LCOV - code coverage report
Current view: top level - contrib/pg_trgm - trgm_regexp.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 512 521 98.3 %
Date: 2025-12-23 16:18:23 Functions: 23 23 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * trgm_regexp.c
       4             :  *    Regular expression matching using trigrams.
       5             :  *
       6             :  * The general idea of trigram index support for a regular expression (regex)
       7             :  * search is to transform the regex into a logical expression on trigrams.
       8             :  * For example:
       9             :  *
      10             :  *   (ab|cd)efg  =>  ((abe & bef) | (cde & def)) & efg
      11             :  *
      12             :  * If a string matches the regex, then it must match the logical expression on
      13             :  * trigrams.  The opposite is not necessarily true, however: a string that
      14             :  * matches the logical expression might not match the original regex.  Such
      15             :  * false positives are removed via recheck, by running the regular regex match
      16             :  * operator on the retrieved heap tuple.
      17             :  *
      18             :  * Since the trigram expression involves both AND and OR operators, we can't
      19             :  * expect the core index machinery to evaluate it completely.  Instead, the
      20             :  * result of regex analysis is a list of trigrams to be sought in the index,
      21             :  * plus a simplified graph that is used by trigramsMatchGraph() to determine
      22             :  * whether a particular indexed value matches the expression.
      23             :  *
      24             :  * Converting a regex to a trigram expression is based on analysis of an
      25             :  * automaton corresponding to the regex.  The algorithm consists of four
      26             :  * stages:
      27             :  *
      28             :  * 1) Compile the regexp to NFA form.  This is handled by the PostgreSQL
      29             :  *    regexp library, which provides accessors for its opaque regex_t struct
      30             :  *    to expose the NFA state graph and the "colors" (sets of equivalent
      31             :  *    characters) used as state transition labels.
      32             :  *
      33             :  * 2) Transform the original NFA into an expanded graph, where arcs
      34             :  *    are labeled with trigrams that must be present in order to move from
      35             :  *    one state to another via the arcs.  The trigrams used in this stage
      36             :  *    consist of colors, not characters, as in the original NFA.
      37             :  *
      38             :  * 3) Expand the color trigrams into regular trigrams consisting of
      39             :  *    characters.  If too many distinct trigrams are produced, trigrams are
      40             :  *    eliminated and the graph is simplified until it's simple enough.
      41             :  *
      42             :  * 4) Finally, the resulting graph is packed into a TrgmPackedGraph struct,
      43             :  *    and returned to the caller.
      44             :  *
      45             :  * 1) Compile the regexp to NFA form
      46             :  * ---------------------------------
      47             :  * The automaton returned by the regexp compiler is a graph where vertices
      48             :  * are "states" and arcs are labeled with colors.  Each color represents
      49             :  * a set of characters, so that all characters assigned to the same color
      50             :  * are interchangeable, so far as matching the regexp is concerned.  There
      51             :  * are two special states: "initial" and "final".  A state can have multiple
      52             :  * outgoing arcs labeled with the same color, which makes the automaton
      53             :  * non-deterministic, because it can be in many states simultaneously.
      54             :  *
      55             :  * Note that this NFA is already lossy compared to the original regexp,
      56             :  * since it ignores some regex features such as lookahead constraints and
      57             :  * backref matching.  This is OK for our purposes since it's still the case
      58             :  * that only strings matching the NFA can possibly satisfy the regexp.
      59             :  *
      60             :  * 2) Transform the original NFA into an expanded graph
      61             :  * ----------------------------------------------------
      62             :  * In the 2nd stage, the automaton is transformed into a graph based on the
      63             :  * original NFA.  Each state in the expanded graph represents a state from
      64             :  * the original NFA, plus a prefix identifying the last two characters
      65             :  * (colors, to be precise) seen before entering the state.  There can be
      66             :  * multiple states in the expanded graph for each state in the original NFA,
      67             :  * depending on what characters can precede it.  A prefix position can be
      68             :  * "unknown" if it's uncertain what the preceding character was, or "blank"
      69             :  * if the character was a non-word character (we don't need to distinguish
      70             :  * which non-word character it was, so just think of all of them as blanks).
      71             :  *
      72             :  * For convenience in description, call an expanded-state identifier
      73             :  * (two prefix colors plus a state number from the original NFA) an
      74             :  * "enter key".
      75             :  *
      76             :  * Each arc of the expanded graph is labeled with a trigram that must be
      77             :  * present in the string to match.  We can construct this from an out-arc of
      78             :  * the underlying NFA state by combining the expanded state's prefix with the
      79             :  * color label of the underlying out-arc, if neither prefix position is
      80             :  * "unknown".  But note that some of the colors in the trigram might be
      81             :  * "blank".  This is OK since we want to generate word-boundary trigrams as
      82             :  * the regular trigram machinery would, if we know that some word characters
      83             :  * must be adjacent to a word boundary in all strings matching the NFA.
      84             :  *
      85             :  * The expanded graph can also have fewer states than the original NFA,
      86             :  * because we don't bother to make a separate state entry unless the state
      87             :  * is reachable by a valid arc.  When an enter key is reachable from a state
      88             :  * of the expanded graph, but we do not know a complete trigram associated
      89             :  * with that transition, we cannot make a valid arc; instead we insert the
      90             :  * enter key into the enterKeys list of the source state.  This effectively
      91             :  * means that the two expanded states are not reliably distinguishable based
      92             :  * on examining trigrams.
      93             :  *
      94             :  * So the expanded graph resembles the original NFA, but the arcs are
      95             :  * labeled with trigrams instead of individual characters, and there may be
      96             :  * more or fewer states.  It is a lossy representation of the original NFA:
      97             :  * any string that matches the original regexp must match the expanded graph,
      98             :  * but the reverse is not true.
      99             :  *
     100             :  * We build the expanded graph through a breadth-first traversal of states
     101             :  * reachable from the initial state.  At each reachable state, we identify the
     102             :  * states reachable from it without traversing a predictable trigram, and add
     103             :  * those states' enter keys to the current state.  Then we generate all
     104             :  * out-arcs leading out of this collection of states that have predictable
     105             :  * trigrams, adding their target states to the queue of states to examine.
     106             :  *
     107             :  * When building the graph, if the number of states or arcs exceed pre-defined
     108             :  * limits, we give up and simply mark any states not yet processed as final
     109             :  * states.  Roughly speaking, that means that we make use of some portion from
     110             :  * the beginning of the regexp.  Also, any colors that have too many member
     111             :  * characters are treated as "unknown", so that we can't derive trigrams
     112             :  * from them.
     113             :  *
     114             :  * 3) Expand the color trigrams into regular trigrams
     115             :  * --------------------------------------------------
     116             :  * The trigrams in the expanded graph are "color trigrams", consisting
     117             :  * of three consecutive colors that must be present in the string. But for
     118             :  * search, we need regular trigrams consisting of characters. In the 3rd
     119             :  * stage, the color trigrams are expanded into regular trigrams. Since each
     120             :  * color can represent many characters, the total number of regular trigrams
     121             :  * after expansion could be very large. Because searching the index for
     122             :  * thousands of trigrams would be slow, and would likely produce so many
     123             :  * false positives that we would have to traverse a large fraction of the
     124             :  * index, the graph is simplified further in a lossy fashion by removing
     125             :  * color trigrams. When a color trigram is removed, the states connected by
     126             :  * any arcs labeled with that trigram are merged.
     127             :  *
     128             :  * Trigrams do not all have equivalent value for searching: some of them are
     129             :  * more frequent and some of them are less frequent. Ideally, we would like
     130             :  * to know the distribution of trigrams, but we don't. But because of padding
     131             :  * we know for sure that the empty character is more frequent than others,
     132             :  * so we can penalize trigrams according to presence of whitespace. The
     133             :  * penalty assigned to each color trigram is the number of simple trigrams
     134             :  * it would produce, times the penalties[] multiplier associated with its
     135             :  * whitespace content. (The penalties[] constants were calculated by analysis
     136             :  * of some real-life text.) We eliminate color trigrams starting with the
     137             :  * highest-penalty one, until we get to a total penalty of no more than
     138             :  * WISH_TRGM_PENALTY. However, we cannot remove a color trigram if that would
     139             :  * lead to merging the initial and final states, so we may not be able to
     140             :  * reach WISH_TRGM_PENALTY. It's still okay so long as we have no more than
     141             :  * MAX_TRGM_COUNT simple trigrams in total, otherwise we fail.
     142             :  *
     143             :  * 4) Pack the graph into a compact representation
     144             :  * -----------------------------------------------
     145             :  * The 2nd and 3rd stages might have eliminated or merged many of the states
     146             :  * and trigrams created earlier, so in this final stage, the graph is
     147             :  * compacted and packed into a simpler struct that contains only the
     148             :  * information needed to evaluate it.
     149             :  *
     150             :  * ALGORITHM EXAMPLE:
     151             :  *
     152             :  * Consider the example regex "ab[cd]".  This regex is transformed into the
     153             :  * following NFA (for simplicity we show colors as their single members):
     154             :  *
     155             :  *                    4#
     156             :  *                  c/
     157             :  *       a     b    /
     158             :  *   1* --- 2 ---- 3
     159             :  *                  \
     160             :  *                  d\
     161             :  *                    5#
     162             :  *
     163             :  * We use * to mark initial state and # to mark final state. It's not depicted,
     164             :  * but states 1, 4, 5 have self-referencing arcs for all possible characters,
     165             :  * because this pattern can match to any part of a string.
     166             :  *
     167             :  * As the result of stage 2 we will have the following graph:
     168             :  *
     169             :  *        abc    abd
     170             :  *   2# <---- 1* ----> 3#
     171             :  *
     172             :  * The process for generating this graph is:
     173             :  * 1) Create state 1 with enter key (UNKNOWN, UNKNOWN, 1).
     174             :  * 2) Add key (UNKNOWN, "a", 2) to state 1.
     175             :  * 3) Add key ("a", "b", 3) to state 1.
     176             :  * 4) Create new state 2 with enter key ("b", "c", 4).  Add an arc
     177             :  *    from state 1 to state 2 with label trigram "abc".
     178             :  * 5) Mark state 2 final because state 4 of source NFA is marked as final.
     179             :  * 6) Create new state 3 with enter key ("b", "d", 5).  Add an arc
     180             :  *    from state 1 to state 3 with label trigram "abd".
     181             :  * 7) Mark state 3 final because state 5 of source NFA is marked as final.
     182             :  *
     183             :  *
     184             :  * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
     185             :  * Portions Copyright (c) 1994, Regents of the University of California
     186             :  *
     187             :  * IDENTIFICATION
     188             :  *    contrib/pg_trgm/trgm_regexp.c
     189             :  *
     190             :  *-------------------------------------------------------------------------
     191             :  */
     192             : #include "postgres.h"
     193             : 
     194             : #include "catalog/pg_collation_d.h"
     195             : #include "regex/regexport.h"
     196             : #include "trgm.h"
     197             : #include "tsearch/ts_locale.h"
     198             : #include "utils/formatting.h"
     199             : #include "utils/hsearch.h"
     200             : #include "utils/memutils.h"
     201             : #include "varatt.h"
     202             : 
     203             : /*
     204             :  * Uncomment (or use -DTRGM_REGEXP_DEBUG) to print debug info,
     205             :  * for exploring and debugging the algorithm implementation.
     206             :  * This produces three graph files in /tmp, in Graphviz .gv format.
     207             :  * Some progress information is also printed to postmaster stderr.
     208             :  */
     209             : /* #define TRGM_REGEXP_DEBUG */
     210             : 
     211             : /*
     212             :  * These parameters are used to limit the amount of work done.
     213             :  * Otherwise regex processing could be too slow and memory-consuming.
     214             :  *
     215             :  *  MAX_EXPANDED_STATES - How many states we allow in expanded graph
     216             :  *  MAX_EXPANDED_ARCS - How many arcs we allow in expanded graph
     217             :  *  MAX_TRGM_COUNT - How many simple trigrams we allow to be extracted
     218             :  *  WISH_TRGM_PENALTY - Maximum desired sum of color trigram penalties
     219             :  *  COLOR_COUNT_LIMIT - Maximum number of characters per color
     220             :  */
     221             : #define MAX_EXPANDED_STATES 128
     222             : #define MAX_EXPANDED_ARCS   1024
     223             : #define MAX_TRGM_COUNT      256
     224             : #define WISH_TRGM_PENALTY   16
     225             : #define COLOR_COUNT_LIMIT   256
     226             : 
     227             : /*
     228             :  * Penalty multipliers for trigram counts depending on whitespace contents.
     229             :  * Numbers based on analysis of real-life texts.
     230             :  */
     231             : static const float4 penalties[8] = {
     232             :     1.0f,                       /* "aaa" */
     233             :     3.5f,                       /* "aa " */
     234             :     0.0f,                       /* "a a" (impossible) */
     235             :     0.0f,                       /* "a  " (impossible) */
     236             :     4.2f,                       /* " aa" */
     237             :     2.1f,                       /* " a " */
     238             :     25.0f,                      /* "  a" */
     239             :     0.0f                        /* "   " (impossible) */
     240             : };
     241             : 
     242             : /* Struct representing a single pg_wchar, converted back to multibyte form */
     243             : typedef struct
     244             : {
     245             :     char        bytes[MAX_MULTIBYTE_CHAR_LEN];
     246             : } trgm_mb_char;
     247             : 
     248             : /*
     249             :  * Attributes of NFA colors:
     250             :  *
     251             :  *  expandable              - we know the character expansion of this color
     252             :  *  containsNonWord         - color contains non-word characters
     253             :  *                            (which will not be extracted into trigrams)
     254             :  *  wordCharsCount          - count of word characters in color
     255             :  *  wordChars               - array of this color's word characters
     256             :  *                            (which can be extracted into trigrams)
     257             :  *
     258             :  * When expandable is false, the other attributes don't matter; we just
     259             :  * assume this color represents unknown character(s).
     260             :  */
     261             : typedef struct
     262             : {
     263             :     bool        expandable;
     264             :     bool        containsNonWord;
     265             :     int         wordCharsCount;
     266             :     trgm_mb_char *wordChars;
     267             : } TrgmColorInfo;
     268             : 
     269             : /*
     270             :  * A "prefix" is information about the colors of the last two characters read
     271             :  * before reaching a specific NFA state.  These colors can have special values
     272             :  * COLOR_UNKNOWN and COLOR_BLANK.  COLOR_UNKNOWN means that we have no
     273             :  * information, for example because we read some character of an unexpandable
     274             :  * color.  COLOR_BLANK means that we read a non-word character.
     275             :  *
     276             :  * We call a prefix ambiguous if at least one of its colors is unknown.  It's
     277             :  * fully ambiguous if both are unknown, partially ambiguous if only the first
     278             :  * is unknown.  (The case of first color known, second unknown is not valid.)
     279             :  *
     280             :  * Wholly- or partly-blank prefixes are mostly handled the same as regular
     281             :  * color prefixes.  This allows us to generate appropriate partly-blank
     282             :  * trigrams when the NFA requires word character(s) to appear adjacent to
     283             :  * non-word character(s).
     284             :  */
     285             : typedef int TrgmColor;
     286             : 
     287             : /* We assume that colors returned by the regexp engine cannot be these: */
     288             : #define COLOR_UNKNOWN   (-3)
     289             : #define COLOR_BLANK     (-4)
     290             : 
     291             : typedef struct
     292             : {
     293             :     TrgmColor   colors[2];
     294             : } TrgmPrefix;
     295             : 
     296             : /*
     297             :  * Color-trigram data type.  Note that some elements of the trigram can be
     298             :  * COLOR_BLANK, but we don't allow COLOR_UNKNOWN.
     299             :  */
     300             : typedef struct
     301             : {
     302             :     TrgmColor   colors[3];
     303             : } ColorTrgm;
     304             : 
     305             : /*
     306             :  * Key identifying a state of our expanded graph: color prefix, and number
     307             :  * of the corresponding state in the underlying regex NFA.  The color prefix
     308             :  * shows how we reached the regex state (to the extent that we know it).
     309             :  */
     310             : typedef struct
     311             : {
     312             :     TrgmPrefix  prefix;
     313             :     int         nstate;
     314             : } TrgmStateKey;
     315             : 
     316             : /*
     317             :  * One state of the expanded graph.
     318             :  *
     319             :  *  stateKey - ID of this state
     320             :  *  arcs     - outgoing arcs of this state (List of TrgmArc)
     321             :  *  enterKeys - enter keys reachable from this state without reading any
     322             :  *             predictable trigram (List of TrgmStateKey)
     323             :  *  flags    - flag bits
     324             :  *  snumber  - number of this state (initially assigned as -1, -2, etc,
     325             :  *             for debugging purposes only; then at the packaging stage,
     326             :  *             surviving states are renumbered with positive numbers)
     327             :  *  parent   - parent state, if this state has been merged into another
     328             :  *  tentFlags - flags this state would acquire via planned merges
     329             :  *  tentParent - planned parent state, if considering a merge
     330             :  */
     331             : #define TSTATE_INIT     0x01    /* flag indicating this state is initial */
     332             : #define TSTATE_FIN      0x02    /* flag indicating this state is final */
     333             : 
     334             : typedef struct TrgmState
     335             : {
     336             :     TrgmStateKey stateKey;      /* hashtable key: must be first field */
     337             :     List       *arcs;
     338             :     List       *enterKeys;
     339             :     int         flags;
     340             :     int         snumber;
     341             :     struct TrgmState *parent;
     342             :     int         tentFlags;
     343             :     struct TrgmState *tentParent;
     344             : } TrgmState;
     345             : 
     346             : /*
     347             :  * One arc in the expanded graph.
     348             :  */
     349             : typedef struct
     350             : {
     351             :     ColorTrgm   ctrgm;          /* trigram needed to traverse arc */
     352             :     TrgmState  *target;         /* next state */
     353             : } TrgmArc;
     354             : 
     355             : /*
     356             :  * Information about arc of specific color trigram (used in stage 3)
     357             :  *
     358             :  * Contains pointers to the source and target states.
     359             :  */
     360             : typedef struct
     361             : {
     362             :     TrgmState  *source;
     363             :     TrgmState  *target;
     364             : } TrgmArcInfo;
     365             : 
     366             : /*
     367             :  * Information about color trigram (used in stage 3)
     368             :  *
     369             :  * ctrgm    - trigram itself
     370             :  * cnumber  - number of this trigram (used in the packaging stage)
     371             :  * count    - number of simple trigrams created from this color trigram
     372             :  * expanded - indicates this color trigram is expanded into simple trigrams
     373             :  * arcs     - list of all arcs labeled with this color trigram.
     374             :  */
     375             : typedef struct
     376             : {
     377             :     ColorTrgm   ctrgm;
     378             :     int         cnumber;
     379             :     int         count;
     380             :     float4      penalty;
     381             :     bool        expanded;
     382             :     List       *arcs;
     383             : } ColorTrgmInfo;
     384             : 
     385             : /*
     386             :  * Data structure representing all the data we need during regex processing.
     387             :  *
     388             :  *  regex           - compiled regex
     389             :  *  colorInfo       - extracted information about regex's colors
     390             :  *  ncolors         - number of colors in colorInfo[]
     391             :  *  states          - hashtable of TrgmStates (states of expanded graph)
     392             :  *  initState       - pointer to initial state of expanded graph
     393             :  *  queue           - queue of to-be-processed TrgmStates
     394             :  *  keysQueue       - queue of to-be-processed TrgmStateKeys
     395             :  *  arcsCount       - total number of arcs of expanded graph (for resource
     396             :  *                    limiting)
     397             :  *  overflowed      - we have exceeded resource limit for transformation
     398             :  *  colorTrgms      - array of all color trigrams present in graph
     399             :  *  colorTrgmsCount - count of those color trigrams
     400             :  *  totalTrgmCount  - total count of extracted simple trigrams
     401             :  */
     402             : typedef struct
     403             : {
     404             :     /* Source regexp, and color information extracted from it (stage 1) */
     405             :     regex_t    *regex;
     406             :     TrgmColorInfo *colorInfo;
     407             :     int         ncolors;
     408             : 
     409             :     /* Expanded graph (stage 2) */
     410             :     HTAB       *states;
     411             :     TrgmState  *initState;
     412             :     int         nstates;
     413             : 
     414             :     /* Workspace for stage 2 */
     415             :     List       *queue;
     416             :     List       *keysQueue;
     417             :     int         arcsCount;
     418             :     bool        overflowed;
     419             : 
     420             :     /* Information about distinct color trigrams in the graph (stage 3) */
     421             :     ColorTrgmInfo *colorTrgms;
     422             :     int         colorTrgmsCount;
     423             :     int         totalTrgmCount;
     424             : } TrgmNFA;
     425             : 
     426             : /*
     427             :  * Final, compact representation of expanded graph.
     428             :  */
     429             : typedef struct
     430             : {
     431             :     int         targetState;    /* index of target state (zero-based) */
     432             :     int         colorTrgm;      /* index of color trigram for transition */
     433             : } TrgmPackedArc;
     434             : 
     435             : typedef struct
     436             : {
     437             :     int         arcsCount;      /* number of out-arcs for this state */
     438             :     TrgmPackedArc *arcs;        /* array of arcsCount packed arcs */
     439             : } TrgmPackedState;
     440             : 
     441             : /* "typedef struct TrgmPackedGraph TrgmPackedGraph" appears in trgm.h */
     442             : struct TrgmPackedGraph
     443             : {
     444             :     /*
     445             :      * colorTrigramsCount and colorTrigramGroups contain information about how
     446             :      * trigrams are grouped into color trigrams.  "colorTrigramsCount" is the
     447             :      * count of color trigrams and "colorTrigramGroups" contains number of
     448             :      * simple trigrams for each color trigram.  The array of simple trigrams
     449             :      * (stored separately from this struct) is ordered so that the simple
     450             :      * trigrams for each color trigram are consecutive, and they're in order
     451             :      * by color trigram number.
     452             :      */
     453             :     int         colorTrigramsCount;
     454             :     int        *colorTrigramGroups; /* array of size colorTrigramsCount */
     455             : 
     456             :     /*
     457             :      * The states of the simplified NFA.  State number 0 is always initial
     458             :      * state and state number 1 is always final state.
     459             :      */
     460             :     int         statesCount;
     461             :     TrgmPackedState *states;    /* array of size statesCount */
     462             : 
     463             :     /* Temporary work space for trigramsMatchGraph() */
     464             :     bool       *colorTrigramsActive;    /* array of size colorTrigramsCount */
     465             :     bool       *statesActive;   /* array of size statesCount */
     466             :     int        *statesQueue;    /* array of size statesCount */
     467             : };
     468             : 
     469             : /*
     470             :  * Temporary structure for representing an arc during packaging.
     471             :  */
     472             : typedef struct
     473             : {
     474             :     int         sourceState;
     475             :     int         targetState;
     476             :     int         colorTrgm;
     477             : } TrgmPackArcInfo;
     478             : 
     479             : 
     480             : /* prototypes for private functions */
     481             : static TRGM *createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     482             :                                    MemoryContext rcontext);
     483             : static void RE_compile(regex_t *regex, text *text_re,
     484             :                        int cflags, Oid collation);
     485             : static void getColorInfo(regex_t *regex, TrgmNFA *trgmNFA);
     486             : static bool convertPgWchar(pg_wchar c, trgm_mb_char *result);
     487             : static void transformGraph(TrgmNFA *trgmNFA);
     488             : static void processState(TrgmNFA *trgmNFA, TrgmState *state);
     489             : static void addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key);
     490             : static void addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key);
     491             : static void addArcs(TrgmNFA *trgmNFA, TrgmState *state);
     492             : static void addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
     493             :                    TrgmColor co, TrgmStateKey *destKey);
     494             : static bool validArcLabel(TrgmStateKey *key, TrgmColor co);
     495             : static TrgmState *getState(TrgmNFA *trgmNFA, TrgmStateKey *key);
     496             : static bool prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2);
     497             : static bool selectColorTrigrams(TrgmNFA *trgmNFA);
     498             : static TRGM *expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext);
     499             : static void fillTrgm(trgm *ptrgm, trgm_mb_char s[3]);
     500             : static void mergeStates(TrgmState *state1, TrgmState *state2);
     501             : static int  colorTrgmInfoCmp(const void *p1, const void *p2);
     502             : static int  colorTrgmInfoPenaltyCmp(const void *p1, const void *p2);
     503             : static TrgmPackedGraph *packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext);
     504             : static int  packArcInfoCmp(const void *a1, const void *a2);
     505             : 
     506             : #ifdef TRGM_REGEXP_DEBUG
     507             : static void printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors);
     508             : static void printTrgmNFA(TrgmNFA *trgmNFA);
     509             : static void printTrgmColor(StringInfo buf, TrgmColor co);
     510             : static void printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams);
     511             : #endif
     512             : 
     513             : 
     514             : /*
     515             :  * Main entry point to process a regular expression.
     516             :  *
     517             :  * Returns an array of trigrams required by the regular expression, or NULL if
     518             :  * the regular expression was too complex to analyze.  In addition, a packed
     519             :  * graph representation of the regex is returned into *graph.  The results
     520             :  * must be allocated in rcontext (which might or might not be the current
     521             :  * context).
     522             :  */
     523             : TRGM *
     524         130 : createTrgmNFA(text *text_re, Oid collation,
     525             :               TrgmPackedGraph **graph, MemoryContext rcontext)
     526             : {
     527             :     TRGM       *trg;
     528             :     regex_t     regex;
     529             :     MemoryContext tmpcontext;
     530             :     MemoryContext oldcontext;
     531             : 
     532             :     /*
     533             :      * This processing generates a great deal of cruft, which we'd like to
     534             :      * clean up before returning (since this function may be called in a
     535             :      * query-lifespan memory context).  Make a temp context we can work in so
     536             :      * that cleanup is easy.
     537             :      */
     538         130 :     tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
     539             :                                        "createTrgmNFA temporary context",
     540             :                                        ALLOCSET_DEFAULT_SIZES);
     541         130 :     oldcontext = MemoryContextSwitchTo(tmpcontext);
     542             : 
     543             :     /*
     544             :      * Stage 1: Compile the regexp into a NFA, using the regexp library.
     545             :      */
     546             : #ifdef IGNORECASE
     547         130 :     RE_compile(&regex, text_re,
     548             :                REG_ADVANCED | REG_NOSUB | REG_ICASE, collation);
     549             : #else
     550             :     RE_compile(&regex, text_re,
     551             :                REG_ADVANCED | REG_NOSUB, collation);
     552             : #endif
     553             : 
     554         130 :     trg = createTrgmNFAInternal(&regex, graph, rcontext);
     555             : 
     556             :     /* Clean up all the cruft we created (including regex) */
     557         130 :     MemoryContextSwitchTo(oldcontext);
     558         130 :     MemoryContextDelete(tmpcontext);
     559             : 
     560         130 :     return trg;
     561             : }
     562             : 
     563             : /*
     564             :  * Body of createTrgmNFA, exclusive of regex compilation/freeing.
     565             :  */
     566             : static TRGM *
     567         130 : createTrgmNFAInternal(regex_t *regex, TrgmPackedGraph **graph,
     568             :                       MemoryContext rcontext)
     569             : {
     570             :     TRGM       *trg;
     571             :     TrgmNFA     trgmNFA;
     572             : 
     573         130 :     trgmNFA.regex = regex;
     574             : 
     575             :     /* Collect color information from the regex */
     576         130 :     getColorInfo(regex, &trgmNFA);
     577             : 
     578             : #ifdef TRGM_REGEXP_DEBUG
     579             :     printSourceNFA(regex, trgmNFA.colorInfo, trgmNFA.ncolors);
     580             : #endif
     581             : 
     582             :     /*
     583             :      * Stage 2: Create an expanded graph from the source NFA.
     584             :      */
     585         130 :     transformGraph(&trgmNFA);
     586             : 
     587             : #ifdef TRGM_REGEXP_DEBUG
     588             :     printTrgmNFA(&trgmNFA);
     589             : #endif
     590             : 
     591             :     /*
     592             :      * Fail if we were unable to make a nontrivial graph, ie it is possible to
     593             :      * get from the initial state to the final state without reading any
     594             :      * predictable trigram.
     595             :      */
     596         130 :     if (trgmNFA.initState->flags & TSTATE_FIN)
     597          18 :         return NULL;
     598             : 
     599             :     /*
     600             :      * Stage 3: Select color trigrams to expand.  Fail if too many trigrams.
     601             :      */
     602         112 :     if (!selectColorTrigrams(&trgmNFA))
     603           6 :         return NULL;
     604             : 
     605             :     /*
     606             :      * Stage 4: Expand color trigrams and pack graph into final
     607             :      * representation.
     608             :      */
     609         106 :     trg = expandColorTrigrams(&trgmNFA, rcontext);
     610             : 
     611         106 :     *graph = packGraph(&trgmNFA, rcontext);
     612             : 
     613             : #ifdef TRGM_REGEXP_DEBUG
     614             :     printTrgmPackedGraph(*graph, trg);
     615             : #endif
     616             : 
     617         106 :     return trg;
     618             : }
     619             : 
     620             : /*
     621             :  * Main entry point for evaluating a graph during index scanning.
     622             :  *
     623             :  * The check[] array is indexed by trigram number (in the array of simple
     624             :  * trigrams returned by createTrgmNFA), and holds true for those trigrams
     625             :  * that are present in the index entry being checked.
     626             :  */
     627             : bool
     628        7122 : trigramsMatchGraph(TrgmPackedGraph *graph, bool *check)
     629             : {
     630             :     int         i,
     631             :                 j,
     632             :                 k,
     633             :                 queueIn,
     634             :                 queueOut;
     635             : 
     636             :     /*
     637             :      * Reset temporary working areas.
     638             :      */
     639        7122 :     memset(graph->colorTrigramsActive, 0,
     640        7122 :            sizeof(bool) * graph->colorTrigramsCount);
     641        7122 :     memset(graph->statesActive, 0, sizeof(bool) * graph->statesCount);
     642             : 
     643             :     /*
     644             :      * Check which color trigrams were matched.  A match for any simple
     645             :      * trigram associated with a color trigram counts as a match of the color
     646             :      * trigram.
     647             :      */
     648        7122 :     j = 0;
     649       22102 :     for (i = 0; i < graph->colorTrigramsCount; i++)
     650             :     {
     651       14980 :         int         cnt = graph->colorTrigramGroups[i];
     652             : 
     653      333660 :         for (k = j; k < j + cnt; k++)
     654             :         {
     655      326400 :             if (check[k])
     656             :             {
     657             :                 /*
     658             :                  * Found one matched trigram in the group. Can skip the rest
     659             :                  * of them and go to the next group.
     660             :                  */
     661        7720 :                 graph->colorTrigramsActive[i] = true;
     662        7720 :                 break;
     663             :             }
     664             :         }
     665       14980 :         j = j + cnt;
     666             :     }
     667             : 
     668             :     /*
     669             :      * Initialize the statesQueue to hold just the initial state.  Note:
     670             :      * statesQueue has room for statesCount entries, which is certainly enough
     671             :      * since no state will be put in the queue more than once. The
     672             :      * statesActive array marks which states have been queued.
     673             :      */
     674        7122 :     graph->statesActive[0] = true;
     675        7122 :     graph->statesQueue[0] = 0;
     676        7122 :     queueIn = 0;
     677        7122 :     queueOut = 1;
     678             : 
     679             :     /* Process queued states as long as there are any. */
     680       15322 :     while (queueIn < queueOut)
     681             :     {
     682       15050 :         int         stateno = graph->statesQueue[queueIn++];
     683       15050 :         TrgmPackedState *state = &graph->states[stateno];
     684       15050 :         int         cnt = state->arcsCount;
     685             : 
     686             :         /* Loop over state's out-arcs */
     687       30328 :         for (i = 0; i < cnt; i++)
     688             :         {
     689       22128 :             TrgmPackedArc *arc = &state->arcs[i];
     690             : 
     691             :             /*
     692             :              * If corresponding color trigram is present then activate the
     693             :              * corresponding state.  We're done if that's the final state,
     694             :              * otherwise queue the state if it's not been queued already.
     695             :              */
     696       22128 :             if (graph->colorTrigramsActive[arc->colorTrgm])
     697             :             {
     698       15464 :                 int         nextstate = arc->targetState;
     699             : 
     700       15464 :                 if (nextstate == 1)
     701        6850 :                     return true;    /* success: final state is reachable */
     702             : 
     703        8614 :                 if (!graph->statesActive[nextstate])
     704             :                 {
     705        8500 :                     graph->statesActive[nextstate] = true;
     706        8500 :                     graph->statesQueue[queueOut++] = nextstate;
     707             :                 }
     708             :             }
     709             :         }
     710             :     }
     711             : 
     712             :     /* Queue is empty, so match fails. */
     713         272 :     return false;
     714             : }
     715             : 
     716             : /*
     717             :  * Compile regex string into struct at *regex.
     718             :  * NB: pg_regfree must be applied to regex if this completes successfully.
     719             :  */
     720             : static void
     721         130 : RE_compile(regex_t *regex, text *text_re, int cflags, Oid collation)
     722             : {
     723         130 :     int         text_re_len = VARSIZE_ANY_EXHDR(text_re);
     724         130 :     char       *text_re_val = VARDATA_ANY(text_re);
     725             :     pg_wchar   *pattern;
     726             :     int         pattern_len;
     727             :     int         regcomp_result;
     728             :     char        errMsg[100];
     729             : 
     730             :     /* Convert pattern string to wide characters */
     731         130 :     pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar));
     732         130 :     pattern_len = pg_mb2wchar_with_len(text_re_val,
     733             :                                        pattern,
     734             :                                        text_re_len);
     735             : 
     736             :     /* Compile regex */
     737         130 :     regcomp_result = pg_regcomp(regex,
     738             :                                 pattern,
     739             :                                 pattern_len,
     740             :                                 cflags,
     741             :                                 collation);
     742             : 
     743         130 :     pfree(pattern);
     744             : 
     745         130 :     if (regcomp_result != REG_OKAY)
     746             :     {
     747             :         /* re didn't compile (no need for pg_regfree, if so) */
     748           0 :         pg_regerror(regcomp_result, regex, errMsg, sizeof(errMsg));
     749           0 :         ereport(ERROR,
     750             :                 (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION),
     751             :                  errmsg("invalid regular expression: %s", errMsg)));
     752             :     }
     753         130 : }
     754             : 
     755             : 
     756             : /*---------------------
     757             :  * Subroutines for pre-processing the color map (stage 1).
     758             :  *---------------------
     759             :  */
     760             : 
     761             : /*
     762             :  * Fill TrgmColorInfo structure for each color using regex export functions.
     763             :  */
     764             : static void
     765         130 : getColorInfo(regex_t *regex, TrgmNFA *trgmNFA)
     766             : {
     767         130 :     int         colorsCount = pg_reg_getnumcolors(regex);
     768             :     int         i;
     769             : 
     770         130 :     trgmNFA->ncolors = colorsCount;
     771         130 :     trgmNFA->colorInfo = (TrgmColorInfo *)
     772         130 :         palloc0(colorsCount * sizeof(TrgmColorInfo));
     773             : 
     774             :     /*
     775             :      * Loop over colors, filling TrgmColorInfo about each.  Note we include
     776             :      * WHITE (0) even though we know it'll be reported as non-expandable.
     777             :      */
     778        1192 :     for (i = 0; i < colorsCount; i++)
     779             :     {
     780        1062 :         TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[i];
     781        1062 :         int         charsCount = pg_reg_getnumcharacters(regex, i);
     782             :         pg_wchar   *chars;
     783             :         int         j;
     784             : 
     785        1062 :         if (charsCount < 0 || charsCount > COLOR_COUNT_LIMIT)
     786             :         {
     787             :             /* Non expandable, or too large to work with */
     788         650 :             colorInfo->expandable = false;
     789         650 :             continue;
     790             :         }
     791             : 
     792         412 :         colorInfo->expandable = true;
     793         412 :         colorInfo->containsNonWord = false;
     794         412 :         colorInfo->wordChars = palloc_array(trgm_mb_char, charsCount);
     795         412 :         colorInfo->wordCharsCount = 0;
     796             : 
     797             :         /* Extract all the chars in this color */
     798         412 :         chars = palloc_array(pg_wchar, charsCount);
     799         412 :         pg_reg_getcharacters(regex, i, chars, charsCount);
     800             : 
     801             :         /*
     802             :          * Convert characters back to multibyte form, and save only those that
     803             :          * are word characters.  Set "containsNonWord" if any non-word
     804             :          * character.  (Note: it'd probably be nicer to keep the chars in
     805             :          * pg_wchar format for now, but ISWORDCHR wants to see multibyte.)
     806             :          */
     807        1982 :         for (j = 0; j < charsCount; j++)
     808             :         {
     809             :             trgm_mb_char c;
     810             : 
     811        1570 :             if (!convertPgWchar(chars[j], &c))
     812         730 :                 continue;       /* ok to ignore it altogether */
     813         840 :             if (ISWORDCHR(c.bytes))
     814         790 :                 colorInfo->wordChars[colorInfo->wordCharsCount++] = c;
     815             :             else
     816          50 :                 colorInfo->containsNonWord = true;
     817             :         }
     818             : 
     819         412 :         pfree(chars);
     820             :     }
     821         130 : }
     822             : 
     823             : /*
     824             :  * Convert pg_wchar to multibyte format.
     825             :  * Returns false if the character should be ignored completely.
     826             :  */
     827             : static bool
     828        1570 : convertPgWchar(pg_wchar c, trgm_mb_char *result)
     829             : {
     830             :     /* "s" has enough space for a multibyte character and a trailing NUL */
     831             :     char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
     832             : 
     833             :     /*
     834             :      * We can ignore the NUL character, since it can never appear in a PG text
     835             :      * string.  This avoids the need for various special cases when
     836             :      * reconstructing trigrams.
     837             :      */
     838        1570 :     if (c == 0)
     839           0 :         return false;
     840             : 
     841             :     /* Do the conversion, making sure the result is NUL-terminated */
     842        1570 :     memset(s, 0, sizeof(s));
     843        1570 :     pg_wchar2mb_with_len(&c, s, 1);
     844             : 
     845             :     /*
     846             :      * In IGNORECASE mode, we can ignore uppercase characters.  We assume that
     847             :      * the regex engine generated both uppercase and lowercase equivalents
     848             :      * within each color, since we used the REG_ICASE option; so there's no
     849             :      * need to process the uppercase version.
     850             :      *
     851             :      * XXX this code is dependent on the assumption that str_tolower() works
     852             :      * the same as the regex engine's internal case folding machinery.  Might
     853             :      * be wiser to expose pg_wc_tolower and test whether c ==
     854             :      * pg_wc_tolower(c). On the other hand, the trigrams in the index were
     855             :      * created using str_tolower(), so we're probably screwed if there's any
     856             :      * incompatibility anyway.
     857             :      */
     858             : #ifdef IGNORECASE
     859             :     {
     860        1570 :         char       *lowerCased = str_tolower(s, strlen(s), DEFAULT_COLLATION_OID);
     861             : 
     862        1570 :         if (strcmp(lowerCased, s) != 0)
     863             :         {
     864         730 :             pfree(lowerCased);
     865         730 :             return false;
     866             :         }
     867         840 :         pfree(lowerCased);
     868             :     }
     869             : #endif
     870             : 
     871             :     /* Fill result with exactly MAX_MULTIBYTE_CHAR_LEN bytes */
     872         840 :     memcpy(result->bytes, s, MAX_MULTIBYTE_CHAR_LEN);
     873         840 :     return true;
     874             : }
     875             : 
     876             : 
     877             : /*---------------------
     878             :  * Subroutines for expanding original NFA graph into a trigram graph (stage 2).
     879             :  *---------------------
     880             :  */
     881             : 
     882             : /*
     883             :  * Transform the graph, given a regex and extracted color information.
     884             :  *
     885             :  * We create and process a queue of expanded-graph states until all the states
     886             :  * are processed.
     887             :  *
     888             :  * This algorithm may be stopped due to resource limitation. In this case we
     889             :  * force every unprocessed branch to immediately finish with matching (this
     890             :  * can give us false positives but no false negatives) by marking all
     891             :  * unprocessed states as final.
     892             :  */
     893             : static void
     894         130 : transformGraph(TrgmNFA *trgmNFA)
     895             : {
     896             :     HASHCTL     hashCtl;
     897             :     TrgmStateKey initkey;
     898             :     TrgmState  *initstate;
     899             :     ListCell   *lc;
     900             : 
     901             :     /* Initialize this stage's workspace in trgmNFA struct */
     902         130 :     trgmNFA->queue = NIL;
     903         130 :     trgmNFA->keysQueue = NIL;
     904         130 :     trgmNFA->arcsCount = 0;
     905         130 :     trgmNFA->overflowed = false;
     906             : 
     907             :     /* Create hashtable for states */
     908         130 :     hashCtl.keysize = sizeof(TrgmStateKey);
     909         130 :     hashCtl.entrysize = sizeof(TrgmState);
     910         130 :     hashCtl.hcxt = CurrentMemoryContext;
     911         130 :     trgmNFA->states = hash_create("Trigram NFA",
     912             :                                   1024,
     913             :                                   &hashCtl,
     914             :                                   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
     915         130 :     trgmNFA->nstates = 0;
     916             : 
     917             :     /* Create initial state: ambiguous prefix, NFA's initial state */
     918         130 :     MemSet(&initkey, 0, sizeof(initkey));
     919         130 :     initkey.prefix.colors[0] = COLOR_UNKNOWN;
     920         130 :     initkey.prefix.colors[1] = COLOR_UNKNOWN;
     921         130 :     initkey.nstate = pg_reg_getinitialstate(trgmNFA->regex);
     922             : 
     923         130 :     initstate = getState(trgmNFA, &initkey);
     924         130 :     initstate->flags |= TSTATE_INIT;
     925         130 :     trgmNFA->initState = initstate;
     926             : 
     927             :     /*
     928             :      * Recursively build the expanded graph by processing queue of states
     929             :      * (breadth-first search).  getState already put initstate in the queue.
     930             :      * Note that getState will append new states to the queue within the loop,
     931             :      * too; this works as long as we don't do repeat fetches using the "lc"
     932             :      * pointer.
     933             :      */
     934        1458 :     foreach(lc, trgmNFA->queue)
     935             :     {
     936        1328 :         TrgmState  *state = (TrgmState *) lfirst(lc);
     937             : 
     938             :         /*
     939             :          * If we overflowed then just mark state as final.  Otherwise do
     940             :          * actual processing.
     941             :          */
     942        1328 :         if (trgmNFA->overflowed)
     943          18 :             state->flags |= TSTATE_FIN;
     944             :         else
     945        1310 :             processState(trgmNFA, state);
     946             : 
     947             :         /* Did we overflow? */
     948        2656 :         if (trgmNFA->arcsCount > MAX_EXPANDED_ARCS ||
     949        1328 :             hash_get_num_entries(trgmNFA->states) > MAX_EXPANDED_STATES)
     950          24 :             trgmNFA->overflowed = true;
     951             :     }
     952         130 : }
     953             : 
     954             : /*
     955             :  * Process one state: add enter keys and then add outgoing arcs.
     956             :  */
     957             : static void
     958        1310 : processState(TrgmNFA *trgmNFA, TrgmState *state)
     959             : {
     960             :     ListCell   *lc;
     961             : 
     962             :     /* keysQueue should be NIL already, but make sure */
     963        1310 :     trgmNFA->keysQueue = NIL;
     964             : 
     965             :     /*
     966             :      * Add state's own key, and then process all keys added to keysQueue until
     967             :      * queue is finished.  But we can quit if the state gets marked final.
     968             :      */
     969        1310 :     addKey(trgmNFA, state, &state->stateKey);
     970        2532 :     foreach(lc, trgmNFA->keysQueue)
     971             :     {
     972        1384 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(lc);
     973             : 
     974        1384 :         if (state->flags & TSTATE_FIN)
     975         162 :             break;
     976        1222 :         addKey(trgmNFA, state, key);
     977             :     }
     978             : 
     979             :     /* Release keysQueue to clean up for next cycle */
     980        1310 :     list_free(trgmNFA->keysQueue);
     981        1310 :     trgmNFA->keysQueue = NIL;
     982             : 
     983             :     /*
     984             :      * Add outgoing arcs only if state isn't final (we have no interest in
     985             :      * outgoing arcs if we already match)
     986             :      */
     987        1310 :     if (!(state->flags & TSTATE_FIN))
     988        1142 :         addArcs(trgmNFA, state);
     989        1310 : }
     990             : 
     991             : /*
     992             :  * Add the given enter key into the state's enterKeys list, and determine
     993             :  * whether this should result in any further enter keys being added.
     994             :  * If so, add those keys to keysQueue so that processState will handle them.
     995             :  *
     996             :  * If the enter key is for the NFA's final state, mark state as TSTATE_FIN.
     997             :  * This situation means that we can reach the final state from this expanded
     998             :  * state without reading any predictable trigram, so we must consider this
     999             :  * state as an accepting one.
    1000             :  *
    1001             :  * The given key could be a duplicate of one already in enterKeys, or be
    1002             :  * redundant with some enterKeys.  So we check that before doing anything.
    1003             :  *
    1004             :  * Note that we don't generate any actual arcs here.  addArcs will do that
    1005             :  * later, after we have identified all the enter keys for this state.
    1006             :  */
    1007             : static void
    1008        2532 : addKey(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key)
    1009             : {
    1010             :     regex_arc_t *arcs;
    1011             :     TrgmStateKey destKey;
    1012             :     ListCell   *cell;
    1013             :     int         i,
    1014             :                 arcsCount;
    1015             : 
    1016             :     /*
    1017             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1018             :      * hashtable key by getState.
    1019             :      */
    1020        2532 :     MemSet(&destKey, 0, sizeof(destKey));
    1021             : 
    1022             :     /*
    1023             :      * Compare key to each existing enter key of the state to check for
    1024             :      * redundancy.  We can drop either old key(s) or the new key if we find
    1025             :      * redundancy.
    1026             :      */
    1027        3958 :     foreach(cell, state->enterKeys)
    1028             :     {
    1029        2032 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1030             : 
    1031        2032 :         if (existingKey->nstate == key->nstate)
    1032             :         {
    1033         624 :             if (prefixContains(&existingKey->prefix, &key->prefix))
    1034             :             {
    1035             :                 /* This old key already covers the new key. Nothing to do */
    1036         606 :                 return;
    1037             :             }
    1038          18 :             if (prefixContains(&key->prefix, &existingKey->prefix))
    1039             :             {
    1040             :                 /*
    1041             :                  * The new key covers this old key. Remove the old key, it's
    1042             :                  * no longer needed once we add this key to the list.
    1043             :                  */
    1044          12 :                 state->enterKeys = foreach_delete_current(state->enterKeys,
    1045             :                                                           cell);
    1046             :             }
    1047             :         }
    1048             :     }
    1049             : 
    1050             :     /* No redundancy, so add this key to the state's list */
    1051        1926 :     state->enterKeys = lappend(state->enterKeys, key);
    1052             : 
    1053             :     /* If state is now known final, mark it and we're done */
    1054        1926 :     if (key->nstate == pg_reg_getfinalstate(trgmNFA->regex))
    1055             :     {
    1056         168 :         state->flags |= TSTATE_FIN;
    1057         168 :         return;
    1058             :     }
    1059             : 
    1060             :     /*
    1061             :      * Loop through all outgoing arcs of the corresponding state in the
    1062             :      * original NFA.
    1063             :      */
    1064        1758 :     arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1065        1758 :     arcs = palloc_array(regex_arc_t, arcsCount);
    1066        1758 :     pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1067             : 
    1068        4768 :     for (i = 0; i < arcsCount; i++)
    1069             :     {
    1070        3010 :         regex_arc_t *arc = &arcs[i];
    1071             : 
    1072        3010 :         if (pg_reg_colorisbegin(trgmNFA->regex, arc->co))
    1073             :         {
    1074             :             /*
    1075             :              * Start of line/string (^).  Trigram extraction treats start of
    1076             :              * line same as start of word: double space prefix is added.
    1077             :              * Hence, make an enter key showing we can reach the arc
    1078             :              * destination with all-blank prefix.
    1079             :              */
    1080         492 :             destKey.prefix.colors[0] = COLOR_BLANK;
    1081         492 :             destKey.prefix.colors[1] = COLOR_BLANK;
    1082         492 :             destKey.nstate = arc->to;
    1083             : 
    1084             :             /* Add enter key to this state */
    1085         492 :             addKeyToQueue(trgmNFA, &destKey);
    1086             :         }
    1087        2518 :         else if (pg_reg_colorisend(trgmNFA->regex, arc->co))
    1088             :         {
    1089             :             /*
    1090             :              * End of line/string ($).  We must consider this arc as a
    1091             :              * transition that doesn't read anything.  The reason for adding
    1092             :              * this enter key to the state is that if the arc leads to the
    1093             :              * NFA's final state, we must mark this expanded state as final.
    1094             :              */
    1095         324 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1096         324 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1097         324 :             destKey.nstate = arc->to;
    1098             : 
    1099             :             /* Add enter key to this state */
    1100         324 :             addKeyToQueue(trgmNFA, &destKey);
    1101             :         }
    1102        2194 :         else if (arc->co >= 0)
    1103             :         {
    1104             :             /* Regular color (including WHITE) */
    1105        1786 :             TrgmColorInfo *colorInfo = &trgmNFA->colorInfo[arc->co];
    1106             : 
    1107        1786 :             if (colorInfo->expandable)
    1108             :             {
    1109        1786 :                 if (colorInfo->containsNonWord &&
    1110         110 :                     !validArcLabel(key, COLOR_BLANK))
    1111             :                 {
    1112             :                     /*
    1113             :                      * We can reach the arc destination after reading a
    1114             :                      * non-word character, but the prefix is not something
    1115             :                      * that addArc will accept with COLOR_BLANK, so no trigram
    1116             :                      * arc can get made for this transition.  We must make an
    1117             :                      * enter key to show that the arc destination is
    1118             :                      * reachable.  Set it up with an all-blank prefix, since
    1119             :                      * that corresponds to what the trigram extraction code
    1120             :                      * will do at a word starting boundary.
    1121             :                      */
    1122          54 :                     destKey.prefix.colors[0] = COLOR_BLANK;
    1123          54 :                     destKey.prefix.colors[1] = COLOR_BLANK;
    1124          54 :                     destKey.nstate = arc->to;
    1125          54 :                     addKeyToQueue(trgmNFA, &destKey);
    1126             :                 }
    1127             : 
    1128        1786 :                 if (colorInfo->wordCharsCount > 0 &&
    1129        1676 :                     !validArcLabel(key, arc->co))
    1130             :                 {
    1131             :                     /*
    1132             :                      * We can reach the arc destination after reading a word
    1133             :                      * character, but the prefix is not something that addArc
    1134             :                      * will accept, so no trigram arc can get made for this
    1135             :                      * transition.  We must make an enter key to show that the
    1136             :                      * arc destination is reachable.  The prefix for the enter
    1137             :                      * key should reflect the info we have for this arc.
    1138             :                      */
    1139         262 :                     destKey.prefix.colors[0] = key->prefix.colors[1];
    1140         262 :                     destKey.prefix.colors[1] = arc->co;
    1141         262 :                     destKey.nstate = arc->to;
    1142         262 :                     addKeyToQueue(trgmNFA, &destKey);
    1143             :                 }
    1144             :             }
    1145             :             else
    1146             :             {
    1147             :                 /*
    1148             :                  * Unexpandable color.  Add enter key with ambiguous prefix,
    1149             :                  * showing we can reach the destination from this state, but
    1150             :                  * the preceding colors will be uncertain.  (We do not set the
    1151             :                  * first prefix color to key->prefix.colors[1], because a
    1152             :                  * prefix of known followed by unknown is invalid.)
    1153             :                  */
    1154           0 :                 destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1155           0 :                 destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1156           0 :                 destKey.nstate = arc->to;
    1157           0 :                 addKeyToQueue(trgmNFA, &destKey);
    1158             :             }
    1159             :         }
    1160             :         else
    1161             :         {
    1162             :             /* RAINBOW: treat as unexpandable color */
    1163         408 :             destKey.prefix.colors[0] = COLOR_UNKNOWN;
    1164         408 :             destKey.prefix.colors[1] = COLOR_UNKNOWN;
    1165         408 :             destKey.nstate = arc->to;
    1166         408 :             addKeyToQueue(trgmNFA, &destKey);
    1167             :         }
    1168             :     }
    1169             : 
    1170        1758 :     pfree(arcs);
    1171             : }
    1172             : 
    1173             : /*
    1174             :  * Add copy of given key to keysQueue for later processing.
    1175             :  */
    1176             : static void
    1177        1540 : addKeyToQueue(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1178             : {
    1179        1540 :     TrgmStateKey *keyCopy = palloc_object(TrgmStateKey);
    1180             : 
    1181        1540 :     memcpy(keyCopy, key, sizeof(TrgmStateKey));
    1182        1540 :     trgmNFA->keysQueue = lappend(trgmNFA->keysQueue, keyCopy);
    1183        1540 : }
    1184             : 
    1185             : /*
    1186             :  * Add outgoing arcs from given state, whose enter keys are all now known.
    1187             :  */
    1188             : static void
    1189        1142 : addArcs(TrgmNFA *trgmNFA, TrgmState *state)
    1190             : {
    1191             :     TrgmStateKey destKey;
    1192             :     ListCell   *cell;
    1193             :     regex_arc_t *arcs;
    1194             :     int         arcsCount,
    1195             :                 i;
    1196             : 
    1197             :     /*
    1198             :      * Ensure any pad bytes in destKey are zero, since it may get used as a
    1199             :      * hashtable key by getState.
    1200             :      */
    1201        1142 :     MemSet(&destKey, 0, sizeof(destKey));
    1202             : 
    1203             :     /*
    1204             :      * Iterate over enter keys associated with this expanded-graph state. This
    1205             :      * includes both the state's own stateKey, and any enter keys we added to
    1206             :      * it during addKey (which represent expanded-graph states that are not
    1207             :      * distinguishable from this one by means of trigrams).  For each such
    1208             :      * enter key, examine all the out-arcs of the key's underlying NFA state,
    1209             :      * and try to make a trigram arc leading to where the out-arc leads.
    1210             :      * (addArc will deal with whether the arc is valid or not.)
    1211             :      */
    1212        2672 :     foreach(cell, state->enterKeys)
    1213             :     {
    1214        1530 :         TrgmStateKey *key = (TrgmStateKey *) lfirst(cell);
    1215             : 
    1216        1530 :         arcsCount = pg_reg_getnumoutarcs(trgmNFA->regex, key->nstate);
    1217        1530 :         arcs = palloc_array(regex_arc_t, arcsCount);
    1218        1530 :         pg_reg_getoutarcs(trgmNFA->regex, key->nstate, arcs, arcsCount);
    1219             : 
    1220        3892 :         for (i = 0; i < arcsCount; i++)
    1221             :         {
    1222        2362 :             regex_arc_t *arc = &arcs[i];
    1223             :             TrgmColorInfo *colorInfo;
    1224             : 
    1225             :             /*
    1226             :              * Ignore non-expandable colors; addKey already handled the case.
    1227             :              *
    1228             :              * We need no special check for WHITE or begin/end pseudocolors
    1229             :              * here.  We don't need to do any processing for them, and they
    1230             :              * will be marked non-expandable since the regex engine will have
    1231             :              * reported them that way.  We do have to watch out for RAINBOW,
    1232             :              * which has a negative color number.
    1233             :              */
    1234        2362 :             if (arc->co < 0)
    1235         204 :                 continue;
    1236             :             Assert(arc->co < trgmNFA->ncolors);
    1237             : 
    1238        2158 :             colorInfo = &trgmNFA->colorInfo[arc->co];
    1239        2158 :             if (!colorInfo->expandable)
    1240         420 :                 continue;
    1241             : 
    1242        1738 :             if (colorInfo->containsNonWord)
    1243             :             {
    1244             :                 /*
    1245             :                  * Color includes non-word character(s).
    1246             :                  *
    1247             :                  * Generate an arc, treating this transition as occurring on
    1248             :                  * BLANK.  This allows word-ending trigrams to be manufactured
    1249             :                  * if possible.
    1250             :                  */
    1251         110 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1252         110 :                 destKey.prefix.colors[1] = COLOR_BLANK;
    1253         110 :                 destKey.nstate = arc->to;
    1254             : 
    1255         110 :                 addArc(trgmNFA, state, key, COLOR_BLANK, &destKey);
    1256             :             }
    1257             : 
    1258        1738 :             if (colorInfo->wordCharsCount > 0)
    1259             :             {
    1260             :                 /*
    1261             :                  * Color includes word character(s).
    1262             :                  *
    1263             :                  * Generate an arc.  Color is pushed into prefix of target
    1264             :                  * state.
    1265             :                  */
    1266        1628 :                 destKey.prefix.colors[0] = key->prefix.colors[1];
    1267        1628 :                 destKey.prefix.colors[1] = arc->co;
    1268        1628 :                 destKey.nstate = arc->to;
    1269             : 
    1270        1628 :                 addArc(trgmNFA, state, key, arc->co, &destKey);
    1271             :             }
    1272             :         }
    1273             : 
    1274        1530 :         pfree(arcs);
    1275             :     }
    1276        1142 : }
    1277             : 
    1278             : /*
    1279             :  * Generate an out-arc of the expanded graph, if it's valid and not redundant.
    1280             :  *
    1281             :  * state: expanded-graph state we want to add an out-arc to
    1282             :  * key: provides prefix colors (key->nstate is not used)
    1283             :  * co: transition color
    1284             :  * destKey: identifier for destination state of expanded graph
    1285             :  */
    1286             : static void
    1287        1738 : addArc(TrgmNFA *trgmNFA, TrgmState *state, TrgmStateKey *key,
    1288             :        TrgmColor co, TrgmStateKey *destKey)
    1289             : {
    1290             :     TrgmArc    *arc;
    1291             :     ListCell   *cell;
    1292             : 
    1293             :     /* Do nothing if this wouldn't be a valid arc label trigram */
    1294        1738 :     if (!validArcLabel(key, co))
    1295         274 :         return;
    1296             : 
    1297             :     /*
    1298             :      * Check if we are going to reach key which is covered by a key which is
    1299             :      * already listed in this state.  If so arc is useless: the NFA can bypass
    1300             :      * it through a path that doesn't require any predictable trigram, so
    1301             :      * whether the arc's trigram is present or not doesn't really matter.
    1302             :      */
    1303        3534 :     foreach(cell, state->enterKeys)
    1304             :     {
    1305        2082 :         TrgmStateKey *existingKey = (TrgmStateKey *) lfirst(cell);
    1306             : 
    1307        2132 :         if (existingKey->nstate == destKey->nstate &&
    1308          50 :             prefixContains(&existingKey->prefix, &destKey->prefix))
    1309          12 :             return;
    1310             :     }
    1311             : 
    1312             :     /* Checks were successful, add new arc */
    1313        1452 :     arc = palloc_object(TrgmArc);
    1314        1452 :     arc->target = getState(trgmNFA, destKey);
    1315        1452 :     arc->ctrgm.colors[0] = key->prefix.colors[0];
    1316        1452 :     arc->ctrgm.colors[1] = key->prefix.colors[1];
    1317        1452 :     arc->ctrgm.colors[2] = co;
    1318             : 
    1319        1452 :     state->arcs = lappend(state->arcs, arc);
    1320        1452 :     trgmNFA->arcsCount++;
    1321             : }
    1322             : 
    1323             : /*
    1324             :  * Can we make a valid trigram arc label from the given prefix and arc color?
    1325             :  *
    1326             :  * This is split out so that tests in addKey and addArc will stay in sync.
    1327             :  */
    1328             : static bool
    1329        3524 : validArcLabel(TrgmStateKey *key, TrgmColor co)
    1330             : {
    1331             :     /*
    1332             :      * We have to know full trigram in order to add outgoing arc.  So we can't
    1333             :      * do it if prefix is ambiguous.
    1334             :      */
    1335        3524 :     if (key->prefix.colors[0] == COLOR_UNKNOWN)
    1336         466 :         return false;
    1337             : 
    1338             :     /* If key->prefix.colors[0] isn't unknown, its second color isn't either */
    1339             :     Assert(key->prefix.colors[1] != COLOR_UNKNOWN);
    1340             :     /* And we should not be called with an unknown arc color anytime */
    1341             :     Assert(co != COLOR_UNKNOWN);
    1342             : 
    1343             :     /*
    1344             :      * We don't bother with making arcs representing three non-word
    1345             :      * characters, since that's useless for trigram extraction.
    1346             :      */
    1347        3058 :     if (key->prefix.colors[0] == COLOR_BLANK &&
    1348         328 :         key->prefix.colors[1] == COLOR_BLANK &&
    1349             :         co == COLOR_BLANK)
    1350          24 :         return false;
    1351             : 
    1352             :     /*
    1353             :      * We also reject nonblank-blank-anything.  The nonblank-blank-nonblank
    1354             :      * case doesn't correspond to any trigram the trigram extraction code
    1355             :      * would make.  The nonblank-blank-blank case is also not possible with
    1356             :      * RPADDING = 1.  (Note that in many cases we'd fail to generate such a
    1357             :      * trigram even if it were valid, for example processing "foo bar" will
    1358             :      * not result in considering the trigram "o  ".  So if you want to support
    1359             :      * RPADDING = 2, there's more to do than just twiddle this test.)
    1360             :      */
    1361        3034 :     if (key->prefix.colors[0] != COLOR_BLANK &&
    1362        2730 :         key->prefix.colors[1] == COLOR_BLANK)
    1363         100 :         return false;
    1364             : 
    1365             :     /*
    1366             :      * Other combinations involving blank are valid, in particular we assume
    1367             :      * blank-blank-nonblank is valid, which presumes that LPADDING is 2.
    1368             :      *
    1369             :      * Note: Using again the example "foo bar", we will not consider the
    1370             :      * trigram "  b", though this trigram would be found by the trigram
    1371             :      * extraction code.  Since we will find " ba", it doesn't seem worth
    1372             :      * trying to hack the algorithm to generate the additional trigram.
    1373             :      */
    1374             : 
    1375             :     /* arc label is valid */
    1376        2934 :     return true;
    1377             : }
    1378             : 
    1379             : /*
    1380             :  * Get state of expanded graph for given state key,
    1381             :  * and queue the state for processing if it didn't already exist.
    1382             :  */
    1383             : static TrgmState *
    1384        1582 : getState(TrgmNFA *trgmNFA, TrgmStateKey *key)
    1385             : {
    1386             :     TrgmState  *state;
    1387             :     bool        found;
    1388             : 
    1389        1582 :     state = (TrgmState *) hash_search(trgmNFA->states, key, HASH_ENTER,
    1390             :                                       &found);
    1391        1582 :     if (!found)
    1392             :     {
    1393             :         /* New state: initialize and queue it */
    1394        1328 :         state->arcs = NIL;
    1395        1328 :         state->enterKeys = NIL;
    1396        1328 :         state->flags = 0;
    1397             :         /* states are initially given negative numbers */
    1398        1328 :         state->snumber = -(++trgmNFA->nstates);
    1399        1328 :         state->parent = NULL;
    1400        1328 :         state->tentFlags = 0;
    1401        1328 :         state->tentParent = NULL;
    1402             : 
    1403        1328 :         trgmNFA->queue = lappend(trgmNFA->queue, state);
    1404             :     }
    1405        1582 :     return state;
    1406             : }
    1407             : 
    1408             : /*
    1409             :  * Check if prefix1 "contains" prefix2.
    1410             :  *
    1411             :  * "contains" means that any exact prefix (with no ambiguity) that satisfies
    1412             :  * prefix2 also satisfies prefix1.
    1413             :  */
    1414             : static bool
    1415         692 : prefixContains(TrgmPrefix *prefix1, TrgmPrefix *prefix2)
    1416             : {
    1417         692 :     if (prefix1->colors[1] == COLOR_UNKNOWN)
    1418             :     {
    1419             :         /* Fully ambiguous prefix contains everything */
    1420         612 :         return true;
    1421             :     }
    1422          80 :     else if (prefix1->colors[0] == COLOR_UNKNOWN)
    1423             :     {
    1424             :         /*
    1425             :          * Prefix with only first unknown color contains every prefix with
    1426             :          * same second color.
    1427             :          */
    1428          24 :         if (prefix1->colors[1] == prefix2->colors[1])
    1429           6 :             return true;
    1430             :         else
    1431          18 :             return false;
    1432             :     }
    1433             :     else
    1434             :     {
    1435             :         /* Exact prefix contains only the exact same prefix */
    1436          56 :         if (prefix1->colors[0] == prefix2->colors[0] &&
    1437          26 :             prefix1->colors[1] == prefix2->colors[1])
    1438          12 :             return true;
    1439             :         else
    1440          44 :             return false;
    1441             :     }
    1442             : }
    1443             : 
    1444             : 
    1445             : /*---------------------
    1446             :  * Subroutines for expanding color trigrams into regular trigrams (stage 3).
    1447             :  *---------------------
    1448             :  */
    1449             : 
    1450             : /*
    1451             :  * Get vector of all color trigrams in graph and select which of them
    1452             :  * to expand into simple trigrams.
    1453             :  *
    1454             :  * Returns true if OK, false if exhausted resource limits.
    1455             :  */
    1456             : static bool
    1457         112 : selectColorTrigrams(TrgmNFA *trgmNFA)
    1458             : {
    1459             :     HASH_SEQ_STATUS scan_status;
    1460         112 :     int         arcsCount = trgmNFA->arcsCount,
    1461             :                 i;
    1462             :     TrgmState  *state;
    1463             :     ColorTrgmInfo *colorTrgms;
    1464             :     int64       totalTrgmCount;
    1465             :     float4      totalTrgmPenalty;
    1466             :     int         cnumber;
    1467             : 
    1468             :     /* Collect color trigrams from all arcs */
    1469         112 :     colorTrgms = palloc0_array(ColorTrgmInfo, arcsCount);
    1470         112 :     trgmNFA->colorTrgms = colorTrgms;
    1471             : 
    1472         112 :     i = 0;
    1473         112 :     hash_seq_init(&scan_status, trgmNFA->states);
    1474        1422 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1475             :     {
    1476             :         ListCell   *cell;
    1477             : 
    1478        2762 :         foreach(cell, state->arcs)
    1479             :         {
    1480        1452 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1481        1452 :             TrgmArcInfo *arcInfo = palloc_object(TrgmArcInfo);
    1482        1452 :             ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1483             : 
    1484        1452 :             arcInfo->source = state;
    1485        1452 :             arcInfo->target = arc->target;
    1486        1452 :             trgmInfo->ctrgm = arc->ctrgm;
    1487        1452 :             trgmInfo->cnumber = -1;
    1488             :             /* count and penalty will be set below */
    1489        1452 :             trgmInfo->expanded = true;
    1490        1452 :             trgmInfo->arcs = list_make1(arcInfo);
    1491        1452 :             i++;
    1492             :         }
    1493             :     }
    1494             :     Assert(i == arcsCount);
    1495             : 
    1496             :     /* Remove duplicates, merging their arcs lists */
    1497         112 :     if (arcsCount >= 2)
    1498             :     {
    1499             :         ColorTrgmInfo *p1,
    1500             :                    *p2;
    1501             : 
    1502             :         /* Sort trigrams to ease duplicate detection */
    1503          68 :         qsort(colorTrgms, arcsCount, sizeof(ColorTrgmInfo), colorTrgmInfoCmp);
    1504             : 
    1505             :         /* p1 is probe point, p2 is last known non-duplicate. */
    1506          68 :         p2 = colorTrgms;
    1507        1412 :         for (p1 = colorTrgms + 1; p1 < colorTrgms + arcsCount; p1++)
    1508             :         {
    1509        1344 :             if (colorTrgmInfoCmp(p1, p2) > 0)
    1510             :             {
    1511         448 :                 p2++;
    1512         448 :                 *p2 = *p1;
    1513             :             }
    1514             :             else
    1515             :             {
    1516         896 :                 p2->arcs = list_concat(p2->arcs, p1->arcs);
    1517             :             }
    1518             :         }
    1519          68 :         trgmNFA->colorTrgmsCount = (p2 - colorTrgms) + 1;
    1520             :     }
    1521             :     else
    1522             :     {
    1523          44 :         trgmNFA->colorTrgmsCount = arcsCount;
    1524             :     }
    1525             : 
    1526             :     /*
    1527             :      * Count number of simple trigrams generated by each color trigram, and
    1528             :      * also compute a penalty value, which is the number of simple trigrams
    1529             :      * times a multiplier that depends on its whitespace content.
    1530             :      *
    1531             :      * Note: per-color-trigram counts cannot overflow an int so long as
    1532             :      * COLOR_COUNT_LIMIT is not more than the cube root of INT_MAX, ie about
    1533             :      * 1290.  However, the grand total totalTrgmCount might conceivably
    1534             :      * overflow an int, so we use int64 for that within this routine.  Also,
    1535             :      * penalties are calculated in float4 arithmetic to avoid any overflow
    1536             :      * worries.
    1537             :      */
    1538         112 :     totalTrgmCount = 0;
    1539         112 :     totalTrgmPenalty = 0.0f;
    1540         668 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1541             :     {
    1542         556 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1543             :         int         j,
    1544         556 :                     count = 1,
    1545         556 :                     typeIndex = 0;
    1546             : 
    1547        2224 :         for (j = 0; j < 3; j++)
    1548             :         {
    1549        1668 :             TrgmColor   c = trgmInfo->ctrgm.colors[j];
    1550             : 
    1551        1668 :             typeIndex *= 2;
    1552        1668 :             if (c == COLOR_BLANK)
    1553         226 :                 typeIndex++;
    1554             :             else
    1555        1442 :                 count *= trgmNFA->colorInfo[c].wordCharsCount;
    1556             :         }
    1557         556 :         trgmInfo->count = count;
    1558         556 :         totalTrgmCount += count;
    1559         556 :         trgmInfo->penalty = penalties[typeIndex] * (float4) count;
    1560         556 :         totalTrgmPenalty += trgmInfo->penalty;
    1561             :     }
    1562             : 
    1563             :     /* Sort color trigrams in descending order of their penalties */
    1564         112 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1565             :           colorTrgmInfoPenaltyCmp);
    1566             : 
    1567             :     /*
    1568             :      * Remove color trigrams from the graph so long as total penalty of color
    1569             :      * trigrams exceeds WISH_TRGM_PENALTY.  (If we fail to get down to
    1570             :      * WISH_TRGM_PENALTY, it's OK so long as total count is no more than
    1571             :      * MAX_TRGM_COUNT.)  We prefer to remove color trigrams with higher
    1572             :      * penalty, since those are the most promising for reducing the total
    1573             :      * penalty.  When removing a color trigram we have to merge states
    1574             :      * connected by arcs labeled with that trigram.  It's necessary to not
    1575             :      * merge initial and final states, because our graph becomes useless if
    1576             :      * that happens; so we cannot always remove the trigram we'd prefer to.
    1577             :      */
    1578         408 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1579             :     {
    1580         358 :         ColorTrgmInfo *trgmInfo = &colorTrgms[i];
    1581         358 :         bool        canRemove = true;
    1582             :         ListCell   *cell;
    1583             : 
    1584             :         /* Done if we've reached the target */
    1585         358 :         if (totalTrgmPenalty <= WISH_TRGM_PENALTY)
    1586          62 :             break;
    1587             : 
    1588             : #ifdef TRGM_REGEXP_DEBUG
    1589             :         fprintf(stderr, "considering ctrgm %d %d %d, penalty %f, %d arcs\n",
    1590             :                 trgmInfo->ctrgm.colors[0],
    1591             :                 trgmInfo->ctrgm.colors[1],
    1592             :                 trgmInfo->ctrgm.colors[2],
    1593             :                 trgmInfo->penalty,
    1594             :                 list_length(trgmInfo->arcs));
    1595             : #endif
    1596             : 
    1597             :         /*
    1598             :          * Does any arc of this color trigram connect initial and final
    1599             :          * states?  If so we can't remove it.
    1600             :          */
    1601         612 :         foreach(cell, trgmInfo->arcs)
    1602             :         {
    1603         382 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1604         382 :             TrgmState  *source = arcInfo->source,
    1605         382 :                        *target = arcInfo->target;
    1606             :             int         source_flags,
    1607             :                         target_flags;
    1608             : 
    1609             : #ifdef TRGM_REGEXP_DEBUG
    1610             :             fprintf(stderr, "examining arc to s%d (%x) from s%d (%x)\n",
    1611             :                     -target->snumber, target->flags,
    1612             :                     -source->snumber, source->flags);
    1613             : #endif
    1614             : 
    1615             :             /* examine parent states, if any merging has already happened */
    1616         682 :             while (source->parent)
    1617         300 :                 source = source->parent;
    1618         814 :             while (target->parent)
    1619         432 :                 target = target->parent;
    1620             : 
    1621             : #ifdef TRGM_REGEXP_DEBUG
    1622             :             fprintf(stderr, " ... after completed merges: to s%d (%x) from s%d (%x)\n",
    1623             :                     -target->snumber, target->flags,
    1624             :                     -source->snumber, source->flags);
    1625             : #endif
    1626             : 
    1627             :             /* we must also consider merges we are planning right now */
    1628         382 :             source_flags = source->flags | source->tentFlags;
    1629         390 :             while (source->tentParent)
    1630             :             {
    1631           8 :                 source = source->tentParent;
    1632           8 :                 source_flags |= source->flags | source->tentFlags;
    1633             :             }
    1634         382 :             target_flags = target->flags | target->tentFlags;
    1635         412 :             while (target->tentParent)
    1636             :             {
    1637          30 :                 target = target->tentParent;
    1638          30 :                 target_flags |= target->flags | target->tentFlags;
    1639             :             }
    1640             : 
    1641             : #ifdef TRGM_REGEXP_DEBUG
    1642             :             fprintf(stderr, " ... after tentative merges: to s%d (%x) from s%d (%x)\n",
    1643             :                     -target->snumber, target_flags,
    1644             :                     -source->snumber, source_flags);
    1645             : #endif
    1646             : 
    1647             :             /* would fully-merged state have both INIT and FIN set? */
    1648         382 :             if (((source_flags | target_flags) & (TSTATE_INIT | TSTATE_FIN)) ==
    1649             :                 (TSTATE_INIT | TSTATE_FIN))
    1650             :             {
    1651          66 :                 canRemove = false;
    1652          66 :                 break;
    1653             :             }
    1654             : 
    1655             :             /* ok so far, so remember planned merge */
    1656         316 :             if (source != target)
    1657             :             {
    1658             : #ifdef TRGM_REGEXP_DEBUG
    1659             :                 fprintf(stderr, " ... tentatively merging s%d into s%d\n",
    1660             :                         -target->snumber, -source->snumber);
    1661             : #endif
    1662         226 :                 target->tentParent = source;
    1663         226 :                 source->tentFlags |= target_flags;
    1664             :             }
    1665             :         }
    1666             : 
    1667             :         /*
    1668             :          * We must reset all the tentFlags/tentParent fields before
    1669             :          * continuing.  tentFlags could only have become set in states that
    1670             :          * are the source or parent or tentative parent of one of the current
    1671             :          * arcs; likewise tentParent could only have become set in states that
    1672             :          * are the target or parent or tentative parent of one of the current
    1673             :          * arcs.  There might be some overlap between those sets, but if we
    1674             :          * clear tentFlags in target states as well as source states, we
    1675             :          * should be okay even if we visit a state as target before visiting
    1676             :          * it as a source.
    1677             :          */
    1678         696 :         foreach(cell, trgmInfo->arcs)
    1679             :         {
    1680         400 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1681         400 :             TrgmState  *source = arcInfo->source,
    1682         400 :                        *target = arcInfo->target;
    1683             :             TrgmState  *ttarget;
    1684             : 
    1685             :             /* no need to touch previously-merged states */
    1686         700 :             while (source->parent)
    1687         300 :                 source = source->parent;
    1688         880 :             while (target->parent)
    1689         480 :                 target = target->parent;
    1690             : 
    1691         812 :             while (source)
    1692             :             {
    1693         412 :                 source->tentFlags = 0;
    1694         412 :                 source = source->tentParent;
    1695             :             }
    1696             : 
    1697         626 :             while ((ttarget = target->tentParent) != NULL)
    1698             :             {
    1699         226 :                 target->tentParent = NULL;
    1700         226 :                 target->tentFlags = 0;   /* in case it was also a source */
    1701         226 :                 target = ttarget;
    1702             :             }
    1703             :         }
    1704             : 
    1705             :         /* Now, move on if we can't drop this trigram */
    1706         296 :         if (!canRemove)
    1707             :         {
    1708             : #ifdef TRGM_REGEXP_DEBUG
    1709             :             fprintf(stderr, " ... not ok to merge\n");
    1710             : #endif
    1711          66 :             continue;
    1712             :         }
    1713             : 
    1714             :         /* OK, merge states linked by each arc labeled by the trigram */
    1715         526 :         foreach(cell, trgmInfo->arcs)
    1716             :         {
    1717         296 :             TrgmArcInfo *arcInfo = (TrgmArcInfo *) lfirst(cell);
    1718         296 :             TrgmState  *source = arcInfo->source,
    1719         296 :                        *target = arcInfo->target;
    1720             : 
    1721         584 :             while (source->parent)
    1722         288 :                 source = source->parent;
    1723         692 :             while (target->parent)
    1724         396 :                 target = target->parent;
    1725         296 :             if (source != target)
    1726             :             {
    1727             : #ifdef TRGM_REGEXP_DEBUG
    1728             :                 fprintf(stderr, "merging s%d into s%d\n",
    1729             :                         -target->snumber, -source->snumber);
    1730             : #endif
    1731         206 :                 mergeStates(source, target);
    1732             :                 /* Assert we didn't merge initial and final states */
    1733             :                 Assert((source->flags & (TSTATE_INIT | TSTATE_FIN)) !=
    1734             :                        (TSTATE_INIT | TSTATE_FIN));
    1735             :             }
    1736             :         }
    1737             : 
    1738             :         /* Mark trigram unexpanded, and update totals */
    1739         230 :         trgmInfo->expanded = false;
    1740         230 :         totalTrgmCount -= trgmInfo->count;
    1741         230 :         totalTrgmPenalty -= trgmInfo->penalty;
    1742             :     }
    1743             : 
    1744             :     /* Did we succeed in fitting into MAX_TRGM_COUNT? */
    1745         112 :     if (totalTrgmCount > MAX_TRGM_COUNT)
    1746           6 :         return false;
    1747             : 
    1748         106 :     trgmNFA->totalTrgmCount = (int) totalTrgmCount;
    1749             : 
    1750             :     /*
    1751             :      * Sort color trigrams by colors (will be useful for bsearch in packGraph)
    1752             :      * and enumerate the color trigrams that are expanded.
    1753             :      */
    1754         106 :     cnumber = 0;
    1755         106 :     qsort(colorTrgms, trgmNFA->colorTrgmsCount, sizeof(ColorTrgmInfo),
    1756             :           colorTrgmInfoCmp);
    1757         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1758             :     {
    1759         550 :         if (colorTrgms[i].expanded)
    1760             :         {
    1761         320 :             colorTrgms[i].cnumber = cnumber;
    1762         320 :             cnumber++;
    1763             :         }
    1764             :     }
    1765             : 
    1766         106 :     return true;
    1767             : }
    1768             : 
    1769             : /*
    1770             :  * Expand selected color trigrams into regular trigrams.
    1771             :  *
    1772             :  * Returns the TRGM array to be passed to the index machinery.
    1773             :  * The array must be allocated in rcontext.
    1774             :  */
    1775             : static TRGM *
    1776         106 : expandColorTrigrams(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1777             : {
    1778             :     TRGM       *trg;
    1779             :     trgm       *p;
    1780             :     int         i;
    1781             :     TrgmColorInfo blankColor;
    1782             :     trgm_mb_char blankChar;
    1783             : 
    1784             :     /* Set up "blank" color structure containing a single zero character */
    1785         106 :     memset(blankChar.bytes, 0, sizeof(blankChar.bytes));
    1786         106 :     blankColor.wordCharsCount = 1;
    1787         106 :     blankColor.wordChars = &blankChar;
    1788             : 
    1789             :     /* Construct the trgm array */
    1790             :     trg = (TRGM *)
    1791         106 :         MemoryContextAllocZero(rcontext,
    1792             :                                TRGMHDRSIZE +
    1793         106 :                                trgmNFA->totalTrgmCount * sizeof(trgm));
    1794         106 :     trg->flag = ARRKEY;
    1795         106 :     SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, trgmNFA->totalTrgmCount));
    1796         106 :     p = GETARR(trg);
    1797         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    1798             :     {
    1799         550 :         ColorTrgmInfo *colorTrgm = &trgmNFA->colorTrgms[i];
    1800             :         TrgmColorInfo *c[3];
    1801             :         trgm_mb_char s[3];
    1802             :         int         j,
    1803             :                     i1,
    1804             :                     i2,
    1805             :                     i3;
    1806             : 
    1807             :         /* Ignore any unexpanded trigrams ... */
    1808         550 :         if (!colorTrgm->expanded)
    1809         230 :             continue;
    1810             : 
    1811             :         /* Get colors, substituting the dummy struct for COLOR_BLANK */
    1812        1280 :         for (j = 0; j < 3; j++)
    1813             :         {
    1814         960 :             if (colorTrgm->ctrgm.colors[j] != COLOR_BLANK)
    1815         826 :                 c[j] = &trgmNFA->colorInfo[colorTrgm->ctrgm.colors[j]];
    1816             :             else
    1817         134 :                 c[j] = &blankColor;
    1818             :         }
    1819             : 
    1820             :         /* Iterate over all possible combinations of colors' characters */
    1821         754 :         for (i1 = 0; i1 < c[0]->wordCharsCount; i1++)
    1822             :         {
    1823         434 :             s[0] = c[0]->wordChars[i1];
    1824        1456 :             for (i2 = 0; i2 < c[1]->wordCharsCount; i2++)
    1825             :             {
    1826        1022 :                 s[1] = c[1]->wordChars[i2];
    1827        3940 :                 for (i3 = 0; i3 < c[2]->wordCharsCount; i3++)
    1828             :                 {
    1829        2918 :                     s[2] = c[2]->wordChars[i3];
    1830        2918 :                     fillTrgm(p, s);
    1831        2918 :                     p++;
    1832             :                 }
    1833             :             }
    1834             :         }
    1835             :     }
    1836             : 
    1837         106 :     return trg;
    1838             : }
    1839             : 
    1840             : /*
    1841             :  * Convert trigram into trgm datatype.
    1842             :  */
    1843             : static void
    1844        2918 : fillTrgm(trgm *ptrgm, trgm_mb_char s[3])
    1845             : {
    1846             :     char        str[3 * MAX_MULTIBYTE_CHAR_LEN],
    1847             :                *p;
    1848             :     int         i,
    1849             :                 j;
    1850             : 
    1851             :     /* Write multibyte string into "str" (we don't need null termination) */
    1852        2918 :     p = str;
    1853             : 
    1854       11672 :     for (i = 0; i < 3; i++)
    1855             :     {
    1856        8754 :         if (s[i].bytes[0] != 0)
    1857             :         {
    1858       16464 :             for (j = 0; j < MAX_MULTIBYTE_CHAR_LEN && s[i].bytes[j]; j++)
    1859        8232 :                 *p++ = s[i].bytes[j];
    1860             :         }
    1861             :         else
    1862             :         {
    1863             :             /* Emit a space in place of COLOR_BLANK */
    1864         522 :             *p++ = ' ';
    1865             :         }
    1866             :     }
    1867             : 
    1868             :     /* Convert "str" to a standard trigram (possibly hashing it) */
    1869        2918 :     compact_trigram(ptrgm, str, p - str);
    1870        2918 : }
    1871             : 
    1872             : /*
    1873             :  * Merge two states of graph.
    1874             :  */
    1875             : static void
    1876         206 : mergeStates(TrgmState *state1, TrgmState *state2)
    1877             : {
    1878             :     Assert(state1 != state2);
    1879             :     Assert(!state1->parent);
    1880             :     Assert(!state2->parent);
    1881             : 
    1882             :     /* state1 absorbs state2's flags */
    1883         206 :     state1->flags |= state2->flags;
    1884             : 
    1885             :     /* state2, and indirectly all its children, become children of state1 */
    1886         206 :     state2->parent = state1;
    1887         206 : }
    1888             : 
    1889             : /*
    1890             :  * Compare function for sorting of color trigrams by their colors.
    1891             :  */
    1892             : static int
    1893       10178 : colorTrgmInfoCmp(const void *p1, const void *p2)
    1894             : {
    1895       10178 :     const ColorTrgmInfo *c1 = (const ColorTrgmInfo *) p1;
    1896       10178 :     const ColorTrgmInfo *c2 = (const ColorTrgmInfo *) p2;
    1897             : 
    1898       10178 :     return memcmp(&c1->ctrgm, &c2->ctrgm, sizeof(ColorTrgm));
    1899             : }
    1900             : 
    1901             : /*
    1902             :  * Compare function for sorting color trigrams in descending order of
    1903             :  * their penalty fields.
    1904             :  */
    1905             : static int
    1906         846 : colorTrgmInfoPenaltyCmp(const void *p1, const void *p2)
    1907             : {
    1908         846 :     float4      penalty1 = ((const ColorTrgmInfo *) p1)->penalty;
    1909         846 :     float4      penalty2 = ((const ColorTrgmInfo *) p2)->penalty;
    1910             : 
    1911         846 :     if (penalty1 < penalty2)
    1912         254 :         return 1;
    1913         592 :     else if (penalty1 == penalty2)
    1914         324 :         return 0;
    1915             :     else
    1916         268 :         return -1;
    1917             : }
    1918             : 
    1919             : 
    1920             : /*---------------------
    1921             :  * Subroutines for packing the graph into final representation (stage 4).
    1922             :  *---------------------
    1923             :  */
    1924             : 
    1925             : /*
    1926             :  * Pack expanded graph into final representation.
    1927             :  *
    1928             :  * The result data must be allocated in rcontext.
    1929             :  */
    1930             : static TrgmPackedGraph *
    1931         106 : packGraph(TrgmNFA *trgmNFA, MemoryContext rcontext)
    1932             : {
    1933         106 :     int         snumber = 2,
    1934             :                 arcIndex,
    1935             :                 arcsCount;
    1936             :     HASH_SEQ_STATUS scan_status;
    1937             :     TrgmState  *state;
    1938             :     TrgmPackArcInfo *arcs;
    1939             :     TrgmPackedArc *packedArcs;
    1940             :     TrgmPackedGraph *result;
    1941             :     int         i,
    1942             :                 j;
    1943             : 
    1944             :     /* Enumerate surviving states, giving init and fin reserved numbers */
    1945         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1946        1510 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1947             :     {
    1948        1942 :         while (state->parent)
    1949         644 :             state = state->parent;
    1950             : 
    1951        1298 :         if (state->snumber < 0)
    1952             :         {
    1953        1092 :             if (state->flags & TSTATE_INIT)
    1954         106 :                 state->snumber = 0;
    1955         986 :             else if (state->flags & TSTATE_FIN)
    1956         114 :                 state->snumber = 1;
    1957             :             else
    1958             :             {
    1959         872 :                 state->snumber = snumber;
    1960         872 :                 snumber++;
    1961             :             }
    1962             :         }
    1963             :     }
    1964             : 
    1965             :     /* Collect array of all arcs */
    1966         106 :     arcs = palloc_array(TrgmPackArcInfo, trgmNFA->arcsCount);
    1967         106 :     arcIndex = 0;
    1968         106 :     hash_seq_init(&scan_status, trgmNFA->states);
    1969        1404 :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    1970             :     {
    1971        1298 :         TrgmState  *source = state;
    1972             :         ListCell   *cell;
    1973             : 
    1974        1942 :         while (source->parent)
    1975         644 :             source = source->parent;
    1976             : 
    1977        2744 :         foreach(cell, state->arcs)
    1978             :         {
    1979        1446 :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    1980        1446 :             TrgmState  *target = arc->target;
    1981             : 
    1982        2704 :             while (target->parent)
    1983        1258 :                 target = target->parent;
    1984             : 
    1985        1446 :             if (source->snumber != target->snumber)
    1986             :             {
    1987             :                 ColorTrgmInfo *ctrgm;
    1988             : 
    1989        1132 :                 ctrgm = (ColorTrgmInfo *) bsearch(&arc->ctrgm,
    1990        1132 :                                                   trgmNFA->colorTrgms,
    1991        1132 :                                                   trgmNFA->colorTrgmsCount,
    1992             :                                                   sizeof(ColorTrgmInfo),
    1993             :                                                   colorTrgmInfoCmp);
    1994             :                 Assert(ctrgm != NULL);
    1995             :                 Assert(ctrgm->expanded);
    1996             : 
    1997        1132 :                 arcs[arcIndex].sourceState = source->snumber;
    1998        1132 :                 arcs[arcIndex].targetState = target->snumber;
    1999        1132 :                 arcs[arcIndex].colorTrgm = ctrgm->cnumber;
    2000        1132 :                 arcIndex++;
    2001             :             }
    2002             :         }
    2003             :     }
    2004             : 
    2005             :     /* Sort arcs to ease duplicate detection */
    2006         106 :     qsort(arcs, arcIndex, sizeof(TrgmPackArcInfo), packArcInfoCmp);
    2007             : 
    2008             :     /* We could have duplicates because states were merged. Remove them. */
    2009         106 :     if (arcIndex > 1)
    2010             :     {
    2011             :         /* p1 is probe point, p2 is last known non-duplicate. */
    2012             :         TrgmPackArcInfo *p1,
    2013             :                    *p2;
    2014             : 
    2015          62 :         p2 = arcs;
    2016        1092 :         for (p1 = arcs + 1; p1 < arcs + arcIndex; p1++)
    2017             :         {
    2018        1030 :             if (packArcInfoCmp(p1, p2) > 0)
    2019             :             {
    2020        1018 :                 p2++;
    2021        1018 :                 *p2 = *p1;
    2022             :             }
    2023             :         }
    2024          62 :         arcsCount = (p2 - arcs) + 1;
    2025             :     }
    2026             :     else
    2027          44 :         arcsCount = arcIndex;
    2028             : 
    2029             :     /* Create packed representation */
    2030             :     result = (TrgmPackedGraph *)
    2031         106 :         MemoryContextAlloc(rcontext, sizeof(TrgmPackedGraph));
    2032             : 
    2033             :     /* Pack color trigrams information */
    2034         106 :     result->colorTrigramsCount = 0;
    2035         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2036             :     {
    2037         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2038         320 :             result->colorTrigramsCount++;
    2039             :     }
    2040         106 :     result->colorTrigramGroups = (int *)
    2041         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->colorTrigramsCount);
    2042         106 :     j = 0;
    2043         656 :     for (i = 0; i < trgmNFA->colorTrgmsCount; i++)
    2044             :     {
    2045         550 :         if (trgmNFA->colorTrgms[i].expanded)
    2046             :         {
    2047         320 :             result->colorTrigramGroups[j] = trgmNFA->colorTrgms[i].count;
    2048         320 :             j++;
    2049             :         }
    2050             :     }
    2051             : 
    2052             :     /* Pack states and arcs information */
    2053         106 :     result->statesCount = snumber;
    2054         106 :     result->states = (TrgmPackedState *)
    2055         106 :         MemoryContextAlloc(rcontext, snumber * sizeof(TrgmPackedState));
    2056             :     packedArcs = (TrgmPackedArc *)
    2057         106 :         MemoryContextAlloc(rcontext, arcsCount * sizeof(TrgmPackedArc));
    2058         106 :     j = 0;
    2059        1190 :     for (i = 0; i < snumber; i++)
    2060             :     {
    2061        1084 :         int         cnt = 0;
    2062             : 
    2063        1084 :         result->states[i].arcs = &packedArcs[j];
    2064        2204 :         while (j < arcsCount && arcs[j].sourceState == i)
    2065             :         {
    2066        1120 :             packedArcs[j].targetState = arcs[j].targetState;
    2067        1120 :             packedArcs[j].colorTrgm = arcs[j].colorTrgm;
    2068        1120 :             cnt++;
    2069        1120 :             j++;
    2070             :         }
    2071        1084 :         result->states[i].arcsCount = cnt;
    2072             :     }
    2073             : 
    2074             :     /* Allocate working memory for trigramsMatchGraph() */
    2075         106 :     result->colorTrigramsActive = (bool *)
    2076         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->colorTrigramsCount);
    2077         106 :     result->statesActive = (bool *)
    2078         106 :         MemoryContextAlloc(rcontext, sizeof(bool) * result->statesCount);
    2079         106 :     result->statesQueue = (int *)
    2080         106 :         MemoryContextAlloc(rcontext, sizeof(int) * result->statesCount);
    2081             : 
    2082         106 :     return result;
    2083             : }
    2084             : 
    2085             : /*
    2086             :  * Comparison function for sorting TrgmPackArcInfos.
    2087             :  *
    2088             :  * Compares arcs in following order: sourceState, colorTrgm, targetState.
    2089             :  */
    2090             : static int
    2091        9092 : packArcInfoCmp(const void *a1, const void *a2)
    2092             : {
    2093        9092 :     const TrgmPackArcInfo *p1 = (const TrgmPackArcInfo *) a1;
    2094        9092 :     const TrgmPackArcInfo *p2 = (const TrgmPackArcInfo *) a2;
    2095             : 
    2096        9092 :     if (p1->sourceState < p2->sourceState)
    2097        4358 :         return -1;
    2098        4734 :     if (p1->sourceState > p2->sourceState)
    2099        4100 :         return 1;
    2100         634 :     if (p1->colorTrgm < p2->colorTrgm)
    2101         396 :         return -1;
    2102         238 :     if (p1->colorTrgm > p2->colorTrgm)
    2103         214 :         return 1;
    2104          24 :     if (p1->targetState < p2->targetState)
    2105           0 :         return -1;
    2106          24 :     if (p1->targetState > p2->targetState)
    2107           0 :         return 1;
    2108          24 :     return 0;
    2109             : }
    2110             : 
    2111             : 
    2112             : /*---------------------
    2113             :  * Debugging functions
    2114             :  *
    2115             :  * These are designed to emit GraphViz files.
    2116             :  *---------------------
    2117             :  */
    2118             : 
    2119             : #ifdef TRGM_REGEXP_DEBUG
    2120             : 
    2121             : /*
    2122             :  * Print initial NFA, in regexp library's representation
    2123             :  */
    2124             : static void
    2125             : printSourceNFA(regex_t *regex, TrgmColorInfo *colors, int ncolors)
    2126             : {
    2127             :     StringInfoData buf;
    2128             :     int         nstates = pg_reg_getnumstates(regex);
    2129             :     int         state;
    2130             :     int         i;
    2131             : 
    2132             :     initStringInfo(&buf);
    2133             : 
    2134             :     appendStringInfoString(&buf, "\ndigraph sourceNFA {\n");
    2135             : 
    2136             :     for (state = 0; state < nstates; state++)
    2137             :     {
    2138             :         regex_arc_t *arcs;
    2139             :         int         i,
    2140             :                     arcsCount;
    2141             : 
    2142             :         appendStringInfo(&buf, "s%d", state);
    2143             :         if (pg_reg_getfinalstate(regex) == state)
    2144             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2145             :         appendStringInfoString(&buf, ";\n");
    2146             : 
    2147             :         arcsCount = pg_reg_getnumoutarcs(regex, state);
    2148             :         arcs = palloc_array(regex_arc_t, arcsCount);
    2149             :         pg_reg_getoutarcs(regex, state, arcs, arcsCount);
    2150             : 
    2151             :         for (i = 0; i < arcsCount; i++)
    2152             :         {
    2153             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"%d\"];\n",
    2154             :                              state, arcs[i].to, arcs[i].co);
    2155             :         }
    2156             : 
    2157             :         pfree(arcs);
    2158             :     }
    2159             : 
    2160             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2161             :     appendStringInfo(&buf, " initial -> s%d;\n",
    2162             :                      pg_reg_getinitialstate(regex));
    2163             : 
    2164             :     /* Print colors */
    2165             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2166             :     appendStringInfoString(&buf, "  Colors [shape = none, margin=0, label=<\n");
    2167             : 
    2168             :     for (i = 0; i < ncolors; i++)
    2169             :     {
    2170             :         TrgmColorInfo *color = &colors[i];
    2171             :         int         j;
    2172             : 
    2173             :         appendStringInfo(&buf, "<br/>Color %d: ", i);
    2174             :         if (color->expandable)
    2175             :         {
    2176             :             for (j = 0; j < color->wordCharsCount; j++)
    2177             :             {
    2178             :                 char        s[MAX_MULTIBYTE_CHAR_LEN + 1];
    2179             : 
    2180             :                 memcpy(s, color->wordChars[j].bytes, MAX_MULTIBYTE_CHAR_LEN);
    2181             :                 s[MAX_MULTIBYTE_CHAR_LEN] = '\0';
    2182             :                 appendStringInfoString(&buf, s);
    2183             :             }
    2184             :         }
    2185             :         else
    2186             :             appendStringInfoString(&buf, "not expandable");
    2187             :         appendStringInfoChar(&buf, '\n');
    2188             :     }
    2189             : 
    2190             :     appendStringInfoString(&buf, "  >];\n");
    2191             :     appendStringInfoString(&buf, " }\n");
    2192             :     appendStringInfoString(&buf, "}\n");
    2193             : 
    2194             :     {
    2195             :         /* dot -Tpng -o /tmp/source.png < /tmp/source.gv */
    2196             :         FILE       *fp = fopen("/tmp/source.gv", "w");
    2197             : 
    2198             :         fprintf(fp, "%s", buf.data);
    2199             :         fclose(fp);
    2200             :     }
    2201             : 
    2202             :     pfree(buf.data);
    2203             : }
    2204             : 
    2205             : /*
    2206             :  * Print expanded graph.
    2207             :  */
    2208             : static void
    2209             : printTrgmNFA(TrgmNFA *trgmNFA)
    2210             : {
    2211             :     StringInfoData buf;
    2212             :     HASH_SEQ_STATUS scan_status;
    2213             :     TrgmState  *state;
    2214             :     TrgmState  *initstate = NULL;
    2215             : 
    2216             :     initStringInfo(&buf);
    2217             : 
    2218             :     appendStringInfoString(&buf, "\ndigraph transformedNFA {\n");
    2219             : 
    2220             :     hash_seq_init(&scan_status, trgmNFA->states);
    2221             :     while ((state = (TrgmState *) hash_seq_search(&scan_status)) != NULL)
    2222             :     {
    2223             :         ListCell   *cell;
    2224             : 
    2225             :         appendStringInfo(&buf, "s%d", -state->snumber);
    2226             :         if (state->flags & TSTATE_FIN)
    2227             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2228             :         if (state->flags & TSTATE_INIT)
    2229             :             initstate = state;
    2230             :         appendStringInfo(&buf, " [label = \"%d\"]", state->stateKey.nstate);
    2231             :         appendStringInfoString(&buf, ";\n");
    2232             : 
    2233             :         foreach(cell, state->arcs)
    2234             :         {
    2235             :             TrgmArc    *arc = (TrgmArc *) lfirst(cell);
    2236             : 
    2237             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"",
    2238             :                              -state->snumber, -arc->target->snumber);
    2239             :             printTrgmColor(&buf, arc->ctrgm.colors[0]);
    2240             :             appendStringInfoChar(&buf, ' ');
    2241             :             printTrgmColor(&buf, arc->ctrgm.colors[1]);
    2242             :             appendStringInfoChar(&buf, ' ');
    2243             :             printTrgmColor(&buf, arc->ctrgm.colors[2]);
    2244             :             appendStringInfoString(&buf, "\"];\n");
    2245             :         }
    2246             :     }
    2247             : 
    2248             :     if (initstate)
    2249             :     {
    2250             :         appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2251             :         appendStringInfo(&buf, " initial -> s%d;\n", -initstate->snumber);
    2252             :     }
    2253             : 
    2254             :     appendStringInfoString(&buf, "}\n");
    2255             : 
    2256             :     {
    2257             :         /* dot -Tpng -o /tmp/transformed.png < /tmp/transformed.gv */
    2258             :         FILE       *fp = fopen("/tmp/transformed.gv", "w");
    2259             : 
    2260             :         fprintf(fp, "%s", buf.data);
    2261             :         fclose(fp);
    2262             :     }
    2263             : 
    2264             :     pfree(buf.data);
    2265             : }
    2266             : 
    2267             : /*
    2268             :  * Print a TrgmColor readably.
    2269             :  */
    2270             : static void
    2271             : printTrgmColor(StringInfo buf, TrgmColor co)
    2272             : {
    2273             :     if (co == COLOR_UNKNOWN)
    2274             :         appendStringInfoChar(buf, 'u');
    2275             :     else if (co == COLOR_BLANK)
    2276             :         appendStringInfoChar(buf, 'b');
    2277             :     else
    2278             :         appendStringInfo(buf, "%d", (int) co);
    2279             : }
    2280             : 
    2281             : /*
    2282             :  * Print final packed representation of trigram-based expanded graph.
    2283             :  */
    2284             : static void
    2285             : printTrgmPackedGraph(TrgmPackedGraph *packedGraph, TRGM *trigrams)
    2286             : {
    2287             :     StringInfoData buf;
    2288             :     trgm       *p;
    2289             :     int         i;
    2290             : 
    2291             :     initStringInfo(&buf);
    2292             : 
    2293             :     appendStringInfoString(&buf, "\ndigraph packedGraph {\n");
    2294             : 
    2295             :     for (i = 0; i < packedGraph->statesCount; i++)
    2296             :     {
    2297             :         TrgmPackedState *state = &packedGraph->states[i];
    2298             :         int         j;
    2299             : 
    2300             :         appendStringInfo(&buf, " s%d", i);
    2301             :         if (i == 1)
    2302             :             appendStringInfoString(&buf, " [shape = doublecircle]");
    2303             : 
    2304             :         appendStringInfo(&buf, " [label = <s%d>];\n", i);
    2305             : 
    2306             :         for (j = 0; j < state->arcsCount; j++)
    2307             :         {
    2308             :             TrgmPackedArc *arc = &state->arcs[j];
    2309             : 
    2310             :             appendStringInfo(&buf, "  s%d -> s%d [label = \"trigram %d\"];\n",
    2311             :                              i, arc->targetState, arc->colorTrgm);
    2312             :         }
    2313             :     }
    2314             : 
    2315             :     appendStringInfoString(&buf, " node [shape = point ]; initial;\n");
    2316             :     appendStringInfo(&buf, " initial -> s%d;\n", 0);
    2317             : 
    2318             :     /* Print trigrams */
    2319             :     appendStringInfoString(&buf, " { rank = sink;\n");
    2320             :     appendStringInfoString(&buf, "  Trigrams [shape = none, margin=0, label=<\n");
    2321             : 
    2322             :     p = GETARR(trigrams);
    2323             :     for (i = 0; i < packedGraph->colorTrigramsCount; i++)
    2324             :     {
    2325             :         int         count = packedGraph->colorTrigramGroups[i];
    2326             :         int         j;
    2327             : 
    2328             :         appendStringInfo(&buf, "<br/>Trigram %d: ", i);
    2329             : 
    2330             :         for (j = 0; j < count; j++)
    2331             :         {
    2332             :             if (j > 0)
    2333             :                 appendStringInfoString(&buf, ", ");
    2334             : 
    2335             :             /*
    2336             :              * XXX This representation is nice only for all-ASCII trigrams.
    2337             :              */
    2338             :             appendStringInfo(&buf, "\"%c%c%c\"", (*p)[0], (*p)[1], (*p)[2]);
    2339             :             p++;
    2340             :         }
    2341             :     }
    2342             : 
    2343             :     appendStringInfoString(&buf, "  >];\n");
    2344             :     appendStringInfoString(&buf, " }\n");
    2345             :     appendStringInfoString(&buf, "}\n");
    2346             : 
    2347             :     {
    2348             :         /* dot -Tpng -o /tmp/packed.png < /tmp/packed.gv */
    2349             :         FILE       *fp = fopen("/tmp/packed.gv", "w");
    2350             : 
    2351             :         fprintf(fp, "%s", buf.data);
    2352             :         fclose(fp);
    2353             :     }
    2354             : 
    2355             :     pfree(buf.data);
    2356             : }
    2357             : 
    2358             : #endif                          /* TRGM_REGEXP_DEBUG */

Generated by: LCOV version 1.16