LCOV - code coverage report
Current view: top level - contrib/pg_buffercache - pg_buffercache_pages.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 300 335 89.6 %
Date: 2025-12-03 22:17:38 Functions: 24 25 96.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * pg_buffercache_pages.c
       4             :  *    display some contents of the buffer cache
       5             :  *
       6             :  *    contrib/pg_buffercache/pg_buffercache_pages.c
       7             :  *-------------------------------------------------------------------------
       8             :  */
       9             : #include "postgres.h"
      10             : 
      11             : #include "access/htup_details.h"
      12             : #include "access/relation.h"
      13             : #include "catalog/pg_type.h"
      14             : #include "funcapi.h"
      15             : #include "port/pg_numa.h"
      16             : #include "storage/buf_internals.h"
      17             : #include "storage/bufmgr.h"
      18             : #include "utils/rel.h"
      19             : 
      20             : 
      21             : #define NUM_BUFFERCACHE_PAGES_MIN_ELEM  8
      22             : #define NUM_BUFFERCACHE_PAGES_ELEM  9
      23             : #define NUM_BUFFERCACHE_SUMMARY_ELEM 5
      24             : #define NUM_BUFFERCACHE_USAGE_COUNTS_ELEM 4
      25             : #define NUM_BUFFERCACHE_EVICT_ELEM 2
      26             : #define NUM_BUFFERCACHE_EVICT_RELATION_ELEM 3
      27             : #define NUM_BUFFERCACHE_EVICT_ALL_ELEM 3
      28             : #define NUM_BUFFERCACHE_MARK_DIRTY_ELEM 2
      29             : #define NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM 3
      30             : #define NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM 3
      31             : 
      32             : #define NUM_BUFFERCACHE_OS_PAGES_ELEM   3
      33             : 
      34           2 : PG_MODULE_MAGIC_EXT(
      35             :                     .name = "pg_buffercache",
      36             :                     .version = PG_VERSION
      37             : );
      38             : 
      39             : /*
      40             :  * Record structure holding the to be exposed cache data.
      41             :  */
      42             : typedef struct
      43             : {
      44             :     uint32      bufferid;
      45             :     RelFileNumber relfilenumber;
      46             :     Oid         reltablespace;
      47             :     Oid         reldatabase;
      48             :     ForkNumber  forknum;
      49             :     BlockNumber blocknum;
      50             :     bool        isvalid;
      51             :     bool        isdirty;
      52             :     uint16      usagecount;
      53             : 
      54             :     /*
      55             :      * An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
      56             :      * being pinned by too many backends and each backend will only pin once
      57             :      * because of bufmgr.c's PrivateRefCount infrastructure.
      58             :      */
      59             :     int32       pinning_backends;
      60             : } BufferCachePagesRec;
      61             : 
      62             : 
      63             : /*
      64             :  * Function context for data persisting over repeated calls.
      65             :  */
      66             : typedef struct
      67             : {
      68             :     TupleDesc   tupdesc;
      69             :     BufferCachePagesRec *record;
      70             : } BufferCachePagesContext;
      71             : 
      72             : /*
      73             :  * Record structure holding the to be exposed cache data for OS pages.  This
      74             :  * structure is used by pg_buffercache_os_pages(), where NUMA information may
      75             :  * or may not be included.
      76             :  */
      77             : typedef struct
      78             : {
      79             :     uint32      bufferid;
      80             :     int64       page_num;
      81             :     int32       numa_node;
      82             : } BufferCacheOsPagesRec;
      83             : 
      84             : /*
      85             :  * Function context for data persisting over repeated calls.
      86             :  */
      87             : typedef struct
      88             : {
      89             :     TupleDesc   tupdesc;
      90             :     bool        include_numa;
      91             :     BufferCacheOsPagesRec *record;
      92             : } BufferCacheOsPagesContext;
      93             : 
      94             : 
      95             : /*
      96             :  * Function returning data from the shared buffer cache - buffer number,
      97             :  * relation node/tablespace/database/blocknum and dirty indicator.
      98             :  */
      99           4 : PG_FUNCTION_INFO_V1(pg_buffercache_pages);
     100           4 : PG_FUNCTION_INFO_V1(pg_buffercache_os_pages);
     101           2 : PG_FUNCTION_INFO_V1(pg_buffercache_numa_pages);
     102           4 : PG_FUNCTION_INFO_V1(pg_buffercache_summary);
     103           4 : PG_FUNCTION_INFO_V1(pg_buffercache_usage_counts);
     104           6 : PG_FUNCTION_INFO_V1(pg_buffercache_evict);
     105           4 : PG_FUNCTION_INFO_V1(pg_buffercache_evict_relation);
     106           4 : PG_FUNCTION_INFO_V1(pg_buffercache_evict_all);
     107           4 : PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty);
     108           4 : PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty_relation);
     109           4 : PG_FUNCTION_INFO_V1(pg_buffercache_mark_dirty_all);
     110             : 
     111             : 
     112             : /* Only need to touch memory once per backend process lifetime */
     113             : static bool firstNumaTouch = true;
     114             : 
     115             : 
     116             : Datum
     117       65540 : pg_buffercache_pages(PG_FUNCTION_ARGS)
     118             : {
     119             :     FuncCallContext *funcctx;
     120             :     Datum       result;
     121             :     MemoryContext oldcontext;
     122             :     BufferCachePagesContext *fctx;  /* User function context. */
     123             :     TupleDesc   tupledesc;
     124             :     TupleDesc   expected_tupledesc;
     125             :     HeapTuple   tuple;
     126             : 
     127       65540 :     if (SRF_IS_FIRSTCALL())
     128             :     {
     129             :         int         i;
     130             : 
     131           4 :         funcctx = SRF_FIRSTCALL_INIT();
     132             : 
     133             :         /* Switch context when allocating stuff to be used in later calls */
     134           4 :         oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
     135             : 
     136             :         /* Create a user function context for cross-call persistence */
     137           4 :         fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
     138             : 
     139             :         /*
     140             :          * To smoothly support upgrades from version 1.0 of this extension
     141             :          * transparently handle the (non-)existence of the pinning_backends
     142             :          * column. We unfortunately have to get the result type for that... -
     143             :          * we can't use the result type determined by the function definition
     144             :          * without potentially crashing when somebody uses the old (or even
     145             :          * wrong) function definition though.
     146             :          */
     147           4 :         if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
     148           0 :             elog(ERROR, "return type must be a row type");
     149             : 
     150           4 :         if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
     151           4 :             expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
     152           0 :             elog(ERROR, "incorrect number of output arguments");
     153             : 
     154             :         /* Construct a tuple descriptor for the result rows. */
     155           4 :         tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
     156           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
     157             :                            INT4OID, -1, 0);
     158           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
     159             :                            OIDOID, -1, 0);
     160           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
     161             :                            OIDOID, -1, 0);
     162           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
     163             :                            OIDOID, -1, 0);
     164           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
     165             :                            INT2OID, -1, 0);
     166           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
     167             :                            INT8OID, -1, 0);
     168           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
     169             :                            BOOLOID, -1, 0);
     170           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
     171             :                            INT2OID, -1, 0);
     172             : 
     173           4 :         if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
     174           4 :             TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
     175             :                                INT4OID, -1, 0);
     176             : 
     177           4 :         fctx->tupdesc = BlessTupleDesc(tupledesc);
     178             : 
     179             :         /* Allocate NBuffers worth of BufferCachePagesRec records. */
     180           4 :         fctx->record = (BufferCachePagesRec *)
     181           4 :             MemoryContextAllocHuge(CurrentMemoryContext,
     182             :                                    sizeof(BufferCachePagesRec) * NBuffers);
     183             : 
     184             :         /* Set max calls and remember the user function context. */
     185           4 :         funcctx->max_calls = NBuffers;
     186           4 :         funcctx->user_fctx = fctx;
     187             : 
     188             :         /* Return to original context when allocating transient memory */
     189           4 :         MemoryContextSwitchTo(oldcontext);
     190             : 
     191             :         /*
     192             :          * Scan through all the buffers, saving the relevant fields in the
     193             :          * fctx->record structure.
     194             :          *
     195             :          * We don't hold the partition locks, so we don't get a consistent
     196             :          * snapshot across all buffers, but we do grab the buffer header
     197             :          * locks, so the information of each buffer is self-consistent.
     198             :          */
     199       65540 :         for (i = 0; i < NBuffers; i++)
     200             :         {
     201             :             BufferDesc *bufHdr;
     202             :             uint32      buf_state;
     203             : 
     204       65536 :             CHECK_FOR_INTERRUPTS();
     205             : 
     206       65536 :             bufHdr = GetBufferDescriptor(i);
     207             :             /* Lock each buffer header before inspecting. */
     208       65536 :             buf_state = LockBufHdr(bufHdr);
     209             : 
     210       65536 :             fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
     211       65536 :             fctx->record[i].relfilenumber = BufTagGetRelNumber(&bufHdr->tag);
     212       65536 :             fctx->record[i].reltablespace = bufHdr->tag.spcOid;
     213       65536 :             fctx->record[i].reldatabase = bufHdr->tag.dbOid;
     214       65536 :             fctx->record[i].forknum = BufTagGetForkNum(&bufHdr->tag);
     215       65536 :             fctx->record[i].blocknum = bufHdr->tag.blockNum;
     216       65536 :             fctx->record[i].usagecount = BUF_STATE_GET_USAGECOUNT(buf_state);
     217       65536 :             fctx->record[i].pinning_backends = BUF_STATE_GET_REFCOUNT(buf_state);
     218             : 
     219       65536 :             if (buf_state & BM_DIRTY)
     220        3796 :                 fctx->record[i].isdirty = true;
     221             :             else
     222       61740 :                 fctx->record[i].isdirty = false;
     223             : 
     224             :             /* Note if the buffer is valid, and has storage created */
     225       65536 :             if ((buf_state & BM_VALID) && (buf_state & BM_TAG_VALID))
     226        7984 :                 fctx->record[i].isvalid = true;
     227             :             else
     228       57552 :                 fctx->record[i].isvalid = false;
     229             : 
     230       65536 :             UnlockBufHdr(bufHdr);
     231             :         }
     232             :     }
     233             : 
     234       65540 :     funcctx = SRF_PERCALL_SETUP();
     235             : 
     236             :     /* Get the saved state */
     237       65540 :     fctx = funcctx->user_fctx;
     238             : 
     239       65540 :     if (funcctx->call_cntr < funcctx->max_calls)
     240             :     {
     241       65536 :         uint32      i = funcctx->call_cntr;
     242             :         Datum       values[NUM_BUFFERCACHE_PAGES_ELEM];
     243             :         bool        nulls[NUM_BUFFERCACHE_PAGES_ELEM];
     244             : 
     245       65536 :         values[0] = Int32GetDatum(fctx->record[i].bufferid);
     246       65536 :         nulls[0] = false;
     247             : 
     248             :         /*
     249             :          * Set all fields except the bufferid to null if the buffer is unused
     250             :          * or not valid.
     251             :          */
     252       65536 :         if (fctx->record[i].blocknum == InvalidBlockNumber ||
     253        7984 :             fctx->record[i].isvalid == false)
     254             :         {
     255       57552 :             nulls[1] = true;
     256       57552 :             nulls[2] = true;
     257       57552 :             nulls[3] = true;
     258       57552 :             nulls[4] = true;
     259       57552 :             nulls[5] = true;
     260       57552 :             nulls[6] = true;
     261       57552 :             nulls[7] = true;
     262             :             /* unused for v1.0 callers, but the array is always long enough */
     263       57552 :             nulls[8] = true;
     264             :         }
     265             :         else
     266             :         {
     267        7984 :             values[1] = ObjectIdGetDatum(fctx->record[i].relfilenumber);
     268        7984 :             nulls[1] = false;
     269        7984 :             values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
     270        7984 :             nulls[2] = false;
     271        7984 :             values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
     272        7984 :             nulls[3] = false;
     273        7984 :             values[4] = Int16GetDatum(fctx->record[i].forknum);
     274        7984 :             nulls[4] = false;
     275        7984 :             values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
     276        7984 :             nulls[5] = false;
     277        7984 :             values[6] = BoolGetDatum(fctx->record[i].isdirty);
     278        7984 :             nulls[6] = false;
     279        7984 :             values[7] = Int16GetDatum(fctx->record[i].usagecount);
     280        7984 :             nulls[7] = false;
     281             :             /* unused for v1.0 callers, but the array is always long enough */
     282        7984 :             values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
     283        7984 :             nulls[8] = false;
     284             :         }
     285             : 
     286             :         /* Build and return the tuple. */
     287       65536 :         tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
     288       65536 :         result = HeapTupleGetDatum(tuple);
     289             : 
     290       65536 :         SRF_RETURN_NEXT(funcctx, result);
     291             :     }
     292             :     else
     293           4 :         SRF_RETURN_DONE(funcctx);
     294             : }
     295             : 
     296             : /*
     297             :  * Inquire about OS pages mappings for shared buffers, with NUMA information,
     298             :  * optionally.
     299             :  *
     300             :  * When "include_numa" is false, this routines ignores everything related
     301             :  * to NUMA (returned as NULL values), returning mapping information between
     302             :  * shared buffers and OS pages.
     303             :  *
     304             :  * When "include_numa" is true, NUMA is initialized and numa_node values
     305             :  * are generated.  In order to get reliable results we also need to touch
     306             :  * memory pages, so that the inquiry about NUMA memory node does not return
     307             :  * -2, indicating unmapped/unallocated pages.
     308             :  *
     309             :  * Buffers may be smaller or larger than OS memory pages. For each buffer we
     310             :  * return one entry for each memory page used by the buffer (if the buffer is
     311             :  * smaller, it only uses a part of one memory page).
     312             :  *
     313             :  * We expect both sizes (for buffers and memory pages) to be a power-of-2, so
     314             :  * one is always a multiple of the other.
     315             :  *
     316             :  */
     317             : static Datum
     318      131076 : pg_buffercache_os_pages_internal(FunctionCallInfo fcinfo, bool include_numa)
     319             : {
     320             :     FuncCallContext *funcctx;
     321             :     MemoryContext oldcontext;
     322             :     BufferCacheOsPagesContext *fctx;    /* User function context. */
     323             :     TupleDesc   tupledesc;
     324             :     TupleDesc   expected_tupledesc;
     325             :     HeapTuple   tuple;
     326             :     Datum       result;
     327             : 
     328      131076 :     if (SRF_IS_FIRSTCALL())
     329             :     {
     330             :         int         i,
     331             :                     idx;
     332             :         Size        os_page_size;
     333             :         int         pages_per_buffer;
     334           4 :         int        *os_page_status = NULL;
     335           4 :         uint64      os_page_count = 0;
     336             :         int         max_entries;
     337             :         char       *startptr,
     338             :                    *endptr;
     339             : 
     340             :         /* If NUMA information is requested, initialize NUMA support. */
     341           4 :         if (include_numa && pg_numa_init() == -1)
     342           0 :             elog(ERROR, "libnuma initialization failed or NUMA is not supported on this platform");
     343             : 
     344             :         /*
     345             :          * The database block size and OS memory page size are unlikely to be
     346             :          * the same. The block size is 1-32KB, the memory page size depends on
     347             :          * platform. On x86 it's usually 4KB, on ARM it's 4KB or 64KB, but
     348             :          * there are also features like THP etc. Moreover, we don't quite know
     349             :          * how the pages and buffers "align" in memory - the buffers may be
     350             :          * shifted in some way, using more memory pages than necessary.
     351             :          *
     352             :          * So we need to be careful about mapping buffers to memory pages. We
     353             :          * calculate the maximum number of pages a buffer might use, so that
     354             :          * we allocate enough space for the entries. And then we count the
     355             :          * actual number of entries as we scan the buffers.
     356             :          *
     357             :          * This information is needed before calling move_pages() for NUMA
     358             :          * node id inquiry.
     359             :          */
     360           4 :         os_page_size = pg_get_shmem_pagesize();
     361             : 
     362             :         /*
     363             :          * The pages and block size is expected to be 2^k, so one divides the
     364             :          * other (we don't know in which direction). This does not say
     365             :          * anything about relative alignment of pages/buffers.
     366             :          */
     367             :         Assert((os_page_size % BLCKSZ == 0) || (BLCKSZ % os_page_size == 0));
     368             : 
     369           4 :         if (include_numa)
     370             :         {
     371           0 :             void      **os_page_ptrs = NULL;
     372             : 
     373             :             /*
     374             :              * How many addresses we are going to query?  Simply get the page
     375             :              * for the first buffer, and first page after the last buffer, and
     376             :              * count the pages from that.
     377             :              */
     378           0 :             startptr = (char *) TYPEALIGN_DOWN(os_page_size,
     379             :                                                BufferGetBlock(1));
     380           0 :             endptr = (char *) TYPEALIGN(os_page_size,
     381             :                                         (char *) BufferGetBlock(NBuffers) + BLCKSZ);
     382           0 :             os_page_count = (endptr - startptr) / os_page_size;
     383             : 
     384             :             /* Used to determine the NUMA node for all OS pages at once */
     385           0 :             os_page_ptrs = palloc0(sizeof(void *) * os_page_count);
     386           0 :             os_page_status = palloc(sizeof(uint64) * os_page_count);
     387             : 
     388             :             /*
     389             :              * Fill pointers for all the memory pages.  This loop stores and
     390             :              * touches (if needed) addresses into os_page_ptrs[] as input to
     391             :              * one big move_pages(2) inquiry system call, as done in
     392             :              * pg_numa_query_pages().
     393             :              */
     394           0 :             idx = 0;
     395           0 :             for (char *ptr = startptr; ptr < endptr; ptr += os_page_size)
     396             :             {
     397           0 :                 os_page_ptrs[idx++] = ptr;
     398             : 
     399             :                 /* Only need to touch memory once per backend process lifetime */
     400           0 :                 if (firstNumaTouch)
     401             :                     pg_numa_touch_mem_if_required(ptr);
     402             :             }
     403             : 
     404             :             Assert(idx == os_page_count);
     405             : 
     406           0 :             elog(DEBUG1, "NUMA: NBuffers=%d os_page_count=" UINT64_FORMAT " "
     407             :                  "os_page_size=%zu", NBuffers, os_page_count, os_page_size);
     408             : 
     409             :             /*
     410             :              * If we ever get 0xff back from kernel inquiry, then we probably
     411             :              * have bug in our buffers to OS page mapping code here.
     412             :              */
     413           0 :             memset(os_page_status, 0xff, sizeof(int) * os_page_count);
     414             : 
     415             :             /* Query NUMA status for all the pointers */
     416           0 :             if (pg_numa_query_pages(0, os_page_count, os_page_ptrs, os_page_status) == -1)
     417           0 :                 elog(ERROR, "failed NUMA pages inquiry: %m");
     418             :         }
     419             : 
     420             :         /* Initialize the multi-call context, load entries about buffers */
     421             : 
     422           4 :         funcctx = SRF_FIRSTCALL_INIT();
     423             : 
     424             :         /* Switch context when allocating stuff to be used in later calls */
     425           4 :         oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
     426             : 
     427             :         /* Create a user function context for cross-call persistence */
     428           4 :         fctx = (BufferCacheOsPagesContext *) palloc(sizeof(BufferCacheOsPagesContext));
     429             : 
     430           4 :         if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
     431           0 :             elog(ERROR, "return type must be a row type");
     432             : 
     433           4 :         if (expected_tupledesc->natts != NUM_BUFFERCACHE_OS_PAGES_ELEM)
     434           0 :             elog(ERROR, "incorrect number of output arguments");
     435             : 
     436             :         /* Construct a tuple descriptor for the result rows. */
     437           4 :         tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
     438           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
     439             :                            INT4OID, -1, 0);
     440           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 2, "os_page_num",
     441             :                            INT8OID, -1, 0);
     442           4 :         TupleDescInitEntry(tupledesc, (AttrNumber) 3, "numa_node",
     443             :                            INT4OID, -1, 0);
     444             : 
     445           4 :         fctx->tupdesc = BlessTupleDesc(tupledesc);
     446           4 :         fctx->include_numa = include_numa;
     447             : 
     448             :         /*
     449             :          * Each buffer needs at least one entry, but it might be offset in
     450             :          * some way, and use one extra entry. So we allocate space for the
     451             :          * maximum number of entries we might need, and then count the exact
     452             :          * number as we're walking buffers. That way we can do it in one pass,
     453             :          * without reallocating memory.
     454             :          */
     455           4 :         pages_per_buffer = Max(1, BLCKSZ / os_page_size) + 1;
     456           4 :         max_entries = NBuffers * pages_per_buffer;
     457             : 
     458             :         /* Allocate entries for BufferCacheOsPagesRec records. */
     459           4 :         fctx->record = (BufferCacheOsPagesRec *)
     460           4 :             MemoryContextAllocHuge(CurrentMemoryContext,
     461             :                                    sizeof(BufferCacheOsPagesRec) * max_entries);
     462             : 
     463             :         /* Return to original context when allocating transient memory */
     464           4 :         MemoryContextSwitchTo(oldcontext);
     465             : 
     466           4 :         if (include_numa && firstNumaTouch)
     467           0 :             elog(DEBUG1, "NUMA: page-faulting the buffercache for proper NUMA readouts");
     468             : 
     469             :         /*
     470             :          * Scan through all the buffers, saving the relevant fields in the
     471             :          * fctx->record structure.
     472             :          *
     473             :          * We don't hold the partition locks, so we don't get a consistent
     474             :          * snapshot across all buffers, but we do grab the buffer header
     475             :          * locks, so the information of each buffer is self-consistent.
     476             :          */
     477           4 :         startptr = (char *) TYPEALIGN_DOWN(os_page_size, (char *) BufferGetBlock(1));
     478           4 :         idx = 0;
     479       65540 :         for (i = 0; i < NBuffers; i++)
     480             :         {
     481       65536 :             char       *buffptr = (char *) BufferGetBlock(i + 1);
     482             :             BufferDesc *bufHdr;
     483             :             uint32      bufferid;
     484             :             int32       page_num;
     485             :             char       *startptr_buff,
     486             :                        *endptr_buff;
     487             : 
     488       65536 :             CHECK_FOR_INTERRUPTS();
     489             : 
     490       65536 :             bufHdr = GetBufferDescriptor(i);
     491             : 
     492             :             /* Lock each buffer header before inspecting. */
     493       65536 :             LockBufHdr(bufHdr);
     494       65536 :             bufferid = BufferDescriptorGetBuffer(bufHdr);
     495       65536 :             UnlockBufHdr(bufHdr);
     496             : 
     497             :             /* start of the first page of this buffer */
     498       65536 :             startptr_buff = (char *) TYPEALIGN_DOWN(os_page_size, buffptr);
     499             : 
     500             :             /* end of the buffer (no need to align to memory page) */
     501       65536 :             endptr_buff = buffptr + BLCKSZ;
     502             : 
     503             :             Assert(startptr_buff < endptr_buff);
     504             : 
     505             :             /* calculate ID of the first page for this buffer */
     506       65536 :             page_num = (startptr_buff - startptr) / os_page_size;
     507             : 
     508             :             /* Add an entry for each OS page overlapping with this buffer. */
     509      196608 :             for (char *ptr = startptr_buff; ptr < endptr_buff; ptr += os_page_size)
     510             :             {
     511      131072 :                 fctx->record[idx].bufferid = bufferid;
     512      131072 :                 fctx->record[idx].page_num = page_num;
     513      131072 :                 fctx->record[idx].numa_node = include_numa ? os_page_status[page_num] : -1;
     514             : 
     515             :                 /* advance to the next entry/page */
     516      131072 :                 ++idx;
     517      131072 :                 ++page_num;
     518             :             }
     519             :         }
     520             : 
     521             :         Assert(idx <= max_entries);
     522             : 
     523             :         if (include_numa)
     524             :             Assert(idx >= os_page_count);
     525             : 
     526             :         /* Set max calls and remember the user function context. */
     527           4 :         funcctx->max_calls = idx;
     528           4 :         funcctx->user_fctx = fctx;
     529             : 
     530             :         /* Remember this backend touched the pages (only relevant for NUMA) */
     531           4 :         if (include_numa)
     532           0 :             firstNumaTouch = false;
     533             :     }
     534             : 
     535      131076 :     funcctx = SRF_PERCALL_SETUP();
     536             : 
     537             :     /* Get the saved state */
     538      131076 :     fctx = funcctx->user_fctx;
     539             : 
     540      131076 :     if (funcctx->call_cntr < funcctx->max_calls)
     541             :     {
     542      131072 :         uint32      i = funcctx->call_cntr;
     543             :         Datum       values[NUM_BUFFERCACHE_OS_PAGES_ELEM];
     544             :         bool        nulls[NUM_BUFFERCACHE_OS_PAGES_ELEM];
     545             : 
     546      131072 :         values[0] = Int32GetDatum(fctx->record[i].bufferid);
     547      131072 :         nulls[0] = false;
     548             : 
     549      131072 :         values[1] = Int64GetDatum(fctx->record[i].page_num);
     550      131072 :         nulls[1] = false;
     551             : 
     552      131072 :         if (fctx->include_numa)
     553             :         {
     554           0 :             values[2] = Int32GetDatum(fctx->record[i].numa_node);
     555           0 :             nulls[2] = false;
     556             :         }
     557             :         else
     558             :         {
     559      131072 :             values[2] = (Datum) 0;
     560      131072 :             nulls[2] = true;
     561             :         }
     562             : 
     563             :         /* Build and return the tuple. */
     564      131072 :         tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
     565      131072 :         result = HeapTupleGetDatum(tuple);
     566             : 
     567      131072 :         SRF_RETURN_NEXT(funcctx, result);
     568             :     }
     569             :     else
     570           4 :         SRF_RETURN_DONE(funcctx);
     571             : }
     572             : 
     573             : /*
     574             :  * pg_buffercache_os_pages
     575             :  *
     576             :  * Retrieve information about OS pages, with or without NUMA information.
     577             :  */
     578             : Datum
     579      131076 : pg_buffercache_os_pages(PG_FUNCTION_ARGS)
     580             : {
     581             :     bool        include_numa;
     582             : 
     583             :     /* Get the boolean parameter that controls the NUMA behavior. */
     584      131076 :     include_numa = PG_GETARG_BOOL(0);
     585             : 
     586      131076 :     return pg_buffercache_os_pages_internal(fcinfo, include_numa);
     587             : }
     588             : 
     589             : /* Backward-compatible wrapper for v1.6. */
     590             : Datum
     591           0 : pg_buffercache_numa_pages(PG_FUNCTION_ARGS)
     592             : {
     593             :     /* Call internal function with include_numa=true */
     594           0 :     return pg_buffercache_os_pages_internal(fcinfo, true);
     595             : }
     596             : 
     597             : Datum
     598           4 : pg_buffercache_summary(PG_FUNCTION_ARGS)
     599             : {
     600             :     Datum       result;
     601             :     TupleDesc   tupledesc;
     602             :     HeapTuple   tuple;
     603             :     Datum       values[NUM_BUFFERCACHE_SUMMARY_ELEM];
     604             :     bool        nulls[NUM_BUFFERCACHE_SUMMARY_ELEM];
     605             : 
     606           4 :     int32       buffers_used = 0;
     607           4 :     int32       buffers_unused = 0;
     608           4 :     int32       buffers_dirty = 0;
     609           4 :     int32       buffers_pinned = 0;
     610           4 :     int64       usagecount_total = 0;
     611             : 
     612           4 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     613           0 :         elog(ERROR, "return type must be a row type");
     614             : 
     615       65540 :     for (int i = 0; i < NBuffers; i++)
     616             :     {
     617             :         BufferDesc *bufHdr;
     618             :         uint32      buf_state;
     619             : 
     620       65536 :         CHECK_FOR_INTERRUPTS();
     621             : 
     622             :         /*
     623             :          * This function summarizes the state of all headers. Locking the
     624             :          * buffer headers wouldn't provide an improved result as the state of
     625             :          * the buffer can still change after we release the lock and it'd
     626             :          * noticeably increase the cost of the function.
     627             :          */
     628       65536 :         bufHdr = GetBufferDescriptor(i);
     629       65536 :         buf_state = pg_atomic_read_u32(&bufHdr->state);
     630             : 
     631       65536 :         if (buf_state & BM_VALID)
     632             :         {
     633        7984 :             buffers_used++;
     634        7984 :             usagecount_total += BUF_STATE_GET_USAGECOUNT(buf_state);
     635             : 
     636        7984 :             if (buf_state & BM_DIRTY)
     637        3796 :                 buffers_dirty++;
     638             :         }
     639             :         else
     640       57552 :             buffers_unused++;
     641             : 
     642       65536 :         if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
     643           0 :             buffers_pinned++;
     644             :     }
     645             : 
     646           4 :     memset(nulls, 0, sizeof(nulls));
     647           4 :     values[0] = Int32GetDatum(buffers_used);
     648           4 :     values[1] = Int32GetDatum(buffers_unused);
     649           4 :     values[2] = Int32GetDatum(buffers_dirty);
     650           4 :     values[3] = Int32GetDatum(buffers_pinned);
     651             : 
     652           4 :     if (buffers_used != 0)
     653           4 :         values[4] = Float8GetDatum((double) usagecount_total / buffers_used);
     654             :     else
     655           0 :         nulls[4] = true;
     656             : 
     657             :     /* Build and return the tuple. */
     658           4 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     659           4 :     result = HeapTupleGetDatum(tuple);
     660             : 
     661           4 :     PG_RETURN_DATUM(result);
     662             : }
     663             : 
     664             : Datum
     665           4 : pg_buffercache_usage_counts(PG_FUNCTION_ARGS)
     666             : {
     667           4 :     ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
     668           4 :     int         usage_counts[BM_MAX_USAGE_COUNT + 1] = {0};
     669           4 :     int         dirty[BM_MAX_USAGE_COUNT + 1] = {0};
     670           4 :     int         pinned[BM_MAX_USAGE_COUNT + 1] = {0};
     671             :     Datum       values[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM];
     672           4 :     bool        nulls[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM] = {0};
     673             : 
     674           4 :     InitMaterializedSRF(fcinfo, 0);
     675             : 
     676       65540 :     for (int i = 0; i < NBuffers; i++)
     677             :     {
     678       65536 :         BufferDesc *bufHdr = GetBufferDescriptor(i);
     679       65536 :         uint32      buf_state = pg_atomic_read_u32(&bufHdr->state);
     680             :         int         usage_count;
     681             : 
     682       65536 :         CHECK_FOR_INTERRUPTS();
     683             : 
     684       65536 :         usage_count = BUF_STATE_GET_USAGECOUNT(buf_state);
     685       65536 :         usage_counts[usage_count]++;
     686             : 
     687       65536 :         if (buf_state & BM_DIRTY)
     688        3796 :             dirty[usage_count]++;
     689             : 
     690       65536 :         if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
     691           0 :             pinned[usage_count]++;
     692             :     }
     693             : 
     694          28 :     for (int i = 0; i < BM_MAX_USAGE_COUNT + 1; i++)
     695             :     {
     696          24 :         values[0] = Int32GetDatum(i);
     697          24 :         values[1] = Int32GetDatum(usage_counts[i]);
     698          24 :         values[2] = Int32GetDatum(dirty[i]);
     699          24 :         values[3] = Int32GetDatum(pinned[i]);
     700             : 
     701          24 :         tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
     702             :     }
     703             : 
     704           4 :     return (Datum) 0;
     705             : }
     706             : 
     707             : /*
     708             :  * Helper function to check if the user has superuser privileges.
     709             :  */
     710             : static void
     711          40 : pg_buffercache_superuser_check(char *func_name)
     712             : {
     713          40 :     if (!superuser())
     714          12 :         ereport(ERROR,
     715             :                 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
     716             :                  errmsg("must be superuser to use %s()",
     717             :                         func_name)));
     718          28 : }
     719             : 
     720             : /*
     721             :  * Try to evict a shared buffer.
     722             :  */
     723             : Datum
     724          10 : pg_buffercache_evict(PG_FUNCTION_ARGS)
     725             : {
     726             :     Datum       result;
     727             :     TupleDesc   tupledesc;
     728             :     HeapTuple   tuple;
     729             :     Datum       values[NUM_BUFFERCACHE_EVICT_ELEM];
     730          10 :     bool        nulls[NUM_BUFFERCACHE_EVICT_ELEM] = {0};
     731             : 
     732          10 :     Buffer      buf = PG_GETARG_INT32(0);
     733             :     bool        buffer_flushed;
     734             : 
     735          10 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     736           0 :         elog(ERROR, "return type must be a row type");
     737             : 
     738          10 :     pg_buffercache_superuser_check("pg_buffercache_evict");
     739             : 
     740           8 :     if (buf < 1 || buf > NBuffers)
     741           6 :         elog(ERROR, "bad buffer ID: %d", buf);
     742             : 
     743           2 :     values[0] = BoolGetDatum(EvictUnpinnedBuffer(buf, &buffer_flushed));
     744           2 :     values[1] = BoolGetDatum(buffer_flushed);
     745             : 
     746           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     747           2 :     result = HeapTupleGetDatum(tuple);
     748             : 
     749           2 :     PG_RETURN_DATUM(result);
     750             : }
     751             : 
     752             : /*
     753             :  * Try to evict specified relation.
     754             :  */
     755             : Datum
     756           6 : pg_buffercache_evict_relation(PG_FUNCTION_ARGS)
     757             : {
     758             :     Datum       result;
     759             :     TupleDesc   tupledesc;
     760             :     HeapTuple   tuple;
     761             :     Datum       values[NUM_BUFFERCACHE_EVICT_RELATION_ELEM];
     762           6 :     bool        nulls[NUM_BUFFERCACHE_EVICT_RELATION_ELEM] = {0};
     763             : 
     764             :     Oid         relOid;
     765             :     Relation    rel;
     766             : 
     767           6 :     int32       buffers_evicted = 0;
     768           6 :     int32       buffers_flushed = 0;
     769           6 :     int32       buffers_skipped = 0;
     770             : 
     771           6 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     772           0 :         elog(ERROR, "return type must be a row type");
     773             : 
     774           6 :     pg_buffercache_superuser_check("pg_buffercache_evict_relation");
     775             : 
     776           4 :     relOid = PG_GETARG_OID(0);
     777             : 
     778           4 :     rel = relation_open(relOid, AccessShareLock);
     779             : 
     780           4 :     if (RelationUsesLocalBuffers(rel))
     781           2 :         ereport(ERROR,
     782             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     783             :                  errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
     784             :                         "pg_buffercache_evict_relation")));
     785             : 
     786           2 :     EvictRelUnpinnedBuffers(rel, &buffers_evicted, &buffers_flushed,
     787             :                             &buffers_skipped);
     788             : 
     789           2 :     relation_close(rel, AccessShareLock);
     790             : 
     791           2 :     values[0] = Int32GetDatum(buffers_evicted);
     792           2 :     values[1] = Int32GetDatum(buffers_flushed);
     793           2 :     values[2] = Int32GetDatum(buffers_skipped);
     794             : 
     795           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     796           2 :     result = HeapTupleGetDatum(tuple);
     797             : 
     798           2 :     PG_RETURN_DATUM(result);
     799             : }
     800             : 
     801             : 
     802             : /*
     803             :  * Try to evict all shared buffers.
     804             :  */
     805             : Datum
     806           4 : pg_buffercache_evict_all(PG_FUNCTION_ARGS)
     807             : {
     808             :     Datum       result;
     809             :     TupleDesc   tupledesc;
     810             :     HeapTuple   tuple;
     811             :     Datum       values[NUM_BUFFERCACHE_EVICT_ALL_ELEM];
     812           4 :     bool        nulls[NUM_BUFFERCACHE_EVICT_ALL_ELEM] = {0};
     813             : 
     814           4 :     int32       buffers_evicted = 0;
     815           4 :     int32       buffers_flushed = 0;
     816           4 :     int32       buffers_skipped = 0;
     817             : 
     818           4 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     819           0 :         elog(ERROR, "return type must be a row type");
     820             : 
     821           4 :     pg_buffercache_superuser_check("pg_buffercache_evict_all");
     822             : 
     823           2 :     EvictAllUnpinnedBuffers(&buffers_evicted, &buffers_flushed,
     824             :                             &buffers_skipped);
     825             : 
     826           2 :     values[0] = Int32GetDatum(buffers_evicted);
     827           2 :     values[1] = Int32GetDatum(buffers_flushed);
     828           2 :     values[2] = Int32GetDatum(buffers_skipped);
     829             : 
     830           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     831           2 :     result = HeapTupleGetDatum(tuple);
     832             : 
     833           2 :     PG_RETURN_DATUM(result);
     834             : }
     835             : 
     836             : /*
     837             :  * Try to mark a shared buffer as dirty.
     838             :  */
     839             : Datum
     840          10 : pg_buffercache_mark_dirty(PG_FUNCTION_ARGS)
     841             : {
     842             : 
     843             :     Datum       result;
     844             :     TupleDesc   tupledesc;
     845             :     HeapTuple   tuple;
     846             :     Datum       values[NUM_BUFFERCACHE_MARK_DIRTY_ELEM];
     847          10 :     bool        nulls[NUM_BUFFERCACHE_MARK_DIRTY_ELEM] = {0};
     848             : 
     849          10 :     Buffer      buf = PG_GETARG_INT32(0);
     850             :     bool        buffer_already_dirty;
     851             : 
     852          10 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     853           0 :         elog(ERROR, "return type must be a row type");
     854             : 
     855          10 :     pg_buffercache_superuser_check("pg_buffercache_mark_dirty");
     856             : 
     857           8 :     if (buf < 1 || buf > NBuffers)
     858           6 :         elog(ERROR, "bad buffer ID: %d", buf);
     859             : 
     860           2 :     values[0] = BoolGetDatum(MarkDirtyUnpinnedBuffer(buf, &buffer_already_dirty));
     861           2 :     values[1] = BoolGetDatum(buffer_already_dirty);
     862             : 
     863           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     864           2 :     result = HeapTupleGetDatum(tuple);
     865             : 
     866           2 :     PG_RETURN_DATUM(result);
     867             : }
     868             : 
     869             : /*
     870             :  * Try to mark all the shared buffers of a relation as dirty.
     871             :  */
     872             : Datum
     873           6 : pg_buffercache_mark_dirty_relation(PG_FUNCTION_ARGS)
     874             : {
     875             :     Datum       result;
     876             :     TupleDesc   tupledesc;
     877             :     HeapTuple   tuple;
     878             :     Datum       values[NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM];
     879           6 :     bool        nulls[NUM_BUFFERCACHE_MARK_DIRTY_RELATION_ELEM] = {0};
     880             : 
     881             :     Oid         relOid;
     882             :     Relation    rel;
     883             : 
     884           6 :     int32       buffers_already_dirty = 0;
     885           6 :     int32       buffers_dirtied = 0;
     886           6 :     int32       buffers_skipped = 0;
     887             : 
     888           6 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     889           0 :         elog(ERROR, "return type must be a row type");
     890             : 
     891           6 :     pg_buffercache_superuser_check("pg_buffercache_mark_dirty_relation");
     892             : 
     893           4 :     relOid = PG_GETARG_OID(0);
     894             : 
     895           4 :     rel = relation_open(relOid, AccessShareLock);
     896             : 
     897           4 :     if (RelationUsesLocalBuffers(rel))
     898           2 :         ereport(ERROR,
     899             :                 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
     900             :                  errmsg("relation uses local buffers, %s() is intended to be used for shared buffers only",
     901             :                         "pg_buffercache_mark_dirty_relation")));
     902             : 
     903           2 :     MarkDirtyRelUnpinnedBuffers(rel, &buffers_dirtied, &buffers_already_dirty,
     904             :                                 &buffers_skipped);
     905             : 
     906           2 :     relation_close(rel, AccessShareLock);
     907             : 
     908           2 :     values[0] = Int32GetDatum(buffers_dirtied);
     909           2 :     values[1] = Int32GetDatum(buffers_already_dirty);
     910           2 :     values[2] = Int32GetDatum(buffers_skipped);
     911             : 
     912           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     913           2 :     result = HeapTupleGetDatum(tuple);
     914             : 
     915           2 :     PG_RETURN_DATUM(result);
     916             : }
     917             : 
     918             : /*
     919             :  * Try to mark all the shared buffers as dirty.
     920             :  */
     921             : Datum
     922           4 : pg_buffercache_mark_dirty_all(PG_FUNCTION_ARGS)
     923             : {
     924             :     Datum       result;
     925             :     TupleDesc   tupledesc;
     926             :     HeapTuple   tuple;
     927             :     Datum       values[NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM];
     928           4 :     bool        nulls[NUM_BUFFERCACHE_MARK_DIRTY_ALL_ELEM] = {0};
     929             : 
     930           4 :     int32       buffers_already_dirty = 0;
     931           4 :     int32       buffers_dirtied = 0;
     932           4 :     int32       buffers_skipped = 0;
     933             : 
     934           4 :     if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
     935           0 :         elog(ERROR, "return type must be a row type");
     936             : 
     937           4 :     pg_buffercache_superuser_check("pg_buffercache_mark_dirty_all");
     938             : 
     939           2 :     MarkDirtyAllUnpinnedBuffers(&buffers_dirtied, &buffers_already_dirty,
     940             :                                 &buffers_skipped);
     941             : 
     942           2 :     values[0] = Int32GetDatum(buffers_dirtied);
     943           2 :     values[1] = Int32GetDatum(buffers_already_dirty);
     944           2 :     values[2] = Int32GetDatum(buffers_skipped);
     945             : 
     946           2 :     tuple = heap_form_tuple(tupledesc, values, nulls);
     947           2 :     result = HeapTupleGetDatum(tuple);
     948             : 
     949           2 :     PG_RETURN_DATUM(result);
     950             : }

Generated by: LCOV version 1.16