LCOV - code coverage report
Current view: top level - contrib/pg_trgm - trgm_regexp.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 513 522 98.3 %
Date: 2026-02-09 18:18:03 Functions: 23 23 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * trgm_regexp.c
       4             :  *    Regular expression matching using trigrams.
       5             :  *
       6             :  * The general idea of trigram index support for a regular expression (regex)
       7             :  * search is to transform the regex into a logical expression on trigrams.
       8             :  * For example:
       9             :  *
      10             :  *   (ab|cd)efg  =>  ((abe & bef) | (cde & def)) & efg
      11             :  *
      12             :  * If a string matches the regex, then it must match the logical expression on
      13             :  * trigrams.  The opposite is not necessarily true, however: a string that
      14             :  * matches the logical expression might not match the original regex.  Such
      15             :  * false positives are removed via recheck, by running the regular regex match
      16             :  * operator on the retrieved heap tuple.
      17             :  *
      18             :  * Since the trigram expression involves both AND and OR operators, we can't
      19             :  * expect the core index machinery to evaluate it completely.  Instead, the
      20             :  * result of regex analysis is a list of trigrams to be sought in the index,
      21             :  * plus a simplified graph that is used by trigramsMatchGraph() to determine
      22             :  * whether a particular indexed value matches the expression.
      23             :  *
      24             :  * Converting a regex to a trigram expression is based on analysis of an
      25             :  * automaton corresponding to the regex.  The algorithm consists of four
      26             :  * stages:
      27             :  *
      28             :  * 1) Compile the regexp to NFA form.  This is handled by the PostgreSQL
      29             :  *    regexp library, which provides accessors for its opaque regex_t struct
      30             :  *    to expose the NFA state graph and the "colors" (sets of equivalent
      31             :  *    characters) used as state transition labels.
      32             :  *
      33             :  * 2) Transform the original NFA into an expanded graph, where arcs
      34             :  *    are labeled with trigrams that must be present in order to move from
      35             :  *    one state to another via the arcs.  The trigrams used in this stage
      36             :  *    consist of colors, not characters, as in the original NFA.
      37             :  *
      38             :  * 3) Expand the color trigrams into regular trigrams consisting of
      39             :  *    characters.  If too many distinct trigrams are produced, trigrams are
      40             :  *    eliminated and the graph is simplified until it's simple enough.
      41             :  *
      42             :  * 4) Finally, the resulting graph is packed into a TrgmPackedGraph struct,
      43             :  *    and returned to the caller.
      44             :  *
      45             :  * 1) Compile the regexp to NFA form
      46             :  * ---------------------------------
      47             :  * The automaton returned by the regexp compiler is a graph where vertices
      48             :  * are "states" and arcs are labeled with colors.  Each color represents
      49             :  * a set of characters, so that all characters assigned to the same color
      50             :  * are interchangeable, so far as matching the regexp is concerned.  There
      51             :  * are two special states: "initial" and "final".  A state can have multiple
      52             :  * outgoing arcs labeled with the same color, which makes the automaton
      53             :  * non-deterministic, because it can be in many states simultaneously.
      54             :  *
      55             :  * Note that this NFA is already lossy compared to the original regexp,
      56             :  * since it ignores some regex features such as lookahead constraints and
      57             :  * backref matching.  This is OK for our purposes since it's still the case
      58             :  * that only strings matching the NFA can possibly satisfy the regexp.
      59             :  *
      60             :  * 2) Transform the original NFA into an expanded graph
      61             :  * ----------------------------------------------------
      62             :  * In the 2nd stage, the automaton is transformed into a graph based on the
      63             :  * original NFA.  Each state in the expanded graph represents a state from
      64             :  * the original NFA, plus a prefix identifying the last two characters
      65             :  * (colors, to be precise) seen before entering the state.  There can be
      66             :  * multiple states in the expanded graph for each state in the original NFA,
      67             :  * depending on what characters can precede it.  A prefix position can be
      68             :  * "unknown" if it's uncertain what the preceding character was, or "blank"
      69             :  * if the character was a non-word character (we don't need to distinguish
      70             :  * which non-word character it was, so just think of all of them as blanks).
      71             :  *
      72             :  * For convenience in description, call an expanded-state identifier
      73             :  * (two prefix colors plus a state number from the original NFA) an
      74             :  * "enter key".
      75             :  *
      76             :  * Each arc of the expanded graph is labeled with a trigram that must be
      77             :  * present in the string to match.  We can construct this from an out-arc of
      78             :  * the underlying NFA state by combining the expanded state's prefix with the
      79             :  * color label of the underlying out-arc, if neither prefix position is
      80             :  * "unknown".  But note that some of the colors in the trigram might be
      81             :  * "blank".  This is OK since we want to generate word-boundary trigrams as
      82             :  * the regular trigram machinery would, if we know that some word characters
      83             :  * must be adjacent to a word boundary in all strings matching the NFA.
      84             :  *
      85             :  * The expanded graph can also have fewer states than the original NFA,
      86             :  * because we don't bother to make a separate state entry unless the state
      87             :  * is reachable by a valid arc.  When an enter key is reachable from a state
      88             :  * of the expanded graph, but we do not know a complete trigram associated
      89             :  * with that transition, we cannot make a valid arc; instead we insert the
      90             :  * enter key into the enterKeys list of the source state.  This effectively
      91             :  * means that the two expanded states are not reliably distinguishable based
      92             :  * on examining trigrams.
      93             :  *
      94             :  * So the expanded graph resembles the original NFA, but the arcs are
      95             :  * labeled with trigrams instead of individual characters, and there may be
      96             :  * more or fewer states.  It is a lossy representation of the original NFA:
      97             :  * any string that matches the original regexp must match the expanded graph,
      98             :  * but the reverse is not true.
      99             :  *
     100             :  * We build the expanded graph through a breadth-first traversal of states
     101             :  * reachable from the initial state.  At each reachable state, we identify the
     102             :  * states reachable from it without traversing a predictable trigram, and add
     103             :  * those states' enter keys to the current state.  Then we generate all
     104             :  * out-arcs leading out of this collection of states that have predictable
     105             :  * trigrams, adding their target states to the queue of states to examine.
     106             :  *
     107             :  * When building the graph, if the number of states or arcs exceed pre-defined
     108             :  * limits, we give up and simply mark any states not yet processed as final
     109             :  * states.  Roughly speaking, that means that we make use of some portion from
     110             :  * the beginning of the regexp.  Also, any colors that have too many member
     111             :  * characters are treated as "unknown", so that we can't derive trigrams
     112             :  * from them.
     113             :  *
     114             :  * 3) Expand the color trigrams into regular trigrams
     115             :  * --------------------------------------------------
     116             :  * The trigrams in the expanded graph are "color trigrams", consisting
     117             :  * of three consecutive colors that must be present in the string. But for
     118             :  * search, we need regular trigrams consisting of characters. In the 3rd
     119             :  * stage, the color trigrams are expanded into regular trigrams. Since each
     120             :  * color can represent many characters, the total number of regular trigrams
     121             :  * after expansion could be very large. Because searching the index for
     122             :  * thousands of trigrams would be slow, and would likely produce so many
     123             :  * false positives that we would have to traverse a large fraction of the
     124             :  * index, the graph is simplified further in a lossy fashion by removing
     125             :  * color trigrams. When a color trigram is removed, the states connected by
     126             :  * any arcs labeled with that trigram are merged.
     127             :  *
     128             :  * Trigrams do not all have equivalent value for searching: some of them are
     129             :  * more frequent and some of them are less frequent. Ideally, we would like
     130             :  * to know the distribution of trigrams, but we don't. But because of padding
     131             :  * we know for sure that the empty character is more frequent than others,
     132             :  * so we can penalize trigrams according to presence of whitespace. The
     133             :  * penalty assigned to each color trigram is the number of simple trigrams
     134             :  * it would produce, times the penalties[] multiplier associated with its
     135             :  * whitespace content. (The penalties[] constants were calculated by analysis
     136             :  * of some real-life text.) We eliminate color trigrams starting with the
     137             :  * highest-penalty one, until we get to a total penalty of no more than
     138             :  * WISH_TRGM_PENALTY. However, we cannot remove a color trigram if that would
     139             :  * lead to merging the initial and final states, so we may not be able to
     140             :  * reach WISH_TRGM_PENALTY. It's still okay so long as we have no more than
     141             :  * MAX_TRGM_COUNT simple trigrams in total, otherwise we fail.
     142             :  *
     143             :  * 4) Pack the graph into a compact representation
     144             :  * -----------------------------------------------
     145             :  * The 2nd and 3rd stages might have eliminated or merged many of the states
     146             :  * and trigrams created earlier, so in this final stage, the graph is
     147             :  * compacted and packed into a simpler struct that contains only the
     148             :  * information needed to evaluate it.
     149             :  *
     150             :  * ALGORITHM EXAMPLE:
     151             :  *
     152             :  * Consider the example regex "ab[cd]".  This regex is transformed into the
     153             :  * following NFA (for simplicity we show colors as their single members):
     154             :  *
     155             :  *                    4#
     156             :  *                  c/
     157             :  *       a     b    /
     158             :  *   1* --- 2 ---- 3
     159             :  *                  \
     160             :  *                  d\
     161             :  *                    5#
     162             :  *
     163             :  * We use * to mark initial state and # to mark final state. It's not depicted,
     164             :  * but states 1, 4, 5 have self-referencing arcs for all possible characters,
     165             :  * because this pattern can match to any part of a string.
     166             :  *
     167             :  * As the result of stage 2 we will have the following graph:
     168             :  *
     169             :  *        abc    abd
     170             :  *   2# <---- 1* ----> 3#
     171             :  *
     172             :  * The process for generating this graph is:
     173             :  * 1) Create state 1 with enter key (UNKNOWN, UNKNOWN, 1).
     174             :  * 2) Add key (UNKNOWN, "a", 2) to state 1.
     175             :  * 3) Add key ("a", "b", 3) to state 1.
     176             :  * 4) Create new state 2 with enter key ("b", "c", 4).  Add an arc
     177             :  *    from state 1 to state 2 with label trigram "abc".
     178             :  * 5) Mark state 2 final because state 4 of source NFA is marked as final.
     179             :  * 6) Create new state 3 with enter key ("b", "d", 5).  Add an arc
     180             :  *    from state 1 to state 3 with label trigram "abd".
     181             :  * 7) Mark state 3 final because state 5 of source NFA is marked as final.
     182             :  *
     183             :  *
     184             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
     185             :  * Portions Copyright (c) 1994, Regents of the University of California
     186             :  *
     187             :  * IDENTIFICATION
     188             :  *    contrib/pg_trgm/trgm_regexp.c
     189             :  *
     190             :  *-------------------------------------------------------------------------
     191             :  */
     192             : #include "postgres.h"
     193             : 
     194             : #include "catalog/pg_collation_d.h"
     195             : #include "regex/regexport.h"
     196             : #include "trgm.h"
     197             : #include "tsearch/ts_locale.h"
     198             : #include "utils/formatting.h"
     199             : #include "utils/hsearch.h"
     200             : #include "utils/memutils.h"
     201             : #include "varatt.h"
     202             : 
     203             : /*
     204             :  * Uncomment (or use -DTRGM_REGEXP_DEBUG) to print debug info,
     205             :  * for exploring and debugging the algorithm implementation.
     206             :  * This produces three graph files in /tmp, in Graphviz .gv format.
     207             :  * Some progress information is also printed to postmaster stderr.
     208             :  */
     209             : /* #define TRGM_REGEXP_DEBUG */
     210             : 
     211             : /*
     212             :  * These parameters are used to limit the amount of work done.
     213             :  * Otherwise regex processing could be too slow and memory-consuming.
     214             :  *
     215             :  *  MAX_EXPANDED_STATES - How many states we allow in expanded graph
     216             :  *  MAX_EXPANDED_ARCS - How many arcs we allow in expanded graph
     217             :  *  MAX_TRGM_COUNT - How many simple trigrams we allow to be extracted
     218             :  *  WISH_TRGM_PENALTY - Maximum desired sum of color trigram penalties
     219             :  *  COLOR_COUNT_LIMIT - Maximum number of characters per color
     220             :  */
     221             : #define MAX_EXPANDED_STATES 128
     222             : #define MAX_EXPANDED_ARCS   1024
     223             : #define MAX_TRGM_COUNT      256
     224             : #define WISH_TRGM_PENALTY   16
     225             : #define COLOR_COUNT_LIMIT   256
     226             : 
     227             : /*
     228             :  * Penalty multipliers for trigram counts depending on whitespace contents.
     229             :  * Numbers based on analysis of real-life texts.
     230             :  */
     231             : static const float4 penalties[8] = {
     232             :     1.0f,                       /* "aaa" */
     233             :     3.5f,                       /* "aa " */
     234             :     0.0f,                       /* "a a" (impossible) */
     235             :     0.0f,                       /* "a  " (impossible) */
     236             :     4.2f,                       /* " aa" */
     237             :     2.1f,                       /* " a " */
     238             :     25.0f,                      /* "  a" */
     239             :     0.0f                        /* "   " (impossible) */
     240             : };
     241             : 
     242             : /* Struct representing a single pg_wchar, converted back to multibyte form */
     243             : typedef struct
     244             : {
     245             :     char        bytes[MAX_MULTIBYTE_CHAR_LEN];
     246             : } trgm_mb_char;
     247             : 
     248             : /*
     249             :  * Attributes of NFA colors:
     250             :  *
     251             :  *  expandable              - we know the character expansion of this color
     252             :  *  containsNonWord         - color contains non-word characters
     253             :  *                            (which will not be extracted into trigrams)
     254             :  *  wordCharsCount          - count of word characters in color
     255             :  *  wordChars               - array of this color's word characters
     256             :  *                            (which can be extracted into trigrams)
     257             :  *
     258             :  * When expandable is false, the other attributes don't matter; we just
     259             :  * assume this color represents unknown character(s).
     260             :  */
     261             : typedef struct
     262             : {
     263             :     bool        expandable;
     264             :     bool        containsNonWord;
     265             :     int         wordCharsCount;
     266             :     trgm_mb_char *wordChars;
     267             : } TrgmColorInfo;
     268             : 
     269             : /*
     270             :  * A "prefix" is information about the colors of the last two characters read
     271             :  * before reaching a specific NFA state.  These colors can have special values
     272             :  * COLOR_UNKNOWN and COLOR_BLANK.  COLOR_UNKNOWN means that we have no
     273             :  * information, for example because we read some character of an unexpandable
     274             :  * color.  COLOR_BLANK means that we read a non-word character.
     275             :  *
     276             :  * We call a prefix ambiguous if at least one of its colors is unknown.  It's
     277             :  * fully ambiguous if both are unknown, partially ambiguous if only the first
     278             :  * is unknown.  (The case of first color known, second unknown is not valid.)
     279             :  *
     280             :  * Wholly- or partly-blank prefixes are mostly handled the same as regular
     281             :  * color prefixes.  This allows us to generate appropriate partly-blank
     282             :  * trigrams when the NFA requires word character(s) to appear adjacent to
     283             :  * non-word character(s).
     284             :  */
     285             : typedef int TrgmColor;
     286             : 
     287             : /* We assume that colors returned by the regexp engine cannot be these: */
     288             : #define COLOR_UNKNOWN   (-3)
     289             : #define COLOR_BLANK     (-4)
     290             : 
     291             : typedef struct
     292             : {
     293             :     TrgmColor   colors[2];
     294             : } TrgmPrefix;
     295             : 
     296             : /*
     297             :  * Color-trigram data type.  Note that some elements of the trigram can be
     298             :  * COLOR_BLANK, but we don't allow COLOR_UNKNOWN.
     299             :  */
     300             : typedef struct
     301             : {
     302             :     TrgmColor   colors[3];
     303             : } ColorTrgm;
     304             : 
     305             : /*
     306             :  * Key identifying a state of our expanded graph: color prefix, and number
     307             :  * of the corresponding state in the underlying regex NFA.  The color prefix
     308             :  * shows how we reached the regex state (to the extent that we know it).
     309             :  */
     310             : typedef struct
     311             : {
     312             :     TrgmPrefix  prefix;
     313             :     int         nstate;
     314             : } TrgmStateKey;
     315             : 
     316             : /*
     317             :  * One state of the expanded graph.
     318             :  *
     319             :  *  stateKey - ID of this state
     320             :  *  arcs     - outgoing arcs of this state (List of TrgmArc)
     321             :  *  enterKeys - enter keys reachable from this state without reading any
     322             :  *             predictable trigram (List of TrgmStateKey)
     323             :  *  flags    - flag bits
     324             :  *  snumber  - number of this state (initially assigned as -1, -2, etc,
     325             :  *             for debugging purposes only; then at the packaging stage,
     326             :  *             surviving states are renumbered with positive numbers)
     327             :  *  parent   - parent state, if this state has been merged into another
     328             :  *  tentFlags - flags this state would acquire via planned merges
     329             :  *  tentParent - planned parent state, if considering a merge
     330             :  */
     331             : #define TSTATE_INIT     0x01    /* flag indicating this state is initial */
     332             : #define TSTATE_FIN      0x02    /* flag indicating this state is final */
     333             : 
     334             : typedef struct TrgmState
     335             : {
     336             :     TrgmStateKey stateKey;      /* hashtable key: must be first field */
     337             :     List       *arcs;
     338             :     List       *enterKeys;
     339             :     int         flags;
     340             :     int         snumber;
     341             :     struct TrgmState *parent;
     342             :     int         tentFlags;
     343             :     struct TrgmState *tentParent;
     344             : } TrgmState;
     345             : 
     346             : /*
     347             :  * One arc in the expanded graph.
     348             :  */
     349             : typedef struct
     350             : {
     351             :     ColorTrgm   ctrgm;          /* trigram needed to traverse arc */
     352             :     TrgmState  *target;         /* next state */
     353             : } TrgmArc;
     354             : 
     355             : /*
     356             :  * Information about arc of specific color trigram (used in stage 3)
     357             :  *
     358             :  * Contains pointers to the source and target states.
     359             :  */
     360             : typedef struct
     361             : {
     362             :     TrgmState  *source;
     363             :     TrgmState  *target;
     364             : } TrgmArcInfo;
     365             : 
     366             : /*
     367             :  * Information about color trigram (used in stage 3)
     368             :  *
     369             :  * ctrgm    - trigram itself
     370             :  * cnumber  - number of this trigram (used in the packaging stage)
     371             :  * count    - number of simple trigrams created from this color trigram
     372             :  * expanded - indicates this color trigram is expanded into simple trigrams
     373             :  * arcs     - list of all arcs labeled with this color trigram.
     374             :  */
     375             : typedef struct
     376             : {
     377             :     ColorTrgm   ctrgm;
     378             :     int         cnumber;
     379             :     int         count;
     380             :     float4      penalty;
     381             :     bool        expanded;
     382             :     List       *arcs;
     383             : } ColorTrgmInfo;
     384             : 
     385             : /*
     386             :  * Data structure representing all the data we need during regex processing.
     387             :  *
     388             :  *  regex           - compiled regex
     389             :  *  colorInfo       - extracted information about regex's colors
     390             :  *  ncolors         - number of colors in colorInfo[]
     391             :  *  states          - hashtable of TrgmStates (states of expanded graph)
     392             :  *  initState       - pointer to initial state of expanded graph
     393             :  *  queue           - queue of to-be-processed TrgmStates
     394             :  *  keysQueue       - queue of to-be-processed TrgmStateKeys
     395             :  *  arcsCount       - total number of arcs of expanded graph (for resource
     396             :  *                    limiting)
     397             :  *  overflowed      - we have exceeded resource limit for transformation
     398             :  *  colorTrgms      - array of all color trigrams present in graph
     399             :  *  colorTrgmsCount - count of those color trigrams
     400             :  *  totalTrgmCount  - total count of extracted simple trigrams
     401             :  */
     402             : typedef struct
     403             : {
     404             :     /* Source regexp, and color information extracted from it (stage 1) */
     405             :     regex_t    *regex;
     406             :     TrgmColorInfo *colorInfo;
     407             :     int         ncolors;
     408             : 
     409             :     /* Expanded graph (stage 2) */
     410             :     HTAB       *states;
     411             :     TrgmState  *initState;
     412             :     int         nstates;
     413             : 
     414             :     /* Workspace for stage 2 */
     415             :     List       *queue;
     416             :     List       *keysQueue;
     417             :     int         arcsCount;
     418             :     bool        overflowed;
     419             : 
     420             :     /* Information about distinct color trigrams in the graph (stage 3) */
     421             :     ColorTrgmInfo *colorTrgms;
     422             :     int         colorTrgmsCount;
     423             :     int         totalTrgmCount;
     424             : } TrgmNFA;
     425             : 
     426             : /*
     427             :  * Final, compact representation of expanded graph.
     428             :  */
     429             : typedef struct
     430             : {
     431             :     int         targetState;    /* index of target state (zero-based) */
     432             :     int         colorTrgm;      /* index of color trigram for transition */
     433             : } TrgmPackedArc;
     434             : 
     435             : typedef struct
     436             : {
     437             :     int         arcsCount;      /* number of out-arcs for this state */
     438             :     TrgmPackedArc *arcs;        /* array of arcsCount packed arcs */
     439             : } TrgmPackedState;
     440             : 
     441             : /* "typedef struct TrgmPackedGraph TrgmPackedGraph" appears in trgm.h */
     442             : struct TrgmPackedGraph
     443             : {
     444             :     /*
     445             :      * colorTrigramsCount and colorTrigramGroups contain information about how
     446             :      * trigrams are grouped into color trigrams.  "colorTrigramsCount" is the
     447             :      * count of color trigrams and "colorTrigramGroups" contains number of
     448             :      * simple trigrams for each color trigram.  The array of simple trigrams
     449             :      * (stored separately from this struct) is ordered so that the simple
     450             :      * trigrams for each color trigram are consecutive, and they're in order
     451             :      * by color trigram number.
     452             :      */
     453             :     int         colorTrigramsCount;
     454             :     int        *colorTrigramGroups; /* array of size colorTrigramsCount */
     455             : 
     456             :     /*
     457             :      * The states of the simplified NFA.  State number 0 is always initial
     458             :      * state and state number 1 is always final state.
     459             :      */
     460             :     int         statesCount;
     461             :     TrgmPackedState *states;    /* array of size statesCount */
     462             : 
     463             :     /* Temporary work space for trigramsMatchGraph() */
     464             :     bool       *colorTrigramsActive;    /* array of size colorTrigramsCount */
     465             :     bool       *statesActive;   /* array of size statesCount */
     466             :     int        *statesQueue;    /* array of size statesCount */
     467             : };
     468             : 
     469             : /*
     470             :  * Temporary structure for representing an arc during packaging.
     471             :  */
     472             : typedef struct
     473             : {
     474             :     int         sourceState;
     475             :     int         targetState;
     476             :     int         colorTrgm;
     477             : } TrgmPackArcInfo;
     478             : 
     479             : 
     480             : /* prototypes for private functions */
     481             : static TRGM *createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     482             :                                    MemoryContext rcontext);
     483             : static void RE_compile(regex_t *regex, text *text_re,
     484             :                        int cflags, Oid collation);
     485             : static void getColorInfo(regex_t *regex, TrgmNFA *trgmNFA);
     486             : static int  convertPgWchar(pg_wchar c, trgm_mb_char *result);
     487             : static void transformGraph(TrgmNFA *trgmNFA);
     488             : static void processState(TrgmNFA *trgmNFA, TrgmState *state);
     489             : static void addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key);
     490             : static void addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key);
     491             : static void addArcs(TrgmNFA *trgmNFA, TrgmState *state);
     492             : static void addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
     493             :                    TrgmColor co, TrgmStateKey *destKey);
     494             : static bool validArcLabel(TrgmStateKey *key, TrgmColor co);
     495             : static TrgmState *getState(TrgmNFA *trgmNFA, TrgmStateKey *key);
     496             : static bool prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2);
     497             : static bool selectColorTrigrams(TrgmNFA *trgmNFA);
     498             : static TRGM *expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext);
     499             : static void fillTrgm(trgm *ptrgm, trgm_mb_char s[3]);
     500             : static void mergeStates(TrgmState *state1, TrgmState *state2);
     501             : static int  colorTrgmInfoCmp(const void *p1, const void *p2);
     502             : static int  colorTrgmInfoPenaltyCmp(const void *p1, const void *p2);
     503             : static TrgmPackedGraph *packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext);
     504             : static int  packArcInfoCmp(const void *a1, const void *a2);
     505             : 
     506             : #ifdef TRGM_REGEXP_DEBUG
     507             : static void printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors);
     508             : static void printTrgmNFA(TrgmNFA *trgmNFA);
     509             : static void printTrgmColor(StringInfo buf, TrgmColor co);
     510             : static void printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams);
     511             : #endif
     512             : 
     513             : 
     514             : /*
     515             :  * Main entry point to process a regular expression.
     516             :  *
     517             :  * Returns an array of trigrams required by the regular expression, or NULL if
     518             :  * the regular expression was too complex to analyze.  In addition, a packed
     519             :  * graph representation of the regex is returned into *graph.  The results
     520             :  * must be allocated in rcontext (which might or might not be the current
     521             :  * context).
     522             :  */
     523             : TRGM *
     524         130 : createTrgmNFA(text *text_re, Oid collation,
     525             :               TrgmPackedGraph **graph, MemoryContext rcontext)
     526             : {
     527             :     TRGM       *trg;
     528             :     regex_t     regex;
     529             :     MemoryContext tmpcontext;
     530             :     MemoryContext oldcontext;
     531             : 
     532             :     /*
     533             :      * This processing generates a great deal of cruft, which we'd like to
     534             :      * clean up before returning (since this function may be called in a
     535             :      * query-lifespan memory context).  Make a temp context we can work in so
     536             :      * that cleanup is easy.
     537             :      */
     538         130 :     tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
     539             :                                        "createTrgmNFA temporary context",
     540             :                                        ALLOCSET_DEFAULT_SIZES);
     541         130 :     oldcontext = MemoryContextSwitchTo(tmpcontext);
     542             : 
     543             :     /*
     544             :      * Stage 1: Compile the regexp into a NFA, using the regexp library.
     545             :      */
     546             : #ifdef IGNORECASE
     547         130 :     RE_compile(&regex, text_re,
     548             :                REG_ADVANCED | REG_NOSUB | REG_ICASE, collation);
     549             : #else
     550             :     RE_compile(&regex, text_re,
     551             :                REG_ADVANCED | REG_NOSUB, collation);
     552             : #endif
     553             : 
     554         130 :     trg = createTrgmNFAInternal(&regex, graph, rcontext);
     555             : 
     556             :     /* Clean up all the cruft we created (including regex) */
     557         130 :     MemoryContextSwitchTo(oldcontext);
     558         130 :     MemoryContextDelete(tmpcontext);
     559             : 
     560         130 :     return trg;
     561             : }
     562             : 
     563             : /*
     564             :  * Body of createTrgmNFA, exclusive of regex compilation/freeing.
     565             :  */
     566             : static TRGM *
     567         130 : createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     568             :                       MemoryContext rcontext)
     569             : {
     570             :     TRGM       *trg;
     571             :     TrgmNFA     trgmNFA;
     572             : 
     573         130 :     trgmNFA.regex = regex;
     574             : 
     575             :     /* Collect color information from the regex */
     576         130 :     getColorInfo(regex, &trgmNFA);
     577             : 
     578             : #ifdef TRGM_REGEXP_DEBUG
     579             :     printSourceNFA(regex, trgmNFA.colorInfo, trgmNFA.ncolors);
     580             : #endif
     581             : 
     582             :     /*
     583             :      * Stage 2: Create an expanded graph from the source NFA.
     584             :      */
     585         130 :     transformGraph(&trgmNFA);
     586             : 
     587             : #ifdef TRGM_REGEXP_DEBUG
     588             :     printTrgmNFA(&trgmNFA);
     589             : #endif
     590             : 
     591             :     /*
     592             :      * Fail if we were unable to make a nontrivial graph, ie it is possible to
     593             :      * get from the initial state to the final state without reading any
     594             :      * predictable trigram.
     595             :      */
     596         130 :     if (trgmNFA.initState->flags & TSTATE_FIN)
     597          18 :         return NULL;
     598             : 
     599             :     /*
     600             :      * Stage 3: Select color trigrams to expand.  Fail if too many trigrams.
     601             :      */
     602         112 :     if (!selectColorTrigrams(&trgmNFA))
     603           6 :         return NULL;
     604             : 
     605             :     /*
     606             :      * Stage 4: Expand color trigrams and pack graph into final
     607             :      * representation.
     608             :      */
     609         106 :     trg = expandColorTrigrams(&trgmNFA, rcontext);
     610             : 
     611         106 :     *graph = packGraph(&trgmNFA, rcontext);
     612             : 
     613             : #ifdef TRGM_REGEXP_DEBUG
     614             :     printTrgmPackedGraph(*graph, trg);
     615             : #endif
     616             : 
     617         106 :     return trg;
     618             : }
     619             : 
     620             : /*
     621             :  * Main entry point for evaluating a graph during index scanning.
     622             :  *
     623             :  * The check[] array is indexed by trigram number (in the array of simple
     624             :  * trigrams returned by createTrgmNFA), and holds true for those trigrams
     625             :  * that are present in the index entry being checked.
     626             :  */
     627             : bool
     628        7114 : trigramsMatchGraph(TrgmPackedGraph *graph, bool *check)
     629             : {
     630             :     int         i,
     631             :                 j,
     632             :                 k,
     633             :                 queueIn,
     634             :                 queueOut;
     635             : 
     636             :     /*
     637             :      * Reset temporary working areas.
     638             :      */
     639        7114 :     memset(graph->colorTrigramsActive, 0,
     640        7114 :            sizeof(bool) * graph->colorTrigramsCount);
     641        7114 :     memset(graph->statesActive, 0, sizeof(bool) * graph->statesCount);
     642             : 
     643             :     /*
     644             :      * Check which color trigrams were matched.  A match for any simple
     645             :      * trigram associated with a color trigram counts as a match of the color
     646             :      * trigram.
     647             :      */
     648        7114 :     j = 0;
     649       22078 :     for (i = 0; i < graph->colorTrigramsCount; i++)
     650             :     {
     651       14964 :         int         cnt = graph->colorTrigramGroups[i];
     652             : 
     653      333454 :         for (k = j; k < j + cnt; k++)
     654             :         {
     655      326194 :             if (check[k])
     656             :             {
     657             :                 /*
     658             :                  * Found one matched trigram in the group. Can skip the rest
     659             :                  * of them and go to the next group.
     660             :                  */
     661        7704 :                 graph->colorTrigramsActive[i] = true;
     662        7704 :                 break;
     663             :             }
     664             :         }
     665       14964 :         j = j + cnt;
     666             :     }
     667             : 
     668             :     /*
     669             :      * Initialize the statesQueue to hold just the initial state.  Note:
     670             :      * statesQueue has room for statesCount entries, which is certainly enough
     671             :      * since no state will be put in the queue more than once. The
     672             :      * statesActive array marks which states have been queued.
     673             :      */
     674        7114 :     graph->statesActive[0] = true;
     675        7114 :     graph->statesQueue[0] = 0;
     676        7114 :     queueIn = 0;
     677        7114 :     queueOut = 1;
     678             : 
     679             :     /* Process queued states as long as there are any. */
     680       15314 :     while (queueIn < queueOut)
     681             :     {
     682       15042 :         int         stateno = graph->statesQueue[queueIn++];
     683       15042 :         TrgmPackedState *state = &graph->states[stateno];
     684       15042 :         int         cnt = state->arcsCount;
     685             : 
     686             :         /* Loop over state's out-arcs */
     687       30312 :         for (i = 0; i < cnt; i++)
     688             :         {
     689       22112 :             TrgmPackedArc *arc = &state->arcs[i];
     690             : 
     691             :             /*
     692             :              * If corresponding color trigram is present then activate the
     693             :              * corresponding state.  We're done if that's the final state,
     694             :              * otherwise queue the state if it's not been queued already.
     695             :              */
     696       22112 :             if (graph->colorTrigramsActive[arc->colorTrgm])
     697             :             {
     698       15448 :                 int         nextstate = arc->targetState;
     699             : 
     700       15448 :                 if (nextstate == 1)
     701        6842 :                     return true;    /* success: final state is reachable */
     702             : 
     703        8606 :                 if (!graph->statesActive[nextstate])
     704             :                 {
     705        8492 :                     graph->statesActive[nextstate] = true;
     706        8492 :                     graph->statesQueue[queueOut++] = nextstate;
     707             :                 }
     708             :             }
     709             :         }
     710             :     }
     711             : 
     712             :     /* Queue is empty, so match fails. */
     713         272 :     return false;
     714             : }
     715             : 
     716             : /*
     717             :  * Compile regex string into struct at *regex.
     718             :  * NB: pg_regfree must be applied to regex if this completes successfully.
     719             :  */
     720             : static void
     721         130 : RE_compile(regex_t *regex, text *text_re, int cflags, Oid collation)
     722             : {
     723         130 :     int         text_re_len = VARSIZE_ANY_EXHDR(text_re);
     724         130 :     char       *text_re_val = VARDATA_ANY(text_re);
     725             :     pg_wchar   *pattern;
     726             :     int         pattern_len;
     727             :     int         regcomp_result;
     728             :     char        errMsg[100];
     729             : 
     730             :     /* Convert pattern string to wide characters */
     731         130 :     pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar));
     732         130 :     pattern_len = pg_mb2wchar_with_len(text_re_val,
     733             :                                        pattern,
     734             :                                        text_re_len);
     735             : 
     736             :     /* Compile regex */
     737         130 :     regcomp_result = pg_regcomp(regex,
     738             :                                 pattern,
     739             :                                 pattern_len,
     740             :                                 cflags,
     741             :                                 collation);
     742             : 
     743         130 :     pfree(pattern);
     744             : 
     745         130 :     if (regcomp_result != REG_OKAY)
     746             :     {
     747             :         /* re didn't compile (no need for pg_regfree, if so) */
     748           0 :         pg_regerror(regcomp_result, regex, errMsg, sizeof(errMsg));
     749           0 :         ereport(ERROR,
     750             :                 (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION),
     751             :                  errmsg("invalid regular expression: %s", errMsg)));
     752             :     }
     753         130 : }
     754             : 
     755             : 
     756             : /*---------------------
     757             :  * Subroutines for pre-processing the color map (stage 1).
     758             :  *---------------------
     759             :  */
     760             : 
     761             : /*
     762             :  * Fill TrgmColorInfo structure for each color using regex export functions.
     763             :  */
     764             : static void
     765         130 : getColorInfo(regex_t *regex, TrgmNFA *trgmNFA)
     766             : {
     767         130 :     int         colorsCount = pg_reg_getnumcolors(regex);
     768             :     int         i;
     769             : 
     770         130 :     trgmNFA->ncolors = colorsCount;
     771         130 :     trgmNFA->colorInfo = (TrgmColorInfo *)
     772         130 :         palloc0(colorsCount * sizeof(TrgmColorInfo));
     773             : 
     774             :     /*
     775             :      * Loop over colors, filling TrgmColorInfo about each.  Note we include
     776             :      * WHITE (0) even though we know it'll be reported as non-expandable.
     777             :      */
     778        1192 :     for (i = 0; i < colorsCount; i++)
     779             :     {
     780        1062 :         TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[i];
     781        1062 :         int         charsCount = pg_reg_getnumcharacters(regex, i);
     782             :         pg_wchar   *chars;
     783             :         int         j;
     784             : 
     785        1062 :         if (charsCount < 0 || charsCount > COLOR_COUNT_LIMIT)
     786             :         {
     787             :             /* Non expandable, or too large to work with */
     788         650 :             colorInfo->expandable = false;
     789         650 :             continue;
     790             :         }
     791             : 
     792         412 :         colorInfo->expandable = true;
     793         412 :         colorInfo->containsNonWord = false;
     794         412 :         colorInfo->wordChars = palloc_array(trgm_mb_char, charsCount);
     795         412 :         colorInfo->wordCharsCount = 0;
     796             : 
     797             :         /* Extract all the chars in this color */
     798         412 :         chars = palloc_array(pg_wchar, charsCount);
     799         412 :         pg_reg_getcharacters(regex, i, chars, charsCount);
     800             : 
     801             :         /*
     802             :          * Convert characters back to multibyte form, and save only those that
     803             :          * are word characters.  Set "containsNonWord" if any non-word
     804             :          * character.  (Note: it'd probably be nicer to keep the chars in
     805             :          * pg_wchar format for now, but ISWORDCHR wants to see multibyte.)
     806             :          */
     807        1982 :         for (j = 0; j < charsCount; j++)
     808             :         {
     809             :             trgm_mb_char c;
     810        1570 :             int         clen = convertPgWchar(chars[j], &c);
     811             : 
     812        1570 :             if (!clen)
     813         730 :                 continue;       /* ok to ignore it altogether */
     814         840 :             if (ISWORDCHR(c.bytes, clen))
     815         790 :                 colorInfo->wordChars[colorInfo->wordCharsCount++] = c;
     816             :             else
     817          50 :                 colorInfo->containsNonWord = true;
     818             :         }
     819             : 
     820         412 :         pfree(chars);
     821             :     }
     822         130 : }
     823             : 
     824             : /*
     825             :  * Convert pg_wchar to multibyte format.
     826             :  * Returns 0 if the character should be ignored completely, else returns its
     827             :  * byte length.
     828             :  */
     829             : static int
     830        1570 : convertPgWchar(pg_wchar c, trgm_mb_char *result)
     831             : {
     832             :     /* "s" has enough space for a multibyte character and a trailing NUL */
     833             :     char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
     834             :     int         clen;
     835             : 
     836             :     /*
     837             :      * We can ignore the NUL character, since it can never appear in a PG text
     838             :      * string.  This avoids the need for various special cases when
     839             :      * reconstructing trigrams.
     840             :      */
     841        1570 :     if (c == 0)
     842           0 :         return 0;
     843             : 
     844             :     /* Do the conversion, making sure the result is NUL-terminated */
     845        1570 :     memset(s, 0, sizeof(s));
     846        1570 :     clen = pg_wchar2mb_with_len(&c, s, 1);
     847             : 
     848             :     /*
     849             :      * In IGNORECASE mode, we can ignore uppercase characters.  We assume that
     850             :      * the regex engine generated both uppercase and lowercase equivalents
     851             :      * within each color, since we used the REG_ICASE option; so there's no
     852             :      * need to process the uppercase version.
     853             :      *
     854             :      * XXX this code is dependent on the assumption that str_tolower() works
     855             :      * the same as the regex engine's internal case folding machinery.  Might
     856             :      * be wiser to expose pg_wc_tolower and test whether c ==
     857             :      * pg_wc_tolower(c). On the other hand, the trigrams in the index were
     858             :      * created using str_tolower(), so we're probably screwed if there's any
     859             :      * incompatibility anyway.
     860             :      */
     861             : #ifdef IGNORECASE
     862             :     {
     863        1570 :         char       *lowerCased = str_tolower(s, clen, DEFAULT_COLLATION_OID);
     864             : 
     865        1570 :         if (strcmp(lowerCased, s) != 0)
     866             :         {
     867         730 :             pfree(lowerCased);
     868         730 :             return 0;
     869             :         }
     870         840 :         pfree(lowerCased);
     871             :     }
     872             : #endif
     873             : 
     874             :     /* Fill result with exactly MAX_MULTIBYTE_CHAR_LEN bytes */
     875         840 :     memcpy(result->bytes, s, MAX_MULTIBYTE_CHAR_LEN);
     876         840 :     return clen;
     877             : }
     878             : 
     879             : 
     880             : /*---------------------
     881             :  * Subroutines for expanding original NFA graph into a trigram graph (stage 2).
     882             :  *---------------------
     883             :  */
     884             : 
     885             : /*
     886             :  * Transform the graph, given a regex and extracted color information.
     887             :  *
     888             :  * We create and process a queue of expanded-graph states until all the states
     889             :  * are processed.
     890             :  *
     891             :  * This algorithm may be stopped due to resource limitation. In this case we
     892             :  * force every unprocessed branch to immediately finish with matching (this
     893             :  * can give us false positives but no false negatives) by marking all
     894             :  * unprocessed states as final.
     895             :  */
     896             : static void
     897         130 : transformGraph(TrgmNFA *trgmNFA)
     898             : {
     899             :     HASHCTL     hashCtl;
     900             :     TrgmStateKey initkey;
     901             :     TrgmState  *initstate;
     902             :     ListCell   *lc;
     903             : 
     904             :     /* Initialize this stage's workspace in trgmNFA struct */
     905         130 :     trgmNFA->queue = NIL;
     906         130 :     trgmNFA->keysQueue = NIL;
     907         130 :     trgmNFA->arcsCount = 0;
     908         130 :     trgmNFA->overflowed = false;
     909             : 
     910             :     /* Create hashtable for states */
     911         130 :     hashCtl.keysize = sizeof(TrgmStateKey);
     912         130 :     hashCtl.entrysize = sizeof(TrgmState);
     913         130 :     hashCtl.hcxt = CurrentMemoryContext;
     914         130 :     trgmNFA->states = hash_create("Trigram NFA",
     915             :                                   1024,
     916             :                                   &hashCtl,
     917             :                                   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     918         130 :     trgmNFA->nstates = 0;
     919             : 
     920             :     /* Create initial state: ambiguous prefix, NFA's initial state */
     921         130 :     MemSet(&initkey, 0, sizeof(initkey));
     922         130 :     initkey.prefix.colors[0] = COLOR_UNKNOWN;
     923         130 :     initkey.prefix.colors[1] = COLOR_UNKNOWN;
     924         130 :     initkey.nstate = pg_reg_getinitialstate(trgmNFA->regex);
     925             : 
     926         130 :     initstate = getState(trgmNFA, &initkey);
     927         130 :     initstate->flags |= TSTATE_INIT;
     928         130 :     trgmNFA->initState = initstate;
     929             : 
     930             :     /*
     931             :      * Recursively build the expanded graph by processing queue of states
     932             :      * (breadth-first search).  getState already put initstate in the queue.
     933             :      * Note that getState will append new states to the queue within the loop,
     934             :      * too; this works as long as we don't do repeat fetches using the "lc"
     935             :      * pointer.
     936             :      */
     937        1458 :     foreach(lc, trgmNFA->queue)
     938             :     {
     939        1328 :         TrgmState  *state = (TrgmState *) lfirst(lc);
     940             : 
     941             :         /*
     942             :          * If we overflowed then just mark state as final.  Otherwise do
     943             :          * actual processing.
     944             :          */
     945        1328 :         if (trgmNFA->overflowed)
     946          18 :             state->flags |= TSTATE_FIN;
     947             :         else
     948        1310 :             processState(trgmNFA, state);
     949             : 
     950             :         /* Did we overflow? */
     951        2656 :         if (trgmNFA->arcsCount > MAX_EXPANDED_ARCS ||
     952        1328 :             hash_get_num_entries(trgmNFA->states) > MAX_EXPANDED_STATES)
     953          24 :             trgmNFA->overflowed = true;
     954             :     }
     955         130 : }
     956             : 
     957             : /*
     958             :  * Process one state: add enter keys and then add outgoing arcs.
     959             :  */
     960             : static void
     961        1310 : processState(TrgmNFA *trgmNFA, TrgmState *state)
     962             : {
     963             :     ListCell   *lc;
     964             : 
     965             :     /* keysQueue should be NIL already, but make sure */
     966        1310 :     trgmNFA->keysQueue = NIL;
     967             : 
     968             :     /*
     969             :      * Add state's own key, and then process all keys added to keysQueue until
     970             :      * queue is finished.  But we can quit if the state gets marked final.
     971             :      */
     972        1310 :     addKey(trgmNFA, state, &state->stateKey);
     973        2532 :     foreach(lc, trgmNFA->keysQueue)
     974             :     {
     975        1384 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(lc);
     976             : 
     977        1384 :         if (state->flags & TSTATE_FIN)
     978         162 :             break;
     979        1222 :         addKey(trgmNFA, state, key);
     980             :     }
     981             : 
     982             :     /* Release keysQueue to clean up for next cycle */
     983        1310 :     list_free(trgmNFA->keysQueue);
     984        1310 :     trgmNFA->keysQueue = NIL;
     985             : 
     986             :     /*
     987             :      * Add outgoing arcs only if state isn't final (we have no interest in
     988             :      * outgoing arcs if we already match)
     989             :      */
     990        1310 :     if (!(state->flags & TSTATE_FIN))
     991        1142 :         addArcs(trgmNFA, state);
     992        1310 : }
     993             : 
     994             : /*
     995             :  * Add the given enter key into the state's enterKeys list, and determine
     996             :  * whether this should result in any further enter keys being added.
     997             :  * If so, add those keys to keysQueue so that processState will handle them.
     998             :  *
     999             :  * If the enter key is for the NFA's final state, mark state as TSTATE_FIN.
    1000             :  * This situation means that we can reach the final state from this expanded
    1001             :  * state without reading any predictable trigram, so we must consider this
    1002             :  * state as an accepting one.
    1003             :  *
    1004             :  * The given key could be a duplicate of one already in enterKeys, or be
    1005             :  * redundant with some enterKeys.  So we check that before doing anything.
    1006             :  *
    1007             :  * Note that we don't generate any actual arcs here.  addArcs will do that
    1008             :  * later, after we have identified all the enter keys for this state.
    1009             :  */
    1010             : static void
    1011        2532 : addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key)
    1012             : {
    1013             :     regex_arc_t *arcs;
    1014             :     TrgmStateKey destKey;
    1015             :     ListCell   *cell;
    1016             :     int         i,
    1017             :                 arcsCount;
    1018             : 
    1019             :     /*
    1020             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1021             :      * hashtable key by getState.
    1022             :      */
    1023        2532 :     MemSet(&destKey, 0, sizeof(destKey));
    1024             : 
    1025             :     /*
    1026             :      * Compare key to each existing enter key of the state to check for
    1027             :      * redundancy.  We can drop either old key(s) or the new key if we find
    1028             :      * redundancy.
    1029             :      */
    1030        3958 :     foreach(cell, state->enterKeys)
    1031             :     {
    1032        2032 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1033             : 
    1034        2032 :         if (existingKey->nstate == key->nstate)
    1035             :         {
    1036         624 :             if (prefixContains(&existingKey->prefix, &key->prefix))
    1037             :             {
    1038             :                 /* This old key already covers the new key. Nothing to do */
    1039         606 :                 return;
    1040             :             }
    1041          18 :             if (prefixContains(&key->prefix, &existingKey->prefix))
    1042             :             {
    1043             :                 /*
    1044             :                  * The new key covers this old key. Remove the old key, it's
    1045             :                  * no longer needed once we add this key to the list.
    1046             :                  */
    1047          12 :                 state->enterKeys = foreach_delete_current(state->enterKeys,
    1048             :                                                           cell);
    1049             :             }
    1050             :         }
    1051             :     }
    1052             : 
    1053             :     /* No redundancy, so add this key to the state's list */
    1054        1926 :     state->enterKeys = lappend(state->enterKeys, key);
    1055             : 
    1056             :     /* If state is now known final, mark it and we're done */
    1057        1926 :     if (key->nstate == pg_reg_getfinalstate(trgmNFA->regex))
    1058             :     {
    1059         168 :         state->flags |= TSTATE_FIN;
    1060         168 :         return;
    1061             :     }
    1062             : 
    1063             :     /*
    1064             :      * Loop through all outgoing arcs of the corresponding state in the
    1065             :      * original NFA.
    1066             :      */
    1067        1758 :     arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1068        1758 :     arcs = palloc_array(regex_arc_t, arcsCount);
    1069        1758 :     pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1070             : 
    1071        4768 :     for (i = 0; i < arcsCount; i++)
    1072             :     {
    1073        3010 :         regex_arc_t *arc = &arcs[i];
    1074             : 
    1075        3010 :         if (pg_reg_colorisbegin(trgmNFA->regex, arc->co))
    1076             :         {
    1077             :             /*
    1078             :              * Start of line/string (^).  Trigram extraction treats start of
    1079             :              * line same as start of word: double space prefix is added.
    1080             :              * Hence, make an enter key showing we can reach the arc
    1081             :              * destination with all-blank prefix.
    1082             :              */
    1083         492 :             destKey.prefix.colors[0] = COLOR_BLANK;
    1084         492 :             destKey.prefix.colors[1] = COLOR_BLANK;
    1085         492 :             destKey.nstate = arc->to;
    1086             : 
    1087             :             /* Add enter key to this state */
    1088         492 :             addKeyToQueue(trgmNFA, &destKey);
    1089             :         }
    1090        2518 :         else if (pg_reg_colorisend(trgmNFA->regex, arc->co))
    1091             :         {
    1092             :             /*
    1093             :              * End of line/string ($).  We must consider this arc as a
    1094             :              * transition that doesn't read anything.  The reason for adding
    1095             :              * this enter key to the state is that if the arc leads to the
    1096             :              * NFA's final state, we must mark this expanded state as final.
    1097             :              */
    1098         324 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1099         324 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1100         324 :             destKey.nstate = arc->to;
    1101             : 
    1102             :             /* Add enter key to this state */
    1103         324 :             addKeyToQueue(trgmNFA, &destKey);
    1104             :         }
    1105        2194 :         else if (arc->co >= 0)
    1106             :         {
    1107             :             /* Regular color (including WHITE) */
    1108        1786 :             TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[arc->co];
    1109             : 
    1110        1786 :             if (colorInfo->expandable)
    1111             :             {
    1112        1786 :                 if (colorInfo->containsNonWord &&
    1113         110 :                     !validArcLabel(key, COLOR_BLANK))
    1114             :                 {
    1115             :                     /*
    1116             :                      * We can reach the arc destination after reading a
    1117             :                      * non-word character, but the prefix is not something
    1118             :                      * that addArc will accept with COLOR_BLANK, so no trigram
    1119             :                      * arc can get made for this transition.  We must make an
    1120             :                      * enter key to show that the arc destination is
    1121             :                      * reachable.  Set it up with an all-blank prefix, since
    1122             :                      * that corresponds to what the trigram extraction code
    1123             :                      * will do at a word starting boundary.
    1124             :                      */
    1125          54 :                     destKey.prefix.colors[0] = COLOR_BLANK;
    1126          54 :                     destKey.prefix.colors[1] = COLOR_BLANK;
    1127          54 :                     destKey.nstate = arc->to;
    1128          54 :                     addKeyToQueue(trgmNFA, &destKey);
    1129             :                 }
    1130             : 
    1131        1786 :                 if (colorInfo->wordCharsCount > 0 &&
    1132        1676 :                     !validArcLabel(key, arc->co))
    1133             :                 {
    1134             :                     /*
    1135             :                      * We can reach the arc destination after reading a word
    1136             :                      * character, but the prefix is not something that addArc
    1137             :                      * will accept, so no trigram arc can get made for this
    1138             :                      * transition.  We must make an enter key to show that the
    1139             :                      * arc destination is reachable.  The prefix for the enter
    1140             :                      * key should reflect the info we have for this arc.
    1141             :                      */
    1142         262 :                     destKey.prefix.colors[0] = key->prefix.colors[1];
    1143         262 :                     destKey.prefix.colors[1] = arc->co;
    1144         262 :                     destKey.nstate = arc->to;
    1145         262 :                     addKeyToQueue(trgmNFA, &destKey);
    1146             :                 }
    1147             :             }
    1148             :             else
    1149             :             {
    1150             :                 /*
    1151             :                  * Unexpandable color.  Add enter key with ambiguous prefix,
    1152             :                  * showing we can reach the destination from this state, but
    1153             :                  * the preceding colors will be uncertain.  (We do not set the
    1154             :                  * first prefix color to key->prefix.colors[1], because a
    1155             :                  * prefix of known followed by unknown is invalid.)
    1156             :                  */
    1157           0 :                 destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1158           0 :                 destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1159           0 :                 destKey.nstate = arc->to;
    1160           0 :                 addKeyToQueue(trgmNFA, &destKey);
    1161             :             }
    1162             :         }
    1163             :         else
    1164             :         {
    1165             :             /* RAINBOW: treat as unexpandable color */
    1166         408 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1167         408 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1168         408 :             destKey.nstate = arc->to;
    1169         408 :             addKeyToQueue(trgmNFA, &destKey);
    1170             :         }
    1171             :     }
    1172             : 
    1173        1758 :     pfree(arcs);
    1174             : }
    1175             : 
    1176             : /*
    1177             :  * Add copy of given key to keysQueue for later processing.
    1178             :  */
    1179             : static void
    1180        1540 : addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1181             : {
    1182        1540 :     TrgmStateKey *keyCopy = palloc_object(TrgmStateKey);
    1183             : 
    1184        1540 :     memcpy(keyCopy, key, sizeof(TrgmStateKey));
    1185        1540 :     trgmNFA->keysQueue = lappend(trgmNFA->keysQueue, keyCopy);
    1186        1540 : }
    1187             : 
    1188             : /*
    1189             :  * Add outgoing arcs from given state, whose enter keys are all now known.
    1190             :  */
    1191             : static void
    1192        1142 : addArcs(TrgmNFA *trgmNFA, TrgmState *state)
    1193             : {
    1194             :     TrgmStateKey destKey;
    1195             :     ListCell   *cell;
    1196             :     regex_arc_t *arcs;
    1197             :     int         arcsCount,
    1198             :                 i;
    1199             : 
    1200             :     /*
    1201             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1202             :      * hashtable key by getState.
    1203             :      */
    1204        1142 :     MemSet(&destKey, 0, sizeof(destKey));
    1205             : 
    1206             :     /*
    1207             :      * Iterate over enter keys associated with this expanded-graph state. This
    1208             :      * includes both the state's own stateKey, and any enter keys we added to
    1209             :      * it during addKey (which represent expanded-graph states that are not
    1210             :      * distinguishable from this one by means of trigrams).  For each such
    1211             :      * enter key, examine all the out-arcs of the key's underlying NFA state,
    1212             :      * and try to make a trigram arc leading to where the out-arc leads.
    1213             :      * (addArc will deal with whether the arc is valid or not.)
    1214             :      */
    1215        2672 :     foreach(cell, state->enterKeys)
    1216             :     {
    1217        1530 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(cell);
    1218             : 
    1219        1530 :         arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1220        1530 :         arcs = palloc_array(regex_arc_t, arcsCount);
    1221        1530 :         pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1222             : 
    1223        3892 :         for (i = 0; i < arcsCount; i++)
    1224             :         {
    1225        2362 :             regex_arc_t *arc = &arcs[i];
    1226             :             TrgmColorInfo *colorInfo;
    1227             : 
    1228             :             /*
    1229             :              * Ignore non-expandable colors; addKey already handled the case.
    1230             :              *
    1231             :              * We need no special check for WHITE or begin/end pseudocolors
    1232             :              * here.  We don't need to do any processing for them, and they
    1233             :              * will be marked non-expandable since the regex engine will have
    1234             :              * reported them that way.  We do have to watch out for RAINBOW,
    1235             :              * which has a negative color number.
    1236             :              */
    1237        2362 :             if (arc->co < 0)
    1238         204 :                 continue;
    1239             :             Assert(arc->co < trgmNFA->ncolors);
    1240             : 
    1241        2158 :             colorInfo = &trgmNFA->colorInfo[arc->co];
    1242        2158 :             if (!colorInfo->expandable)
    1243         420 :                 continue;
    1244             : 
    1245        1738 :             if (colorInfo->containsNonWord)
    1246             :             {
    1247             :                 /*
    1248             :                  * Color includes non-word character(s).
    1249             :                  *
    1250             :                  * Generate an arc, treating this transition as occurring on
    1251             :                  * BLANK.  This allows word-ending trigrams to be manufactured
    1252             :                  * if possible.
    1253             :                  */
    1254         110 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1255         110 :                 destKey.prefix.colors[1] = COLOR_BLANK;
    1256         110 :                 destKey.nstate = arc->to;
    1257             : 
    1258         110 :                 addArc(trgmNFA, state, key, COLOR_BLANK, &destKey);
    1259             :             }
    1260             : 
    1261        1738 :             if (colorInfo->wordCharsCount > 0)
    1262             :             {
    1263             :                 /*
    1264             :                  * Color includes word character(s).
    1265             :                  *
    1266             :                  * Generate an arc.  Color is pushed into prefix of target
    1267             :                  * state.
    1268             :                  */
    1269        1628 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1270        1628 :                 destKey.prefix.colors[1] = arc->co;
    1271        1628 :                 destKey.nstate = arc->to;
    1272             : 
    1273        1628 :                 addArc(trgmNFA, state, key, arc->co, &destKey);
    1274             :             }
    1275             :         }
    1276             : 
    1277        1530 :         pfree(arcs);
    1278             :     }
    1279        1142 : }
    1280             : 
    1281             : /*
    1282             :  * Generate an out-arc of the expanded graph, if it's valid and not redundant.
    1283             :  *
    1284             :  * state: expanded-graph state we want to add an out-arc to
    1285             :  * key: provides prefix colors (key->nstate is not used)
    1286             :  * co: transition color
    1287             :  * destKey: identifier for destination state of expanded graph
    1288             :  */
    1289             : static void
    1290        1738 : addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
    1291             :        TrgmColor co, TrgmStateKey *destKey)
    1292             : {
    1293             :     TrgmArc    *arc;
    1294             :     ListCell   *cell;
    1295             : 
    1296             :     /* Do nothing if this wouldn't be a valid arc label trigram */
    1297        1738 :     if (!validArcLabel(key, co))
    1298         274 :         return;
    1299             : 
    1300             :     /*
    1301             :      * Check if we are going to reach key which is covered by a key which is
    1302             :      * already listed in this state.  If so arc is useless: the NFA can bypass
    1303             :      * it through a path that doesn't require any predictable trigram, so
    1304             :      * whether the arc's trigram is present or not doesn't really matter.
    1305             :      */
    1306        3534 :     foreach(cell, state->enterKeys)
    1307             :     {
    1308        2082 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1309             : 
    1310        2132 :         if (existingKey->nstate == destKey->nstate &&
    1311          50 :             prefixContains(&existingKey->prefix, &destKey->prefix))
    1312          12 :             return;
    1313             :     }
    1314             : 
    1315             :     /* Checks were successful, add new arc */
    1316        1452 :     arc = palloc_object(TrgmArc);
    1317        1452 :     arc->target = getState(trgmNFA, destKey);
    1318        1452 :     arc->ctrgm.colors[0] = key->prefix.colors[0];
    1319        1452 :     arc->ctrgm.colors[1] = key->prefix.colors[1];
    1320        1452 :     arc->ctrgm.colors[2] = co;
    1321             : 
    1322        1452 :     state->arcs = lappend(state->arcs, arc);
    1323        1452 :     trgmNFA->arcsCount++;
    1324             : }
    1325             : 
    1326             : /*
    1327             :  * Can we make a valid trigram arc label from the given prefix and arc color?
    1328             :  *
    1329             :  * This is split out so that tests in addKey and addArc will stay in sync.
    1330             :  */
    1331             : static bool
    1332        3524 : validArcLabel(TrgmStateKey *key, TrgmColor co)
    1333             : {
    1334             :     /*
    1335             :      * We have to know full trigram in order to add outgoing arc.  So we can't
    1336             :      * do it if prefix is ambiguous.
    1337             :      */
    1338        3524 :     if (key->prefix.colors[0] == COLOR_UNKNOWN)
    1339         466 :         return false;
    1340             : 
    1341             :     /* If key->prefix.colors[0] isn't unknown, its second color isn't either */
    1342             :     Assert(key->prefix.colors[1] != COLOR_UNKNOWN);
    1343             :     /* And we should not be called with an unknown arc color anytime */
    1344             :     Assert(co != COLOR_UNKNOWN);
    1345             : 
    1346             :     /*
    1347             :      * We don't bother with making arcs representing three non-word
    1348             :      * characters, since that's useless for trigram extraction.
    1349             :      */
    1350        3058 :     if (key->prefix.colors[0] == COLOR_BLANK &&
    1351         328 :         key->prefix.colors[1] == COLOR_BLANK &&
    1352             :         co == COLOR_BLANK)
    1353          24 :         return false;
    1354             : 
    1355             :     /*
    1356             :      * We also reject nonblank-blank-anything.  The nonblank-blank-nonblank
    1357             :      * case doesn't correspond to any trigram the trigram extraction code
    1358             :      * would make.  The nonblank-blank-blank case is also not possible with
    1359             :      * RPADDING = 1.  (Note that in many cases we'd fail to generate such a
    1360             :      * trigram even if it were valid, for example processing "foo bar" will
    1361             :      * not result in considering the trigram "o  ".  So if you want to support
    1362             :      * RPADDING = 2, there's more to do than just twiddle this test.)
    1363             :      */
    1364        3034 :     if (key->prefix.colors[0] != COLOR_BLANK &&
    1365        2730 :         key->prefix.colors[1] == COLOR_BLANK)
    1366         100 :         return false;
    1367             : 
    1368             :     /*
    1369             :      * Other combinations involving blank are valid, in particular we assume
    1370             :      * blank-blank-nonblank is valid, which presumes that LPADDING is 2.
    1371             :      *
    1372             :      * Note: Using again the example "foo bar", we will not consider the
    1373             :      * trigram "  b", though this trigram would be found by the trigram
    1374             :      * extraction code.  Since we will find " ba", it doesn't seem worth
    1375             :      * trying to hack the algorithm to generate the additional trigram.
    1376             :      */
    1377             : 
    1378             :     /* arc label is valid */
    1379        2934 :     return true;
    1380             : }
    1381             : 
    1382             : /*
    1383             :  * Get state of expanded graph for given state key,
    1384             :  * and queue the state for processing if it didn't already exist.
    1385             :  */
    1386             : static TrgmState *
    1387        1582 : getState(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1388             : {
    1389             :     TrgmState  *state;
    1390             :     bool        found;
    1391             : 
    1392        1582 :     state = (TrgmState *) hash_search(trgmNFA->states, key, HASH_ENTER,
    1393             :                                       &found);
    1394        1582 :     if (!found)
    1395             :     {
    1396             :         /* New state: initialize and queue it */
    1397        1328 :         state->arcs = NIL;
    1398        1328 :         state->enterKeys = NIL;
    1399        1328 :         state->flags = 0;
    1400             :         /* states are initially given negative numbers */
    1401        1328 :         state->snumber = -(++trgmNFA->nstates);
    1402        1328 :         state->parent = NULL;
    1403        1328 :         state->tentFlags = 0;
    1404        1328 :         state->tentParent = NULL;
    1405             : 
    1406        1328 :         trgmNFA->queue = lappend(trgmNFA->queue, state);
    1407             :     }
    1408        1582 :     return state;
    1409             : }
    1410             : 
    1411             : /*
    1412             :  * Check if prefix1 "contains" prefix2.
    1413             :  *
    1414             :  * "contains" means that any exact prefix (with no ambiguity) that satisfies
    1415             :  * prefix2 also satisfies prefix1.
    1416             :  */
    1417             : static bool
    1418         692 : prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2)
    1419             : {
    1420         692 :     if (prefix1->colors[1] == COLOR_UNKNOWN)
    1421             :     {
    1422             :         /* Fully ambiguous prefix contains everything */
    1423         612 :         return true;
    1424             :     }
    1425          80 :     else if (prefix1->colors[0] == COLOR_UNKNOWN)
    1426             :     {
    1427             :         /*
    1428             :          * Prefix with only first unknown color contains every prefix with
    1429             :          * same second color.
    1430             :          */
    1431          24 :         if (prefix1->colors[1] == prefix2->colors[1])
    1432           6 :             return true;
    1433             :         else
    1434          18 :             return false;
    1435             :     }
    1436             :     else
    1437             :     {
    1438             :         /* Exact prefix contains only the exact same prefix */
    1439          56 :         if (prefix1->colors[0] == prefix2->colors[0] &&
    1440          26 :             prefix1->colors[1] == prefix2->colors[1])
    1441          12 :             return true;
    1442             :         else
    1443          44 :             return false;
    1444             :     }
    1445             : }
    1446             : 
    1447             : 
    1448             : /*---------------------
    1449             :  * Subroutines for expanding color trigrams into regular trigrams (stage 3).
    1450             :  *---------------------
    1451             :  */
    1452             : 
    1453             : /*
    1454             :  * Get vector of all color trigrams in graph and select which of them
    1455             :  * to expand into simple trigrams.
    1456             :  *
    1457             :  * Returns true if OK, false if exhausted resource limits.
    1458             :  */
    1459             : static bool
    1460         112 : selectColorTrigrams(TrgmNFA *trgmNFA)
    1461             : {
    1462             :     HASH_SEQ_STATUS scan_status;
    1463         112 :     int         arcsCount = trgmNFA->arcsCount,
    1464             :                 i;
    1465             :     TrgmState  *state;
    1466             :     ColorTrgmInfo *colorTrgms;
    1467             :     int64       totalTrgmCount;
    1468             :     float4      totalTrgmPenalty;
    1469             :     int         cnumber;
    1470             : 
    1471             :     /* Collect color trigrams from all arcs */
    1472         112 :     colorTrgms = palloc0_array(ColorTrgmInfo, arcsCount);
    1473         112 :     trgmNFA->colorTrgms = colorTrgms;
    1474             : 
    1475         112 :     i = 0;
    1476         112 :     hash_seq_init(&scan_status, trgmNFA->states);
    1477        1422 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1478             :     {
    1479             :         ListCell   *cell;
    1480             : 
    1481        2762 :         foreach(cell, state->arcs)
    1482             :         {
    1483        1452 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1484        1452 :             TrgmArcInfo *arcInfo = palloc_object(TrgmArcInfo);
    1485        1452 :             ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1486             : 
    1487        1452 :             arcInfo->source = state;
    1488        1452 :             arcInfo->target = arc->target;
    1489        1452 :             trgmInfo->ctrgm = arc->ctrgm;
    1490        1452 :             trgmInfo->cnumber = -1;
    1491             :             /* count and penalty will be set below */
    1492        1452 :             trgmInfo->expanded = true;
    1493        1452 :             trgmInfo->arcs = list_make1(arcInfo);
    1494        1452 :             i++;
    1495             :         }
    1496             :     }
    1497             :     Assert(i == arcsCount);
    1498             : 
    1499             :     /* Remove duplicates, merging their arcs lists */
    1500         112 :     if (arcsCount >= 2)
    1501             :     {
    1502             :         ColorTrgmInfo *p1,
    1503             :                    *p2;
    1504             : 
    1505             :         /* Sort trigrams to ease duplicate detection */
    1506          68 :         qsort(colorTrgms, arcsCount, sizeof(ColorTrgmInfo), colorTrgmInfoCmp);
    1507             : 
    1508             :         /* p1 is probe point, p2 is last known non-duplicate. */
    1509          68 :         p2 = colorTrgms;
    1510        1412 :         for (p1 = colorTrgms + 1; p1 < colorTrgms + arcsCount; p1++)
    1511             :         {
    1512        1344 :             if (colorTrgmInfoCmp(p1, p2) > 0)
    1513             :             {
    1514         448 :                 p2++;
    1515         448 :                 *p2 = *p1;
    1516             :             }
    1517             :             else
    1518             :             {
    1519         896 :                 p2->arcs = list_concat(p2->arcs, p1->arcs);
    1520             :             }
    1521             :         }
    1522          68 :         trgmNFA->colorTrgmsCount = (p2 - colorTrgms) + 1;
    1523             :     }
    1524             :     else
    1525             :     {
    1526          44 :         trgmNFA->colorTrgmsCount = arcsCount;
    1527             :     }
    1528             : 
    1529             :     /*
    1530             :      * Count number of simple trigrams generated by each color trigram, and
    1531             :      * also compute a penalty value, which is the number of simple trigrams
    1532             :      * times a multiplier that depends on its whitespace content.
    1533             :      *
    1534             :      * Note: per-color-trigram counts cannot overflow an int so long as
    1535             :      * COLOR_COUNT_LIMIT is not more than the cube root of INT_MAX, ie about
    1536             :      * 1290.  However, the grand total totalTrgmCount might conceivably
    1537             :      * overflow an int, so we use int64 for that within this routine.  Also,
    1538             :      * penalties are calculated in float4 arithmetic to avoid any overflow
    1539             :      * worries.
    1540             :      */
    1541         112 :     totalTrgmCount = 0;
    1542         112 :     totalTrgmPenalty = 0.0f;
    1543         668 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1544             :     {
    1545         556 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1546             :         int         j,
    1547         556 :                     count = 1,
    1548         556 :                     typeIndex = 0;
    1549             : 
    1550        2224 :         for (j = 0; j < 3; j++)
    1551             :         {
    1552        1668 :             TrgmColor   c = trgmInfo->ctrgm.colors[j];
    1553             : 
    1554        1668 :             typeIndex *= 2;
    1555        1668 :             if (c == COLOR_BLANK)
    1556         226 :                 typeIndex++;
    1557             :             else
    1558        1442 :                 count *= trgmNFA->colorInfo[c].wordCharsCount;
    1559             :         }
    1560         556 :         trgmInfo->count = count;
    1561         556 :         totalTrgmCount += count;
    1562         556 :         trgmInfo->penalty = penalties[typeIndex] * (float4) count;
    1563         556 :         totalTrgmPenalty += trgmInfo->penalty;
    1564             :     }
    1565             : 
    1566             :     /* Sort color trigrams in descending order of their penalties */
    1567         112 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1568             :           colorTrgmInfoPenaltyCmp);
    1569             : 
    1570             :     /*
    1571             :      * Remove color trigrams from the graph so long as total penalty of color
    1572             :      * trigrams exceeds WISH_TRGM_PENALTY.  (If we fail to get down to
    1573             :      * WISH_TRGM_PENALTY, it's OK so long as total count is no more than
    1574             :      * MAX_TRGM_COUNT.)  We prefer to remove color trigrams with higher
    1575             :      * penalty, since those are the most promising for reducing the total
    1576             :      * penalty.  When removing a color trigram we have to merge states
    1577             :      * connected by arcs labeled with that trigram.  It's necessary to not
    1578             :      * merge initial and final states, because our graph becomes useless if
    1579             :      * that happens; so we cannot always remove the trigram we'd prefer to.
    1580             :      */
    1581         408 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1582             :     {
    1583         358 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1584         358 :         bool        canRemove = true;
    1585             :         ListCell   *cell;
    1586             : 
    1587             :         /* Done if we've reached the target */
    1588         358 :         if (totalTrgmPenalty <= WISH_TRGM_PENALTY)
    1589          62 :             break;
    1590             : 
    1591             : #ifdef TRGM_REGEXP_DEBUG
    1592             :         fprintf(stderr, "considering ctrgm %d %d %d, penalty %f, %d arcs\n",
    1593             :                 trgmInfo->ctrgm.colors[0],
    1594             :                 trgmInfo->ctrgm.colors[1],
    1595             :                 trgmInfo->ctrgm.colors[2],
    1596             :                 trgmInfo->penalty,
    1597             :                 list_length(trgmInfo->arcs));
    1598             : #endif
    1599             : 
    1600             :         /*
    1601             :          * Does any arc of this color trigram connect initial and final
    1602             :          * states?  If so we can't remove it.
    1603             :          */
    1604         612 :         foreach(cell, trgmInfo->arcs)
    1605             :         {
    1606         382 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1607         382 :             TrgmState  *source = arcInfo->source,
    1608         382 :                        *target = arcInfo->target;
    1609             :             int         source_flags,
    1610             :                         target_flags;
    1611             : 
    1612             : #ifdef TRGM_REGEXP_DEBUG
    1613             :             fprintf(stderr, "examining arc to s%d (%x) from s%d (%x)\n",
    1614             :                     -target->snumber, target->flags,
    1615             :                     -source->snumber, source->flags);
    1616             : #endif
    1617             : 
    1618             :             /* examine parent states, if any merging has already happened */
    1619         682 :             while (source->parent)
    1620         300 :                 source = source->parent;
    1621         814 :             while (target->parent)
    1622         432 :                 target = target->parent;
    1623             : 
    1624             : #ifdef TRGM_REGEXP_DEBUG
    1625             :             fprintf(stderr, " ... after completed merges: to s%d (%x) from s%d (%x)\n",
    1626             :                     -target->snumber, target->flags,
    1627             :                     -source->snumber, source->flags);
    1628             : #endif
    1629             : 
    1630             :             /* we must also consider merges we are planning right now */
    1631         382 :             source_flags = source->flags | source->tentFlags;
    1632         390 :             while (source->tentParent)
    1633             :             {
    1634           8 :                 source = source->tentParent;
    1635           8 :                 source_flags |= source->flags | source->tentFlags;
    1636             :             }
    1637         382 :             target_flags = target->flags | target->tentFlags;
    1638         412 :             while (target->tentParent)
    1639             :             {
    1640          30 :                 target = target->tentParent;
    1641          30 :                 target_flags |= target->flags | target->tentFlags;
    1642             :             }
    1643             : 
    1644             : #ifdef TRGM_REGEXP_DEBUG
    1645             :             fprintf(stderr, " ... after tentative merges: to s%d (%x) from s%d (%x)\n",
    1646             :                     -target->snumber, target_flags,
    1647             :                     -source->snumber, source_flags);
    1648             : #endif
    1649             : 
    1650             :             /* would fully-merged state have both INIT and FIN set? */
    1651         382 :             if (((source_flags | target_flags) & (TSTATE_INIT | TSTATE_FIN)) ==
    1652             :                 (TSTATE_INIT | TSTATE_FIN))
    1653             :             {
    1654          66 :                 canRemove = false;
    1655          66 :                 break;
    1656             :             }
    1657             : 
    1658             :             /* ok so far, so remember planned merge */
    1659         316 :             if (source != target)
    1660             :             {
    1661             : #ifdef TRGM_REGEXP_DEBUG
    1662             :                 fprintf(stderr, " ... tentatively merging s%d into s%d\n",
    1663             :                         -target->snumber, -source->snumber);
    1664             : #endif
    1665         226 :                 target->tentParent = source;
    1666         226 :                 source->tentFlags |= target_flags;
    1667             :             }
    1668             :         }
    1669             : 
    1670             :         /*
    1671             :          * We must reset all the tentFlags/tentParent fields before
    1672             :          * continuing.  tentFlags could only have become set in states that
    1673             :          * are the source or parent or tentative parent of one of the current
    1674             :          * arcs; likewise tentParent could only have become set in states that
    1675             :          * are the target or parent or tentative parent of one of the current
    1676             :          * arcs.  There might be some overlap between those sets, but if we
    1677             :          * clear tentFlags in target states as well as source states, we
    1678             :          * should be okay even if we visit a state as target before visiting
    1679             :          * it as a source.
    1680             :          */
    1681         696 :         foreach(cell, trgmInfo->arcs)
    1682             :         {
    1683         400 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1684         400 :             TrgmState  *source = arcInfo->source,
    1685         400 :                        *target = arcInfo->target;
    1686             :             TrgmState  *ttarget;
    1687             : 
    1688             :             /* no need to touch previously-merged states */
    1689         700 :             while (source->parent)
    1690         300 :                 source = source->parent;
    1691         880 :             while (target->parent)
    1692         480 :                 target = target->parent;
    1693             : 
    1694         812 :             while (source)
    1695             :             {
    1696         412 :                 source->tentFlags = 0;
    1697         412 :                 source = source->tentParent;
    1698             :             }
    1699             : 
    1700         626 :             while ((ttarget = target->tentParent) != NULL)
    1701             :             {
    1702         226 :                 target->tentParent = NULL;
    1703         226 :                 target->tentFlags = 0;   /* in case it was also a source */
    1704         226 :                 target = ttarget;
    1705             :             }
    1706             :         }
    1707             : 
    1708             :         /* Now, move on if we can't drop this trigram */
    1709         296 :         if (!canRemove)
    1710             :         {
    1711             : #ifdef TRGM_REGEXP_DEBUG
    1712             :             fprintf(stderr, " ... not ok to merge\n");
    1713             : #endif
    1714          66 :             continue;
    1715             :         }
    1716             : 
    1717             :         /* OK, merge states linked by each arc labeled by the trigram */
    1718         526 :         foreach(cell, trgmInfo->arcs)
    1719             :         {
    1720         296 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1721         296 :             TrgmState  *source = arcInfo->source,
    1722         296 :                        *target = arcInfo->target;
    1723             : 
    1724         584 :             while (source->parent)
    1725         288 :                 source = source->parent;
    1726         692 :             while (target->parent)
    1727         396 :                 target = target->parent;
    1728         296 :             if (source != target)
    1729             :             {
    1730             : #ifdef TRGM_REGEXP_DEBUG
    1731             :                 fprintf(stderr, "merging s%d into s%d\n",
    1732             :                         -target->snumber, -source->snumber);
    1733             : #endif
    1734         206 :                 mergeStates(source, target);
    1735             :                 /* Assert we didn't merge initial and final states */
    1736             :                 Assert((source->flags & (TSTATE_INIT | TSTATE_FIN)) !=
    1737             :                        (TSTATE_INIT | TSTATE_FIN));
    1738             :             }
    1739             :         }
    1740             : 
    1741             :         /* Mark trigram unexpanded, and update totals */
    1742         230 :         trgmInfo->expanded = false;
    1743         230 :         totalTrgmCount -= trgmInfo->count;
    1744         230 :         totalTrgmPenalty -= trgmInfo->penalty;
    1745             :     }
    1746             : 
    1747             :     /* Did we succeed in fitting into MAX_TRGM_COUNT? */
    1748         112 :     if (totalTrgmCount > MAX_TRGM_COUNT)
    1749           6 :         return false;
    1750             : 
    1751         106 :     trgmNFA->totalTrgmCount = (int) totalTrgmCount;
    1752             : 
    1753             :     /*
    1754             :      * Sort color trigrams by colors (will be useful for bsearch in packGraph)
    1755             :      * and enumerate the color trigrams that are expanded.
    1756             :      */
    1757         106 :     cnumber = 0;
    1758         106 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1759             :           colorTrgmInfoCmp);
    1760         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1761             :     {
    1762         550 :         if (colorTrgms[i].expanded)
    1763             :         {
    1764         320 :             colorTrgms[i].cnumber = cnumber;
    1765         320 :             cnumber++;
    1766             :         }
    1767             :     }
    1768             : 
    1769         106 :     return true;
    1770             : }
    1771             : 
    1772             : /*
    1773             :  * Expand selected color trigrams into regular trigrams.
    1774             :  *
    1775             :  * Returns the TRGM array to be passed to the index machinery.
    1776             :  * The array must be allocated in rcontext.
    1777             :  */
    1778             : static TRGM *
    1779         106 : expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1780             : {
    1781             :     TRGM       *trg;
    1782             :     trgm       *p;
    1783             :     int         i;
    1784             :     TrgmColorInfo blankColor;
    1785             :     trgm_mb_char blankChar;
    1786             : 
    1787             :     /* Set up "blank" color structure containing a single zero character */
    1788         106 :     memset(blankChar.bytes, 0, sizeof(blankChar.bytes));
    1789         106 :     blankColor.wordCharsCount = 1;
    1790         106 :     blankColor.wordChars = &blankChar;
    1791             : 
    1792             :     /* Construct the trgm array */
    1793             :     trg = (TRGM *)
    1794         106 :         MemoryContextAllocZero(rcontext,
    1795             :                                TRGMHDRSIZE +
    1796         106 :                                trgmNFA->totalTrgmCount * sizeof(trgm));
    1797         106 :     trg->flag = ARRKEY;
    1798         106 :     SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, trgmNFA->totalTrgmCount));
    1799         106 :     p = GETARR(trg);
    1800         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1801             :     {
    1802         550 :         ColorTrgmInfo *colorTrgm = &trgmNFA->colorTrgms[i];
    1803             :         TrgmColorInfo *c[3];
    1804             :         trgm_mb_char s[3];
    1805             :         int         j,
    1806             :                     i1,
    1807             :                     i2,
    1808             :                     i3;
    1809             : 
    1810             :         /* Ignore any unexpanded trigrams ... */
    1811         550 :         if (!colorTrgm->expanded)
    1812         230 :             continue;
    1813             : 
    1814             :         /* Get colors, substituting the dummy struct for COLOR_BLANK */
    1815        1280 :         for (j = 0; j < 3; j++)
    1816             :         {
    1817         960 :             if (colorTrgm->ctrgm.colors[j] != COLOR_BLANK)
    1818         826 :                 c[j] = &trgmNFA->colorInfo[colorTrgm->ctrgm.colors[j]];
    1819             :             else
    1820         134 :                 c[j] = &blankColor;
    1821             :         }
    1822             : 
    1823             :         /* Iterate over all possible combinations of colors' characters */
    1824         754 :         for (i1 = 0; i1 < c[0]->wordCharsCount; i1++)
    1825             :         {
    1826         434 :             s[0] = c[0]->wordChars[i1];
    1827        1456 :             for (i2 = 0; i2 < c[1]->wordCharsCount; i2++)
    1828             :             {
    1829        1022 :                 s[1] = c[1]->wordChars[i2];
    1830        3940 :                 for (i3 = 0; i3 < c[2]->wordCharsCount; i3++)
    1831             :                 {
    1832        2918 :                     s[2] = c[2]->wordChars[i3];
    1833        2918 :                     fillTrgm(p, s);
    1834        2918 :                     p++;
    1835             :                 }
    1836             :             }
    1837             :         }
    1838             :     }
    1839             : 
    1840         106 :     return trg;
    1841             : }
    1842             : 
    1843             : /*
    1844             :  * Convert trigram into trgm datatype.
    1845             :  */
    1846             : static void
    1847        2918 : fillTrgm(trgm *ptrgm, trgm_mb_char s[3])
    1848             : {
    1849             :     char        str[3 * MAX_MULTIBYTE_CHAR_LEN],
    1850             :                *p;
    1851             :     int         i,
    1852             :                 j;
    1853             : 
    1854             :     /* Write multibyte string into "str" (we don't need null termination) */
    1855        2918 :     p = str;
    1856             : 
    1857       11672 :     for (i = 0; i < 3; i++)
    1858             :     {
    1859        8754 :         if (s[i].bytes[0] != 0)
    1860             :         {
    1861       16464 :             for (j = 0; j < MAX_MULTIBYTE_CHAR_LEN && s[i].bytes[j]; j++)
    1862        8232 :                 *p++ = s[i].bytes[j];
    1863             :         }
    1864             :         else
    1865             :         {
    1866             :             /* Emit a space in place of COLOR_BLANK */
    1867         522 :             *p++ = ' ';
    1868             :         }
    1869             :     }
    1870             : 
    1871             :     /* Convert "str" to a standard trigram (possibly hashing it) */
    1872        2918 :     compact_trigram(ptrgm, str, p - str);
    1873        2918 : }
    1874             : 
    1875             : /*
    1876             :  * Merge two states of graph.
    1877             :  */
    1878             : static void
    1879         206 : mergeStates(TrgmState *state1, TrgmState *state2)
    1880             : {
    1881             :     Assert(state1 != state2);
    1882             :     Assert(!state1->parent);
    1883             :     Assert(!state2->parent);
    1884             : 
    1885             :     /* state1 absorbs state2's flags */
    1886         206 :     state1->flags |= state2->flags;
    1887             : 
    1888             :     /* state2, and indirectly all its children, become children of state1 */
    1889         206 :     state2->parent = state1;
    1890         206 : }
    1891             : 
    1892             : /*
    1893             :  * Compare function for sorting of color trigrams by their colors.
    1894             :  */
    1895             : static int
    1896       10178 : colorTrgmInfoCmp(const void *p1, const void *p2)
    1897             : {
    1898       10178 :     const ColorTrgmInfo *c1 = (const ColorTrgmInfo *) p1;
    1899       10178 :     const ColorTrgmInfo *c2 = (const ColorTrgmInfo *) p2;
    1900             : 
    1901       10178 :     return memcmp(&c1->ctrgm, &c2->ctrgm, sizeof(ColorTrgm));
    1902             : }
    1903             : 
    1904             : /*
    1905             :  * Compare function for sorting color trigrams in descending order of
    1906             :  * their penalty fields.
    1907             :  */
    1908             : static int
    1909         846 : colorTrgmInfoPenaltyCmp(const void *p1, const void *p2)
    1910             : {
    1911         846 :     float4      penalty1 = ((const ColorTrgmInfo *) p1)->penalty;
    1912         846 :     float4      penalty2 = ((const ColorTrgmInfo *) p2)->penalty;
    1913             : 
    1914         846 :     if (penalty1 < penalty2)
    1915         254 :         return 1;
    1916         592 :     else if (penalty1 == penalty2)
    1917         324 :         return 0;
    1918             :     else
    1919         268 :         return -1;
    1920             : }
    1921             : 
    1922             : 
    1923             : /*---------------------
    1924             :  * Subroutines for packing the graph into final representation (stage 4).
    1925             :  *---------------------
    1926             :  */
    1927             : 
    1928             : /*
    1929             :  * Pack expanded graph into final representation.
    1930             :  *
    1931             :  * The result data must be allocated in rcontext.
    1932             :  */
    1933             : static TrgmPackedGraph *
    1934         106 : packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1935             : {
    1936         106 :     int         snumber = 2,
    1937             :                 arcIndex,
    1938             :                 arcsCount;
    1939             :     HASH_SEQ_STATUS scan_status;
    1940             :     TrgmState  *state;
    1941             :     TrgmPackArcInfo *arcs;
    1942             :     TrgmPackedArc *packedArcs;
    1943             :     TrgmPackedGraph *result;
    1944             :     int         i,
    1945             :                 j;
    1946             : 
    1947             :     /* Enumerate surviving states, giving init and fin reserved numbers */
    1948         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1949        1510 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1950             :     {
    1951        1942 :         while (state->parent)
    1952         644 :             state = state->parent;
    1953             : 
    1954        1298 :         if (state->snumber < 0)
    1955             :         {
    1956        1092 :             if (state->flags & TSTATE_INIT)
    1957         106 :                 state->snumber = 0;
    1958         986 :             else if (state->flags & TSTATE_FIN)
    1959         114 :                 state->snumber = 1;
    1960             :             else
    1961             :             {
    1962         872 :                 state->snumber = snumber;
    1963         872 :                 snumber++;
    1964             :             }
    1965             :         }
    1966             :     }
    1967             : 
    1968             :     /* Collect array of all arcs */
    1969         106 :     arcs = palloc_array(TrgmPackArcInfo, trgmNFA->arcsCount);
    1970         106 :     arcIndex = 0;
    1971         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1972        1404 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1973             :     {
    1974        1298 :         TrgmState  *source = state;
    1975             :         ListCell   *cell;
    1976             : 
    1977        1942 :         while (source->parent)
    1978         644 :             source = source->parent;
    1979             : 
    1980        2744 :         foreach(cell, state->arcs)
    1981             :         {
    1982        1446 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1983        1446 :             TrgmState  *target = arc->target;
    1984             : 
    1985        2704 :             while (target->parent)
    1986        1258 :                 target = target->parent;
    1987             : 
    1988        1446 :             if (source->snumber != target->snumber)
    1989             :             {
    1990             :                 ColorTrgmInfo *ctrgm;
    1991             : 
    1992        1132 :                 ctrgm = (ColorTrgmInfo *) bsearch(&arc->ctrgm,
    1993        1132 :                                                   trgmNFA->colorTrgms,
    1994        1132 :                                                   trgmNFA->colorTrgmsCount,
    1995             :                                                   sizeof(ColorTrgmInfo),
    1996             :                                                   colorTrgmInfoCmp);
    1997             :                 Assert(ctrgm != NULL);
    1998             :                 Assert(ctrgm->expanded);
    1999             : 
    2000        1132 :                 arcs[arcIndex].sourceState = source->snumber;
    2001        1132 :                 arcs[arcIndex].targetState = target->snumber;
    2002        1132 :                 arcs[arcIndex].colorTrgm = ctrgm->cnumber;
    2003        1132 :                 arcIndex++;
    2004             :             }
    2005             :         }
    2006             :     }
    2007             : 
    2008             :     /* Sort arcs to ease duplicate detection */
    2009         106 :     qsort(arcs, arcIndex, sizeof(TrgmPackArcInfo), packArcInfoCmp);
    2010             : 
    2011             :     /* We could have duplicates because states were merged. Remove them. */
    2012         106 :     if (arcIndex > 1)
    2013             :     {
    2014             :         /* p1 is probe point, p2 is last known non-duplicate. */
    2015             :         TrgmPackArcInfo *p1,
    2016             :                    *p2;
    2017             : 
    2018          62 :         p2 = arcs;
    2019        1092 :         for (p1 = arcs + 1; p1 < arcs + arcIndex; p1++)
    2020             :         {
    2021        1030 :             if (packArcInfoCmp(p1, p2) > 0)
    2022             :             {
    2023        1018 :                 p2++;
    2024        1018 :                 *p2 = *p1;
    2025             :             }
    2026             :         }
    2027          62 :         arcsCount = (p2 - arcs) + 1;
    2028             :     }
    2029             :     else
    2030          44 :         arcsCount = arcIndex;
    2031             : 
    2032             :     /* Create packed representation */
    2033             :     result = (TrgmPackedGraph *)
    2034         106 :         MemoryContextAlloc(rcontext, sizeof(TrgmPackedGraph));
    2035             : 
    2036             :     /* Pack color trigrams information */
    2037         106 :     result->colorTrigramsCount = 0;
    2038         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2039             :     {
    2040         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2041         320 :             result->colorTrigramsCount++;
    2042             :     }
    2043         106 :     result->colorTrigramGroups = (int *)
    2044         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->colorTrigramsCount);
    2045         106 :     j = 0;
    2046         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2047             :     {
    2048         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2049             :         {
    2050         320 :             result->colorTrigramGroups[j] = trgmNFA->colorTrgms[i].count;
    2051         320 :             j++;
    2052             :         }
    2053             :     }
    2054             : 
    2055             :     /* Pack states and arcs information */
    2056         106 :     result->statesCount = snumber;
    2057         106 :     result->states = (TrgmPackedState *)
    2058         106 :         MemoryContextAlloc(rcontext, snumber * sizeof(TrgmPackedState));
    2059             :     packedArcs = (TrgmPackedArc *)
    2060         106 :         MemoryContextAlloc(rcontext, arcsCount * sizeof(TrgmPackedArc));
    2061         106 :     j = 0;
    2062        1190 :     for (i = 0; i < snumber; i++)
    2063             :     {
    2064        1084 :         int         cnt = 0;
    2065             : 
    2066        1084 :         result->states[i].arcs = &packedArcs[j];
    2067        2204 :         while (j < arcsCount && arcs[j].sourceState == i)
    2068             :         {
    2069        1120 :             packedArcs[j].targetState = arcs[j].targetState;
    2070        1120 :             packedArcs[j].colorTrgm = arcs[j].colorTrgm;
    2071        1120 :             cnt++;
    2072        1120 :             j++;
    2073             :         }
    2074        1084 :         result->states[i].arcsCount = cnt;
    2075             :     }
    2076             : 
    2077             :     /* Allocate working memory for trigramsMatchGraph() */
    2078         106 :     result->colorTrigramsActive = (bool *)
    2079         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->colorTrigramsCount);
    2080         106 :     result->statesActive = (bool *)
    2081         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->statesCount);
    2082         106 :     result->statesQueue = (int *)
    2083         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->statesCount);
    2084             : 
    2085         106 :     return result;
    2086             : }
    2087             : 
    2088             : /*
    2089             :  * Comparison function for sorting TrgmPackArcInfos.
    2090             :  *
    2091             :  * Compares arcs in following order: sourceState, colorTrgm, targetState.
    2092             :  */
    2093             : static int
    2094        9092 : packArcInfoCmp(const void *a1, const void *a2)
    2095             : {
    2096        9092 :     const TrgmPackArcInfo *p1 = (const TrgmPackArcInfo *) a1;
    2097        9092 :     const TrgmPackArcInfo *p2 = (const TrgmPackArcInfo *) a2;
    2098             : 
    2099        9092 :     if (p1->sourceState < p2->sourceState)
    2100        4358 :         return -1;
    2101        4734 :     if (p1->sourceState > p2->sourceState)
    2102        4100 :         return 1;
    2103         634 :     if (p1->colorTrgm < p2->colorTrgm)
    2104         396 :         return -1;
    2105         238 :     if (p1->colorTrgm > p2->colorTrgm)
    2106         214 :         return 1;
    2107          24 :     if (p1->targetState < p2->targetState)
    2108           0 :         return -1;
    2109          24 :     if (p1->targetState > p2->targetState)
    2110           0 :         return 1;
    2111          24 :     return 0;
    2112             : }
    2113             : 
    2114             : 
    2115             : /*---------------------
    2116             :  * Debugging functions
    2117             :  *
    2118             :  * These are designed to emit GraphViz files.
    2119             :  *---------------------
    2120             :  */
    2121             : 
    2122             : #ifdef TRGM_REGEXP_DEBUG
    2123             : 
    2124             : /*
    2125             :  * Print initial NFA, in regexp library's representation
    2126             :  */
    2127             : static void
    2128             : printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors)
    2129             : {
    2130             :     StringInfoData buf;
    2131             :     int         nstates = pg_reg_getnumstates(regex);
    2132             :     int         state;
    2133             :     int         i;
    2134             : 
    2135             :     initStringInfo(&buf);
    2136             : 
    2137             :     appendStringInfoString(&buf, "\ndigraph sourceNFA {\n");
    2138             : 
    2139             :     for (state = 0; state < nstates; state++)
    2140             :     {
    2141             :         regex_arc_t *arcs;
    2142             :         int         i,
    2143             :                     arcsCount;
    2144             : 
    2145             :         appendStringInfo(&buf, "s%d", state);
    2146             :         if (pg_reg_getfinalstate(regex) == state)
    2147             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2148             :         appendStringInfoString(&buf, ";\n");
    2149             : 
    2150             :         arcsCount = pg_reg_getnumoutarcs(regex, state);
    2151             :         arcs = palloc_array(regex_arc_t, arcsCount);
    2152             :         pg_reg_getoutarcs(regex, state, arcs, arcsCount);
    2153             : 
    2154             :         for (i = 0; i < arcsCount; i++)
    2155             :         {
    2156             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"%d\"];\n",
    2157             :                              state, arcs[i].to, arcs[i].co);
    2158             :         }
    2159             : 
    2160             :         pfree(arcs);
    2161             :     }
    2162             : 
    2163             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2164             :     appendStringInfo(&buf, " initial -> s%d;\n",
    2165             :                      pg_reg_getinitialstate(regex));
    2166             : 
    2167             :     /* Print colors */
    2168             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2169             :     appendStringInfoString(&buf, "  Colors [shape = none, margin=0, label=<\n");
    2170             : 
    2171             :     for (i = 0; i < ncolors; i++)
    2172             :     {
    2173             :         TrgmColorInfo *color = &colors[i];
    2174             :         int         j;
    2175             : 
    2176             :         appendStringInfo(&buf, "<br/>Color %d: ", i);
    2177             :         if (color->expandable)
    2178             :         {
    2179             :             for (j = 0; j < color->wordCharsCount; j++)
    2180             :             {
    2181             :                 char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
    2182             : 
    2183             :                 memcpy(s, color->wordChars[j].bytes, MAX_MULTIBYTE_CHAR_LEN);
    2184             :                 s[MAX_MULTIBYTE_CHAR_LEN] = '\0';
    2185             :                 appendStringInfoString(&buf, s);
    2186             :             }
    2187             :         }
    2188             :         else
    2189             :             appendStringInfoString(&buf, "not expandable");
    2190             :         appendStringInfoChar(&buf, '\n');
    2191             :     }
    2192             : 
    2193             :     appendStringInfoString(&buf, "  >];\n");
    2194             :     appendStringInfoString(&buf, " }\n");
    2195             :     appendStringInfoString(&buf, "}\n");
    2196             : 
    2197             :     {
    2198             :         /* dot -Tpng -o /tmp/source.png < /tmp/source.gv */
    2199             :         FILE       *fp = fopen("/tmp/source.gv", "w");
    2200             : 
    2201             :         fprintf(fp, "%s", buf.data);
    2202             :         fclose(fp);
    2203             :     }
    2204             : 
    2205             :     pfree(buf.data);
    2206             : }
    2207             : 
    2208             : /*
    2209             :  * Print expanded graph.
    2210             :  */
    2211             : static void
    2212             : printTrgmNFA(TrgmNFA *trgmNFA)
    2213             : {
    2214             :     StringInfoData buf;
    2215             :     HASH_SEQ_STATUS scan_status;
    2216             :     TrgmState  *state;
    2217             :     TrgmState  *initstate = NULL;
    2218             : 
    2219             :     initStringInfo(&buf);
    2220             : 
    2221             :     appendStringInfoString(&buf, "\ndigraph transformedNFA {\n");
    2222             : 
    2223             :     hash_seq_init(&scan_status, trgmNFA->states);
    2224             :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    2225             :     {
    2226             :         ListCell   *cell;
    2227             : 
    2228             :         appendStringInfo(&buf, "s%d", -state->snumber);
    2229             :         if (state->flags & TSTATE_FIN)
    2230             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2231             :         if (state->flags & TSTATE_INIT)
    2232             :             initstate = state;
    2233             :         appendStringInfo(&buf, " [label = \"%d\"]", state->stateKey.nstate);
    2234             :         appendStringInfoString(&buf, ";\n");
    2235             : 
    2236             :         foreach(cell, state->arcs)
    2237             :         {
    2238             :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    2239             : 
    2240             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"",
    2241             :                              -state->snumber, -arc->target->snumber);
    2242             :             printTrgmColor(&buf, arc->ctrgm.colors[0]);
    2243             :             appendStringInfoChar(&buf, ' ');
    2244             :             printTrgmColor(&buf, arc->ctrgm.colors[1]);
    2245             :             appendStringInfoChar(&buf, ' ');
    2246             :             printTrgmColor(&buf, arc->ctrgm.colors[2]);
    2247             :             appendStringInfoString(&buf, "\"];\n");
    2248             :         }
    2249             :     }
    2250             : 
    2251             :     if (initstate)
    2252             :     {
    2253             :         appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2254             :         appendStringInfo(&buf, " initial -> s%d;\n", -initstate->snumber);
    2255             :     }
    2256             : 
    2257             :     appendStringInfoString(&buf, "}\n");
    2258             : 
    2259             :     {
    2260             :         /* dot -Tpng -o /tmp/transformed.png < /tmp/transformed.gv */
    2261             :         FILE       *fp = fopen("/tmp/transformed.gv", "w");
    2262             : 
    2263             :         fprintf(fp, "%s", buf.data);
    2264             :         fclose(fp);
    2265             :     }
    2266             : 
    2267             :     pfree(buf.data);
    2268             : }
    2269             : 
    2270             : /*
    2271             :  * Print a TrgmColor readably.
    2272             :  */
    2273             : static void
    2274             : printTrgmColor(StringInfo buf, TrgmColor co)
    2275             : {
    2276             :     if (co == COLOR_UNKNOWN)
    2277             :         appendStringInfoChar(buf, 'u');
    2278             :     else if (co == COLOR_BLANK)
    2279             :         appendStringInfoChar(buf, 'b');
    2280             :     else
    2281             :         appendStringInfo(buf, "%d", (int) co);
    2282             : }
    2283             : 
    2284             : /*
    2285             :  * Print final packed representation of trigram-based expanded graph.
    2286             :  */
    2287             : static void
    2288             : printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams)
    2289             : {
    2290             :     StringInfoData buf;
    2291             :     trgm       *p;
    2292             :     int         i;
    2293             : 
    2294             :     initStringInfo(&buf);
    2295             : 
    2296             :     appendStringInfoString(&buf, "\ndigraph packedGraph {\n");
    2297             : 
    2298             :     for (i = 0; i < packedGraph->statesCount; i++)
    2299             :     {
    2300             :         TrgmPackedState *state = &packedGraph->states[i];
    2301             :         int         j;
    2302             : 
    2303             :         appendStringInfo(&buf, " s%d", i);
    2304             :         if (i == 1)
    2305             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2306             : 
    2307             :         appendStringInfo(&buf, " [label = <s%d>];\n", i);
    2308             : 
    2309             :         for (j = 0; j < state->arcsCount; j++)
    2310             :         {
    2311             :             TrgmPackedArc *arc = &state->arcs[j];
    2312             : 
    2313             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"trigram %d\"];\n",
    2314             :                              i, arc->targetState, arc->colorTrgm);
    2315             :         }
    2316             :     }
    2317             : 
    2318             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2319             :     appendStringInfo(&buf, " initial -> s%d;\n", 0);
    2320             : 
    2321             :     /* Print trigrams */
    2322             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2323             :     appendStringInfoString(&buf, "  Trigrams [shape = none, margin=0, label=<\n");
    2324             : 
    2325             :     p = GETARR(trigrams);
    2326             :     for (i = 0; i < packedGraph->colorTrigramsCount; i++)
    2327             :     {
    2328             :         int         count = packedGraph->colorTrigramGroups[i];
    2329             :         int         j;
    2330             : 
    2331             :         appendStringInfo(&buf, "<br/>Trigram %d: ", i);
    2332             : 
    2333             :         for (j = 0; j < count; j++)
    2334             :         {
    2335             :             if (j > 0)
    2336             :                 appendStringInfoString(&buf, ", ");
    2337             : 
    2338             :             /*
    2339             :              * XXX This representation is nice only for all-ASCII trigrams.
    2340             :              */
    2341             :             appendStringInfo(&buf, "\"%c%c%c\"", (*p)[0], (*p)[1], (*p)[2]);
    2342             :             p++;
    2343             :         }
    2344             :     }
    2345             : 
    2346             :     appendStringInfoString(&buf, "  >];\n");
    2347             :     appendStringInfoString(&buf, " }\n");
    2348             :     appendStringInfoString(&buf, "}\n");
    2349             : 
    2350             :     {
    2351             :         /* dot -Tpng -o /tmp/packed.png < /tmp/packed.gv */
    2352             :         FILE       *fp = fopen("/tmp/packed.gv", "w");
    2353             : 
    2354             :         fprintf(fp, "%s", buf.data);
    2355             :         fclose(fp);
    2356             :     }
    2357             : 
    2358             :     pfree(buf.data);
    2359             : }
    2360             : 
    2361             : #endif                          /* TRGM_REGEXP_DEBUG */

Generated by: LCOV version 1.16