 : * rule that we never have duplicates with the ranges or sorted values.
1726 : *
1727 : * We might also deduplicate and recheck if the value is contained, but
1728 : * that seems like overkill. We'd need to deduplicate anyway, so why not
1729 : * do it now.
1730 : */
1731 140498 : modified = ensure_free_space_in_buffer(bdesc, colloid,
1732 : attno, attr, ranges);
1733 :
1734 : /*
1735 : * Bail out if the value already is covered by the range.
1736 : *
1737 : * We could also add values until we hit values_per_range, and then do the
1738 : * deduplication in a batch, hoping for better efficiency. But that would
1739 : * mean we actually modify the range every time, which means having to
1740 : * serialize the value, which does palloc, walks the values, copies them,
1741 : * etc. Not exactly cheap.
1742 : *
1743 : * So instead we do the check, which should be fairly cheap - assuming the
1744 : * comparator function is not very expensive.
1745 : *
1746 : * This also implies the values array can't contain duplicate values.
1747 : */
1748 140498 : if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
1749 16296 : return modified;
1750 :
1751 : /* Make a copy of the value, if needed. */
1752 124202 : newval = datumCopy(newval, attr->attbyval, attr->attlen);
1753 :
1754 : /*
1755 : * If there's space in the values array, copy it in and we're done.
1756 : *
1757 : * We do want to keep the values sorted (to speed up searches), so we do a
1758 : * simple insertion sort. We could do something more elaborate, e.g. by
1759 : * sorting the values only now and then, but for small counts (e.g. when
1760 : * maxvalues is 64) this should be fine.
1761 : */
1762 124202 : ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
1763 124202 : ranges->nvalues++;
1764 :
1765 : /* If we added the first value, we can consider it as sorted. */
1766 124202 : if (ranges->nvalues == 1)
1767 4876 : ranges->nsorted = 1;
1768 :
1769 : /*
1770 : * Check we haven't broken the ordering of boundary values (checks both
1771 : * parts, but that doesn't hurt).
1772 : */
1773 124202 : AssertCheckRanges(ranges, cmpFn, colloid);
1774 :
1775 : /* Check the range contains the value we just added. */
1776 : Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
1777 :
1778 : /* yep, we've modified the range */
1779 124202 : return true;
1780 : }
1781 :
1782 : /*
1783 : * Generate range representation of data collected during "batch mode".
1784 : * This is similar to reduce_expanded_ranges, except that we can't assume
1785 : * the values are sorted and there may be duplicate values.
1786 : */
1787 : static void
1788 18022 : compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
1789 : {
1790 : FmgrInfo *cmpFn,
1791 : *distanceFn;
1792 :
1793 : /* expanded ranges */
1794 : ExpandedRange *eranges;
1795 : int neranges;
1796 : DistanceValue *distances;
1797 :
1798 : MemoryContext ctx;
1799 : MemoryContext oldctx;
1800 :
1801 : /*
1802 : * Do we need to actually compactify anything?
1803 : *
1804 : * There are two reasons why compaction may be needed - firstly, there may
1805 : * be too many values, or some of the values may be unsorted.
1806 : */
1807 18022 : if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
1808 17554 : (ranges->nsorted == ranges->nvalues))
1809 12002 : return;
1810 :
1811 : /* we'll certainly need the comparator, so just look it up now */
1812 6020 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
1813 : BTLessStrategyNumber);
1814 :
1815 : /* and we'll also need the 'distance' procedure */
1816 6020 : distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
1817 :
1818 : /*
1819 : * The distanceFn calls (which may internally call e.g. numeric_le) may
1820 : * allocate quite a bit of memory, and we must not leak it. Otherwise,
1821 : * we'd have problems e.g. when building indexes. So we create a local
1822 : * memory context and make sure we free the memory before leaving this
1823 : * function (not after every call).
1824 : */
1825 6020 : ctx = AllocSetContextCreate(CurrentMemoryContext,
1826 : "minmax-multi context",
1827 : ALLOCSET_DEFAULT_SIZES);
1828 :
1829 6020 : oldctx = MemoryContextSwitchTo(ctx);
1830 :
1831 : /* build the expanded ranges */
1832 6020 : eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
1833 :
1834 : /* build array of gap distances and sort them in ascending order */
1835 6020 : distances = build_distances(distanceFn, ranges->colloid,
1836 : eranges, neranges);
1837 :
1838 : /*
1839 : * Combine ranges until we get below max_values. We don't use any scale
1840 : * factor, because this is used during serialization, and we don't expect
1841 : * more tuples to be inserted anytime soon.
1842 : */
1843 6020 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
1844 : max_values, cmpFn, ranges->colloid);
1845 :
1846 : Assert(count_values(eranges, neranges) <= max_values);
1847 :
1848 : /* transform back into regular ranges and single values */
1849 6020 : store_expanded_ranges(ranges, eranges, neranges);
1850 :
1851 : /* check all the range invariants */
1852 6020 : AssertCheckRanges(ranges, cmpFn, ranges->colloid);
1853 :
1854 6020 : MemoryContextSwitchTo(oldctx);
1855 6020 : MemoryContextDelete(ctx);
1856 : }
1857 :
1858 : Datum
1859 19428 : brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
1860 : {
1861 : BrinOpcInfo *result;
1862 :
1863 : /*
1864 : * opaque->strategy_procinfos is initialized lazily; here it is set to
1865 : * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
1866 : */
1867 :
1868 19428 : result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
1869 : sizeof(MinmaxMultiOpaque));
1870 19428 : result->oi_nstored = 1;
1871 19428 : result->oi_regular_nulls = true;
1872 19428 : result->oi_opaque = (MinmaxMultiOpaque *)
1873 19428 : MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
1874 19428 : result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
1875 :
1876 19428 : PG_RETURN_POINTER(result);
1877 : }
1878 :
1879 : /*
1880 : * Compute the distance between two float4 values (plain subtraction).
1881 : */
1882 : Datum
1883 700 : brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
1884 : {
1885 700 : float a1 = PG_GETARG_FLOAT4(0);
1886 700 : float a2 = PG_GETARG_FLOAT4(1);
1887 :
1888 : /* if both values are NaN, then we consider them the same */
1889 700 : if (isnan(a1) && isnan(a2))
1890 0 : PG_RETURN_FLOAT8(0.0);
1891 :
1892 : /* if one value is NaN, use infinite distance */
1893 700 : if (isnan(a1) || isnan(a2))
1894 6 : PG_RETURN_FLOAT8(get_float8_infinity());
1895 :
1896 : /*
1897 : * We know the values are range boundaries, but the range may be collapsed
1898 : * (i.e. single points), with equal values.
1899 : */
1900 : Assert(a1 <= a2);
1901 :
1902 694 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1903 : }
1904 :
1905 : /*
1906 : * Compute the distance between two float8 values (plain subtraction).
1907 : */
1908 : Datum
1909 1048 : brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
1910 : {
1911 1048 : double a1 = PG_GETARG_FLOAT8(0);
1912 1048 : double a2 = PG_GETARG_FLOAT8(1);
1913 :
1914 : /* if both values are NaN, then we consider them the same */
1915 1048 : if (isnan(a1) && isnan(a2))
1916 0 : PG_RETURN_FLOAT8(0.0);
1917 :
1918 : /* if one value is NaN, use infinite distance */
1919 1048 : if (isnan(a1) || isnan(a2))
1920 6 : PG_RETURN_FLOAT8(get_float8_infinity());
1921 :
1922 : /*
1923 : * We know the values are range boundaries, but the range may be collapsed
1924 : * (i.e. single points), with equal values.
1925 : */
1926 : Assert(a1 <= a2);
1927 :
1928 1042 : PG_RETURN_FLOAT8(a2 - a1);
1929 : }
1930 :
1931 : /*
1932 : * Compute the distance between two int2 values (plain subtraction).
1933 : */
1934 : Datum
1935 1018 : brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
1936 : {
1937 1018 : int16 a1 = PG_GETARG_INT16(0);
1938 1018 : int16 a2 = PG_GETARG_INT16(1);
1939 :
1940 : /*
1941 : * We know the values are range boundaries, but the range may be collapsed
1942 : * (i.e. single points), with equal values.
1943 : */
1944 : Assert(a1 <= a2);
1945 :
1946 1018 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1947 : }
1948 :
1949 : /*
1950 : * Compute the distance between two int4 values (plain subtraction).
1951 : */
1952 : Datum
1953 86762 : brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
1954 : {
1955 86762 : int32 a1 = PG_GETARG_INT32(0);
1956 86762 : int32 a2 = PG_GETARG_INT32(1);
1957 :
1958 : /*
1959 : * We know the values are range boundaries, but the range may be collapsed
1960 : * (i.e. single points), with equal values.
1961 : */
1962 : Assert(a1 <= a2);
1963 :
1964 86762 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1965 : }
1966 :
1967 : /*
1968 : * Compute the distance between two int8 values (plain subtraction).
1969 : */
1970 : Datum
1971 11020 : brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
1972 : {
1973 11020 : int64 a1 = PG_GETARG_INT64(0);
1974 11020 : int64 a2 = PG_GETARG_INT64(1);
1975 :
1976 : /*
1977 : * We know the values are range boundaries, but the range may be collapsed
1978 : * (i.e. single points), with equal values.
1979 : */
1980 : Assert(a1 <= a2);
1981 :
1982 11020 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1983 : }
1984 :
1985 : /*
1986 : * Compute the distance between two tid values (by mapping them to float8 and
1987 : * then subtracting them).
1988 : */
1989 : Datum
1990 1030 : brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
1991 : {
1992 : double da1,
1993 : da2;
1994 :
1995 1030 : ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
1996 1030 : ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);
1997 :
1998 : /*
1999 : * We know the values are range boundaries, but the range may be collapsed
2000 : * (i.e. single points), with equal values.
2001 : */
2002 : Assert(ItemPointerCompare(pa1, pa2) <= 0);
2003 :
2004 : /*
2005 : * We use the no-check variants here, because user-supplied values may
2006 : * have (ip_posid == 0). See ItemPointerCompare.
2007 : */
2008 1030 : da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
2009 1030 : ItemPointerGetOffsetNumberNoCheck(pa1);
2010 :
2011 1030 : da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
2012 1030 : ItemPointerGetOffsetNumberNoCheck(pa2);
2013 :
2014 1030 : PG_RETURN_FLOAT8(da2 - da1);
2015 : }
2016 :
2017 : /*
2018 : * Compute the distance between two numeric values (plain subtraction).
2019 : */
2020 : Datum
2021 1030 : brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
2022 : {
2023 : Datum d;
2024 1030 : Datum a1 = PG_GETARG_DATUM(0);
2025 1030 : Datum a2 = PG_GETARG_DATUM(1);
2026 :
2027 : /*
2028 : * We know the values are range boundaries, but the range may be collapsed
2029 : * (i.e. single points), with equal values.
2030 : */
2031 : Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));
2032 :
2033 1030 : d = DirectFunctionCall2(numeric_sub, a2, a1); /* a2 - a1 */
2034 :
2035 1030 : PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
2036 : }
2037 :
2038 : /*
2039 : * Compute the approximate distance between two UUID values.
2040 : *
2041 : * XXX We do not need a perfectly accurate value, so we approximate the
2042 : * deltas (which would have to be 128-bit integers) with a 64-bit float.
2043 : * The small inaccuracies do not matter in practice, in the worst case
2044 : * we'll decide to merge ranges that are not the closest ones.
2045 : */
2046 : Datum
2047 1730 : brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
2048 : {
2049 : int i;
2050 1730 : float8 delta = 0;
2051 :
2052 1730 : Datum a1 = PG_GETARG_DATUM(0);
2053 1730 : Datum a2 = PG_GETARG_DATUM(1);
2054 :
2055 1730 : pg_uuid_t *u1 = DatumGetUUIDP(a1);
2056 1730 : pg_uuid_t *u2 = DatumGetUUIDP(a2);
2057 :
2058 : /*
2059 : * We know the values are range boundaries, but the range may be collapsed
2060 : * (i.e. single points), with equal values.
2061 : */
2062 : Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));
2063 :
2064 : /* compute approximate delta as a double precision value */
2065 29410 : for (i = UUID_LEN - 1; i >= 0; i--)
2066 : {
2067 27680 : delta += (int) u2->data[i] - (int) u1->data[i];
2068 27680 : delta /= 256;
2069 : }
2070 :
2071 : Assert(delta >= 0);
2072 :
2073 1730 : PG_RETURN_FLOAT8(delta);
2074 : }
2075 :
2076 : /*
2077 : * Compute the approximate distance between two dates.
2078 : */
2079 : Datum
2080 1630 : brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
2081 : {
2082 1630 : float8 delta = 0;
2083 1630 : DateADT dateVal1 = PG_GETARG_DATEADT(0);
2084 1630 : DateADT dateVal2 = PG_GETARG_DATEADT(1);
2085 :
2086 1630 : delta = (float8) dateVal2 - (float8) dateVal1;
2087 :
2088 : Assert(delta >= 0);
2089 :
2090 1630 : PG_RETURN_FLOAT8(delta);
2091 : }
2092 :
2093 : /*
2094 : * Compute the approximate distance between two time (without tz) values.
2095 : *
2096 : * TimeADT is just an int64, so we simply subtract the values directly.
2097 : */
2098 : Datum
2099 1018 : brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
2100 : {
2101 1018 : float8 delta = 0;
2102 :
2103 1018 : TimeADT ta = PG_GETARG_TIMEADT(0);
2104 1018 : TimeADT tb = PG_GETARG_TIMEADT(1);
2105 :
2106 1018 : delta = (tb - ta);
2107 :
2108 : Assert(delta >= 0);
2109 :
2110 1018 : PG_RETURN_FLOAT8(delta);
2111 : }
2112 :
2113 : /*
2114 : * Compute the approximate distance between two timetz values.
2115 : *
2116 : * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
2117 : */
2118 : Datum
2119 790 : brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
2120 : {
2121 790 : float8 delta = 0;
2122 :
2123 790 : TimeTzADT *ta = PG_GETARG_TIMETZADT_P(0);
2124 790 : TimeTzADT *tb = PG_GETARG_TIMETZADT_P(1);
2125 :
2126 790 : delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
2127 :
2128 : Assert(delta >= 0);
2129 :
2130 790 : PG_RETURN_FLOAT8(delta);
2131 : }
2132 :
2133 : /*
2134 : * Compute the distance between two timestamp values.
2135 : */
2136 : Datum
2137 2648 : brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
2138 : {
2139 2648 : float8 delta = 0;
2140 :
2141 2648 : Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2142 2648 : Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2143 :
2144 2648 : delta = (float8) dt2 - (float8) dt1;
2145 :
2146 : Assert(delta >= 0);
2147 :
2148 2648 : PG_RETURN_FLOAT8(delta);
2149 : }
2150 :
2151 : /*
2152 : * Compute the distance between two interval values.
2153 : */
2154 : Datum
2155 1528 : brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
2156 : {
2157 1528 : float8 delta = 0;
2158 :
2159 1528 : Interval *ia = PG_GETARG_INTERVAL_P(0);
2160 1528 : Interval *ib = PG_GETARG_INTERVAL_P(1);
2161 :
2162 : int64 dayfraction;
2163 : int64 days;
2164 :
2165 : /*
2166 : * Delta is (fractional) number of days between the intervals. Assume
2167 : * months have 30 days for consistency with interval_cmp_internal. We
2168 : * don't need to be exact, in the worst case we'll build a bit less
2169 : * efficient ranges. But we should not contradict interval_cmp.
2170 : */
2171 1528 : dayfraction = (ib->time % USECS_PER_DAY) - (ia->time % USECS_PER_DAY);
2172 1528 : days = (ib->time / USECS_PER_DAY) - (ia->time / USECS_PER_DAY);
2173 1528 : days += (int64) ib->day - (int64) ia->day;
2174 1528 : days += ((int64) ib->month - (int64) ia->month) * INT64CONST(30);
2175 :
2176 : /* convert to double precision */
2177 1528 : delta = (double) days + dayfraction / (double) USECS_PER_DAY;
2178 :
2179 : Assert(delta >= 0);
2180 :
2181 1528 : PG_RETURN_FLOAT8(delta);
2182 : }
2183 :
2184 : /*
2185 : * Compute the distance between two pg_lsn values.
2186 : *
2187 : * LSN is just an int64 encoding position in the stream, so just subtract
2188 : * those int64 values directly.
2189 : */
2190 : Datum
2191 1030 : brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
2192 : {
2193 1030 : float8 delta = 0;
2194 :
2195 1030 : XLogRecPtr lsna = PG_GETARG_LSN(0);
2196 1030 : XLogRecPtr lsnb = PG_GETARG_LSN(1);
2197 :
2198 1030 : delta = (lsnb - lsna);
2199 :
2200 : Assert(delta >= 0);
2201 :
2202 1030 : PG_RETURN_FLOAT8(delta);
2203 : }
2204 :
2205 : /*
2206 : * Compute the distance between two macaddr values.
2207 : *
2208 : * mac addresses are treated as 6 unsigned chars, so do the same thing we
2209 : * already do for UUID values.
2210 : */
2211 : Datum
2212 790 : brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
2213 : {
2214 : float8 delta;
2215 :
2216 790 : macaddr *a = PG_GETARG_MACADDR_P(0);
2217 790 : macaddr *b = PG_GETARG_MACADDR_P(1);
2218 :
2219 790 : delta = ((float8) b->f - (float8) a->f);
2220 790 : delta /= 256;
2221 :
2222 790 : delta += ((float8) b->e - (float8) a->e);
2223 790 : delta /= 256;
2224 :
2225 790 : delta += ((float8) b->d - (float8) a->d);
2226 790 : delta /= 256;
2227 :
2228 790 : delta += ((float8) b->c - (float8) a->c);
2229 790 : delta /= 256;
2230 :
2231 790 : delta += ((float8) b->b - (float8) a->b);
2232 790 : delta /= 256;
2233 :
2234 790 : delta += ((float8) b->a - (float8) a->a);
2235 790 : delta /= 256;
2236 :
2237 : Assert(delta >= 0);
2238 :
2239 790 : PG_RETURN_FLOAT8(delta);
2240 : }
2241 :
2242 : /*
2243 : * Compute the distance between two macaddr8 values.
2244 : *
2245 : * macaddr8 addresses are 8 unsigned chars, so do the same thing we
2246 : * already do for UUID values.
2247 : */
2248 : Datum
2249 1030 : brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
2250 : {
2251 : float8 delta;
2252 :
2253 1030 : macaddr8 *a = PG_GETARG_MACADDR8_P(0);
2254 1030 : macaddr8 *b = PG_GETARG_MACADDR8_P(1);
2255 :
2256 1030 : delta = ((float8) b->h - (float8) a->h);
2257 1030 : delta /= 256;
2258 :
2259 1030 : delta += ((float8) b->g - (float8) a->g);
2260 1030 : delta /= 256;
2261 :
2262 1030 : delta += ((float8) b->f - (float8) a->f);
2263 1030 : delta /= 256;
2264 :
2265 1030 : delta += ((float8) b->e - (float8) a->e);
2266 1030 : delta /= 256;
2267 :
2268 1030 : delta += ((float8) b->d - (float8) a->d);
2269 1030 : delta /= 256;
2270 :
2271 1030 : delta += ((float8) b->c - (float8) a->c);
2272 1030 : delta /= 256;
2273 :
2274 1030 : delta += ((float8) b->b - (float8) a->b);
2275 1030 : delta /= 256;
2276 :
2277 1030 : delta += ((float8) b->a - (float8) a->a);
2278 1030 : delta /= 256;
2279 :
2280 : Assert(delta >= 0);
2281 :
2282 1030 : PG_RETURN_FLOAT8(delta);
2283 : }
2284 :
2285 : /*
2286 : * Compute the distance between two inet values.
2287 : *
2288 : * The distance is defined as the difference between 32-bit/128-bit values,
2289 : * depending on the IP version. The distance is computed by subtracting
2290 : * the bytes and normalizing it to [0,1] range for each IP family.
2291 : * Addresses from different families are considered to be in maximum
2292 : * distance, which is 1.0.
2293 : *
2294 : * XXX Does this need to consider the mask (bits)? For now, it's ignored.
2295 : */
2296 : Datum
2297 2290 : brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
2298 : {
2299 : float8 delta;
2300 : int i;
2301 : int len;
2302 : unsigned char *addra,
2303 : *addrb;
2304 :
2305 2290 : inet *ipa = PG_GETARG_INET_PP(0);
2306 2290 : inet *ipb = PG_GETARG_INET_PP(1);
2307 :
2308 : int lena,
2309 : lenb;
2310 :
2311 : /*
2312 : * If the addresses are from different families, consider them to be in
2313 : * maximal possible distance (which is 1.0).
2314 : */
2315 2290 : if (ip_family(ipa) != ip_family(ipb))
2316 184 : PG_RETURN_FLOAT8(1.0);
2317 :
2318 2106 : addra = (unsigned char *) palloc(ip_addrsize(ipa));
2319 2106 : memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
2320 :
2321 2106 : addrb = (unsigned char *) palloc(ip_addrsize(ipb));
2322 2106 : memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
2323 :
2324 : /*
2325 : * The length is calculated from the mask length, because we sort the
2326 : * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
2327 : * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
2328 : * to produce a negative delta in this case, so we just cut the extra
2329 : * bytes.
2330 : *
2331 : * XXX Maybe this should be a bit more careful and cut the bits, not just
2332 : * whole bytes.
2333 : */
2334 2106 : lena = ip_bits(ipa);
2335 2106 : lenb = ip_bits(ipb);
2336 :
2337 2106 : len = ip_addrsize(ipa);
2338 :
2339 : /* apply the network mask to both addresses */
2340 15906 : for (i = 0; i < len; i++)
2341 : {
2342 : unsigned char mask;
2343 : int nbits;
2344 :
2345 13800 : nbits = Max(0, lena - (i * 8));
2346 13800 : if (nbits < 8)
2347 : {
2348 1658 : mask = (0xFF << (8 - nbits));
2349 1658 : addra[i] = (addra[i] & mask);
2350 : }
2351 :
2352 13800 : nbits = Max(0, lenb - (i * 8));
2353 13800 : if (nbits < 8)
2354 : {
2355 1652 : mask = (0xFF << (8 - nbits));
2356 1652 : addrb[i] = (addrb[i] & mask);
2357 : }
2358 : }
2359 :
2360 : /* Calculate the difference between the addresses. */
2361 2106 : delta = 0;
2362 15906 : for (i = len - 1; i >= 0; i--)
2363 : {
2364 13800 : unsigned char a = addra[i];
2365 13800 : unsigned char b = addrb[i];
2366 :
2367 13800 : delta += (float8) b - (float8) a;
2368 13800 : delta /= 256;
2369 : }
2370 :
2371 : Assert((delta >= 0) && (delta <= 1));
2372 :
2373 2106 : pfree(addra);
2374 2106 : pfree(addrb);
2375 :
2376 2106 : PG_RETURN_FLOAT8(delta);
2377 : }
2378 :
2379 : static void
2380 18022 : brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
2381 : {
2382 18022 : Ranges *ranges = (Ranges *) DatumGetPointer(src);
2383 : SerializedRanges *s;
2384 :
2385 : /*
2386 : * In batch mode, we need to compress the accumulated values to the
2387 : * actually requested number of values/ranges.
2388 : */
2389 18022 : compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
2390 :
2391 : /* At this point everything has to be fully sorted. */
2392 : Assert(ranges->nsorted == ranges->nvalues);
2393 :
2394 18022 : s = brin_range_serialize(ranges);
2395 18022 : dst[0] = PointerGetDatum(s);
2396 18022 : }
2397 :
2398 : static int
2399 4876 : brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
2400 : {
2401 4876 : return MinMaxMultiGetValuesPerRange(opts);
2402 : }
2403 :
2404 : /*
2405 : * Examine the given index tuple (which contains the partial status of a
2406 : * certain page range) by comparing it to the given value that comes from
2407 : * another heap tuple. If the new value is outside the min/max range
2408 : * specified by the existing tuple values, update the index tuple and return
2409 : * true. Otherwise, return false and do not modify in this case.
2410 : */
2411 : Datum
2412 140498 : brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
2413 : {
2414 140498 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2415 140498 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2416 140498 : Datum newval = PG_GETARG_DATUM(2);
2417 140498 : bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
2418 140498 : MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
2419 140498 : Oid colloid = PG_GET_COLLATION();
2420 140498 : bool modified = false;
2421 : Form_pg_attribute attr;
2422 : AttrNumber attno;
2423 : Ranges *ranges;
2424 140498 : SerializedRanges *serialized = NULL;
2425 :
2426 : Assert(!isnull);
2427 :
2428 140498 : attno = column->bv_attno;
2429 140498 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2430 :
2431 : /* use the already deserialized value, if possible */
2432 140498 : ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
2433 :
2434 : /*
2435 : * If this is the first non-null value, we need to initialize the range
2436 : * list. Otherwise, just extract the existing range list from BrinValues.
2437 : *
2438 : * When starting with an empty range, we assume this is a batch mode and
2439 : * we use a larger buffer. The buffer size is derived from the BRIN range
2440 : * size, number of rows per page, with some sensible min/max values. A
2441 : * small buffer would be bad for performance, but a large buffer might
2442 : * require a lot of memory (because of keeping all the values).
2443 : */
2444 140498 : if (column->bv_allnulls)
2445 : {
2446 : MemoryContext oldctx;
2447 :
2448 : int target_maxvalues;
2449 : int maxvalues;
2450 4876 : BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2451 :
2452 : /* what was specified as a reloption? */
2453 4876 : target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
2454 :
2455 : /*
2456 : * Determine the insert buffer size - we use 10x the target, capped to
2457 : * the maximum number of values in the heap range. This is more than
2458 : * enough, considering the actual number of rows per page is likely
2459 : * much lower, but meh.
2460 : */
2461 4876 : maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
2462 : MaxHeapTuplesPerPage * pagesPerRange);
2463 :
2464 : /* but always at least the original value */
2465 4876 : maxvalues = Max(maxvalues, target_maxvalues);
2466 :
2467 : /* always cap by MIN/MAX */
2468 4876 : maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2469 4876 : maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2470 :
2471 4876 : oldctx = MemoryContextSwitchTo(column->bv_context);
2472 4876 : ranges = minmax_multi_init(maxvalues);
2473 4876 : ranges->attno = attno;
2474 4876 : ranges->colloid = colloid;
2475 4876 : ranges->typid = attr->atttypid;
2476 4876 : ranges->target_maxvalues = target_maxvalues;
2477 :
2478 : /* we'll certainly need the comparator, so just look it up now */
2479 4876 : ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2480 : BTLessStrategyNumber);
2481 :
2482 4876 : MemoryContextSwitchTo(oldctx);
2483 :
2484 4876 : column->bv_allnulls = false;
2485 4876 : modified = true;
2486 :
2487 4876 : column->bv_mem_value = PointerGetDatum(ranges);
2488 4876 : column->bv_serialize = brin_minmax_multi_serialize;
2489 : }
2490 135622 : else if (!ranges)
2491 : {
2492 : MemoryContext oldctx;
2493 :
2494 : int maxvalues;
2495 14220 : BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2496 :
2497 14220 : oldctx = MemoryContextSwitchTo(column->bv_context);
2498 :
2499 14220 : serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2500 :
2501 : /*
2502 : * Determine the insert buffer size - we use 10x the target, capped to
2503 : * the maximum number of values in the heap range. This is more than
2504 : * enough, considering the actual number of rows per page is likely
2505 : * much lower, but meh.
2506 : */
2507 14220 : maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
2508 : MaxHeapTuplesPerPage * pagesPerRange);
2509 :
2510 : /* but always at least the original value */
2511 14220 : maxvalues = Max(maxvalues, serialized->maxvalues);
2512 :
2513 : /* always cap by MIN/MAX */
2514 14220 : maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2515 14220 : maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2516 :
2517 14220 : ranges = brin_range_deserialize(maxvalues, serialized);
2518 :
2519 14220 : ranges->attno = attno;
2520 14220 : ranges->colloid = colloid;
2521 14220 : ranges->typid = attr->atttypid;
2522 :
2523 : /* we'll certainly need the comparator, so just look it up now */
2524 14220 : ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2525 : BTLessStrategyNumber);
2526 :
2527 14220 : column->bv_mem_value = PointerGetDatum(ranges);
2528 14220 : column->bv_serialize = brin_minmax_multi_serialize;
2529 :
2530 14220 : MemoryContextSwitchTo(oldctx);
2531 : }
2532 :
2533 : /*
2534 : * Try to add the new value to the range. We need to update the modified
2535 : * flag, so that we serialize the updated summary later.
2536 : */
2537 140498 : modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
2538 :
2539 :
2540 140498 : PG_RETURN_BOOL(modified);
2541 : }
2542 :
2543 : /*
2544 : * Given an index tuple corresponding to a certain page range and a scan key,
2545 : * return whether the scan key is consistent with the index tuple's min/max
2546 : * values. Return true if so, false otherwise.
2547 : */
2548 : Datum
2549 31386 : brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
2550 : {
2551 31386 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2552 31386 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2553 31386 : ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
2554 31386 : int nkeys = PG_GETARG_INT32(3);
2555 :
2556 31386 : Oid colloid = PG_GET_COLLATION(),
2557 : subtype;
2558 : AttrNumber attno;
2559 : Datum value;
2560 : FmgrInfo *finfo;
2561 : SerializedRanges *serialized;
2562 : Ranges *ranges;
2563 : int keyno;
2564 : int rangeno;
2565 : int i;
2566 :
2567 31386 : attno = column->bv_attno;
2568 :
2569 31386 : serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2570 31386 : ranges = brin_range_deserialize(serialized->maxvalues, serialized);
2571 :
2572 : /* inspect the ranges, and for each one evaluate the scan keys */
2573 34008 : for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
2574 : {
2575 3312 : Datum minval = ranges->values[2 * rangeno];
2576 3312 : Datum maxval = ranges->values[2 * rangeno + 1];
2577 :
2578 : /* assume the range is matching, and we'll try to prove otherwise */
2579 3312 : bool matching = true;
2580 :
2581 4002 : for (keyno = 0; keyno < nkeys; keyno++)
2582 : {
2583 : bool matches;
2584 3312 : ScanKey key = keys[keyno];
2585 :
2586 : /* NULL keys are handled and filtered-out in bringetbitmap */
2587 : Assert(!(key->sk_flags & SK_ISNULL));
2588 :
2589 3312 : attno = key->sk_attno;
2590 3312 : subtype = key->sk_subtype;
2591 3312 : value = key->sk_argument;
2592 3312 : switch (key->sk_strategy)
2593 : {
2594 918 : case BTLessStrategyNumber:
2595 : case BTLessEqualStrategyNumber:
2596 918 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2597 918 : key->sk_strategy);
2598 : /* first value from the array */
2599 918 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, minval, value));
2600 918 : break;
2601 :
2602 990 : case BTEqualStrategyNumber:
2603 : {
2604 : Datum compar;
2605 : FmgrInfo *cmpFn;
2606 :
2607 : /* by default this range does not match */
2608 990 : matches = false;
2609 :
2610 : /*
2611 : * Otherwise, need to compare the new value with
2612 : * boundaries of all the ranges. First check if it's
2613 : * less than the absolute minimum, which is the first
2614 : * value in the array.
2615 : */
2616 990 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2617 : BTGreaterStrategyNumber);
2618 990 : compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
2619 :
2620 : /* smaller than the smallest value in this range */
2621 990 : if (DatumGetBool(compar))
2622 120 : break;
2623 :
2624 870 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2625 : BTLessStrategyNumber);
2626 870 : compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
2627 :
2628 : /* larger than the largest value in this range */
2629 870 : if (DatumGetBool(compar))
2630 822 : break;
2631 :
2632 : /*
2633 : * We haven't managed to eliminate this range, so
2634 : * consider it matching.
2635 : */
2636 48 : matches = true;
2637 :
2638 48 : break;
2639 : }
2640 1404 : case BTGreaterEqualStrategyNumber:
2641 : case BTGreaterStrategyNumber:
2642 1404 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2643 1404 : key->sk_strategy);
2644 : /* last value from the array */
2645 1404 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, maxval, value));
2646 1404 : break;
2647 :
2648 0 : default:
2649 : /* shouldn't happen */
2650 0 : elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2651 : matches = false;
2652 : break;
2653 : }
2654 :
2655 : /* the range has to match all the scan keys */
2656 3312 : matching &= matches;
2657 :
2658 : /* once we find a non-matching key, we're done */
2659 3312 : if (!matching)
2660 2622 : break;
2661 : }
2662 :
2663 : /*
2664 : * have we found a range matching all scan keys? if yes, we're done
2665 : */
2666 3312 : if (matching)
2667 690 : PG_RETURN_BOOL(true);
2668 : }
2669 :
2670 : /*
2671 : * And now inspect the values. We don't bother with doing a binary search
2672 : * here, because we're dealing with serialized / fully compacted ranges,
2673 : * so there should be only very few values.
2674 : */
2675 62308 : for (i = 0; i < ranges->nvalues; i++)
2676 : {
2677 55406 : Datum val = ranges->values[2 * ranges->nranges + i];
2678 :
2679 : /* assume the range is matching, and we'll try to prove otherwise */
2680 55406 : bool matching = true;
2681 :
2682 79200 : for (keyno = 0; keyno < nkeys; keyno++)
2683 : {
2684 : bool matches;
2685 55406 : ScanKey key = keys[keyno];
2686 :
2687 : /* we've already dealt with NULL keys at the beginning */
2688 55406 : if (key->sk_flags & SK_ISNULL)
2689 0 : continue;
2690 :
2691 55406 : attno = key->sk_attno;
2692 55406 : subtype = key->sk_subtype;
2693 55406 : value = key->sk_argument;
2694 55406 : switch (key->sk_strategy)
2695 : {
2696 55406 : case BTLessStrategyNumber:
2697 : case BTLessEqualStrategyNumber:
2698 : case BTEqualStrategyNumber:
2699 : case BTGreaterEqualStrategyNumber:
2700 : case BTGreaterStrategyNumber:
2701 :
2702 55406 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2703 55406 : key->sk_strategy);
2704 55406 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, val, value));
2705 55406 : break;
2706 :
2707 0 : default:
2708 : /* shouldn't happen */
2709 0 : elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2710 : matches = false;
2711 : break;
2712 : }
2713 :
2714 : /* the range has to match all the scan keys */
2715 55406 : matching &= matches;
2716 :
2717 : /* once we find a non-matching key, we're done */
2718 55406 : if (!matching)
2719 31612 : break;
2720 : }
2721 :
2722 : /* have we found a range matching all scan keys? if yes, we're done */
2723 55406 : if (matching)
2724 23794 : PG_RETURN_BOOL(true);
2725 : }
2726 :
2727 6902 : PG_RETURN_BOOL(false);
2728 : }
2729 :
2730 : /*
2731 : * Given two BrinValues, update the first of them as a union of the summary
2732 : * values contained in both. The second one is untouched.
2733 : */
2734 : Datum
2735 0 : brin_minmax_multi_union(PG_FUNCTION_ARGS)
2736 : {
2737 0 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2738 0 : BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
2739 0 : BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
2740 :
2741 0 : Oid colloid = PG_GET_COLLATION();
2742 : SerializedRanges *serialized_a;
2743 : SerializedRanges *serialized_b;
2744 : Ranges *ranges_a;
2745 : Ranges *ranges_b;
2746 : AttrNumber attno;
2747 : Form_pg_attribute attr;
2748 : ExpandedRange *eranges;
2749 : int neranges;
2750 : FmgrInfo *cmpFn,
2751 : *distanceFn;
2752 : DistanceValue *distances;
2753 : MemoryContext ctx;
2754 : MemoryContext oldctx;
2755 :
2756 : Assert(col_a->bv_attno == col_b->bv_attno);
2757 : Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
2758 :
2759 0 : attno = col_a->bv_attno;
2760 0 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2761 :
2762 0 : serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
2763 0 : serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
2764 :
2765 0 : ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
2766 0 : ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
2767 :
2768 : /* make sure neither of the ranges is NULL */
2769 : Assert(ranges_a && ranges_b);
2770 :
2771 0 : neranges = (ranges_a->nranges + ranges_a->nvalues) +
2772 0 : (ranges_b->nranges + ranges_b->nvalues);
2773 :
2774 : /*
2775 : * The distanceFn calls (which may internally call e.g. numeric_le) may
2776 : * allocate quite a bit of memory, and we must not leak it. Otherwise,
2777 : * we'd have problems e.g. when building indexes. So we create a local
2778 : * memory context and make sure we free the memory before leaving this
2779 : * function (not after every call).
2780 : */
2781 0 : ctx = AllocSetContextCreate(CurrentMemoryContext,
2782 : "minmax-multi context",
2783 : ALLOCSET_DEFAULT_SIZES);
2784 :
2785 0 : oldctx = MemoryContextSwitchTo(ctx);
2786 :
2787 : /* allocate and fill */
2788 0 : eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
2789 :
2790 : /* fill the expanded ranges with entries for the first range */
2791 0 : fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
2792 : ranges_a);
2793 :
2794 : /* and now add combine ranges for the second range */
2795 0 : fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
2796 0 : ranges_b->nranges + ranges_b->nvalues,
2797 : ranges_b);
2798 :
2799 0 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2800 : BTLessStrategyNumber);
2801 :
2802 : /* sort the expanded ranges */
2803 0 : neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
2804 :
2805 : /*
2806 : * We've loaded two different lists of expanded ranges, so some of them
2807 : * may be overlapping. So walk through them and merge them.
2808 : */
2809 0 : neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
2810 :
2811 : /* check that the combine ranges are correct (no overlaps, ordering) */
2812 0 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2813 :
2814 : /*
2815 : * If needed, reduce some of the ranges.
2816 : *
2817 : * XXX This may be fairly expensive, so maybe we should do it only when
2818 : * it's actually needed (when we have too many ranges).
2819 : */
2820 :
2821 : /* build array of gap distances and sort them in ascending order */
2822 0 : distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
2823 0 : distances = build_distances(distanceFn, colloid, eranges, neranges);
2824 :
2825 : /*
2826 : * See how many values would be needed to store the current ranges, and if
2827 : * needed combine as many of them to get below the threshold. The
2828 : * collapsed ranges will be stored as a single value.
2829 : *
2830 : * XXX This does not apply the load factor, as we don't expect to add more
2831 : * values to the range, so we prefer to keep as many ranges as possible.
2832 : *
2833 : * XXX Can the maxvalues be different in the two ranges? Perhaps we should
2834 : * use maximum of those?
2835 : */
2836 0 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
2837 : ranges_a->maxvalues,
2838 : cmpFn, colloid);
2839 :
2840 : /* Is the result of reducing expanded ranges correct? */
2841 0 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2842 :
2843 : /* update the first range summary */
2844 0 : store_expanded_ranges(ranges_a, eranges, neranges);
2845 :
2846 0 : MemoryContextSwitchTo(oldctx);
2847 0 : MemoryContextDelete(ctx);
2848 :
2849 : /* cleanup and update the serialized value */
2850 0 : pfree(serialized_a);
2851 0 : col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
2852 :
2853 0 : PG_RETURN_VOID();
2854 : }
2855 :
2856 : /*
2857 : * Cache and return minmax multi opclass support procedure
2858 : *
2859 : * Return the procedure corresponding to the given function support number
2860 : * or null if it does not exist.
2861 : */
2862 : static FmgrInfo *
2863 6266 : minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
2864 : {
2865 : MinmaxMultiOpaque *opaque;
2866 6266 : uint16 basenum = procnum - PROCNUM_BASE;
2867 :
2868 : /*
2869 : * We cache these in the opaque struct, to avoid repetitive syscache
2870 : * lookups.
2871 : */
2872 6266 : opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2873 :
2874 6266 : if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
2875 : {
2876 508 : if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
2877 : procnum)))
2878 508 : fmgr_info_copy(&opaque->extra_procinfos[basenum],
2879 : index_getprocinfo(bdesc->bd_index, attno, procnum),
2880 : bdesc->bd_context);
2881 : else
2882 0 : ereport(ERROR,
2883 : errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
2884 : errmsg_internal("invalid opclass definition"),
2885 : errdetail_internal("The operator class is missing support function %d for column %d.",
2886 : procnum, attno));
2887 : }
2888 :
2889 6266 : return &opaque->extra_procinfos[basenum];
2890 : }
2891 :
2892 : /*
2893 : * Cache and return the procedure for the given strategy.
2894 : *
2895 : * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
2896 : * there. If changes are made here, see that function too.
2897 : */
2898 : static FmgrInfo *
2899 483390 : minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
2900 : uint16 strategynum)
2901 : {
2902 : MinmaxMultiOpaque *opaque;
2903 :
2904 : Assert(strategynum >= 1 &&
2905 : strategynum <= BTMaxStrategyNumber);
2906 :
2907 483390 : opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2908 :
2909 : /*
2910 : * We cache the procedures for the previous subtype in the opaque struct,
2911 : * to avoid repetitive syscache lookups. If the subtype changed,
2912 : * invalidate all the cached entries.
2913 : */
2914 483390 : if (opaque->cached_subtype != subtype)
2915 : {
2916 : uint16 i;
2917 :
2918 11292 : for (i = 1; i <= BTMaxStrategyNumber; i++)
2919 9410 : opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
2920 1882 : opaque->cached_subtype = subtype;
2921 : }
2922 :
2923 483390 : if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
2924 : {
2925 : Form_pg_attribute attr;
2926 : HeapTuple tuple;
2927 : Oid opfamily,
2928 : oprid;
2929 :
2930 2714 : opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
2931 2714 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2932 2714 : tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
2933 : ObjectIdGetDatum(attr->atttypid),
2934 : ObjectIdGetDatum(subtype),
2935 : Int16GetDatum(strategynum));
2936 2714 : if (!HeapTupleIsValid(tuple))
2937 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2938 : strategynum, attr->atttypid, subtype, opfamily);
2939 :
2940 2714 : oprid = DatumGetObjectId(SysCacheGetAttrNotNull(AMOPSTRATEGY, tuple,
2941 : Anum_pg_amop_amopopr));
2942 2714 : ReleaseSysCache(tuple);
2943 : Assert(RegProcedureIsValid(oprid));
2944 :
2945 2714 : fmgr_info_cxt(get_opcode(oprid),
2946 2714 : &opaque->strategy_procinfos[strategynum - 1],
2947 : bdesc->bd_context);
2948 : }
2949 :
2950 483390 : return &opaque->strategy_procinfos[strategynum - 1];
2951 : }
2952 :
2953 : Datum
2954 1264 : brin_minmax_multi_options(PG_FUNCTION_ARGS)
2955 : {
2956 1264 : local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
2957 :
2958 1264 : init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
2959 :
2960 1264 : add_local_int_reloption(relopts, "values_per_range", "desc",
2961 : MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
2962 : offsetof(MinMaxMultiOptions, valuesPerRange));
2963 :
2964 1264 : PG_RETURN_VOID();
2965 : }
2966 :
2967 : /*
2968 : * brin_minmax_multi_summary_in
2969 : * - input routine for type brin_minmax_multi_summary.
2970 : *
2971 : * brin_minmax_multi_summary is only used internally to represent summaries
2972 : * in BRIN minmax-multi indexes, so it has no operations of its own, and we
2973 : * disallow input too.
2974 : */
2975 : Datum
2976 0 : brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
2977 : {
2978 : /*
2979 : * brin_minmax_multi_summary stores the data in binary form and parsing
2980 : * text input is not needed, so disallow this.
2981 : */
2982 0 : ereport(ERROR,
2983 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2984 : errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
2985 :
2986 : PG_RETURN_VOID(); /* keep compiler quiet */
2987 : }
2988 :
2989 :
2990 : /*
2991 : * brin_minmax_multi_summary_out
2992 : * - output routine for type brin_minmax_multi_summary.
2993 : *
2994 : * BRIN minmax-multi summaries are serialized into a bytea value, but we
2995 : * want to output something nicer humans can understand.
2996 : */
2997 : Datum
2998 240 : brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
2999 : {
3000 : int i;
3001 : int idx;
3002 : SerializedRanges *ranges;
3003 : Ranges *ranges_deserialized;
3004 : StringInfoData str;
3005 : bool isvarlena;
3006 : Oid outfunc;
3007 : FmgrInfo fmgrinfo;
3008 240 : ArrayBuildState *astate_values = NULL;
3009 :
3010 240 : initStringInfo(&str);
3011 240 : appendStringInfoChar(&str, '{');
3012 :
3013 : /*
3014 : * Detoast to get value with full 4B header (can't be stored in a toast
3015 : * table, but can use 1B header).
3016 : */
3017 240 : ranges = (SerializedRanges *) PG_DETOAST_DATUM(PG_GETARG_DATUM(0));
3018 :
3019 : /* lookup output func for the type */
3020 240 : getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
3021 240 : fmgr_info(outfunc, &fmgrinfo);
3022 :
3023 : /* deserialize the range info easy-to-process pieces */
3024 240 : ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
3025 :
3026 240 : appendStringInfo(&str, "nranges: %d nvalues: %d maxvalues: %d",
3027 : ranges_deserialized->nranges,
3028 : ranges_deserialized->nvalues,
3029 : ranges_deserialized->maxvalues);
3030 :
3031 : /* serialize ranges */
3032 240 : idx = 0;
3033 240 : for (i = 0; i < ranges_deserialized->nranges; i++)
3034 : {
3035 : char *a,
3036 : *b;
3037 : text *c;
3038 : StringInfoData buf;
3039 :
3040 0 : initStringInfo(&buf);
3041 :
3042 0 : a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3043 0 : b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3044 :
3045 0 : appendStringInfo(&buf, "%s ... %s", a, b);
3046 :
3047 0 : c = cstring_to_text_with_len(buf.data, buf.len);
3048 :
3049 0 : astate_values = accumArrayResult(astate_values,
3050 : PointerGetDatum(c),
3051 : false,
3052 : TEXTOID,
3053 : CurrentMemoryContext);
3054 : }
3055 :
3056 240 : if (ranges_deserialized->nranges > 0)
3057 : {
3058 : Oid typoutput;
3059 : bool typIsVarlena;
3060 : Datum val;
3061 : char *extval;
3062 :
3063 0 : getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3064 :
3065 0 : val = makeArrayResult(astate_values, CurrentMemoryContext);
3066 :
3067 0 : extval = OidOutputFunctionCall(typoutput, val);
3068 :
3069 0 : appendStringInfo(&str, " ranges: %s", extval);
3070 : }
3071 :
3072 : /* serialize individual values */
3073 240 : astate_values = NULL;
3074 :
3075 2592 : for (i = 0; i < ranges_deserialized->nvalues; i++)
3076 : {
3077 : Datum a;
3078 : text *b;
3079 :
3080 2352 : a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
3081 2352 : b = cstring_to_text(DatumGetCString(a));
3082 :
3083 2352 : astate_values = accumArrayResult(astate_values,
3084 : PointerGetDatum(b),
3085 : false,
3086 : TEXTOID,
3087 : CurrentMemoryContext);
3088 : }
3089 :
3090 240 : if (ranges_deserialized->nvalues > 0)
3091 : {
3092 : Oid typoutput;
3093 : bool typIsVarlena;
3094 : Datum val;
3095 : char *extval;
3096 :
3097 240 : getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3098 :
3099 240 : val = makeArrayResult(astate_values, CurrentMemoryContext);
3100 :
3101 240 : extval = OidOutputFunctionCall(typoutput, val);
3102 :
3103 240 : appendStringInfo(&str, " values: %s", extval);
3104 : }
3105 :
3106 :
3107 240 : appendStringInfoChar(&str, '}');
3108 :
3109 240 : PG_RETURN_CSTRING(str.data);
3110 : }
3111 :
3112 : /*
3113 : * brin_minmax_multi_summary_recv
3114 : * - binary input routine for type brin_minmax_multi_summary.
3115 : */
3116 : Datum
3117 0 : brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
3118 : {
3119 0 : ereport(ERROR,
3120 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3121 : errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
3122 :
3123 : PG_RETURN_VOID(); /* keep compiler quiet */
3124 : }
3125 :
3126 : /*
3127 : * brin_minmax_multi_summary_send
3128 : * - binary output routine for type brin_minmax_multi_summary.
3129 : *
3130 : * BRIN minmax-multi summaries are serialized in a bytea value (although
3131 : * the type is named differently), so let's just send that.
3132 : */
3133 : Datum
3134 0 : brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
3135 : {
3136 0 : return byteasend(fcinfo);
3137 : }
|