Line data Source code
1 : /*
2 : * contrib/pgcrypto/crypt-sha.c
3 : *
4 : * This implements shacrypt password hash functions and follows the
5 : * public available reference implementation from
6 : *
7 : * https://www.akkadia.org/drepper/SHA-crypt.txt
8 : *
9 : * This code is public domain.
10 : *
11 : * Please see the inline comments for details about the algorithm.
12 : *
13 : * Basically the following code implements password hashing with sha256 and
14 : * sha512 digest via OpenSSL. Additionally, an extended salt generation (see
15 : * crypt-gensalt.c for details) is provided, which generates a salt suitable
16 : * for either sha256crypt and sha512crypt password hash generation.
17 : *
18 : * Official identifiers for suitable password hashes used in salts are
19 : * 5 : sha256crypt and
20 : * 6 : sha512crypt
21 : *
22 : * The hashing code below supports and uses salt length up to 16 bytes. Longer
23 : * input is possible, but any additional byte of the input is disregarded.
24 : * gen_salt(), when called with a sha256crypt or sha512crypt identifier will
25 : * always generate a 16 byte long salt string.
26 : *
27 : * Output is compatible with any sha256crypt and sha512crypt output
28 : * generated by e.g. OpenSSL or libc crypt().
29 : *
30 : * The described algorithm uses default computing rounds of 5000. Currently,
31 : * even when no specific rounds specification is used, we always explicitly
32 : * print out the rounds option flag with the final hash password string.
33 : *
34 : * The length of the specific password hash (without magic bytes and salt
35 : * string) is:
36 : *
37 : * sha256crypt: 43 bytes and
38 : * sha512crypt: 86 bytes.
39 : *
40 : * Overall hashed password length is:
41 : *
42 : * sha256crypt: 80 bytes and
43 : * sha512crypt: 123 bytes
44 : *
45 : */
46 : #include "postgres.h"
47 :
48 : #include "common/string.h"
49 : #include "mb/pg_wchar.h"
50 : #include "miscadmin.h"
51 :
52 : #include "px-crypt.h"
53 : #include "px.h"
54 :
55 : typedef enum
56 : {
57 : PGCRYPTO_SHA256CRYPT = 0,
58 : PGCRYPTO_SHA512CRYPT = 1,
59 : PGCRYPTO_SHA_UNKOWN
60 : } PGCRYPTO_SHA_t;
61 :
62 : static const char _crypt_itoa64[64 + 1] =
63 : "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
64 :
65 : /*
66 : * Modern UNIX password, based on SHA crypt hashes
67 : */
68 : char *
69 52 : px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
70 : {
71 : static const char rounds_prefix[] = "rounds=";
72 : static const char *magic_bytes[2] = {"$5$", "$6$"};
73 :
74 : /* Used to create the password hash string */
75 52 : StringInfo out_buf = NULL;
76 :
77 52 : PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
78 52 : PX_MD *digestA = NULL;
79 52 : PX_MD *digestB = NULL;
80 : int err;
81 :
82 : const char *dec_salt_binary; /* pointer into the real salt string */
83 52 : StringInfo decoded_salt = NULL; /* decoded salt string */
84 : unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
85 :
86 : /* temporary buffer for digests */
87 : unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
88 52 : char rounds_custom = 0;
89 52 : char *p_bytes = NULL;
90 52 : char *s_bytes = NULL;
91 52 : char *cp = NULL;
92 52 : const char *fp = NULL; /* intermediate pointer within salt string */
93 52 : const char *ep = NULL; /* holds pointer to the end of the salt string */
94 52 : size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
95 : unsigned int block; /* number of bytes processed */
96 52 : uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
97 : unsigned int len,
98 52 : salt_len = 0;
99 :
100 : /* Sanity checks */
101 52 : if (!passwd)
102 0 : return NULL;
103 :
104 52 : if (pw == NULL)
105 0 : elog(ERROR, "null value for password rejected");
106 :
107 52 : if (salt == NULL)
108 0 : elog(ERROR, "null value for salt rejected");
109 :
110 : /*
111 : * Make sure result buffers are large enough.
112 : */
113 52 : if (dstlen < PX_SHACRYPT_BUF_LEN)
114 0 : elog(ERROR, "insufficient result buffer size to encrypt password");
115 :
116 : /* Init result buffer */
117 52 : out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
118 52 : decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
119 :
120 : /* Init contents of buffers properly */
121 52 : memset(&sha_buf, '\0', sizeof(sha_buf));
122 52 : memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
123 :
124 : /*
125 : * Decode the salt string. We need to know how many rounds and which
126 : * digest we have to use to hash the password.
127 : */
128 52 : len = strlen(pw);
129 52 : dec_salt_binary = salt;
130 :
131 : /*
132 : * Analyze and prepare the salt string
133 : *
134 : * The magic string should be specified in the first three bytes of the
135 : * salt string. Do some sanity checks first.
136 : */
137 52 : if (strlen(dec_salt_binary) < 3)
138 0 : ereport(ERROR,
139 : errcode(ERRCODE_INVALID_PARAMETER_VALUE),
140 : errmsg("invalid salt"));
141 :
142 : /*
143 : * Check format of magic bytes. These should define either 5=sha256crypt
144 : * or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
145 : */
146 52 : if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
147 0 : ereport(ERROR,
148 : errcode(ERRCODE_INVALID_PARAMETER_VALUE),
149 : errmsg("invalid format of salt"),
150 : errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
151 :
152 : /*
153 : * Check magic byte for supported shacrypt digest.
154 : *
155 : * We're just interested in the very first 3 bytes of the salt string,
156 : * since this defines the digest length to use.
157 : */
158 52 : if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
159 : {
160 26 : type = PGCRYPTO_SHA256CRYPT;
161 26 : dec_salt_binary += strlen(magic_bytes[0]);
162 : }
163 26 : else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
164 : {
165 26 : type = PGCRYPTO_SHA512CRYPT;
166 26 : dec_salt_binary += strlen(magic_bytes[1]);
167 : }
168 :
169 : /*
170 : * dec_salt_binary pointer is positioned after the magic bytes now
171 : *
172 : * We extract any options in the following code branch. The only optional
173 : * setting we need to take care of is the "rounds" option. Note that the
174 : * salt generator already checked for invalid settings before, but we need
175 : * to do it here again to protect against injection of wrong values when
176 : * called without the generator.
177 : *
178 : * If there is any garbage added after the magic byte and the options/salt
179 : * string, we don't treat this special: This is just absorbed as part of
180 : * the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
181 : *
182 : * Unknown magic byte is handled further below.
183 : */
184 52 : if (strncmp(dec_salt_binary,
185 : rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
186 : {
187 40 : const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
188 : char *endp;
189 40 : int srounds = strtoint(num, &endp, 10);
190 :
191 40 : if (*endp != '$')
192 0 : ereport(ERROR,
193 : errcode(ERRCODE_SYNTAX_ERROR),
194 : errmsg("could not parse salt options"));
195 :
196 40 : dec_salt_binary = endp + 1;
197 :
198 : /*
199 : * We violate supported lower or upper bound of rounds, but in this
200 : * case we change this value to the supported lower or upper value. We
201 : * don't do this silently and print a NOTICE in such a case.
202 : *
203 : * Note that a salt string generated with gen_salt() would never
204 : * generated such a salt string, since it would error out.
205 : *
206 : * But Drepper's upstream reference implementation supports this when
207 : * passing the salt string directly, so we maintain compatibility.
208 : */
209 40 : if (srounds > PX_SHACRYPT_ROUNDS_MAX)
210 : {
211 0 : ereport(NOTICE,
212 : errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
213 : errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
214 : srounds, PX_SHACRYPT_ROUNDS_MAX,
215 : PX_SHACRYPT_ROUNDS_MAX));
216 0 : srounds = PX_SHACRYPT_ROUNDS_MAX;
217 : }
218 40 : else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
219 : {
220 4 : ereport(NOTICE,
221 : errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
222 : errmsg("rounds=%d is below supported value (%d), using %d instead",
223 : srounds, PX_SHACRYPT_ROUNDS_MIN,
224 : PX_SHACRYPT_ROUNDS_MIN));
225 4 : srounds = PX_SHACRYPT_ROUNDS_MIN;
226 : }
227 :
228 40 : rounds = (uint32) srounds;
229 40 : rounds_custom = 1;
230 : }
231 :
232 : /*
233 : * Choose the correct digest length and add the magic bytes to the result
234 : * buffer. Also handle possible invalid magic byte we've extracted above.
235 : */
236 52 : switch (type)
237 : {
238 26 : case PGCRYPTO_SHA256CRYPT:
239 : {
240 : /* Two PX_MD objects required */
241 26 : err = px_find_digest("sha256", &digestA);
242 26 : if (err)
243 0 : goto error;
244 :
245 26 : err = px_find_digest("sha256", &digestB);
246 26 : if (err)
247 0 : goto error;
248 :
249 : /* digest buffer length is 32 for sha256 */
250 26 : buf_size = 32;
251 :
252 26 : appendStringInfoString(out_buf, magic_bytes[0]);
253 26 : break;
254 : }
255 :
256 26 : case PGCRYPTO_SHA512CRYPT:
257 : {
258 : /* Two PX_MD objects required */
259 26 : err = px_find_digest("sha512", &digestA);
260 26 : if (err)
261 0 : goto error;
262 :
263 26 : err = px_find_digest("sha512", &digestB);
264 26 : if (err)
265 0 : goto error;
266 :
267 26 : buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
268 :
269 26 : appendStringInfoString(out_buf, magic_bytes[1]);
270 26 : break;
271 : }
272 :
273 0 : case PGCRYPTO_SHA_UNKOWN:
274 0 : elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
275 : }
276 :
277 52 : if (rounds_custom > 0)
278 40 : appendStringInfo(out_buf, "rounds=%u$", rounds);
279 :
280 : /*
281 : * We need the real decoded salt string from salt input, this is every
282 : * character before the last '$' in the preamble. Append every compatible
283 : * character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
284 : * that depending on the input, there might be no '$' marker after the
285 : * salt, when there is no password hash attached at the end.
286 : *
287 : * We try hard to recognize mistakes, but since we might get an input
288 : * string which might also have the password hash after the salt string
289 : * section we give up as soon we reach the end of the input or if there
290 : * are any bytes consumed for the salt string until we reach the first '$'
291 : * marker thereafter.
292 : */
293 52 : for (ep = dec_salt_binary;
294 736 : *ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
295 684 : ep++)
296 : {
297 : /*
298 : * Filter out any string which shouldn't be here.
299 : *
300 : * First check for accidentally embedded magic strings here. We don't
301 : * support '$' in salt strings anyways and seeing a magic byte trying
302 : * to identify shacrypt hashes might indicate that something went
303 : * wrong when generating this salt string. Note that we later check
304 : * for non-supported literals anyways, but any '$' here confuses us at
305 : * this point.
306 : */
307 684 : fp = strstr(dec_salt_binary, magic_bytes[0]);
308 684 : if (fp != NULL)
309 0 : elog(ERROR, "bogus magic byte found in salt string");
310 :
311 684 : fp = strstr(dec_salt_binary, magic_bytes[1]);
312 684 : if (fp != NULL)
313 0 : elog(ERROR, "bogus magic byte found in salt string");
314 :
315 : /*
316 : * This looks very strict, but we assume the caller did something
317 : * wrong when we see a "rounds=" option here.
318 : */
319 684 : fp = strstr(dec_salt_binary, rounds_prefix);
320 684 : if (fp != NULL)
321 0 : elog(ERROR, "invalid rounds option specified in salt string");
322 :
323 684 : if (*ep != '$')
324 : {
325 684 : if (strchr(_crypt_itoa64, *ep) != NULL)
326 684 : appendStringInfoCharMacro(decoded_salt, *ep);
327 : else
328 0 : ereport(ERROR,
329 : errcode(ERRCODE_INVALID_PARAMETER_VALUE),
330 : errmsg("invalid character in salt string: \"%.*s\"",
331 : pg_mblen(ep), ep));
332 : }
333 : else
334 : {
335 : /*
336 : * We encountered a '$' marker. Check if we already absorbed some
337 : * bytes from input. If true, we are optimistic and terminate at
338 : * this stage. If not, we try further.
339 : *
340 : * If we already consumed enough bytes for the salt string,
341 : * everything that is after this marker is considered to be part
342 : * of an optionally specified password hash and ignored.
343 : */
344 0 : if (decoded_salt->len > 0)
345 0 : break;
346 : }
347 : }
348 :
349 52 : salt_len = decoded_salt->len;
350 52 : appendStringInfoString(out_buf, decoded_salt->data);
351 52 : elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
352 : decoded_salt->data, decoded_salt->len, rounds);
353 :
354 : /*
355 : * Sanity check: at this point the salt string buffer must not exceed
356 : * expected size.
357 : */
358 52 : if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
359 0 : elog(ERROR, "unexpected length of salt string");
360 :
361 : /*-
362 : * 1. Start digest A
363 : * 2. Add the password string to digest A
364 : * 3. Add the salt to digest A
365 : */
366 52 : px_md_update(digestA, (const unsigned char *) pw, len);
367 52 : px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
368 :
369 : /*-
370 : * 4. Create digest B
371 : * 5. Add password to digest B
372 : * 6. Add the salt string to digest B
373 : * 7. Add the password again to digest B
374 : * 8. Finalize digest B
375 : */
376 52 : px_md_update(digestB, (const unsigned char *) pw, len);
377 52 : px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
378 52 : px_md_update(digestB, (const unsigned char *) pw, len);
379 52 : px_md_finish(digestB, sha_buf);
380 :
381 : /*
382 : * 9. For each block (excluding the NULL byte), add digest B to digest A.
383 : */
384 62 : for (block = len; block > buf_size; block -= buf_size)
385 10 : px_md_update(digestA, sha_buf, buf_size);
386 :
387 : /*-
388 : * 10. For the remaining N bytes of the password string, add the first N
389 : * bytes of digest B to A.
390 : */
391 52 : px_md_update(digestA, sha_buf, block);
392 :
393 : /*-
394 : * 11. For each bit of the binary representation of the length of the
395 : * password string up to and including the highest 1-digit, starting from
396 : * to lowest bit position (numeric value 1)
397 : *
398 : * a) for a 1-digit add digest B (sha_buf) to digest A
399 : * b) for a 0-digit add the password string
400 : */
401 52 : block = len;
402 272 : while (block)
403 : {
404 220 : px_md_update(digestA,
405 : (block & 1) ? sha_buf : (const unsigned char *) pw,
406 : (block & 1) ? buf_size : len);
407 :
408 : /* right shift to next byte */
409 220 : block >>= 1;
410 : }
411 :
412 : /* 12. Finalize digest A */
413 52 : px_md_finish(digestA, sha_buf);
414 :
415 : /* 13. Start digest DP */
416 52 : px_md_reset(digestB);
417 :
418 : /*-
419 : * 14 Add every byte of the password string (excluding trailing NULL)
420 : * to the digest DP
421 : */
422 1112 : for (block = len; block > 0; block--)
423 1060 : px_md_update(digestB, (const unsigned char *) pw, len);
424 :
425 : /* 15. Finalize digest DP */
426 52 : px_md_finish(digestB, sha_buf_tmp);
427 :
428 : /*-
429 : * 16. produce byte sequence P with same length as password.
430 : * a) for each block of 32 or 64 bytes of length of the password
431 : * string the entire digest DP is used
432 : * b) for the remaining N (up to 31 or 63) bytes use the
433 : * first N bytes of digest DP
434 : */
435 52 : if ((p_bytes = palloc0(len)) == NULL)
436 : {
437 0 : goto error;
438 : }
439 :
440 : /* N step of 16, copy over the bytes from password */
441 62 : for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
442 10 : memcpy(cp, sha_buf_tmp, buf_size);
443 52 : memcpy(cp, sha_buf_tmp, block);
444 :
445 : /*
446 : * 17. Start digest DS
447 : */
448 52 : px_md_reset(digestB);
449 :
450 : /*-
451 : * 18. Repeat the following 16+A[0] times, where A[0] represents the first
452 : * byte in digest A interpreted as an 8-bit unsigned value
453 : * add the salt to digest DS
454 : */
455 7358 : for (block = 16 + sha_buf[0]; block > 0; block--)
456 7306 : px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
457 :
458 : /*
459 : * 19. Finalize digest DS
460 : */
461 52 : px_md_finish(digestB, sha_buf_tmp);
462 :
463 : /*-
464 : * 20. Produce byte sequence S of the same length as the salt string where
465 : *
466 : * a) for each block of 32 or 64 bytes of length of the salt string the
467 : * entire digest DS is used
468 : *
469 : * b) for the remaining N (up to 31 or 63) bytes use the first N
470 : * bytes of digest DS
471 : */
472 52 : if ((s_bytes = palloc0(salt_len)) == NULL)
473 0 : goto error;
474 :
475 52 : for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
476 0 : memcpy(cp, sha_buf_tmp, buf_size);
477 52 : memcpy(cp, sha_buf_tmp, block);
478 :
479 : /* Make sure we don't leave something important behind */
480 52 : px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
481 :
482 : /*-
483 : * 21. Repeat a loop according to the number specified in the rounds=<N>
484 : * specification in the salt (or the default value if none is
485 : * present). Each round is numbered, starting with 0 and up to N-1.
486 : *
487 : * The loop uses a digest as input. In the first round it is the
488 : * digest produced in step 12. In the latter steps it is the digest
489 : * produced in step 21.h of the previous round. The following text
490 : * uses the notation "digest A/B" to describe this behavior.
491 : */
492 1054576 : for (block = 0; block < rounds; block++)
493 : {
494 : /*
495 : * Make it possible to abort in case large values for "rounds" are
496 : * specified.
497 : */
498 1054524 : CHECK_FOR_INTERRUPTS();
499 :
500 : /* a) start digest B */
501 1054524 : px_md_reset(digestB);
502 :
503 : /*-
504 : * b) for odd round numbers add the byte sequence P to digest B
505 : * c) for even round numbers add digest A/B
506 : */
507 1054524 : px_md_update(digestB,
508 : (block & 1) ? (const unsigned char *) p_bytes : sha_buf,
509 : (block & 1) ? len : buf_size);
510 :
511 : /* d) for all round numbers not divisible by 3 add the byte sequence S */
512 1054524 : if ((block % 3) != 0)
513 703000 : px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
514 :
515 : /* e) for all round numbers not divisible by 7 add the byte sequence P */
516 1054524 : if ((block % 7) != 0)
517 903852 : px_md_update(digestB, (const unsigned char *) p_bytes, len);
518 :
519 : /*-
520 : * f) for odd round numbers add digest A/C
521 : * g) for even round numbers add the byte sequence P
522 : */
523 1054524 : px_md_update(digestB,
524 : (block & 1) ? sha_buf : (const unsigned char *) p_bytes,
525 : (block & 1) ? buf_size : len);
526 :
527 : /* h) finish digest C. */
528 1054524 : px_md_finish(digestB, sha_buf);
529 : }
530 :
531 52 : px_md_free(digestA);
532 52 : px_md_free(digestB);
533 :
534 52 : digestA = NULL;
535 52 : digestB = NULL;
536 :
537 52 : pfree(s_bytes);
538 52 : pfree(p_bytes);
539 :
540 52 : s_bytes = NULL;
541 52 : p_bytes = NULL;
542 :
543 : /* prepare final result buffer */
544 52 : appendStringInfoCharMacro(out_buf, '$');
545 :
546 : #define b64_from_24bit(B2, B1, B0, N) \
547 : do { \
548 : unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
549 : int i = (N); \
550 : while (i-- > 0) \
551 : { \
552 : appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
553 : w >>= 6; \
554 : } \
555 : } while (0)
556 :
557 52 : switch (type)
558 : {
559 26 : case PGCRYPTO_SHA256CRYPT:
560 : {
561 130 : b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
562 130 : b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
563 130 : b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
564 130 : b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
565 130 : b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
566 130 : b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
567 130 : b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
568 130 : b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
569 130 : b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
570 130 : b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
571 104 : b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
572 :
573 26 : break;
574 : }
575 :
576 26 : case PGCRYPTO_SHA512CRYPT:
577 : {
578 130 : b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
579 130 : b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
580 130 : b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
581 130 : b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
582 130 : b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
583 130 : b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
584 130 : b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
585 130 : b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
586 130 : b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
587 130 : b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
588 130 : b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
589 130 : b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
590 130 : b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
591 130 : b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
592 130 : b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
593 130 : b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
594 130 : b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
595 130 : b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
596 130 : b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
597 130 : b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
598 130 : b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
599 78 : b64_from_24bit(0, 0, sha_buf[63], 2);
600 :
601 26 : break;
602 : }
603 :
604 0 : case PGCRYPTO_SHA_UNKOWN:
605 : /* we shouldn't land here ... */
606 0 : elog(ERROR, "unsupported digest length");
607 : }
608 :
609 : /*
610 : * Copy over result to specified buffer.
611 : *
612 : * The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
613 : * allocated, since we checked above if dstlen is smaller than
614 : * PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
615 : *
616 : * In that case we would have failed above already.
617 : */
618 52 : memcpy(passwd, out_buf->data, out_buf->len);
619 :
620 : /* make sure nothing important is left behind */
621 52 : px_memset(&sha_buf, 0, sizeof sha_buf);
622 52 : destroyStringInfo(out_buf);
623 52 : destroyStringInfo(decoded_salt);
624 :
625 : /* ...and we're done */
626 52 : return passwd;
627 :
628 0 : error:
629 0 : if (digestA != NULL)
630 0 : px_md_free(digestA);
631 :
632 0 : if (digestB != NULL)
633 0 : px_md_free(digestB);
634 :
635 0 : destroyStringInfo(out_buf);
636 0 : destroyStringInfo(decoded_salt);
637 :
638 0 : ereport(ERROR,
639 : errcode(ERRCODE_INTERNAL_ERROR),
640 : errmsg("cannot create encrypted password"));
641 : return NULL; /* keep compiler quiet */
642 : }
|