Line data Source code
1 : /*
2 : * brin_bloom.c
3 : * Implementation of Bloom opclass for BRIN
4 : *
5 : * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
6 : * Portions Copyright (c) 1994, Regents of the University of California
7 : *
8 : *
9 : * A BRIN opclass summarizing page range into a bloom filter.
10 : *
11 : * Bloom filters allow efficient testing whether a given page range contains
12 : * a particular value. Therefore, if we summarize each page range into a small
13 : * bloom filter, we can easily (and cheaply) test whether it contains values
14 : * we get later.
15 : *
16 : * The index only supports equality operators, similarly to hash indexes.
17 : * Bloom indexes are however much smaller, and support only bitmap scans.
18 : *
19 : * Note: Don't confuse this with bloom indexes, implemented in a contrib
20 : * module. That extension implements an entirely new AM, building a bloom
21 : * filter on multiple columns in a single row. This opclass works with an
22 : * existing AM (BRIN) and builds bloom filter on a column.
23 : *
24 : *
25 : * values vs. hashes
26 : * -----------------
27 : *
28 : * The original column values are not used directly, but are first hashed
29 : * using the regular type-specific hash function, producing a uint32 hash.
30 : * And this hash value is then added to the summary - i.e. it's hashed
31 : * again and added to the bloom filter.
32 : *
33 : * This allows the code to treat all data types (byval/byref/...) the same
34 : * way, with only minimal space requirements, because we're working with
35 : * hashes and not the original values. Everything is uint32.
36 : *
37 : * Of course, this assumes the built-in hash function is reasonably good,
38 : * without too many collisions etc. But that does seem to be the case, at
39 : * least based on past experience. After all, the same hash functions are
40 : * used for hash indexes, hash partitioning and so on.
41 : *
42 : *
43 : * hashing scheme
44 : * --------------
45 : *
46 : * Bloom filters require a number of independent hash functions. There are
47 : * different schemes how to construct them - for example we might use
48 : * hash_uint32_extended with random seeds, but that seems fairly expensive.
49 : * We use a scheme requiring only two functions described in this paper:
50 : *
51 : * Less Hashing, Same Performance:Building a Better Bloom Filter
52 : * Adam Kirsch, Michael Mitzenmacher, Harvard School of Engineering and
53 : * Applied Sciences, Cambridge, Massachusetts [DOI 10.1002/rsa.20208]
54 : *
55 : * The two hash functions h1 and h2 are calculated using hard-coded seeds,
56 : * and then combined using (h1 + i * h2) to generate the hash functions.
57 : *
58 : *
59 : * sizing the bloom filter
60 : * -----------------------
61 : *
62 : * Size of a bloom filter depends on the number of distinct values we will
63 : * store in it, and the desired false positive rate. The higher the number
64 : * of distinct values and/or the lower the false positive rate, the larger
65 : * the bloom filter. On the other hand, we want to keep the index as small
66 : * as possible - that's one of the basic advantages of BRIN indexes.
67 : *
68 : * Although the number of distinct elements (in a page range) depends on
69 : * the data, we can consider it fixed. This simplifies the trade-off to
70 : * just false positive rate vs. size.
71 : *
72 : * At the page range level, false positive rate is a probability the bloom
73 : * filter matches a random value. For the whole index (with sufficiently
74 : * many page ranges) it represents the fraction of the index ranges (and
75 : * thus fraction of the table to be scanned) matching the random value.
76 : *
77 : * Furthermore, the size of the bloom filter is subject to implementation
78 : * limits - it has to fit onto a single index page (8kB by default). As
79 : * the bitmap is inherently random (when "full" about half the bits is set
80 : * to 1, randomly), compression can't help very much.
81 : *
82 : * To reduce the size of a filter (to fit to a page), we have to either
83 : * accept higher false positive rate (undesirable), or reduce the number
84 : * of distinct items to be stored in the filter. We can't alter the input
85 : * data, of course, but we may make the BRIN page ranges smaller - instead
86 : * of the default 128 pages (1MB) we may build index with 16-page ranges,
87 : * or something like that. This should reduce the number of distinct values
88 : * in the page range, making the filter smaller (with fixed false positive
89 : * rate). Even for random data sets this should help, as the number of rows
90 : * per heap page is limited (to ~290 with very narrow tables, likely ~20
91 : * in practice).
92 : *
93 : * Of course, good sizing decisions depend on having the necessary data,
94 : * i.e. number of distinct values in a page range (of a given size) and
95 : * table size (to estimate cost change due to change in false positive
96 : * rate due to having larger index vs. scanning larger indexes). We may
97 : * not have that data - for example when building an index on empty table
98 : * it's not really possible. And for some data we only have estimates for
99 : * the whole table and we can only estimate per-range values (ndistinct).
100 : *
101 : * Another challenge is that while the bloom filter is per-column, it's
102 : * the whole index tuple that has to fit into a page. And for multi-column
103 : * indexes that may include pieces we have no control over (not necessarily
104 : * bloom filters, the other columns may use other BRIN opclasses). So it's
105 : * not entirely clear how to distribute the space between those columns.
106 : *
107 : * The current logic, implemented in brin_bloom_get_ndistinct, attempts to
108 : * make some basic sizing decisions, based on the size of BRIN ranges, and
109 : * the maximum number of rows per range.
110 : *
111 : *
112 : * IDENTIFICATION
113 : * src/backend/access/brin/brin_bloom.c
114 : */
115 : #include "postgres.h"
116 :
117 : #include <math.h>
118 :
119 : #include "access/brin.h"
120 : #include "access/brin_internal.h"
121 : #include "access/brin_page.h"
122 : #include "access/brin_tuple.h"
123 : #include "access/genam.h"
124 : #include "access/htup_details.h"
125 : #include "access/reloptions.h"
126 : #include "catalog/pg_am.h"
127 : #include "catalog/pg_type.h"
128 : #include "common/hashfn.h"
129 : #include "utils/fmgrprotos.h"
130 : #include "utils/rel.h"
131 :
132 : #define BloomEqualStrategyNumber 1
133 :
134 : /*
135 : * Additional SQL level support functions. We only have one, which is
136 : * used to calculate hash of the input value.
137 : *
138 : * Procedure numbers must not use values reserved for BRIN itself; see
139 : * brin_internal.h.
140 : */
141 : #define BLOOM_MAX_PROCNUMS 1 /* maximum support procs we need */
142 : #define PROCNUM_HASH 11 /* required */
143 :
144 : /*
145 : * Subtract this from procnum to obtain index in BloomOpaque arrays
146 : * (Must be equal to minimum of private procnums).
147 : */
148 : #define PROCNUM_BASE 11
149 :
150 : /*
151 : * Storage type for BRIN's reloptions.
152 : */
153 : typedef struct BloomOptions
154 : {
155 : int32 vl_len_; /* varlena header (do not touch directly!) */
156 : double nDistinctPerRange; /* number of distinct values per range */
157 : double falsePositiveRate; /* false positive for bloom filter */
158 : } BloomOptions;
159 :
160 : /*
161 : * The current min value (16) is somewhat arbitrary, but it's based
162 : * on the fact that the filter header is ~20B alone, which is about
163 : * the same as the filter bitmap for 16 distinct items with 1% false
164 : * positive rate. So by allowing lower values we'd not gain much. In
165 : * any case, the min should not be larger than MaxHeapTuplesPerPage
166 : * (~290), which is the theoretical maximum for single-page ranges.
167 : */
168 : #define BLOOM_MIN_NDISTINCT_PER_RANGE 16
169 :
170 : /*
171 : * Used to determine number of distinct items, based on the number of rows
172 : * in a page range. The 10% is somewhat similar to what estimate_num_groups
173 : * does, so we use the same factor here.
174 : */
175 : #define BLOOM_DEFAULT_NDISTINCT_PER_RANGE -0.1 /* 10% of values */
176 :
177 : /*
178 : * Allowed range and default value for the false positive range. The exact
179 : * values are somewhat arbitrary, but were chosen considering the various
180 : * parameters (size of filter vs. page size, etc.).
181 : *
182 : * The lower the false-positive rate, the more accurate the filter is, but
183 : * it also gets larger - at some point this eliminates the main advantage
184 : * of BRIN indexes, which is the tiny size. At 0.01% the index is about
185 : * 10% of the table (assuming 290 distinct values per 8kB page).
186 : *
187 : * On the other hand, as the false-positive rate increases, larger part of
188 : * the table has to be scanned due to mismatches - at 25% we're probably
189 : * close to sequential scan being cheaper.
190 : */
191 : #define BLOOM_MIN_FALSE_POSITIVE_RATE 0.0001 /* 0.01% fp rate */
192 : #define BLOOM_MAX_FALSE_POSITIVE_RATE 0.25 /* 25% fp rate */
193 : #define BLOOM_DEFAULT_FALSE_POSITIVE_RATE 0.01 /* 1% fp rate */
194 :
195 : #define BloomGetNDistinctPerRange(opts) \
196 : ((opts) && (((BloomOptions *) (opts))->nDistinctPerRange != 0) ? \
197 : (((BloomOptions *) (opts))->nDistinctPerRange) : \
198 : BLOOM_DEFAULT_NDISTINCT_PER_RANGE)
199 :
200 : #define BloomGetFalsePositiveRate(opts) \
201 : ((opts) && (((BloomOptions *) (opts))->falsePositiveRate != 0.0) ? \
202 : (((BloomOptions *) (opts))->falsePositiveRate) : \
203 : BLOOM_DEFAULT_FALSE_POSITIVE_RATE)
204 :
205 : /*
206 : * And estimate of the largest bloom we can fit onto a page. This is not
207 : * a perfect guarantee, for a couple of reasons. For example, the row may
208 : * be larger because the index has multiple columns.
209 : */
210 : #define BloomMaxFilterSize \
211 : MAXALIGN_DOWN(BLCKSZ - \
212 : (MAXALIGN(SizeOfPageHeaderData + \
213 : sizeof(ItemIdData)) + \
214 : MAXALIGN(sizeof(BrinSpecialSpace)) + \
215 : SizeOfBrinTuple))
216 :
217 : /*
218 : * Seeds used to calculate two hash functions h1 and h2, which are then used
219 : * to generate k hashes using the (h1 + i * h2) scheme.
220 : */
221 : #define BLOOM_SEED_1 0x71d924af
222 : #define BLOOM_SEED_2 0xba48b314
223 :
224 : /*
225 : * Bloom Filter
226 : *
227 : * Represents a bloom filter, built on hashes of the indexed values. That is,
228 : * we compute a uint32 hash of the value, and then store this hash into the
229 : * bloom filter (and compute additional hashes on it).
230 : *
231 : * XXX We could implement "sparse" bloom filters, keeping only the bytes that
232 : * are not entirely 0. But while indexes don't support TOAST, the varlena can
233 : * still be compressed. So this seems unnecessary, because the compression
234 : * should do the same job.
235 : *
236 : * XXX We can also watch the number of bits set in the bloom filter, and then
237 : * stop using it (and not store the bitmap, to save space) when the false
238 : * positive rate gets too high. But even if the false positive rate exceeds the
239 : * desired value, it still can eliminate some page ranges.
240 : */
241 : typedef struct BloomFilter
242 : {
243 : /* varlena header (do not touch directly!) */
244 : int32 vl_len_;
245 :
246 : /* space for various flags (unused for now) */
247 : uint16 flags;
248 :
249 : /* fields for the HASHED phase */
250 : uint8 nhashes; /* number of hash functions */
251 : uint32 nbits; /* number of bits in the bitmap (size) */
252 : uint32 nbits_set; /* number of bits set to 1 */
253 :
254 : /* data of the bloom filter */
255 : char data[FLEXIBLE_ARRAY_MEMBER];
256 : } BloomFilter;
257 :
258 : /*
259 : * bloom_filter_size
260 : * Calculate Bloom filter parameters (nbits, nbytes, nhashes).
261 : *
262 : * Given expected number of distinct values and desired false positive rate,
263 : * calculates the optimal parameters of the Bloom filter.
264 : *
265 : * The resulting parameters are returned through nbytesp (number of bytes),
266 : * nbitsp (number of bits) and nhashesp (number of hash functions). If a
267 : * pointer is NULL, the parameter is not returned.
268 : */
269 : static void
270 7884 : bloom_filter_size(int ndistinct, double false_positive_rate,
271 : int *nbytesp, int *nbitsp, int *nhashesp)
272 : {
273 : double k;
274 : int nbits,
275 : nbytes;
276 :
277 : /* sizing bloom filter: -(n * ln(p)) / (ln(2))^2 */
278 7884 : nbits = ceil(-(ndistinct * log(false_positive_rate)) / pow(log(2.0), 2));
279 :
280 : /* round m to whole bytes */
281 7884 : nbytes = ((nbits + 7) / 8);
282 7884 : nbits = nbytes * 8;
283 :
284 : /*
285 : * round(log(2.0) * m / ndistinct), but assume round() may not be
286 : * available on Windows
287 : */
288 7884 : k = log(2.0) * nbits / ndistinct;
289 7884 : k = (k - floor(k) >= 0.5) ? ceil(k) : floor(k);
290 :
291 7884 : if (nbytesp)
292 7884 : *nbytesp = nbytes;
293 :
294 7884 : if (nbitsp)
295 7884 : *nbitsp = nbits;
296 :
297 7884 : if (nhashesp)
298 7884 : *nhashesp = (int) k;
299 7884 : }
300 :
301 : /*
302 : * bloom_init
303 : * Initialize the Bloom Filter, allocate all the memory.
304 : *
305 : * The filter is initialized with optimal size for ndistinct expected values
306 : * and the requested false positive rate. The filter is stored as varlena.
307 : */
308 : static BloomFilter *
309 7884 : bloom_init(int ndistinct, double false_positive_rate)
310 : {
311 : Size len;
312 : BloomFilter *filter;
313 :
314 : int nbits; /* size of filter / number of bits */
315 : int nbytes; /* size of filter / number of bytes */
316 : int nhashes; /* number of hash functions */
317 :
318 : Assert(ndistinct > 0);
319 : Assert(false_positive_rate > 0 && false_positive_rate < 1);
320 :
321 : /* calculate bloom filter size / parameters */
322 7884 : bloom_filter_size(ndistinct, false_positive_rate,
323 : &nbytes, &nbits, &nhashes);
324 :
325 : /*
326 : * Reject filters that are obviously too large to store on a page.
327 : *
328 : * Initially the bloom filter is just zeroes and so very compressible, but
329 : * as we add values it gets more and more random, and so less and less
330 : * compressible. So initially everything fits on the page, but we might
331 : * get surprising failures later - we want to prevent that, so we reject
332 : * bloom filter that are obviously too large.
333 : *
334 : * XXX It's not uncommon to oversize the bloom filter a bit, to defend
335 : * against unexpected data anomalies (parts of table with more distinct
336 : * values per range etc.). But we still need to make sure even the
337 : * oversized filter fits on page, if such need arises.
338 : *
339 : * XXX This check is not perfect, because the index may have multiple
340 : * filters that are small individually, but too large when combined.
341 : */
342 7884 : if (nbytes > BloomMaxFilterSize)
343 0 : elog(ERROR, "the bloom filter is too large (%d > %zu)", nbytes,
344 : BloomMaxFilterSize);
345 :
346 : /*
347 : * We allocate the whole filter. Most of it is going to be 0 bits, so the
348 : * varlena is easy to compress.
349 : */
350 7884 : len = offsetof(BloomFilter, data) + nbytes;
351 :
352 7884 : filter = (BloomFilter *) palloc0(len);
353 :
354 7884 : filter->flags = 0;
355 7884 : filter->nhashes = nhashes;
356 7884 : filter->nbits = nbits;
357 :
358 7884 : SET_VARSIZE(filter, len);
359 :
360 7884 : return filter;
361 : }
362 :
363 :
364 : /*
365 : * bloom_add_value
366 : * Add value to the bloom filter.
367 : */
368 : static BloomFilter *
369 67932 : bloom_add_value(BloomFilter *filter, uint32 value, bool *updated)
370 : {
371 : int i;
372 : uint64 h1,
373 : h2;
374 :
375 : /* compute the hashes, used for the bloom filter */
376 67932 : h1 = hash_bytes_uint32_extended(value, BLOOM_SEED_1) % filter->nbits;
377 67932 : h2 = hash_bytes_uint32_extended(value, BLOOM_SEED_2) % filter->nbits;
378 :
379 : /* compute the requested number of hashes */
380 543456 : for (i = 0; i < filter->nhashes; i++)
381 : {
382 : /* h1 + h2 + f(i) */
383 475524 : uint32 h = (h1 + i * h2) % filter->nbits;
384 475524 : uint32 byte = (h / 8);
385 475524 : uint32 bit = (h % 8);
386 :
387 : /* if the bit is not set, set it and remember we did that */
388 475524 : if (!(filter->data[byte] & (0x01 << bit)))
389 : {
390 226266 : filter->data[byte] |= (0x01 << bit);
391 226266 : filter->nbits_set++;
392 226266 : if (updated)
393 226266 : *updated = true;
394 : }
395 : }
396 :
397 67932 : return filter;
398 : }
399 :
400 :
401 : /*
402 : * bloom_contains_value
403 : * Check if the bloom filter contains a particular value.
404 : */
405 : static bool
406 8208 : bloom_contains_value(BloomFilter *filter, uint32 value)
407 : {
408 : int i;
409 : uint64 h1,
410 : h2;
411 :
412 : /* calculate the two hashes */
413 8208 : h1 = hash_bytes_uint32_extended(value, BLOOM_SEED_1) % filter->nbits;
414 8208 : h2 = hash_bytes_uint32_extended(value, BLOOM_SEED_2) % filter->nbits;
415 :
416 : /* compute the requested number of hashes */
417 10434 : for (i = 0; i < filter->nhashes; i++)
418 : {
419 : /* h1 + h2 + f(i) */
420 10164 : uint32 h = (h1 + i * h2) % filter->nbits;
421 10164 : uint32 byte = (h / 8);
422 10164 : uint32 bit = (h % 8);
423 :
424 : /* if the bit is not set, the value is not there */
425 10164 : if (!(filter->data[byte] & (0x01 << bit)))
426 7938 : return false;
427 : }
428 :
429 : /* all hashes found in bloom filter */
430 270 : return true;
431 : }
432 :
433 : typedef struct BloomOpaque
434 : {
435 : /*
436 : * XXX At this point we only need a single proc (to compute the hash), but
437 : * let's keep the array just like inclusion and minmax opclasses, for
438 : * consistency. We may need additional procs in the future.
439 : */
440 : FmgrInfo extra_procinfos[BLOOM_MAX_PROCNUMS];
441 : bool extra_proc_missing[BLOOM_MAX_PROCNUMS];
442 : } BloomOpaque;
443 :
444 : static FmgrInfo *bloom_get_procinfo(BrinDesc *bdesc, uint16 attno,
445 : uint16 procnum);
446 :
447 :
448 : Datum
449 4766 : brin_bloom_opcinfo(PG_FUNCTION_ARGS)
450 : {
451 : BrinOpcInfo *result;
452 :
453 : /*
454 : * opaque->strategy_procinfos is initialized lazily; here it is set to
455 : * all-uninitialized by palloc0 which sets fn_oid to InvalidOid.
456 : *
457 : * bloom indexes only store the filter as a single BYTEA column
458 : */
459 :
460 4766 : result = palloc0(MAXALIGN(SizeofBrinOpcInfo(1)) +
461 : sizeof(BloomOpaque));
462 4766 : result->oi_nstored = 1;
463 4766 : result->oi_regular_nulls = true;
464 4766 : result->oi_opaque = (BloomOpaque *)
465 4766 : MAXALIGN((char *) result + SizeofBrinOpcInfo(1));
466 4766 : result->oi_typcache[0] = lookup_type_cache(PG_BRIN_BLOOM_SUMMARYOID, 0);
467 :
468 4766 : PG_RETURN_POINTER(result);
469 : }
470 :
471 : /*
472 : * brin_bloom_get_ndistinct
473 : * Determine the ndistinct value used to size bloom filter.
474 : *
475 : * Adjust the ndistinct value based on the pagesPerRange value. First,
476 : * if it's negative, it's assumed to be relative to maximum number of
477 : * tuples in the range (assuming each page gets MaxHeapTuplesPerPage
478 : * tuples, which is likely a significant over-estimate). We also clamp
479 : * the value, not to over-size the bloom filter unnecessarily.
480 : *
481 : * XXX We can only do this when the pagesPerRange value was supplied.
482 : * If it wasn't, it has to be a read-only access to the index, in which
483 : * case we don't really care. But perhaps we should fall-back to the
484 : * default pagesPerRange value?
485 : *
486 : * XXX We might also fetch info about ndistinct estimate for the column,
487 : * and compute the expected number of distinct values in a range. But
488 : * that may be tricky due to data being sorted in various ways, so it
489 : * seems better to rely on the upper estimate.
490 : *
491 : * XXX We might also calculate a better estimate of rows per BRIN range,
492 : * instead of using MaxHeapTuplesPerPage (which probably produces values
493 : * much higher than reality).
494 : */
495 : static int
496 7884 : brin_bloom_get_ndistinct(BrinDesc *bdesc, BloomOptions *opts)
497 : {
498 : double ndistinct;
499 : double maxtuples;
500 : BlockNumber pagesPerRange;
501 :
502 7884 : pagesPerRange = BrinGetPagesPerRange(bdesc->bd_index);
503 7884 : ndistinct = BloomGetNDistinctPerRange(opts);
504 :
505 : Assert(BlockNumberIsValid(pagesPerRange));
506 :
507 7884 : maxtuples = MaxHeapTuplesPerPage * pagesPerRange;
508 :
509 : /*
510 : * Similarly to n_distinct, negative values are relative - in this case to
511 : * maximum number of tuples in the page range (maxtuples).
512 : */
513 7884 : if (ndistinct < 0)
514 7884 : ndistinct = (-ndistinct) * maxtuples;
515 :
516 : /*
517 : * Positive values are to be used directly, but we still apply a couple of
518 : * safeties to avoid using unreasonably small bloom filters.
519 : */
520 7884 : ndistinct = Max(ndistinct, BLOOM_MIN_NDISTINCT_PER_RANGE);
521 :
522 : /*
523 : * And don't use more than the maximum possible number of tuples, in the
524 : * range, which would be entirely wasteful.
525 : */
526 7884 : ndistinct = Min(ndistinct, maxtuples);
527 :
528 7884 : return (int) ndistinct;
529 : }
530 :
531 : /*
532 : * Examine the given index tuple (which contains partial status of a certain
533 : * page range) by comparing it to the given value that comes from another heap
534 : * tuple. If the new value is outside the bloom filter specified by the
535 : * existing tuple values, update the index tuple and return true. Otherwise,
536 : * return false and do not modify in this case.
537 : */
538 : Datum
539 67932 : brin_bloom_add_value(PG_FUNCTION_ARGS)
540 : {
541 67932 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
542 67932 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
543 67932 : Datum newval = PG_GETARG_DATUM(2);
544 67932 : bool isnull PG_USED_FOR_ASSERTS_ONLY = PG_GETARG_DATUM(3);
545 67932 : BloomOptions *opts = (BloomOptions *) PG_GET_OPCLASS_OPTIONS();
546 67932 : Oid colloid = PG_GET_COLLATION();
547 : FmgrInfo *hashFn;
548 : uint32 hashValue;
549 67932 : bool updated = false;
550 : AttrNumber attno;
551 : BloomFilter *filter;
552 :
553 : Assert(!isnull);
554 :
555 67932 : attno = column->bv_attno;
556 :
557 : /*
558 : * If this is the first non-null value, we need to initialize the bloom
559 : * filter. Otherwise just extract the existing bloom filter from
560 : * BrinValues.
561 : */
562 67932 : if (column->bv_allnulls)
563 : {
564 15768 : filter = bloom_init(brin_bloom_get_ndistinct(bdesc, opts),
565 7884 : BloomGetFalsePositiveRate(opts));
566 7884 : column->bv_values[0] = PointerGetDatum(filter);
567 7884 : column->bv_allnulls = false;
568 7884 : updated = true;
569 : }
570 : else
571 60048 : filter = (BloomFilter *) PG_DETOAST_DATUM(column->bv_values[0]);
572 :
573 : /*
574 : * Compute the hash of the new value, using the supplied hash function,
575 : * and then add the hash value to the bloom filter.
576 : */
577 67932 : hashFn = bloom_get_procinfo(bdesc, attno, PROCNUM_HASH);
578 :
579 67932 : hashValue = DatumGetUInt32(FunctionCall1Coll(hashFn, colloid, newval));
580 :
581 67932 : filter = bloom_add_value(filter, hashValue, &updated);
582 :
583 67932 : column->bv_values[0] = PointerGetDatum(filter);
584 :
585 67932 : PG_RETURN_BOOL(updated);
586 : }
587 :
588 : /*
589 : * Given an index tuple corresponding to a certain page range and a scan key,
590 : * return whether the scan key is consistent with the index tuple's bloom
591 : * filter. Return true if so, false otherwise.
592 : */
593 : Datum
594 8208 : brin_bloom_consistent(PG_FUNCTION_ARGS)
595 : {
596 8208 : BrinDesc *bdesc = (BrinDesc *) PG_GETARG_POINTER(0);
597 8208 : BrinValues *column = (BrinValues *) PG_GETARG_POINTER(1);
598 8208 : ScanKey *keys = (ScanKey *) PG_GETARG_POINTER(2);
599 8208 : int nkeys = PG_GETARG_INT32(3);
600 8208 : Oid colloid = PG_GET_COLLATION();
601 : AttrNumber attno;
602 : Datum value;
603 : bool matches;
604 : FmgrInfo *finfo;
605 : uint32 hashValue;
606 : BloomFilter *filter;
607 : int keyno;
608 :
609 8208 : filter = (BloomFilter *) PG_DETOAST_DATUM(column->bv_values[0]);
610 :
611 : Assert(filter);
612 :
613 : /*
614 : * Assume all scan keys match. We'll be searching for a scan key
615 : * eliminating the page range (we can stop on the first such key).
616 : */
617 8208 : matches = true;
618 :
619 8478 : for (keyno = 0; keyno < nkeys; keyno++)
620 : {
621 8208 : ScanKey key = keys[keyno];
622 :
623 : /* NULL keys are handled and filtered-out in bringetbitmap */
624 : Assert(!(key->sk_flags & SK_ISNULL));
625 :
626 8208 : attno = key->sk_attno;
627 8208 : value = key->sk_argument;
628 :
629 8208 : switch (key->sk_strategy)
630 : {
631 8208 : case BloomEqualStrategyNumber:
632 :
633 : /*
634 : * We want to return the current page range if the bloom
635 : * filter seems to contain the value.
636 : */
637 8208 : finfo = bloom_get_procinfo(bdesc, attno, PROCNUM_HASH);
638 :
639 8208 : hashValue = DatumGetUInt32(FunctionCall1Coll(finfo, colloid, value));
640 8208 : matches &= bloom_contains_value(filter, hashValue);
641 :
642 8208 : break;
643 0 : default:
644 : /* shouldn't happen */
645 0 : elog(ERROR, "invalid strategy number %d", key->sk_strategy);
646 : matches = false;
647 : break;
648 : }
649 :
650 8208 : if (!matches)
651 7938 : break;
652 : }
653 :
654 8208 : PG_RETURN_BOOL(matches);
655 : }
656 :
657 : /*
658 : * Given two BrinValues, update the first of them as a union of the summary
659 : * values contained in both. The second one is untouched.
660 : *
661 : * XXX We assume the bloom filters have the same parameters for now. In the
662 : * future we should have 'can union' function, to decide if we can combine
663 : * two particular bloom filters.
664 : */
665 : Datum
666 0 : brin_bloom_union(PG_FUNCTION_ARGS)
667 : {
668 : int i;
669 : int nbytes;
670 0 : BrinValues *col_a = (BrinValues *) PG_GETARG_POINTER(1);
671 0 : BrinValues *col_b = (BrinValues *) PG_GETARG_POINTER(2);
672 : BloomFilter *filter_a;
673 : BloomFilter *filter_b;
674 :
675 : Assert(col_a->bv_attno == col_b->bv_attno);
676 : Assert(!col_a->bv_allnulls && !col_b->bv_allnulls);
677 :
678 0 : filter_a = (BloomFilter *) PG_DETOAST_DATUM(col_a->bv_values[0]);
679 0 : filter_b = (BloomFilter *) PG_DETOAST_DATUM(col_b->bv_values[0]);
680 :
681 : /* make sure the filters use the same parameters */
682 : Assert(filter_a && filter_b);
683 : Assert(filter_a->nbits == filter_b->nbits);
684 : Assert(filter_a->nhashes == filter_b->nhashes);
685 : Assert((filter_a->nbits > 0) && (filter_a->nbits % 8 == 0));
686 :
687 0 : nbytes = (filter_a->nbits) / 8;
688 :
689 : /* simply OR the bitmaps */
690 0 : for (i = 0; i < nbytes; i++)
691 0 : filter_a->data[i] |= filter_b->data[i];
692 :
693 : /* update the number of bits set in the filter */
694 0 : filter_a->nbits_set = pg_popcount((const char *) filter_a->data, nbytes);
695 :
696 0 : PG_RETURN_VOID();
697 : }
698 :
699 : /*
700 : * Cache and return inclusion opclass support procedure
701 : *
702 : * Return the procedure corresponding to the given function support number
703 : * or null if it does not exist.
704 : */
705 : static FmgrInfo *
706 76140 : bloom_get_procinfo(BrinDesc *bdesc, uint16 attno, uint16 procnum)
707 : {
708 : BloomOpaque *opaque;
709 76140 : uint16 basenum = procnum - PROCNUM_BASE;
710 :
711 : /*
712 : * We cache these in the opaque struct, to avoid repetitive syscache
713 : * lookups.
714 : */
715 76140 : opaque = (BloomOpaque *) bdesc->bd_info[attno - 1]->oi_opaque;
716 :
717 : /*
718 : * If we already searched for this proc and didn't find it, don't bother
719 : * searching again.
720 : */
721 76140 : if (opaque->extra_proc_missing[basenum])
722 0 : return NULL;
723 :
724 76140 : if (opaque->extra_procinfos[basenum].fn_oid == InvalidOid)
725 : {
726 720 : if (RegProcedureIsValid(index_getprocid(bdesc->bd_index, attno,
727 : procnum)))
728 : {
729 720 : fmgr_info_copy(&opaque->extra_procinfos[basenum],
730 : index_getprocinfo(bdesc->bd_index, attno, procnum),
731 : bdesc->bd_context);
732 : }
733 : else
734 : {
735 0 : opaque->extra_proc_missing[basenum] = true;
736 0 : return NULL;
737 : }
738 : }
739 :
740 76140 : return &opaque->extra_procinfos[basenum];
741 : }
742 :
743 : Datum
744 704 : brin_bloom_options(PG_FUNCTION_ARGS)
745 : {
746 704 : local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);
747 :
748 704 : init_local_reloptions(relopts, sizeof(BloomOptions));
749 :
750 704 : add_local_real_reloption(relopts, "n_distinct_per_range",
751 : "number of distinct items expected in a BRIN page range",
752 : BLOOM_DEFAULT_NDISTINCT_PER_RANGE,
753 : -1.0, INT_MAX, offsetof(BloomOptions, nDistinctPerRange));
754 :
755 704 : add_local_real_reloption(relopts, "false_positive_rate",
756 : "desired false-positive rate for the bloom filters",
757 : BLOOM_DEFAULT_FALSE_POSITIVE_RATE,
758 : BLOOM_MIN_FALSE_POSITIVE_RATE,
759 : BLOOM_MAX_FALSE_POSITIVE_RATE,
760 : offsetof(BloomOptions, falsePositiveRate));
761 :
762 704 : PG_RETURN_VOID();
763 : }
764 :
765 : /*
766 : * brin_bloom_summary_in
767 : * - input routine for type brin_bloom_summary.
768 : *
769 : * brin_bloom_summary is only used internally to represent summaries
770 : * in BRIN bloom indexes, so it has no operations of its own, and we
771 : * disallow input too.
772 : */
773 : Datum
774 0 : brin_bloom_summary_in(PG_FUNCTION_ARGS)
775 : {
776 : /*
777 : * brin_bloom_summary stores the data in binary form and parsing text
778 : * input is not needed, so disallow this.
779 : */
780 0 : ereport(ERROR,
781 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
782 : errmsg("cannot accept a value of type %s", "pg_brin_bloom_summary")));
783 :
784 : PG_RETURN_VOID(); /* keep compiler quiet */
785 : }
786 :
787 :
788 : /*
789 : * brin_bloom_summary_out
790 : * - output routine for type brin_bloom_summary.
791 : *
792 : * BRIN bloom summaries are serialized into a bytea value, but we want
793 : * to output something nicer humans can understand.
794 : */
795 : Datum
796 256 : brin_bloom_summary_out(PG_FUNCTION_ARGS)
797 : {
798 : BloomFilter *filter;
799 : StringInfoData str;
800 :
801 : /* detoast the data to get value with a full 4B header */
802 256 : filter = (BloomFilter *) PG_DETOAST_DATUM(PG_GETARG_DATUM(0));
803 :
804 256 : initStringInfo(&str);
805 256 : appendStringInfoChar(&str, '{');
806 :
807 256 : appendStringInfo(&str, "mode: hashed nhashes: %u nbits: %u nbits_set: %u",
808 256 : filter->nhashes, filter->nbits, filter->nbits_set);
809 :
810 256 : appendStringInfoChar(&str, '}');
811 :
812 256 : PG_RETURN_CSTRING(str.data);
813 : }
814 :
815 : /*
816 : * brin_bloom_summary_recv
817 : * - binary input routine for type brin_bloom_summary.
818 : */
819 : Datum
820 0 : brin_bloom_summary_recv(PG_FUNCTION_ARGS)
821 : {
822 0 : ereport(ERROR,
823 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
824 : errmsg("cannot accept a value of type %s", "pg_brin_bloom_summary")));
825 :
826 : PG_RETURN_VOID(); /* keep compiler quiet */
827 : }
828 :
829 : /*
830 : * brin_bloom_summary_send
831 : * - binary output routine for type brin_bloom_summary.
832 : *
833 : * BRIN bloom summaries are serialized in a bytea value (although the
834 : * type is named differently), so let's just send that.
835 : */
836 : Datum
837 0 : brin_bloom_summary_send(PG_FUNCTION_ARGS)
838 : {
839 0 : return byteasend(fcinfo);
840 : }
|