Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * trgm_regexp.c
4 : * Regular expression matching using trigrams.
5 : *
6 : * The general idea of trigram index support for a regular expression (regex)
7 : * search is to transform the regex into a logical expression on trigrams.
8 : * For example:
9 : *
10 : * (ab|cd)efg => ((abe & bef) | (cde & def)) & efg
11 : *
12 : * If a string matches the regex, then it must match the logical expression on
13 : * trigrams. The opposite is not necessarily true, however: a string that
14 : * matches the logical expression might not match the original regex. Such
15 : * false positives are removed via recheck, by running the regular regex match
16 : * operator on the retrieved heap tuple.
17 : *
18 : * Since the trigram expression involves both AND and OR operators, we can't
19 : * expect the core index machinery to evaluate it completely. Instead, the
20 : * result of regex analysis is a list of trigrams to be sought in the index,
21 : * plus a simplified graph that is used by trigramsMatchGraph() to determine
22 : * whether a particular indexed value matches the expression.
23 : *
24 : * Converting a regex to a trigram expression is based on analysis of an
25 : * automaton corresponding to the regex. The algorithm consists of four
26 : * stages:
27 : *
28 : * 1) Compile the regexp to NFA form. This is handled by the PostgreSQL
29 : * regexp library, which provides accessors for its opaque regex_t struct
30 : * to expose the NFA state graph and the "colors" (sets of equivalent
31 : * characters) used as state transition labels.
32 : *
33 : * 2) Transform the original NFA into an expanded graph, where arcs
34 : * are labeled with trigrams that must be present in order to move from
35 : * one state to another via the arcs. The trigrams used in this stage
36 : * consist of colors, not characters, as in the original NFA.
37 : *
38 : * 3) Expand the color trigrams into regular trigrams consisting of
39 : * characters. If too many distinct trigrams are produced, trigrams are
40 : * eliminated and the graph is simplified until it's simple enough.
41 : *
42 : * 4) Finally, the resulting graph is packed into a TrgmPackedGraph struct,
43 : * and returned to the caller.
44 : *
45 : * 1) Compile the regexp to NFA form
46 : * ---------------------------------
47 : * The automaton returned by the regexp compiler is a graph where vertices
48 : * are "states" and arcs are labeled with colors. Each color represents
49 : * a set of characters, so that all characters assigned to the same color
50 : * are interchangeable, so far as matching the regexp is concerned. There
51 : * are two special states: "initial" and "final". A state can have multiple
52 : * outgoing arcs labeled with the same color, which makes the automaton
53 : * non-deterministic, because it can be in many states simultaneously.
54 : *
55 : * Note that this NFA is already lossy compared to the original regexp,
56 : * since it ignores some regex features such as lookahead constraints and
57 : * backref matching. This is OK for our purposes since it's still the case
58 : * that only strings matching the NFA can possibly satisfy the regexp.
59 : *
60 : * 2) Transform the original NFA into an expanded graph
61 : * ----------------------------------------------------
62 : * In the 2nd stage, the automaton is transformed into a graph based on the
63 : * original NFA. Each state in the expanded graph represents a state from
64 : * the original NFA, plus a prefix identifying the last two characters
65 : * (colors, to be precise) seen before entering the state. There can be
66 : * multiple states in the expanded graph for each state in the original NFA,
67 : * depending on what characters can precede it. A prefix position can be
68 : * "unknown" if it's uncertain what the preceding character was, or "blank"
69 : * if the character was a non-word character (we don't need to distinguish
70 : * which non-word character it was, so just think of all of them as blanks).
71 : *
72 : * For convenience in description, call an expanded-state identifier
73 : * (two prefix colors plus a state number from the original NFA) an
74 : * "enter key".
75 : *
76 : * Each arc of the expanded graph is labeled with a trigram that must be
77 : * present in the string to match. We can construct this from an out-arc of
78 : * the underlying NFA state by combining the expanded state's prefix with the
79 : * color label of the underlying out-arc, if neither prefix position is
80 : * "unknown". But note that some of the colors in the trigram might be
81 : * "blank". This is OK since we want to generate word-boundary trigrams as
82 : * the regular trigram machinery would, if we know that some word characters
83 : * must be adjacent to a word boundary in all strings matching the NFA.
84 : *
85 : * The expanded graph can also have fewer states than the original NFA,
86 : * because we don't bother to make a separate state entry unless the state
87 : * is reachable by a valid arc. When an enter key is reachable from a state
88 : * of the expanded graph, but we do not know a complete trigram associated
89 : * with that transition, we cannot make a valid arc; instead we insert the
90 : * enter key into the enterKeys list of the source state. This effectively
91 : * means that the two expanded states are not reliably distinguishable based
92 : * on examining trigrams.
93 : *
94 : * So the expanded graph resembles the original NFA, but the arcs are
95 : * labeled with trigrams instead of individual characters, and there may be
96 : * more or fewer states. It is a lossy representation of the original NFA:
97 : * any string that matches the original regexp must match the expanded graph,
98 : * but the reverse is not true.
99 : *
100 : * We build the expanded graph through a breadth-first traversal of states
101 : * reachable from the initial state. At each reachable state, we identify the
102 : * states reachable from it without traversing a predictable trigram, and add
103 : * those states' enter keys to the current state. Then we generate all
104 : * out-arcs leading out of this collection of states that have predictable
105 : * trigrams, adding their target states to the queue of states to examine.
106 : *
107 : * When building the graph, if the number of states or arcs exceed pre-defined
108 : * limits, we give up and simply mark any states not yet processed as final
109 : * states. Roughly speaking, that means that we make use of some portion from
110 : * the beginning of the regexp. Also, any colors that have too many member
111 : * characters are treated as "unknown", so that we can't derive trigrams
112 : * from them.
113 : *
114 : * 3) Expand the color trigrams into regular trigrams
115 : * --------------------------------------------------
116 : * The trigrams in the expanded graph are "color trigrams", consisting
117 : * of three consecutive colors that must be present in the string. But for
118 : * search, we need regular trigrams consisting of characters. In the 3rd
119 : * stage, the color trigrams are expanded into regular trigrams. Since each
120 : * color can represent many characters, the total number of regular trigrams
121 : * after expansion could be very large. Because searching the index for
122 : * thousands of trigrams would be slow, and would likely produce so many
123 : * false positives that we would have to traverse a large fraction of the
124 : * index, the graph is simplified further in a lossy fashion by removing
125 : * color trigrams. When a color trigram is removed, the states connected by
126 : * any arcs labeled with that trigram are merged.
127 : *
128 : * Trigrams do not all have equivalent value for searching: some of them are
129 : * more frequent and some of them are less frequent. Ideally, we would like
130 : * to know the distribution of trigrams, but we don't. But because of padding
131 : * we know for sure that the empty character is more frequent than others,
132 : * so we can penalize trigrams according to presence of whitespace. The
133 : * penalty assigned to each color trigram is the number of simple trigrams
134 : * it would produce, times the penalties[] multiplier associated with its
135 : * whitespace content. (The penalties[] constants were calculated by analysis
136 : * of some real-life text.) We eliminate color trigrams starting with the
137 : * highest-penalty one, until we get to a total penalty of no more than
138 : * WISH_TRGM_PENALTY. However, we cannot remove a color trigram if that would
139 : * lead to merging the initial and final states, so we may not be able to
140 : * reach WISH_TRGM_PENALTY. It's still okay so long as we have no more than
141 : * MAX_TRGM_COUNT simple trigrams in total, otherwise we fail.
142 : *
143 : * 4) Pack the graph into a compact representation
144 : * -----------------------------------------------
145 : * The 2nd and 3rd stages might have eliminated or merged many of the states
146 : * and trigrams created earlier, so in this final stage, the graph is
147 : * compacted and packed into a simpler struct that contains only the
148 : * information needed to evaluate it.
149 : *
150 : * ALGORITHM EXAMPLE:
151 : *
152 : * Consider the example regex "ab[cd]". This regex is transformed into the
153 : * following NFA (for simplicity we show colors as their single members):
154 : *
155 : * 4#
156 : * c/
157 : * a b /
158 : * 1* --- 2 ---- 3
159 : * \
160 : * d\
161 : * 5#
162 : *
163 : * We use * to mark initial state and # to mark final state. It's not depicted,
164 : * but states 1, 4, 5 have self-referencing arcs for all possible characters,
165 : * because this pattern can match to any part of a string.
166 : *
167 : * As the result of stage 2 we will have the following graph:
168 : *
169 : * abc abd
170 : * 2# <---- 1* ----> 3#
171 : *
172 : * The process for generating this graph is:
173 : * 1) Create state 1 with enter key (UNKNOWN, UNKNOWN, 1).
174 : * 2) Add key (UNKNOWN, "a", 2) to state 1.
175 : * 3) Add key ("a", "b", 3) to state 1.
176 : * 4) Create new state 2 with enter key ("b", "c", 4). Add an arc
177 : * from state 1 to state 2 with label trigram "abc".
178 : * 5) Mark state 2 final because state 4 of source NFA is marked as final.
179 : * 6) Create new state 3 with enter key ("b", "d", 5). Add an arc
180 : * from state 1 to state 3 with label trigram "abd".
181 : * 7) Mark state 3 final because state 5 of source NFA is marked as final.
182 : *
183 : *
184 : * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
185 : * Portions Copyright (c) 1994, Regents of the University of California
186 : *
187 : * IDENTIFICATION
188 : * contrib/pg_trgm/trgm_regexp.c
189 : *
190 : *-------------------------------------------------------------------------
191 : */
192 : #include "postgres.h"
193 :
194 : #include "catalog/pg_collation_d.h"
195 : #include "regex/regexport.h"
196 : #include "trgm.h"
197 : #include "tsearch/ts_locale.h"
198 : #include "utils/formatting.h"
199 : #include "utils/hsearch.h"
200 : #include "utils/memutils.h"
201 : #include "varatt.h"
202 :
203 : /*
204 : * Uncomment (or use -DTRGM_REGEXP_DEBUG) to print debug info,
205 : * for exploring and debugging the algorithm implementation.
206 : * This produces three graph files in /tmp, in Graphviz .gv format.
207 : * Some progress information is also printed to postmaster stderr.
208 : */
209 : /* #define TRGM_REGEXP_DEBUG */
210 :
211 : /*
212 : * These parameters are used to limit the amount of work done.
213 : * Otherwise regex processing could be too slow and memory-consuming.
214 : *
215 : * MAX_EXPANDED_STATES - How many states we allow in expanded graph
216 : * MAX_EXPANDED_ARCS - How many arcs we allow in expanded graph
217 : * MAX_TRGM_COUNT - How many simple trigrams we allow to be extracted
218 : * WISH_TRGM_PENALTY - Maximum desired sum of color trigram penalties
219 : * COLOR_COUNT_LIMIT - Maximum number of characters per color
220 : */
221 : #define MAX_EXPANDED_STATES 128
222 : #define MAX_EXPANDED_ARCS 1024
223 : #define MAX_TRGM_COUNT 256
224 : #define WISH_TRGM_PENALTY 16
225 : #define COLOR_COUNT_LIMIT 256
226 :
227 : /*
228 : * Penalty multipliers for trigram counts depending on whitespace contents.
229 : * Numbers based on analysis of real-life texts.
230 : */
231 : static const float4 penalties[8] = {
232 : 1.0f, /* "aaa" */
233 : 3.5f, /* "aa " */
234 : 0.0f, /* "a a" (impossible) */
235 : 0.0f, /* "a " (impossible) */
236 : 4.2f, /* " aa" */
237 : 2.1f, /* " a " */
238 : 25.0f, /* " a" */
239 : 0.0f /* " " (impossible) */
240 : };
241 :
242 : /* Struct representing a single pg_wchar, converted back to multibyte form */
243 : typedef struct
244 : {
245 : char bytes[MAX_MULTIBYTE_CHAR_LEN];
246 : } trgm_mb_char;
247 :
248 : /*
249 : * Attributes of NFA colors:
250 : *
251 : * expandable - we know the character expansion of this color
252 : * containsNonWord - color contains non-word characters
253 : * (which will not be extracted into trigrams)
254 : * wordCharsCount - count of word characters in color
255 : * wordChars - array of this color's word characters
256 : * (which can be extracted into trigrams)
257 : *
258 : * When expandable is false, the other attributes don't matter; we just
259 : * assume this color represents unknown character(s).
260 : */
261 : typedef struct
262 : {
263 : bool expandable;
264 : bool containsNonWord;
265 : int wordCharsCount;
266 : trgm_mb_char *wordChars;
267 : } TrgmColorInfo;
268 :
269 : /*
270 : * A "prefix" is information about the colors of the last two characters read
271 : * before reaching a specific NFA state. These colors can have special values
272 : * COLOR_UNKNOWN and COLOR_BLANK. COLOR_UNKNOWN means that we have no
273 : * information, for example because we read some character of an unexpandable
274 : * color. COLOR_BLANK means that we read a non-word character.
275 : *
276 : * We call a prefix ambiguous if at least one of its colors is unknown. It's
277 : * fully ambiguous if both are unknown, partially ambiguous if only the first
278 : * is unknown. (The case of first color known, second unknown is not valid.)
279 : *
280 : * Wholly- or partly-blank prefixes are mostly handled the same as regular
281 : * color prefixes. This allows us to generate appropriate partly-blank
282 : * trigrams when the NFA requires word character(s) to appear adjacent to
283 : * non-word character(s).
284 : */
285 : typedef int TrgmColor;
286 :
287 : /* We assume that colors returned by the regexp engine cannot be these: */
288 : #define COLOR_UNKNOWN (-3)
289 : #define COLOR_BLANK (-4)
290 :
291 : typedef struct
292 : {
293 : TrgmColor colors[2];
294 : } TrgmPrefix;
295 :
296 : /*
297 : * Color-trigram data type. Note that some elements of the trigram can be
298 : * COLOR_BLANK, but we don't allow COLOR_UNKNOWN.
299 : */
300 : typedef struct
301 : {
302 : TrgmColor colors[3];
303 : } ColorTrgm;
304 :
305 : /*
306 : * Key identifying a state of our expanded graph: color prefix, and number
307 : * of the corresponding state in the underlying regex NFA. The color prefix
308 : * shows how we reached the regex state (to the extent that we know it).
309 : */
310 : typedef struct
311 : {
312 : TrgmPrefix prefix;
313 : int nstate;
314 : } TrgmStateKey;
315 :
316 : /*
317 : * One state of the expanded graph.
318 : *
319 : * stateKey - ID of this state
320 : * arcs - outgoing arcs of this state (List of TrgmArc)
321 : * enterKeys - enter keys reachable from this state without reading any
322 : * predictable trigram (List of TrgmStateKey)
323 : * flags - flag bits
324 : * snumber - number of this state (initially assigned as -1, -2, etc,
325 : * for debugging purposes only; then at the packaging stage,
326 : * surviving states are renumbered with positive numbers)
327 : * parent - parent state, if this state has been merged into another
328 : * tentFlags - flags this state would acquire via planned merges
329 : * tentParent - planned parent state, if considering a merge
330 : */
331 : #define TSTATE_INIT 0x01 /* flag indicating this state is initial */
332 : #define TSTATE_FIN 0x02 /* flag indicating this state is final */
333 :
334 : typedef struct TrgmState
335 : {
336 : TrgmStateKey stateKey; /* hashtable key: must be first field */
337 : List *arcs;
338 : List *enterKeys;
339 : int flags;
340 : int snumber;
341 : struct TrgmState *parent;
342 : int tentFlags;
343 : struct TrgmState *tentParent;
344 : } TrgmState;
345 :
346 : /*
347 : * One arc in the expanded graph.
348 : */
349 : typedef struct
350 : {
351 : ColorTrgm ctrgm; /* trigram needed to traverse arc */
352 : TrgmState *target; /* next state */
353 : } TrgmArc;
354 :
355 : /*
356 : * Information about arc of specific color trigram (used in stage 3)
357 : *
358 : * Contains pointers to the source and target states.
359 : */
360 : typedef struct
361 : {
362 : TrgmState *source;
363 : TrgmState *target;
364 : } TrgmArcInfo;
365 :
366 : /*
367 : * Information about color trigram (used in stage 3)
368 : *
369 : * ctrgm - trigram itself
370 : * cnumber - number of this trigram (used in the packaging stage)
371 : * count - number of simple trigrams created from this color trigram
372 : * expanded - indicates this color trigram is expanded into simple trigrams
373 : * arcs - list of all arcs labeled with this color trigram.
374 : */
375 : typedef struct
376 : {
377 : ColorTrgm ctrgm;
378 : int cnumber;
379 : int count;
380 : float4 penalty;
381 : bool expanded;
382 : List *arcs;
383 : } ColorTrgmInfo;
384 :
385 : /*
386 : * Data structure representing all the data we need during regex processing.
387 : *
388 : * regex - compiled regex
389 : * colorInfo - extracted information about regex's colors
390 : * ncolors - number of colors in colorInfo[]
391 : * states - hashtable of TrgmStates (states of expanded graph)
392 : * initState - pointer to initial state of expanded graph
393 : * queue - queue of to-be-processed TrgmStates
394 : * keysQueue - queue of to-be-processed TrgmStateKeys
395 : * arcsCount - total number of arcs of expanded graph (for resource
396 : * limiting)
397 : * overflowed - we have exceeded resource limit for transformation
398 : * colorTrgms - array of all color trigrams present in graph
399 : * colorTrgmsCount - count of those color trigrams
400 : * totalTrgmCount - total count of extracted simple trigrams
401 : */
402 : typedef struct
403 : {
404 : /* Source regexp, and color information extracted from it (stage 1) */
405 : regex_t *regex;
406 : TrgmColorInfo *colorInfo;
407 : int ncolors;
408 :
409 : /* Expanded graph (stage 2) */
410 : HTAB *states;
411 : TrgmState *initState;
412 : int nstates;
413 :
414 : /* Workspace for stage 2 */
415 : List *queue;
416 : List *keysQueue;
417 : int arcsCount;
418 : bool overflowed;
419 :
420 : /* Information about distinct color trigrams in the graph (stage 3) */
421 : ColorTrgmInfo *colorTrgms;
422 : int colorTrgmsCount;
423 : int totalTrgmCount;
424 : } TrgmNFA;
425 :
426 : /*
427 : * Final, compact representation of expanded graph.
428 : */
429 : typedef struct
430 : {
431 : int targetState; /* index of target state (zero-based) */
432 : int colorTrgm; /* index of color trigram for transition */
433 : } TrgmPackedArc;
434 :
435 : typedef struct
436 : {
437 : int arcsCount; /* number of out-arcs for this state */
438 : TrgmPackedArc *arcs; /* array of arcsCount packed arcs */
439 : } TrgmPackedState;
440 :
441 : /* "typedef struct TrgmPackedGraph TrgmPackedGraph" appears in trgm.h */
442 : struct TrgmPackedGraph
443 : {
444 : /*
445 : * colorTrigramsCount and colorTrigramGroups contain information about how
446 : * trigrams are grouped into color trigrams. "colorTrigramsCount" is the
447 : * count of color trigrams and "colorTrigramGroups" contains number of
448 : * simple trigrams for each color trigram. The array of simple trigrams
449 : * (stored separately from this struct) is ordered so that the simple
450 : * trigrams for each color trigram are consecutive, and they're in order
451 : * by color trigram number.
452 : */
453 : int colorTrigramsCount;
454 : int *colorTrigramGroups; /* array of size colorTrigramsCount */
455 :
456 : /*
457 : * The states of the simplified NFA. State number 0 is always initial
458 : * state and state number 1 is always final state.
459 : */
460 : int statesCount;
461 : TrgmPackedState *states; /* array of size statesCount */
462 :
463 : /* Temporary work space for trigramsMatchGraph() */
464 : bool *colorTrigramsActive; /* array of size colorTrigramsCount */
465 : bool *statesActive; /* array of size statesCount */
466 : int *statesQueue; /* array of size statesCount */
467 : };
468 :
469 : /*
470 : * Temporary structure for representing an arc during packaging.
471 : */
472 : typedef struct
473 : {
474 : int sourceState;
475 : int targetState;
476 : int colorTrgm;
477 : } TrgmPackArcInfo;
478 :
479 :
480 : /* prototypes for private functions */
481 : static TRGM *createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
482 : MemoryContext rcontext);
483 : static void RE_compile(regex_t *regex, text *text_re,
484 : int cflags, Oid collation);
485 : static void getColorInfo(regex_t *regex, TrgmNFA *trgmNFA);
486 : static bool convertPgWchar(pg_wchar c, trgm_mb_char *result);
487 : static void transformGraph(TrgmNFA *trgmNFA);
488 : static void processState(TrgmNFA *trgmNFA, TrgmState *state);
489 : static void addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key);
490 : static void addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key);
491 : static void addArcs(TrgmNFA *trgmNFA, TrgmState *state);
492 : static void addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
493 : TrgmColor co, TrgmStateKey *destKey);
494 : static bool validArcLabel(TrgmStateKey *key, TrgmColor co);
495 : static TrgmState *getState(TrgmNFA *trgmNFA, TrgmStateKey *key);
496 : static bool prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2);
497 : static bool selectColorTrigrams(TrgmNFA *trgmNFA);
498 : static TRGM *expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext);
499 : static void fillTrgm(trgm *ptrgm, trgm_mb_char s[3]);
500 : static void mergeStates(TrgmState *state1, TrgmState *state2);
501 : static int colorTrgmInfoCmp(const void *p1, const void *p2);
502 : static int colorTrgmInfoPenaltyCmp(const void *p1, const void *p2);
503 : static TrgmPackedGraph *packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext);
504 : static int packArcInfoCmp(const void *a1, const void *a2);
505 :
506 : #ifdef TRGM_REGEXP_DEBUG
507 : static void printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors);
508 : static void printTrgmNFA(TrgmNFA *trgmNFA);
509 : static void printTrgmColor(StringInfo buf, TrgmColor co);
510 : static void printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams);
511 : #endif
512 :
513 :
514 : /*
515 : * Main entry point to process a regular expression.
516 : *
517 : * Returns an array of trigrams required by the regular expression, or NULL if
518 : * the regular expression was too complex to analyze. In addition, a packed
519 : * graph representation of the regex is returned into *graph. The results
520 : * must be allocated in rcontext (which might or might not be the current
521 : * context).
522 : */
523 : TRGM *
524 130 : createTrgmNFA(text *text_re, Oid collation,
525 : TrgmPackedGraph **graph, MemoryContext rcontext)
526 : {
527 : TRGM *trg;
528 : regex_t regex;
529 : MemoryContext tmpcontext;
530 : MemoryContext oldcontext;
531 :
532 : /*
533 : * This processing generates a great deal of cruft, which we'd like to
534 : * clean up before returning (since this function may be called in a
535 : * query-lifespan memory context). Make a temp context we can work in so
536 : * that cleanup is easy.
537 : */
538 130 : tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
539 : "createTrgmNFA temporary context",
540 : ALLOCSET_DEFAULT_SIZES);
541 130 : oldcontext = MemoryContextSwitchTo(tmpcontext);
542 :
543 : /*
544 : * Stage 1: Compile the regexp into a NFA, using the regexp library.
545 : */
546 : #ifdef IGNORECASE
547 130 : RE_compile(®ex, text_re,
548 : REG_ADVANCED | REG_NOSUB | REG_ICASE, collation);
549 : #else
550 : RE_compile(®ex, text_re,
551 : REG_ADVANCED | REG_NOSUB, collation);
552 : #endif
553 :
554 130 : trg = createTrgmNFAInternal(®ex, graph, rcontext);
555 :
556 : /* Clean up all the cruft we created (including regex) */
557 130 : MemoryContextSwitchTo(oldcontext);
558 130 : MemoryContextDelete(tmpcontext);
559 :
560 130 : return trg;
561 : }
562 :
563 : /*
564 : * Body of createTrgmNFA, exclusive of regex compilation/freeing.
565 : */
566 : static TRGM *
567 130 : createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
568 : MemoryContext rcontext)
569 : {
570 : TRGM *trg;
571 : TrgmNFA trgmNFA;
572 :
573 130 : trgmNFA.regex = regex;
574 :
575 : /* Collect color information from the regex */
576 130 : getColorInfo(regex, &trgmNFA);
577 :
578 : #ifdef TRGM_REGEXP_DEBUG
579 : printSourceNFA(regex, trgmNFA.colorInfo, trgmNFA.ncolors);
580 : #endif
581 :
582 : /*
583 : * Stage 2: Create an expanded graph from the source NFA.
584 : */
585 130 : transformGraph(&trgmNFA);
586 :
587 : #ifdef TRGM_REGEXP_DEBUG
588 : printTrgmNFA(&trgmNFA);
589 : #endif
590 :
591 : /*
592 : * Fail if we were unable to make a nontrivial graph, ie it is possible to
593 : * get from the initial state to the final state without reading any
594 : * predictable trigram.
595 : */
596 130 : if (trgmNFA.initState->flags & TSTATE_FIN)
597 18 : return NULL;
598 :
599 : /*
600 : * Stage 3: Select color trigrams to expand. Fail if too many trigrams.
601 : */
602 112 : if (!selectColorTrigrams(&trgmNFA))
603 6 : return NULL;
604 :
605 : /*
606 : * Stage 4: Expand color trigrams and pack graph into final
607 : * representation.
608 : */
609 106 : trg = expandColorTrigrams(&trgmNFA, rcontext);
610 :
611 106 : *graph = packGraph(&trgmNFA, rcontext);
612 :
613 : #ifdef TRGM_REGEXP_DEBUG
614 : printTrgmPackedGraph(*graph, trg);
615 : #endif
616 :
617 106 : return trg;
618 : }
619 :
620 : /*
621 : * Main entry point for evaluating a graph during index scanning.
622 : *
623 : * The check[] array is indexed by trigram number (in the array of simple
624 : * trigrams returned by createTrgmNFA), and holds true for those trigrams
625 : * that are present in the index entry being checked.
626 : */
627 : bool
628 7112 : trigramsMatchGraph(TrgmPackedGraph *graph, bool *check)
629 : {
630 : int i,
631 : j,
632 : k,
633 : queueIn,
634 : queueOut;
635 :
636 : /*
637 : * Reset temporary working areas.
638 : */
639 7112 : memset(graph->colorTrigramsActive, 0,
640 7112 : sizeof(bool) * graph->colorTrigramsCount);
641 7112 : memset(graph->statesActive, 0, sizeof(bool) * graph->statesCount);
642 :
643 : /*
644 : * Check which color trigrams were matched. A match for any simple
645 : * trigram associated with a color trigram counts as a match of the color
646 : * trigram.
647 : */
648 7112 : j = 0;
649 22072 : for (i = 0; i < graph->colorTrigramsCount; i++)
650 : {
651 14960 : int cnt = graph->colorTrigramGroups[i];
652 :
653 333444 : for (k = j; k < j + cnt; k++)
654 : {
655 326184 : if (check[k])
656 : {
657 : /*
658 : * Found one matched trigram in the group. Can skip the rest
659 : * of them and go to the next group.
660 : */
661 7700 : graph->colorTrigramsActive[i] = true;
662 7700 : break;
663 : }
664 : }
665 14960 : j = j + cnt;
666 : }
667 :
668 : /*
669 : * Initialize the statesQueue to hold just the initial state. Note:
670 : * statesQueue has room for statesCount entries, which is certainly enough
671 : * since no state will be put in the queue more than once. The
672 : * statesActive array marks which states have been queued.
673 : */
674 7112 : graph->statesActive[0] = true;
675 7112 : graph->statesQueue[0] = 0;
676 7112 : queueIn = 0;
677 7112 : queueOut = 1;
678 :
679 : /* Process queued states as long as there are any. */
680 15312 : while (queueIn < queueOut)
681 : {
682 15040 : int stateno = graph->statesQueue[queueIn++];
683 15040 : TrgmPackedState *state = &graph->states[stateno];
684 15040 : int cnt = state->arcsCount;
685 :
686 : /* Loop over state's out-arcs */
687 30308 : for (i = 0; i < cnt; i++)
688 : {
689 22108 : TrgmPackedArc *arc = &state->arcs[i];
690 :
691 : /*
692 : * If corresponding color trigram is present then activate the
693 : * corresponding state. We're done if that's the final state,
694 : * otherwise queue the state if it's not been queued already.
695 : */
696 22108 : if (graph->colorTrigramsActive[arc->colorTrgm])
697 : {
698 15444 : int nextstate = arc->targetState;
699 :
700 15444 : if (nextstate == 1)
701 6840 : return true; /* success: final state is reachable */
702 :
703 8604 : if (!graph->statesActive[nextstate])
704 : {
705 8490 : graph->statesActive[nextstate] = true;
706 8490 : graph->statesQueue[queueOut++] = nextstate;
707 : }
708 : }
709 : }
710 : }
711 :
712 : /* Queue is empty, so match fails. */
713 272 : return false;
714 : }
715 :
716 : /*
717 : * Compile regex string into struct at *regex.
718 : * NB: pg_regfree must be applied to regex if this completes successfully.
719 : */
720 : static void
721 130 : RE_compile(regex_t *regex, text *text_re, int cflags, Oid collation)
722 : {
723 130 : int text_re_len = VARSIZE_ANY_EXHDR(text_re);
724 130 : char *text_re_val = VARDATA_ANY(text_re);
725 : pg_wchar *pattern;
726 : int pattern_len;
727 : int regcomp_result;
728 : char errMsg[100];
729 :
730 : /* Convert pattern string to wide characters */
731 130 : pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar));
732 130 : pattern_len = pg_mb2wchar_with_len(text_re_val,
733 : pattern,
734 : text_re_len);
735 :
736 : /* Compile regex */
737 130 : regcomp_result = pg_regcomp(regex,
738 : pattern,
739 : pattern_len,
740 : cflags,
741 : collation);
742 :
743 130 : pfree(pattern);
744 :
745 130 : if (regcomp_result != REG_OKAY)
746 : {
747 : /* re didn't compile (no need for pg_regfree, if so) */
748 0 : pg_regerror(regcomp_result, regex, errMsg, sizeof(errMsg));
749 0 : ereport(ERROR,
750 : (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION),
751 : errmsg("invalid regular expression: %s", errMsg)));
752 : }
753 130 : }
754 :
755 :
756 : /*---------------------
757 : * Subroutines for pre-processing the color map (stage 1).
758 : *---------------------
759 : */
760 :
761 : /*
762 : * Fill TrgmColorInfo structure for each color using regex export functions.
763 : */
764 : static void
765 130 : getColorInfo(regex_t *regex, TrgmNFA *trgmNFA)
766 : {
767 130 : int colorsCount = pg_reg_getnumcolors(regex);
768 : int i;
769 :
770 130 : trgmNFA->ncolors = colorsCount;
771 130 : trgmNFA->colorInfo = (TrgmColorInfo *)
772 130 : palloc0(colorsCount * sizeof(TrgmColorInfo));
773 :
774 : /*
775 : * Loop over colors, filling TrgmColorInfo about each. Note we include
776 : * WHITE (0) even though we know it'll be reported as non-expandable.
777 : */
778 1192 : for (i = 0; i < colorsCount; i++)
779 : {
780 1062 : TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[i];
781 1062 : int charsCount = pg_reg_getnumcharacters(regex, i);
782 : pg_wchar *chars;
783 : int j;
784 :
785 1062 : if (charsCount < 0 || charsCount > COLOR_COUNT_LIMIT)
786 : {
787 : /* Non expandable, or too large to work with */
788 650 : colorInfo->expandable = false;
789 650 : continue;
790 : }
791 :
792 412 : colorInfo->expandable = true;
793 412 : colorInfo->containsNonWord = false;
794 412 : colorInfo->wordChars = (trgm_mb_char *)
795 412 : palloc(sizeof(trgm_mb_char) * charsCount);
796 412 : colorInfo->wordCharsCount = 0;
797 :
798 : /* Extract all the chars in this color */
799 412 : chars = (pg_wchar *) palloc(sizeof(pg_wchar) * charsCount);
800 412 : pg_reg_getcharacters(regex, i, chars, charsCount);
801 :
802 : /*
803 : * Convert characters back to multibyte form, and save only those that
804 : * are word characters. Set "containsNonWord" if any non-word
805 : * character. (Note: it'd probably be nicer to keep the chars in
806 : * pg_wchar format for now, but ISWORDCHR wants to see multibyte.)
807 : */
808 1982 : for (j = 0; j < charsCount; j++)
809 : {
810 : trgm_mb_char c;
811 :
812 1570 : if (!convertPgWchar(chars[j], &c))
813 730 : continue; /* ok to ignore it altogether */
814 840 : if (ISWORDCHR(c.bytes))
815 790 : colorInfo->wordChars[colorInfo->wordCharsCount++] = c;
816 : else
817 50 : colorInfo->containsNonWord = true;
818 : }
819 :
820 412 : pfree(chars);
821 : }
822 130 : }
823 :
824 : /*
825 : * Convert pg_wchar to multibyte format.
826 : * Returns false if the character should be ignored completely.
827 : */
828 : static bool
829 1570 : convertPgWchar(pg_wchar c, trgm_mb_char *result)
830 : {
831 : /* "s" has enough space for a multibyte character and a trailing NUL */
832 : char s[MAX_MULTIBYTE_CHAR_LEN + 1];
833 :
834 : /*
835 : * We can ignore the NUL character, since it can never appear in a PG text
836 : * string. This avoids the need for various special cases when
837 : * reconstructing trigrams.
838 : */
839 1570 : if (c == 0)
840 0 : return false;
841 :
842 : /* Do the conversion, making sure the result is NUL-terminated */
843 1570 : memset(s, 0, sizeof(s));
844 1570 : pg_wchar2mb_with_len(&c, s, 1);
845 :
846 : /*
847 : * In IGNORECASE mode, we can ignore uppercase characters. We assume that
848 : * the regex engine generated both uppercase and lowercase equivalents
849 : * within each color, since we used the REG_ICASE option; so there's no
850 : * need to process the uppercase version.
851 : *
852 : * XXX this code is dependent on the assumption that str_tolower() works
853 : * the same as the regex engine's internal case folding machinery. Might
854 : * be wiser to expose pg_wc_tolower and test whether c ==
855 : * pg_wc_tolower(c). On the other hand, the trigrams in the index were
856 : * created using str_tolower(), so we're probably screwed if there's any
857 : * incompatibility anyway.
858 : */
859 : #ifdef IGNORECASE
860 : {
861 1570 : char *lowerCased = str_tolower(s, strlen(s), DEFAULT_COLLATION_OID);
862 :
863 1570 : if (strcmp(lowerCased, s) != 0)
864 : {
865 730 : pfree(lowerCased);
866 730 : return false;
867 : }
868 840 : pfree(lowerCased);
869 : }
870 : #endif
871 :
872 : /* Fill result with exactly MAX_MULTIBYTE_CHAR_LEN bytes */
873 840 : memcpy(result->bytes, s, MAX_MULTIBYTE_CHAR_LEN);
874 840 : return true;
875 : }
876 :
877 :
878 : /*---------------------
879 : * Subroutines for expanding original NFA graph into a trigram graph (stage 2).
880 : *---------------------
881 : */
882 :
883 : /*
884 : * Transform the graph, given a regex and extracted color information.
885 : *
886 : * We create and process a queue of expanded-graph states until all the states
887 : * are processed.
888 : *
889 : * This algorithm may be stopped due to resource limitation. In this case we
890 : * force every unprocessed branch to immediately finish with matching (this
891 : * can give us false positives but no false negatives) by marking all
892 : * unprocessed states as final.
893 : */
894 : static void
895 130 : transformGraph(TrgmNFA *trgmNFA)
896 : {
897 : HASHCTL hashCtl;
898 : TrgmStateKey initkey;
899 : TrgmState *initstate;
900 : ListCell *lc;
901 :
902 : /* Initialize this stage's workspace in trgmNFA struct */
903 130 : trgmNFA->queue = NIL;
904 130 : trgmNFA->keysQueue = NIL;
905 130 : trgmNFA->arcsCount = 0;
906 130 : trgmNFA->overflowed = false;
907 :
908 : /* Create hashtable for states */
909 130 : hashCtl.keysize = sizeof(TrgmStateKey);
910 130 : hashCtl.entrysize = sizeof(TrgmState);
911 130 : hashCtl.hcxt = CurrentMemoryContext;
912 130 : trgmNFA->states = hash_create("Trigram NFA",
913 : 1024,
914 : &hashCtl,
915 : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
916 130 : trgmNFA->nstates = 0;
917 :
918 : /* Create initial state: ambiguous prefix, NFA's initial state */
919 130 : MemSet(&initkey, 0, sizeof(initkey));
920 130 : initkey.prefix.colors[0] = COLOR_UNKNOWN;
921 130 : initkey.prefix.colors[1] = COLOR_UNKNOWN;
922 130 : initkey.nstate = pg_reg_getinitialstate(trgmNFA->regex);
923 :
924 130 : initstate = getState(trgmNFA, &initkey);
925 130 : initstate->flags |= TSTATE_INIT;
926 130 : trgmNFA->initState = initstate;
927 :
928 : /*
929 : * Recursively build the expanded graph by processing queue of states
930 : * (breadth-first search). getState already put initstate in the queue.
931 : * Note that getState will append new states to the queue within the loop,
932 : * too; this works as long as we don't do repeat fetches using the "lc"
933 : * pointer.
934 : */
935 1458 : foreach(lc, trgmNFA->queue)
936 : {
937 1328 : TrgmState *state = (TrgmState *) lfirst(lc);
938 :
939 : /*
940 : * If we overflowed then just mark state as final. Otherwise do
941 : * actual processing.
942 : */
943 1328 : if (trgmNFA->overflowed)
944 18 : state->flags |= TSTATE_FIN;
945 : else
946 1310 : processState(trgmNFA, state);
947 :
948 : /* Did we overflow? */
949 2656 : if (trgmNFA->arcsCount > MAX_EXPANDED_ARCS ||
950 1328 : hash_get_num_entries(trgmNFA->states) > MAX_EXPANDED_STATES)
951 24 : trgmNFA->overflowed = true;
952 : }
953 130 : }
954 :
955 : /*
956 : * Process one state: add enter keys and then add outgoing arcs.
957 : */
958 : static void
959 1310 : processState(TrgmNFA *trgmNFA, TrgmState *state)
960 : {
961 : ListCell *lc;
962 :
963 : /* keysQueue should be NIL already, but make sure */
964 1310 : trgmNFA->keysQueue = NIL;
965 :
966 : /*
967 : * Add state's own key, and then process all keys added to keysQueue until
968 : * queue is finished. But we can quit if the state gets marked final.
969 : */
970 1310 : addKey(trgmNFA, state, &state->stateKey);
971 2532 : foreach(lc, trgmNFA->keysQueue)
972 : {
973 1384 : TrgmStateKey *key = (TrgmStateKey *) lfirst(lc);
974 :
975 1384 : if (state->flags & TSTATE_FIN)
976 162 : break;
977 1222 : addKey(trgmNFA, state, key);
978 : }
979 :
980 : /* Release keysQueue to clean up for next cycle */
981 1310 : list_free(trgmNFA->keysQueue);
982 1310 : trgmNFA->keysQueue = NIL;
983 :
984 : /*
985 : * Add outgoing arcs only if state isn't final (we have no interest in
986 : * outgoing arcs if we already match)
987 : */
988 1310 : if (!(state->flags & TSTATE_FIN))
989 1142 : addArcs(trgmNFA, state);
990 1310 : }
991 :
992 : /*
993 : * Add the given enter key into the state's enterKeys list, and determine
994 : * whether this should result in any further enter keys being added.
995 : * If so, add those keys to keysQueue so that processState will handle them.
996 : *
997 : * If the enter key is for the NFA's final state, mark state as TSTATE_FIN.
998 : * This situation means that we can reach the final state from this expanded
999 : * state without reading any predictable trigram, so we must consider this
1000 : * state as an accepting one.
1001 : *
1002 : * The given key could be a duplicate of one already in enterKeys, or be
1003 : * redundant with some enterKeys. So we check that before doing anything.
1004 : *
1005 : * Note that we don't generate any actual arcs here. addArcs will do that
1006 : * later, after we have identified all the enter keys for this state.
1007 : */
1008 : static void
1009 2532 : addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key)
1010 : {
1011 : regex_arc_t *arcs;
1012 : TrgmStateKey destKey;
1013 : ListCell *cell;
1014 : int i,
1015 : arcsCount;
1016 :
1017 : /*
1018 : * Ensure any pad bytes in destKey are zero, since it may get used as a
1019 : * hashtable key by getState.
1020 : */
1021 2532 : MemSet(&destKey, 0, sizeof(destKey));
1022 :
1023 : /*
1024 : * Compare key to each existing enter key of the state to check for
1025 : * redundancy. We can drop either old key(s) or the new key if we find
1026 : * redundancy.
1027 : */
1028 3958 : foreach(cell, state->enterKeys)
1029 : {
1030 2032 : TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
1031 :
1032 2032 : if (existingKey->nstate == key->nstate)
1033 : {
1034 624 : if (prefixContains(&existingKey->prefix, &key->prefix))
1035 : {
1036 : /* This old key already covers the new key. Nothing to do */
1037 606 : return;
1038 : }
1039 18 : if (prefixContains(&key->prefix, &existingKey->prefix))
1040 : {
1041 : /*
1042 : * The new key covers this old key. Remove the old key, it's
1043 : * no longer needed once we add this key to the list.
1044 : */
1045 12 : state->enterKeys = foreach_delete_current(state->enterKeys,
1046 : cell);
1047 : }
1048 : }
1049 : }
1050 :
1051 : /* No redundancy, so add this key to the state's list */
1052 1926 : state->enterKeys = lappend(state->enterKeys, key);
1053 :
1054 : /* If state is now known final, mark it and we're done */
1055 1926 : if (key->nstate == pg_reg_getfinalstate(trgmNFA->regex))
1056 : {
1057 168 : state->flags |= TSTATE_FIN;
1058 168 : return;
1059 : }
1060 :
1061 : /*
1062 : * Loop through all outgoing arcs of the corresponding state in the
1063 : * original NFA.
1064 : */
1065 1758 : arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
1066 1758 : arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
1067 1758 : pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
1068 :
1069 4768 : for (i = 0; i < arcsCount; i++)
1070 : {
1071 3010 : regex_arc_t *arc = &arcs[i];
1072 :
1073 3010 : if (pg_reg_colorisbegin(trgmNFA->regex, arc->co))
1074 : {
1075 : /*
1076 : * Start of line/string (^). Trigram extraction treats start of
1077 : * line same as start of word: double space prefix is added.
1078 : * Hence, make an enter key showing we can reach the arc
1079 : * destination with all-blank prefix.
1080 : */
1081 492 : destKey.prefix.colors[0] = COLOR_BLANK;
1082 492 : destKey.prefix.colors[1] = COLOR_BLANK;
1083 492 : destKey.nstate = arc->to;
1084 :
1085 : /* Add enter key to this state */
1086 492 : addKeyToQueue(trgmNFA, &destKey);
1087 : }
1088 2518 : else if (pg_reg_colorisend(trgmNFA->regex, arc->co))
1089 : {
1090 : /*
1091 : * End of line/string ($). We must consider this arc as a
1092 : * transition that doesn't read anything. The reason for adding
1093 : * this enter key to the state is that if the arc leads to the
1094 : * NFA's final state, we must mark this expanded state as final.
1095 : */
1096 324 : destKey.prefix.colors[0] = COLOR_UNKNOWN;
1097 324 : destKey.prefix.colors[1] = COLOR_UNKNOWN;
1098 324 : destKey.nstate = arc->to;
1099 :
1100 : /* Add enter key to this state */
1101 324 : addKeyToQueue(trgmNFA, &destKey);
1102 : }
1103 2194 : else if (arc->co >= 0)
1104 : {
1105 : /* Regular color (including WHITE) */
1106 1786 : TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[arc->co];
1107 :
1108 1786 : if (colorInfo->expandable)
1109 : {
1110 1786 : if (colorInfo->containsNonWord &&
1111 110 : !validArcLabel(key, COLOR_BLANK))
1112 : {
1113 : /*
1114 : * We can reach the arc destination after reading a
1115 : * non-word character, but the prefix is not something
1116 : * that addArc will accept with COLOR_BLANK, so no trigram
1117 : * arc can get made for this transition. We must make an
1118 : * enter key to show that the arc destination is
1119 : * reachable. Set it up with an all-blank prefix, since
1120 : * that corresponds to what the trigram extraction code
1121 : * will do at a word starting boundary.
1122 : */
1123 54 : destKey.prefix.colors[0] = COLOR_BLANK;
1124 54 : destKey.prefix.colors[1] = COLOR_BLANK;
1125 54 : destKey.nstate = arc->to;
1126 54 : addKeyToQueue(trgmNFA, &destKey);
1127 : }
1128 :
1129 1786 : if (colorInfo->wordCharsCount > 0 &&
1130 1676 : !validArcLabel(key, arc->co))
1131 : {
1132 : /*
1133 : * We can reach the arc destination after reading a word
1134 : * character, but the prefix is not something that addArc
1135 : * will accept, so no trigram arc can get made for this
1136 : * transition. We must make an enter key to show that the
1137 : * arc destination is reachable. The prefix for the enter
1138 : * key should reflect the info we have for this arc.
1139 : */
1140 262 : destKey.prefix.colors[0] = key->prefix.colors[1];
1141 262 : destKey.prefix.colors[1] = arc->co;
1142 262 : destKey.nstate = arc->to;
1143 262 : addKeyToQueue(trgmNFA, &destKey);
1144 : }
1145 : }
1146 : else
1147 : {
1148 : /*
1149 : * Unexpandable color. Add enter key with ambiguous prefix,
1150 : * showing we can reach the destination from this state, but
1151 : * the preceding colors will be uncertain. (We do not set the
1152 : * first prefix color to key->prefix.colors[1], because a
1153 : * prefix of known followed by unknown is invalid.)
1154 : */
1155 0 : destKey.prefix.colors[0] = COLOR_UNKNOWN;
1156 0 : destKey.prefix.colors[1] = COLOR_UNKNOWN;
1157 0 : destKey.nstate = arc->to;
1158 0 : addKeyToQueue(trgmNFA, &destKey);
1159 : }
1160 : }
1161 : else
1162 : {
1163 : /* RAINBOW: treat as unexpandable color */
1164 408 : destKey.prefix.colors[0] = COLOR_UNKNOWN;
1165 408 : destKey.prefix.colors[1] = COLOR_UNKNOWN;
1166 408 : destKey.nstate = arc->to;
1167 408 : addKeyToQueue(trgmNFA, &destKey);
1168 : }
1169 : }
1170 :
1171 1758 : pfree(arcs);
1172 : }
1173 :
1174 : /*
1175 : * Add copy of given key to keysQueue for later processing.
1176 : */
1177 : static void
1178 1540 : addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key)
1179 : {
1180 1540 : TrgmStateKey *keyCopy = (TrgmStateKey *) palloc(sizeof(TrgmStateKey));
1181 :
1182 1540 : memcpy(keyCopy, key, sizeof(TrgmStateKey));
1183 1540 : trgmNFA->keysQueue = lappend(trgmNFA->keysQueue, keyCopy);
1184 1540 : }
1185 :
1186 : /*
1187 : * Add outgoing arcs from given state, whose enter keys are all now known.
1188 : */
1189 : static void
1190 1142 : addArcs(TrgmNFA *trgmNFA, TrgmState *state)
1191 : {
1192 : TrgmStateKey destKey;
1193 : ListCell *cell;
1194 : regex_arc_t *arcs;
1195 : int arcsCount,
1196 : i;
1197 :
1198 : /*
1199 : * Ensure any pad bytes in destKey are zero, since it may get used as a
1200 : * hashtable key by getState.
1201 : */
1202 1142 : MemSet(&destKey, 0, sizeof(destKey));
1203 :
1204 : /*
1205 : * Iterate over enter keys associated with this expanded-graph state. This
1206 : * includes both the state's own stateKey, and any enter keys we added to
1207 : * it during addKey (which represent expanded-graph states that are not
1208 : * distinguishable from this one by means of trigrams). For each such
1209 : * enter key, examine all the out-arcs of the key's underlying NFA state,
1210 : * and try to make a trigram arc leading to where the out-arc leads.
1211 : * (addArc will deal with whether the arc is valid or not.)
1212 : */
1213 2672 : foreach(cell, state->enterKeys)
1214 : {
1215 1530 : TrgmStateKey *key = (TrgmStateKey *) lfirst(cell);
1216 :
1217 1530 : arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
1218 1530 : arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
1219 1530 : pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
1220 :
1221 3892 : for (i = 0; i < arcsCount; i++)
1222 : {
1223 2362 : regex_arc_t *arc = &arcs[i];
1224 : TrgmColorInfo *colorInfo;
1225 :
1226 : /*
1227 : * Ignore non-expandable colors; addKey already handled the case.
1228 : *
1229 : * We need no special check for WHITE or begin/end pseudocolors
1230 : * here. We don't need to do any processing for them, and they
1231 : * will be marked non-expandable since the regex engine will have
1232 : * reported them that way. We do have to watch out for RAINBOW,
1233 : * which has a negative color number.
1234 : */
1235 2362 : if (arc->co < 0)
1236 204 : continue;
1237 : Assert(arc->co < trgmNFA->ncolors);
1238 :
1239 2158 : colorInfo = &trgmNFA->colorInfo[arc->co];
1240 2158 : if (!colorInfo->expandable)
1241 420 : continue;
1242 :
1243 1738 : if (colorInfo->containsNonWord)
1244 : {
1245 : /*
1246 : * Color includes non-word character(s).
1247 : *
1248 : * Generate an arc, treating this transition as occurring on
1249 : * BLANK. This allows word-ending trigrams to be manufactured
1250 : * if possible.
1251 : */
1252 110 : destKey.prefix.colors[0] = key->prefix.colors[1];
1253 110 : destKey.prefix.colors[1] = COLOR_BLANK;
1254 110 : destKey.nstate = arc->to;
1255 :
1256 110 : addArc(trgmNFA, state, key, COLOR_BLANK, &destKey);
1257 : }
1258 :
1259 1738 : if (colorInfo->wordCharsCount > 0)
1260 : {
1261 : /*
1262 : * Color includes word character(s).
1263 : *
1264 : * Generate an arc. Color is pushed into prefix of target
1265 : * state.
1266 : */
1267 1628 : destKey.prefix.colors[0] = key->prefix.colors[1];
1268 1628 : destKey.prefix.colors[1] = arc->co;
1269 1628 : destKey.nstate = arc->to;
1270 :
1271 1628 : addArc(trgmNFA, state, key, arc->co, &destKey);
1272 : }
1273 : }
1274 :
1275 1530 : pfree(arcs);
1276 : }
1277 1142 : }
1278 :
1279 : /*
1280 : * Generate an out-arc of the expanded graph, if it's valid and not redundant.
1281 : *
1282 : * state: expanded-graph state we want to add an out-arc to
1283 : * key: provides prefix colors (key->nstate is not used)
1284 : * co: transition color
1285 : * destKey: identifier for destination state of expanded graph
1286 : */
1287 : static void
1288 1738 : addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
1289 : TrgmColor co, TrgmStateKey *destKey)
1290 : {
1291 : TrgmArc *arc;
1292 : ListCell *cell;
1293 :
1294 : /* Do nothing if this wouldn't be a valid arc label trigram */
1295 1738 : if (!validArcLabel(key, co))
1296 274 : return;
1297 :
1298 : /*
1299 : * Check if we are going to reach key which is covered by a key which is
1300 : * already listed in this state. If so arc is useless: the NFA can bypass
1301 : * it through a path that doesn't require any predictable trigram, so
1302 : * whether the arc's trigram is present or not doesn't really matter.
1303 : */
1304 3534 : foreach(cell, state->enterKeys)
1305 : {
1306 2082 : TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
1307 :
1308 2132 : if (existingKey->nstate == destKey->nstate &&
1309 50 : prefixContains(&existingKey->prefix, &destKey->prefix))
1310 12 : return;
1311 : }
1312 :
1313 : /* Checks were successful, add new arc */
1314 1452 : arc = (TrgmArc *) palloc(sizeof(TrgmArc));
1315 1452 : arc->target = getState(trgmNFA, destKey);
1316 1452 : arc->ctrgm.colors[0] = key->prefix.colors[0];
1317 1452 : arc->ctrgm.colors[1] = key->prefix.colors[1];
1318 1452 : arc->ctrgm.colors[2] = co;
1319 :
1320 1452 : state->arcs = lappend(state->arcs, arc);
1321 1452 : trgmNFA->arcsCount++;
1322 : }
1323 :
1324 : /*
1325 : * Can we make a valid trigram arc label from the given prefix and arc color?
1326 : *
1327 : * This is split out so that tests in addKey and addArc will stay in sync.
1328 : */
1329 : static bool
1330 3524 : validArcLabel(TrgmStateKey *key, TrgmColor co)
1331 : {
1332 : /*
1333 : * We have to know full trigram in order to add outgoing arc. So we can't
1334 : * do it if prefix is ambiguous.
1335 : */
1336 3524 : if (key->prefix.colors[0] == COLOR_UNKNOWN)
1337 466 : return false;
1338 :
1339 : /* If key->prefix.colors[0] isn't unknown, its second color isn't either */
1340 : Assert(key->prefix.colors[1] != COLOR_UNKNOWN);
1341 : /* And we should not be called with an unknown arc color anytime */
1342 : Assert(co != COLOR_UNKNOWN);
1343 :
1344 : /*
1345 : * We don't bother with making arcs representing three non-word
1346 : * characters, since that's useless for trigram extraction.
1347 : */
1348 3058 : if (key->prefix.colors[0] == COLOR_BLANK &&
1349 328 : key->prefix.colors[1] == COLOR_BLANK &&
1350 : co == COLOR_BLANK)
1351 24 : return false;
1352 :
1353 : /*
1354 : * We also reject nonblank-blank-anything. The nonblank-blank-nonblank
1355 : * case doesn't correspond to any trigram the trigram extraction code
1356 : * would make. The nonblank-blank-blank case is also not possible with
1357 : * RPADDING = 1. (Note that in many cases we'd fail to generate such a
1358 : * trigram even if it were valid, for example processing "foo bar" will
1359 : * not result in considering the trigram "o ". So if you want to support
1360 : * RPADDING = 2, there's more to do than just twiddle this test.)
1361 : */
1362 3034 : if (key->prefix.colors[0] != COLOR_BLANK &&
1363 2730 : key->prefix.colors[1] == COLOR_BLANK)
1364 100 : return false;
1365 :
1366 : /*
1367 : * Other combinations involving blank are valid, in particular we assume
1368 : * blank-blank-nonblank is valid, which presumes that LPADDING is 2.
1369 : *
1370 : * Note: Using again the example "foo bar", we will not consider the
1371 : * trigram " b", though this trigram would be found by the trigram
1372 : * extraction code. Since we will find " ba", it doesn't seem worth
1373 : * trying to hack the algorithm to generate the additional trigram.
1374 : */
1375 :
1376 : /* arc label is valid */
1377 2934 : return true;
1378 : }
1379 :
1380 : /*
1381 : * Get state of expanded graph for given state key,
1382 : * and queue the state for processing if it didn't already exist.
1383 : */
1384 : static TrgmState *
1385 1582 : getState(TrgmNFA *trgmNFA, TrgmStateKey *key)
1386 : {
1387 : TrgmState *state;
1388 : bool found;
1389 :
1390 1582 : state = (TrgmState *) hash_search(trgmNFA->states, key, HASH_ENTER,
1391 : &found);
1392 1582 : if (!found)
1393 : {
1394 : /* New state: initialize and queue it */
1395 1328 : state->arcs = NIL;
1396 1328 : state->enterKeys = NIL;
1397 1328 : state->flags = 0;
1398 : /* states are initially given negative numbers */
1399 1328 : state->snumber = -(++trgmNFA->nstates);
1400 1328 : state->parent = NULL;
1401 1328 : state->tentFlags = 0;
1402 1328 : state->tentParent = NULL;
1403 :
1404 1328 : trgmNFA->queue = lappend(trgmNFA->queue, state);
1405 : }
1406 1582 : return state;
1407 : }
1408 :
1409 : /*
1410 : * Check if prefix1 "contains" prefix2.
1411 : *
1412 : * "contains" means that any exact prefix (with no ambiguity) that satisfies
1413 : * prefix2 also satisfies prefix1.
1414 : */
1415 : static bool
1416 692 : prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2)
1417 : {
1418 692 : if (prefix1->colors[1] == COLOR_UNKNOWN)
1419 : {
1420 : /* Fully ambiguous prefix contains everything */
1421 612 : return true;
1422 : }
1423 80 : else if (prefix1->colors[0] == COLOR_UNKNOWN)
1424 : {
1425 : /*
1426 : * Prefix with only first unknown color contains every prefix with
1427 : * same second color.
1428 : */
1429 24 : if (prefix1->colors[1] == prefix2->colors[1])
1430 6 : return true;
1431 : else
1432 18 : return false;
1433 : }
1434 : else
1435 : {
1436 : /* Exact prefix contains only the exact same prefix */
1437 56 : if (prefix1->colors[0] == prefix2->colors[0] &&
1438 26 : prefix1->colors[1] == prefix2->colors[1])
1439 12 : return true;
1440 : else
1441 44 : return false;
1442 : }
1443 : }
1444 :
1445 :
1446 : /*---------------------
1447 : * Subroutines for expanding color trigrams into regular trigrams (stage 3).
1448 : *---------------------
1449 : */
1450 :
1451 : /*
1452 : * Get vector of all color trigrams in graph and select which of them
1453 : * to expand into simple trigrams.
1454 : *
1455 : * Returns true if OK, false if exhausted resource limits.
1456 : */
1457 : static bool
1458 112 : selectColorTrigrams(TrgmNFA *trgmNFA)
1459 : {
1460 : HASH_SEQ_STATUS scan_status;
1461 112 : int arcsCount = trgmNFA->arcsCount,
1462 : i;
1463 : TrgmState *state;
1464 : ColorTrgmInfo *colorTrgms;
1465 : int64 totalTrgmCount;
1466 : float4 totalTrgmPenalty;
1467 : int cnumber;
1468 :
1469 : /* Collect color trigrams from all arcs */
1470 112 : colorTrgms = (ColorTrgmInfo *) palloc0(sizeof(ColorTrgmInfo) * arcsCount);
1471 112 : trgmNFA->colorTrgms = colorTrgms;
1472 :
1473 112 : i = 0;
1474 112 : hash_seq_init(&scan_status, trgmNFA->states);
1475 1422 : while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
1476 : {
1477 : ListCell *cell;
1478 :
1479 2762 : foreach(cell, state->arcs)
1480 : {
1481 1452 : TrgmArc *arc = (TrgmArc *) lfirst(cell);
1482 1452 : TrgmArcInfo *arcInfo = (TrgmArcInfo *) palloc(sizeof(TrgmArcInfo));
1483 1452 : ColorTrgmInfo *trgmInfo = &colorTrgms[i];
1484 :
1485 1452 : arcInfo->source = state;
1486 1452 : arcInfo->target = arc->target;
1487 1452 : trgmInfo->ctrgm = arc->ctrgm;
1488 1452 : trgmInfo->cnumber = -1;
1489 : /* count and penalty will be set below */
1490 1452 : trgmInfo->expanded = true;
1491 1452 : trgmInfo->arcs = list_make1(arcInfo);
1492 1452 : i++;
1493 : }
1494 : }
1495 : Assert(i == arcsCount);
1496 :
1497 : /* Remove duplicates, merging their arcs lists */
1498 112 : if (arcsCount >= 2)
1499 : {
1500 : ColorTrgmInfo *p1,
1501 : *p2;
1502 :
1503 : /* Sort trigrams to ease duplicate detection */
1504 68 : qsort(colorTrgms, arcsCount, sizeof(ColorTrgmInfo), colorTrgmInfoCmp);
1505 :
1506 : /* p1 is probe point, p2 is last known non-duplicate. */
1507 68 : p2 = colorTrgms;
1508 1412 : for (p1 = colorTrgms + 1; p1 < colorTrgms + arcsCount; p1++)
1509 : {
1510 1344 : if (colorTrgmInfoCmp(p1, p2) > 0)
1511 : {
1512 448 : p2++;
1513 448 : *p2 = *p1;
1514 : }
1515 : else
1516 : {
1517 896 : p2->arcs = list_concat(p2->arcs, p1->arcs);
1518 : }
1519 : }
1520 68 : trgmNFA->colorTrgmsCount = (p2 - colorTrgms) + 1;
1521 : }
1522 : else
1523 : {
1524 44 : trgmNFA->colorTrgmsCount = arcsCount;
1525 : }
1526 :
1527 : /*
1528 : * Count number of simple trigrams generated by each color trigram, and
1529 : * also compute a penalty value, which is the number of simple trigrams
1530 : * times a multiplier that depends on its whitespace content.
1531 : *
1532 : * Note: per-color-trigram counts cannot overflow an int so long as
1533 : * COLOR_COUNT_LIMIT is not more than the cube root of INT_MAX, ie about
1534 : * 1290. However, the grand total totalTrgmCount might conceivably
1535 : * overflow an int, so we use int64 for that within this routine. Also,
1536 : * penalties are calculated in float4 arithmetic to avoid any overflow
1537 : * worries.
1538 : */
1539 112 : totalTrgmCount = 0;
1540 112 : totalTrgmPenalty = 0.0f;
1541 668 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
1542 : {
1543 556 : ColorTrgmInfo *trgmInfo = &colorTrgms[i];
1544 : int j,
1545 556 : count = 1,
1546 556 : typeIndex = 0;
1547 :
1548 2224 : for (j = 0; j < 3; j++)
1549 : {
1550 1668 : TrgmColor c = trgmInfo->ctrgm.colors[j];
1551 :
1552 1668 : typeIndex *= 2;
1553 1668 : if (c == COLOR_BLANK)
1554 226 : typeIndex++;
1555 : else
1556 1442 : count *= trgmNFA->colorInfo[c].wordCharsCount;
1557 : }
1558 556 : trgmInfo->count = count;
1559 556 : totalTrgmCount += count;
1560 556 : trgmInfo->penalty = penalties[typeIndex] * (float4) count;
1561 556 : totalTrgmPenalty += trgmInfo->penalty;
1562 : }
1563 :
1564 : /* Sort color trigrams in descending order of their penalties */
1565 112 : qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
1566 : colorTrgmInfoPenaltyCmp);
1567 :
1568 : /*
1569 : * Remove color trigrams from the graph so long as total penalty of color
1570 : * trigrams exceeds WISH_TRGM_PENALTY. (If we fail to get down to
1571 : * WISH_TRGM_PENALTY, it's OK so long as total count is no more than
1572 : * MAX_TRGM_COUNT.) We prefer to remove color trigrams with higher
1573 : * penalty, since those are the most promising for reducing the total
1574 : * penalty. When removing a color trigram we have to merge states
1575 : * connected by arcs labeled with that trigram. It's necessary to not
1576 : * merge initial and final states, because our graph becomes useless if
1577 : * that happens; so we cannot always remove the trigram we'd prefer to.
1578 : */
1579 408 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
1580 : {
1581 358 : ColorTrgmInfo *trgmInfo = &colorTrgms[i];
1582 358 : bool canRemove = true;
1583 : ListCell *cell;
1584 :
1585 : /* Done if we've reached the target */
1586 358 : if (totalTrgmPenalty <= WISH_TRGM_PENALTY)
1587 62 : break;
1588 :
1589 : #ifdef TRGM_REGEXP_DEBUG
1590 : fprintf(stderr, "considering ctrgm %d %d %d, penalty %f, %d arcs\n",
1591 : trgmInfo->ctrgm.colors[0],
1592 : trgmInfo->ctrgm.colors[1],
1593 : trgmInfo->ctrgm.colors[2],
1594 : trgmInfo->penalty,
1595 : list_length(trgmInfo->arcs));
1596 : #endif
1597 :
1598 : /*
1599 : * Does any arc of this color trigram connect initial and final
1600 : * states? If so we can't remove it.
1601 : */
1602 612 : foreach(cell, trgmInfo->arcs)
1603 : {
1604 382 : TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
1605 382 : TrgmState *source = arcInfo->source,
1606 382 : *target = arcInfo->target;
1607 : int source_flags,
1608 : target_flags;
1609 :
1610 : #ifdef TRGM_REGEXP_DEBUG
1611 : fprintf(stderr, "examining arc to s%d (%x) from s%d (%x)\n",
1612 : -target->snumber, target->flags,
1613 : -source->snumber, source->flags);
1614 : #endif
1615 :
1616 : /* examine parent states, if any merging has already happened */
1617 682 : while (source->parent)
1618 300 : source = source->parent;
1619 814 : while (target->parent)
1620 432 : target = target->parent;
1621 :
1622 : #ifdef TRGM_REGEXP_DEBUG
1623 : fprintf(stderr, " ... after completed merges: to s%d (%x) from s%d (%x)\n",
1624 : -target->snumber, target->flags,
1625 : -source->snumber, source->flags);
1626 : #endif
1627 :
1628 : /* we must also consider merges we are planning right now */
1629 382 : source_flags = source->flags | source->tentFlags;
1630 390 : while (source->tentParent)
1631 : {
1632 8 : source = source->tentParent;
1633 8 : source_flags |= source->flags | source->tentFlags;
1634 : }
1635 382 : target_flags = target->flags | target->tentFlags;
1636 412 : while (target->tentParent)
1637 : {
1638 30 : target = target->tentParent;
1639 30 : target_flags |= target->flags | target->tentFlags;
1640 : }
1641 :
1642 : #ifdef TRGM_REGEXP_DEBUG
1643 : fprintf(stderr, " ... after tentative merges: to s%d (%x) from s%d (%x)\n",
1644 : -target->snumber, target_flags,
1645 : -source->snumber, source_flags);
1646 : #endif
1647 :
1648 : /* would fully-merged state have both INIT and FIN set? */
1649 382 : if (((source_flags | target_flags) & (TSTATE_INIT | TSTATE_FIN)) ==
1650 : (TSTATE_INIT | TSTATE_FIN))
1651 : {
1652 66 : canRemove = false;
1653 66 : break;
1654 : }
1655 :
1656 : /* ok so far, so remember planned merge */
1657 316 : if (source != target)
1658 : {
1659 : #ifdef TRGM_REGEXP_DEBUG
1660 : fprintf(stderr, " ... tentatively merging s%d into s%d\n",
1661 : -target->snumber, -source->snumber);
1662 : #endif
1663 226 : target->tentParent = source;
1664 226 : source->tentFlags |= target_flags;
1665 : }
1666 : }
1667 :
1668 : /*
1669 : * We must reset all the tentFlags/tentParent fields before
1670 : * continuing. tentFlags could only have become set in states that
1671 : * are the source or parent or tentative parent of one of the current
1672 : * arcs; likewise tentParent could only have become set in states that
1673 : * are the target or parent or tentative parent of one of the current
1674 : * arcs. There might be some overlap between those sets, but if we
1675 : * clear tentFlags in target states as well as source states, we
1676 : * should be okay even if we visit a state as target before visiting
1677 : * it as a source.
1678 : */
1679 696 : foreach(cell, trgmInfo->arcs)
1680 : {
1681 400 : TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
1682 400 : TrgmState *source = arcInfo->source,
1683 400 : *target = arcInfo->target;
1684 : TrgmState *ttarget;
1685 :
1686 : /* no need to touch previously-merged states */
1687 700 : while (source->parent)
1688 300 : source = source->parent;
1689 880 : while (target->parent)
1690 480 : target = target->parent;
1691 :
1692 812 : while (source)
1693 : {
1694 412 : source->tentFlags = 0;
1695 412 : source = source->tentParent;
1696 : }
1697 :
1698 626 : while ((ttarget = target->tentParent) != NULL)
1699 : {
1700 226 : target->tentParent = NULL;
1701 226 : target->tentFlags = 0; /* in case it was also a source */
1702 226 : target = ttarget;
1703 : }
1704 : }
1705 :
1706 : /* Now, move on if we can't drop this trigram */
1707 296 : if (!canRemove)
1708 : {
1709 : #ifdef TRGM_REGEXP_DEBUG
1710 : fprintf(stderr, " ... not ok to merge\n");
1711 : #endif
1712 66 : continue;
1713 : }
1714 :
1715 : /* OK, merge states linked by each arc labeled by the trigram */
1716 526 : foreach(cell, trgmInfo->arcs)
1717 : {
1718 296 : TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
1719 296 : TrgmState *source = arcInfo->source,
1720 296 : *target = arcInfo->target;
1721 :
1722 584 : while (source->parent)
1723 288 : source = source->parent;
1724 692 : while (target->parent)
1725 396 : target = target->parent;
1726 296 : if (source != target)
1727 : {
1728 : #ifdef TRGM_REGEXP_DEBUG
1729 : fprintf(stderr, "merging s%d into s%d\n",
1730 : -target->snumber, -source->snumber);
1731 : #endif
1732 206 : mergeStates(source, target);
1733 : /* Assert we didn't merge initial and final states */
1734 : Assert((source->flags & (TSTATE_INIT | TSTATE_FIN)) !=
1735 : (TSTATE_INIT | TSTATE_FIN));
1736 : }
1737 : }
1738 :
1739 : /* Mark trigram unexpanded, and update totals */
1740 230 : trgmInfo->expanded = false;
1741 230 : totalTrgmCount -= trgmInfo->count;
1742 230 : totalTrgmPenalty -= trgmInfo->penalty;
1743 : }
1744 :
1745 : /* Did we succeed in fitting into MAX_TRGM_COUNT? */
1746 112 : if (totalTrgmCount > MAX_TRGM_COUNT)
1747 6 : return false;
1748 :
1749 106 : trgmNFA->totalTrgmCount = (int) totalTrgmCount;
1750 :
1751 : /*
1752 : * Sort color trigrams by colors (will be useful for bsearch in packGraph)
1753 : * and enumerate the color trigrams that are expanded.
1754 : */
1755 106 : cnumber = 0;
1756 106 : qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
1757 : colorTrgmInfoCmp);
1758 656 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
1759 : {
1760 550 : if (colorTrgms[i].expanded)
1761 : {
1762 320 : colorTrgms[i].cnumber = cnumber;
1763 320 : cnumber++;
1764 : }
1765 : }
1766 :
1767 106 : return true;
1768 : }
1769 :
1770 : /*
1771 : * Expand selected color trigrams into regular trigrams.
1772 : *
1773 : * Returns the TRGM array to be passed to the index machinery.
1774 : * The array must be allocated in rcontext.
1775 : */
1776 : static TRGM *
1777 106 : expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext)
1778 : {
1779 : TRGM *trg;
1780 : trgm *p;
1781 : int i;
1782 : TrgmColorInfo blankColor;
1783 : trgm_mb_char blankChar;
1784 :
1785 : /* Set up "blank" color structure containing a single zero character */
1786 106 : memset(blankChar.bytes, 0, sizeof(blankChar.bytes));
1787 106 : blankColor.wordCharsCount = 1;
1788 106 : blankColor.wordChars = &blankChar;
1789 :
1790 : /* Construct the trgm array */
1791 : trg = (TRGM *)
1792 106 : MemoryContextAllocZero(rcontext,
1793 : TRGMHDRSIZE +
1794 106 : trgmNFA->totalTrgmCount * sizeof(trgm));
1795 106 : trg->flag = ARRKEY;
1796 106 : SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, trgmNFA->totalTrgmCount));
1797 106 : p = GETARR(trg);
1798 656 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
1799 : {
1800 550 : ColorTrgmInfo *colorTrgm = &trgmNFA->colorTrgms[i];
1801 : TrgmColorInfo *c[3];
1802 : trgm_mb_char s[3];
1803 : int j,
1804 : i1,
1805 : i2,
1806 : i3;
1807 :
1808 : /* Ignore any unexpanded trigrams ... */
1809 550 : if (!colorTrgm->expanded)
1810 230 : continue;
1811 :
1812 : /* Get colors, substituting the dummy struct for COLOR_BLANK */
1813 1280 : for (j = 0; j < 3; j++)
1814 : {
1815 960 : if (colorTrgm->ctrgm.colors[j] != COLOR_BLANK)
1816 826 : c[j] = &trgmNFA->colorInfo[colorTrgm->ctrgm.colors[j]];
1817 : else
1818 134 : c[j] = &blankColor;
1819 : }
1820 :
1821 : /* Iterate over all possible combinations of colors' characters */
1822 754 : for (i1 = 0; i1 < c[0]->wordCharsCount; i1++)
1823 : {
1824 434 : s[0] = c[0]->wordChars[i1];
1825 1456 : for (i2 = 0; i2 < c[1]->wordCharsCount; i2++)
1826 : {
1827 1022 : s[1] = c[1]->wordChars[i2];
1828 3940 : for (i3 = 0; i3 < c[2]->wordCharsCount; i3++)
1829 : {
1830 2918 : s[2] = c[2]->wordChars[i3];
1831 2918 : fillTrgm(p, s);
1832 2918 : p++;
1833 : }
1834 : }
1835 : }
1836 : }
1837 :
1838 106 : return trg;
1839 : }
1840 :
1841 : /*
1842 : * Convert trigram into trgm datatype.
1843 : */
1844 : static void
1845 2918 : fillTrgm(trgm *ptrgm, trgm_mb_char s[3])
1846 : {
1847 : char str[3 * MAX_MULTIBYTE_CHAR_LEN],
1848 : *p;
1849 : int i,
1850 : j;
1851 :
1852 : /* Write multibyte string into "str" (we don't need null termination) */
1853 2918 : p = str;
1854 :
1855 11672 : for (i = 0; i < 3; i++)
1856 : {
1857 8754 : if (s[i].bytes[0] != 0)
1858 : {
1859 16464 : for (j = 0; j < MAX_MULTIBYTE_CHAR_LEN && s[i].bytes[j]; j++)
1860 8232 : *p++ = s[i].bytes[j];
1861 : }
1862 : else
1863 : {
1864 : /* Emit a space in place of COLOR_BLANK */
1865 522 : *p++ = ' ';
1866 : }
1867 : }
1868 :
1869 : /* Convert "str" to a standard trigram (possibly hashing it) */
1870 2918 : compact_trigram(ptrgm, str, p - str);
1871 2918 : }
1872 :
1873 : /*
1874 : * Merge two states of graph.
1875 : */
1876 : static void
1877 206 : mergeStates(TrgmState *state1, TrgmState *state2)
1878 : {
1879 : Assert(state1 != state2);
1880 : Assert(!state1->parent);
1881 : Assert(!state2->parent);
1882 :
1883 : /* state1 absorbs state2's flags */
1884 206 : state1->flags |= state2->flags;
1885 :
1886 : /* state2, and indirectly all its children, become children of state1 */
1887 206 : state2->parent = state1;
1888 206 : }
1889 :
1890 : /*
1891 : * Compare function for sorting of color trigrams by their colors.
1892 : */
1893 : static int
1894 10178 : colorTrgmInfoCmp(const void *p1, const void *p2)
1895 : {
1896 10178 : const ColorTrgmInfo *c1 = (const ColorTrgmInfo *) p1;
1897 10178 : const ColorTrgmInfo *c2 = (const ColorTrgmInfo *) p2;
1898 :
1899 10178 : return memcmp(&c1->ctrgm, &c2->ctrgm, sizeof(ColorTrgm));
1900 : }
1901 :
1902 : /*
1903 : * Compare function for sorting color trigrams in descending order of
1904 : * their penalty fields.
1905 : */
1906 : static int
1907 846 : colorTrgmInfoPenaltyCmp(const void *p1, const void *p2)
1908 : {
1909 846 : float4 penalty1 = ((const ColorTrgmInfo *) p1)->penalty;
1910 846 : float4 penalty2 = ((const ColorTrgmInfo *) p2)->penalty;
1911 :
1912 846 : if (penalty1 < penalty2)
1913 254 : return 1;
1914 592 : else if (penalty1 == penalty2)
1915 324 : return 0;
1916 : else
1917 268 : return -1;
1918 : }
1919 :
1920 :
1921 : /*---------------------
1922 : * Subroutines for packing the graph into final representation (stage 4).
1923 : *---------------------
1924 : */
1925 :
1926 : /*
1927 : * Pack expanded graph into final representation.
1928 : *
1929 : * The result data must be allocated in rcontext.
1930 : */
1931 : static TrgmPackedGraph *
1932 106 : packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext)
1933 : {
1934 106 : int snumber = 2,
1935 : arcIndex,
1936 : arcsCount;
1937 : HASH_SEQ_STATUS scan_status;
1938 : TrgmState *state;
1939 : TrgmPackArcInfo *arcs;
1940 : TrgmPackedArc *packedArcs;
1941 : TrgmPackedGraph *result;
1942 : int i,
1943 : j;
1944 :
1945 : /* Enumerate surviving states, giving init and fin reserved numbers */
1946 106 : hash_seq_init(&scan_status, trgmNFA->states);
1947 1404 : while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
1948 : {
1949 1942 : while (state->parent)
1950 644 : state = state->parent;
1951 :
1952 1298 : if (state->snumber < 0)
1953 : {
1954 1092 : if (state->flags & TSTATE_INIT)
1955 106 : state->snumber = 0;
1956 986 : else if (state->flags & TSTATE_FIN)
1957 114 : state->snumber = 1;
1958 : else
1959 : {
1960 872 : state->snumber = snumber;
1961 872 : snumber++;
1962 : }
1963 : }
1964 : }
1965 :
1966 : /* Collect array of all arcs */
1967 : arcs = (TrgmPackArcInfo *)
1968 106 : palloc(sizeof(TrgmPackArcInfo) * trgmNFA->arcsCount);
1969 106 : arcIndex = 0;
1970 106 : hash_seq_init(&scan_status, trgmNFA->states);
1971 1404 : while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
1972 : {
1973 1298 : TrgmState *source = state;
1974 : ListCell *cell;
1975 :
1976 1942 : while (source->parent)
1977 644 : source = source->parent;
1978 :
1979 2744 : foreach(cell, state->arcs)
1980 : {
1981 1446 : TrgmArc *arc = (TrgmArc *) lfirst(cell);
1982 1446 : TrgmState *target = arc->target;
1983 :
1984 2704 : while (target->parent)
1985 1258 : target = target->parent;
1986 :
1987 1446 : if (source->snumber != target->snumber)
1988 : {
1989 : ColorTrgmInfo *ctrgm;
1990 :
1991 1132 : ctrgm = (ColorTrgmInfo *) bsearch(&arc->ctrgm,
1992 1132 : trgmNFA->colorTrgms,
1993 1132 : trgmNFA->colorTrgmsCount,
1994 : sizeof(ColorTrgmInfo),
1995 : colorTrgmInfoCmp);
1996 : Assert(ctrgm != NULL);
1997 : Assert(ctrgm->expanded);
1998 :
1999 1132 : arcs[arcIndex].sourceState = source->snumber;
2000 1132 : arcs[arcIndex].targetState = target->snumber;
2001 1132 : arcs[arcIndex].colorTrgm = ctrgm->cnumber;
2002 1132 : arcIndex++;
2003 : }
2004 : }
2005 : }
2006 :
2007 : /* Sort arcs to ease duplicate detection */
2008 106 : qsort(arcs, arcIndex, sizeof(TrgmPackArcInfo), packArcInfoCmp);
2009 :
2010 : /* We could have duplicates because states were merged. Remove them. */
2011 106 : if (arcIndex > 1)
2012 : {
2013 : /* p1 is probe point, p2 is last known non-duplicate. */
2014 : TrgmPackArcInfo *p1,
2015 : *p2;
2016 :
2017 62 : p2 = arcs;
2018 1092 : for (p1 = arcs + 1; p1 < arcs + arcIndex; p1++)
2019 : {
2020 1030 : if (packArcInfoCmp(p1, p2) > 0)
2021 : {
2022 1018 : p2++;
2023 1018 : *p2 = *p1;
2024 : }
2025 : }
2026 62 : arcsCount = (p2 - arcs) + 1;
2027 : }
2028 : else
2029 44 : arcsCount = arcIndex;
2030 :
2031 : /* Create packed representation */
2032 : result = (TrgmPackedGraph *)
2033 106 : MemoryContextAlloc(rcontext, sizeof(TrgmPackedGraph));
2034 :
2035 : /* Pack color trigrams information */
2036 106 : result->colorTrigramsCount = 0;
2037 656 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
2038 : {
2039 550 : if (trgmNFA->colorTrgms[i].expanded)
2040 320 : result->colorTrigramsCount++;
2041 : }
2042 106 : result->colorTrigramGroups = (int *)
2043 106 : MemoryContextAlloc(rcontext, sizeof(int) * result->colorTrigramsCount);
2044 106 : j = 0;
2045 656 : for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
2046 : {
2047 550 : if (trgmNFA->colorTrgms[i].expanded)
2048 : {
2049 320 : result->colorTrigramGroups[j] = trgmNFA->colorTrgms[i].count;
2050 320 : j++;
2051 : }
2052 : }
2053 :
2054 : /* Pack states and arcs information */
2055 106 : result->statesCount = snumber;
2056 106 : result->states = (TrgmPackedState *)
2057 106 : MemoryContextAlloc(rcontext, snumber * sizeof(TrgmPackedState));
2058 : packedArcs = (TrgmPackedArc *)
2059 106 : MemoryContextAlloc(rcontext, arcsCount * sizeof(TrgmPackedArc));
2060 106 : j = 0;
2061 1190 : for (i = 0; i < snumber; i++)
2062 : {
2063 1084 : int cnt = 0;
2064 :
2065 1084 : result->states[i].arcs = &packedArcs[j];
2066 2204 : while (j < arcsCount && arcs[j].sourceState == i)
2067 : {
2068 1120 : packedArcs[j].targetState = arcs[j].targetState;
2069 1120 : packedArcs[j].colorTrgm = arcs[j].colorTrgm;
2070 1120 : cnt++;
2071 1120 : j++;
2072 : }
2073 1084 : result->states[i].arcsCount = cnt;
2074 : }
2075 :
2076 : /* Allocate working memory for trigramsMatchGraph() */
2077 106 : result->colorTrigramsActive = (bool *)
2078 106 : MemoryContextAlloc(rcontext, sizeof(bool) * result->colorTrigramsCount);
2079 106 : result->statesActive = (bool *)
2080 106 : MemoryContextAlloc(rcontext, sizeof(bool) * result->statesCount);
2081 106 : result->statesQueue = (int *)
2082 106 : MemoryContextAlloc(rcontext, sizeof(int) * result->statesCount);
2083 :
2084 106 : return result;
2085 : }
2086 :
2087 : /*
2088 : * Comparison function for sorting TrgmPackArcInfos.
2089 : *
2090 : * Compares arcs in following order: sourceState, colorTrgm, targetState.
2091 : */
2092 : static int
2093 9092 : packArcInfoCmp(const void *a1, const void *a2)
2094 : {
2095 9092 : const TrgmPackArcInfo *p1 = (const TrgmPackArcInfo *) a1;
2096 9092 : const TrgmPackArcInfo *p2 = (const TrgmPackArcInfo *) a2;
2097 :
2098 9092 : if (p1->sourceState < p2->sourceState)
2099 4358 : return -1;
2100 4734 : if (p1->sourceState > p2->sourceState)
2101 4100 : return 1;
2102 634 : if (p1->colorTrgm < p2->colorTrgm)
2103 396 : return -1;
2104 238 : if (p1->colorTrgm > p2->colorTrgm)
2105 214 : return 1;
2106 24 : if (p1->targetState < p2->targetState)
2107 0 : return -1;
2108 24 : if (p1->targetState > p2->targetState)
2109 0 : return 1;
2110 24 : return 0;
2111 : }
2112 :
2113 :
2114 : /*---------------------
2115 : * Debugging functions
2116 : *
2117 : * These are designed to emit GraphViz files.
2118 : *---------------------
2119 : */
2120 :
2121 : #ifdef TRGM_REGEXP_DEBUG
2122 :
2123 : /*
2124 : * Print initial NFA, in regexp library's representation
2125 : */
2126 : static void
2127 : printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors)
2128 : {
2129 : StringInfoData buf;
2130 : int nstates = pg_reg_getnumstates(regex);
2131 : int state;
2132 : int i;
2133 :
2134 : initStringInfo(&buf);
2135 :
2136 : appendStringInfoString(&buf, "\ndigraph sourceNFA {\n");
2137 :
2138 : for (state = 0; state < nstates; state++)
2139 : {
2140 : regex_arc_t *arcs;
2141 : int i,
2142 : arcsCount;
2143 :
2144 : appendStringInfo(&buf, "s%d", state);
2145 : if (pg_reg_getfinalstate(regex) == state)
2146 : appendStringInfoString(&buf, " [shape = doublecircle]");
2147 : appendStringInfoString(&buf, ";\n");
2148 :
2149 : arcsCount = pg_reg_getnumoutarcs(regex, state);
2150 : arcs = (regex_arc_t *) palloc(sizeof(regex_arc_t) * arcsCount);
2151 : pg_reg_getoutarcs(regex, state, arcs, arcsCount);
2152 :
2153 : for (i = 0; i < arcsCount; i++)
2154 : {
2155 : appendStringInfo(&buf, " s%d -> s%d [label = \"%d\"];\n",
2156 : state, arcs[i].to, arcs[i].co);
2157 : }
2158 :
2159 : pfree(arcs);
2160 : }
2161 :
2162 : appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
2163 : appendStringInfo(&buf, " initial -> s%d;\n",
2164 : pg_reg_getinitialstate(regex));
2165 :
2166 : /* Print colors */
2167 : appendStringInfoString(&buf, " { rank = sink;\n");
2168 : appendStringInfoString(&buf, " Colors [shape = none, margin=0, label=<\n");
2169 :
2170 : for (i = 0; i < ncolors; i++)
2171 : {
2172 : TrgmColorInfo *color = &colors[i];
2173 : int j;
2174 :
2175 : appendStringInfo(&buf, "<br/>Color %d: ", i);
2176 : if (color->expandable)
2177 : {
2178 : for (j = 0; j < color->wordCharsCount; j++)
2179 : {
2180 : char s[MAX_MULTIBYTE_CHAR_LEN + 1];
2181 :
2182 : memcpy(s, color->wordChars[j].bytes, MAX_MULTIBYTE_CHAR_LEN);
2183 : s[MAX_MULTIBYTE_CHAR_LEN] = '\0';
2184 : appendStringInfoString(&buf, s);
2185 : }
2186 : }
2187 : else
2188 : appendStringInfoString(&buf, "not expandable");
2189 : appendStringInfoChar(&buf, '\n');
2190 : }
2191 :
2192 : appendStringInfoString(&buf, " >];\n");
2193 : appendStringInfoString(&buf, " }\n");
2194 : appendStringInfoString(&buf, "}\n");
2195 :
2196 : {
2197 : /* dot -Tpng -o /tmp/source.png < /tmp/source.gv */
2198 : FILE *fp = fopen("/tmp/source.gv", "w");
2199 :
2200 : fprintf(fp, "%s", buf.data);
2201 : fclose(fp);
2202 : }
2203 :
2204 : pfree(buf.data);
2205 : }
2206 :
2207 : /*
2208 : * Print expanded graph.
2209 : */
2210 : static void
2211 : printTrgmNFA(TrgmNFA *trgmNFA)
2212 : {
2213 : StringInfoData buf;
2214 : HASH_SEQ_STATUS scan_status;
2215 : TrgmState *state;
2216 : TrgmState *initstate = NULL;
2217 :
2218 : initStringInfo(&buf);
2219 :
2220 : appendStringInfoString(&buf, "\ndigraph transformedNFA {\n");
2221 :
2222 : hash_seq_init(&scan_status, trgmNFA->states);
2223 : while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
2224 : {
2225 : ListCell *cell;
2226 :
2227 : appendStringInfo(&buf, "s%d", -state->snumber);
2228 : if (state->flags & TSTATE_FIN)
2229 : appendStringInfoString(&buf, " [shape = doublecircle]");
2230 : if (state->flags & TSTATE_INIT)
2231 : initstate = state;
2232 : appendStringInfo(&buf, " [label = \"%d\"]", state->stateKey.nstate);
2233 : appendStringInfoString(&buf, ";\n");
2234 :
2235 : foreach(cell, state->arcs)
2236 : {
2237 : TrgmArc *arc = (TrgmArc *) lfirst(cell);
2238 :
2239 : appendStringInfo(&buf, " s%d -> s%d [label = \"",
2240 : -state->snumber, -arc->target->snumber);
2241 : printTrgmColor(&buf, arc->ctrgm.colors[0]);
2242 : appendStringInfoChar(&buf, ' ');
2243 : printTrgmColor(&buf, arc->ctrgm.colors[1]);
2244 : appendStringInfoChar(&buf, ' ');
2245 : printTrgmColor(&buf, arc->ctrgm.colors[2]);
2246 : appendStringInfoString(&buf, "\"];\n");
2247 : }
2248 : }
2249 :
2250 : if (initstate)
2251 : {
2252 : appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
2253 : appendStringInfo(&buf, " initial -> s%d;\n", -initstate->snumber);
2254 : }
2255 :
2256 : appendStringInfoString(&buf, "}\n");
2257 :
2258 : {
2259 : /* dot -Tpng -o /tmp/transformed.png < /tmp/transformed.gv */
2260 : FILE *fp = fopen("/tmp/transformed.gv", "w");
2261 :
2262 : fprintf(fp, "%s", buf.data);
2263 : fclose(fp);
2264 : }
2265 :
2266 : pfree(buf.data);
2267 : }
2268 :
2269 : /*
2270 : * Print a TrgmColor readably.
2271 : */
2272 : static void
2273 : printTrgmColor(StringInfo buf, TrgmColor co)
2274 : {
2275 : if (co == COLOR_UNKNOWN)
2276 : appendStringInfoChar(buf, 'u');
2277 : else if (co == COLOR_BLANK)
2278 : appendStringInfoChar(buf, 'b');
2279 : else
2280 : appendStringInfo(buf, "%d", (int) co);
2281 : }
2282 :
2283 : /*
2284 : * Print final packed representation of trigram-based expanded graph.
2285 : */
2286 : static void
2287 : printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams)
2288 : {
2289 : StringInfoData buf;
2290 : trgm *p;
2291 : int i;
2292 :
2293 : initStringInfo(&buf);
2294 :
2295 : appendStringInfoString(&buf, "\ndigraph packedGraph {\n");
2296 :
2297 : for (i = 0; i < packedGraph->statesCount; i++)
2298 : {
2299 : TrgmPackedState *state = &packedGraph->states[i];
2300 : int j;
2301 :
2302 : appendStringInfo(&buf, " s%d", i);
2303 : if (i == 1)
2304 : appendStringInfoString(&buf, " [shape = doublecircle]");
2305 :
2306 : appendStringInfo(&buf, " [label = <s%d>];\n", i);
2307 :
2308 : for (j = 0; j < state->arcsCount; j++)
2309 : {
2310 : TrgmPackedArc *arc = &state->arcs[j];
2311 :
2312 : appendStringInfo(&buf, " s%d -> s%d [label = \"trigram %d\"];\n",
2313 : i, arc->targetState, arc->colorTrgm);
2314 : }
2315 : }
2316 :
2317 : appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
2318 : appendStringInfo(&buf, " initial -> s%d;\n", 0);
2319 :
2320 : /* Print trigrams */
2321 : appendStringInfoString(&buf, " { rank = sink;\n");
2322 : appendStringInfoString(&buf, " Trigrams [shape = none, margin=0, label=<\n");
2323 :
2324 : p = GETARR(trigrams);
2325 : for (i = 0; i < packedGraph->colorTrigramsCount; i++)
2326 : {
2327 : int count = packedGraph->colorTrigramGroups[i];
2328 : int j;
2329 :
2330 : appendStringInfo(&buf, "<br/>Trigram %d: ", i);
2331 :
2332 : for (j = 0; j < count; j++)
2333 : {
2334 : if (j > 0)
2335 : appendStringInfoString(&buf, ", ");
2336 :
2337 : /*
2338 : * XXX This representation is nice only for all-ASCII trigrams.
2339 : */
2340 : appendStringInfo(&buf, "\"%c%c%c\"", (*p)[0], (*p)[1], (*p)[2]);
2341 : p++;
2342 : }
2343 : }
2344 :
2345 : appendStringInfoString(&buf, " >];\n");
2346 : appendStringInfoString(&buf, " }\n");
2347 : appendStringInfoString(&buf, "}\n");
2348 :
2349 : {
2350 : /* dot -Tpng -o /tmp/packed.png < /tmp/packed.gv */
2351 : FILE *fp = fopen("/tmp/packed.gv", "w");
2352 :
2353 : fprintf(fp, "%s", buf.data);
2354 : fclose(fp);
2355 : }
2356 :
2357 : pfree(buf.data);
2358 : }
2359 :
2360 : #endif /* TRGM_REGEXP_DEBUG */
|