LCOV - code coverage report
Current view: top level - contrib/pg_trgm - trgm_regexp.c (source / functions) Hit Total Coverage
Test: PostgreSQL 18devel Lines: 513 522 98.3 %
Date: 2025-01-18 04:15:08 Functions: 23 23 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * trgm_regexp.c
       4             :  *    Regular expression matching using trigrams.
       5             :  *
       6             :  * The general idea of trigram index support for a regular expression (regex)
       7             :  * search is to transform the regex into a logical expression on trigrams.
       8             :  * For example:
       9             :  *
      10             :  *   (ab|cd)efg  =>  ((abe & bef) | (cde & def)) & efg
      11             :  *
      12             :  * If a string matches the regex, then it must match the logical expression on
      13             :  * trigrams.  The opposite is not necessarily true, however: a string that
      14             :  * matches the logical expression might not match the original regex.  Such
      15             :  * false positives are removed via recheck, by running the regular regex match
      16             :  * operator on the retrieved heap tuple.
      17             :  *
      18             :  * Since the trigram expression involves both AND and OR operators, we can't
      19             :  * expect the core index machinery to evaluate it completely.  Instead, the
      20             :  * result of regex analysis is a list of trigrams to be sought in the index,
      21             :  * plus a simplified graph that is used by trigramsMatchGraph() to determine
      22             :  * whether a particular indexed value matches the expression.
      23             :  *
      24             :  * Converting a regex to a trigram expression is based on analysis of an
      25             :  * automaton corresponding to the regex.  The algorithm consists of four
      26             :  * stages:
      27             :  *
      28             :  * 1) Compile the regexp to NFA form.  This is handled by the PostgreSQL
      29             :  *    regexp library, which provides accessors for its opaque regex_t struct
      30             :  *    to expose the NFA state graph and the "colors" (sets of equivalent
      31             :  *    characters) used as state transition labels.
      32             :  *
      33             :  * 2) Transform the original NFA into an expanded graph, where arcs
      34             :  *    are labeled with trigrams that must be present in order to move from
      35             :  *    one state to another via the arcs.  The trigrams used in this stage
      36             :  *    consist of colors, not characters, as in the original NFA.
      37             :  *
      38             :  * 3) Expand the color trigrams into regular trigrams consisting of
      39             :  *    characters.  If too many distinct trigrams are produced, trigrams are
      40             :  *    eliminated and the graph is simplified until it's simple enough.
      41             :  *
      42             :  * 4) Finally, the resulting graph is packed into a TrgmPackedGraph struct,
      43             :  *    and returned to the caller.
      44             :  *
      45             :  * 1) Compile the regexp to NFA form
      46             :  * ---------------------------------
      47             :  * The automaton returned by the regexp compiler is a graph where vertices
      48             :  * are "states" and arcs are labeled with colors.  Each color represents
      49             :  * a set of characters, so that all characters assigned to the same color
      50             :  * are interchangeable, so far as matching the regexp is concerned.  There
      51             :  * are two special states: "initial" and "final".  A state can have multiple
      52             :  * outgoing arcs labeled with the same color, which makes the automaton
      53             :  * non-deterministic, because it can be in many states simultaneously.
      54             :  *
      55             :  * Note that this NFA is already lossy compared to the original regexp,
      56             :  * since it ignores some regex features such as lookahead constraints and
      57             :  * backref matching.  This is OK for our purposes since it's still the case
      58             :  * that only strings matching the NFA can possibly satisfy the regexp.
      59             :  *
      60             :  * 2) Transform the original NFA into an expanded graph
      61             :  * ----------------------------------------------------
      62             :  * In the 2nd stage, the automaton is transformed into a graph based on the
      63             :  * original NFA.  Each state in the expanded graph represents a state from
      64             :  * the original NFA, plus a prefix identifying the last two characters
      65             :  * (colors, to be precise) seen before entering the state.  There can be
      66             :  * multiple states in the expanded graph for each state in the original NFA,
      67             :  * depending on what characters can precede it.  A prefix position can be
      68             :  * "unknown" if it's uncertain what the preceding character was, or "blank"
      69             :  * if the character was a non-word character (we don't need to distinguish
      70             :  * which non-word character it was, so just think of all of them as blanks).
      71             :  *
      72             :  * For convenience in description, call an expanded-state identifier
      73             :  * (two prefix colors plus a state number from the original NFA) an
      74             :  * "enter key".
      75             :  *
      76             :  * Each arc of the expanded graph is labeled with a trigram that must be
      77             :  * present in the string to match.  We can construct this from an out-arc of
      78             :  * the underlying NFA state by combining the expanded state's prefix with the
      79             :  * color label of the underlying out-arc, if neither prefix position is
      80             :  * "unknown".  But note that some of the colors in the trigram might be
      81             :  * "blank".  This is OK since we want to generate word-boundary trigrams as
      82             :  * the regular trigram machinery would, if we know that some word characters
      83             :  * must be adjacent to a word boundary in all strings matching the NFA.
      84             :  *
      85             :  * The expanded graph can also have fewer states than the original NFA,
      86             :  * because we don't bother to make a separate state entry unless the state
      87             :  * is reachable by a valid arc.  When an enter key is reachable from a state
      88             :  * of the expanded graph, but we do not know a complete trigram associated
      89             :  * with that transition, we cannot make a valid arc; instead we insert the
      90             :  * enter key into the enterKeys list of the source state.  This effectively
      91             :  * means that the two expanded states are not reliably distinguishable based
      92             :  * on examining trigrams.
      93             :  *
      94             :  * So the expanded graph resembles the original NFA, but the arcs are
      95             :  * labeled with trigrams instead of individual characters, and there may be
      96             :  * more or fewer states.  It is a lossy representation of the original NFA:
      97             :  * any string that matches the original regexp must match the expanded graph,
      98             :  * but the reverse is not true.
      99             :  *
     100             :  * We build the expanded graph through a breadth-first traversal of states
     101             :  * reachable from the initial state.  At each reachable state, we identify the
     102             :  * states reachable from it without traversing a predictable trigram, and add
     103             :  * those states' enter keys to the current state.  Then we generate all
     104             :  * out-arcs leading out of this collection of states that have predictable
     105             :  * trigrams, adding their target states to the queue of states to examine.
     106             :  *
     107             :  * When building the graph, if the number of states or arcs exceed pre-defined
     108             :  * limits, we give up and simply mark any states not yet processed as final
     109             :  * states.  Roughly speaking, that means that we make use of some portion from
     110             :  * the beginning of the regexp.  Also, any colors that have too many member
     111             :  * characters are treated as "unknown", so that we can't derive trigrams
     112             :  * from them.
     113             :  *
     114             :  * 3) Expand the color trigrams into regular trigrams
     115             :  * --------------------------------------------------
     116             :  * The trigrams in the expanded graph are "color trigrams", consisting
     117             :  * of three consecutive colors that must be present in the string. But for
     118             :  * search, we need regular trigrams consisting of characters. In the 3rd
     119             :  * stage, the color trigrams are expanded into regular trigrams. Since each
     120             :  * color can represent many characters, the total number of regular trigrams
     121             :  * after expansion could be very large. Because searching the index for
     122             :  * thousands of trigrams would be slow, and would likely produce so many
     123             :  * false positives that we would have to traverse a large fraction of the
     124             :  * index, the graph is simplified further in a lossy fashion by removing
     125             :  * color trigrams. When a color trigram is removed, the states connected by
     126             :  * any arcs labeled with that trigram are merged.
     127             :  *
     128             :  * Trigrams do not all have equivalent value for searching: some of them are
     129             :  * more frequent and some of them are less frequent. Ideally, we would like
     130             :  * to know the distribution of trigrams, but we don't. But because of padding
     131             :  * we know for sure that the empty character is more frequent than others,
     132             :  * so we can penalize trigrams according to presence of whitespace. The
     133             :  * penalty assigned to each color trigram is the number of simple trigrams
     134             :  * it would produce, times the penalties[] multiplier associated with its
     135             :  * whitespace content. (The penalties[] constants were calculated by analysis
     136             :  * of some real-life text.) We eliminate color trigrams starting with the
     137             :  * highest-penalty one, until we get to a total penalty of no more than
     138             :  * WISH_TRGM_PENALTY. However, we cannot remove a color trigram if that would
     139             :  * lead to merging the initial and final states, so we may not be able to
     140             :  * reach WISH_TRGM_PENALTY. It's still okay so long as we have no more than
     141             :  * MAX_TRGM_COUNT simple trigrams in total, otherwise we fail.
     142             :  *
     143             :  * 4) Pack the graph into a compact representation
     144             :  * -----------------------------------------------
     145             :  * The 2nd and 3rd stages might have eliminated or merged many of the states
     146             :  * and trigrams created earlier, so in this final stage, the graph is
     147             :  * compacted and packed into a simpler struct that contains only the
     148             :  * information needed to evaluate it.
     149             :  *
     150             :  * ALGORITHM EXAMPLE:
     151             :  *
     152             :  * Consider the example regex "ab[cd]".  This regex is transformed into the
     153             :  * following NFA (for simplicity we show colors as their single members):
     154             :  *
     155             :  *                    4#
     156             :  *                  c/
     157             :  *       a     b    /
     158             :  *   1* --- 2 ---- 3
     159             :  *                  \
     160             :  *                  d\
     161             :  *                    5#
     162             :  *
     163             :  * We use * to mark initial state and # to mark final state. It's not depicted,
     164             :  * but states 1, 4, 5 have self-referencing arcs for all possible characters,
     165             :  * because this pattern can match to any part of a string.
     166             :  *
     167             :  * As the result of stage 2 we will have the following graph:
     168             :  *
     169             :  *        abc    abd
     170             :  *   2# <---- 1* ----> 3#
     171             :  *
     172             :  * The process for generating this graph is:
     173             :  * 1) Create state 1 with enter key (UNKNOWN, UNKNOWN, 1).
     174             :  * 2) Add key (UNKNOWN, "a", 2) to state 1.
     175             :  * 3) Add key ("a", "b", 3) to state 1.
     176             :  * 4) Create new state 2 with enter key ("b", "c", 4).  Add an arc
     177             :  *    from state 1 to state 2 with label trigram "abc".
     178             :  * 5) Mark state 2 final because state 4 of source NFA is marked as final.
     179             :  * 6) Create new state 3 with enter key ("b", "d", 5).  Add an arc
     180             :  *    from state 1 to state 3 with label trigram "abd".
     181             :  * 7) Mark state 3 final because state 5 of source NFA is marked as final.
     182             :  *
     183             :  *
     184             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
     185             :  * Portions Copyright (c) 1994, Regents of the University of California
     186             :  *
     187             :  * IDENTIFICATION
     188             :  *    contrib/pg_trgm/trgm_regexp.c
     189             :  *
     190             :  *-------------------------------------------------------------------------
     191             :  */
     192             : #include "postgres.h"
     193             : 
     194             : #include "catalog/pg_collation_d.h"
     195             : #include "regex/regexport.h"
     196             : #include "trgm.h"
     197             : #include "tsearch/ts_locale.h"
     198             : #include "utils/formatting.h"
     199             : #include "utils/hsearch.h"
     200             : #include "utils/memutils.h"
     201             : #include "varatt.h"
     202             : 
     203             : /*
     204             :  * Uncomment (or use -DTRGM_REGEXP_DEBUG) to print debug info,
     205             :  * for exploring and debugging the algorithm implementation.
     206             :  * This produces three graph files in /tmp, in Graphviz .gv format.
     207             :  * Some progress information is also printed to postmaster stderr.
     208             :  */
     209             : /* #define TRGM_REGEXP_DEBUG */
     210             : 
     211             : /*
     212             :  * These parameters are used to limit the amount of work done.
     213             :  * Otherwise regex processing could be too slow and memory-consuming.
     214             :  *
     215             :  *  MAX_EXPANDED_STATES - How many states we allow in expanded graph
     216             :  *  MAX_EXPANDED_ARCS - How many arcs we allow in expanded graph
     217             :  *  MAX_TRGM_COUNT - How many simple trigrams we allow to be extracted
     218             :  *  WISH_TRGM_PENALTY - Maximum desired sum of color trigram penalties
     219             :  *  COLOR_COUNT_LIMIT - Maximum number of characters per color
     220             :  */
     221             : #define MAX_EXPANDED_STATES 128
     222             : #define MAX_EXPANDED_ARCS   1024
     223             : #define MAX_TRGM_COUNT      256
     224             : #define WISH_TRGM_PENALTY   16
     225             : #define COLOR_COUNT_LIMIT   256
     226             : 
     227             : /*
     228             :  * Penalty multipliers for trigram counts depending on whitespace contents.
     229             :  * Numbers based on analysis of real-life texts.
     230             :  */
     231             : static const float4 penalties[8] = {
     232             :     1.0f,                       /* "aaa" */
     233             :     3.5f,                       /* "aa " */
     234             :     0.0f,                       /* "a a" (impossible) */
     235             :     0.0f,                       /* "a  " (impossible) */
     236             :     4.2f,                       /* " aa" */
     237             :     2.1f,                       /* " a " */
     238             :     25.0f,                      /* "  a" */
     239             :     0.0f                        /* "   " (impossible) */
     240             : };
     241             : 
     242             : /* Struct representing a single pg_wchar, converted back to multibyte form */
     243             : typedef struct
     244             : {
     245             :     char        bytes[MAX_MULTIBYTE_CHAR_LEN];
     246             : } trgm_mb_char;
     247             : 
     248             : /*
     249             :  * Attributes of NFA colors:
     250             :  *
     251             :  *  expandable              - we know the character expansion of this color
     252             :  *  containsNonWord         - color contains non-word characters
     253             :  *                            (which will not be extracted into trigrams)
     254             :  *  wordCharsCount          - count of word characters in color
     255             :  *  wordChars               - array of this color's word characters
     256             :  *                            (which can be extracted into trigrams)
     257             :  *
     258             :  * When expandable is false, the other attributes don't matter; we just
     259             :  * assume this color represents unknown character(s).
     260             :  */
     261             : typedef struct
     262             : {
     263             :     bool        expandable;
     264             :     bool        containsNonWord;
     265             :     int         wordCharsCount;
     266             :     trgm_mb_char *wordChars;
     267             : } TrgmColorInfo;
     268             : 
     269             : /*
     270             :  * A "prefix" is information about the colors of the last two characters read
     271             :  * before reaching a specific NFA state.  These colors can have special values
     272             :  * COLOR_UNKNOWN and COLOR_BLANK.  COLOR_UNKNOWN means that we have no
     273             :  * information, for example because we read some character of an unexpandable
     274             :  * color.  COLOR_BLANK means that we read a non-word character.
     275             :  *
     276             :  * We call a prefix ambiguous if at least one of its colors is unknown.  It's
     277             :  * fully ambiguous if both are unknown, partially ambiguous if only the first
     278             :  * is unknown.  (The case of first color known, second unknown is not valid.)
     279             :  *
     280             :  * Wholly- or partly-blank prefixes are mostly handled the same as regular
     281             :  * color prefixes.  This allows us to generate appropriate partly-blank
     282             :  * trigrams when the NFA requires word character(s) to appear adjacent to
     283             :  * non-word character(s).
     284             :  */
     285             : typedef int TrgmColor;
     286             : 
     287             : /* We assume that colors returned by the regexp engine cannot be these: */
     288             : #define COLOR_UNKNOWN   (-3)
     289             : #define COLOR_BLANK     (-4)
     290             : 
     291             : typedef struct
     292             : {
     293             :     TrgmColor   colors[2];
     294             : } TrgmPrefix;
     295             : 
     296             : /*
     297             :  * Color-trigram data type.  Note that some elements of the trigram can be
     298             :  * COLOR_BLANK, but we don't allow COLOR_UNKNOWN.
     299             :  */
     300             : typedef struct
     301             : {
     302             :     TrgmColor   colors[3];
     303             : } ColorTrgm;
     304             : 
     305             : /*
     306             :  * Key identifying a state of our expanded graph: color prefix, and number
     307             :  * of the corresponding state in the underlying regex NFA.  The color prefix
     308             :  * shows how we reached the regex state (to the extent that we know it).
     309             :  */
     310             : typedef struct
     311             : {
     312             :     TrgmPrefix  prefix;
     313             :     int         nstate;
     314             : } TrgmStateKey;
     315             : 
     316             : /*
     317             :  * One state of the expanded graph.
     318             :  *
     319             :  *  stateKey - ID of this state
     320             :  *  arcs     - outgoing arcs of this state (List of TrgmArc)
     321             :  *  enterKeys - enter keys reachable from this state without reading any
     322             :  *             predictable trigram (List of TrgmStateKey)
     323             :  *  flags    - flag bits
     324             :  *  snumber  - number of this state (initially assigned as -1, -2, etc,
     325             :  *             for debugging purposes only; then at the packaging stage,
     326             :  *             surviving states are renumbered with positive numbers)
     327             :  *  parent   - parent state, if this state has been merged into another
     328             :  *  tentFlags - flags this state would acquire via planned merges
     329             :  *  tentParent - planned parent state, if considering a merge
     330             :  */
     331             : #define TSTATE_INIT     0x01    /* flag indicating this state is initial */
     332             : #define TSTATE_FIN      0x02    /* flag indicating this state is final */
     333             : 
     334             : typedef struct TrgmState
     335             : {
     336             :     TrgmStateKey stateKey;      /* hashtable key: must be first field */
     337             :     List       *arcs;
     338             :     List       *enterKeys;
     339             :     int         flags;
     340             :     int         snumber;
     341             :     struct TrgmState *parent;
     342             :     int         tentFlags;
     343             :     struct TrgmState *tentParent;
     344             : } TrgmState;
     345             : 
     346             : /*
     347             :  * One arc in the expanded graph.
     348             :  */
     349             : typedef struct
     350             : {
     351             :     ColorTrgm   ctrgm;          /* trigram needed to traverse arc */
     352             :     TrgmState  *target;         /* next state */
     353             : } TrgmArc;
     354             : 
     355             : /*
     356             :  * Information about arc of specific color trigram (used in stage 3)
     357             :  *
     358             :  * Contains pointers to the source and target states.
     359             :  */
     360             : typedef struct
     361             : {
     362             :     TrgmState  *source;
     363             :     TrgmState  *target;
     364             : } TrgmArcInfo;
     365             : 
     366             : /*
     367             :  * Information about color trigram (used in stage 3)
     368             :  *
     369             :  * ctrgm    - trigram itself
     370             :  * cnumber  - number of this trigram (used in the packaging stage)
     371             :  * count    - number of simple trigrams created from this color trigram
     372             :  * expanded - indicates this color trigram is expanded into simple trigrams
     373             :  * arcs     - list of all arcs labeled with this color trigram.
     374             :  */
     375             : typedef struct
     376             : {
     377             :     ColorTrgm   ctrgm;
     378             :     int         cnumber;
     379             :     int         count;
     380             :     float4      penalty;
     381             :     bool        expanded;
     382             :     List       *arcs;
     383             : } ColorTrgmInfo;
     384             : 
     385             : /*
     386             :  * Data structure representing all the data we need during regex processing.
     387             :  *
     388             :  *  regex           - compiled regex
     389             :  *  colorInfo       - extracted information about regex's colors
     390             :  *  ncolors         - number of colors in colorInfo[]
     391             :  *  states          - hashtable of TrgmStates (states of expanded graph)
     392             :  *  initState       - pointer to initial state of expanded graph
     393             :  *  queue           - queue of to-be-processed TrgmStates
     394             :  *  keysQueue       - queue of to-be-processed TrgmStateKeys
     395             :  *  arcsCount       - total number of arcs of expanded graph (for resource
     396             :  *                    limiting)
     397             :  *  overflowed      - we have exceeded resource limit for transformation
     398             :  *  colorTrgms      - array of all color trigrams present in graph
     399             :  *  colorTrgmsCount - count of those color trigrams
     400             :  *  totalTrgmCount  - total count of extracted simple trigrams
     401             :  */
     402             : typedef struct
     403             : {
     404             :     /* Source regexp, and color information extracted from it (stage 1) */
     405             :     regex_t    *regex;
     406             :     TrgmColorInfo *colorInfo;
     407             :     int         ncolors;
     408             : 
     409             :     /* Expanded graph (stage 2) */
     410             :     HTAB       *states;
     411             :     TrgmState  *initState;
     412             :     int         nstates;
     413             : 
     414             :     /* Workspace for stage 2 */
     415             :     List       *queue;
     416             :     List       *keysQueue;
     417             :     int         arcsCount;
     418             :     bool        overflowed;
     419             : 
     420             :     /* Information about distinct color trigrams in the graph (stage 3) */
     421             :     ColorTrgmInfo *colorTrgms;
     422             :     int         colorTrgmsCount;
     423             :     int         totalTrgmCount;
     424             : } TrgmNFA;
     425             : 
     426             : /*
     427             :  * Final, compact representation of expanded graph.
     428             :  */
     429             : typedef struct
     430             : {
     431             :     int         targetState;    /* index of target state (zero-based) */
     432             :     int         colorTrgm;      /* index of color trigram for transition */
     433             : } TrgmPackedArc;
     434             : 
     435             : typedef struct
     436             : {
     437             :     int         arcsCount;      /* number of out-arcs for this state */
     438             :     TrgmPackedArc *arcs;        /* array of arcsCount packed arcs */
     439             : } TrgmPackedState;
     440             : 
     441             : /* "typedef struct TrgmPackedGraph TrgmPackedGraph" appears in trgm.h */
     442             : struct TrgmPackedGraph
     443             : {
     444             :     /*
     445             :      * colorTrigramsCount and colorTrigramGroups contain information about how
     446             :      * trigrams are grouped into color trigrams.  "colorTrigramsCount" is the
     447             :      * count of color trigrams and "colorTrigramGroups" contains number of
     448             :      * simple trigrams for each color trigram.  The array of simple trigrams
     449             :      * (stored separately from this struct) is ordered so that the simple
     450             :      * trigrams for each color trigram are consecutive, and they're in order
     451             :      * by color trigram number.
     452             :      */
     453             :     int         colorTrigramsCount;
     454             :     int        *colorTrigramGroups; /* array of size colorTrigramsCount */
     455             : 
     456             :     /*
     457             :      * The states of the simplified NFA.  State number 0 is always initial
     458             :      * state and state number 1 is always final state.
     459             :      */
     460             :     int         statesCount;
     461             :     TrgmPackedState *states;    /* array of size statesCount */
     462             : 
     463             :     /* Temporary work space for trigramsMatchGraph() */
     464             :     bool       *colorTrigramsActive;    /* array of size colorTrigramsCount */
     465             :     bool       *statesActive;   /* array of size statesCount */
     466             :     int        *statesQueue;    /* array of size statesCount */
     467             : };
     468             : 
     469             : /*
     470             :  * Temporary structure for representing an arc during packaging.
     471             :  */
     472             : typedef struct
     473             : {
     474             :     int         sourceState;
     475             :     int         targetState;
     476             :     int         colorTrgm;
     477             : } TrgmPackArcInfo;
     478             : 
     479             : 
     480             : /* prototypes for private functions */
     481             : static TRGM *createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     482             :                                    MemoryContext rcontext);
     483             : static void RE_compile(regex_t *regex, text *text_re,
     484             :                        int cflags, Oid collation);
     485             : static void getColorInfo(regex_t *regex, TrgmNFA *trgmNFA);
     486             : static bool convertPgWchar(pg_wchar c, trgm_mb_char *result);
     487             : static void transformGraph(TrgmNFA *trgmNFA);
     488             : static void processState(TrgmNFA *trgmNFA, TrgmState *state);
     489             : static void addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key);
     490             : static void addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key);
     491             : static void addArcs(TrgmNFA *trgmNFA, TrgmState *state);
     492             : static void addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
     493             :                    TrgmColor co, TrgmStateKey *destKey);
     494             : static bool validArcLabel(TrgmStateKey *key, TrgmColor co);
     495             : static TrgmState *getState(TrgmNFA *trgmNFA, TrgmStateKey *key);
     496             : static bool prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2);
     497             : static bool selectColorTrigrams(TrgmNFA *trgmNFA);
     498             : static TRGM *expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext);
     499             : static void fillTrgm(trgm *ptrgm, trgm_mb_char s[3]);
     500             : static void mergeStates(TrgmState *state1, TrgmState *state2);
     501             : static int  colorTrgmInfoCmp(const void *p1, const void *p2);
     502             : static int  colorTrgmInfoPenaltyCmp(const void *p1, const void *p2);
     503             : static TrgmPackedGraph *packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext);
     504             : static int  packArcInfoCmp(const void *a1, const void *a2);
     505             : 
     506             : #ifdef TRGM_REGEXP_DEBUG
     507             : static void printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors);
     508             : static void printTrgmNFA(TrgmNFA *trgmNFA);
     509             : static void printTrgmColor(StringInfo buf, TrgmColor co);
     510             : static void printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams);
     511             : #endif
     512             : 
     513             : 
     514             : /*
     515             :  * Main entry point to process a regular expression.
     516             :  *
     517             :  * Returns an array of trigrams required by the regular expression, or NULL if
     518             :  * the regular expression was too complex to analyze.  In addition, a packed
     519             :  * graph representation of the regex is returned into *graph.  The results
     520             :  * must be allocated in rcontext (which might or might not be the current
     521             :  * context).
     522             :  */
     523             : TRGM *
     524         130 : createTrgmNFA(text *text_re, Oid collation,
     525             :               TrgmPackedGraph **graph, MemoryContext rcontext)
     526             : {
     527             :     TRGM       *trg;
     528             :     regex_t     regex;
     529             :     MemoryContext tmpcontext;
     530             :     MemoryContext oldcontext;
     531             : 
     532             :     /*
     533             :      * This processing generates a great deal of cruft, which we'd like to
     534             :      * clean up before returning (since this function may be called in a
     535             :      * query-lifespan memory context).  Make a temp context we can work in so
     536             :      * that cleanup is easy.
     537             :      */
     538         130 :     tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
     539             :                                        "createTrgmNFA temporary context",
     540             :                                        ALLOCSET_DEFAULT_SIZES);
     541         130 :     oldcontext = MemoryContextSwitchTo(tmpcontext);
     542             : 
     543             :     /*
     544             :      * Stage 1: Compile the regexp into a NFA, using the regexp library.
     545             :      */
     546             : #ifdef IGNORECASE
     547         130 :     RE_compile(&regex, text_re,
     548             :                REG_ADVANCED | REG_NOSUB | REG_ICASE, collation);
     549             : #else
     550             :     RE_compile(&regex, text_re,
     551             :                REG_ADVANCED | REG_NOSUB, collation);
     552             : #endif
     553             : 
     554         130 :     trg = createTrgmNFAInternal(&regex, graph, rcontext);
     555             : 
     556             :     /* Clean up all the cruft we created (including regex) */
     557         130 :     MemoryContextSwitchTo(oldcontext);
     558         130 :     MemoryContextDelete(tmpcontext);
     559             : 
     560         130 :     return trg;
     561             : }
     562             : 
     563             : /*
     564             :  * Body of createTrgmNFA, exclusive of regex compilation/freeing.
     565             :  */
     566             : static TRGM *
     567         130 : createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     568             :                       MemoryContext rcontext)
     569             : {
     570             :     TRGM       *trg;
     571             :     TrgmNFA     trgmNFA;
     572             : 
     573         130 :     trgmNFA.regex = regex;
     574             : 
     575             :     /* Collect color information from the regex */
     576         130 :     getColorInfo(regex, &trgmNFA);
     577             : 
     578             : #ifdef TRGM_REGEXP_DEBUG
     579             :     printSourceNFA(regex, trgmNFA.colorInfo, trgmNFA.ncolors);
     580             : #endif
     581             : 
     582             :     /*
     583             :      * Stage 2: Create an expanded graph from the source NFA.
     584             :      */
     585         130 :     transformGraph(&trgmNFA);
     586             : 
     587             : #ifdef TRGM_REGEXP_DEBUG
     588             :     printTrgmNFA(&trgmNFA);
     589             : #endif
     590             : 
     591             :     /*
     592             :      * Fail if we were unable to make a nontrivial graph, ie it is possible to
     593             :      * get from the initial state to the final state without reading any
     594             :      * predictable trigram.
     595             :      */
     596         130 :     if (trgmNFA.initState->flags & TSTATE_FIN)
     597          18 :         return NULL;
     598             : 
     599             :     /*
     600             :      * Stage 3: Select color trigrams to expand.  Fail if too many trigrams.
     601             :      */
     602         112 :     if (!selectColorTrigrams(&trgmNFA))
     603           6 :         return NULL;
     604             : 
     605             :     /*
     606             :      * Stage 4: Expand color trigrams and pack graph into final
     607             :      * representation.
     608             :      */
     609         106 :     trg = expandColorTrigrams(&trgmNFA, rcontext);
     610             : 
     611         106 :     *graph = packGraph(&trgmNFA, rcontext);
     612             : 
     613             : #ifdef TRGM_REGEXP_DEBUG
     614             :     printTrgmPackedGraph(*graph, trg);
     615             : #endif
     616             : 
     617         106 :     return trg;
     618             : }
     619             : 
     620             : /*
     621             :  * Main entry point for evaluating a graph during index scanning.
     622             :  *
     623             :  * The check[] array is indexed by trigram number (in the array of simple
     624             :  * trigrams returned by createTrgmNFA), and holds true for those trigrams
     625             :  * that are present in the index entry being checked.
     626             :  */
     627             : bool
     628        7112 : trigramsMatchGraph(TrgmPackedGraph *graph, bool *check)
     629             : {
     630             :     int         i,
     631             :                 j,
     632             :                 k,
     633             :                 queueIn,
     634             :                 queueOut;
     635             : 
     636             :     /*
     637             :      * Reset temporary working areas.
     638             :      */
     639        7112 :     memset(graph->colorTrigramsActive, 0,
     640        7112 :            sizeof(bool) * graph->colorTrigramsCount);
     641        7112 :     memset(graph->statesActive, 0, sizeof(bool) * graph->statesCount);
     642             : 
     643             :     /*
     644             :      * Check which color trigrams were matched.  A match for any simple
     645             :      * trigram associated with a color trigram counts as a match of the color
     646             :      * trigram.
     647             :      */
     648        7112 :     j = 0;
     649       22072 :     for (i = 0; i < graph->colorTrigramsCount; i++)
     650             :     {
     651       14960 :         int         cnt = graph->colorTrigramGroups[i];
     652             : 
     653      333444 :         for (k = j; k < j + cnt; k++)
     654             :         {
     655      326184 :             if (check[k])
     656             :             {
     657             :                 /*
     658             :                  * Found one matched trigram in the group. Can skip the rest
     659             :                  * of them and go to the next group.
     660             :                  */
     661        7700 :                 graph->colorTrigramsActive[i] = true;
     662        7700 :                 break;
     663             :             }
     664             :         }
     665       14960 :         j = j + cnt;
     666             :     }
     667             : 
     668             :     /*
     669             :      * Initialize the statesQueue to hold just the initial state.  Note:
     670             :      * statesQueue has room for statesCount entries, which is certainly enough
     671             :      * since no state will be put in the queue more than once. The
     672             :      * statesActive array marks which states have been queued.
     673             :      */
     674        7112 :     graph->statesActive[0] = true;
     675        7112 :     graph->statesQueue[0] = 0;
     676        7112 :     queueIn = 0;
     677        7112 :     queueOut = 1;
     678             : 
     679             :     /* Process queued states as long as there are any. */
     680       15312 :     while (queueIn < queueOut)
     681             :     {
     682       15040 :         int         stateno = graph->statesQueue[queueIn++];
     683       15040 :         TrgmPackedState *state = &graph->states[stateno];
     684       15040 :         int         cnt = state->arcsCount;
     685             : 
     686             :         /* Loop over state's out-arcs */
     687       30308 :         for (i = 0; i < cnt; i++)
     688             :         {
     689       22108 :             TrgmPackedArc *arc = &state->arcs[i];
     690             : 
     691             :             /*
     692             :              * If corresponding color trigram is present then activate the
     693             :              * corresponding state.  We're done if that's the final state,
     694             :              * otherwise queue the state if it's not been queued already.
     695             :              */
     696       22108 :             if (graph->colorTrigramsActive[arc->colorTrgm])
     697             :             {
     698       15444 :                 int         nextstate = arc->targetState;
     699             : 
     700       15444 :                 if (nextstate == 1)
     701        6840 :                     return true;    /* success: final state is reachable */
     702             : 
     703        8604 :                 if (!graph->statesActive[nextstate])
     704             :                 {
     705        8490 :                     graph->statesActive[nextstate] = true;
     706        8490 :                     graph->statesQueue[queueOut++] = nextstate;
     707             :                 }
     708             :             }
     709             :         }
     710             :     }
     711             : 
     712             :     /* Queue is empty, so match fails. */
     713         272 :     return false;
     714             : }
     715             : 
     716             : /*
     717             :  * Compile regex string into struct at *regex.
     718             :  * NB: pg_regfree must be applied to regex if this completes successfully.
     719             :  */
     720             : static void
     721         130 : RE_compile(regex_t *regex, text *text_re, int cflags, Oid collation)
     722             : {
     723         130 :     int         text_re_len = VARSIZE_ANY_EXHDR(text_re);
     724         130 :     char       *text_re_val = VARDATA_ANY(text_re);
     725             :     pg_wchar   *pattern;
     726             :     int         pattern_len;
     727             :     int         regcomp_result;
     728             :     char        errMsg[100];
     729             : 
     730             :     /* Convert pattern string to wide characters */
     731         130 :     pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar));
     732         130 :     pattern_len = pg_mb2wchar_with_len(text_re_val,
     733             :                                        pattern,
     734             :                                        text_re_len);
     735             : 
     736             :     /* Compile regex */
     737         130 :     regcomp_result = pg_regcomp(regex,
     738             :                                 pattern,
     739             :                                 pattern_len,
     740             :                                 cflags,
     741             :                                 collation);
     742             : 
     743         130 :     pfree(pattern);
     744             : 
     745         130 :     if (regcomp_result != REG_OKAY)
     746             :     {
     747             :         /* re didn't compile (no need for pg_regfree, if so) */
     748           0 :         pg_regerror(regcomp_result, regex, errMsg, sizeof(errMsg));
     749           0 :         ereport(ERROR,
     750             :                 (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION),
     751             :                  errmsg("invalid regular expression: %s", errMsg)));
     752             :     }
     753         130 : }
     754             : 
     755             : 
     756             : /*---------------------
     757             :  * Subroutines for pre-processing the color map (stage 1).
     758             :  *---------------------
     759             :  */
     760             : 
     761             : /*
     762             :  * Fill TrgmColorInfo structure for each color using regex export functions.
     763             :  */
     764             : static void
     765         130 : getColorInfo(regex_t *regex, TrgmNFA *trgmNFA)
     766             : {
     767         130 :     int         colorsCount = pg_reg_getnumcolors(regex);
     768             :     int         i;
     769             : 
     770         130 :     trgmNFA->ncolors = colorsCount;
     771         130 :     trgmNFA->colorInfo = (TrgmColorInfo *)
     772         130 :         palloc0(colorsCount * sizeof(TrgmColorInfo));
     773             : 
     774             :     /*
     775             :      * Loop over colors, filling TrgmColorInfo about each.  Note we include
     776             :      * WHITE (0) even though we know it'll be reported as non-expandable.
     777             :      */
     778        1192 :     for (i = 0; i < colorsCount; i++)
     779             :     {
     780        1062 :         TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[i];
     781        1062 :         int         charsCount = pg_reg_getnumcharacters(regex, i);
     782             :         pg_wchar   *chars;
     783             :         int         j;
     784             : 
     785        1062 :         if (charsCount < 0 || charsCount > COLOR_COUNT_LIMIT)
     786             :         {
     787             :             /* Non expandable, or too large to work with */
     788         650 :             colorInfo->expandable = false;
     789         650 :             continue;
     790             :         }
     791             : 
     792         412 :         colorInfo->expandable = true;
     793         412 :         colorInfo->containsNonWord = false;
     794         412 :         colorInfo->wordChars = (trgm_mb_char *)
     795         412 :             palloc(sizeof(trgm_mb_char) * charsCount);
     796         412 :         colorInfo->wordCharsCount = 0;
     797             : 
     798             :         /* Extract all the chars in this color */
     799         412 :         chars = (pg_wchar *) palloc(sizeof(pg_wchar) * charsCount);
     800         412 :         pg_reg_getcharacters(regex, i, chars, charsCount);
     801             : 
     802             :         /*
     803             :          * Convert characters back to multibyte form, and save only those that
     804             :          * are word characters.  Set "containsNonWord" if any non-word
     805             :          * character.  (Note: it'd probably be nicer to keep the chars in
     806             :          * pg_wchar format for now, but ISWORDCHR wants to see multibyte.)
     807             :          */
     808        1982 :         for (j = 0; j < charsCount; j++)
     809             :         {
     810             :             trgm_mb_char c;
     811             : 
     812        1570 :             if (!convertPgWchar(chars[j], &c))
     813         730 :                 continue;       /* ok to ignore it altogether */
     814         840 :             if (ISWORDCHR(c.bytes))
     815         790 :                 colorInfo->wordChars[colorInfo->wordCharsCount++] = c;
     816             :             else
     817          50 :                 colorInfo->containsNonWord = true;
     818             :         }
     819             : 
     820         412 :         pfree(chars);
     821             :     }
     822         130 : }
     823             : 
     824             : /*
     825             :  * Convert pg_wchar to multibyte format.
     826             :  * Returns false if the character should be ignored completely.
     827             :  */
     828             : static bool
     829        1570 : convertPgWchar(pg_wchar c, trgm_mb_char *result)
     830             : {
     831             :     /* "s" has enough space for a multibyte character and a trailing NUL */
     832             :     char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
     833             : 
     834             :     /*
     835             :      * We can ignore the NUL character, since it can never appear in a PG text
     836             :      * string.  This avoids the need for various special cases when
     837             :      * reconstructing trigrams.
     838             :      */
     839        1570 :     if (c == 0)
     840           0 :         return false;
     841             : 
     842             :     /* Do the conversion, making sure the result is NUL-terminated */
     843        1570 :     memset(s, 0, sizeof(s));
     844        1570 :     pg_wchar2mb_with_len(&c, s, 1);
     845             : 
     846             :     /*
     847             :      * In IGNORECASE mode, we can ignore uppercase characters.  We assume that
     848             :      * the regex engine generated both uppercase and lowercase equivalents
     849             :      * within each color, since we used the REG_ICASE option; so there's no
     850             :      * need to process the uppercase version.
     851             :      *
     852             :      * XXX this code is dependent on the assumption that str_tolower() works
     853             :      * the same as the regex engine's internal case folding machinery.  Might
     854             :      * be wiser to expose pg_wc_tolower and test whether c ==
     855             :      * pg_wc_tolower(c). On the other hand, the trigrams in the index were
     856             :      * created using str_tolower(), so we're probably screwed if there's any
     857             :      * incompatibility anyway.
     858             :      */
     859             : #ifdef IGNORECASE
     860             :     {
     861        1570 :         char       *lowerCased = str_tolower(s, strlen(s), DEFAULT_COLLATION_OID);
     862             : 
     863        1570 :         if (strcmp(lowerCased, s) != 0)
     864             :         {
     865         730 :             pfree(lowerCased);
     866         730 :             return false;
     867             :         }
     868         840 :         pfree(lowerCased);
     869             :     }
     870             : #endif
     871             : 
     872             :     /* Fill result with exactly MAX_MULTIBYTE_CHAR_LEN bytes */
     873         840 :     memcpy(result->bytes, s, MAX_MULTIBYTE_CHAR_LEN);
     874         840 :     return true;
     875             : }
     876             : 
     877             : 
     878             : /*---------------------
     879             :  * Subroutines for expanding original NFA graph into a trigram graph (stage 2).
     880             :  *---------------------
     881             :  */
     882             : 
     883             : /*
     884             :  * Transform the graph, given a regex and extracted color information.
     885             :  *
     886             :  * We create and process a queue of expanded-graph states until all the states
     887             :  * are processed.
     888             :  *
     889             :  * This algorithm may be stopped due to resource limitation. In this case we
     890             :  * force every unprocessed branch to immediately finish with matching (this
     891             :  * can give us false positives but no false negatives) by marking all
     892             :  * unprocessed states as final.
     893             :  */
     894             : static void
     895         130 : transformGraph(TrgmNFA *trgmNFA)
     896             : {
     897             :     HASHCTL     hashCtl;
     898             :     TrgmStateKey initkey;
     899             :     TrgmState  *initstate;
     900             :     ListCell   *lc;
     901             : 
     902             :     /* Initialize this stage's workspace in trgmNFA struct */
     903         130 :     trgmNFA->queue = NIL;
     904         130 :     trgmNFA->keysQueue = NIL;
     905         130 :     trgmNFA->arcsCount = 0;
     906         130 :     trgmNFA->overflowed = false;
     907             : 
     908             :     /* Create hashtable for states */
     909         130 :     hashCtl.keysize = sizeof(TrgmStateKey);
     910         130 :     hashCtl.entrysize = sizeof(TrgmState);
     911         130 :     hashCtl.hcxt = CurrentMemoryContext;
     912         130 :     trgmNFA->states = hash_create("Trigram NFA",
     913             :                                   1024,
     914             :                                   &hashCtl,
     915             :                                   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     916         130 :     trgmNFA->nstates = 0;
     917             : 
     918             :     /* Create initial state: ambiguous prefix, NFA's initial state */
     919         130 :     MemSet(&initkey, 0, sizeof(initkey));
     920         130 :     initkey.prefix.colors[0] = COLOR_UNKNOWN;
     921         130 :     initkey.prefix.colors[1] = COLOR_UNKNOWN;
     922         130 :     initkey.nstate = pg_reg_getinitialstate(trgmNFA->regex);
     923             : 
     924         130 :     initstate = getState(trgmNFA, &initkey);
     925         130 :     initstate->flags |= TSTATE_INIT;
     926         130 :     trgmNFA->initState = initstate;
     927             : 
     928             :     /*
     929             :      * Recursively build the expanded graph by processing queue of states
     930             :      * (breadth-first search).  getState already put initstate in the queue.
     931             :      * Note that getState will append new states to the queue within the loop,
     932             :      * too; this works as long as we don't do repeat fetches using the "lc"
     933             :      * pointer.
     934             :      */
     935        1458 :     foreach(lc, trgmNFA->queue)
     936             :     {
     937        1328 :         TrgmState  *state = (TrgmState *) lfirst(lc);
     938             : 
     939             :         /*
     940             :          * If we overflowed then just mark state as final.  Otherwise do
     941             :          * actual processing.
     942             :          */
     943        1328 :         if (trgmNFA->overflowed)
     944          18 :             state->flags |= TSTATE_FIN;
     945             :         else
     946        1310 :             processState(trgmNFA, state);
     947             : 
     948             :         /* Did we overflow? */
     949        2656 :         if (trgmNFA->arcsCount > MAX_EXPANDED_ARCS ||
     950        1328 :             hash_get_num_entries(trgmNFA->states) > MAX_EXPANDED_STATES)
     951          24 :             trgmNFA->overflowed = true;
     952             :     }
     953         130 : }
     954             : 
     955             : /*
     956             :  * Process one state: add enter keys and then add outgoing arcs.
     957             :  */
     958             : static void
     959        1310 : processState(TrgmNFA *trgmNFA, TrgmState *state)
     960             : {
     961             :     ListCell   *lc;
     962             : 
     963             :     /* keysQueue should be NIL already, but make sure */
     964        1310 :     trgmNFA->keysQueue = NIL;
     965             : 
     966             :     /*
     967             :      * Add state's own key, and then process all keys added to keysQueue until
     968             :      * queue is finished.  But we can quit if the state gets marked final.
     969             :      */
     970        1310 :     addKey(trgmNFA, state, &state->stateKey);
     971        2532 :     foreach(lc, trgmNFA->keysQueue)
     972             :     {
     973        1384 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(lc);
     974             : 
     975        1384 :         if (state->flags & TSTATE_FIN)
     976         162 :             break;
     977        1222 :         addKey(trgmNFA, state, key);
     978             :     }
     979             : 
     980             :     /* Release keysQueue to clean up for next cycle */
     981        1310 :     list_free(trgmNFA->keysQueue);
     982        1310 :     trgmNFA->keysQueue = NIL;
     983             : 
     984             :     /*
     985             :      * Add outgoing arcs only if state isn't final (we have no interest in
     986             :      * outgoing arcs if we already match)
     987             :      */
     988        1310 :     if (!(state->flags & TSTATE_FIN))
     989        1142 :         addArcs(trgmNFA, state);
     990        1310 : }
     991             : 
     992             : /*
     993             :  * Add the given enter key into the state's enterKeys list, and determine
     994             :  * whether this should result in any further enter keys being added.
     995             :  * If so, add those keys to keysQueue so that processState will handle them.
     996             :  *
     997             :  * If the enter key is for the NFA's final state, mark state as TSTATE_FIN.
     998             :  * This situation means that we can reach the final state from this expanded
     999             :  * state without reading any predictable trigram, so we must consider this
    1000             :  * state as an accepting one.
    1001             :  *
    1002             :  * The given key could be a duplicate of one already in enterKeys, or be
    1003             :  * redundant with some enterKeys.  So we check that before doing anything.
    1004             :  *
    1005             :  * Note that we don't generate any actual arcs here.  addArcs will do that
    1006             :  * later, after we have identified all the enter keys for this state.
    1007             :  */
    1008             : static void
    1009        2532 : addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key)
    1010             : {
    1011             :     regex_arc_t *arcs;
    1012             :     TrgmStateKey destKey;
    1013             :     ListCell   *cell;
    1014             :     int         i,
    1015             :                 arcsCount;
    1016             : 
    1017             :     /*
    1018             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1019             :      * hashtable key by getState.
    1020             :      */
    1021        2532 :     MemSet(&destKey, 0, sizeof(destKey));
    1022             : 
    1023             :     /*
    1024             :      * Compare key to each existing enter key of the state to check for
    1025             :      * redundancy.  We can drop either old key(s) or the new key if we find
    1026             :      * redundancy.
    1027             :      */
    1028        3958 :     foreach(cell, state->enterKeys)
    1029             :     {
    1030        2032 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1031             : 
    1032        2032 :         if (existingKey->nstate == key->nstate)
    1033             :         {
    1034         624 :             if (prefixContains(&existingKey->prefix, &key->prefix))
    1035             :             {
    1036             :                 /* This old key already covers the new key. Nothing to do */
    1037         606 :                 return;
    1038             :             }
    1039          18 :             if (prefixContains(&key->prefix, &existingKey->prefix))
    1040             :             {
    1041             :                 /*
    1042             :                  * The new key covers this old key. Remove the old key, it's
    1043             :                  * no longer needed once we add this key to the list.
    1044             :                  */
    1045          12 :                 state->enterKeys = foreach_delete_current(state->enterKeys,
    1046             :                                                           cell);
    1047             :             }
    1048             :         }
    1049             :     }
    1050             : 
    1051             :     /* No redundancy, so add this key to the state's list */
    1052        1926 :     state->enterKeys = lappend(state->enterKeys, key);
    1053             : 
    1054             :     /* If state is now known final, mark it and we're done */
    1055        1926 :     if (key->nstate == pg_reg_getfinalstate(trgmNFA->regex))
    1056             :     {
    1057         168 :         state->flags |= TSTATE_FIN;
    1058         168 :         return;
    1059             :     }
    1060             : 
    1061             :     /*
    1062             :      * Loop through all outgoing arcs of the corresponding state in the
    1063             :      * original NFA.
    1064             :      */
    1065        1758 :     arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1066        1758 :     arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
    1067        1758 :     pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1068             : 
    1069        4768 :     for (i = 0; i < arcsCount; i++)
    1070             :     {
    1071        3010 :         regex_arc_t *arc = &arcs[i];
    1072             : 
    1073        3010 :         if (pg_reg_colorisbegin(trgmNFA->regex, arc->co))
    1074             :         {
    1075             :             /*
    1076             :              * Start of line/string (^).  Trigram extraction treats start of
    1077             :              * line same as start of word: double space prefix is added.
    1078             :              * Hence, make an enter key showing we can reach the arc
    1079             :              * destination with all-blank prefix.
    1080             :              */
    1081         492 :             destKey.prefix.colors[0] = COLOR_BLANK;
    1082         492 :             destKey.prefix.colors[1] = COLOR_BLANK;
    1083         492 :             destKey.nstate = arc->to;
    1084             : 
    1085             :             /* Add enter key to this state */
    1086         492 :             addKeyToQueue(trgmNFA, &destKey);
    1087             :         }
    1088        2518 :         else if (pg_reg_colorisend(trgmNFA->regex, arc->co))
    1089             :         {
    1090             :             /*
    1091             :              * End of line/string ($).  We must consider this arc as a
    1092             :              * transition that doesn't read anything.  The reason for adding
    1093             :              * this enter key to the state is that if the arc leads to the
    1094             :              * NFA's final state, we must mark this expanded state as final.
    1095             :              */
    1096         324 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1097         324 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1098         324 :             destKey.nstate = arc->to;
    1099             : 
    1100             :             /* Add enter key to this state */
    1101         324 :             addKeyToQueue(trgmNFA, &destKey);
    1102             :         }
    1103        2194 :         else if (arc->co >= 0)
    1104             :         {
    1105             :             /* Regular color (including WHITE) */
    1106        1786 :             TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[arc->co];
    1107             : 
    1108        1786 :             if (colorInfo->expandable)
    1109             :             {
    1110        1786 :                 if (colorInfo->containsNonWord &&
    1111         110 :                     !validArcLabel(key, COLOR_BLANK))
    1112             :                 {
    1113             :                     /*
    1114             :                      * We can reach the arc destination after reading a
    1115             :                      * non-word character, but the prefix is not something
    1116             :                      * that addArc will accept with COLOR_BLANK, so no trigram
    1117             :                      * arc can get made for this transition.  We must make an
    1118             :                      * enter key to show that the arc destination is
    1119             :                      * reachable.  Set it up with an all-blank prefix, since
    1120             :                      * that corresponds to what the trigram extraction code
    1121             :                      * will do at a word starting boundary.
    1122             :                      */
    1123          54 :                     destKey.prefix.colors[0] = COLOR_BLANK;
    1124          54 :                     destKey.prefix.colors[1] = COLOR_BLANK;
    1125          54 :                     destKey.nstate = arc->to;
    1126          54 :                     addKeyToQueue(trgmNFA, &destKey);
    1127             :                 }
    1128             : 
    1129        1786 :                 if (colorInfo->wordCharsCount > 0 &&
    1130        1676 :                     !validArcLabel(key, arc->co))
    1131             :                 {
    1132             :                     /*
    1133             :                      * We can reach the arc destination after reading a word
    1134             :                      * character, but the prefix is not something that addArc
    1135             :                      * will accept, so no trigram arc can get made for this
    1136             :                      * transition.  We must make an enter key to show that the
    1137             :                      * arc destination is reachable.  The prefix for the enter
    1138             :                      * key should reflect the info we have for this arc.
    1139             :                      */
    1140         262 :                     destKey.prefix.colors[0] = key->prefix.colors[1];
    1141         262 :                     destKey.prefix.colors[1] = arc->co;
    1142         262 :                     destKey.nstate = arc->to;
    1143         262 :                     addKeyToQueue(trgmNFA, &destKey);
    1144             :                 }
    1145             :             }
    1146             :             else
    1147             :             {
    1148             :                 /*
    1149             :                  * Unexpandable color.  Add enter key with ambiguous prefix,
    1150             :                  * showing we can reach the destination from this state, but
    1151             :                  * the preceding colors will be uncertain.  (We do not set the
    1152             :                  * first prefix color to key->prefix.colors[1], because a
    1153             :                  * prefix of known followed by unknown is invalid.)
    1154             :                  */
    1155           0 :                 destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1156           0 :                 destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1157           0 :                 destKey.nstate = arc->to;
    1158           0 :                 addKeyToQueue(trgmNFA, &destKey);
    1159             :             }
    1160             :         }
    1161             :         else
    1162             :         {
    1163             :             /* RAINBOW: treat as unexpandable color */
    1164         408 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1165         408 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1166         408 :             destKey.nstate = arc->to;
    1167         408 :             addKeyToQueue(trgmNFA, &destKey);
    1168             :         }
    1169             :     }
    1170             : 
    1171        1758 :     pfree(arcs);
    1172             : }
    1173             : 
    1174             : /*
    1175             :  * Add copy of given key to keysQueue for later processing.
    1176             :  */
    1177             : static void
    1178        1540 : addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1179             : {
    1180        1540 :     TrgmStateKey *keyCopy = (TrgmStateKey *) palloc(sizeof(TrgmStateKey));
    1181             : 
    1182        1540 :     memcpy(keyCopy, key, sizeof(TrgmStateKey));
    1183        1540 :     trgmNFA->keysQueue = lappend(trgmNFA->keysQueue, keyCopy);
    1184        1540 : }
    1185             : 
    1186             : /*
    1187             :  * Add outgoing arcs from given state, whose enter keys are all now known.
    1188             :  */
    1189             : static void
    1190        1142 : addArcs(TrgmNFA *trgmNFA, TrgmState *state)
    1191             : {
    1192             :     TrgmStateKey destKey;
    1193             :     ListCell   *cell;
    1194             :     regex_arc_t *arcs;
    1195             :     int         arcsCount,
    1196             :                 i;
    1197             : 
    1198             :     /*
    1199             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1200             :      * hashtable key by getState.
    1201             :      */
    1202        1142 :     MemSet(&destKey, 0, sizeof(destKey));
    1203             : 
    1204             :     /*
    1205             :      * Iterate over enter keys associated with this expanded-graph state. This
    1206             :      * includes both the state's own stateKey, and any enter keys we added to
    1207             :      * it during addKey (which represent expanded-graph states that are not
    1208             :      * distinguishable from this one by means of trigrams).  For each such
    1209             :      * enter key, examine all the out-arcs of the key's underlying NFA state,
    1210             :      * and try to make a trigram arc leading to where the out-arc leads.
    1211             :      * (addArc will deal with whether the arc is valid or not.)
    1212             :      */
    1213        2672 :     foreach(cell, state->enterKeys)
    1214             :     {
    1215        1530 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(cell);
    1216             : 
    1217        1530 :         arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1218        1530 :         arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
    1219        1530 :         pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1220             : 
    1221        3892 :         for (i = 0; i < arcsCount; i++)
    1222             :         {
    1223        2362 :             regex_arc_t *arc = &arcs[i];
    1224             :             TrgmColorInfo *colorInfo;
    1225             : 
    1226             :             /*
    1227             :              * Ignore non-expandable colors; addKey already handled the case.
    1228             :              *
    1229             :              * We need no special check for WHITE or begin/end pseudocolors
    1230             :              * here.  We don't need to do any processing for them, and they
    1231             :              * will be marked non-expandable since the regex engine will have
    1232             :              * reported them that way.  We do have to watch out for RAINBOW,
    1233             :              * which has a negative color number.
    1234             :              */
    1235        2362 :             if (arc->co < 0)
    1236         204 :                 continue;
    1237             :             Assert(arc->co < trgmNFA->ncolors);
    1238             : 
    1239        2158 :             colorInfo = &trgmNFA->colorInfo[arc->co];
    1240        2158 :             if (!colorInfo->expandable)
    1241         420 :                 continue;
    1242             : 
    1243        1738 :             if (colorInfo->containsNonWord)
    1244             :             {
    1245             :                 /*
    1246             :                  * Color includes non-word character(s).
    1247             :                  *
    1248             :                  * Generate an arc, treating this transition as occurring on
    1249             :                  * BLANK.  This allows word-ending trigrams to be manufactured
    1250             :                  * if possible.
    1251             :                  */
    1252         110 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1253         110 :                 destKey.prefix.colors[1] = COLOR_BLANK;
    1254         110 :                 destKey.nstate = arc->to;
    1255             : 
    1256         110 :                 addArc(trgmNFA, state, key, COLOR_BLANK, &destKey);
    1257             :             }
    1258             : 
    1259        1738 :             if (colorInfo->wordCharsCount > 0)
    1260             :             {
    1261             :                 /*
    1262             :                  * Color includes word character(s).
    1263             :                  *
    1264             :                  * Generate an arc.  Color is pushed into prefix of target
    1265             :                  * state.
    1266             :                  */
    1267        1628 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1268        1628 :                 destKey.prefix.colors[1] = arc->co;
    1269        1628 :                 destKey.nstate = arc->to;
    1270             : 
    1271        1628 :                 addArc(trgmNFA, state, key, arc->co, &destKey);
    1272             :             }
    1273             :         }
    1274             : 
    1275        1530 :         pfree(arcs);
    1276             :     }
    1277        1142 : }
    1278             : 
    1279             : /*
    1280             :  * Generate an out-arc of the expanded graph, if it's valid and not redundant.
    1281             :  *
    1282             :  * state: expanded-graph state we want to add an out-arc to
    1283             :  * key: provides prefix colors (key->nstate is not used)
    1284             :  * co: transition color
    1285             :  * destKey: identifier for destination state of expanded graph
    1286             :  */
    1287             : static void
    1288        1738 : addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
    1289             :        TrgmColor co, TrgmStateKey *destKey)
    1290             : {
    1291             :     TrgmArc    *arc;
    1292             :     ListCell   *cell;
    1293             : 
    1294             :     /* Do nothing if this wouldn't be a valid arc label trigram */
    1295        1738 :     if (!validArcLabel(key, co))
    1296         274 :         return;
    1297             : 
    1298             :     /*
    1299             :      * Check if we are going to reach key which is covered by a key which is
    1300             :      * already listed in this state.  If so arc is useless: the NFA can bypass
    1301             :      * it through a path that doesn't require any predictable trigram, so
    1302             :      * whether the arc's trigram is present or not doesn't really matter.
    1303             :      */
    1304        3534 :     foreach(cell, state->enterKeys)
    1305             :     {
    1306        2082 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1307             : 
    1308        2132 :         if (existingKey->nstate == destKey->nstate &&
    1309          50 :             prefixContains(&existingKey->prefix, &destKey->prefix))
    1310          12 :             return;
    1311             :     }
    1312             : 
    1313             :     /* Checks were successful, add new arc */
    1314        1452 :     arc = (TrgmArc *) palloc(sizeof(TrgmArc));
    1315        1452 :     arc->target = getState(trgmNFA, destKey);
    1316        1452 :     arc->ctrgm.colors[0] = key->prefix.colors[0];
    1317        1452 :     arc->ctrgm.colors[1] = key->prefix.colors[1];
    1318        1452 :     arc->ctrgm.colors[2] = co;
    1319             : 
    1320        1452 :     state->arcs = lappend(state->arcs, arc);
    1321        1452 :     trgmNFA->arcsCount++;
    1322             : }
    1323             : 
    1324             : /*
    1325             :  * Can we make a valid trigram arc label from the given prefix and arc color?
    1326             :  *
    1327             :  * This is split out so that tests in addKey and addArc will stay in sync.
    1328             :  */
    1329             : static bool
    1330        3524 : validArcLabel(TrgmStateKey *key, TrgmColor co)
    1331             : {
    1332             :     /*
    1333             :      * We have to know full trigram in order to add outgoing arc.  So we can't
    1334             :      * do it if prefix is ambiguous.
    1335             :      */
    1336        3524 :     if (key->prefix.colors[0] == COLOR_UNKNOWN)
    1337         466 :         return false;
    1338             : 
    1339             :     /* If key->prefix.colors[0] isn't unknown, its second color isn't either */
    1340             :     Assert(key->prefix.colors[1] != COLOR_UNKNOWN);
    1341             :     /* And we should not be called with an unknown arc color anytime */
    1342             :     Assert(co != COLOR_UNKNOWN);
    1343             : 
    1344             :     /*
    1345             :      * We don't bother with making arcs representing three non-word
    1346             :      * characters, since that's useless for trigram extraction.
    1347             :      */
    1348        3058 :     if (key->prefix.colors[0] == COLOR_BLANK &&
    1349         328 :         key->prefix.colors[1] == COLOR_BLANK &&
    1350             :         co == COLOR_BLANK)
    1351          24 :         return false;
    1352             : 
    1353             :     /*
    1354             :      * We also reject nonblank-blank-anything.  The nonblank-blank-nonblank
    1355             :      * case doesn't correspond to any trigram the trigram extraction code
    1356             :      * would make.  The nonblank-blank-blank case is also not possible with
    1357             :      * RPADDING = 1.  (Note that in many cases we'd fail to generate such a
    1358             :      * trigram even if it were valid, for example processing "foo bar" will
    1359             :      * not result in considering the trigram "o  ".  So if you want to support
    1360             :      * RPADDING = 2, there's more to do than just twiddle this test.)
    1361             :      */
    1362        3034 :     if (key->prefix.colors[0] != COLOR_BLANK &&
    1363        2730 :         key->prefix.colors[1] == COLOR_BLANK)
    1364         100 :         return false;
    1365             : 
    1366             :     /*
    1367             :      * Other combinations involving blank are valid, in particular we assume
    1368             :      * blank-blank-nonblank is valid, which presumes that LPADDING is 2.
    1369             :      *
    1370             :      * Note: Using again the example "foo bar", we will not consider the
    1371             :      * trigram "  b", though this trigram would be found by the trigram
    1372             :      * extraction code.  Since we will find " ba", it doesn't seem worth
    1373             :      * trying to hack the algorithm to generate the additional trigram.
    1374             :      */
    1375             : 
    1376             :     /* arc label is valid */
    1377        2934 :     return true;
    1378             : }
    1379             : 
    1380             : /*
    1381             :  * Get state of expanded graph for given state key,
    1382             :  * and queue the state for processing if it didn't already exist.
    1383             :  */
    1384             : static TrgmState *
    1385        1582 : getState(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1386             : {
    1387             :     TrgmState  *state;
    1388             :     bool        found;
    1389             : 
    1390        1582 :     state = (TrgmState *) hash_search(trgmNFA->states, key, HASH_ENTER,
    1391             :                                       &found);
    1392        1582 :     if (!found)
    1393             :     {
    1394             :         /* New state: initialize and queue it */
    1395        1328 :         state->arcs = NIL;
    1396        1328 :         state->enterKeys = NIL;
    1397        1328 :         state->flags = 0;
    1398             :         /* states are initially given negative numbers */
    1399        1328 :         state->snumber = -(++trgmNFA->nstates);
    1400        1328 :         state->parent = NULL;
    1401        1328 :         state->tentFlags = 0;
    1402        1328 :         state->tentParent = NULL;
    1403             : 
    1404        1328 :         trgmNFA->queue = lappend(trgmNFA->queue, state);
    1405             :     }
    1406        1582 :     return state;
    1407             : }
    1408             : 
    1409             : /*
    1410             :  * Check if prefix1 "contains" prefix2.
    1411             :  *
    1412             :  * "contains" means that any exact prefix (with no ambiguity) that satisfies
    1413             :  * prefix2 also satisfies prefix1.
    1414             :  */
    1415             : static bool
    1416         692 : prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2)
    1417             : {
    1418         692 :     if (prefix1->colors[1] == COLOR_UNKNOWN)
    1419             :     {
    1420             :         /* Fully ambiguous prefix contains everything */
    1421         612 :         return true;
    1422             :     }
    1423          80 :     else if (prefix1->colors[0] == COLOR_UNKNOWN)
    1424             :     {
    1425             :         /*
    1426             :          * Prefix with only first unknown color contains every prefix with
    1427             :          * same second color.
    1428             :          */
    1429          24 :         if (prefix1->colors[1] == prefix2->colors[1])
    1430           6 :             return true;
    1431             :         else
    1432          18 :             return false;
    1433             :     }
    1434             :     else
    1435             :     {
    1436             :         /* Exact prefix contains only the exact same prefix */
    1437          56 :         if (prefix1->colors[0] == prefix2->colors[0] &&
    1438          26 :             prefix1->colors[1] == prefix2->colors[1])
    1439          12 :             return true;
    1440             :         else
    1441          44 :             return false;
    1442             :     }
    1443             : }
    1444             : 
    1445             : 
    1446             : /*---------------------
    1447             :  * Subroutines for expanding color trigrams into regular trigrams (stage 3).
    1448             :  *---------------------
    1449             :  */
    1450             : 
    1451             : /*
    1452             :  * Get vector of all color trigrams in graph and select which of them
    1453             :  * to expand into simple trigrams.
    1454             :  *
    1455             :  * Returns true if OK, false if exhausted resource limits.
    1456             :  */
    1457             : static bool
    1458         112 : selectColorTrigrams(TrgmNFA *trgmNFA)
    1459             : {
    1460             :     HASH_SEQ_STATUS scan_status;
    1461         112 :     int         arcsCount = trgmNFA->arcsCount,
    1462             :                 i;
    1463             :     TrgmState  *state;
    1464             :     ColorTrgmInfo *colorTrgms;
    1465             :     int64       totalTrgmCount;
    1466             :     float4      totalTrgmPenalty;
    1467             :     int         cnumber;
    1468             : 
    1469             :     /* Collect color trigrams from all arcs */
    1470         112 :     colorTrgms = (ColorTrgmInfo *) palloc0(sizeof(ColorTrgmInfo) * arcsCount);
    1471         112 :     trgmNFA->colorTrgms = colorTrgms;
    1472             : 
    1473         112 :     i = 0;
    1474         112 :     hash_seq_init(&scan_status, trgmNFA->states);
    1475        1422 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1476             :     {
    1477             :         ListCell   *cell;
    1478             : 
    1479        2762 :         foreach(cell, state->arcs)
    1480             :         {
    1481        1452 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1482        1452 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) palloc(sizeof(TrgmArcInfo));
    1483        1452 :             ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1484             : 
    1485        1452 :             arcInfo->source = state;
    1486        1452 :             arcInfo->target = arc->target;
    1487        1452 :             trgmInfo->ctrgm = arc->ctrgm;
    1488        1452 :             trgmInfo->cnumber = -1;
    1489             :             /* count and penalty will be set below */
    1490        1452 :             trgmInfo->expanded = true;
    1491        1452 :             trgmInfo->arcs = list_make1(arcInfo);
    1492        1452 :             i++;
    1493             :         }
    1494             :     }
    1495             :     Assert(i == arcsCount);
    1496             : 
    1497             :     /* Remove duplicates, merging their arcs lists */
    1498         112 :     if (arcsCount >= 2)
    1499             :     {
    1500             :         ColorTrgmInfo *p1,
    1501             :                    *p2;
    1502             : 
    1503             :         /* Sort trigrams to ease duplicate detection */
    1504          68 :         qsort(colorTrgms, arcsCount, sizeof(ColorTrgmInfo), colorTrgmInfoCmp);
    1505             : 
    1506             :         /* p1 is probe point, p2 is last known non-duplicate. */
    1507          68 :         p2 = colorTrgms;
    1508        1412 :         for (p1 = colorTrgms + 1; p1 < colorTrgms + arcsCount; p1++)
    1509             :         {
    1510        1344 :             if (colorTrgmInfoCmp(p1, p2) > 0)
    1511             :             {
    1512         448 :                 p2++;
    1513         448 :                 *p2 = *p1;
    1514             :             }
    1515             :             else
    1516             :             {
    1517         896 :                 p2->arcs = list_concat(p2->arcs, p1->arcs);
    1518             :             }
    1519             :         }
    1520          68 :         trgmNFA->colorTrgmsCount = (p2 - colorTrgms) + 1;
    1521             :     }
    1522             :     else
    1523             :     {
    1524          44 :         trgmNFA->colorTrgmsCount = arcsCount;
    1525             :     }
    1526             : 
    1527             :     /*
    1528             :      * Count number of simple trigrams generated by each color trigram, and
    1529             :      * also compute a penalty value, which is the number of simple trigrams
    1530             :      * times a multiplier that depends on its whitespace content.
    1531             :      *
    1532             :      * Note: per-color-trigram counts cannot overflow an int so long as
    1533             :      * COLOR_COUNT_LIMIT is not more than the cube root of INT_MAX, ie about
    1534             :      * 1290.  However, the grand total totalTrgmCount might conceivably
    1535             :      * overflow an int, so we use int64 for that within this routine.  Also,
    1536             :      * penalties are calculated in float4 arithmetic to avoid any overflow
    1537             :      * worries.
    1538             :      */
    1539         112 :     totalTrgmCount = 0;
    1540         112 :     totalTrgmPenalty = 0.0f;
    1541         668 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1542             :     {
    1543         556 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1544             :         int         j,
    1545         556 :                     count = 1,
    1546         556 :                     typeIndex = 0;
    1547             : 
    1548        2224 :         for (j = 0; j < 3; j++)
    1549             :         {
    1550        1668 :             TrgmColor   c = trgmInfo->ctrgm.colors[j];
    1551             : 
    1552        1668 :             typeIndex *= 2;
    1553        1668 :             if (c == COLOR_BLANK)
    1554         226 :                 typeIndex++;
    1555             :             else
    1556        1442 :                 count *= trgmNFA->colorInfo[c].wordCharsCount;
    1557             :         }
    1558         556 :         trgmInfo->count = count;
    1559         556 :         totalTrgmCount += count;
    1560         556 :         trgmInfo->penalty = penalties[typeIndex] * (float4) count;
    1561         556 :         totalTrgmPenalty += trgmInfo->penalty;
    1562             :     }
    1563             : 
    1564             :     /* Sort color trigrams in descending order of their penalties */
    1565         112 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1566             :           colorTrgmInfoPenaltyCmp);
    1567             : 
    1568             :     /*
    1569             :      * Remove color trigrams from the graph so long as total penalty of color
    1570             :      * trigrams exceeds WISH_TRGM_PENALTY.  (If we fail to get down to
    1571             :      * WISH_TRGM_PENALTY, it's OK so long as total count is no more than
    1572             :      * MAX_TRGM_COUNT.)  We prefer to remove color trigrams with higher
    1573             :      * penalty, since those are the most promising for reducing the total
    1574             :      * penalty.  When removing a color trigram we have to merge states
    1575             :      * connected by arcs labeled with that trigram.  It's necessary to not
    1576             :      * merge initial and final states, because our graph becomes useless if
    1577             :      * that happens; so we cannot always remove the trigram we'd prefer to.
    1578             :      */
    1579         408 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1580             :     {
    1581         358 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1582         358 :         bool        canRemove = true;
    1583             :         ListCell   *cell;
    1584             : 
    1585             :         /* Done if we've reached the target */
    1586         358 :         if (totalTrgmPenalty <= WISH_TRGM_PENALTY)
    1587          62 :             break;
    1588             : 
    1589             : #ifdef TRGM_REGEXP_DEBUG
    1590             :         fprintf(stderr, "considering ctrgm %d %d %d, penalty %f, %d arcs\n",
    1591             :                 trgmInfo->ctrgm.colors[0],
    1592             :                 trgmInfo->ctrgm.colors[1],
    1593             :                 trgmInfo->ctrgm.colors[2],
    1594             :                 trgmInfo->penalty,
    1595             :                 list_length(trgmInfo->arcs));
    1596             : #endif
    1597             : 
    1598             :         /*
    1599             :          * Does any arc of this color trigram connect initial and final
    1600             :          * states?  If so we can't remove it.
    1601             :          */
    1602         612 :         foreach(cell, trgmInfo->arcs)
    1603             :         {
    1604         382 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1605         382 :             TrgmState  *source = arcInfo->source,
    1606         382 :                        *target = arcInfo->target;
    1607             :             int         source_flags,
    1608             :                         target_flags;
    1609             : 
    1610             : #ifdef TRGM_REGEXP_DEBUG
    1611             :             fprintf(stderr, "examining arc to s%d (%x) from s%d (%x)\n",
    1612             :                     -target->snumber, target->flags,
    1613             :                     -source->snumber, source->flags);
    1614             : #endif
    1615             : 
    1616             :             /* examine parent states, if any merging has already happened */
    1617         682 :             while (source->parent)
    1618         300 :                 source = source->parent;
    1619         814 :             while (target->parent)
    1620         432 :                 target = target->parent;
    1621             : 
    1622             : #ifdef TRGM_REGEXP_DEBUG
    1623             :             fprintf(stderr, " ... after completed merges: to s%d (%x) from s%d (%x)\n",
    1624             :                     -target->snumber, target->flags,
    1625             :                     -source->snumber, source->flags);
    1626             : #endif
    1627             : 
    1628             :             /* we must also consider merges we are planning right now */
    1629         382 :             source_flags = source->flags | source->tentFlags;
    1630         390 :             while (source->tentParent)
    1631             :             {
    1632           8 :                 source = source->tentParent;
    1633           8 :                 source_flags |= source->flags | source->tentFlags;
    1634             :             }
    1635         382 :             target_flags = target->flags | target->tentFlags;
    1636         412 :             while (target->tentParent)
    1637             :             {
    1638          30 :                 target = target->tentParent;
    1639          30 :                 target_flags |= target->flags | target->tentFlags;
    1640             :             }
    1641             : 
    1642             : #ifdef TRGM_REGEXP_DEBUG
    1643             :             fprintf(stderr, " ... after tentative merges: to s%d (%x) from s%d (%x)\n",
    1644             :                     -target->snumber, target_flags,
    1645             :                     -source->snumber, source_flags);
    1646             : #endif
    1647             : 
    1648             :             /* would fully-merged state have both INIT and FIN set? */
    1649         382 :             if (((source_flags | target_flags) & (TSTATE_INIT | TSTATE_FIN)) ==
    1650             :                 (TSTATE_INIT | TSTATE_FIN))
    1651             :             {
    1652          66 :                 canRemove = false;
    1653          66 :                 break;
    1654             :             }
    1655             : 
    1656             :             /* ok so far, so remember planned merge */
    1657         316 :             if (source != target)
    1658             :             {
    1659             : #ifdef TRGM_REGEXP_DEBUG
    1660             :                 fprintf(stderr, " ... tentatively merging s%d into s%d\n",
    1661             :                         -target->snumber, -source->snumber);
    1662             : #endif
    1663         226 :                 target->tentParent = source;
    1664         226 :                 source->tentFlags |= target_flags;
    1665             :             }
    1666             :         }
    1667             : 
    1668             :         /*
    1669             :          * We must reset all the tentFlags/tentParent fields before
    1670             :          * continuing.  tentFlags could only have become set in states that
    1671             :          * are the source or parent or tentative parent of one of the current
    1672             :          * arcs; likewise tentParent could only have become set in states that
    1673             :          * are the target or parent or tentative parent of one of the current
    1674             :          * arcs.  There might be some overlap between those sets, but if we
    1675             :          * clear tentFlags in target states as well as source states, we
    1676             :          * should be okay even if we visit a state as target before visiting
    1677             :          * it as a source.
    1678             :          */
    1679         696 :         foreach(cell, trgmInfo->arcs)
    1680             :         {
    1681         400 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1682         400 :             TrgmState  *source = arcInfo->source,
    1683         400 :                        *target = arcInfo->target;
    1684             :             TrgmState  *ttarget;
    1685             : 
    1686             :             /* no need to touch previously-merged states */
    1687         700 :             while (source->parent)
    1688         300 :                 source = source->parent;
    1689         880 :             while (target->parent)
    1690         480 :                 target = target->parent;
    1691             : 
    1692         812 :             while (source)
    1693             :             {
    1694         412 :                 source->tentFlags = 0;
    1695         412 :                 source = source->tentParent;
    1696             :             }
    1697             : 
    1698         626 :             while ((ttarget = target->tentParent) != NULL)
    1699             :             {
    1700         226 :                 target->tentParent = NULL;
    1701         226 :                 target->tentFlags = 0;   /* in case it was also a source */
    1702         226 :                 target = ttarget;
    1703             :             }
    1704             :         }
    1705             : 
    1706             :         /* Now, move on if we can't drop this trigram */
    1707         296 :         if (!canRemove)
    1708             :         {
    1709             : #ifdef TRGM_REGEXP_DEBUG
    1710             :             fprintf(stderr, " ... not ok to merge\n");
    1711             : #endif
    1712          66 :             continue;
    1713             :         }
    1714             : 
    1715             :         /* OK, merge states linked by each arc labeled by the trigram */
    1716         526 :         foreach(cell, trgmInfo->arcs)
    1717             :         {
    1718         296 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1719         296 :             TrgmState  *source = arcInfo->source,
    1720         296 :                        *target = arcInfo->target;
    1721             : 
    1722         584 :             while (source->parent)
    1723         288 :                 source = source->parent;
    1724         692 :             while (target->parent)
    1725         396 :                 target = target->parent;
    1726         296 :             if (source != target)
    1727             :             {
    1728             : #ifdef TRGM_REGEXP_DEBUG
    1729             :                 fprintf(stderr, "merging s%d into s%d\n",
    1730             :                         -target->snumber, -source->snumber);
    1731             : #endif
    1732         206 :                 mergeStates(source, target);
    1733             :                 /* Assert we didn't merge initial and final states */
    1734             :                 Assert((source->flags & (TSTATE_INIT | TSTATE_FIN)) !=
    1735             :                        (TSTATE_INIT | TSTATE_FIN));
    1736             :             }
    1737             :         }
    1738             : 
    1739             :         /* Mark trigram unexpanded, and update totals */
    1740         230 :         trgmInfo->expanded = false;
    1741         230 :         totalTrgmCount -= trgmInfo->count;
    1742         230 :         totalTrgmPenalty -= trgmInfo->penalty;
    1743             :     }
    1744             : 
    1745             :     /* Did we succeed in fitting into MAX_TRGM_COUNT? */
    1746         112 :     if (totalTrgmCount > MAX_TRGM_COUNT)
    1747           6 :         return false;
    1748             : 
    1749         106 :     trgmNFA->totalTrgmCount = (int) totalTrgmCount;
    1750             : 
    1751             :     /*
    1752             :      * Sort color trigrams by colors (will be useful for bsearch in packGraph)
    1753             :      * and enumerate the color trigrams that are expanded.
    1754             :      */
    1755         106 :     cnumber = 0;
    1756         106 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1757             :           colorTrgmInfoCmp);
    1758         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1759             :     {
    1760         550 :         if (colorTrgms[i].expanded)
    1761             :         {
    1762         320 :             colorTrgms[i].cnumber = cnumber;
    1763         320 :             cnumber++;
    1764             :         }
    1765             :     }
    1766             : 
    1767         106 :     return true;
    1768             : }
    1769             : 
    1770             : /*
    1771             :  * Expand selected color trigrams into regular trigrams.
    1772             :  *
    1773             :  * Returns the TRGM array to be passed to the index machinery.
    1774             :  * The array must be allocated in rcontext.
    1775             :  */
    1776             : static TRGM *
    1777         106 : expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1778             : {
    1779             :     TRGM       *trg;
    1780             :     trgm       *p;
    1781             :     int         i;
    1782             :     TrgmColorInfo blankColor;
    1783             :     trgm_mb_char blankChar;
    1784             : 
    1785             :     /* Set up "blank" color structure containing a single zero character */
    1786         106 :     memset(blankChar.bytes, 0, sizeof(blankChar.bytes));
    1787         106 :     blankColor.wordCharsCount = 1;
    1788         106 :     blankColor.wordChars = &blankChar;
    1789             : 
    1790             :     /* Construct the trgm array */
    1791             :     trg = (TRGM *)
    1792         106 :         MemoryContextAllocZero(rcontext,
    1793             :                                TRGMHDRSIZE +
    1794         106 :                                trgmNFA->totalTrgmCount * sizeof(trgm));
    1795         106 :     trg->flag = ARRKEY;
    1796         106 :     SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, trgmNFA->totalTrgmCount));
    1797         106 :     p = GETARR(trg);
    1798         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1799             :     {
    1800         550 :         ColorTrgmInfo *colorTrgm = &trgmNFA->colorTrgms[i];
    1801             :         TrgmColorInfo *c[3];
    1802             :         trgm_mb_char s[3];
    1803             :         int         j,
    1804             :                     i1,
    1805             :                     i2,
    1806             :                     i3;
    1807             : 
    1808             :         /* Ignore any unexpanded trigrams ... */
    1809         550 :         if (!colorTrgm->expanded)
    1810         230 :             continue;
    1811             : 
    1812             :         /* Get colors, substituting the dummy struct for COLOR_BLANK */
    1813        1280 :         for (j = 0; j < 3; j++)
    1814             :         {
    1815         960 :             if (colorTrgm->ctrgm.colors[j] != COLOR_BLANK)
    1816         826 :                 c[j] = &trgmNFA->colorInfo[colorTrgm->ctrgm.colors[j]];
    1817             :             else
    1818         134 :                 c[j] = &blankColor;
    1819             :         }
    1820             : 
    1821             :         /* Iterate over all possible combinations of colors' characters */
    1822         754 :         for (i1 = 0; i1 < c[0]->wordCharsCount; i1++)
    1823             :         {
    1824         434 :             s[0] = c[0]->wordChars[i1];
    1825        1456 :             for (i2 = 0; i2 < c[1]->wordCharsCount; i2++)
    1826             :             {
    1827        1022 :                 s[1] = c[1]->wordChars[i2];
    1828        3940 :                 for (i3 = 0; i3 < c[2]->wordCharsCount; i3++)
    1829             :                 {
    1830        2918 :                     s[2] = c[2]->wordChars[i3];
    1831        2918 :                     fillTrgm(p, s);
    1832        2918 :                     p++;
    1833             :                 }
    1834             :             }
    1835             :         }
    1836             :     }
    1837             : 
    1838         106 :     return trg;
    1839             : }
    1840             : 
    1841             : /*
    1842             :  * Convert trigram into trgm datatype.
    1843             :  */
    1844             : static void
    1845        2918 : fillTrgm(trgm *ptrgm, trgm_mb_char s[3])
    1846             : {
    1847             :     char        str[3 * MAX_MULTIBYTE_CHAR_LEN],
    1848             :                *p;
    1849             :     int         i,
    1850             :                 j;
    1851             : 
    1852             :     /* Write multibyte string into "str" (we don't need null termination) */
    1853        2918 :     p = str;
    1854             : 
    1855       11672 :     for (i = 0; i < 3; i++)
    1856             :     {
    1857        8754 :         if (s[i].bytes[0] != 0)
    1858             :         {
    1859       16464 :             for (j = 0; j < MAX_MULTIBYTE_CHAR_LEN && s[i].bytes[j]; j++)
    1860        8232 :                 *p++ = s[i].bytes[j];
    1861             :         }
    1862             :         else
    1863             :         {
    1864             :             /* Emit a space in place of COLOR_BLANK */
    1865         522 :             *p++ = ' ';
    1866             :         }
    1867             :     }
    1868             : 
    1869             :     /* Convert "str" to a standard trigram (possibly hashing it) */
    1870        2918 :     compact_trigram(ptrgm, str, p - str);
    1871        2918 : }
    1872             : 
    1873             : /*
    1874             :  * Merge two states of graph.
    1875             :  */
    1876             : static void
    1877         206 : mergeStates(TrgmState *state1, TrgmState *state2)
    1878             : {
    1879             :     Assert(state1 != state2);
    1880             :     Assert(!state1->parent);
    1881             :     Assert(!state2->parent);
    1882             : 
    1883             :     /* state1 absorbs state2's flags */
    1884         206 :     state1->flags |= state2->flags;
    1885             : 
    1886             :     /* state2, and indirectly all its children, become children of state1 */
    1887         206 :     state2->parent = state1;
    1888         206 : }
    1889             : 
    1890             : /*
    1891             :  * Compare function for sorting of color trigrams by their colors.
    1892             :  */
    1893             : static int
    1894       10178 : colorTrgmInfoCmp(const void *p1, const void *p2)
    1895             : {
    1896       10178 :     const ColorTrgmInfo *c1 = (const ColorTrgmInfo *) p1;
    1897       10178 :     const ColorTrgmInfo *c2 = (const ColorTrgmInfo *) p2;
    1898             : 
    1899       10178 :     return memcmp(&c1->ctrgm, &c2->ctrgm, sizeof(ColorTrgm));
    1900             : }
    1901             : 
    1902             : /*
    1903             :  * Compare function for sorting color trigrams in descending order of
    1904             :  * their penalty fields.
    1905             :  */
    1906             : static int
    1907         846 : colorTrgmInfoPenaltyCmp(const void *p1, const void *p2)
    1908             : {
    1909         846 :     float4      penalty1 = ((const ColorTrgmInfo *) p1)->penalty;
    1910         846 :     float4      penalty2 = ((const ColorTrgmInfo *) p2)->penalty;
    1911             : 
    1912         846 :     if (penalty1 < penalty2)
    1913         254 :         return 1;
    1914         592 :     else if (penalty1 == penalty2)
    1915         324 :         return 0;
    1916             :     else
    1917         268 :         return -1;
    1918             : }
    1919             : 
    1920             : 
    1921             : /*---------------------
    1922             :  * Subroutines for packing the graph into final representation (stage 4).
    1923             :  *---------------------
    1924             :  */
    1925             : 
    1926             : /*
    1927             :  * Pack expanded graph into final representation.
    1928             :  *
    1929             :  * The result data must be allocated in rcontext.
    1930             :  */
    1931             : static TrgmPackedGraph *
    1932         106 : packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1933             : {
    1934         106 :     int         snumber = 2,
    1935             :                 arcIndex,
    1936             :                 arcsCount;
    1937             :     HASH_SEQ_STATUS scan_status;
    1938             :     TrgmState  *state;
    1939             :     TrgmPackArcInfo *arcs;
    1940             :     TrgmPackedArc *packedArcs;
    1941             :     TrgmPackedGraph *result;
    1942             :     int         i,
    1943             :                 j;
    1944             : 
    1945             :     /* Enumerate surviving states, giving init and fin reserved numbers */
    1946         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1947        1404 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1948             :     {
    1949        1942 :         while (state->parent)
    1950         644 :             state = state->parent;
    1951             : 
    1952        1298 :         if (state->snumber < 0)
    1953             :         {
    1954        1092 :             if (state->flags & TSTATE_INIT)
    1955         106 :                 state->snumber = 0;
    1956         986 :             else if (state->flags & TSTATE_FIN)
    1957         114 :                 state->snumber = 1;
    1958             :             else
    1959             :             {
    1960         872 :                 state->snumber = snumber;
    1961         872 :                 snumber++;
    1962             :             }
    1963             :         }
    1964             :     }
    1965             : 
    1966             :     /* Collect array of all arcs */
    1967             :     arcs = (TrgmPackArcInfo *)
    1968         106 :         palloc(sizeof(TrgmPackArcInfo) * trgmNFA->arcsCount);
    1969         106 :     arcIndex = 0;
    1970         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1971        1404 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1972             :     {
    1973        1298 :         TrgmState  *source = state;
    1974             :         ListCell   *cell;
    1975             : 
    1976        1942 :         while (source->parent)
    1977         644 :             source = source->parent;
    1978             : 
    1979        2744 :         foreach(cell, state->arcs)
    1980             :         {
    1981        1446 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1982        1446 :             TrgmState  *target = arc->target;
    1983             : 
    1984        2704 :             while (target->parent)
    1985        1258 :                 target = target->parent;
    1986             : 
    1987        1446 :             if (source->snumber != target->snumber)
    1988             :             {
    1989             :                 ColorTrgmInfo *ctrgm;
    1990             : 
    1991        1132 :                 ctrgm = (ColorTrgmInfo *) bsearch(&arc->ctrgm,
    1992        1132 :                                                   trgmNFA->colorTrgms,
    1993        1132 :                                                   trgmNFA->colorTrgmsCount,
    1994             :                                                   sizeof(ColorTrgmInfo),
    1995             :                                                   colorTrgmInfoCmp);
    1996             :                 Assert(ctrgm != NULL);
    1997             :                 Assert(ctrgm->expanded);
    1998             : 
    1999        1132 :                 arcs[arcIndex].sourceState = source->snumber;
    2000        1132 :                 arcs[arcIndex].targetState = target->snumber;
    2001        1132 :                 arcs[arcIndex].colorTrgm = ctrgm->cnumber;
    2002        1132 :                 arcIndex++;
    2003             :             }
    2004             :         }
    2005             :     }
    2006             : 
    2007             :     /* Sort arcs to ease duplicate detection */
    2008         106 :     qsort(arcs, arcIndex, sizeof(TrgmPackArcInfo), packArcInfoCmp);
    2009             : 
    2010             :     /* We could have duplicates because states were merged. Remove them. */
    2011         106 :     if (arcIndex > 1)
    2012             :     {
    2013             :         /* p1 is probe point, p2 is last known non-duplicate. */
    2014             :         TrgmPackArcInfo *p1,
    2015             :                    *p2;
    2016             : 
    2017          62 :         p2 = arcs;
    2018        1092 :         for (p1 = arcs + 1; p1 < arcs + arcIndex; p1++)
    2019             :         {
    2020        1030 :             if (packArcInfoCmp(p1, p2) > 0)
    2021             :             {
    2022        1018 :                 p2++;
    2023        1018 :                 *p2 = *p1;
    2024             :             }
    2025             :         }
    2026          62 :         arcsCount = (p2 - arcs) + 1;
    2027             :     }
    2028             :     else
    2029          44 :         arcsCount = arcIndex;
    2030             : 
    2031             :     /* Create packed representation */
    2032             :     result = (TrgmPackedGraph *)
    2033         106 :         MemoryContextAlloc(rcontext, sizeof(TrgmPackedGraph));
    2034             : 
    2035             :     /* Pack color trigrams information */
    2036         106 :     result->colorTrigramsCount = 0;
    2037         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2038             :     {
    2039         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2040         320 :             result->colorTrigramsCount++;
    2041             :     }
    2042         106 :     result->colorTrigramGroups = (int *)
    2043         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->colorTrigramsCount);
    2044         106 :     j = 0;
    2045         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2046             :     {
    2047         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2048             :         {
    2049         320 :             result->colorTrigramGroups[j] = trgmNFA->colorTrgms[i].count;
    2050         320 :             j++;
    2051             :         }
    2052             :     }
    2053             : 
    2054             :     /* Pack states and arcs information */
    2055         106 :     result->statesCount = snumber;
    2056         106 :     result->states = (TrgmPackedState *)
    2057         106 :         MemoryContextAlloc(rcontext, snumber * sizeof(TrgmPackedState));
    2058             :     packedArcs = (TrgmPackedArc *)
    2059         106 :         MemoryContextAlloc(rcontext, arcsCount * sizeof(TrgmPackedArc));
    2060         106 :     j = 0;
    2061        1190 :     for (i = 0; i < snumber; i++)
    2062             :     {
    2063        1084 :         int         cnt = 0;
    2064             : 
    2065        1084 :         result->states[i].arcs = &packedArcs[j];
    2066        2204 :         while (j < arcsCount && arcs[j].sourceState == i)
    2067             :         {
    2068        1120 :             packedArcs[j].targetState = arcs[j].targetState;
    2069        1120 :             packedArcs[j].colorTrgm = arcs[j].colorTrgm;
    2070        1120 :             cnt++;
    2071        1120 :             j++;
    2072             :         }
    2073        1084 :         result->states[i].arcsCount = cnt;
    2074             :     }
    2075             : 
    2076             :     /* Allocate working memory for trigramsMatchGraph() */
    2077         106 :     result->colorTrigramsActive = (bool *)
    2078         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->colorTrigramsCount);
    2079         106 :     result->statesActive = (bool *)
    2080         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->statesCount);
    2081         106 :     result->statesQueue = (int *)
    2082         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->statesCount);
    2083             : 
    2084         106 :     return result;
    2085             : }
    2086             : 
    2087             : /*
    2088             :  * Comparison function for sorting TrgmPackArcInfos.
    2089             :  *
    2090             :  * Compares arcs in following order: sourceState, colorTrgm, targetState.
    2091             :  */
    2092             : static int
    2093        9092 : packArcInfoCmp(const void *a1, const void *a2)
    2094             : {
    2095        9092 :     const TrgmPackArcInfo *p1 = (const TrgmPackArcInfo *) a1;
    2096        9092 :     const TrgmPackArcInfo *p2 = (const TrgmPackArcInfo *) a2;
    2097             : 
    2098        9092 :     if (p1->sourceState < p2->sourceState)
    2099        4358 :         return -1;
    2100        4734 :     if (p1->sourceState > p2->sourceState)
    2101        4100 :         return 1;
    2102         634 :     if (p1->colorTrgm < p2->colorTrgm)
    2103         396 :         return -1;
    2104         238 :     if (p1->colorTrgm > p2->colorTrgm)
    2105         214 :         return 1;
    2106          24 :     if (p1->targetState < p2->targetState)
    2107           0 :         return -1;
    2108          24 :     if (p1->targetState > p2->targetState)
    2109           0 :         return 1;
    2110          24 :     return 0;
    2111             : }
    2112             : 
    2113             : 
    2114             : /*---------------------
    2115             :  * Debugging functions
    2116             :  *
    2117             :  * These are designed to emit GraphViz files.
    2118             :  *---------------------
    2119             :  */
    2120             : 
    2121             : #ifdef TRGM_REGEXP_DEBUG
    2122             : 
    2123             : /*
    2124             :  * Print initial NFA, in regexp library's representation
    2125             :  */
    2126             : static void
    2127             : printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors)
    2128             : {
    2129             :     StringInfoData buf;
    2130             :     int         nstates = pg_reg_getnumstates(regex);
    2131             :     int         state;
    2132             :     int         i;
    2133             : 
    2134             :     initStringInfo(&buf);
    2135             : 
    2136             :     appendStringInfoString(&buf, "\ndigraph sourceNFA {\n");
    2137             : 
    2138             :     for (state = 0; state < nstates; state++)
    2139             :     {
    2140             :         regex_arc_t *arcs;
    2141             :         int         i,
    2142             :                     arcsCount;
    2143             : 
    2144             :         appendStringInfo(&buf, "s%d", state);
    2145             :         if (pg_reg_getfinalstate(regex) == state)
    2146             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2147             :         appendStringInfoString(&buf, ";\n");
    2148             : 
    2149             :         arcsCount = pg_reg_getnumoutarcs(regex, state);
    2150             :         arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
    2151             :         pg_reg_getoutarcs(regex, state, arcs, arcsCount);
    2152             : 
    2153             :         for (i = 0; i < arcsCount; i++)
    2154             :         {
    2155             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"%d\"];\n",
    2156             :                              state, arcs[i].to, arcs[i].co);
    2157             :         }
    2158             : 
    2159             :         pfree(arcs);
    2160             :     }
    2161             : 
    2162             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2163             :     appendStringInfo(&buf, " initial -> s%d;\n",
    2164             :                      pg_reg_getinitialstate(regex));
    2165             : 
    2166             :     /* Print colors */
    2167             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2168             :     appendStringInfoString(&buf, "  Colors [shape = none, margin=0, label=<\n");
    2169             : 
    2170             :     for (i = 0; i < ncolors; i++)
    2171             :     {
    2172             :         TrgmColorInfo *color = &colors[i];
    2173             :         int         j;
    2174             : 
    2175             :         appendStringInfo(&buf, "<br/>Color %d: ", i);
    2176             :         if (color->expandable)
    2177             :         {
    2178             :             for (j = 0; j < color->wordCharsCount; j++)
    2179             :             {
    2180             :                 char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
    2181             : 
    2182             :                 memcpy(s, color->wordChars[j].bytes, MAX_MULTIBYTE_CHAR_LEN);
    2183             :                 s[MAX_MULTIBYTE_CHAR_LEN] = '\0';
    2184             :                 appendStringInfoString(&buf, s);
    2185             :             }
    2186             :         }
    2187             :         else
    2188             :             appendStringInfoString(&buf, "not expandable");
    2189             :         appendStringInfoChar(&buf, '\n');
    2190             :     }
    2191             : 
    2192             :     appendStringInfoString(&buf, "  >];\n");
    2193             :     appendStringInfoString(&buf, " }\n");
    2194             :     appendStringInfoString(&buf, "}\n");
    2195             : 
    2196             :     {
    2197             :         /* dot -Tpng -o /tmp/source.png < /tmp/source.gv */
    2198             :         FILE       *fp = fopen("/tmp/source.gv", "w");
    2199             : 
    2200             :         fprintf(fp, "%s", buf.data);
    2201             :         fclose(fp);
    2202             :     }
    2203             : 
    2204             :     pfree(buf.data);
    2205             : }
    2206             : 
    2207             : /*
    2208             :  * Print expanded graph.
    2209             :  */
    2210             : static void
    2211             : printTrgmNFA(TrgmNFA *trgmNFA)
    2212             : {
    2213             :     StringInfoData buf;
    2214             :     HASH_SEQ_STATUS scan_status;
    2215             :     TrgmState  *state;
    2216             :     TrgmState  *initstate = NULL;
    2217             : 
    2218             :     initStringInfo(&buf);
    2219             : 
    2220             :     appendStringInfoString(&buf, "\ndigraph transformedNFA {\n");
    2221             : 
    2222             :     hash_seq_init(&scan_status, trgmNFA->states);
    2223             :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    2224             :     {
    2225             :         ListCell   *cell;
    2226             : 
    2227             :         appendStringInfo(&buf, "s%d", -state->snumber);
    2228             :         if (state->flags & TSTATE_FIN)
    2229             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2230             :         if (state->flags & TSTATE_INIT)
    2231             :             initstate = state;
    2232             :         appendStringInfo(&buf, " [label = \"%d\"]", state->stateKey.nstate);
    2233             :         appendStringInfoString(&buf, ";\n");
    2234             : 
    2235             :         foreach(cell, state->arcs)
    2236             :         {
    2237             :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    2238             : 
    2239             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"",
    2240             :                              -state->snumber, -arc->target->snumber);
    2241             :             printTrgmColor(&buf, arc->ctrgm.colors[0]);
    2242             :             appendStringInfoChar(&buf, ' ');
    2243             :             printTrgmColor(&buf, arc->ctrgm.colors[1]);
    2244             :             appendStringInfoChar(&buf, ' ');
    2245             :             printTrgmColor(&buf, arc->ctrgm.colors[2]);
    2246             :             appendStringInfoString(&buf, "\"];\n");
    2247             :         }
    2248             :     }
    2249             : 
    2250             :     if (initstate)
    2251             :     {
    2252             :         appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2253             :         appendStringInfo(&buf, " initial -> s%d;\n", -initstate->snumber);
    2254             :     }
    2255             : 
    2256             :     appendStringInfoString(&buf, "}\n");
    2257             : 
    2258             :     {
    2259             :         /* dot -Tpng -o /tmp/transformed.png < /tmp/transformed.gv */
    2260             :         FILE       *fp = fopen("/tmp/transformed.gv", "w");
    2261             : 
    2262             :         fprintf(fp, "%s", buf.data);
    2263             :         fclose(fp);
    2264             :     }
    2265             : 
    2266             :     pfree(buf.data);
    2267             : }
    2268             : 
    2269             : /*
    2270             :  * Print a TrgmColor readably.
    2271             :  */
    2272             : static void
    2273             : printTrgmColor(StringInfo buf, TrgmColor co)
    2274             : {
    2275             :     if (co == COLOR_UNKNOWN)
    2276             :         appendStringInfoChar(buf, 'u');
    2277             :     else if (co == COLOR_BLANK)
    2278             :         appendStringInfoChar(buf, 'b');
    2279             :     else
    2280             :         appendStringInfo(buf, "%d", (int) co);
    2281             : }
    2282             : 
    2283             : /*
    2284             :  * Print final packed representation of trigram-based expanded graph.
    2285             :  */
    2286             : static void
    2287             : printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams)
    2288             : {
    2289             :     StringInfoData buf;
    2290             :     trgm       *p;
    2291             :     int         i;
    2292             : 
    2293             :     initStringInfo(&buf);
    2294             : 
    2295             :     appendStringInfoString(&buf, "\ndigraph packedGraph {\n");
    2296             : 
    2297             :     for (i = 0; i < packedGraph->statesCount; i++)
    2298             :     {
    2299             :         TrgmPackedState *state = &packedGraph->states[i];
    2300             :         int         j;
    2301             : 
    2302             :         appendStringInfo(&buf, " s%d", i);
    2303             :         if (i == 1)
    2304             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2305             : 
    2306             :         appendStringInfo(&buf, " [label = <s%d>];\n", i);
    2307             : 
    2308             :         for (j = 0; j < state->arcsCount; j++)
    2309             :         {
    2310             :             TrgmPackedArc *arc = &state->arcs[j];
    2311             : 
    2312             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"trigram %d\"];\n",
    2313             :                              i, arc->targetState, arc->colorTrgm);
    2314             :         }
    2315             :     }
    2316             : 
    2317             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2318             :     appendStringInfo(&buf, " initial -> s%d;\n", 0);
    2319             : 
    2320             :     /* Print trigrams */
    2321             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2322             :     appendStringInfoString(&buf, "  Trigrams [shape = none, margin=0, label=<\n");
    2323             : 
    2324             :     p = GETARR(trigrams);
    2325             :     for (i = 0; i < packedGraph->colorTrigramsCount; i++)
    2326             :     {
    2327             :         int         count = packedGraph->colorTrigramGroups[i];
    2328             :         int         j;
    2329             : 
    2330             :         appendStringInfo(&buf, "<br/>Trigram %d: ", i);
    2331             : 
    2332             :         for (j = 0; j < count; j++)
    2333             :         {
    2334             :             if (j > 0)
    2335             :                 appendStringInfoString(&buf, ", ");
    2336             : 
    2337             :             /*
    2338             :              * XXX This representation is nice only for all-ASCII trigrams.
    2339             :              */
    2340             :             appendStringInfo(&buf, "\"%c%c%c\"", (*p)[0], (*p)[1], (*p)[2]);
    2341             :             p++;
    2342             :         }
    2343             :     }
    2344             : 
    2345             :     appendStringInfoString(&buf, "  >];\n");
    2346             :     appendStringInfoString(&buf, " }\n");
    2347             :     appendStringInfoString(&buf, "}\n");
    2348             : 
    2349             :     {
    2350             :         /* dot -Tpng -o /tmp/packed.png < /tmp/packed.gv */
    2351             :         FILE       *fp = fopen("/tmp/packed.gv", "w");
    2352             : 
    2353             :         fprintf(fp, "%s", buf.data);
    2354             :         fclose(fp);
    2355             :     }
    2356             : 
    2357             :     pfree(buf.data);
    2358             : }
    2359             : 
    2360             : #endif                          /* TRGM_REGEXP_DEBUG */

Generated by: LCOV version 1.14