Line data Source code
1 : /*
2 : * brin_minmax_multi.c
3 : * Implementation of Multi Min/Max opclass for BRIN
4 : *
5 : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
6 : * Portions Copyright (c) 1994, Regents of the University of California
7 : *
8 : *
9 : * Implements a variant of minmax opclass, where the summary is composed of
10 : * multiple smaller intervals. This allows us to handle outliers, which
11 : * usually make the simple minmax opclass inefficient.
12 : *
13 : * Consider for example page range with simple minmax interval [1000,2000],
14 : * and assume a new row gets inserted into the range with value 1000000.
15 : * Due to that the interval gets [1000,1000000]. I.e. the minmax interval
16 : * got 1000x wider and won't be useful to eliminate scan keys between 2001
17 : * and 1000000.
18 : *
19 : * With minmax-multi opclass, we may have [1000,2000] interval initially,
20 : * but after adding the new row we start tracking it as two interval:
21 : *
22 : * [1000,2000] and [1000000,1000000]
23 : *
24 : * This allows us to still eliminate the page range when the scan keys hit
25 : * the gap between 2000 and 1000000, making it useful in cases when the
26 : * simple minmax opclass gets inefficient.
27 : *
28 : * The number of intervals tracked per page range is somewhat flexible.
29 : * What is restricted is the number of values per page range, and the limit
30 : * is currently 32 (see values_per_range reloption). Collapsed intervals
31 : * (with equal minimum and maximum value) are stored as a single value,
32 : * while regular intervals require two values.
33 : *
34 : * When the number of values gets too high (by adding new values to the
35 : * summary), we merge some of the intervals to free space for more values.
36 : * This is done in a greedy way - we simply pick the two closest intervals,
37 : * merge them, and repeat this until the number of values to store gets
38 : * sufficiently low (below 50% of maximum values), but that is mostly
39 : * arbitrary threshold and may be changed easily).
40 : *
41 : * To pick the closest intervals we use the "distance" support procedure,
42 : * which measures space between two ranges (i.e. the length of an interval).
43 : * The computed value may be an approximation - in the worst case we will
44 : * merge two ranges that are slightly less optimal at that step, but the
45 : * index should still produce correct results.
46 : *
47 : * The compactions (reducing the number of values) is fairly expensive, as
48 : * it requires calling the distance functions, sorting etc. So when building
49 : * the summary, we use a significantly larger buffer, and only enforce the
50 : * exact limit at the very end. This improves performance, and it also helps
51 : * with building better ranges (due to the greedy approach).
52 : *
53 : *
54 : * IDENTIFICATION
55 : * src/backend/access/brin/brin_minmax_multi.c
56 : */
57 : #include "postgres.h"
58 :
59 : /* needed for PGSQL_AF_INET */
60 : #include <sys/socket.h>
61 :
62 : #include "access/brin.h"
63 : #include "access/brin_internal.h"
64 : #include "access/brin_tuple.h"
65 : #include "access/genam.h"
66 : #include "access/htup_details.h"
67 : #include "access/reloptions.h"
68 : #include "access/stratnum.h"
69 : #include "catalog/pg_am.h"
70 : #include "catalog/pg_amop.h"
71 : #include "catalog/pg_type.h"
72 : #include "utils/array.h"
73 : #include "utils/builtins.h"
74 : #include "utils/date.h"
75 : #include "utils/datum.h"
76 : #include "utils/float.h"
77 : #include "utils/inet.h"
78 : #include "utils/lsyscache.h"
79 : #include "utils/memutils.h"
80 : #include "utils/pg_lsn.h"
81 : #include "utils/rel.h"
82 : #include "utils/syscache.h"
83 : #include "utils/timestamp.h"
84 : #include "utils/uuid.h"
85 :
86 : /*
87 : * Additional SQL level support functions
88 : *
89 : * Procedure numbers must not use values reserved for BRIN itself; see
90 : * brin_internal.h.
91 : */
92 : #define MINMAX_MAX_PROCNUMS 1 /* maximum support procs we need */
93 : #define PROCNUM_DISTANCE 11 /* required, distance between values */
94 :
95 : /*
96 : * Subtract this from procnum to obtain index in MinmaxMultiOpaque arrays
97 : * (Must be equal to minimum of private procnums).
98 : */
99 : #define PROCNUM_BASE 11
100 :
101 : /*
102 : * Sizing the insert buffer - we use 10x the number of values specified
103 : * in the reloption, but we cap it to 8192 not to get too large. When
104 : * the buffer gets full, we reduce the number of values by half.
105 : */
106 : #define MINMAX_BUFFER_FACTOR 10
107 : #define MINMAX_BUFFER_MIN 256
108 : #define MINMAX_BUFFER_MAX 8192
109 : #define MINMAX_BUFFER_LOAD_FACTOR 0.5
110 :
111 : typedef struct MinmaxMultiOpaque
112 : {
113 : FmgrInfo extra_procinfos[MINMAX_MAX_PROCNUMS];
114 : bool extra_proc_missing[MINMAX_MAX_PROCNUMS];
115 : Oid cached_subtype;
116 : FmgrInfo strategy_procinfos[BTMaxStrategyNumber];
117 : } MinmaxMultiOpaque;
118 :
119 : /*
120 : * Storage type for BRIN's minmax reloptions
121 : */
122 : typedef struct MinMaxMultiOptions
123 : {
124 : int32 vl_len_; /* varlena header (do not touch directly!) */
125 : int valuesPerRange; /* number of values per range */
126 : } MinMaxMultiOptions;
127 :
128 : #define MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE 32
129 :
130 : #define MinMaxMultiGetValuesPerRange(opts) \
131 : ((opts) && (((MinMaxMultiOptions *) (opts))->valuesPerRange != 0) ? \
132 : ((MinMaxMultiOptions *) (opts))->valuesPerRange : \
133 : MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE)
134 :
135 : #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
136 :
137 : /*
138 : * The summary of minmax-multi indexes has two representations - Ranges for
139 : * convenient processing, and SerializedRanges for storage in bytea value.
140 : *
141 : * The Ranges struct stores the boundary values in a single array, but we
142 : * treat regular and single-point ranges differently to save space. For
143 : * regular ranges (with different boundary values) we have to store both
144 : * the lower and upper bound of the range, while for "single-point ranges"
145 : * we only need to store a single value.
146 : *
147 : * The 'values' array stores boundary values for regular ranges first (there
148 : * are 2*nranges values to store), and then the nvalues boundary values for
149 : * single-point ranges. That is, we have (2*nranges + nvalues) boundary
150 : * values in the array.
151 : *
152 : * +-------------------------+----------------------------------+
153 : * | ranges (2 * nranges of) | single point values (nvalues of) |
154 : * +-------------------------+----------------------------------+
155 : *
156 : * This allows us to quickly add new values, and store outliers without
157 : * having to widen any of the existing range values.
158 : *
159 : * 'nsorted' denotes how many of 'nvalues' in the values[] array are sorted.
160 : * When nsorted == nvalues, all single point values are sorted.
161 : *
162 : * We never store more than maxvalues values (as set by values_per_range
163 : * reloption). If needed we merge some of the ranges.
164 : *
165 : * To minimize palloc overhead, we always allocate the full array with
166 : * space for maxvalues elements. This should be fine as long as the
167 : * maxvalues is reasonably small (64 seems fine), which is the case
168 : * thanks to values_per_range reloption being limited to 256.
169 : */
170 : typedef struct Ranges
171 : {
172 : /* Cache information that we need quite often. */
173 : Oid typid;
174 : Oid colloid;
175 : AttrNumber attno;
176 : FmgrInfo *cmp;
177 :
178 : /* (2*nranges + nvalues) <= maxvalues */
179 : int nranges; /* number of ranges in the values[] array */
180 : int nsorted; /* number of nvalues which are sorted */
181 : int nvalues; /* number of point values in values[] array */
182 : int maxvalues; /* number of elements in the values[] array */
183 :
184 : /*
185 : * We simply add the values into a large buffer, without any expensive
186 : * steps (sorting, deduplication, ...). The buffer is a multiple of the
187 : * target number of values, so the compaction happens less often,
188 : * amortizing the costs. We keep the actual target and compact to the
189 : * requested number of values at the very end, before serializing to
190 : * on-disk representation.
191 : */
192 : /* requested number of values */
193 : int target_maxvalues;
194 :
195 : /* values stored for this range - either raw values, or ranges */
196 : Datum values[FLEXIBLE_ARRAY_MEMBER];
197 : } Ranges;
198 :
199 : /*
200 : * On-disk the summary is stored as a bytea value, with a simple header
201 : * with basic metadata, followed by the boundary values. It has a varlena
202 : * header, so can be treated as varlena directly.
203 : *
204 : * See brin_range_serialize/brin_range_deserialize for serialization details.
205 : */
206 : typedef struct SerializedRanges
207 : {
208 : /* varlena header (do not touch directly!) */
209 : int32 vl_len_;
210 :
211 : /* type of values stored in the data array */
212 : Oid typid;
213 :
214 : /* (2*nranges + nvalues) <= maxvalues */
215 : int nranges; /* number of ranges in the array (stored) */
216 : int nvalues; /* number of values in the data array (all) */
217 : int maxvalues; /* maximum number of values (reloption) */
218 :
219 : /* contains the actual data */
220 : char data[FLEXIBLE_ARRAY_MEMBER];
221 : } SerializedRanges;
222 :
223 : static SerializedRanges *brin_range_serialize(Ranges *range);
224 :
225 : static Ranges *brin_range_deserialize(int maxvalues,
226 : SerializedRanges *serialized);
227 :
228 :
229 : /*
230 : * Used to represent ranges expanded to make merging and combining easier.
231 : *
232 : * Each expanded range is essentially an interval, represented by min/max
233 : * values, along with a flag whether it's a collapsed range (in which case
234 : * the min and max values are equal). We have the flag to handle by-ref
235 : * data types - we can't simply compare the datums, and this saves some
236 : * calls to the type-specific comparator function.
237 : */
238 : typedef struct ExpandedRange
239 : {
240 : Datum minval; /* lower boundary */
241 : Datum maxval; /* upper boundary */
242 : bool collapsed; /* true if minval==maxval */
243 : } ExpandedRange;
244 :
245 : /*
246 : * Represents a distance between two ranges (identified by index into
247 : * an array of extended ranges).
248 : */
249 : typedef struct DistanceValue
250 : {
251 : int index;
252 : double value;
253 : } DistanceValue;
254 :
255 :
256 : /* Cache for support and strategy procedures. */
257 :
258 : static FmgrInfo *minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno,
259 : uint16 procnum);
260 :
261 : static FmgrInfo *minmax_multi_get_strategy_procinfo(BrinDesc *bdesc,
262 : uint16 attno, Oid subtype,
263 : uint16 strategynum);
264 :
265 : typedef struct compare_context
266 : {
267 : FmgrInfo *cmpFn;
268 : Oid colloid;
269 : } compare_context;
270 :
271 : static int compare_values(const void *a, const void *b, void *arg);
272 :
273 :
274 : #ifdef USE_ASSERT_CHECKING
275 : /*
276 : * Check that the order of the array values is correct, using the cmp
277 : * function (which should be BTLessStrategyNumber).
278 : */
279 : static void
280 : AssertArrayOrder(FmgrInfo *cmp, Oid colloid, Datum *values, int nvalues)
281 : {
282 : int i;
283 : Datum lt;
284 :
285 : for (i = 0; i < (nvalues - 1); i++)
286 : {
287 : lt = FunctionCall2Coll(cmp, colloid, values[i], values[i + 1]);
288 : Assert(DatumGetBool(lt));
289 : }
290 : }
291 : #endif
292 :
293 : /*
294 : * Comprehensive check of the Ranges structure.
295 : */
296 : static void
297 270984 : AssertCheckRanges(Ranges *ranges, FmgrInfo *cmpFn, Oid colloid)
298 : {
299 : #ifdef USE_ASSERT_CHECKING
300 : int i;
301 :
302 : /* some basic sanity checks */
303 : Assert(ranges->nranges >= 0);
304 : Assert(ranges->nsorted >= 0);
305 : Assert(ranges->nvalues >= ranges->nsorted);
306 : Assert(ranges->maxvalues >= 2 * ranges->nranges + ranges->nvalues);
307 : Assert(ranges->typid != InvalidOid);
308 :
309 : /*
310 : * First the ranges - there are 2*nranges boundary values, and the values
311 : * have to be strictly ordered (equal values would mean the range is
312 : * collapsed, and should be stored as a point). This also guarantees that
313 : * the ranges do not overlap.
314 : */
315 : AssertArrayOrder(cmpFn, colloid, ranges->values, 2 * ranges->nranges);
316 :
317 : /* then the single-point ranges (with nvalues boundary values ) */
318 : AssertArrayOrder(cmpFn, colloid, &ranges->values[2 * ranges->nranges],
319 : ranges->nsorted);
320 :
321 : /*
322 : * Check that none of the values are not covered by ranges (both sorted
323 : * and unsorted)
324 : */
325 : if (ranges->nranges > 0)
326 : {
327 : for (i = 0; i < ranges->nvalues; i++)
328 : {
329 : Datum compar;
330 : int start,
331 : end;
332 : Datum minvalue = ranges->values[0];
333 : Datum maxvalue = ranges->values[2 * ranges->nranges - 1];
334 : Datum value = ranges->values[2 * ranges->nranges + i];
335 :
336 : compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
337 :
338 : /*
339 : * If the value is smaller than the lower bound in the first range
340 : * then it cannot possibly be in any of the ranges.
341 : */
342 : if (DatumGetBool(compar))
343 : continue;
344 :
345 : compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
346 :
347 : /*
348 : * Likewise, if the value is larger than the upper bound of the
349 : * final range, then it cannot possibly be inside any of the
350 : * ranges.
351 : */
352 : if (DatumGetBool(compar))
353 : continue;
354 :
355 : /* bsearch the ranges to see if 'value' fits within any of them */
356 : start = 0; /* first range */
357 : end = ranges->nranges - 1; /* last range */
358 : while (true)
359 : {
360 : int midpoint = (start + end) / 2;
361 :
362 : /* this means we ran out of ranges in the last step */
363 : if (start > end)
364 : break;
365 :
366 : /* copy the min/max values from the ranges */
367 : minvalue = ranges->values[2 * midpoint];
368 : maxvalue = ranges->values[2 * midpoint + 1];
369 :
370 : /*
371 : * Is the value smaller than the minval? If yes, we'll recurse
372 : * to the left side of range array.
373 : */
374 : compar = FunctionCall2Coll(cmpFn, colloid, value, minvalue);
375 :
376 : /* smaller than the smallest value in this range */
377 : if (DatumGetBool(compar))
378 : {
379 : end = (midpoint - 1);
380 : continue;
381 : }
382 :
383 : /*
384 : * Is the value greater than the minval? If yes, we'll recurse
385 : * to the right side of range array.
386 : */
387 : compar = FunctionCall2Coll(cmpFn, colloid, maxvalue, value);
388 :
389 : /* larger than the largest value in this range */
390 : if (DatumGetBool(compar))
391 : {
392 : start = (midpoint + 1);
393 : continue;
394 : }
395 :
396 : /* hey, we found a matching range */
397 : Assert(false);
398 : }
399 : }
400 : }
401 :
402 : /* and values in the unsorted part must not be in the sorted part */
403 : if (ranges->nsorted > 0)
404 : {
405 : compare_context cxt;
406 :
407 : cxt.colloid = ranges->colloid;
408 : cxt.cmpFn = ranges->cmp;
409 :
410 : for (i = ranges->nsorted; i < ranges->nvalues; i++)
411 : {
412 : Datum value = ranges->values[2 * ranges->nranges + i];
413 :
414 : Assert(bsearch_arg(&value, &ranges->values[2 * ranges->nranges],
415 : ranges->nsorted, sizeof(Datum),
416 : compare_values, (void *) &cxt) == NULL);
417 : }
418 : }
419 : #endif
420 270984 : }
421 :
422 : /*
423 : * Check that the expanded ranges (built when reducing the number of ranges
424 : * by combining some of them) are correctly sorted and do not overlap.
425 : */
426 : static void
427 492 : AssertCheckExpandedRanges(BrinDesc *bdesc, Oid colloid, AttrNumber attno,
428 : Form_pg_attribute attr, ExpandedRange *ranges,
429 : int nranges)
430 : {
431 : #ifdef USE_ASSERT_CHECKING
432 : int i;
433 : FmgrInfo *eq;
434 : FmgrInfo *lt;
435 :
436 : eq = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
437 : BTEqualStrategyNumber);
438 :
439 : lt = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
440 : BTLessStrategyNumber);
441 :
442 : /*
443 : * Each range independently should be valid, i.e. that for the boundary
444 : * values (lower <= upper).
445 : */
446 : for (i = 0; i < nranges; i++)
447 : {
448 : Datum r;
449 : Datum minval = ranges[i].minval;
450 : Datum maxval = ranges[i].maxval;
451 :
452 : if (ranges[i].collapsed) /* collapsed: minval == maxval */
453 : r = FunctionCall2Coll(eq, colloid, minval, maxval);
454 : else /* non-collapsed: minval < maxval */
455 : r = FunctionCall2Coll(lt, colloid, minval, maxval);
456 :
457 : Assert(DatumGetBool(r));
458 : }
459 :
460 : /*
461 : * And the ranges should be ordered and must not overlap, i.e. upper <
462 : * lower for boundaries of consecutive ranges.
463 : */
464 : for (i = 0; i < nranges - 1; i++)
465 : {
466 : Datum r;
467 : Datum maxval = ranges[i].maxval;
468 : Datum minval = ranges[i + 1].minval;
469 :
470 : r = FunctionCall2Coll(lt, colloid, maxval, minval);
471 :
472 : Assert(DatumGetBool(r));
473 : }
474 : #endif
475 492 : }
476 :
477 :
478 : /*
479 : * minmax_multi_init
480 : * Initialize the deserialized range list, allocate all the memory.
481 : *
482 : * This is only in-memory representation of the ranges, so we allocate
483 : * enough space for the maximum number of values (so as not to have to do
484 : * repallocs as the ranges grow).
485 : */
486 : static Ranges *
487 50682 : minmax_multi_init(int maxvalues)
488 : {
489 : Size len;
490 : Ranges *ranges;
491 :
492 : Assert(maxvalues > 0);
493 :
494 50682 : len = offsetof(Ranges, values); /* fixed header */
495 50682 : len += maxvalues * sizeof(Datum); /* Datum values */
496 :
497 50682 : ranges = (Ranges *) palloc0(len);
498 :
499 50682 : ranges->maxvalues = maxvalues;
500 :
501 50682 : return ranges;
502 : }
503 :
504 :
505 : /*
506 : * range_deduplicate_values
507 : * Deduplicate the part with values in the simple points.
508 : *
509 : * This is meant to be a cheaper way of reducing the size of the ranges. It
510 : * does not touch the ranges, and only sorts the other values - it does not
511 : * call the distance functions, which may be quite expensive, etc.
512 : *
513 : * We do know the values are not duplicate with the ranges, because we check
514 : * that before adding a new value. Same for the sorted part of values.
515 : */
516 : static void
517 18228 : range_deduplicate_values(Ranges *range)
518 : {
519 : int i,
520 : n;
521 : int start;
522 : compare_context cxt;
523 :
524 : /*
525 : * If there are no unsorted values, we're done (this probably can't
526 : * happen, as we're adding values to unsorted part).
527 : */
528 18228 : if (range->nsorted == range->nvalues)
529 17982 : return;
530 :
531 : /* sort the values */
532 246 : cxt.colloid = range->colloid;
533 246 : cxt.cmpFn = range->cmp;
534 :
535 : /* the values start right after the ranges (which are always sorted) */
536 246 : start = 2 * range->nranges;
537 :
538 : /*
539 : * XXX This might do a merge sort, to leverage that the first part of the
540 : * array is already sorted. If the sorted part is large, it might be quite
541 : * a bit faster.
542 : */
543 246 : qsort_arg(&range->values[start],
544 246 : range->nvalues, sizeof(Datum),
545 : compare_values, &cxt);
546 :
547 246 : n = 1;
548 78240 : for (i = 1; i < range->nvalues; i++)
549 : {
550 : /* same as preceding value, so store it */
551 77994 : if (compare_values(&range->values[start + i - 1],
552 77994 : &range->values[start + i],
553 : (void *) &cxt) == 0)
554 0 : continue;
555 :
556 77994 : range->values[start + n] = range->values[start + i];
557 :
558 77994 : n++;
559 : }
560 :
561 : /* now all the values are sorted */
562 246 : range->nvalues = n;
563 246 : range->nsorted = n;
564 :
565 246 : AssertCheckRanges(range, range->cmp, range->colloid);
566 : }
567 :
568 :
569 : /*
570 : * brin_range_serialize
571 : * Serialize the in-memory representation into a compact varlena value.
572 : *
573 : * Simply copy the header and then also the individual values, as stored
574 : * in the in-memory value array.
575 : */
576 : static SerializedRanges *
577 17982 : brin_range_serialize(Ranges *range)
578 : {
579 : Size len;
580 : int nvalues;
581 : SerializedRanges *serialized;
582 : Oid typid;
583 : int typlen;
584 : bool typbyval;
585 :
586 : char *ptr;
587 :
588 : /* simple sanity checks */
589 : Assert(range->nranges >= 0);
590 : Assert(range->nsorted >= 0);
591 : Assert(range->nvalues >= 0);
592 : Assert(range->maxvalues > 0);
593 : Assert(range->target_maxvalues > 0);
594 :
595 : /* at this point the range should be compacted to the target size */
596 : Assert(2 * range->nranges + range->nvalues <= range->target_maxvalues);
597 :
598 : Assert(range->target_maxvalues <= range->maxvalues);
599 :
600 : /* range boundaries are always sorted */
601 : Assert(range->nvalues >= range->nsorted);
602 :
603 : /* deduplicate values, if there's unsorted part */
604 17982 : range_deduplicate_values(range);
605 :
606 : /* see how many Datum values we actually have */
607 17982 : nvalues = 2 * range->nranges + range->nvalues;
608 :
609 17982 : typid = range->typid;
610 17982 : typbyval = get_typbyval(typid);
611 17982 : typlen = get_typlen(typid);
612 :
613 : /* header is always needed */
614 17982 : len = offsetof(SerializedRanges, data);
615 :
616 : /*
617 : * The space needed depends on data type - for fixed-length data types
618 : * (by-value and some by-reference) it's pretty simple, just multiply
619 : * (attlen * nvalues) and we're done. For variable-length by-reference
620 : * types we need to actually walk all the values and sum the lengths.
621 : */
622 17982 : if (typlen == -1) /* varlena */
623 : {
624 : int i;
625 :
626 11856 : for (i = 0; i < nvalues; i++)
627 : {
628 9288 : len += VARSIZE_ANY(range->values[i]);
629 : }
630 : }
631 15414 : else if (typlen == -2) /* cstring */
632 : {
633 : int i;
634 :
635 0 : for (i = 0; i < nvalues; i++)
636 : {
637 : /* don't forget to include the null terminator ;-) */
638 0 : len += strlen(DatumGetCString(range->values[i])) + 1;
639 : }
640 : }
641 : else /* fixed-length types (even by-reference) */
642 : {
643 : Assert(typlen > 0);
644 15414 : len += nvalues * typlen;
645 : }
646 :
647 : /*
648 : * Allocate the serialized object, copy the basic information. The
649 : * serialized object is a varlena, so update the header.
650 : */
651 17982 : serialized = (SerializedRanges *) palloc0(len);
652 17982 : SET_VARSIZE(serialized, len);
653 :
654 17982 : serialized->typid = typid;
655 17982 : serialized->nranges = range->nranges;
656 17982 : serialized->nvalues = range->nvalues;
657 17982 : serialized->maxvalues = range->target_maxvalues;
658 :
659 : /*
660 : * And now copy also the boundary values (like the length calculation this
661 : * depends on the particular data type).
662 : */
663 17982 : ptr = serialized->data; /* start of the serialized data */
664 :
665 88868 : for (int i = 0; i < nvalues; i++)
666 : {
667 70886 : if (typbyval) /* simple by-value data types */
668 : {
669 : Datum tmp;
670 :
671 : /*
672 : * For byval types, we need to copy just the significant bytes -
673 : * we can't use memcpy directly, as that assumes little-endian
674 : * behavior. store_att_byval does almost what we need, but it
675 : * requires a properly aligned buffer - the output buffer does not
676 : * guarantee that. So we simply use a local Datum variable (which
677 : * guarantees proper alignment), and then copy the value from it.
678 : */
679 44190 : store_att_byval(&tmp, range->values[i], typlen);
680 :
681 44190 : memcpy(ptr, &tmp, typlen);
682 44190 : ptr += typlen;
683 : }
684 26696 : else if (typlen > 0) /* fixed-length by-ref types */
685 : {
686 17408 : memcpy(ptr, DatumGetPointer(range->values[i]), typlen);
687 17408 : ptr += typlen;
688 : }
689 9288 : else if (typlen == -1) /* varlena */
690 : {
691 9288 : int tmp = VARSIZE_ANY(DatumGetPointer(range->values[i]));
692 :
693 9288 : memcpy(ptr, DatumGetPointer(range->values[i]), tmp);
694 9288 : ptr += tmp;
695 : }
696 0 : else if (typlen == -2) /* cstring */
697 : {
698 0 : int tmp = strlen(DatumGetCString(range->values[i])) + 1;
699 :
700 0 : memcpy(ptr, DatumGetCString(range->values[i]), tmp);
701 0 : ptr += tmp;
702 : }
703 :
704 : /* make sure we haven't overflown the buffer end */
705 : Assert(ptr <= ((char *) serialized + len));
706 : }
707 :
708 : /* exact size */
709 : Assert(ptr == ((char *) serialized + len));
710 :
711 17982 : return serialized;
712 : }
713 :
714 : /*
715 : * brin_range_deserialize
716 : * Serialize the in-memory representation into a compact varlena value.
717 : *
718 : * Simply copy the header and then also the individual values, as stored
719 : * in the in-memory value array.
720 : */
721 : static Ranges *
722 45846 : brin_range_deserialize(int maxvalues, SerializedRanges *serialized)
723 : {
724 : int i,
725 : nvalues;
726 : char *ptr,
727 : *dataptr;
728 : bool typbyval;
729 : int typlen;
730 : Size datalen;
731 :
732 : Ranges *range;
733 :
734 : Assert(serialized->nranges >= 0);
735 : Assert(serialized->nvalues >= 0);
736 : Assert(serialized->maxvalues > 0);
737 :
738 45846 : nvalues = 2 * serialized->nranges + serialized->nvalues;
739 :
740 : Assert(nvalues <= serialized->maxvalues);
741 : Assert(serialized->maxvalues <= maxvalues);
742 :
743 45846 : range = minmax_multi_init(maxvalues);
744 :
745 : /* copy the header info */
746 45846 : range->nranges = serialized->nranges;
747 45846 : range->nvalues = serialized->nvalues;
748 45846 : range->nsorted = serialized->nvalues;
749 45846 : range->maxvalues = maxvalues;
750 45846 : range->target_maxvalues = serialized->maxvalues;
751 :
752 45846 : range->typid = serialized->typid;
753 :
754 45846 : typbyval = get_typbyval(serialized->typid);
755 45846 : typlen = get_typlen(serialized->typid);
756 :
757 : /*
758 : * And now deconstruct the values into Datum array. We have to copy the
759 : * data because the serialized representation ignores alignment, and we
760 : * don't want to rely on it being kept around anyway.
761 : */
762 45846 : ptr = serialized->data;
763 :
764 : /*
765 : * We don't want to allocate many pieces, so we just allocate everything
766 : * in one chunk. How much space will we need?
767 : *
768 : * XXX We don't need to copy simple by-value data types.
769 : */
770 45846 : datalen = 0;
771 45846 : dataptr = NULL;
772 105614 : for (i = 0; (i < nvalues) && (!typbyval); i++)
773 : {
774 59768 : if (typlen > 0) /* fixed-length by-ref types */
775 36140 : datalen += MAXALIGN(typlen);
776 23628 : else if (typlen == -1) /* varlena */
777 : {
778 23628 : datalen += MAXALIGN(VARSIZE_ANY(ptr));
779 23628 : ptr += VARSIZE_ANY(ptr);
780 : }
781 0 : else if (typlen == -2) /* cstring */
782 : {
783 0 : Size slen = strlen(ptr) + 1;
784 :
785 0 : datalen += MAXALIGN(slen);
786 0 : ptr += slen;
787 : }
788 : }
789 :
790 45846 : if (datalen > 0)
791 17394 : dataptr = palloc(datalen);
792 :
793 : /*
794 : * Restore the source pointer (might have been modified when calculating
795 : * the space we need to allocate).
796 : */
797 45846 : ptr = serialized->data;
798 :
799 236954 : for (i = 0; i < nvalues; i++)
800 : {
801 191108 : if (typbyval) /* simple by-value data types */
802 : {
803 131340 : Datum v = 0;
804 :
805 131340 : memcpy(&v, ptr, typlen);
806 :
807 131340 : range->values[i] = fetch_att(&v, true, typlen);
808 131340 : ptr += typlen;
809 : }
810 59768 : else if (typlen > 0) /* fixed-length by-ref types */
811 : {
812 36140 : range->values[i] = PointerGetDatum(dataptr);
813 :
814 36140 : memcpy(dataptr, ptr, typlen);
815 36140 : dataptr += MAXALIGN(typlen);
816 :
817 36140 : ptr += typlen;
818 : }
819 23628 : else if (typlen == -1) /* varlena */
820 : {
821 23628 : range->values[i] = PointerGetDatum(dataptr);
822 :
823 23628 : memcpy(dataptr, ptr, VARSIZE_ANY(ptr));
824 23628 : dataptr += MAXALIGN(VARSIZE_ANY(ptr));
825 23628 : ptr += VARSIZE_ANY(ptr);
826 : }
827 0 : else if (typlen == -2) /* cstring */
828 : {
829 0 : Size slen = strlen(ptr) + 1;
830 :
831 0 : range->values[i] = PointerGetDatum(dataptr);
832 :
833 0 : memcpy(dataptr, ptr, slen);
834 0 : dataptr += MAXALIGN(slen);
835 0 : ptr += slen;
836 : }
837 :
838 : /* make sure we haven't overflown the buffer end */
839 : Assert(ptr <= ((char *) serialized + VARSIZE_ANY(serialized)));
840 : }
841 :
842 : /* should have consumed the whole input value exactly */
843 : Assert(ptr == ((char *) serialized + VARSIZE_ANY(serialized)));
844 :
845 : /* return the deserialized value */
846 45846 : return range;
847 : }
848 :
849 : /*
850 : * compare_expanded_ranges
851 : * Compare the expanded ranges - first by minimum, then by maximum.
852 : *
853 : * We do guarantee that ranges in a single Ranges object do not overlap, so it
854 : * may seem strange that we don't order just by minimum. But when merging two
855 : * Ranges (which happens in the union function), the ranges may in fact
856 : * overlap. So we do compare both.
857 : */
858 : static int
859 835020 : compare_expanded_ranges(const void *a, const void *b, void *arg)
860 : {
861 835020 : ExpandedRange *ra = (ExpandedRange *) a;
862 835020 : ExpandedRange *rb = (ExpandedRange *) b;
863 : Datum r;
864 :
865 835020 : compare_context *cxt = (compare_context *) arg;
866 :
867 : /* first compare minvals */
868 835020 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->minval, rb->minval);
869 :
870 835020 : if (DatumGetBool(r))
871 538756 : return -1;
872 :
873 296264 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->minval, ra->minval);
874 :
875 296264 : if (DatumGetBool(r))
876 231764 : return 1;
877 :
878 : /* then compare maxvals */
879 64500 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, ra->maxval, rb->maxval);
880 :
881 64500 : if (DatumGetBool(r))
882 0 : return -1;
883 :
884 64500 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, rb->maxval, ra->maxval);
885 :
886 64500 : if (DatumGetBool(r))
887 0 : return 1;
888 :
889 64500 : return 0;
890 : }
891 :
892 : /*
893 : * compare_values
894 : * Compare the values.
895 : */
896 : static int
897 1142304 : compare_values(const void *a, const void *b, void *arg)
898 : {
899 1142304 : Datum *da = (Datum *) a;
900 1142304 : Datum *db = (Datum *) b;
901 : Datum r;
902 :
903 1142304 : compare_context *cxt = (compare_context *) arg;
904 :
905 1142304 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *da, *db);
906 :
907 1142304 : if (DatumGetBool(r))
908 607344 : return -1;
909 :
910 534960 : r = FunctionCall2Coll(cxt->cmpFn, cxt->colloid, *db, *da);
911 :
912 534960 : if (DatumGetBool(r))
913 467730 : return 1;
914 :
915 67230 : return 0;
916 : }
917 :
918 : /*
919 : * Check if the new value matches one of the existing ranges.
920 : */
921 : static bool
922 140370 : has_matching_range(BrinDesc *bdesc, Oid colloid, Ranges *ranges,
923 : Datum newval, AttrNumber attno, Oid typid)
924 : {
925 : Datum compar;
926 :
927 : Datum minvalue;
928 : Datum maxvalue;
929 :
930 : FmgrInfo *cmpLessFn;
931 : FmgrInfo *cmpGreaterFn;
932 :
933 : /* binary search on ranges */
934 : int start,
935 : end;
936 :
937 140370 : if (ranges->nranges == 0)
938 81420 : return false;
939 :
940 58950 : minvalue = ranges->values[0];
941 58950 : maxvalue = ranges->values[2 * ranges->nranges - 1];
942 :
943 : /*
944 : * Otherwise, need to compare the new value with boundaries of all the
945 : * ranges. First check if it's less than the absolute minimum, which is
946 : * the first value in the array.
947 : */
948 58950 : cmpLessFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
949 : BTLessStrategyNumber);
950 58950 : compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
951 :
952 : /* smaller than the smallest value in the range list */
953 58950 : if (DatumGetBool(compar))
954 18 : return false;
955 :
956 : /*
957 : * And now compare it to the existing maximum (last value in the data
958 : * array). But only if we haven't already ruled out a possible match in
959 : * the minvalue check.
960 : */
961 58932 : cmpGreaterFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
962 : BTGreaterStrategyNumber);
963 58932 : compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
964 :
965 58932 : if (DatumGetBool(compar))
966 58206 : return false;
967 :
968 : /*
969 : * So we know it's in the general min/max, the question is whether it
970 : * falls in one of the ranges or gaps. We'll do a binary search on
971 : * individual ranges - for each range we check equality (value falls into
972 : * the range), and then check ranges either above or below the current
973 : * range.
974 : */
975 726 : start = 0; /* first range */
976 726 : end = (ranges->nranges - 1); /* last range */
977 : while (true)
978 1554 : {
979 2280 : int midpoint = (start + end) / 2;
980 :
981 : /* this means we ran out of ranges in the last step */
982 2280 : if (start > end)
983 288 : return false;
984 :
985 : /* copy the min/max values from the ranges */
986 1992 : minvalue = ranges->values[2 * midpoint];
987 1992 : maxvalue = ranges->values[2 * midpoint + 1];
988 :
989 : /*
990 : * Is the value smaller than the minval? If yes, we'll recurse to the
991 : * left side of range array.
992 : */
993 1992 : compar = FunctionCall2Coll(cmpLessFn, colloid, newval, minvalue);
994 :
995 : /* smaller than the smallest value in this range */
996 1992 : if (DatumGetBool(compar))
997 : {
998 582 : end = (midpoint - 1);
999 582 : continue;
1000 : }
1001 :
1002 : /*
1003 : * Is the value greater than the minval? If yes, we'll recurse to the
1004 : * right side of range array.
1005 : */
1006 1410 : compar = FunctionCall2Coll(cmpGreaterFn, colloid, newval, maxvalue);
1007 :
1008 : /* larger than the largest value in this range */
1009 1410 : if (DatumGetBool(compar))
1010 : {
1011 972 : start = (midpoint + 1);
1012 972 : continue;
1013 : }
1014 :
1015 : /* hey, we found a matching range */
1016 438 : return true;
1017 : }
1018 :
1019 : return false;
1020 : }
1021 :
1022 :
1023 : /*
1024 : * range_contains_value
1025 : * See if the new value is already contained in the range list.
1026 : *
1027 : * We first inspect the list of intervals. We use a small trick - we check
1028 : * the value against min/max of the whole range (min of the first interval,
1029 : * max of the last one) first, and only inspect the individual intervals if
1030 : * this passes.
1031 : *
1032 : * If the value matches none of the intervals, we check the exact values.
1033 : * We simply loop through them and invoke equality operator on them.
1034 : *
1035 : * The last parameter (full) determines whether we need to search all the
1036 : * values, including the unsorted part. With full=false, the unsorted part
1037 : * is not searched, which may produce false negatives and duplicate values
1038 : * (in the unsorted part only), but when we're building the range that's
1039 : * fine - we'll deduplicate before serialization, and it can only happen
1040 : * if there already are unsorted values (so it was already modified).
1041 : *
1042 : * Serialized ranges don't have any unsorted values, so this can't cause
1043 : * false negatives during querying.
1044 : */
1045 : static bool
1046 140370 : range_contains_value(BrinDesc *bdesc, Oid colloid,
1047 : AttrNumber attno, Form_pg_attribute attr,
1048 : Ranges *ranges, Datum newval, bool full)
1049 : {
1050 : int i;
1051 : FmgrInfo *cmpEqualFn;
1052 140370 : Oid typid = attr->atttypid;
1053 :
1054 : /*
1055 : * First inspect the ranges, if there are any. We first check the whole
1056 : * range, and only when there's still a chance of getting a match we
1057 : * inspect the individual ranges.
1058 : */
1059 140370 : if (has_matching_range(bdesc, colloid, ranges, newval, attno, typid))
1060 438 : return true;
1061 :
1062 139932 : cmpEqualFn = minmax_multi_get_strategy_procinfo(bdesc, attno, typid,
1063 : BTEqualStrategyNumber);
1064 :
1065 : /*
1066 : * There is no matching range, so let's inspect the sorted values.
1067 : *
1068 : * We do a sequential search for small numbers of values, and binary
1069 : * search once we have more than 16 values. This threshold is somewhat
1070 : * arbitrary, as it depends on how expensive the comparison function is.
1071 : *
1072 : * XXX If we use the threshold here, maybe we should do the same thing in
1073 : * has_matching_range? Or maybe we should do the bin search all the time?
1074 : *
1075 : * XXX We could use the same optimization as for ranges, to check if the
1076 : * value is between min/max, to maybe rule out all sorted values without
1077 : * having to inspect all of them.
1078 : */
1079 139932 : if (ranges->nsorted >= 16)
1080 : {
1081 : compare_context cxt;
1082 :
1083 58092 : cxt.colloid = ranges->colloid;
1084 58092 : cxt.cmpFn = ranges->cmp;
1085 :
1086 58092 : if (bsearch_arg(&newval, &ranges->values[2 * ranges->nranges],
1087 58092 : ranges->nsorted, sizeof(Datum),
1088 : compare_values, (void *) &cxt) != NULL)
1089 0 : return true;
1090 : }
1091 : else
1092 : {
1093 162846 : for (i = 2 * ranges->nranges; i < 2 * ranges->nranges + ranges->nsorted; i++)
1094 : {
1095 : Datum compar;
1096 :
1097 96798 : compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1098 :
1099 : /* found an exact match */
1100 96798 : if (DatumGetBool(compar))
1101 15792 : return true;
1102 : }
1103 : }
1104 :
1105 : /* If not asked to inspect the unsorted part, we're done. */
1106 124140 : if (!full)
1107 124140 : return false;
1108 :
1109 : /* Inspect the unsorted part. */
1110 0 : for (i = 2 * ranges->nranges + ranges->nsorted; i < 2 * ranges->nranges + ranges->nvalues; i++)
1111 : {
1112 : Datum compar;
1113 :
1114 0 : compar = FunctionCall2Coll(cmpEqualFn, colloid, newval, ranges->values[i]);
1115 :
1116 : /* found an exact match */
1117 0 : if (DatumGetBool(compar))
1118 0 : return true;
1119 : }
1120 :
1121 : /* the value is not covered by this BRIN tuple */
1122 0 : return false;
1123 : }
1124 :
1125 : /*
1126 : * Expand ranges from Ranges into ExpandedRange array. This expects the
1127 : * eranges to be pre-allocated and with the correct size - there needs to be
1128 : * (nranges + nvalues) elements.
1129 : *
1130 : * The order of expanded ranges is arbitrary. We do expand the ranges first,
1131 : * and this part is sorted. But then we expand the values, and this part may
1132 : * be unsorted.
1133 : */
1134 : static void
1135 6228 : fill_expanded_ranges(ExpandedRange *eranges, int neranges, Ranges *ranges)
1136 : {
1137 : int idx;
1138 : int i;
1139 :
1140 : /* Check that the output array has the right size. */
1141 : Assert(neranges == (ranges->nranges + ranges->nvalues));
1142 :
1143 6228 : idx = 0;
1144 8496 : for (i = 0; i < ranges->nranges; i++)
1145 : {
1146 2268 : eranges[idx].minval = ranges->values[2 * i];
1147 2268 : eranges[idx].maxval = ranges->values[2 * i + 1];
1148 2268 : eranges[idx].collapsed = false;
1149 2268 : idx++;
1150 :
1151 : Assert(idx <= neranges);
1152 : }
1153 :
1154 156834 : for (i = 0; i < ranges->nvalues; i++)
1155 : {
1156 150606 : eranges[idx].minval = ranges->values[2 * ranges->nranges + i];
1157 150606 : eranges[idx].maxval = ranges->values[2 * ranges->nranges + i];
1158 150606 : eranges[idx].collapsed = true;
1159 150606 : idx++;
1160 :
1161 : Assert(idx <= neranges);
1162 : }
1163 :
1164 : /* Did we produce the expected number of elements? */
1165 : Assert(idx == neranges);
1166 :
1167 6228 : return;
1168 : }
1169 :
1170 : /*
1171 : * Sort and deduplicate expanded ranges.
1172 : *
1173 : * The ranges may be deduplicated - we're simply appending values, without
1174 : * checking for duplicates etc. So maybe the deduplication will reduce the
1175 : * number of ranges enough, and we won't have to compute the distances etc.
1176 : *
1177 : * Returns the number of expanded ranges.
1178 : */
1179 : static int
1180 6228 : sort_expanded_ranges(FmgrInfo *cmp, Oid colloid,
1181 : ExpandedRange *eranges, int neranges)
1182 : {
1183 : int n;
1184 : int i;
1185 : compare_context cxt;
1186 :
1187 : Assert(neranges > 0);
1188 :
1189 : /* sort the values */
1190 6228 : cxt.colloid = colloid;
1191 6228 : cxt.cmpFn = cmp;
1192 :
1193 : /*
1194 : * XXX We do qsort on all the values, but we could also leverage the fact
1195 : * that some of the input data is already sorted (all the ranges and maybe
1196 : * some of the points) and do merge sort.
1197 : */
1198 6228 : qsort_arg(eranges, neranges, sizeof(ExpandedRange),
1199 : compare_expanded_ranges, &cxt);
1200 :
1201 : /*
1202 : * Deduplicate the ranges - simply compare each range to the preceding
1203 : * one, and skip the duplicate ones.
1204 : */
1205 6228 : n = 1;
1206 152874 : for (i = 1; i < neranges; i++)
1207 : {
1208 : /* if the current range is equal to the preceding one, do nothing */
1209 146646 : if (!compare_expanded_ranges(&eranges[i - 1], &eranges[i], (void *) &cxt))
1210 29644 : continue;
1211 :
1212 : /* otherwise, copy it to n-th place (if not already there) */
1213 117002 : if (i != n)
1214 9220 : memcpy(&eranges[n], &eranges[i], sizeof(ExpandedRange));
1215 :
1216 117002 : n++;
1217 : }
1218 :
1219 : Assert((n > 0) && (n <= neranges));
1220 :
1221 6228 : return n;
1222 : }
1223 :
1224 : /*
1225 : * When combining multiple Range values (in union function), some of the
1226 : * ranges may overlap. We simply merge the overlapping ranges to fix that.
1227 : *
1228 : * XXX This assumes the expanded ranges were previously sorted (by minval
1229 : * and then maxval). We leverage this when detecting overlap.
1230 : */
1231 : static int
1232 0 : merge_overlapping_ranges(FmgrInfo *cmp, Oid colloid,
1233 : ExpandedRange *eranges, int neranges)
1234 : {
1235 : int idx;
1236 :
1237 : /* Merge ranges (idx) and (idx+1) if they overlap. */
1238 0 : idx = 0;
1239 0 : while (idx < (neranges - 1))
1240 : {
1241 : Datum r;
1242 :
1243 : /*
1244 : * comparing [?,maxval] vs. [minval,?] - the ranges overlap if (minval
1245 : * < maxval)
1246 : */
1247 0 : r = FunctionCall2Coll(cmp, colloid,
1248 0 : eranges[idx].maxval,
1249 0 : eranges[idx + 1].minval);
1250 :
1251 : /*
1252 : * Nope, maxval < minval, so no overlap. And we know the ranges are
1253 : * ordered, so there are no more overlaps, because all the remaining
1254 : * ranges have greater or equal minval.
1255 : */
1256 0 : if (DatumGetBool(r))
1257 : {
1258 : /* proceed to the next range */
1259 0 : idx += 1;
1260 0 : continue;
1261 : }
1262 :
1263 : /*
1264 : * So ranges 'idx' and 'idx+1' do overlap, but we don't know if
1265 : * 'idx+1' is contained in 'idx', or if they overlap only partially.
1266 : * So compare the upper bounds and keep the larger one.
1267 : */
1268 0 : r = FunctionCall2Coll(cmp, colloid,
1269 0 : eranges[idx].maxval,
1270 0 : eranges[idx + 1].maxval);
1271 :
1272 0 : if (DatumGetBool(r))
1273 0 : eranges[idx].maxval = eranges[idx + 1].maxval;
1274 :
1275 : /*
1276 : * The range certainly is no longer collapsed (irrespectively of the
1277 : * previous state).
1278 : */
1279 0 : eranges[idx].collapsed = false;
1280 :
1281 : /*
1282 : * Now get rid of the (idx+1) range entirely by shifting the remaining
1283 : * ranges by 1. There are neranges elements, and we need to move
1284 : * elements from (idx+2). That means the number of elements to move is
1285 : * [ncranges - (idx+2)].
1286 : */
1287 0 : memmove(&eranges[idx + 1], &eranges[idx + 2],
1288 0 : (neranges - (idx + 2)) * sizeof(ExpandedRange));
1289 :
1290 : /*
1291 : * Decrease the number of ranges, and repeat (with the same range, as
1292 : * it might overlap with additional ranges thanks to the merge).
1293 : */
1294 0 : neranges--;
1295 : }
1296 :
1297 0 : return neranges;
1298 : }
1299 :
1300 : /*
1301 : * Simple comparator for distance values, comparing the double value.
1302 : * This is intentionally sorting the distances in descending order, i.e.
1303 : * the longer gaps will be at the front.
1304 : */
1305 : static int
1306 172296 : compare_distances(const void *a, const void *b)
1307 : {
1308 172296 : DistanceValue *da = (DistanceValue *) a;
1309 172296 : DistanceValue *db = (DistanceValue *) b;
1310 :
1311 172296 : if (da->value < db->value)
1312 40928 : return 1;
1313 131368 : else if (da->value > db->value)
1314 27754 : return -1;
1315 :
1316 103614 : return 0;
1317 : }
1318 :
1319 : /*
1320 : * Given an array of expanded ranges, compute size of the gaps between each
1321 : * range. For neranges there are (neranges-1) gaps.
1322 : *
1323 : * We simply call the "distance" function to compute the (max-min) for pairs
1324 : * of consecutive ranges. The function may be fairly expensive, so we do that
1325 : * just once (and then use it to pick as many ranges to merge as possible).
1326 : *
1327 : * See reduce_expanded_ranges for details.
1328 : */
1329 : static DistanceValue *
1330 6228 : build_distances(FmgrInfo *distanceFn, Oid colloid,
1331 : ExpandedRange *eranges, int neranges)
1332 : {
1333 : int i;
1334 : int ndistances;
1335 : DistanceValue *distances;
1336 :
1337 : Assert(neranges > 0);
1338 :
1339 : /* If there's only a single range, there's no distance to calculate. */
1340 6228 : if (neranges == 1)
1341 0 : return NULL;
1342 :
1343 6228 : ndistances = (neranges - 1);
1344 6228 : distances = (DistanceValue *) palloc0(sizeof(DistanceValue) * ndistances);
1345 :
1346 : /*
1347 : * Walk through the ranges once and compute the distance between the
1348 : * ranges so that we can sort them once.
1349 : */
1350 123230 : for (i = 0; i < ndistances; i++)
1351 : {
1352 : Datum a1,
1353 : a2,
1354 : r;
1355 :
1356 117002 : a1 = eranges[i].maxval;
1357 117002 : a2 = eranges[i + 1].minval;
1358 :
1359 : /* compute length of the gap (between max/min) */
1360 117002 : r = FunctionCall2Coll(distanceFn, colloid, a1, a2);
1361 :
1362 : /* remember the index of the gap the distance is for */
1363 117002 : distances[i].index = i;
1364 117002 : distances[i].value = DatumGetFloat8(r);
1365 : }
1366 :
1367 : /*
1368 : * Sort the distances in descending order, so that the longest gaps are at
1369 : * the front.
1370 : */
1371 6228 : qsort(distances, ndistances, sizeof(DistanceValue), compare_distances);
1372 :
1373 6228 : return distances;
1374 : }
1375 :
1376 : /*
1377 : * Builds expanded ranges for the existing ranges (and single-point ranges),
1378 : * and also the new value (which did not fit into the array). This expanded
1379 : * representation makes the processing a bit easier, as it allows handling
1380 : * ranges and points the same way.
1381 : *
1382 : * We sort and deduplicate the expanded ranges - this is necessary, because
1383 : * the points may be unsorted. And moreover the two parts (ranges and
1384 : * points) are sorted on their own.
1385 : */
1386 : static ExpandedRange *
1387 6228 : build_expanded_ranges(FmgrInfo *cmp, Oid colloid, Ranges *ranges,
1388 : int *nranges)
1389 : {
1390 : int neranges;
1391 : ExpandedRange *eranges;
1392 :
1393 : /* both ranges and points are expanded into a separate element */
1394 6228 : neranges = ranges->nranges + ranges->nvalues;
1395 :
1396 6228 : eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
1397 :
1398 : /* fill the expanded ranges */
1399 6228 : fill_expanded_ranges(eranges, neranges, ranges);
1400 :
1401 : /* sort and deduplicate the expanded ranges */
1402 6228 : neranges = sort_expanded_ranges(cmp, colloid, eranges, neranges);
1403 :
1404 : /* remember how many ranges we built */
1405 6228 : *nranges = neranges;
1406 :
1407 6228 : return eranges;
1408 : }
1409 :
1410 : #ifdef USE_ASSERT_CHECKING
1411 : /*
1412 : * Counts boundary values needed to store the ranges. Each single-point
1413 : * range is stored using a single value, each regular range needs two.
1414 : */
1415 : static int
1416 : count_values(ExpandedRange *cranges, int ncranges)
1417 : {
1418 : int i;
1419 : int count;
1420 :
1421 : count = 0;
1422 : for (i = 0; i < ncranges; i++)
1423 : {
1424 : if (cranges[i].collapsed)
1425 : count += 1;
1426 : else
1427 : count += 2;
1428 : }
1429 :
1430 : return count;
1431 : }
1432 : #endif
1433 :
1434 : /*
1435 : * reduce_expanded_ranges
1436 : * reduce the ranges until the number of values is low enough
1437 : *
1438 : * Combines ranges until the number of boundary values drops below the
1439 : * threshold specified by max_values. This happens by merging enough
1440 : * ranges by the distance between them.
1441 : *
1442 : * Returns the number of result ranges.
1443 : *
1444 : * We simply use the global min/max and then add boundaries for enough
1445 : * largest gaps. Each gap adds 2 values, so we simply use (target/2-1)
1446 : * distances. Then we simply sort all the values - each two values are
1447 : * a boundary of a range (possibly collapsed).
1448 : *
1449 : * XXX Some of the ranges may be collapsed (i.e. the min/max values are
1450 : * equal), but we ignore that for now. We could repeat the process,
1451 : * adding a couple more gaps recursively.
1452 : *
1453 : * XXX The ranges to merge are selected solely using the distance. But
1454 : * that may not be the best strategy, for example when multiple gaps
1455 : * are of equal (or very similar) length.
1456 : *
1457 : * Consider for example points 1, 2, 3, .., 64, which have gaps of the
1458 : * same length 1 of course. In that case, we tend to pick the first
1459 : * gap of that length, which leads to this:
1460 : *
1461 : * step 1: [1, 2], 3, 4, 5, .., 64
1462 : * step 2: [1, 3], 4, 5, .., 64
1463 : * step 3: [1, 4], 5, .., 64
1464 : * ...
1465 : *
1466 : * So in the end we'll have one "large" range and multiple small points.
1467 : * That may be fine, but it seems a bit strange and non-optimal. Maybe
1468 : * we should consider other things when picking ranges to merge - e.g.
1469 : * length of the ranges? Or perhaps randomize the choice of ranges, with
1470 : * probability inversely proportional to the distance (the gap lengths
1471 : * may be very close, but not exactly the same).
1472 : *
1473 : * XXX Or maybe we could just handle this by using random value as a
1474 : * tie-break, or by adding random noise to the actual distance.
1475 : */
1476 : static int
1477 6228 : reduce_expanded_ranges(ExpandedRange *eranges, int neranges,
1478 : DistanceValue *distances, int max_values,
1479 : FmgrInfo *cmp, Oid colloid)
1480 : {
1481 : int i;
1482 : int nvalues;
1483 : Datum *values;
1484 :
1485 : compare_context cxt;
1486 :
1487 : /* total number of gaps between ranges */
1488 6228 : int ndistances = (neranges - 1);
1489 :
1490 : /* number of gaps to keep */
1491 6228 : int keep = (max_values / 2 - 1);
1492 :
1493 : /*
1494 : * Maybe we have a sufficiently low number of ranges already?
1495 : *
1496 : * XXX This should happen before we actually do the expensive stuff like
1497 : * sorting, so maybe this should be just an assert.
1498 : */
1499 6228 : if (keep >= ndistances)
1500 5382 : return neranges;
1501 :
1502 : /* sort the values */
1503 846 : cxt.colloid = colloid;
1504 846 : cxt.cmpFn = cmp;
1505 :
1506 : /* allocate space for the boundary values */
1507 846 : nvalues = 0;
1508 846 : values = (Datum *) palloc(sizeof(Datum) * max_values);
1509 :
1510 : /* add the global min/max values, from the first/last range */
1511 846 : values[nvalues++] = eranges[0].minval;
1512 846 : values[nvalues++] = eranges[neranges - 1].maxval;
1513 :
1514 : /* add boundary values for enough gaps */
1515 29280 : for (i = 0; i < keep; i++)
1516 : {
1517 : /* index of the gap between (index) and (index+1) ranges */
1518 28434 : int index = distances[i].index;
1519 :
1520 : Assert((index >= 0) && ((index + 1) < neranges));
1521 :
1522 : /* add max from the preceding range, minval from the next one */
1523 28434 : values[nvalues++] = eranges[index].maxval;
1524 28434 : values[nvalues++] = eranges[index + 1].minval;
1525 :
1526 : Assert(nvalues <= max_values);
1527 : }
1528 :
1529 : /* We should have an even number of range values. */
1530 : Assert(nvalues % 2 == 0);
1531 :
1532 : /*
1533 : * Sort the values using the comparator function, and form ranges from the
1534 : * sorted result.
1535 : */
1536 846 : qsort_arg(values, nvalues, sizeof(Datum),
1537 : compare_values, &cxt);
1538 :
1539 : /* We have nvalues boundary values, which means nvalues/2 ranges. */
1540 30126 : for (i = 0; i < (nvalues / 2); i++)
1541 : {
1542 29280 : eranges[i].minval = values[2 * i];
1543 29280 : eranges[i].maxval = values[2 * i + 1];
1544 :
1545 : /* if the boundary values are the same, it's a collapsed range */
1546 58560 : eranges[i].collapsed = (compare_values(&values[2 * i],
1547 29280 : &values[2 * i + 1],
1548 29280 : &cxt) == 0);
1549 : }
1550 :
1551 846 : return (nvalues / 2);
1552 : }
1553 :
1554 : /*
1555 : * Store the boundary values from ExpandedRanges back into 'ranges' (using
1556 : * only the minimal number of values needed).
1557 : */
1558 : static void
1559 6228 : store_expanded_ranges(Ranges *ranges, ExpandedRange *eranges, int neranges)
1560 : {
1561 : int i;
1562 6228 : int idx = 0;
1563 :
1564 : /* first copy in the regular ranges */
1565 6228 : ranges->nranges = 0;
1566 55622 : for (i = 0; i < neranges; i++)
1567 : {
1568 49394 : if (!eranges[i].collapsed)
1569 : {
1570 4416 : ranges->values[idx++] = eranges[i].minval;
1571 4416 : ranges->values[idx++] = eranges[i].maxval;
1572 4416 : ranges->nranges++;
1573 : }
1574 : }
1575 :
1576 : /* now copy in the collapsed ones */
1577 6228 : ranges->nvalues = 0;
1578 55622 : for (i = 0; i < neranges; i++)
1579 : {
1580 49394 : if (eranges[i].collapsed)
1581 : {
1582 44978 : ranges->values[idx++] = eranges[i].minval;
1583 44978 : ranges->nvalues++;
1584 : }
1585 : }
1586 :
1587 : /* all the values are sorted */
1588 6228 : ranges->nsorted = ranges->nvalues;
1589 :
1590 : Assert(count_values(eranges, neranges) == 2 * ranges->nranges + ranges->nvalues);
1591 : Assert(2 * ranges->nranges + ranges->nvalues <= ranges->maxvalues);
1592 6228 : }
1593 :
1594 :
1595 : /*
1596 : * Consider freeing space in the ranges. Checks if there's space for at least
1597 : * one new value, and performs compaction if needed.
1598 : *
1599 : * Returns true if the value was actually modified.
1600 : */
1601 : static bool
1602 140370 : ensure_free_space_in_buffer(BrinDesc *bdesc, Oid colloid,
1603 : AttrNumber attno, Form_pg_attribute attr,
1604 : Ranges *range)
1605 : {
1606 : MemoryContext ctx;
1607 : MemoryContext oldctx;
1608 :
1609 : FmgrInfo *cmpFn,
1610 : *distanceFn;
1611 :
1612 : /* expanded ranges */
1613 : ExpandedRange *eranges;
1614 : int neranges;
1615 : DistanceValue *distances;
1616 :
1617 : /*
1618 : * If there is free space in the buffer, we're done without having to
1619 : * modify anything.
1620 : */
1621 140370 : if (2 * range->nranges + range->nvalues < range->maxvalues)
1622 140124 : return false;
1623 :
1624 : /* we'll certainly need the comparator, so just look it up now */
1625 246 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1626 : BTLessStrategyNumber);
1627 :
1628 : /* deduplicate values, if there's an unsorted part */
1629 246 : range_deduplicate_values(range);
1630 :
1631 : /*
1632 : * Did we reduce enough free space by just the deduplication?
1633 : *
1634 : * We don't simply check against range->maxvalues again. The deduplication
1635 : * might have freed very little space (e.g. just one value), forcing us to
1636 : * do deduplication very often. In that case, it's better to do the
1637 : * compaction and reduce more space.
1638 : */
1639 246 : if (2 * range->nranges + range->nvalues <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR)
1640 0 : return true;
1641 :
1642 : /*
1643 : * We need to combine some of the existing ranges, to reduce the number of
1644 : * values we have to store.
1645 : *
1646 : * The distanceFn calls (which may internally call e.g. numeric_le) may
1647 : * allocate quite a bit of memory, and we must not leak it (we might have
1648 : * to do this repeatedly, even for a single BRIN page range). Otherwise
1649 : * we'd have problems e.g. when building new indexes. So we use a memory
1650 : * context and make sure we free the memory at the end (so if we call the
1651 : * distance function many times, it might be an issue, but meh).
1652 : */
1653 246 : ctx = AllocSetContextCreate(CurrentMemoryContext,
1654 : "minmax-multi context",
1655 : ALLOCSET_DEFAULT_SIZES);
1656 :
1657 246 : oldctx = MemoryContextSwitchTo(ctx);
1658 :
1659 : /* build the expanded ranges */
1660 246 : eranges = build_expanded_ranges(cmpFn, colloid, range, &neranges);
1661 :
1662 : /* Is the expanded representation of ranges correct? */
1663 246 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1664 :
1665 : /* and we'll also need the 'distance' procedure */
1666 246 : distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
1667 :
1668 : /* build array of gap distances and sort them in ascending order */
1669 246 : distances = build_distances(distanceFn, colloid, eranges, neranges);
1670 :
1671 : /*
1672 : * Combine ranges until we release at least 50% of the space. This
1673 : * threshold is somewhat arbitrary, perhaps needs tuning. We must not use
1674 : * too low or high value.
1675 : */
1676 492 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
1677 246 : range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR,
1678 : cmpFn, colloid);
1679 :
1680 : /* Is the result of reducing expanded ranges correct? */
1681 246 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
1682 :
1683 : /* Make sure we've sufficiently reduced the number of ranges. */
1684 : Assert(count_values(eranges, neranges) <= range->maxvalues * MINMAX_BUFFER_LOAD_FACTOR);
1685 :
1686 : /* decompose the expanded ranges into regular ranges and single values */
1687 246 : store_expanded_ranges(range, eranges, neranges);
1688 :
1689 246 : MemoryContextSwitchTo(oldctx);
1690 246 : MemoryContextDelete(ctx);
1691 :
1692 : /* Did we break the ranges somehow? */
1693 246 : AssertCheckRanges(range, cmpFn, colloid);
1694 :
1695 246 : return true;
1696 : }
1697 :
1698 : /*
1699 : * range_add_value
1700 : * Add the new value to the minmax-multi range.
1701 : */
1702 : static bool
1703 140370 : range_add_value(BrinDesc *bdesc, Oid colloid,
1704 : AttrNumber attno, Form_pg_attribute attr,
1705 : Ranges *ranges, Datum newval)
1706 : {
1707 : FmgrInfo *cmpFn;
1708 140370 : bool modified = false;
1709 :
1710 : /* we'll certainly need the comparator, so just look it up now */
1711 140370 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
1712 : BTLessStrategyNumber);
1713 :
1714 : /* comprehensive checks of the input ranges */
1715 140370 : AssertCheckRanges(ranges, cmpFn, colloid);
1716 :
1717 : /*
1718 : * Make sure there's enough free space in the buffer. We only trigger this
1719 : * when the buffer is full, which means it had to be modified as we size
1720 : * it to be larger than what is stored on disk.
1721 : *
1722 : * This needs to happen before we check if the value is contained in the
1723 : * range, because the value might be in the unsorted part, and we don't
1724 : * check that in range_contains_value. The deduplication would then move
1725 : * it to the sorted part, and we'd add the value too, which violates the
1726 : * rule that we never have duplicates with the ranges or sorted values.
1727 : *
1728 : * We might also deduplicate and recheck if the value is contained, but
1729 : * that seems like overkill. We'd need to deduplicate anyway, so why not
1730 : * do it now.
1731 : */
1732 140370 : modified = ensure_free_space_in_buffer(bdesc, colloid,
1733 : attno, attr, ranges);
1734 :
1735 : /*
1736 : * Bail out if the value already is covered by the range.
1737 : *
1738 : * We could also add values until we hit values_per_range, and then do the
1739 : * deduplication in a batch, hoping for better efficiency. But that would
1740 : * mean we actually modify the range every time, which means having to
1741 : * serialize the value, which does palloc, walks the values, copies them,
1742 : * etc. Not exactly cheap.
1743 : *
1744 : * So instead we do the check, which should be fairly cheap - assuming the
1745 : * comparator function is not very expensive.
1746 : *
1747 : * This also implies the values array can't contain duplicate values.
1748 : */
1749 140370 : if (range_contains_value(bdesc, colloid, attno, attr, ranges, newval, false))
1750 16230 : return modified;
1751 :
1752 : /* Make a copy of the value, if needed. */
1753 124140 : newval = datumCopy(newval, attr->attbyval, attr->attlen);
1754 :
1755 : /*
1756 : * If there's space in the values array, copy it in and we're done.
1757 : *
1758 : * We do want to keep the values sorted (to speed up searches), so we do a
1759 : * simple insertion sort. We could do something more elaborate, e.g. by
1760 : * sorting the values only now and then, but for small counts (e.g. when
1761 : * maxvalues is 64) this should be fine.
1762 : */
1763 124140 : ranges->values[2 * ranges->nranges + ranges->nvalues] = newval;
1764 124140 : ranges->nvalues++;
1765 :
1766 : /* If we added the first value, we can consider it as sorted. */
1767 124140 : if (ranges->nvalues == 1)
1768 4836 : ranges->nsorted = 1;
1769 :
1770 : /*
1771 : * Check we haven't broken the ordering of boundary values (checks both
1772 : * parts, but that doesn't hurt).
1773 : */
1774 124140 : AssertCheckRanges(ranges, cmpFn, colloid);
1775 :
1776 : /* Check the range contains the value we just added. */
1777 : Assert(range_contains_value(bdesc, colloid, attno, attr, ranges, newval, true));
1778 :
1779 : /* yep, we've modified the range */
1780 124140 : return true;
1781 : }
1782 :
1783 : /*
1784 : * Generate range representation of data collected during "batch mode".
1785 : * This is similar to reduce_expanded_ranges, except that we can't assume
1786 : * the values are sorted and there may be duplicate values.
1787 : */
1788 : static void
1789 17982 : compactify_ranges(BrinDesc *bdesc, Ranges *ranges, int max_values)
1790 : {
1791 : FmgrInfo *cmpFn,
1792 : *distanceFn;
1793 :
1794 : /* expanded ranges */
1795 : ExpandedRange *eranges;
1796 : int neranges;
1797 : DistanceValue *distances;
1798 :
1799 : MemoryContext ctx;
1800 : MemoryContext oldctx;
1801 :
1802 : /*
1803 : * Do we need to actually compactify anything?
1804 : *
1805 : * There are two reasons why compaction may be needed - firstly, there may
1806 : * be too many values, or some of the values may be unsorted.
1807 : */
1808 17982 : if ((ranges->nranges * 2 + ranges->nvalues <= max_values) &&
1809 17514 : (ranges->nsorted == ranges->nvalues))
1810 12000 : return;
1811 :
1812 : /* we'll certainly need the comparator, so just look it up now */
1813 5982 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, ranges->attno, ranges->typid,
1814 : BTLessStrategyNumber);
1815 :
1816 : /* and we'll also need the 'distance' procedure */
1817 5982 : distanceFn = minmax_multi_get_procinfo(bdesc, ranges->attno, PROCNUM_DISTANCE);
1818 :
1819 : /*
1820 : * The distanceFn calls (which may internally call e.g. numeric_le) may
1821 : * allocate quite a bit of memory, and we must not leak it. Otherwise,
1822 : * we'd have problems e.g. when building indexes. So we create a local
1823 : * memory context and make sure we free the memory before leaving this
1824 : * function (not after every call).
1825 : */
1826 5982 : ctx = AllocSetContextCreate(CurrentMemoryContext,
1827 : "minmax-multi context",
1828 : ALLOCSET_DEFAULT_SIZES);
1829 :
1830 5982 : oldctx = MemoryContextSwitchTo(ctx);
1831 :
1832 : /* build the expanded ranges */
1833 5982 : eranges = build_expanded_ranges(cmpFn, ranges->colloid, ranges, &neranges);
1834 :
1835 : /* build array of gap distances and sort them in ascending order */
1836 5982 : distances = build_distances(distanceFn, ranges->colloid,
1837 : eranges, neranges);
1838 :
1839 : /*
1840 : * Combine ranges until we get below max_values. We don't use any scale
1841 : * factor, because this is used during serialization, and we don't expect
1842 : * more tuples to be inserted anytime soon.
1843 : */
1844 5982 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
1845 : max_values, cmpFn, ranges->colloid);
1846 :
1847 : Assert(count_values(eranges, neranges) <= max_values);
1848 :
1849 : /* transform back into regular ranges and single values */
1850 5982 : store_expanded_ranges(ranges, eranges, neranges);
1851 :
1852 : /* check all the range invariants */
1853 5982 : AssertCheckRanges(ranges, cmpFn, ranges->colloid);
1854 :
1855 5982 : MemoryContextSwitchTo(oldctx);
1856 5982 : MemoryContextDelete(ctx);
1857 : }
1858 :
1859 : Datum
1860 19388 : brin_minmax_multi_opcinfo(PG_FUNCTION_ARGS)
1861 : {
1862 : BrinOpcInfo *result;
1863 :
1864 : /*
1865 : * opaque->strategy_procinfos is initialized lazily; here it is set to
1866 : * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
1867 : */
1868 :
1869 19388 : result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
1870 : sizeof(MinmaxMultiOpaque));
1871 19388 : result->oi_nstored = 1;
1872 19388 : result->oi_regular_nulls = true;
1873 19388 : result->oi_opaque = (MinmaxMultiOpaque *)
1874 19388 : MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
1875 19388 : result->oi_typcache[0] = lookup_type_cache(PG_BRIN_MINMAX_MULTI_SUMMARYOID, 0);
1876 :
1877 19388 : PG_RETURN_POINTER(result);
1878 : }
1879 :
1880 : /*
1881 : * Compute the distance between two float4 values (plain subtraction).
1882 : */
1883 : Datum
1884 696 : brin_minmax_multi_distance_float4(PG_FUNCTION_ARGS)
1885 : {
1886 696 : float a1 = PG_GETARG_FLOAT4(0);
1887 696 : float a2 = PG_GETARG_FLOAT4(1);
1888 :
1889 : /* if both values are NaN, then we consider them the same */
1890 696 : if (isnan(a1) && isnan(a2))
1891 0 : PG_RETURN_FLOAT8(0.0);
1892 :
1893 : /* if one value is NaN, use infinite distance */
1894 696 : if (isnan(a1) || isnan(a2))
1895 6 : PG_RETURN_FLOAT8(get_float8_infinity());
1896 :
1897 : /*
1898 : * We know the values are range boundaries, but the range may be collapsed
1899 : * (i.e. single points), with equal values.
1900 : */
1901 : Assert(a1 <= a2);
1902 :
1903 690 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1904 : }
1905 :
1906 : /*
1907 : * Compute the distance between two float8 values (plain subtraction).
1908 : */
1909 : Datum
1910 1044 : brin_minmax_multi_distance_float8(PG_FUNCTION_ARGS)
1911 : {
1912 1044 : double a1 = PG_GETARG_FLOAT8(0);
1913 1044 : double a2 = PG_GETARG_FLOAT8(1);
1914 :
1915 : /* if both values are NaN, then we consider them the same */
1916 1044 : if (isnan(a1) && isnan(a2))
1917 0 : PG_RETURN_FLOAT8(0.0);
1918 :
1919 : /* if one value is NaN, use infinite distance */
1920 1044 : if (isnan(a1) || isnan(a2))
1921 6 : PG_RETURN_FLOAT8(get_float8_infinity());
1922 :
1923 : /*
1924 : * We know the values are range boundaries, but the range may be collapsed
1925 : * (i.e. single points), with equal values.
1926 : */
1927 : Assert(a1 <= a2);
1928 :
1929 1038 : PG_RETURN_FLOAT8(a2 - a1);
1930 : }
1931 :
1932 : /*
1933 : * Compute the distance between two int2 values (plain subtraction).
1934 : */
1935 : Datum
1936 1014 : brin_minmax_multi_distance_int2(PG_FUNCTION_ARGS)
1937 : {
1938 1014 : int16 a1 = PG_GETARG_INT16(0);
1939 1014 : int16 a2 = PG_GETARG_INT16(1);
1940 :
1941 : /*
1942 : * We know the values are range boundaries, but the range may be collapsed
1943 : * (i.e. single points), with equal values.
1944 : */
1945 : Assert(a1 <= a2);
1946 :
1947 1014 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1948 : }
1949 :
1950 : /*
1951 : * Compute the distance between two int4 values (plain subtraction).
1952 : */
1953 : Datum
1954 86754 : brin_minmax_multi_distance_int4(PG_FUNCTION_ARGS)
1955 : {
1956 86754 : int32 a1 = PG_GETARG_INT32(0);
1957 86754 : int32 a2 = PG_GETARG_INT32(1);
1958 :
1959 : /*
1960 : * We know the values are range boundaries, but the range may be collapsed
1961 : * (i.e. single points), with equal values.
1962 : */
1963 : Assert(a1 <= a2);
1964 :
1965 86754 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1966 : }
1967 :
1968 : /*
1969 : * Compute the distance between two int8 values (plain subtraction).
1970 : */
1971 : Datum
1972 11016 : brin_minmax_multi_distance_int8(PG_FUNCTION_ARGS)
1973 : {
1974 11016 : int64 a1 = PG_GETARG_INT64(0);
1975 11016 : int64 a2 = PG_GETARG_INT64(1);
1976 :
1977 : /*
1978 : * We know the values are range boundaries, but the range may be collapsed
1979 : * (i.e. single points), with equal values.
1980 : */
1981 : Assert(a1 <= a2);
1982 :
1983 11016 : PG_RETURN_FLOAT8((double) a2 - (double) a1);
1984 : }
1985 :
1986 : /*
1987 : * Compute the distance between two tid values (by mapping them to float8 and
1988 : * then subtracting them).
1989 : */
1990 : Datum
1991 1026 : brin_minmax_multi_distance_tid(PG_FUNCTION_ARGS)
1992 : {
1993 : double da1,
1994 : da2;
1995 :
1996 1026 : ItemPointer pa1 = (ItemPointer) PG_GETARG_DATUM(0);
1997 1026 : ItemPointer pa2 = (ItemPointer) PG_GETARG_DATUM(1);
1998 :
1999 : /*
2000 : * We know the values are range boundaries, but the range may be collapsed
2001 : * (i.e. single points), with equal values.
2002 : */
2003 : Assert(ItemPointerCompare(pa1, pa2) <= 0);
2004 :
2005 : /*
2006 : * We use the no-check variants here, because user-supplied values may
2007 : * have (ip_posid == 0). See ItemPointerCompare.
2008 : */
2009 1026 : da1 = ItemPointerGetBlockNumberNoCheck(pa1) * MaxHeapTuplesPerPage +
2010 1026 : ItemPointerGetOffsetNumberNoCheck(pa1);
2011 :
2012 1026 : da2 = ItemPointerGetBlockNumberNoCheck(pa2) * MaxHeapTuplesPerPage +
2013 1026 : ItemPointerGetOffsetNumberNoCheck(pa2);
2014 :
2015 1026 : PG_RETURN_FLOAT8(da2 - da1);
2016 : }
2017 :
2018 : /*
2019 : * Compute the distance between two numeric values (plain subtraction).
2020 : */
2021 : Datum
2022 1026 : brin_minmax_multi_distance_numeric(PG_FUNCTION_ARGS)
2023 : {
2024 : Datum d;
2025 1026 : Datum a1 = PG_GETARG_DATUM(0);
2026 1026 : Datum a2 = PG_GETARG_DATUM(1);
2027 :
2028 : /*
2029 : * We know the values are range boundaries, but the range may be collapsed
2030 : * (i.e. single points), with equal values.
2031 : */
2032 : Assert(DatumGetBool(DirectFunctionCall2(numeric_le, a1, a2)));
2033 :
2034 1026 : d = DirectFunctionCall2(numeric_sub, a2, a1); /* a2 - a1 */
2035 :
2036 1026 : PG_RETURN_FLOAT8(DirectFunctionCall1(numeric_float8, d));
2037 : }
2038 :
2039 : /*
2040 : * Compute the approximate distance between two UUID values.
2041 : *
2042 : * XXX We do not need a perfectly accurate value, so we approximate the
2043 : * deltas (which would have to be 128-bit integers) with a 64-bit float.
2044 : * The small inaccuracies do not matter in practice, in the worst case
2045 : * we'll decide to merge ranges that are not the closest ones.
2046 : */
2047 : Datum
2048 1724 : brin_minmax_multi_distance_uuid(PG_FUNCTION_ARGS)
2049 : {
2050 : int i;
2051 1724 : float8 delta = 0;
2052 :
2053 1724 : Datum a1 = PG_GETARG_DATUM(0);
2054 1724 : Datum a2 = PG_GETARG_DATUM(1);
2055 :
2056 1724 : pg_uuid_t *u1 = DatumGetUUIDP(a1);
2057 1724 : pg_uuid_t *u2 = DatumGetUUIDP(a2);
2058 :
2059 : /*
2060 : * We know the values are range boundaries, but the range may be collapsed
2061 : * (i.e. single points), with equal values.
2062 : */
2063 : Assert(DatumGetBool(DirectFunctionCall2(uuid_le, a1, a2)));
2064 :
2065 : /* compute approximate delta as a double precision value */
2066 29308 : for (i = UUID_LEN - 1; i >= 0; i--)
2067 : {
2068 27584 : delta += (int) u2->data[i] - (int) u1->data[i];
2069 27584 : delta /= 256;
2070 : }
2071 :
2072 : Assert(delta >= 0);
2073 :
2074 1724 : PG_RETURN_FLOAT8(delta);
2075 : }
2076 :
2077 : /*
2078 : * Compute the approximate distance between two dates.
2079 : */
2080 : Datum
2081 1626 : brin_minmax_multi_distance_date(PG_FUNCTION_ARGS)
2082 : {
2083 1626 : float8 delta = 0;
2084 1626 : DateADT dateVal1 = PG_GETARG_DATEADT(0);
2085 1626 : DateADT dateVal2 = PG_GETARG_DATEADT(1);
2086 :
2087 1626 : delta = (float8) dateVal2 - (float8) dateVal1;
2088 :
2089 : Assert(delta >= 0);
2090 :
2091 1626 : PG_RETURN_FLOAT8(delta);
2092 : }
2093 :
2094 : /*
2095 : * Compute the approximate distance between two time (without tz) values.
2096 : *
2097 : * TimeADT is just an int64, so we simply subtract the values directly.
2098 : */
2099 : Datum
2100 1014 : brin_minmax_multi_distance_time(PG_FUNCTION_ARGS)
2101 : {
2102 1014 : float8 delta = 0;
2103 :
2104 1014 : TimeADT ta = PG_GETARG_TIMEADT(0);
2105 1014 : TimeADT tb = PG_GETARG_TIMEADT(1);
2106 :
2107 1014 : delta = (tb - ta);
2108 :
2109 : Assert(delta >= 0);
2110 :
2111 1014 : PG_RETURN_FLOAT8(delta);
2112 : }
2113 :
2114 : /*
2115 : * Compute the approximate distance between two timetz values.
2116 : *
2117 : * Simply subtracts the TimeADT (int64) values embedded in TimeTzADT.
2118 : */
2119 : Datum
2120 786 : brin_minmax_multi_distance_timetz(PG_FUNCTION_ARGS)
2121 : {
2122 786 : float8 delta = 0;
2123 :
2124 786 : TimeTzADT *ta = PG_GETARG_TIMETZADT_P(0);
2125 786 : TimeTzADT *tb = PG_GETARG_TIMETZADT_P(1);
2126 :
2127 786 : delta = (tb->time - ta->time) + (tb->zone - ta->zone) * USECS_PER_SEC;
2128 :
2129 : Assert(delta >= 0);
2130 :
2131 786 : PG_RETURN_FLOAT8(delta);
2132 : }
2133 :
2134 : /*
2135 : * Compute the distance between two timestamp values.
2136 : */
2137 : Datum
2138 2640 : brin_minmax_multi_distance_timestamp(PG_FUNCTION_ARGS)
2139 : {
2140 2640 : float8 delta = 0;
2141 :
2142 2640 : Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2143 2640 : Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2144 :
2145 2640 : delta = (float8) dt2 - (float8) dt1;
2146 :
2147 : Assert(delta >= 0);
2148 :
2149 2640 : PG_RETURN_FLOAT8(delta);
2150 : }
2151 :
2152 : /*
2153 : * Compute the distance between two interval values.
2154 : */
2155 : Datum
2156 1524 : brin_minmax_multi_distance_interval(PG_FUNCTION_ARGS)
2157 : {
2158 1524 : float8 delta = 0;
2159 :
2160 1524 : Interval *ia = PG_GETARG_INTERVAL_P(0);
2161 1524 : Interval *ib = PG_GETARG_INTERVAL_P(1);
2162 :
2163 : int64 dayfraction;
2164 : int64 days;
2165 :
2166 : /*
2167 : * Delta is (fractional) number of days between the intervals. Assume
2168 : * months have 30 days for consistency with interval_cmp_internal. We
2169 : * don't need to be exact, in the worst case we'll build a bit less
2170 : * efficient ranges. But we should not contradict interval_cmp.
2171 : */
2172 1524 : dayfraction = (ib->time % USECS_PER_DAY) - (ia->time % USECS_PER_DAY);
2173 1524 : days = (ib->time / USECS_PER_DAY) - (ia->time / USECS_PER_DAY);
2174 1524 : days += (int64) ib->day - (int64) ia->day;
2175 1524 : days += ((int64) ib->month - (int64) ia->month) * INT64CONST(30);
2176 :
2177 : /* convert to double precision */
2178 1524 : delta = (double) days + dayfraction / (double) USECS_PER_DAY;
2179 :
2180 : Assert(delta >= 0);
2181 :
2182 1524 : PG_RETURN_FLOAT8(delta);
2183 : }
2184 :
2185 : /*
2186 : * Compute the distance between two pg_lsn values.
2187 : *
2188 : * LSN is just an int64 encoding position in the stream, so just subtract
2189 : * those int64 values directly.
2190 : */
2191 : Datum
2192 1026 : brin_minmax_multi_distance_pg_lsn(PG_FUNCTION_ARGS)
2193 : {
2194 1026 : float8 delta = 0;
2195 :
2196 1026 : XLogRecPtr lsna = PG_GETARG_LSN(0);
2197 1026 : XLogRecPtr lsnb = PG_GETARG_LSN(1);
2198 :
2199 1026 : delta = (lsnb - lsna);
2200 :
2201 : Assert(delta >= 0);
2202 :
2203 1026 : PG_RETURN_FLOAT8(delta);
2204 : }
2205 :
2206 : /*
2207 : * Compute the distance between two macaddr values.
2208 : *
2209 : * mac addresses are treated as 6 unsigned chars, so do the same thing we
2210 : * already do for UUID values.
2211 : */
2212 : Datum
2213 786 : brin_minmax_multi_distance_macaddr(PG_FUNCTION_ARGS)
2214 : {
2215 : float8 delta;
2216 :
2217 786 : macaddr *a = PG_GETARG_MACADDR_P(0);
2218 786 : macaddr *b = PG_GETARG_MACADDR_P(1);
2219 :
2220 786 : delta = ((float8) b->f - (float8) a->f);
2221 786 : delta /= 256;
2222 :
2223 786 : delta += ((float8) b->e - (float8) a->e);
2224 786 : delta /= 256;
2225 :
2226 786 : delta += ((float8) b->d - (float8) a->d);
2227 786 : delta /= 256;
2228 :
2229 786 : delta += ((float8) b->c - (float8) a->c);
2230 786 : delta /= 256;
2231 :
2232 786 : delta += ((float8) b->b - (float8) a->b);
2233 786 : delta /= 256;
2234 :
2235 786 : delta += ((float8) b->a - (float8) a->a);
2236 786 : delta /= 256;
2237 :
2238 : Assert(delta >= 0);
2239 :
2240 786 : PG_RETURN_FLOAT8(delta);
2241 : }
2242 :
2243 : /*
2244 : * Compute the distance between two macaddr8 values.
2245 : *
2246 : * macaddr8 addresses are 8 unsigned chars, so do the same thing we
2247 : * already do for UUID values.
2248 : */
2249 : Datum
2250 1026 : brin_minmax_multi_distance_macaddr8(PG_FUNCTION_ARGS)
2251 : {
2252 : float8 delta;
2253 :
2254 1026 : macaddr8 *a = PG_GETARG_MACADDR8_P(0);
2255 1026 : macaddr8 *b = PG_GETARG_MACADDR8_P(1);
2256 :
2257 1026 : delta = ((float8) b->h - (float8) a->h);
2258 1026 : delta /= 256;
2259 :
2260 1026 : delta += ((float8) b->g - (float8) a->g);
2261 1026 : delta /= 256;
2262 :
2263 1026 : delta += ((float8) b->f - (float8) a->f);
2264 1026 : delta /= 256;
2265 :
2266 1026 : delta += ((float8) b->e - (float8) a->e);
2267 1026 : delta /= 256;
2268 :
2269 1026 : delta += ((float8) b->d - (float8) a->d);
2270 1026 : delta /= 256;
2271 :
2272 1026 : delta += ((float8) b->c - (float8) a->c);
2273 1026 : delta /= 256;
2274 :
2275 1026 : delta += ((float8) b->b - (float8) a->b);
2276 1026 : delta /= 256;
2277 :
2278 1026 : delta += ((float8) b->a - (float8) a->a);
2279 1026 : delta /= 256;
2280 :
2281 : Assert(delta >= 0);
2282 :
2283 1026 : PG_RETURN_FLOAT8(delta);
2284 : }
2285 :
2286 : /*
2287 : * Compute the distance between two inet values.
2288 : *
2289 : * The distance is defined as the difference between 32-bit/128-bit values,
2290 : * depending on the IP version. The distance is computed by subtracting
2291 : * the bytes and normalizing it to [0,1] range for each IP family.
2292 : * Addresses from different families are considered to be in maximum
2293 : * distance, which is 1.0.
2294 : *
2295 : * XXX Does this need to consider the mask (bits)? For now, it's ignored.
2296 : */
2297 : Datum
2298 2274 : brin_minmax_multi_distance_inet(PG_FUNCTION_ARGS)
2299 : {
2300 : float8 delta;
2301 : int i;
2302 : int len;
2303 : unsigned char *addra,
2304 : *addrb;
2305 :
2306 2274 : inet *ipa = PG_GETARG_INET_PP(0);
2307 2274 : inet *ipb = PG_GETARG_INET_PP(1);
2308 :
2309 : int lena,
2310 : lenb;
2311 :
2312 : /*
2313 : * If the addresses are from different families, consider them to be in
2314 : * maximal possible distance (which is 1.0).
2315 : */
2316 2274 : if (ip_family(ipa) != ip_family(ipb))
2317 180 : PG_RETURN_FLOAT8(1.0);
2318 :
2319 2094 : addra = (unsigned char *) palloc(ip_addrsize(ipa));
2320 2094 : memcpy(addra, ip_addr(ipa), ip_addrsize(ipa));
2321 :
2322 2094 : addrb = (unsigned char *) palloc(ip_addrsize(ipb));
2323 2094 : memcpy(addrb, ip_addr(ipb), ip_addrsize(ipb));
2324 :
2325 : /*
2326 : * The length is calculated from the mask length, because we sort the
2327 : * addresses by first address in the range, so A.B.C.D/24 < A.B.C.1 (the
2328 : * first range starts at A.B.C.0, which is before A.B.C.1). We don't want
2329 : * to produce a negative delta in this case, so we just cut the extra
2330 : * bytes.
2331 : *
2332 : * XXX Maybe this should be a bit more careful and cut the bits, not just
2333 : * whole bytes.
2334 : */
2335 2094 : lena = ip_bits(ipa);
2336 2094 : lenb = ip_bits(ipb);
2337 :
2338 2094 : len = ip_addrsize(ipa);
2339 :
2340 : /* apply the network mask to both addresses */
2341 15798 : for (i = 0; i < len; i++)
2342 : {
2343 : unsigned char mask;
2344 : int nbits;
2345 :
2346 13704 : nbits = Max(0, lena - (i * 8));
2347 13704 : if (nbits < 8)
2348 : {
2349 1650 : mask = (0xFF << (8 - nbits));
2350 1650 : addra[i] = (addra[i] & mask);
2351 : }
2352 :
2353 13704 : nbits = Max(0, lenb - (i * 8));
2354 13704 : if (nbits < 8)
2355 : {
2356 1644 : mask = (0xFF << (8 - nbits));
2357 1644 : addrb[i] = (addrb[i] & mask);
2358 : }
2359 : }
2360 :
2361 : /* Calculate the difference between the addresses. */
2362 2094 : delta = 0;
2363 15798 : for (i = len - 1; i >= 0; i--)
2364 : {
2365 13704 : unsigned char a = addra[i];
2366 13704 : unsigned char b = addrb[i];
2367 :
2368 13704 : delta += (float8) b - (float8) a;
2369 13704 : delta /= 256;
2370 : }
2371 :
2372 : Assert((delta >= 0) && (delta <= 1));
2373 :
2374 2094 : pfree(addra);
2375 2094 : pfree(addrb);
2376 :
2377 2094 : PG_RETURN_FLOAT8(delta);
2378 : }
2379 :
2380 : static void
2381 17982 : brin_minmax_multi_serialize(BrinDesc *bdesc, Datum src, Datum *dst)
2382 : {
2383 17982 : Ranges *ranges = (Ranges *) DatumGetPointer(src);
2384 : SerializedRanges *s;
2385 :
2386 : /*
2387 : * In batch mode, we need to compress the accumulated values to the
2388 : * actually requested number of values/ranges.
2389 : */
2390 17982 : compactify_ranges(bdesc, ranges, ranges->target_maxvalues);
2391 :
2392 : /* At this point everything has to be fully sorted. */
2393 : Assert(ranges->nsorted == ranges->nvalues);
2394 :
2395 17982 : s = brin_range_serialize(ranges);
2396 17982 : dst[0] = PointerGetDatum(s);
2397 17982 : }
2398 :
2399 : static int
2400 4836 : brin_minmax_multi_get_values(BrinDesc *bdesc, MinMaxMultiOptions *opts)
2401 : {
2402 4836 : return MinMaxMultiGetValuesPerRange(opts);
2403 : }
2404 :
2405 : /*
2406 : * Examine the given index tuple (which contains the partial status of a
2407 : * certain page range) by comparing it to the given value that comes from
2408 : * another heap tuple. If the new value is outside the min/max range
2409 : * specified by the existing tuple values, update the index tuple and return
2410 : * true. Otherwise, return false and do not modify in this case.
2411 : */
2412 : Datum
2413 140370 : brin_minmax_multi_add_value(PG_FUNCTION_ARGS)
2414 : {
2415 140370 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2416 140370 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2417 140370 : Datum newval = PG_GETARG_DATUM(2);
2418 140370 : bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
2419 140370 : MinMaxMultiOptions *opts = (MinMaxMultiOptions *) PG_GET_OPCLASS_OPTIONS();
2420 140370 : Oid colloid = PG_GET_COLLATION();
2421 140370 : bool modified = false;
2422 : Form_pg_attribute attr;
2423 : AttrNumber attno;
2424 : Ranges *ranges;
2425 140370 : SerializedRanges *serialized = NULL;
2426 :
2427 : Assert(!isnull);
2428 :
2429 140370 : attno = column->bv_attno;
2430 140370 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2431 :
2432 : /* use the already deserialized value, if possible */
2433 140370 : ranges = (Ranges *) DatumGetPointer(column->bv_mem_value);
2434 :
2435 : /*
2436 : * If this is the first non-null value, we need to initialize the range
2437 : * list. Otherwise, just extract the existing range list from BrinValues.
2438 : *
2439 : * When starting with an empty range, we assume this is a batch mode and
2440 : * we use a larger buffer. The buffer size is derived from the BRIN range
2441 : * size, number of rows per page, with some sensible min/max values. A
2442 : * small buffer would be bad for performance, but a large buffer might
2443 : * require a lot of memory (because of keeping all the values).
2444 : */
2445 140370 : if (column->bv_allnulls)
2446 : {
2447 : MemoryContext oldctx;
2448 :
2449 : int target_maxvalues;
2450 : int maxvalues;
2451 4836 : BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2452 :
2453 : /* what was specified as a reloption? */
2454 4836 : target_maxvalues = brin_minmax_multi_get_values(bdesc, opts);
2455 :
2456 : /*
2457 : * Determine the insert buffer size - we use 10x the target, capped to
2458 : * the maximum number of values in the heap range. This is more than
2459 : * enough, considering the actual number of rows per page is likely
2460 : * much lower, but meh.
2461 : */
2462 4836 : maxvalues = Min(target_maxvalues * MINMAX_BUFFER_FACTOR,
2463 : MaxHeapTuplesPerPage * pagesPerRange);
2464 :
2465 : /* but always at least the original value */
2466 4836 : maxvalues = Max(maxvalues, target_maxvalues);
2467 :
2468 : /* always cap by MIN/MAX */
2469 4836 : maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2470 4836 : maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2471 :
2472 4836 : oldctx = MemoryContextSwitchTo(column->bv_context);
2473 4836 : ranges = minmax_multi_init(maxvalues);
2474 4836 : ranges->attno = attno;
2475 4836 : ranges->colloid = colloid;
2476 4836 : ranges->typid = attr->atttypid;
2477 4836 : ranges->target_maxvalues = target_maxvalues;
2478 :
2479 : /* we'll certainly need the comparator, so just look it up now */
2480 4836 : ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2481 : BTLessStrategyNumber);
2482 :
2483 4836 : MemoryContextSwitchTo(oldctx);
2484 :
2485 4836 : column->bv_allnulls = false;
2486 4836 : modified = true;
2487 :
2488 4836 : column->bv_mem_value = PointerGetDatum(ranges);
2489 4836 : column->bv_serialize = brin_minmax_multi_serialize;
2490 : }
2491 135534 : else if (!ranges)
2492 : {
2493 : MemoryContext oldctx;
2494 :
2495 : int maxvalues;
2496 14220 : BlockNumber pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
2497 :
2498 14220 : oldctx = MemoryContextSwitchTo(column->bv_context);
2499 :
2500 14220 : serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2501 :
2502 : /*
2503 : * Determine the insert buffer size - we use 10x the target, capped to
2504 : * the maximum number of values in the heap range. This is more than
2505 : * enough, considering the actual number of rows per page is likely
2506 : * much lower, but meh.
2507 : */
2508 14220 : maxvalues = Min(serialized->maxvalues * MINMAX_BUFFER_FACTOR,
2509 : MaxHeapTuplesPerPage * pagesPerRange);
2510 :
2511 : /* but always at least the original value */
2512 14220 : maxvalues = Max(maxvalues, serialized->maxvalues);
2513 :
2514 : /* always cap by MIN/MAX */
2515 14220 : maxvalues = Max(maxvalues, MINMAX_BUFFER_MIN);
2516 14220 : maxvalues = Min(maxvalues, MINMAX_BUFFER_MAX);
2517 :
2518 14220 : ranges = brin_range_deserialize(maxvalues, serialized);
2519 :
2520 14220 : ranges->attno = attno;
2521 14220 : ranges->colloid = colloid;
2522 14220 : ranges->typid = attr->atttypid;
2523 :
2524 : /* we'll certainly need the comparator, so just look it up now */
2525 14220 : ranges->cmp = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2526 : BTLessStrategyNumber);
2527 :
2528 14220 : column->bv_mem_value = PointerGetDatum(ranges);
2529 14220 : column->bv_serialize = brin_minmax_multi_serialize;
2530 :
2531 14220 : MemoryContextSwitchTo(oldctx);
2532 : }
2533 :
2534 : /*
2535 : * Try to add the new value to the range. We need to update the modified
2536 : * flag, so that we serialize the updated summary later.
2537 : */
2538 140370 : modified |= range_add_value(bdesc, colloid, attno, attr, ranges, newval);
2539 :
2540 :
2541 140370 : PG_RETURN_BOOL(modified);
2542 : }
2543 :
2544 : /*
2545 : * Given an index tuple corresponding to a certain page range and a scan key,
2546 : * return whether the scan key is consistent with the index tuple's min/max
2547 : * values. Return true if so, false otherwise.
2548 : */
2549 : Datum
2550 31386 : brin_minmax_multi_consistent(PG_FUNCTION_ARGS)
2551 : {
2552 31386 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2553 31386 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
2554 31386 : ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
2555 31386 : int nkeys = PG_GETARG_INT32(3);
2556 :
2557 31386 : Oid colloid = PG_GET_COLLATION(),
2558 : subtype;
2559 : AttrNumber attno;
2560 : Datum value;
2561 : FmgrInfo *finfo;
2562 : SerializedRanges *serialized;
2563 : Ranges *ranges;
2564 : int keyno;
2565 : int rangeno;
2566 : int i;
2567 :
2568 31386 : attno = column->bv_attno;
2569 :
2570 31386 : serialized = (SerializedRanges *) PG_DETOAST_DATUM(column->bv_values[0]);
2571 31386 : ranges = brin_range_deserialize(serialized->maxvalues, serialized);
2572 :
2573 : /* inspect the ranges, and for each one evaluate the scan keys */
2574 34008 : for (rangeno = 0; rangeno < ranges->nranges; rangeno++)
2575 : {
2576 3312 : Datum minval = ranges->values[2 * rangeno];
2577 3312 : Datum maxval = ranges->values[2 * rangeno + 1];
2578 :
2579 : /* assume the range is matching, and we'll try to prove otherwise */
2580 3312 : bool matching = true;
2581 :
2582 4002 : for (keyno = 0; keyno < nkeys; keyno++)
2583 : {
2584 : bool matches;
2585 3312 : ScanKey key = keys[keyno];
2586 :
2587 : /* NULL keys are handled and filtered-out in bringetbitmap */
2588 : Assert(!(key->sk_flags & SK_ISNULL));
2589 :
2590 3312 : attno = key->sk_attno;
2591 3312 : subtype = key->sk_subtype;
2592 3312 : value = key->sk_argument;
2593 3312 : switch (key->sk_strategy)
2594 : {
2595 918 : case BTLessStrategyNumber:
2596 : case BTLessEqualStrategyNumber:
2597 918 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2598 918 : key->sk_strategy);
2599 : /* first value from the array */
2600 918 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, minval, value));
2601 918 : break;
2602 :
2603 990 : case BTEqualStrategyNumber:
2604 : {
2605 : Datum compar;
2606 : FmgrInfo *cmpFn;
2607 :
2608 : /* by default this range does not match */
2609 990 : matches = false;
2610 :
2611 : /*
2612 : * Otherwise, need to compare the new value with
2613 : * boundaries of all the ranges. First check if it's
2614 : * less than the absolute minimum, which is the first
2615 : * value in the array.
2616 : */
2617 990 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2618 : BTGreaterStrategyNumber);
2619 990 : compar = FunctionCall2Coll(cmpFn, colloid, minval, value);
2620 :
2621 : /* smaller than the smallest value in this range */
2622 990 : if (DatumGetBool(compar))
2623 120 : break;
2624 :
2625 870 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2626 : BTLessStrategyNumber);
2627 870 : compar = FunctionCall2Coll(cmpFn, colloid, maxval, value);
2628 :
2629 : /* larger than the largest value in this range */
2630 870 : if (DatumGetBool(compar))
2631 822 : break;
2632 :
2633 : /*
2634 : * We haven't managed to eliminate this range, so
2635 : * consider it matching.
2636 : */
2637 48 : matches = true;
2638 :
2639 48 : break;
2640 : }
2641 1404 : case BTGreaterEqualStrategyNumber:
2642 : case BTGreaterStrategyNumber:
2643 1404 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2644 1404 : key->sk_strategy);
2645 : /* last value from the array */
2646 1404 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, maxval, value));
2647 1404 : break;
2648 :
2649 0 : default:
2650 : /* shouldn't happen */
2651 0 : elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2652 : matches = false;
2653 : break;
2654 : }
2655 :
2656 : /* the range has to match all the scan keys */
2657 3312 : matching &= matches;
2658 :
2659 : /* once we find a non-matching key, we're done */
2660 3312 : if (!matching)
2661 2622 : break;
2662 : }
2663 :
2664 : /*
2665 : * have we found a range matching all scan keys? if yes, we're done
2666 : */
2667 3312 : if (matching)
2668 690 : PG_RETURN_BOOL(true);
2669 : }
2670 :
2671 : /*
2672 : * And now inspect the values. We don't bother with doing a binary search
2673 : * here, because we're dealing with serialized / fully compacted ranges,
2674 : * so there should be only very few values.
2675 : */
2676 62294 : for (i = 0; i < ranges->nvalues; i++)
2677 : {
2678 55394 : Datum val = ranges->values[2 * ranges->nranges + i];
2679 :
2680 : /* assume the range is matching, and we'll try to prove otherwise */
2681 55394 : bool matching = true;
2682 :
2683 79190 : for (keyno = 0; keyno < nkeys; keyno++)
2684 : {
2685 : bool matches;
2686 55394 : ScanKey key = keys[keyno];
2687 :
2688 : /* we've already dealt with NULL keys at the beginning */
2689 55394 : if (key->sk_flags & SK_ISNULL)
2690 0 : continue;
2691 :
2692 55394 : attno = key->sk_attno;
2693 55394 : subtype = key->sk_subtype;
2694 55394 : value = key->sk_argument;
2695 55394 : switch (key->sk_strategy)
2696 : {
2697 55394 : case BTLessStrategyNumber:
2698 : case BTLessEqualStrategyNumber:
2699 : case BTEqualStrategyNumber:
2700 : case BTGreaterEqualStrategyNumber:
2701 : case BTGreaterStrategyNumber:
2702 :
2703 55394 : finfo = minmax_multi_get_strategy_procinfo(bdesc, attno, subtype,
2704 55394 : key->sk_strategy);
2705 55394 : matches = DatumGetBool(FunctionCall2Coll(finfo, colloid, val, value));
2706 55394 : break;
2707 :
2708 0 : default:
2709 : /* shouldn't happen */
2710 0 : elog(ERROR, "invalid strategy number %d", key->sk_strategy);
2711 : matches = false;
2712 : break;
2713 : }
2714 :
2715 : /* the range has to match all the scan keys */
2716 55394 : matching &= matches;
2717 :
2718 : /* once we find a non-matching key, we're done */
2719 55394 : if (!matching)
2720 31598 : break;
2721 : }
2722 :
2723 : /* have we found a range matching all scan keys? if yes, we're done */
2724 55394 : if (matching)
2725 23796 : PG_RETURN_BOOL(true);
2726 : }
2727 :
2728 6900 : PG_RETURN_BOOL(false);
2729 : }
2730 :
2731 : /*
2732 : * Given two BrinValues, update the first of them as a union of the summary
2733 : * values contained in both. The second one is untouched.
2734 : */
2735 : Datum
2736 0 : brin_minmax_multi_union(PG_FUNCTION_ARGS)
2737 : {
2738 0 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
2739 0 : BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
2740 0 : BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
2741 :
2742 0 : Oid colloid = PG_GET_COLLATION();
2743 : SerializedRanges *serialized_a;
2744 : SerializedRanges *serialized_b;
2745 : Ranges *ranges_a;
2746 : Ranges *ranges_b;
2747 : AttrNumber attno;
2748 : Form_pg_attribute attr;
2749 : ExpandedRange *eranges;
2750 : int neranges;
2751 : FmgrInfo *cmpFn,
2752 : *distanceFn;
2753 : DistanceValue *distances;
2754 : MemoryContext ctx;
2755 : MemoryContext oldctx;
2756 :
2757 : Assert(col_a->bv_attno == col_b->bv_attno);
2758 : Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
2759 :
2760 0 : attno = col_a->bv_attno;
2761 0 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2762 :
2763 0 : serialized_a = (SerializedRanges *) PG_DETOAST_DATUM(col_a->bv_values[0]);
2764 0 : serialized_b = (SerializedRanges *) PG_DETOAST_DATUM(col_b->bv_values[0]);
2765 :
2766 0 : ranges_a = brin_range_deserialize(serialized_a->maxvalues, serialized_a);
2767 0 : ranges_b = brin_range_deserialize(serialized_b->maxvalues, serialized_b);
2768 :
2769 : /* make sure neither of the ranges is NULL */
2770 : Assert(ranges_a && ranges_b);
2771 :
2772 0 : neranges = (ranges_a->nranges + ranges_a->nvalues) +
2773 0 : (ranges_b->nranges + ranges_b->nvalues);
2774 :
2775 : /*
2776 : * The distanceFn calls (which may internally call e.g. numeric_le) may
2777 : * allocate quite a bit of memory, and we must not leak it. Otherwise,
2778 : * we'd have problems e.g. when building indexes. So we create a local
2779 : * memory context and make sure we free the memory before leaving this
2780 : * function (not after every call).
2781 : */
2782 0 : ctx = AllocSetContextCreate(CurrentMemoryContext,
2783 : "minmax-multi context",
2784 : ALLOCSET_DEFAULT_SIZES);
2785 :
2786 0 : oldctx = MemoryContextSwitchTo(ctx);
2787 :
2788 : /* allocate and fill */
2789 0 : eranges = (ExpandedRange *) palloc0(neranges * sizeof(ExpandedRange));
2790 :
2791 : /* fill the expanded ranges with entries for the first range */
2792 0 : fill_expanded_ranges(eranges, ranges_a->nranges + ranges_a->nvalues,
2793 : ranges_a);
2794 :
2795 : /* and now add combine ranges for the second range */
2796 0 : fill_expanded_ranges(&eranges[ranges_a->nranges + ranges_a->nvalues],
2797 0 : ranges_b->nranges + ranges_b->nvalues,
2798 : ranges_b);
2799 :
2800 0 : cmpFn = minmax_multi_get_strategy_procinfo(bdesc, attno, attr->atttypid,
2801 : BTLessStrategyNumber);
2802 :
2803 : /* sort the expanded ranges */
2804 0 : neranges = sort_expanded_ranges(cmpFn, colloid, eranges, neranges);
2805 :
2806 : /*
2807 : * We've loaded two different lists of expanded ranges, so some of them
2808 : * may be overlapping. So walk through them and merge them.
2809 : */
2810 0 : neranges = merge_overlapping_ranges(cmpFn, colloid, eranges, neranges);
2811 :
2812 : /* check that the combine ranges are correct (no overlaps, ordering) */
2813 0 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2814 :
2815 : /*
2816 : * If needed, reduce some of the ranges.
2817 : *
2818 : * XXX This may be fairly expensive, so maybe we should do it only when
2819 : * it's actually needed (when we have too many ranges).
2820 : */
2821 :
2822 : /* build array of gap distances and sort them in ascending order */
2823 0 : distanceFn = minmax_multi_get_procinfo(bdesc, attno, PROCNUM_DISTANCE);
2824 0 : distances = build_distances(distanceFn, colloid, eranges, neranges);
2825 :
2826 : /*
2827 : * See how many values would be needed to store the current ranges, and if
2828 : * needed combine as many of them to get below the threshold. The
2829 : * collapsed ranges will be stored as a single value.
2830 : *
2831 : * XXX This does not apply the load factor, as we don't expect to add more
2832 : * values to the range, so we prefer to keep as many ranges as possible.
2833 : *
2834 : * XXX Can the maxvalues be different in the two ranges? Perhaps we should
2835 : * use maximum of those?
2836 : */
2837 0 : neranges = reduce_expanded_ranges(eranges, neranges, distances,
2838 : ranges_a->maxvalues,
2839 : cmpFn, colloid);
2840 :
2841 : /* Is the result of reducing expanded ranges correct? */
2842 0 : AssertCheckExpandedRanges(bdesc, colloid, attno, attr, eranges, neranges);
2843 :
2844 : /* update the first range summary */
2845 0 : store_expanded_ranges(ranges_a, eranges, neranges);
2846 :
2847 0 : MemoryContextSwitchTo(oldctx);
2848 0 : MemoryContextDelete(ctx);
2849 :
2850 : /* cleanup and update the serialized value */
2851 0 : pfree(serialized_a);
2852 0 : col_a->bv_values[0] = PointerGetDatum(brin_range_serialize(ranges_a));
2853 :
2854 0 : PG_RETURN_VOID();
2855 : }
2856 :
2857 : /*
2858 : * Cache and return minmax multi opclass support procedure
2859 : *
2860 : * Return the procedure corresponding to the given function support number
2861 : * or null if it does not exist.
2862 : */
2863 : static FmgrInfo *
2864 6228 : minmax_multi_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
2865 : {
2866 : MinmaxMultiOpaque *opaque;
2867 6228 : uint16 basenum = procnum - PROCNUM_BASE;
2868 :
2869 : /*
2870 : * We cache these in the opaque struct, to avoid repetitive syscache
2871 : * lookups.
2872 : */
2873 6228 : opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2874 :
2875 : /*
2876 : * If we already searched for this proc and didn't find it, don't bother
2877 : * searching again.
2878 : */
2879 6228 : if (opaque->extra_proc_missing[basenum])
2880 0 : return NULL;
2881 :
2882 6228 : if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
2883 : {
2884 468 : if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
2885 : procnum)))
2886 : {
2887 468 : fmgr_info_copy(&opaque->extra_procinfos[basenum],
2888 : index_getprocinfo(bdesc->bd_index, attno, procnum),
2889 : bdesc->bd_context);
2890 : }
2891 : else
2892 : {
2893 0 : opaque->extra_proc_missing[basenum] = true;
2894 0 : return NULL;
2895 : }
2896 : }
2897 :
2898 6228 : return &opaque->extra_procinfos[basenum];
2899 : }
2900 :
2901 : /*
2902 : * Cache and return the procedure for the given strategy.
2903 : *
2904 : * Note: this function mirrors minmax_multi_get_strategy_procinfo; see notes
2905 : * there. If changes are made here, see that function too.
2906 : */
2907 : static FmgrInfo *
2908 483044 : minmax_multi_get_strategy_procinfo(BrinDesc *bdesc, uint16 attno, Oid subtype,
2909 : uint16 strategynum)
2910 : {
2911 : MinmaxMultiOpaque *opaque;
2912 :
2913 : Assert(strategynum >= 1 &&
2914 : strategynum <= BTMaxStrategyNumber);
2915 :
2916 483044 : opaque = (MinmaxMultiOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
2917 :
2918 : /*
2919 : * We cache the procedures for the previous subtype in the opaque struct,
2920 : * to avoid repetitive syscache lookups. If the subtype changed,
2921 : * invalidate all the cached entries.
2922 : */
2923 483044 : if (opaque->cached_subtype != subtype)
2924 : {
2925 : uint16 i;
2926 :
2927 11052 : for (i = 1; i <= BTMaxStrategyNumber; i++)
2928 9210 : opaque->strategy_procinfos[i - 1].fn_oid = InvalidOid;
2929 1842 : opaque->cached_subtype = subtype;
2930 : }
2931 :
2932 483044 : if (opaque->strategy_procinfos[strategynum - 1].fn_oid == InvalidOid)
2933 : {
2934 : Form_pg_attribute attr;
2935 : HeapTuple tuple;
2936 : Oid opfamily,
2937 : oprid;
2938 :
2939 2634 : opfamily = bdesc->bd_index->rd_opfamily[attno - 1];
2940 2634 : attr = TupleDescAttr(bdesc->bd_tupdesc, attno - 1);
2941 2634 : tuple = SearchSysCache4(AMOPSTRATEGY, ObjectIdGetDatum(opfamily),
2942 : ObjectIdGetDatum(attr->atttypid),
2943 : ObjectIdGetDatum(subtype),
2944 : Int16GetDatum(strategynum));
2945 2634 : if (!HeapTupleIsValid(tuple))
2946 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2947 : strategynum, attr->atttypid, subtype, opfamily);
2948 :
2949 2634 : oprid = DatumGetObjectId(SysCacheGetAttrNotNull(AMOPSTRATEGY, tuple,
2950 : Anum_pg_amop_amopopr));
2951 2634 : ReleaseSysCache(tuple);
2952 : Assert(RegProcedureIsValid(oprid));
2953 :
2954 2634 : fmgr_info_cxt(get_opcode(oprid),
2955 2634 : &opaque->strategy_procinfos[strategynum - 1],
2956 : bdesc->bd_context);
2957 : }
2958 :
2959 483044 : return &opaque->strategy_procinfos[strategynum - 1];
2960 : }
2961 :
2962 : Datum
2963 1184 : brin_minmax_multi_options(PG_FUNCTION_ARGS)
2964 : {
2965 1184 : local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
2966 :
2967 1184 : init_local_reloptions(relopts, sizeof(MinMaxMultiOptions));
2968 :
2969 1184 : add_local_int_reloption(relopts, "values_per_range", "desc",
2970 : MINMAX_MULTI_DEFAULT_VALUES_PER_PAGE, 8, 256,
2971 : offsetof(MinMaxMultiOptions, valuesPerRange));
2972 :
2973 1184 : PG_RETURN_VOID();
2974 : }
2975 :
2976 : /*
2977 : * brin_minmax_multi_summary_in
2978 : * - input routine for type brin_minmax_multi_summary.
2979 : *
2980 : * brin_minmax_multi_summary is only used internally to represent summaries
2981 : * in BRIN minmax-multi indexes, so it has no operations of its own, and we
2982 : * disallow input too.
2983 : */
2984 : Datum
2985 0 : brin_minmax_multi_summary_in(PG_FUNCTION_ARGS)
2986 : {
2987 : /*
2988 : * brin_minmax_multi_summary stores the data in binary form and parsing
2989 : * text input is not needed, so disallow this.
2990 : */
2991 0 : ereport(ERROR,
2992 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2993 : errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
2994 :
2995 : PG_RETURN_VOID(); /* keep compiler quiet */
2996 : }
2997 :
2998 :
2999 : /*
3000 : * brin_minmax_multi_summary_out
3001 : * - output routine for type brin_minmax_multi_summary.
3002 : *
3003 : * BRIN minmax-multi summaries are serialized into a bytea value, but we
3004 : * want to output something nicer humans can understand.
3005 : */
3006 : Datum
3007 240 : brin_minmax_multi_summary_out(PG_FUNCTION_ARGS)
3008 : {
3009 : int i;
3010 : int idx;
3011 : SerializedRanges *ranges;
3012 : Ranges *ranges_deserialized;
3013 : StringInfoData str;
3014 : bool isvarlena;
3015 : Oid outfunc;
3016 : FmgrInfo fmgrinfo;
3017 240 : ArrayBuildState *astate_values = NULL;
3018 :
3019 240 : initStringInfo(&str);
3020 240 : appendStringInfoChar(&str, '{');
3021 :
3022 : /*
3023 : * Detoast to get value with full 4B header (can't be stored in a toast
3024 : * table, but can use 1B header).
3025 : */
3026 240 : ranges = (SerializedRanges *) PG_DETOAST_DATUM(PG_GETARG_DATUM(0));
3027 :
3028 : /* lookup output func for the type */
3029 240 : getTypeOutputInfo(ranges->typid, &outfunc, &isvarlena);
3030 240 : fmgr_info(outfunc, &fmgrinfo);
3031 :
3032 : /* deserialize the range info easy-to-process pieces */
3033 240 : ranges_deserialized = brin_range_deserialize(ranges->maxvalues, ranges);
3034 :
3035 240 : appendStringInfo(&str, "nranges: %d nvalues: %d maxvalues: %d",
3036 : ranges_deserialized->nranges,
3037 : ranges_deserialized->nvalues,
3038 : ranges_deserialized->maxvalues);
3039 :
3040 : /* serialize ranges */
3041 240 : idx = 0;
3042 240 : for (i = 0; i < ranges_deserialized->nranges; i++)
3043 : {
3044 : char *a,
3045 : *b;
3046 : text *c;
3047 : StringInfoData buf;
3048 :
3049 0 : initStringInfo(&buf);
3050 :
3051 0 : a = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3052 0 : b = OutputFunctionCall(&fmgrinfo, ranges_deserialized->values[idx++]);
3053 :
3054 0 : appendStringInfo(&buf, "%s ... %s", a, b);
3055 :
3056 0 : c = cstring_to_text_with_len(buf.data, buf.len);
3057 :
3058 0 : astate_values = accumArrayResult(astate_values,
3059 : PointerGetDatum(c),
3060 : false,
3061 : TEXTOID,
3062 : CurrentMemoryContext);
3063 : }
3064 :
3065 240 : if (ranges_deserialized->nranges > 0)
3066 : {
3067 : Oid typoutput;
3068 : bool typIsVarlena;
3069 : Datum val;
3070 : char *extval;
3071 :
3072 0 : getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3073 :
3074 0 : val = makeArrayResult(astate_values, CurrentMemoryContext);
3075 :
3076 0 : extval = OidOutputFunctionCall(typoutput, val);
3077 :
3078 0 : appendStringInfo(&str, " ranges: %s", extval);
3079 : }
3080 :
3081 : /* serialize individual values */
3082 240 : astate_values = NULL;
3083 :
3084 2592 : for (i = 0; i < ranges_deserialized->nvalues; i++)
3085 : {
3086 : Datum a;
3087 : text *b;
3088 :
3089 2352 : a = FunctionCall1(&fmgrinfo, ranges_deserialized->values[idx++]);
3090 2352 : b = cstring_to_text(DatumGetCString(a));
3091 :
3092 2352 : astate_values = accumArrayResult(astate_values,
3093 : PointerGetDatum(b),
3094 : false,
3095 : TEXTOID,
3096 : CurrentMemoryContext);
3097 : }
3098 :
3099 240 : if (ranges_deserialized->nvalues > 0)
3100 : {
3101 : Oid typoutput;
3102 : bool typIsVarlena;
3103 : Datum val;
3104 : char *extval;
3105 :
3106 240 : getTypeOutputInfo(ANYARRAYOID, &typoutput, &typIsVarlena);
3107 :
3108 240 : val = makeArrayResult(astate_values, CurrentMemoryContext);
3109 :
3110 240 : extval = OidOutputFunctionCall(typoutput, val);
3111 :
3112 240 : appendStringInfo(&str, " values: %s", extval);
3113 : }
3114 :
3115 :
3116 240 : appendStringInfoChar(&str, '}');
3117 :
3118 240 : PG_RETURN_CSTRING(str.data);
3119 : }
3120 :
3121 : /*
3122 : * brin_minmax_multi_summary_recv
3123 : * - binary input routine for type brin_minmax_multi_summary.
3124 : */
3125 : Datum
3126 0 : brin_minmax_multi_summary_recv(PG_FUNCTION_ARGS)
3127 : {
3128 0 : ereport(ERROR,
3129 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3130 : errmsg("cannot accept a value of type %s", "brin_minmax_multi_summary")));
3131 :
3132 : PG_RETURN_VOID(); /* keep compiler quiet */
3133 : }
3134 :
3135 : /*
3136 : * brin_minmax_multi_summary_send
3137 : * - binary output routine for type brin_minmax_multi_summary.
3138 : *
3139 : * BRIN minmax-multi summaries are serialized in a bytea value (although
3140 : * the type is named differently), so let's just send that.
3141 : */
3142 : Datum
3143 0 : brin_minmax_multi_summary_send(PG_FUNCTION_ARGS)
3144 : {
3145 0 : return byteasend(fcinfo);
3146 : }
|