LCOV - code coverage report
Current view: top level - contrib/amcheck - verify_nbtree.c (source / functions) Hit Total Coverage
Test: PostgreSQL 17devel Lines: 567 777 73.0 %
Date: 2024-04-19 09:12:35 Functions: 33 35 94.3 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * verify_nbtree.c
       4             :  *      Verifies the integrity of nbtree indexes based on invariants.
       5             :  *
       6             :  * For B-Tree indexes, verification includes checking that each page in the
       7             :  * target index has items in logical order as reported by an insertion scankey
       8             :  * (the insertion scankey sort-wise NULL semantics are needed for
       9             :  * verification).
      10             :  *
      11             :  * When index-to-heap verification is requested, a Bloom filter is used to
      12             :  * fingerprint all tuples in the target index, as the index is traversed to
      13             :  * verify its structure.  A heap scan later uses Bloom filter probes to verify
      14             :  * that every visible heap tuple has a matching index tuple.
      15             :  *
      16             :  *
      17             :  * Copyright (c) 2017-2024, PostgreSQL Global Development Group
      18             :  *
      19             :  * IDENTIFICATION
      20             :  *    contrib/amcheck/verify_nbtree.c
      21             :  *
      22             :  *-------------------------------------------------------------------------
      23             :  */
      24             : #include "postgres.h"
      25             : 
      26             : #include "access/heaptoast.h"
      27             : #include "access/htup_details.h"
      28             : #include "access/nbtree.h"
      29             : #include "access/table.h"
      30             : #include "access/tableam.h"
      31             : #include "access/transam.h"
      32             : #include "access/xact.h"
      33             : #include "catalog/index.h"
      34             : #include "catalog/pg_am.h"
      35             : #include "catalog/pg_opfamily_d.h"
      36             : #include "commands/tablecmds.h"
      37             : #include "common/pg_prng.h"
      38             : #include "lib/bloomfilter.h"
      39             : #include "miscadmin.h"
      40             : #include "storage/lmgr.h"
      41             : #include "storage/smgr.h"
      42             : #include "utils/guc.h"
      43             : #include "utils/memutils.h"
      44             : #include "utils/snapmgr.h"
      45             : 
      46             : 
      47         642 : PG_MODULE_MAGIC;
      48             : 
      49             : /*
      50             :  * A B-Tree cannot possibly have this many levels, since there must be one
      51             :  * block per level, which is bound by the range of BlockNumber:
      52             :  */
      53             : #define InvalidBtreeLevel   ((uint32) InvalidBlockNumber)
      54             : #define BTreeTupleGetNKeyAtts(itup, rel)   \
      55             :     Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
      56             : 
      57             : /*
      58             :  * State associated with verifying a B-Tree index
      59             :  *
      60             :  * target is the point of reference for a verification operation.
      61             :  *
      62             :  * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
      63             :  * they are current target's child pages).  Conceptually, problems are only
      64             :  * ever found in the current target page (or for a particular heap tuple during
      65             :  * heapallindexed verification).  Each page found by verification's left/right,
      66             :  * top/bottom scan becomes the target exactly once.
      67             :  */
      68             : typedef struct BtreeCheckState
      69             : {
      70             :     /*
      71             :      * Unchanging state, established at start of verification:
      72             :      */
      73             : 
      74             :     /* B-Tree Index Relation and associated heap relation */
      75             :     Relation    rel;
      76             :     Relation    heaprel;
      77             :     /* rel is heapkeyspace index? */
      78             :     bool        heapkeyspace;
      79             :     /* ShareLock held on heap/index, rather than AccessShareLock? */
      80             :     bool        readonly;
      81             :     /* Also verifying heap has no unindexed tuples? */
      82             :     bool        heapallindexed;
      83             :     /* Also making sure non-pivot tuples can be found by new search? */
      84             :     bool        rootdescend;
      85             :     /* Also check uniqueness constraint if index is unique */
      86             :     bool        checkunique;
      87             :     /* Per-page context */
      88             :     MemoryContext targetcontext;
      89             :     /* Buffer access strategy */
      90             :     BufferAccessStrategy checkstrategy;
      91             : 
      92             :     /*
      93             :      * Info for uniqueness checking. Fill these fields once per index check.
      94             :      */
      95             :     IndexInfo  *indexinfo;
      96             :     Snapshot    snapshot;
      97             : 
      98             :     /*
      99             :      * Mutable state, for verification of particular page:
     100             :      */
     101             : 
     102             :     /* Current target page */
     103             :     Page        target;
     104             :     /* Target block number */
     105             :     BlockNumber targetblock;
     106             :     /* Target page's LSN */
     107             :     XLogRecPtr  targetlsn;
     108             : 
     109             :     /*
     110             :      * Low key: high key of left sibling of target page.  Used only for child
     111             :      * verification.  So, 'lowkey' is kept only when 'readonly' is set.
     112             :      */
     113             :     IndexTuple  lowkey;
     114             : 
     115             :     /*
     116             :      * The rightlink and incomplete split flag of block one level down to the
     117             :      * target page, which was visited last time via downlink from target page.
     118             :      * We use it to check for missing downlinks.
     119             :      */
     120             :     BlockNumber prevrightlink;
     121             :     bool        previncompletesplit;
     122             : 
     123             :     /*
     124             :      * Mutable state, for optional heapallindexed verification:
     125             :      */
     126             : 
     127             :     /* Bloom filter fingerprints B-Tree index */
     128             :     bloom_filter *filter;
     129             :     /* Debug counter */
     130             :     int64       heaptuplespresent;
     131             : } BtreeCheckState;
     132             : 
     133             : /*
     134             :  * Starting point for verifying an entire B-Tree index level
     135             :  */
     136             : typedef struct BtreeLevel
     137             : {
     138             :     /* Level number (0 is leaf page level). */
     139             :     uint32      level;
     140             : 
     141             :     /* Left most block on level.  Scan of level begins here. */
     142             :     BlockNumber leftmost;
     143             : 
     144             :     /* Is this level reported as "true" root level by meta page? */
     145             :     bool        istruerootlevel;
     146             : } BtreeLevel;
     147             : 
     148         182 : PG_FUNCTION_INFO_V1(bt_index_check);
     149         120 : PG_FUNCTION_INFO_V1(bt_index_parent_check);
     150             : 
     151             : static void bt_index_check_internal(Oid indrelid, bool parentcheck,
     152             :                                     bool heapallindexed, bool rootdescend,
     153             :                                     bool checkunique);
     154             : static inline void btree_index_checkable(Relation rel);
     155             : static inline bool btree_index_mainfork_expected(Relation rel);
     156             : static void bt_check_every_level(Relation rel, Relation heaprel,
     157             :                                  bool heapkeyspace, bool readonly, bool heapallindexed,
     158             :                                  bool rootdescend, bool checkunique);
     159             : static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state,
     160             :                                                BtreeLevel level);
     161             : static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
     162             :                                            BlockNumber start,
     163             :                                            BTPageOpaque start_opaque);
     164             : static void bt_recheck_sibling_links(BtreeCheckState *state,
     165             :                                      BlockNumber btpo_prev_from_target,
     166             :                                      BlockNumber leftcurrent);
     167             : static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid);
     168             : static void bt_report_duplicate(BtreeCheckState *state, ItemPointer tid,
     169             :                                 BlockNumber block, OffsetNumber offset,
     170             :                                 int posting, ItemPointer nexttid,
     171             :                                 BlockNumber nblock, OffsetNumber noffset,
     172             :                                 int nposting);
     173             : static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
     174             :                                   BlockNumber targetblock,
     175             :                                   OffsetNumber offset, int *lVis_i,
     176             :                                   ItemPointer *lVis_tid,
     177             :                                   OffsetNumber *lVis_offset,
     178             :                                   BlockNumber *lVis_block);
     179             : static void bt_target_page_check(BtreeCheckState *state);
     180             : static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state,
     181             :                                                 OffsetNumber *rightfirstoffset);
     182             : static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
     183             :                            OffsetNumber downlinkoffnum);
     184             : static void bt_child_highkey_check(BtreeCheckState *state,
     185             :                                    OffsetNumber target_downlinkoffnum,
     186             :                                    Page loaded_child,
     187             :                                    uint32 target_level);
     188             : static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
     189             :                                       BlockNumber blkno, Page page);
     190             : static void bt_tuple_present_callback(Relation index, ItemPointer tid,
     191             :                                       Datum *values, bool *isnull,
     192             :                                       bool tupleIsAlive, void *checkstate);
     193             : static IndexTuple bt_normalize_tuple(BtreeCheckState *state,
     194             :                                      IndexTuple itup);
     195             : static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
     196             : static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
     197             : static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
     198             :                                                OffsetNumber offset);
     199             : static inline bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
     200             :                                       OffsetNumber upperbound);
     201             : static inline bool invariant_leq_offset(BtreeCheckState *state,
     202             :                                         BTScanInsert key,
     203             :                                         OffsetNumber upperbound);
     204             : static inline bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
     205             :                                       OffsetNumber lowerbound);
     206             : static inline bool invariant_l_nontarget_offset(BtreeCheckState *state,
     207             :                                                 BTScanInsert key,
     208             :                                                 BlockNumber nontargetblock,
     209             :                                                 Page nontarget,
     210             :                                                 OffsetNumber upperbound);
     211             : static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum);
     212             : static inline BTScanInsert bt_mkscankey_pivotsearch(Relation rel,
     213             :                                                     IndexTuple itup);
     214             : static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block,
     215             :                                    Page page, OffsetNumber offset);
     216             : static inline ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state,
     217             :                                                       IndexTuple itup, bool nonpivot);
     218             : static inline ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup);
     219             : 
     220             : /*
     221             :  * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
     222             :  *
     223             :  * Verify integrity of B-Tree index.
     224             :  *
     225             :  * Acquires AccessShareLock on heap & index relations.  Does not consider
     226             :  * invariants that exist between parent/child pages.  Optionally verifies
     227             :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     228             :  */
     229             : Datum
     230        7950 : bt_index_check(PG_FUNCTION_ARGS)
     231             : {
     232        7950 :     Oid         indrelid = PG_GETARG_OID(0);
     233        7950 :     bool        heapallindexed = false;
     234        7950 :     bool        checkunique = false;
     235             : 
     236        7950 :     if (PG_NARGS() >= 2)
     237        7938 :         heapallindexed = PG_GETARG_BOOL(1);
     238        7950 :     if (PG_NARGS() == 3)
     239        1372 :         checkunique = PG_GETARG_BOOL(2);
     240             : 
     241        7950 :     bt_index_check_internal(indrelid, false, heapallindexed, false, checkunique);
     242             : 
     243        7898 :     PG_RETURN_VOID();
     244             : }
     245             : 
     246             : /*
     247             :  * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
     248             :  *
     249             :  * Verify integrity of B-Tree index.
     250             :  *
     251             :  * Acquires ShareLock on heap & index relations.  Verifies that downlinks in
     252             :  * parent pages are valid lower bounds on child pages.  Optionally verifies
     253             :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     254             :  */
     255             : Datum
     256         120 : bt_index_parent_check(PG_FUNCTION_ARGS)
     257             : {
     258         120 :     Oid         indrelid = PG_GETARG_OID(0);
     259         120 :     bool        heapallindexed = false;
     260         120 :     bool        rootdescend = false;
     261         120 :     bool        checkunique = false;
     262             : 
     263         120 :     if (PG_NARGS() >= 2)
     264         110 :         heapallindexed = PG_GETARG_BOOL(1);
     265         120 :     if (PG_NARGS() >= 3)
     266         104 :         rootdescend = PG_GETARG_BOOL(2);
     267         120 :     if (PG_NARGS() == 4)
     268          52 :         checkunique = PG_GETARG_BOOL(3);
     269             : 
     270         120 :     bt_index_check_internal(indrelid, true, heapallindexed, rootdescend, checkunique);
     271             : 
     272          86 :     PG_RETURN_VOID();
     273             : }
     274             : 
     275             : /*
     276             :  * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
     277             :  */
     278             : static void
     279        8070 : bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed,
     280             :                         bool rootdescend, bool checkunique)
     281             : {
     282             :     Oid         heapid;
     283             :     Relation    indrel;
     284             :     Relation    heaprel;
     285             :     LOCKMODE    lockmode;
     286             :     Oid         save_userid;
     287             :     int         save_sec_context;
     288             :     int         save_nestlevel;
     289             : 
     290        8070 :     if (parentcheck)
     291         120 :         lockmode = ShareLock;
     292             :     else
     293        7950 :         lockmode = AccessShareLock;
     294             : 
     295             :     /*
     296             :      * We must lock table before index to avoid deadlocks.  However, if the
     297             :      * passed indrelid isn't an index then IndexGetRelation() will fail.
     298             :      * Rather than emitting a not-very-helpful error message, postpone
     299             :      * complaining, expecting that the is-it-an-index test below will fail.
     300             :      *
     301             :      * In hot standby mode this will raise an error when parentcheck is true.
     302             :      */
     303        8070 :     heapid = IndexGetRelation(indrelid, true);
     304        8070 :     if (OidIsValid(heapid))
     305             :     {
     306        8062 :         heaprel = table_open(heapid, lockmode);
     307             : 
     308             :         /*
     309             :          * Switch to the table owner's userid, so that any index functions are
     310             :          * run as that user.  Also lock down security-restricted operations
     311             :          * and arrange to make GUC variable changes local to this command.
     312             :          */
     313        8062 :         GetUserIdAndSecContext(&save_userid, &save_sec_context);
     314        8062 :         SetUserIdAndSecContext(heaprel->rd_rel->relowner,
     315             :                                save_sec_context | SECURITY_RESTRICTED_OPERATION);
     316        8062 :         save_nestlevel = NewGUCNestLevel();
     317        8062 :         RestrictSearchPath();
     318             :     }
     319             :     else
     320             :     {
     321           8 :         heaprel = NULL;
     322             :         /* Set these just to suppress "uninitialized variable" warnings */
     323           8 :         save_userid = InvalidOid;
     324           8 :         save_sec_context = -1;
     325           8 :         save_nestlevel = -1;
     326             :     }
     327             : 
     328             :     /*
     329             :      * Open the target index relations separately (like relation_openrv(), but
     330             :      * with heap relation locked first to prevent deadlocking).  In hot
     331             :      * standby mode this will raise an error when parentcheck is true.
     332             :      *
     333             :      * There is no need for the usual indcheckxmin usability horizon test
     334             :      * here, even in the heapallindexed case, because index undergoing
     335             :      * verification only needs to have entries for a new transaction snapshot.
     336             :      * (If this is a parentcheck verification, there is no question about
     337             :      * committed or recently dead heap tuples lacking index entries due to
     338             :      * concurrent activity.)
     339             :      */
     340        8070 :     indrel = index_open(indrelid, lockmode);
     341             : 
     342             :     /*
     343             :      * Since we did the IndexGetRelation call above without any lock, it's
     344             :      * barely possible that a race against an index drop/recreation could have
     345             :      * netted us the wrong table.
     346             :      */
     347        8062 :     if (heaprel == NULL || heapid != IndexGetRelation(indrelid, false))
     348           0 :         ereport(ERROR,
     349             :                 (errcode(ERRCODE_UNDEFINED_TABLE),
     350             :                  errmsg("could not open parent table of index \"%s\"",
     351             :                         RelationGetRelationName(indrel))));
     352             : 
     353             :     /* Relation suitable for checking as B-Tree? */
     354        8062 :     btree_index_checkable(indrel);
     355             : 
     356        8060 :     if (btree_index_mainfork_expected(indrel))
     357             :     {
     358             :         bool        heapkeyspace,
     359             :                     allequalimage;
     360             : 
     361        8060 :         if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
     362          36 :             ereport(ERROR,
     363             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     364             :                      errmsg("index \"%s\" lacks a main relation fork",
     365             :                             RelationGetRelationName(indrel))));
     366             : 
     367             :         /* Extract metadata from metapage, and sanitize it in passing */
     368        8024 :         _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
     369        8024 :         if (allequalimage && !heapkeyspace)
     370           0 :             ereport(ERROR,
     371             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     372             :                      errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
     373             :                             RelationGetRelationName(indrel))));
     374        8024 :         if (allequalimage && !_bt_allequalimage(indrel, false))
     375             :         {
     376           0 :             bool        has_interval_ops = false;
     377             : 
     378           0 :             for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
     379           0 :                 if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
     380           0 :                     has_interval_ops = true;
     381           0 :             ereport(ERROR,
     382             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     383             :                      errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
     384             :                             RelationGetRelationName(indrel)),
     385             :                      has_interval_ops
     386             :                      ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
     387             :                      : 0));
     388             :         }
     389             : 
     390             :         /* Check index, possibly against table it is an index on */
     391        8024 :         bt_check_every_level(indrel, heaprel, heapkeyspace, parentcheck,
     392             :                              heapallindexed, rootdescend, checkunique);
     393             :     }
     394             : 
     395             :     /* Roll back any GUC changes executed by index functions */
     396        7984 :     AtEOXact_GUC(false, save_nestlevel);
     397             : 
     398             :     /* Restore userid and security context */
     399        7984 :     SetUserIdAndSecContext(save_userid, save_sec_context);
     400             : 
     401             :     /*
     402             :      * Release locks early. That's ok here because nothing in the called
     403             :      * routines will trigger shared cache invalidations to be sent, so we can
     404             :      * relax the usual pattern of only releasing locks after commit.
     405             :      */
     406        7984 :     index_close(indrel, lockmode);
     407        7984 :     if (heaprel)
     408        7984 :         table_close(heaprel, lockmode);
     409        7984 : }
     410             : 
     411             : /*
     412             :  * Basic checks about the suitability of a relation for checking as a B-Tree
     413             :  * index.
     414             :  *
     415             :  * NB: Intentionally not checking permissions, the function is normally not
     416             :  * callable by non-superusers. If granted, it's useful to be able to check a
     417             :  * whole cluster.
     418             :  */
     419             : static inline void
     420        8062 : btree_index_checkable(Relation rel)
     421             : {
     422        8062 :     if (rel->rd_rel->relkind != RELKIND_INDEX ||
     423        8062 :         rel->rd_rel->relam != BTREE_AM_OID)
     424           2 :         ereport(ERROR,
     425             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     426             :                  errmsg("only B-Tree indexes are supported as targets for verification"),
     427             :                  errdetail("Relation \"%s\" is not a B-Tree index.",
     428             :                            RelationGetRelationName(rel))));
     429             : 
     430        8060 :     if (RELATION_IS_OTHER_TEMP(rel))
     431           0 :         ereport(ERROR,
     432             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     433             :                  errmsg("cannot access temporary tables of other sessions"),
     434             :                  errdetail("Index \"%s\" is associated with temporary relation.",
     435             :                            RelationGetRelationName(rel))));
     436             : 
     437        8060 :     if (!rel->rd_index->indisvalid)
     438           0 :         ereport(ERROR,
     439             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     440             :                  errmsg("cannot check index \"%s\"",
     441             :                         RelationGetRelationName(rel)),
     442             :                  errdetail("Index is not valid.")));
     443        8060 : }
     444             : 
     445             : /*
     446             :  * Check if B-Tree index relation should have a file for its main relation
     447             :  * fork.  Verification uses this to skip unlogged indexes when in hot standby
     448             :  * mode, where there is simply nothing to verify.  We behave as if the
     449             :  * relation is empty.
     450             :  *
     451             :  * NB: Caller should call btree_index_checkable() before calling here.
     452             :  */
     453             : static inline bool
     454        8060 : btree_index_mainfork_expected(Relation rel)
     455             : {
     456        8060 :     if (rel->rd_rel->relpersistence != RELPERSISTENCE_UNLOGGED ||
     457           0 :         !RecoveryInProgress())
     458        8060 :         return true;
     459             : 
     460           0 :     ereport(DEBUG1,
     461             :             (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
     462             :              errmsg("cannot verify unlogged index \"%s\" during recovery, skipping",
     463             :                     RelationGetRelationName(rel))));
     464             : 
     465           0 :     return false;
     466             : }
     467             : 
     468             : /*
     469             :  * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
     470             :  * logical order, verifying invariants as it goes.  Optionally, verification
     471             :  * checks if the heap relation contains any tuples that are not represented in
     472             :  * the index but should be.
     473             :  *
     474             :  * It is the caller's responsibility to acquire appropriate heavyweight lock on
     475             :  * the index relation, and advise us if extra checks are safe when a ShareLock
     476             :  * is held.  (A lock of the same type must also have been acquired on the heap
     477             :  * relation.)
     478             :  *
     479             :  * A ShareLock is generally assumed to prevent any kind of physical
     480             :  * modification to the index structure, including modifications that VACUUM may
     481             :  * make.  This does not include setting of the LP_DEAD bit by concurrent index
     482             :  * scans, although that is just metadata that is not able to directly affect
     483             :  * any check performed here.  Any concurrent process that might act on the
     484             :  * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
     485             :  * cannot be held while we hold a ShareLock.  (Besides, even if that could
     486             :  * happen, the ad-hoc recycling when a page might otherwise split is performed
     487             :  * per-page, and requires an exclusive buffer lock, which wouldn't cause us
     488             :  * trouble.  _bt_delitems_vacuum() may only delete leaf items, and so the extra
     489             :  * parent/child check cannot be affected.)
     490             :  */
     491             : static void
     492        8024 : bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
     493             :                      bool readonly, bool heapallindexed, bool rootdescend,
     494             :                      bool checkunique)
     495             : {
     496             :     BtreeCheckState *state;
     497             :     Page        metapage;
     498             :     BTMetaPageData *metad;
     499             :     uint32      previouslevel;
     500             :     BtreeLevel  current;
     501        8024 :     Snapshot    snapshot = SnapshotAny;
     502             : 
     503        8024 :     if (!readonly)
     504        7926 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
     505             :              RelationGetRelationName(rel));
     506             :     else
     507          98 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
     508             :              RelationGetRelationName(rel));
     509             : 
     510             :     /*
     511             :      * This assertion matches the one in index_getnext_tid().  See page
     512             :      * recycling/"visible to everyone" notes in nbtree README.
     513             :      */
     514             :     Assert(TransactionIdIsValid(RecentXmin));
     515             : 
     516             :     /*
     517             :      * Initialize state for entire verification operation
     518             :      */
     519        8024 :     state = palloc0(sizeof(BtreeCheckState));
     520        8024 :     state->rel = rel;
     521        8024 :     state->heaprel = heaprel;
     522        8024 :     state->heapkeyspace = heapkeyspace;
     523        8024 :     state->readonly = readonly;
     524        8024 :     state->heapallindexed = heapallindexed;
     525        8024 :     state->rootdescend = rootdescend;
     526        8024 :     state->checkunique = checkunique;
     527        8024 :     state->snapshot = InvalidSnapshot;
     528             : 
     529        8024 :     if (state->heapallindexed)
     530             :     {
     531             :         int64       total_pages;
     532             :         int64       total_elems;
     533             :         uint64      seed;
     534             : 
     535             :         /*
     536             :          * Size Bloom filter based on estimated number of tuples in index,
     537             :          * while conservatively assuming that each block must contain at least
     538             :          * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
     539             :          * bt_posting_plain_tuple() for definition, and details of how posting
     540             :          * list tuples are handled.
     541             :          */
     542         180 :         total_pages = RelationGetNumberOfBlocks(rel);
     543         180 :         total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
     544             :                           (int64) state->rel->rd_rel->reltuples);
     545             :         /* Generate a random seed to avoid repetition */
     546         180 :         seed = pg_prng_uint64(&pg_global_prng_state);
     547             :         /* Create Bloom filter to fingerprint index */
     548         180 :         state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
     549         180 :         state->heaptuplespresent = 0;
     550             : 
     551             :         /*
     552             :          * Register our own snapshot in !readonly case, rather than asking
     553             :          * table_index_build_scan() to do this for us later.  This needs to
     554             :          * happen before index fingerprinting begins, so we can later be
     555             :          * certain that index fingerprinting should have reached all tuples
     556             :          * returned by table_index_build_scan().
     557             :          */
     558         180 :         if (!state->readonly)
     559             :         {
     560         126 :             snapshot = RegisterSnapshot(GetTransactionSnapshot());
     561             : 
     562             :             /*
     563             :              * GetTransactionSnapshot() always acquires a new MVCC snapshot in
     564             :              * READ COMMITTED mode.  A new snapshot is guaranteed to have all
     565             :              * the entries it requires in the index.
     566             :              *
     567             :              * We must defend against the possibility that an old xact
     568             :              * snapshot was returned at higher isolation levels when that
     569             :              * snapshot is not safe for index scans of the target index.  This
     570             :              * is possible when the snapshot sees tuples that are before the
     571             :              * index's indcheckxmin horizon.  Throwing an error here should be
     572             :              * very rare.  It doesn't seem worth using a secondary snapshot to
     573             :              * avoid this.
     574             :              */
     575         126 :             if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
     576           0 :                 !TransactionIdPrecedes(HeapTupleHeaderGetXmin(rel->rd_indextuple->t_data),
     577             :                                        snapshot->xmin))
     578           0 :                 ereport(ERROR,
     579             :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
     580             :                          errmsg("index \"%s\" cannot be verified using transaction snapshot",
     581             :                                 RelationGetRelationName(rel))));
     582             :         }
     583             :     }
     584             : 
     585             :     /*
     586             :      * We need a snapshot to check the uniqueness of the index. For better
     587             :      * performance take it once per index check. If snapshot already taken
     588             :      * reuse it.
     589             :      */
     590        8024 :     if (state->checkunique)
     591             :     {
     592        1416 :         state->indexinfo = BuildIndexInfo(state->rel);
     593        1416 :         if (state->indexinfo->ii_Unique)
     594             :         {
     595        1276 :             if (snapshot != SnapshotAny)
     596          14 :                 state->snapshot = snapshot;
     597             :             else
     598        1262 :                 state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
     599             :         }
     600             :     }
     601             : 
     602             :     Assert(!state->rootdescend || state->readonly);
     603        8024 :     if (state->rootdescend && !state->heapkeyspace)
     604           0 :         ereport(ERROR,
     605             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     606             :                  errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
     607             :                         RelationGetRelationName(rel)),
     608             :                  errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
     609             : 
     610             :     /* Create context for page */
     611        8024 :     state->targetcontext = AllocSetContextCreate(CurrentMemoryContext,
     612             :                                                  "amcheck context",
     613             :                                                  ALLOCSET_DEFAULT_SIZES);
     614        8024 :     state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
     615             : 
     616             :     /* Get true root block from meta-page */
     617        8024 :     metapage = palloc_btree_page(state, BTREE_METAPAGE);
     618        8024 :     metad = BTPageGetMeta(metapage);
     619             : 
     620             :     /*
     621             :      * Certain deletion patterns can result in "skinny" B-Tree indexes, where
     622             :      * the fast root and true root differ.
     623             :      *
     624             :      * Start from the true root, not the fast root, unlike conventional index
     625             :      * scans.  This approach is more thorough, and removes the risk of
     626             :      * following a stale fast root from the meta page.
     627             :      */
     628        8024 :     if (metad->btm_fastroot != metad->btm_root)
     629          26 :         ereport(DEBUG1,
     630             :                 (errcode(ERRCODE_NO_DATA),
     631             :                  errmsg_internal("harmless fast root mismatch in index \"%s\"",
     632             :                                  RelationGetRelationName(rel)),
     633             :                  errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
     634             :                                     metad->btm_fastroot, metad->btm_fastlevel,
     635             :                                     metad->btm_root, metad->btm_level)));
     636             : 
     637             :     /*
     638             :      * Starting at the root, verify every level.  Move left to right, top to
     639             :      * bottom.  Note that there may be no pages other than the meta page (meta
     640             :      * page can indicate that root is P_NONE when the index is totally empty).
     641             :      */
     642        8024 :     previouslevel = InvalidBtreeLevel;
     643        8024 :     current.level = metad->btm_level;
     644        8024 :     current.leftmost = metad->btm_root;
     645        8024 :     current.istruerootlevel = true;
     646       12956 :     while (current.leftmost != P_NONE)
     647             :     {
     648             :         /*
     649             :          * Verify this level, and get left most page for next level down, if
     650             :          * not at leaf level
     651             :          */
     652        4968 :         current = bt_check_level_from_leftmost(state, current);
     653             : 
     654        4932 :         if (current.leftmost == InvalidBlockNumber)
     655           0 :             ereport(ERROR,
     656             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     657             :                      errmsg("index \"%s\" has no valid pages on level below %u or first level",
     658             :                             RelationGetRelationName(rel), previouslevel)));
     659             : 
     660        4932 :         previouslevel = current.level;
     661             :     }
     662             : 
     663             :     /*
     664             :      * * Check whether heap contains unindexed/malformed tuples *
     665             :      */
     666        7988 :     if (state->heapallindexed)
     667             :     {
     668         166 :         IndexInfo  *indexinfo = BuildIndexInfo(state->rel);
     669             :         TableScanDesc scan;
     670             : 
     671             :         /*
     672             :          * Create our own scan for table_index_build_scan(), rather than
     673             :          * getting it to do so for us.  This is required so that we can
     674             :          * actually use the MVCC snapshot registered earlier in !readonly
     675             :          * case.
     676             :          *
     677             :          * Note that table_index_build_scan() calls heap_endscan() for us.
     678             :          */
     679         166 :         scan = table_beginscan_strat(state->heaprel, /* relation */
     680             :                                      snapshot,  /* snapshot */
     681             :                                      0, /* number of keys */
     682             :                                      NULL,  /* scan key */
     683             :                                      true,  /* buffer access strategy OK */
     684             :                                      true); /* syncscan OK? */
     685             : 
     686             :         /*
     687             :          * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
     688             :          * behaves in !readonly case.
     689             :          *
     690             :          * It's okay that we don't actually use the same lock strength for the
     691             :          * heap relation as any other ii_Concurrent caller would in !readonly
     692             :          * case.  We have no reason to care about a concurrent VACUUM
     693             :          * operation, since there isn't going to be a second scan of the heap
     694             :          * that needs to be sure that there was no concurrent recycling of
     695             :          * TIDs.
     696             :          */
     697         162 :         indexinfo->ii_Concurrent = !state->readonly;
     698             : 
     699             :         /*
     700             :          * Don't wait for uncommitted tuple xact commit/abort when index is a
     701             :          * unique index on a catalog (or an index used by an exclusion
     702             :          * constraint).  This could otherwise happen in the readonly case.
     703             :          */
     704         162 :         indexinfo->ii_Unique = false;
     705         162 :         indexinfo->ii_ExclusionOps = NULL;
     706         162 :         indexinfo->ii_ExclusionProcs = NULL;
     707         162 :         indexinfo->ii_ExclusionStrats = NULL;
     708             : 
     709         162 :         elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
     710             :              RelationGetRelationName(state->rel),
     711             :              RelationGetRelationName(state->heaprel));
     712             : 
     713         162 :         table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
     714             :                                bt_tuple_present_callback, (void *) state, scan);
     715             : 
     716         162 :         ereport(DEBUG1,
     717             :                 (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
     718             :                                  state->heaptuplespresent, RelationGetRelationName(heaprel),
     719             :                                  100.0 * bloom_prop_bits_set(state->filter))));
     720             : 
     721         162 :         if (snapshot != SnapshotAny)
     722         116 :             UnregisterSnapshot(snapshot);
     723             : 
     724         162 :         bloom_free(state->filter);
     725             :     }
     726             : 
     727             :     /* Be tidy: */
     728        7984 :     if (snapshot == SnapshotAny && state->snapshot != InvalidSnapshot)
     729        1262 :         UnregisterSnapshot(state->snapshot);
     730        7984 :     MemoryContextDelete(state->targetcontext);
     731        7984 : }
     732             : 
     733             : /*
     734             :  * Given a left-most block at some level, move right, verifying each page
     735             :  * individually (with more verification across pages for "readonly"
     736             :  * callers).  Caller should pass the true root page as the leftmost initially,
     737             :  * working their way down by passing what is returned for the last call here
     738             :  * until level 0 (leaf page level) was reached.
     739             :  *
     740             :  * Returns state for next call, if any.  This includes left-most block number
     741             :  * one level lower that should be passed on next level/call, which is set to
     742             :  * P_NONE on last call here (when leaf level is verified).  Level numbers
     743             :  * follow the nbtree convention: higher levels have higher numbers, because new
     744             :  * levels are added only due to a root page split.  Note that prior to the
     745             :  * first root page split, the root is also a leaf page, so there is always a
     746             :  * level 0 (leaf level), and it's always the last level processed.
     747             :  *
     748             :  * Note on memory management:  State's per-page context is reset here, between
     749             :  * each call to bt_target_page_check().
     750             :  */
     751             : static BtreeLevel
     752        4968 : bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
     753             : {
     754             :     /* State to establish early, concerning entire level */
     755             :     BTPageOpaque opaque;
     756             :     MemoryContext oldcontext;
     757             :     BtreeLevel  nextleveldown;
     758             : 
     759             :     /* Variables for iterating across level using right links */
     760        4968 :     BlockNumber leftcurrent = P_NONE;
     761        4968 :     BlockNumber current = level.leftmost;
     762             : 
     763             :     /* Initialize return state */
     764        4968 :     nextleveldown.leftmost = InvalidBlockNumber;
     765        4968 :     nextleveldown.level = InvalidBtreeLevel;
     766        4968 :     nextleveldown.istruerootlevel = false;
     767             : 
     768             :     /* Use page-level context for duration of this call */
     769        4968 :     oldcontext = MemoryContextSwitchTo(state->targetcontext);
     770             : 
     771        4968 :     elog(DEBUG1, "verifying level %u%s", level.level,
     772             :          level.istruerootlevel ?
     773             :          " (true root level)" : level.level == 0 ? " (leaf level)" : "");
     774             : 
     775        4968 :     state->prevrightlink = InvalidBlockNumber;
     776        4968 :     state->previncompletesplit = false;
     777             : 
     778             :     do
     779             :     {
     780             :         /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
     781       17862 :         CHECK_FOR_INTERRUPTS();
     782             : 
     783             :         /* Initialize state for this iteration */
     784       17862 :         state->targetblock = current;
     785       17862 :         state->target = palloc_btree_page(state, state->targetblock);
     786       17838 :         state->targetlsn = PageGetLSN(state->target);
     787             : 
     788       17838 :         opaque = BTPageGetOpaque(state->target);
     789             : 
     790       17838 :         if (P_IGNORE(opaque))
     791             :         {
     792             :             /*
     793             :              * Since there cannot be a concurrent VACUUM operation in readonly
     794             :              * mode, and since a page has no links within other pages
     795             :              * (siblings and parent) once it is marked fully deleted, it
     796             :              * should be impossible to land on a fully deleted page in
     797             :              * readonly mode. See bt_child_check() for further details.
     798             :              *
     799             :              * The bt_child_check() P_ISDELETED() check is repeated here so
     800             :              * that pages that are only reachable through sibling links get
     801             :              * checked.
     802             :              */
     803           0 :             if (state->readonly && P_ISDELETED(opaque))
     804           0 :                 ereport(ERROR,
     805             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     806             :                          errmsg("downlink or sibling link points to deleted block in index \"%s\"",
     807             :                                 RelationGetRelationName(state->rel)),
     808             :                          errdetail_internal("Block=%u left block=%u left link from block=%u.",
     809             :                                             current, leftcurrent, opaque->btpo_prev)));
     810             : 
     811           0 :             if (P_RIGHTMOST(opaque))
     812           0 :                 ereport(ERROR,
     813             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     814             :                          errmsg("block %u fell off the end of index \"%s\"",
     815             :                                 current, RelationGetRelationName(state->rel))));
     816             :             else
     817           0 :                 ereport(DEBUG1,
     818             :                         (errcode(ERRCODE_NO_DATA),
     819             :                          errmsg_internal("block %u of index \"%s\" concurrently deleted",
     820             :                                          current, RelationGetRelationName(state->rel))));
     821           0 :             goto nextpage;
     822             :         }
     823       17838 :         else if (nextleveldown.leftmost == InvalidBlockNumber)
     824             :         {
     825             :             /*
     826             :              * A concurrent page split could make the caller supplied leftmost
     827             :              * block no longer contain the leftmost page, or no longer be the
     828             :              * true root, but where that isn't possible due to heavyweight
     829             :              * locking, check that the first valid page meets caller's
     830             :              * expectations.
     831             :              */
     832        4944 :             if (state->readonly)
     833             :             {
     834          88 :                 if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
     835           0 :                     ereport(ERROR,
     836             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     837             :                              errmsg("block %u is not leftmost in index \"%s\"",
     838             :                                     current, RelationGetRelationName(state->rel))));
     839             : 
     840          88 :                 if (level.istruerootlevel && !P_ISROOT(opaque))
     841           0 :                     ereport(ERROR,
     842             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     843             :                              errmsg("block %u is not true root in index \"%s\"",
     844             :                                     current, RelationGetRelationName(state->rel))));
     845             :             }
     846             : 
     847             :             /*
     848             :              * Before beginning any non-trivial examination of level, prepare
     849             :              * state for next bt_check_level_from_leftmost() invocation for
     850             :              * the next level for the next level down (if any).
     851             :              *
     852             :              * There should be at least one non-ignorable page per level,
     853             :              * unless this is the leaf level, which is assumed by caller to be
     854             :              * final level.
     855             :              */
     856        4944 :             if (!P_ISLEAF(opaque))
     857             :             {
     858             :                 IndexTuple  itup;
     859             :                 ItemId      itemid;
     860             : 
     861             :                 /* Internal page -- downlink gets leftmost on next level */
     862        1026 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
     863             :                                               state->target,
     864        1026 :                                               P_FIRSTDATAKEY(opaque));
     865        1026 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
     866        1026 :                 nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
     867        1026 :                 nextleveldown.level = opaque->btpo_level - 1;
     868             :             }
     869             :             else
     870             :             {
     871             :                 /*
     872             :                  * Leaf page -- final level caller must process.
     873             :                  *
     874             :                  * Note that this could also be the root page, if there has
     875             :                  * been no root page split yet.
     876             :                  */
     877        3918 :                 nextleveldown.leftmost = P_NONE;
     878        3918 :                 nextleveldown.level = InvalidBtreeLevel;
     879             :             }
     880             : 
     881             :             /*
     882             :              * Finished setting up state for this call/level.  Control will
     883             :              * never end up back here in any future loop iteration for this
     884             :              * level.
     885             :              */
     886             :         }
     887             : 
     888             :         /*
     889             :          * Sibling links should be in mutual agreement.  There arises
     890             :          * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
     891             :          * of the parent's low-key downlink is half-dead.  (A half-dead page
     892             :          * has no downlink from its parent.)  Under heavyweight locking, the
     893             :          * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
     894             :          * Without heavyweight locking, validation of the P_NONE case remains
     895             :          * unimplemented.
     896             :          */
     897       17838 :         if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
     898           0 :             bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
     899             : 
     900             :         /* Check level */
     901       17838 :         if (level.level != opaque->btpo_level)
     902           0 :             ereport(ERROR,
     903             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     904             :                      errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
     905             :                             RelationGetRelationName(state->rel)),
     906             :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
     907             :                                         current, level.level, opaque->btpo_level)));
     908             : 
     909             :         /* Verify invariants for page */
     910       17838 :         bt_target_page_check(state);
     911             : 
     912       17826 : nextpage:
     913             : 
     914             :         /* Try to detect circular links */
     915       17826 :         if (current == leftcurrent || current == opaque->btpo_prev)
     916           0 :             ereport(ERROR,
     917             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     918             :                      errmsg("circular link chain found in block %u of index \"%s\"",
     919             :                             current, RelationGetRelationName(state->rel))));
     920             : 
     921       17826 :         leftcurrent = current;
     922       17826 :         current = opaque->btpo_next;
     923             : 
     924       17826 :         if (state->lowkey)
     925             :         {
     926             :             Assert(state->readonly);
     927        3724 :             pfree(state->lowkey);
     928        3724 :             state->lowkey = NULL;
     929             :         }
     930             : 
     931             :         /*
     932             :          * Copy current target high key as the low key of right sibling.
     933             :          * Allocate memory in upper level context, so it would be cleared
     934             :          * after reset of target context.
     935             :          *
     936             :          * We only need the low key in corner cases of checking child high
     937             :          * keys. We use high key only when incomplete split on the child level
     938             :          * falls to the boundary of pages on the target level.  See
     939             :          * bt_child_highkey_check() for details.  So, typically we won't end
     940             :          * up doing anything with low key, but it's simpler for general case
     941             :          * high key verification to always have it available.
     942             :          *
     943             :          * The correctness of managing low key in the case of concurrent
     944             :          * splits wasn't investigated yet.  Thankfully we only need low key
     945             :          * for readonly verification and concurrent splits won't happen.
     946             :          */
     947       17826 :         if (state->readonly && !P_RIGHTMOST(opaque))
     948             :         {
     949             :             IndexTuple  itup;
     950             :             ItemId      itemid;
     951             : 
     952        3724 :             itemid = PageGetItemIdCareful(state, state->targetblock,
     953             :                                           state->target, P_HIKEY);
     954        3724 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
     955             : 
     956        3724 :             state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
     957        3724 :             memcpy(state->lowkey, itup, IndexTupleSize(itup));
     958             :         }
     959             : 
     960             :         /* Free page and associated memory for this iteration */
     961       17826 :         MemoryContextReset(state->targetcontext);
     962             :     }
     963       17826 :     while (current != P_NONE);
     964             : 
     965        4932 :     if (state->lowkey)
     966             :     {
     967             :         Assert(state->readonly);
     968           0 :         pfree(state->lowkey);
     969           0 :         state->lowkey = NULL;
     970             :     }
     971             : 
     972             :     /* Don't change context for caller */
     973        4932 :     MemoryContextSwitchTo(oldcontext);
     974             : 
     975        4932 :     return nextleveldown;
     976             : }
     977             : 
     978             : /* Check visibility of the table entry referenced by nbtree index */
     979             : static bool
     980      278932 : heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
     981             : {
     982             :     bool        tid_visible;
     983             : 
     984      278932 :     TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
     985             : 
     986      278932 :     tid_visible = table_tuple_fetch_row_version(state->heaprel,
     987             :                                                 tid, state->snapshot, slot);
     988      278932 :     if (slot != NULL)
     989      278932 :         ExecDropSingleTupleTableSlot(slot);
     990             : 
     991      278932 :     return tid_visible;
     992             : }
     993             : 
     994             : /*
     995             :  * Prepare an error message for unique constrain violation in
     996             :  * a btree index and report ERROR.
     997             :  */
     998             : static void
     999           6 : bt_report_duplicate(BtreeCheckState *state,
    1000             :                     ItemPointer tid, BlockNumber block, OffsetNumber offset,
    1001             :                     int posting,
    1002             :                     ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
    1003             :                     int nposting)
    1004             : {
    1005             :     char       *htid,
    1006             :                *nhtid,
    1007             :                *itid,
    1008           6 :                *nitid = "",
    1009           6 :                *pposting = "",
    1010           6 :                *pnposting = "";
    1011             : 
    1012           6 :     htid = psprintf("tid=(%u,%u)",
    1013             :                     ItemPointerGetBlockNumberNoCheck(tid),
    1014           6 :                     ItemPointerGetOffsetNumberNoCheck(tid));
    1015           6 :     nhtid = psprintf("tid=(%u,%u)",
    1016             :                      ItemPointerGetBlockNumberNoCheck(nexttid),
    1017           6 :                      ItemPointerGetOffsetNumberNoCheck(nexttid));
    1018           6 :     itid = psprintf("tid=(%u,%u)", block, offset);
    1019             : 
    1020           6 :     if (nblock != block || noffset != offset)
    1021           6 :         nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
    1022             : 
    1023           6 :     if (posting >= 0)
    1024           0 :         pposting = psprintf(" posting %u", posting);
    1025             : 
    1026           6 :     if (nposting >= 0)
    1027           0 :         pnposting = psprintf(" posting %u", nposting);
    1028             : 
    1029           6 :     ereport(ERROR,
    1030             :             (errcode(ERRCODE_INDEX_CORRUPTED),
    1031             :              errmsg("index uniqueness is violated for index \"%s\"",
    1032             :                     RelationGetRelationName(state->rel)),
    1033             :              errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%X.",
    1034             :                        itid, pposting, nitid, pnposting, htid, nhtid,
    1035             :                        LSN_FORMAT_ARGS(state->targetlsn))));
    1036             : }
    1037             : 
    1038             : /* Check if current nbtree leaf entry complies with UNIQUE constraint */
    1039             : static void
    1040      278932 : bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
    1041             :                       BlockNumber targetblock, OffsetNumber offset, int *lVis_i,
    1042             :                       ItemPointer *lVis_tid, OffsetNumber *lVis_offset,
    1043             :                       BlockNumber *lVis_block)
    1044             : {
    1045             :     ItemPointer tid;
    1046      278932 :     bool        has_visible_entry = false;
    1047             : 
    1048             :     Assert(targetblock != P_NONE);
    1049             : 
    1050             :     /*
    1051             :      * Current tuple has posting list. Report duplicate if TID of any posting
    1052             :      * list entry is visible and lVis_tid is valid.
    1053             :      */
    1054      278932 :     if (BTreeTupleIsPosting(itup))
    1055             :     {
    1056           0 :         for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
    1057             :         {
    1058           0 :             tid = BTreeTupleGetPostingN(itup, i);
    1059           0 :             if (heap_entry_is_visible(state, tid))
    1060             :             {
    1061           0 :                 has_visible_entry = true;
    1062           0 :                 if (ItemPointerIsValid(*lVis_tid))
    1063             :                 {
    1064           0 :                     bt_report_duplicate(state,
    1065             :                                         *lVis_tid, *lVis_block,
    1066           0 :                                         *lVis_offset, *lVis_i,
    1067             :                                         tid, targetblock,
    1068             :                                         offset, i);
    1069             :                 }
    1070             : 
    1071             :                 /*
    1072             :                  * Prevent double reporting unique constraint violation
    1073             :                  * between the posting list entries of the first tuple on the
    1074             :                  * page after cross-page check.
    1075             :                  */
    1076           0 :                 if (*lVis_block != targetblock && ItemPointerIsValid(*lVis_tid))
    1077           0 :                     return;
    1078             : 
    1079           0 :                 *lVis_i = i;
    1080           0 :                 *lVis_tid = tid;
    1081           0 :                 *lVis_offset = offset;
    1082           0 :                 *lVis_block = targetblock;
    1083             :             }
    1084             :         }
    1085             :     }
    1086             : 
    1087             :     /*
    1088             :      * Current tuple has no posting list. If TID is visible save info about it
    1089             :      * for the next comparisons in the loop in bt_page_check(). Report
    1090             :      * duplicate if lVis_tid is already valid.
    1091             :      */
    1092             :     else
    1093             :     {
    1094      278932 :         tid = BTreeTupleGetHeapTID(itup);
    1095      278932 :         if (heap_entry_is_visible(state, tid))
    1096             :         {
    1097      275190 :             has_visible_entry = true;
    1098      275190 :             if (ItemPointerIsValid(*lVis_tid))
    1099             :             {
    1100           6 :                 bt_report_duplicate(state,
    1101             :                                     *lVis_tid, *lVis_block,
    1102           6 :                                     *lVis_offset, *lVis_i,
    1103             :                                     tid, targetblock,
    1104             :                                     offset, -1);
    1105             :             }
    1106      275184 :             *lVis_i = -1;
    1107      275184 :             *lVis_tid = tid;
    1108      275184 :             *lVis_offset = offset;
    1109      275184 :             *lVis_block = targetblock;
    1110             :         }
    1111             :     }
    1112             : 
    1113      278926 :     if (!has_visible_entry && *lVis_block != InvalidBlockNumber &&
    1114           0 :         *lVis_block != targetblock)
    1115             :     {
    1116           0 :         char       *posting = "";
    1117             : 
    1118           0 :         if (*lVis_i >= 0)
    1119           0 :             posting = psprintf(" posting %u", *lVis_i);
    1120           0 :         ereport(DEBUG1,
    1121             :                 (errcode(ERRCODE_NO_DATA),
    1122             :                  errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
    1123             :                         targetblock, offset,
    1124             :                         RelationGetRelationName(state->rel)),
    1125             :                  errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
    1126             :                            *lVis_block, *lVis_offset, posting,
    1127             :                            ItemPointerGetBlockNumberNoCheck(*lVis_tid),
    1128             :                            ItemPointerGetOffsetNumberNoCheck(*lVis_tid)),
    1129             :                  errhint("VACUUM the table and repeat the check.")));
    1130             :     }
    1131             : }
    1132             : 
    1133             : /*
    1134             :  * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
    1135             :  * half-dead, sibling-linked pages to the left.  If a half-dead page appears
    1136             :  * under state->readonly, the database exited recovery between the first-stage
    1137             :  * and second-stage WAL records of a deletion.
    1138             :  */
    1139             : static bool
    1140         110 : bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
    1141             :                                BlockNumber start,
    1142             :                                BTPageOpaque start_opaque)
    1143             : {
    1144         110 :     BlockNumber reached = start_opaque->btpo_prev,
    1145         110 :                 reached_from = start;
    1146         110 :     bool        all_half_dead = true;
    1147             : 
    1148             :     /*
    1149             :      * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
    1150             :      * potentially observe nbtree/README "Page deletion and backwards scans".
    1151             :      */
    1152             :     Assert(state->readonly);
    1153             : 
    1154         114 :     while (reached != P_NONE && all_half_dead)
    1155             :     {
    1156           4 :         Page        page = palloc_btree_page(state, reached);
    1157           4 :         BTPageOpaque reached_opaque = BTPageGetOpaque(page);
    1158             : 
    1159           4 :         CHECK_FOR_INTERRUPTS();
    1160             : 
    1161             :         /*
    1162             :          * Try to detect btpo_prev circular links.  _bt_unlink_halfdead_page()
    1163             :          * writes that side-links will continue to point to the siblings.
    1164             :          * Check btpo_next for that property.
    1165             :          */
    1166           4 :         all_half_dead = P_ISHALFDEAD(reached_opaque) &&
    1167           4 :             reached != start &&
    1168           8 :             reached != reached_from &&
    1169           4 :             reached_opaque->btpo_next == reached_from;
    1170           4 :         if (all_half_dead)
    1171             :         {
    1172           4 :             XLogRecPtr  pagelsn = PageGetLSN(page);
    1173             : 
    1174             :             /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
    1175           4 :             ereport(DEBUG1,
    1176             :                     (errcode(ERRCODE_NO_DATA),
    1177             :                      errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
    1178             :                                      RelationGetRelationName(state->rel)),
    1179             :                      errdetail_internal("Block=%u right block=%u page lsn=%X/%X.",
    1180             :                                         reached, reached_from,
    1181             :                                         LSN_FORMAT_ARGS(pagelsn))));
    1182             : 
    1183           4 :             reached_from = reached;
    1184           4 :             reached = reached_opaque->btpo_prev;
    1185             :         }
    1186             : 
    1187           4 :         pfree(page);
    1188             :     }
    1189             : 
    1190         110 :     return all_half_dead;
    1191             : }
    1192             : 
    1193             : /*
    1194             :  * Raise an error when target page's left link does not point back to the
    1195             :  * previous target page, called leftcurrent here.  The leftcurrent page's
    1196             :  * right link was followed to get to the current target page, and we expect
    1197             :  * mutual agreement among leftcurrent and the current target page.  Make sure
    1198             :  * that this condition has definitely been violated in the !readonly case,
    1199             :  * where concurrent page splits are something that we need to deal with.
    1200             :  *
    1201             :  * Cross-page inconsistencies involving pages that don't agree about being
    1202             :  * siblings are known to be a particularly good indicator of corruption
    1203             :  * involving partial writes/lost updates.  The bt_right_page_check_scankey
    1204             :  * check also provides a way of detecting cross-page inconsistencies for
    1205             :  * !readonly callers, but it can only detect sibling pages that have an
    1206             :  * out-of-order keyspace, which can't catch many of the problems that we
    1207             :  * expect to catch here.
    1208             :  *
    1209             :  * The classic example of the kind of inconsistency that we can only catch
    1210             :  * with this check (when in !readonly mode) involves three sibling pages that
    1211             :  * were affected by a faulty page split at some point in the past.  The
    1212             :  * effects of the split are reflected in the original page and its new right
    1213             :  * sibling page, with a lack of any accompanying changes for the _original_
    1214             :  * right sibling page.  The original right sibling page's left link fails to
    1215             :  * point to the new right sibling page (its left link still points to the
    1216             :  * original page), even though the first phase of a page split is supposed to
    1217             :  * work as a single atomic action.  This subtle inconsistency will probably
    1218             :  * only break backwards scans in practice.
    1219             :  *
    1220             :  * Note that this is the only place where amcheck will "couple" buffer locks
    1221             :  * (and only for !readonly callers).  In general we prefer to avoid more
    1222             :  * thorough cross-page checks in !readonly mode, but it seems worth the
    1223             :  * complexity here.  Also, the performance overhead of performing lock
    1224             :  * coupling here is negligible in practice.  Control only reaches here with a
    1225             :  * non-corrupt index when there is a concurrent page split at the instant
    1226             :  * caller crossed over to target page from leftcurrent page.
    1227             :  */
    1228             : static void
    1229           0 : bt_recheck_sibling_links(BtreeCheckState *state,
    1230             :                          BlockNumber btpo_prev_from_target,
    1231             :                          BlockNumber leftcurrent)
    1232             : {
    1233             :     /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
    1234             :     Assert(leftcurrent != P_NONE);
    1235             : 
    1236           0 :     if (!state->readonly)
    1237             :     {
    1238             :         Buffer      lbuf;
    1239             :         Buffer      newtargetbuf;
    1240             :         Page        page;
    1241             :         BTPageOpaque opaque;
    1242             :         BlockNumber newtargetblock;
    1243             : 
    1244             :         /* Couple locks in the usual order for nbtree:  Left to right */
    1245           0 :         lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
    1246             :                                   RBM_NORMAL, state->checkstrategy);
    1247           0 :         LockBuffer(lbuf, BT_READ);
    1248           0 :         _bt_checkpage(state->rel, lbuf);
    1249           0 :         page = BufferGetPage(lbuf);
    1250           0 :         opaque = BTPageGetOpaque(page);
    1251           0 :         if (P_ISDELETED(opaque))
    1252             :         {
    1253             :             /*
    1254             :              * Cannot reason about concurrently deleted page -- the left link
    1255             :              * in the page to the right is expected to point to some other
    1256             :              * page to the left (not leftcurrent page).
    1257             :              *
    1258             :              * Note that we deliberately don't give up with a half-dead page.
    1259             :              */
    1260           0 :             UnlockReleaseBuffer(lbuf);
    1261           0 :             return;
    1262             :         }
    1263             : 
    1264           0 :         newtargetblock = opaque->btpo_next;
    1265             :         /* Avoid self-deadlock when newtargetblock == leftcurrent */
    1266           0 :         if (newtargetblock != leftcurrent)
    1267             :         {
    1268           0 :             newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
    1269             :                                               newtargetblock, RBM_NORMAL,
    1270             :                                               state->checkstrategy);
    1271           0 :             LockBuffer(newtargetbuf, BT_READ);
    1272           0 :             _bt_checkpage(state->rel, newtargetbuf);
    1273           0 :             page = BufferGetPage(newtargetbuf);
    1274           0 :             opaque = BTPageGetOpaque(page);
    1275             :             /* btpo_prev_from_target may have changed; update it */
    1276           0 :             btpo_prev_from_target = opaque->btpo_prev;
    1277             :         }
    1278             :         else
    1279             :         {
    1280             :             /*
    1281             :              * leftcurrent right sibling points back to leftcurrent block.
    1282             :              * Index is corrupt.  Easiest way to handle this is to pretend
    1283             :              * that we actually read from a distinct page that has an invalid
    1284             :              * block number in its btpo_prev.
    1285             :              */
    1286           0 :             newtargetbuf = InvalidBuffer;
    1287           0 :             btpo_prev_from_target = InvalidBlockNumber;
    1288             :         }
    1289             : 
    1290             :         /*
    1291             :          * No need to check P_ISDELETED here, since new target block cannot be
    1292             :          * marked deleted as long as we hold a lock on lbuf
    1293             :          */
    1294           0 :         if (BufferIsValid(newtargetbuf))
    1295           0 :             UnlockReleaseBuffer(newtargetbuf);
    1296           0 :         UnlockReleaseBuffer(lbuf);
    1297             : 
    1298           0 :         if (btpo_prev_from_target == leftcurrent)
    1299             :         {
    1300             :             /* Report split in left sibling, not target (or new target) */
    1301           0 :             ereport(DEBUG1,
    1302             :                     (errcode(ERRCODE_INTERNAL_ERROR),
    1303             :                      errmsg_internal("harmless concurrent page split detected in index \"%s\"",
    1304             :                                      RelationGetRelationName(state->rel)),
    1305             :                      errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
    1306             :                                         leftcurrent, newtargetblock,
    1307             :                                         state->targetblock)));
    1308           0 :             return;
    1309             :         }
    1310             : 
    1311             :         /*
    1312             :          * Index is corrupt.  Make sure that we report correct target page.
    1313             :          *
    1314             :          * This could have changed in cases where there was a concurrent page
    1315             :          * split, as well as index corruption (at least in theory).  Note that
    1316             :          * btpo_prev_from_target was already updated above.
    1317             :          */
    1318           0 :         state->targetblock = newtargetblock;
    1319             :     }
    1320             : 
    1321           0 :     ereport(ERROR,
    1322             :             (errcode(ERRCODE_INDEX_CORRUPTED),
    1323             :              errmsg("left link/right link pair in index \"%s\" not in agreement",
    1324             :                     RelationGetRelationName(state->rel)),
    1325             :              errdetail_internal("Block=%u left block=%u left link from block=%u.",
    1326             :                                 state->targetblock, leftcurrent,
    1327             :                                 btpo_prev_from_target)));
    1328             : }
    1329             : 
    1330             : /*
    1331             :  * Function performs the following checks on target page, or pages ancillary to
    1332             :  * target page:
    1333             :  *
    1334             :  * - That every "real" data item is less than or equal to the high key, which
    1335             :  *   is an upper bound on the items on the page.  Data items should be
    1336             :  *   strictly less than the high key when the page is an internal page.
    1337             :  *
    1338             :  * - That within the page, every data item is strictly less than the item
    1339             :  *   immediately to its right, if any (i.e., that the items are in order
    1340             :  *   within the page, so that the binary searches performed by index scans are
    1341             :  *   sane).
    1342             :  *
    1343             :  * - That the last data item stored on the page is strictly less than the
    1344             :  *   first data item on the page to the right (when such a first item is
    1345             :  *   available).
    1346             :  *
    1347             :  * - Various checks on the structure of tuples themselves.  For example, check
    1348             :  *   that non-pivot tuples have no truncated attributes.
    1349             :  *
    1350             :  * - For index with unique constraint make sure that only one of table entries
    1351             :  *   for equal keys is visible.
    1352             :  *
    1353             :  * Furthermore, when state passed shows ShareLock held, function also checks:
    1354             :  *
    1355             :  * - That all child pages respect strict lower bound from parent's pivot
    1356             :  *   tuple.
    1357             :  *
    1358             :  * - That downlink to block was encountered in parent where that's expected.
    1359             :  *
    1360             :  * - That high keys of child pages matches corresponding pivot keys in parent.
    1361             :  *
    1362             :  * This is also where heapallindexed callers use their Bloom filter to
    1363             :  * fingerprint IndexTuples for later table_index_build_scan() verification.
    1364             :  *
    1365             :  * Note:  Memory allocated in this routine is expected to be released by caller
    1366             :  * resetting state->targetcontext.
    1367             :  */
    1368             : static void
    1369       17838 : bt_target_page_check(BtreeCheckState *state)
    1370             : {
    1371             :     OffsetNumber offset;
    1372             :     OffsetNumber max;
    1373             :     BTPageOpaque topaque;
    1374             : 
    1375             :     /* last visible entry info for checking indexes with unique constraint */
    1376       17838 :     int         lVis_i = -1;    /* the position of last visible item for
    1377             :                                  * posting tuple. for non-posting tuple (-1) */
    1378       17838 :     ItemPointer lVis_tid = NULL;
    1379       17838 :     BlockNumber lVis_block = InvalidBlockNumber;
    1380       17838 :     OffsetNumber lVis_offset = InvalidOffsetNumber;
    1381             : 
    1382       17838 :     topaque = BTPageGetOpaque(state->target);
    1383       17838 :     max = PageGetMaxOffsetNumber(state->target);
    1384             : 
    1385       17838 :     elog(DEBUG2, "verifying %u items on %s block %u", max,
    1386             :          P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
    1387             : 
    1388             :     /*
    1389             :      * Check the number of attributes in high key. Note, rightmost page
    1390             :      * doesn't contain a high key, so nothing to check
    1391             :      */
    1392       17838 :     if (!P_RIGHTMOST(topaque))
    1393             :     {
    1394             :         ItemId      itemid;
    1395             :         IndexTuple  itup;
    1396             : 
    1397             :         /* Verify line pointer before checking tuple */
    1398       12902 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1399             :                                       state->target, P_HIKEY);
    1400       12902 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1401             :                              P_HIKEY))
    1402             :         {
    1403           0 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1404           0 :             ereport(ERROR,
    1405             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1406             :                      errmsg("wrong number of high key index tuple attributes in index \"%s\"",
    1407             :                             RelationGetRelationName(state->rel)),
    1408             :                      errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
    1409             :                                         state->targetblock,
    1410             :                                         BTreeTupleGetNAtts(itup, state->rel),
    1411             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1412             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1413             :         }
    1414             :     }
    1415             : 
    1416             :     /*
    1417             :      * Loop over page items, starting from first non-highkey item, not high
    1418             :      * key (if any).  Most tests are not performed for the "negative infinity"
    1419             :      * real item (if any).
    1420             :      */
    1421     3998676 :     for (offset = P_FIRSTDATAKEY(topaque);
    1422             :          offset <= max;
    1423     3980838 :          offset = OffsetNumberNext(offset))
    1424             :     {
    1425             :         ItemId      itemid;
    1426             :         IndexTuple  itup;
    1427             :         size_t      tupsize;
    1428             :         BTScanInsert skey;
    1429             :         bool        lowersizelimit;
    1430             :         ItemPointer scantid;
    1431             : 
    1432     3980850 :         CHECK_FOR_INTERRUPTS();
    1433             : 
    1434     3980850 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1435             :                                       state->target, offset);
    1436     3980850 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    1437     3980850 :         tupsize = IndexTupleSize(itup);
    1438             : 
    1439             :         /*
    1440             :          * lp_len should match the IndexTuple reported length exactly, since
    1441             :          * lp_len is completely redundant in indexes, and both sources of
    1442             :          * tuple length are MAXALIGN()'d.  nbtree does not use lp_len all that
    1443             :          * frequently, and is surprisingly tolerant of corrupt lp_len fields.
    1444             :          */
    1445     3980850 :         if (tupsize != ItemIdGetLength(itemid))
    1446           0 :             ereport(ERROR,
    1447             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1448             :                      errmsg("index tuple size does not equal lp_len in index \"%s\"",
    1449             :                             RelationGetRelationName(state->rel)),
    1450             :                      errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
    1451             :                                         state->targetblock, offset,
    1452             :                                         tupsize, ItemIdGetLength(itemid),
    1453             :                                         LSN_FORMAT_ARGS(state->targetlsn)),
    1454             :                      errhint("This could be a torn page problem.")));
    1455             : 
    1456             :         /* Check the number of index tuple attributes */
    1457     3980850 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1458             :                              offset))
    1459             :         {
    1460             :             ItemPointer tid;
    1461             :             char       *itid,
    1462             :                        *htid;
    1463             : 
    1464           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1465           0 :             tid = BTreeTupleGetPointsToTID(itup);
    1466           0 :             htid = psprintf("(%u,%u)",
    1467             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1468           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1469             : 
    1470           0 :             ereport(ERROR,
    1471             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1472             :                      errmsg("wrong number of index tuple attributes in index \"%s\"",
    1473             :                             RelationGetRelationName(state->rel)),
    1474             :                      errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
    1475             :                                         itid,
    1476             :                                         BTreeTupleGetNAtts(itup, state->rel),
    1477             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1478             :                                         htid,
    1479             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1480             :         }
    1481             : 
    1482             :         /*
    1483             :          * Don't try to generate scankey using "negative infinity" item on
    1484             :          * internal pages. They are always truncated to zero attributes.
    1485             :          */
    1486     3980850 :         if (offset_is_negative_infinity(topaque, offset))
    1487             :         {
    1488             :             /*
    1489             :              * We don't call bt_child_check() for "negative infinity" items.
    1490             :              * But if we're performing downlink connectivity check, we do it
    1491             :              * for every item including "negative infinity" one.
    1492             :              */
    1493        1030 :             if (!P_ISLEAF(topaque) && state->readonly)
    1494             :             {
    1495          24 :                 bt_child_highkey_check(state,
    1496             :                                        offset,
    1497             :                                        NULL,
    1498             :                                        topaque->btpo_level);
    1499             :             }
    1500        1030 :             continue;
    1501             :         }
    1502             : 
    1503             :         /*
    1504             :          * Readonly callers may optionally verify that non-pivot tuples can
    1505             :          * each be found by an independent search that starts from the root.
    1506             :          * Note that we deliberately don't do individual searches for each
    1507             :          * TID, since the posting list itself is validated by other checks.
    1508             :          */
    1509     3979820 :         if (state->rootdescend && P_ISLEAF(topaque) &&
    1510      402196 :             !bt_rootdescend(state, itup))
    1511             :         {
    1512           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1513             :             char       *itid,
    1514             :                        *htid;
    1515             : 
    1516           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1517           0 :             htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
    1518           0 :                             ItemPointerGetOffsetNumber(tid));
    1519             : 
    1520           0 :             ereport(ERROR,
    1521             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1522             :                      errmsg("could not find tuple using search from root page in index \"%s\"",
    1523             :                             RelationGetRelationName(state->rel)),
    1524             :                      errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
    1525             :                                         itid, htid,
    1526             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1527             :         }
    1528             : 
    1529             :         /*
    1530             :          * If tuple is a posting list tuple, make sure posting list TIDs are
    1531             :          * in order
    1532             :          */
    1533     3979820 :         if (BTreeTupleIsPosting(itup))
    1534             :         {
    1535             :             ItemPointerData last;
    1536             :             ItemPointer current;
    1537             : 
    1538       20600 :             ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
    1539             : 
    1540      167292 :             for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
    1541             :             {
    1542             : 
    1543      146692 :                 current = BTreeTupleGetPostingN(itup, i);
    1544             : 
    1545      146692 :                 if (ItemPointerCompare(current, &last) <= 0)
    1546             :                 {
    1547           0 :                     char       *itid = psprintf("(%u,%u)", state->targetblock, offset);
    1548             : 
    1549           0 :                     ereport(ERROR,
    1550             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    1551             :                              errmsg_internal("posting list contains misplaced TID in index \"%s\"",
    1552             :                                              RelationGetRelationName(state->rel)),
    1553             :                              errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
    1554             :                                                 itid, i,
    1555             :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    1556             :                 }
    1557             : 
    1558      146692 :                 ItemPointerCopy(current, &last);
    1559             :             }
    1560             :         }
    1561             : 
    1562             :         /* Build insertion scankey for current page offset */
    1563     3979820 :         skey = bt_mkscankey_pivotsearch(state->rel, itup);
    1564             : 
    1565             :         /*
    1566             :          * Make sure tuple size does not exceed the relevant BTREE_VERSION
    1567             :          * specific limit.
    1568             :          *
    1569             :          * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
    1570             :          * a small amount of space from BTMaxItemSize() in order to ensure
    1571             :          * that suffix truncation always has enough space to add an explicit
    1572             :          * heap TID back to a tuple -- we pessimistically assume that every
    1573             :          * newly inserted tuple will eventually need to have a heap TID
    1574             :          * appended during a future leaf page split, when the tuple becomes
    1575             :          * the basis of the new high key (pivot tuple) for the leaf page.
    1576             :          *
    1577             :          * Since the reclaimed space is reserved for that purpose, we must not
    1578             :          * enforce the slightly lower limit when the extra space has been used
    1579             :          * as intended.  In other words, there is only a cross-version
    1580             :          * difference in the limit on tuple size within leaf pages.
    1581             :          *
    1582             :          * Still, we're particular about the details within BTREE_VERSION 4
    1583             :          * internal pages.  Pivot tuples may only use the extra space for its
    1584             :          * designated purpose.  Enforce the lower limit for pivot tuples when
    1585             :          * an explicit heap TID isn't actually present. (In all other cases
    1586             :          * suffix truncation is guaranteed to generate a pivot tuple that's no
    1587             :          * larger than the firstright tuple provided to it by its caller.)
    1588             :          */
    1589     7959640 :         lowersizelimit = skey->heapkeyspace &&
    1590     3979820 :             (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
    1591     3979852 :         if (tupsize > (lowersizelimit ? BTMaxItemSize(state->target) :
    1592          32 :                        BTMaxItemSizeNoHeapTid(state->target)))
    1593             :         {
    1594           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1595             :             char       *itid,
    1596             :                        *htid;
    1597             : 
    1598           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1599           0 :             htid = psprintf("(%u,%u)",
    1600             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1601           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1602             : 
    1603           0 :             ereport(ERROR,
    1604             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1605             :                      errmsg("index row size %zu exceeds maximum for index \"%s\"",
    1606             :                             tupsize, RelationGetRelationName(state->rel)),
    1607             :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
    1608             :                                         itid,
    1609             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1610             :                                         htid,
    1611             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1612             :         }
    1613             : 
    1614             :         /* Fingerprint leaf page tuples (those that point to the heap) */
    1615     3979820 :         if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
    1616             :         {
    1617             :             IndexTuple  norm;
    1618             : 
    1619     1014028 :             if (BTreeTupleIsPosting(itup))
    1620             :             {
    1621             :                 /* Fingerprint all elements as distinct "plain" tuples */
    1622       64410 :                 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
    1623             :                 {
    1624             :                     IndexTuple  logtuple;
    1625             : 
    1626       63946 :                     logtuple = bt_posting_plain_tuple(itup, i);
    1627       63946 :                     norm = bt_normalize_tuple(state, logtuple);
    1628       63946 :                     bloom_add_element(state->filter, (unsigned char *) norm,
    1629       63946 :                                       IndexTupleSize(norm));
    1630             :                     /* Be tidy */
    1631       63946 :                     if (norm != logtuple)
    1632           4 :                         pfree(norm);
    1633       63946 :                     pfree(logtuple);
    1634             :                 }
    1635             :             }
    1636             :             else
    1637             :             {
    1638     1013564 :                 norm = bt_normalize_tuple(state, itup);
    1639     1013564 :                 bloom_add_element(state->filter, (unsigned char *) norm,
    1640     1013564 :                                   IndexTupleSize(norm));
    1641             :                 /* Be tidy */
    1642     1013564 :                 if (norm != itup)
    1643           2 :                     pfree(norm);
    1644             :             }
    1645             :         }
    1646             : 
    1647             :         /*
    1648             :          * * High key check *
    1649             :          *
    1650             :          * If there is a high key (if this is not the rightmost page on its
    1651             :          * entire level), check that high key actually is upper bound on all
    1652             :          * page items.  If this is a posting list tuple, we'll need to set
    1653             :          * scantid to be highest TID in posting list.
    1654             :          *
    1655             :          * We prefer to check all items against high key rather than checking
    1656             :          * just the last and trusting that the operator class obeys the
    1657             :          * transitive law (which implies that all previous items also
    1658             :          * respected the high key invariant if they pass the item order
    1659             :          * check).
    1660             :          *
    1661             :          * Ideally, we'd compare every item in the index against every other
    1662             :          * item in the index, and not trust opclass obedience of the
    1663             :          * transitive law to bridge the gap between children and their
    1664             :          * grandparents (as well as great-grandparents, and so on).  We don't
    1665             :          * go to those lengths because that would be prohibitively expensive,
    1666             :          * and probably not markedly more effective in practice.
    1667             :          *
    1668             :          * On the leaf level, we check that the key is <= the highkey.
    1669             :          * However, on non-leaf levels we check that the key is < the highkey,
    1670             :          * because the high key is "just another separator" rather than a copy
    1671             :          * of some existing key item; we expect it to be unique among all keys
    1672             :          * on the same level.  (Suffix truncation will sometimes produce a
    1673             :          * leaf highkey that is an untruncated copy of the lastleft item, but
    1674             :          * never any other item, which necessitates weakening the leaf level
    1675             :          * check to <=.)
    1676             :          *
    1677             :          * Full explanation for why a highkey is never truly a copy of another
    1678             :          * item from the same level on internal levels:
    1679             :          *
    1680             :          * While the new left page's high key is copied from the first offset
    1681             :          * on the right page during an internal page split, that's not the
    1682             :          * full story.  In effect, internal pages are split in the middle of
    1683             :          * the firstright tuple, not between the would-be lastleft and
    1684             :          * firstright tuples: the firstright key ends up on the left side as
    1685             :          * left's new highkey, and the firstright downlink ends up on the
    1686             :          * right side as right's new "negative infinity" item.  The negative
    1687             :          * infinity tuple is truncated to zero attributes, so we're only left
    1688             :          * with the downlink.  In other words, the copying is just an
    1689             :          * implementation detail of splitting in the middle of a (pivot)
    1690             :          * tuple. (See also: "Notes About Data Representation" in the nbtree
    1691             :          * README.)
    1692             :          */
    1693     3979820 :         scantid = skey->scantid;
    1694     3979820 :         if (state->heapkeyspace && BTreeTupleIsPosting(itup))
    1695       20600 :             skey->scantid = BTreeTupleGetMaxHeapTID(itup);
    1696             : 
    1697     7633932 :         if (!P_RIGHTMOST(topaque) &&
    1698     3654112 :             !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
    1699        1132 :               invariant_l_offset(state, skey, P_HIKEY)))
    1700             :         {
    1701           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1702             :             char       *itid,
    1703             :                        *htid;
    1704             : 
    1705           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1706           0 :             htid = psprintf("(%u,%u)",
    1707             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1708           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1709             : 
    1710           0 :             ereport(ERROR,
    1711             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1712             :                      errmsg("high key invariant violated for index \"%s\"",
    1713             :                             RelationGetRelationName(state->rel)),
    1714             :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
    1715             :                                         itid,
    1716             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1717             :                                         htid,
    1718             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1719             :         }
    1720             :         /* Reset, in case scantid was set to (itup) posting tuple's max TID */
    1721     3979820 :         skey->scantid = scantid;
    1722             : 
    1723             :         /*
    1724             :          * * Item order check *
    1725             :          *
    1726             :          * Check that items are stored on page in logical order, by checking
    1727             :          * current item is strictly less than next item (if any).
    1728             :          */
    1729     3979820 :         if (OffsetNumberNext(offset) <= max &&
    1730     3961998 :             !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
    1731             :         {
    1732             :             ItemPointer tid;
    1733             :             char       *itid,
    1734             :                        *htid,
    1735             :                        *nitid,
    1736             :                        *nhtid;
    1737             : 
    1738           6 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1739           6 :             tid = BTreeTupleGetPointsToTID(itup);
    1740           6 :             htid = psprintf("(%u,%u)",
    1741             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1742           6 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1743           6 :             nitid = psprintf("(%u,%u)", state->targetblock,
    1744           6 :                              OffsetNumberNext(offset));
    1745             : 
    1746             :             /* Reuse itup to get pointed-to heap location of second item */
    1747           6 :             itemid = PageGetItemIdCareful(state, state->targetblock,
    1748             :                                           state->target,
    1749           6 :                                           OffsetNumberNext(offset));
    1750           6 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1751           6 :             tid = BTreeTupleGetPointsToTID(itup);
    1752           6 :             nhtid = psprintf("(%u,%u)",
    1753             :                              ItemPointerGetBlockNumberNoCheck(tid),
    1754           6 :                              ItemPointerGetOffsetNumberNoCheck(tid));
    1755             : 
    1756           6 :             ereport(ERROR,
    1757             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1758             :                      errmsg("item order invariant violated for index \"%s\"",
    1759             :                             RelationGetRelationName(state->rel)),
    1760             :                      errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
    1761             :                                         "higher index tid=%s (points to %s tid=%s) "
    1762             :                                         "page lsn=%X/%X.",
    1763             :                                         itid,
    1764             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1765             :                                         htid,
    1766             :                                         nitid,
    1767             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1768             :                                         nhtid,
    1769             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1770             :         }
    1771             : 
    1772             :         /*
    1773             :          * If the index is unique verify entries uniqueness by checking the
    1774             :          * heap tuples visibility.
    1775             :          */
    1776     3979814 :         if (state->checkunique && state->indexinfo->ii_Unique &&
    1777      280084 :             P_ISLEAF(topaque) && !skey->anynullkeys)
    1778      278932 :             bt_entry_unique_check(state, itup, state->targetblock, offset,
    1779             :                                   &lVis_i, &lVis_tid, &lVis_offset,
    1780             :                                   &lVis_block);
    1781             : 
    1782     3979808 :         if (state->checkunique && state->indexinfo->ii_Unique &&
    1783      280078 :             P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
    1784             :         {
    1785             :             /* Save current scankey tid */
    1786      277522 :             scantid = skey->scantid;
    1787             : 
    1788             :             /*
    1789             :              * Invalidate scankey tid to make _bt_compare compare only keys in
    1790             :              * the item to report equality even if heap TIDs are different
    1791             :              */
    1792      277522 :             skey->scantid = NULL;
    1793             : 
    1794             :             /*
    1795             :              * If next key tuple is different, invalidate last visible entry
    1796             :              * data (whole index tuple or last posting in index tuple). Key
    1797             :              * containing null value does not violate unique constraint and
    1798             :              * treated as different to any other key.
    1799             :              */
    1800      277522 :             if (_bt_compare(state->rel, skey, state->target,
    1801      277838 :                             OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
    1802             :             {
    1803      277346 :                 lVis_i = -1;
    1804      277346 :                 lVis_tid = NULL;
    1805      277346 :                 lVis_block = InvalidBlockNumber;
    1806      277346 :                 lVis_offset = InvalidOffsetNumber;
    1807             :             }
    1808      277522 :             skey->scantid = scantid; /* Restore saved scan key state */
    1809             :         }
    1810             : 
    1811             :         /*
    1812             :          * * Last item check *
    1813             :          *
    1814             :          * Check last item against next/right page's first data item's when
    1815             :          * last item on page is reached.  This additional check will detect
    1816             :          * transposed pages iff the supposed right sibling page happens to
    1817             :          * belong before target in the key space.  (Otherwise, a subsequent
    1818             :          * heap verification will probably detect the problem.)
    1819             :          *
    1820             :          * This check is similar to the item order check that will have
    1821             :          * already been performed for every other "real" item on target page
    1822             :          * when last item is checked.  The difference is that the next item
    1823             :          * (the item that is compared to target's last item) needs to come
    1824             :          * from the next/sibling page.  There may not be such an item
    1825             :          * available from sibling for various reasons, though (e.g., target is
    1826             :          * the rightmost page on level).
    1827             :          */
    1828     3979808 :         if (offset == max)
    1829             :         {
    1830             :             BTScanInsert rightkey;
    1831             :             BlockNumber rightblock_number;
    1832             : 
    1833             :             /* first offset on a right index page (log only) */
    1834       17822 :             OffsetNumber rightfirstoffset = InvalidOffsetNumber;
    1835             : 
    1836             :             /* Get item in next/right page */
    1837       17822 :             rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
    1838             : 
    1839       17822 :             if (rightkey &&
    1840       12894 :                 !invariant_g_offset(state, rightkey, max))
    1841             :             {
    1842             :                 /*
    1843             :                  * As explained at length in bt_right_page_check_scankey(),
    1844             :                  * there is a known !readonly race that could account for
    1845             :                  * apparent violation of invariant, which we must check for
    1846             :                  * before actually proceeding with raising error.  Our canary
    1847             :                  * condition is that target page was deleted.
    1848             :                  */
    1849           0 :                 if (!state->readonly)
    1850             :                 {
    1851             :                     /* Get fresh copy of target page */
    1852           0 :                     state->target = palloc_btree_page(state, state->targetblock);
    1853             :                     /* Note that we deliberately do not update target LSN */
    1854           0 :                     topaque = BTPageGetOpaque(state->target);
    1855             : 
    1856             :                     /*
    1857             :                      * All !readonly checks now performed; just return
    1858             :                      */
    1859           0 :                     if (P_IGNORE(topaque))
    1860           0 :                         return;
    1861             :                 }
    1862             : 
    1863           0 :                 ereport(ERROR,
    1864             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    1865             :                          errmsg("cross page item order invariant violated for index \"%s\"",
    1866             :                                 RelationGetRelationName(state->rel)),
    1867             :                          errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
    1868             :                                             state->targetblock, offset,
    1869             :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    1870             :             }
    1871             : 
    1872             :             /*
    1873             :              * If index has unique constraint make sure that no more than one
    1874             :              * found equal items is visible.
    1875             :              */
    1876       17822 :             rightblock_number = topaque->btpo_next;
    1877       17822 :             if (state->checkunique && state->indexinfo->ii_Unique &&
    1878         988 :                 rightkey && P_ISLEAF(topaque) && rightblock_number != P_NONE)
    1879             :             {
    1880         988 :                 elog(DEBUG2, "check cross page unique condition");
    1881             : 
    1882             :                 /*
    1883             :                  * Make _bt_compare compare only index keys without heap TIDs.
    1884             :                  * rightkey->scantid is modified destructively but it is ok
    1885             :                  * for it is not used later.
    1886             :                  */
    1887         988 :                 rightkey->scantid = NULL;
    1888             : 
    1889             :                 /* The first key on the next page is the same */
    1890         988 :                 if (_bt_compare(state->rel, rightkey, state->target, max) == 0 && !rightkey->anynullkeys)
    1891             :                 {
    1892           0 :                     elog(DEBUG2, "cross page equal keys");
    1893           0 :                     state->target = palloc_btree_page(state,
    1894             :                                                       rightblock_number);
    1895           0 :                     topaque = BTPageGetOpaque(state->target);
    1896             : 
    1897           0 :                     if (P_IGNORE(topaque) || !P_ISLEAF(topaque))
    1898             :                         break;
    1899             : 
    1900           0 :                     itemid = PageGetItemIdCareful(state, rightblock_number,
    1901             :                                                   state->target,
    1902             :                                                   rightfirstoffset);
    1903           0 :                     itup = (IndexTuple) PageGetItem(state->target, itemid);
    1904             : 
    1905           0 :                     bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset,
    1906             :                                           &lVis_i, &lVis_tid, &lVis_offset,
    1907             :                                           &lVis_block);
    1908             :                 }
    1909             :             }
    1910             :         }
    1911             : 
    1912             :         /*
    1913             :          * * Downlink check *
    1914             :          *
    1915             :          * Additional check of child items iff this is an internal page and
    1916             :          * caller holds a ShareLock.  This happens for every downlink (item)
    1917             :          * in target excluding the negative-infinity downlink (again, this is
    1918             :          * because it has no useful value to compare).
    1919             :          */
    1920     3979808 :         if (!P_ISLEAF(topaque) && state->readonly)
    1921        3722 :             bt_child_check(state, skey, offset);
    1922             :     }
    1923             : 
    1924             :     /*
    1925             :      * Special case bt_child_highkey_check() call
    1926             :      *
    1927             :      * We don't pass a real downlink, but we've to finish the level
    1928             :      * processing. If condition is satisfied, we've already processed all the
    1929             :      * downlinks from the target level.  But there still might be pages to the
    1930             :      * right of the child page pointer to by our rightmost downlink.  And they
    1931             :      * might have missing downlinks.  This final call checks for them.
    1932             :      */
    1933       17826 :     if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
    1934             :     {
    1935          22 :         bt_child_highkey_check(state, InvalidOffsetNumber,
    1936             :                                NULL, topaque->btpo_level);
    1937             :     }
    1938             : }
    1939             : 
    1940             : /*
    1941             :  * Return a scankey for an item on page to right of current target (or the
    1942             :  * first non-ignorable page), sufficient to check ordering invariant on last
    1943             :  * item in current target page.  Returned scankey relies on local memory
    1944             :  * allocated for the child page, which caller cannot pfree().  Caller's memory
    1945             :  * context should be reset between calls here.
    1946             :  *
    1947             :  * This is the first data item, and so all adjacent items are checked against
    1948             :  * their immediate sibling item (which may be on a sibling page, or even a
    1949             :  * "cousin" page at parent boundaries where target's rightlink points to page
    1950             :  * with different parent page).  If no such valid item is available, return
    1951             :  * NULL instead.
    1952             :  *
    1953             :  * Note that !readonly callers must reverify that target page has not
    1954             :  * been concurrently deleted.
    1955             :  *
    1956             :  * Save rightfirstdataoffset for detailed error message.
    1957             :  */
    1958             : static BTScanInsert
    1959       17822 : bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
    1960             : {
    1961             :     BTPageOpaque opaque;
    1962             :     ItemId      rightitem;
    1963             :     IndexTuple  firstitup;
    1964             :     BlockNumber targetnext;
    1965             :     Page        rightpage;
    1966             :     OffsetNumber nline;
    1967             : 
    1968             :     /* Determine target's next block number */
    1969       17822 :     opaque = BTPageGetOpaque(state->target);
    1970             : 
    1971             :     /* If target is already rightmost, no right sibling; nothing to do here */
    1972       17822 :     if (P_RIGHTMOST(opaque))
    1973        4928 :         return NULL;
    1974             : 
    1975             :     /*
    1976             :      * General notes on concurrent page splits and page deletion:
    1977             :      *
    1978             :      * Routines like _bt_search() don't require *any* page split interlock
    1979             :      * when descending the tree, including something very light like a buffer
    1980             :      * pin. That's why it's okay that we don't either.  This avoidance of any
    1981             :      * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
    1982             :      * algorithm, in fact.
    1983             :      *
    1984             :      * That leaves deletion.  A deleted page won't actually be recycled by
    1985             :      * VACUUM early enough for us to fail to at least follow its right link
    1986             :      * (or left link, or downlink) and find its sibling, because recycling
    1987             :      * does not occur until no possible index scan could land on the page.
    1988             :      * Index scans can follow links with nothing more than their snapshot as
    1989             :      * an interlock and be sure of at least that much.  (See page
    1990             :      * recycling/"visible to everyone" notes in nbtree README.)
    1991             :      *
    1992             :      * Furthermore, it's okay if we follow a rightlink and find a half-dead or
    1993             :      * dead (ignorable) page one or more times.  There will either be a
    1994             :      * further right link to follow that leads to a live page before too long
    1995             :      * (before passing by parent's rightmost child), or we will find the end
    1996             :      * of the entire level instead (possible when parent page is itself the
    1997             :      * rightmost on its level).
    1998             :      */
    1999       12894 :     targetnext = opaque->btpo_next;
    2000             :     for (;;)
    2001             :     {
    2002       12894 :         CHECK_FOR_INTERRUPTS();
    2003             : 
    2004       12894 :         rightpage = palloc_btree_page(state, targetnext);
    2005       12894 :         opaque = BTPageGetOpaque(rightpage);
    2006             : 
    2007       12894 :         if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
    2008             :             break;
    2009             : 
    2010             :         /*
    2011             :          * We landed on a deleted or half-dead sibling page.  Step right until
    2012             :          * we locate a live sibling page.
    2013             :          */
    2014           0 :         ereport(DEBUG2,
    2015             :                 (errcode(ERRCODE_NO_DATA),
    2016             :                  errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
    2017             :                                  opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
    2018             :                  errdetail_internal("Deleted page found when building scankey from right sibling.")));
    2019             : 
    2020           0 :         targetnext = opaque->btpo_next;
    2021             : 
    2022             :         /* Be slightly more pro-active in freeing this memory, just in case */
    2023           0 :         pfree(rightpage);
    2024             :     }
    2025             : 
    2026             :     /*
    2027             :      * No ShareLock held case -- why it's safe to proceed.
    2028             :      *
    2029             :      * Problem:
    2030             :      *
    2031             :      * We must avoid false positive reports of corruption when caller treats
    2032             :      * item returned here as an upper bound on target's last item.  In
    2033             :      * general, false positives are disallowed.  Avoiding them here when
    2034             :      * caller is !readonly is subtle.
    2035             :      *
    2036             :      * A concurrent page deletion by VACUUM of the target page can result in
    2037             :      * the insertion of items on to this right sibling page that would
    2038             :      * previously have been inserted on our target page.  There might have
    2039             :      * been insertions that followed the target's downlink after it was made
    2040             :      * to point to right sibling instead of target by page deletion's first
    2041             :      * phase. The inserters insert items that would belong on target page.
    2042             :      * This race is very tight, but it's possible.  This is our only problem.
    2043             :      *
    2044             :      * Non-problems:
    2045             :      *
    2046             :      * We are not hindered by a concurrent page split of the target; we'll
    2047             :      * never land on the second half of the page anyway.  A concurrent split
    2048             :      * of the right page will also not matter, because the first data item
    2049             :      * remains the same within the left half, which we'll reliably land on. If
    2050             :      * we had to skip over ignorable/deleted pages, it cannot matter because
    2051             :      * their key space has already been atomically merged with the first
    2052             :      * non-ignorable page we eventually find (doesn't matter whether the page
    2053             :      * we eventually find is a true sibling or a cousin of target, which we go
    2054             :      * into below).
    2055             :      *
    2056             :      * Solution:
    2057             :      *
    2058             :      * Caller knows that it should reverify that target is not ignorable
    2059             :      * (half-dead or deleted) when cross-page sibling item comparison appears
    2060             :      * to indicate corruption (invariant fails).  This detects the single race
    2061             :      * condition that exists for caller.  This is correct because the
    2062             :      * continued existence of target block as non-ignorable (not half-dead or
    2063             :      * deleted) implies that target page was not merged into from the right by
    2064             :      * deletion; the key space at or after target never moved left.  Target's
    2065             :      * parent either has the same downlink to target as before, or a <
    2066             :      * downlink due to deletion at the left of target.  Target either has the
    2067             :      * same highkey as before, or a highkey < before when there is a page
    2068             :      * split. (The rightmost concurrently-split-from-target-page page will
    2069             :      * still have the same highkey as target was originally found to have,
    2070             :      * which for our purposes is equivalent to target's highkey itself never
    2071             :      * changing, since we reliably skip over
    2072             :      * concurrently-split-from-target-page pages.)
    2073             :      *
    2074             :      * In simpler terms, we allow that the key space of the target may expand
    2075             :      * left (the key space can move left on the left side of target only), but
    2076             :      * the target key space cannot expand right and get ahead of us without
    2077             :      * our detecting it.  The key space of the target cannot shrink, unless it
    2078             :      * shrinks to zero due to the deletion of the original page, our canary
    2079             :      * condition.  (To be very precise, we're a bit stricter than that because
    2080             :      * it might just have been that the target page split and only the
    2081             :      * original target page was deleted.  We can be more strict, just not more
    2082             :      * lax.)
    2083             :      *
    2084             :      * Top level tree walk caller moves on to next page (makes it the new
    2085             :      * target) following recovery from this race.  (cf.  The rationale for
    2086             :      * child/downlink verification needing a ShareLock within
    2087             :      * bt_child_check(), where page deletion is also the main source of
    2088             :      * trouble.)
    2089             :      *
    2090             :      * Note that it doesn't matter if right sibling page here is actually a
    2091             :      * cousin page, because in order for the key space to be readjusted in a
    2092             :      * way that causes us issues in next level up (guiding problematic
    2093             :      * concurrent insertions to the cousin from the grandparent rather than to
    2094             :      * the sibling from the parent), there'd have to be page deletion of
    2095             :      * target's parent page (affecting target's parent's downlink in target's
    2096             :      * grandparent page).  Internal page deletion only occurs when there are
    2097             :      * no child pages (they were all fully deleted), and caller is checking
    2098             :      * that the target's parent has at least one non-deleted (so
    2099             :      * non-ignorable) child: the target page.  (Note that the first phase of
    2100             :      * deletion atomically marks the page to be deleted half-dead/ignorable at
    2101             :      * the same time downlink in its parent is removed, so caller will
    2102             :      * definitely not fail to detect that this happened.)
    2103             :      *
    2104             :      * This trick is inspired by the method backward scans use for dealing
    2105             :      * with concurrent page splits; concurrent page deletion is a problem that
    2106             :      * similarly receives special consideration sometimes (it's possible that
    2107             :      * the backwards scan will re-read its "original" block after failing to
    2108             :      * find a right-link to it, having already moved in the opposite direction
    2109             :      * (right/"forwards") a few times to try to locate one).  Just like us,
    2110             :      * that happens only to determine if there was a concurrent page deletion
    2111             :      * of a reference page, and just like us if there was a page deletion of
    2112             :      * that reference page it means we can move on from caring about the
    2113             :      * reference page.  See the nbtree README for a full description of how
    2114             :      * that works.
    2115             :      */
    2116       12894 :     nline = PageGetMaxOffsetNumber(rightpage);
    2117             : 
    2118             :     /*
    2119             :      * Get first data item, if any
    2120             :      */
    2121       12894 :     if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
    2122             :     {
    2123             :         /* Return first data item (if any) */
    2124       12890 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    2125       12890 :                                          P_FIRSTDATAKEY(opaque));
    2126       12890 :         *rightfirstoffset = P_FIRSTDATAKEY(opaque);
    2127             :     }
    2128           8 :     else if (!P_ISLEAF(opaque) &&
    2129           4 :              nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
    2130             :     {
    2131             :         /*
    2132             :          * Return first item after the internal page's "negative infinity"
    2133             :          * item
    2134             :          */
    2135           4 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    2136           4 :                                          OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
    2137             :     }
    2138             :     else
    2139             :     {
    2140             :         /*
    2141             :          * No first item.  Page is probably empty leaf page, but it's also
    2142             :          * possible that it's an internal page with only a negative infinity
    2143             :          * item.
    2144             :          */
    2145           0 :         ereport(DEBUG2,
    2146             :                 (errcode(ERRCODE_NO_DATA),
    2147             :                  errmsg_internal("%s block %u of index \"%s\" has no first data item",
    2148             :                                  P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
    2149             :                                  RelationGetRelationName(state->rel))));
    2150           0 :         return NULL;
    2151             :     }
    2152             : 
    2153             :     /*
    2154             :      * Return first real item scankey.  Note that this relies on right page
    2155             :      * memory remaining allocated.
    2156             :      */
    2157       12894 :     firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
    2158       12894 :     return bt_mkscankey_pivotsearch(state->rel, firstitup);
    2159             : }
    2160             : 
    2161             : /*
    2162             :  * Check if two tuples are binary identical except the block number.  So,
    2163             :  * this function is capable to compare pivot keys on different levels.
    2164             :  */
    2165             : static bool
    2166        3724 : bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
    2167             : {
    2168        3724 :     if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
    2169           0 :         return false;
    2170             : 
    2171        3724 :     if (heapkeyspace)
    2172             :     {
    2173             :         /*
    2174             :          * Offset number will contain important information in heapkeyspace
    2175             :          * indexes: the number of attributes left in the pivot tuple following
    2176             :          * suffix truncation.  Don't skip over it (compare it too).
    2177             :          */
    2178        3724 :         if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
    2179        3724 :                    IndexTupleSize(itup1) -
    2180             :                    offsetof(ItemPointerData, ip_posid)) != 0)
    2181           0 :             return false;
    2182             :     }
    2183             :     else
    2184             :     {
    2185             :         /*
    2186             :          * Cannot rely on offset number field having consistent value across
    2187             :          * levels on pg_upgrade'd !heapkeyspace indexes.  Compare contents of
    2188             :          * tuple starting from just after item pointer (i.e. after block
    2189             :          * number and offset number).
    2190             :          */
    2191           0 :         if (memcmp(&itup1->t_info, &itup2->t_info,
    2192           0 :                    IndexTupleSize(itup1) -
    2193             :                    offsetof(IndexTupleData, t_info)) != 0)
    2194           0 :             return false;
    2195             :     }
    2196             : 
    2197        3724 :     return true;
    2198             : }
    2199             : 
    2200             : /*---
    2201             :  * Check high keys on the child level.  Traverse rightlinks from previous
    2202             :  * downlink to the current one.  Check that there are no intermediate pages
    2203             :  * with missing downlinks.
    2204             :  *
    2205             :  * If 'loaded_child' is given, it's assumed to be the page pointed to by the
    2206             :  * downlink referenced by 'downlinkoffnum' of the target page.
    2207             :  *
    2208             :  * Basically this function is called for each target downlink and checks two
    2209             :  * invariants:
    2210             :  *
    2211             :  * 1) You can reach the next child from previous one via rightlinks;
    2212             :  * 2) Each child high key have matching pivot key on target level.
    2213             :  *
    2214             :  * Consider the sample tree picture.
    2215             :  *
    2216             :  *               1
    2217             :  *           /       \
    2218             :  *        2     <->     3
    2219             :  *      /   \        /     \
    2220             :  *    4  <>  5  <> 6 <> 7 <> 8
    2221             :  *
    2222             :  * This function will be called for blocks 4, 5, 6 and 8.  Consider what is
    2223             :  * happening for each function call.
    2224             :  *
    2225             :  * - The function call for block 4 initializes data structure and matches high
    2226             :  *   key of block 4 to downlink's pivot key of block 2.
    2227             :  * - The high key of block 5 is matched to the high key of block 2.
    2228             :  * - The block 6 has an incomplete split flag set, so its high key isn't
    2229             :  *   matched to anything.
    2230             :  * - The function call for block 8 checks that block 8 can be found while
    2231             :  *   following rightlinks from block 6.  The high key of block 7 will be
    2232             :  *   matched to downlink's pivot key in block 3.
    2233             :  *
    2234             :  * There is also final call of this function, which checks that there is no
    2235             :  * missing downlinks for children to the right of the child referenced by
    2236             :  * rightmost downlink in target level.
    2237             :  */
    2238             : static void
    2239        3768 : bt_child_highkey_check(BtreeCheckState *state,
    2240             :                        OffsetNumber target_downlinkoffnum,
    2241             :                        Page loaded_child,
    2242             :                        uint32 target_level)
    2243             : {
    2244        3768 :     BlockNumber blkno = state->prevrightlink;
    2245             :     Page        page;
    2246             :     BTPageOpaque opaque;
    2247        3768 :     bool        rightsplit = state->previncompletesplit;
    2248        3768 :     bool        first = true;
    2249             :     ItemId      itemid;
    2250             :     IndexTuple  itup;
    2251             :     BlockNumber downlink;
    2252             : 
    2253        3768 :     if (OffsetNumberIsValid(target_downlinkoffnum))
    2254             :     {
    2255        3746 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    2256             :                                       state->target, target_downlinkoffnum);
    2257        3746 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    2258        3746 :         downlink = BTreeTupleGetDownLink(itup);
    2259             :     }
    2260             :     else
    2261             :     {
    2262          22 :         downlink = P_NONE;
    2263             :     }
    2264             : 
    2265             :     /*
    2266             :      * If no previous rightlink is memorized for current level just below
    2267             :      * target page's level, we are about to start from the leftmost page. We
    2268             :      * can't follow rightlinks from previous page, because there is no
    2269             :      * previous page.  But we still can match high key.
    2270             :      *
    2271             :      * So we initialize variables for the loop above like there is previous
    2272             :      * page referencing current child.  Also we imply previous page to not
    2273             :      * have incomplete split flag, that would make us require downlink for
    2274             :      * current child.  That's correct, because leftmost page on the level
    2275             :      * should always have parent downlink.
    2276             :      */
    2277        3768 :     if (!BlockNumberIsValid(blkno))
    2278             :     {
    2279          22 :         blkno = downlink;
    2280          22 :         rightsplit = false;
    2281             :     }
    2282             : 
    2283             :     /* Move to the right on the child level */
    2284             :     while (true)
    2285             :     {
    2286             :         /*
    2287             :          * Did we traverse the whole tree level and this is check for pages to
    2288             :          * the right of rightmost downlink?
    2289             :          */
    2290        3768 :         if (blkno == P_NONE && downlink == P_NONE)
    2291             :         {
    2292          22 :             state->prevrightlink = InvalidBlockNumber;
    2293          22 :             state->previncompletesplit = false;
    2294          22 :             return;
    2295             :         }
    2296             : 
    2297             :         /* Did we traverse the whole tree level and don't find next downlink? */
    2298        3746 :         if (blkno == P_NONE)
    2299           0 :             ereport(ERROR,
    2300             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2301             :                      errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
    2302             :                             state->prevrightlink, downlink,
    2303             :                             RelationGetRelationName(state->rel))));
    2304             : 
    2305             :         /* Load page contents */
    2306        3746 :         if (blkno == downlink && loaded_child)
    2307        3722 :             page = loaded_child;
    2308             :         else
    2309          24 :             page = palloc_btree_page(state, blkno);
    2310             : 
    2311        3746 :         opaque = BTPageGetOpaque(page);
    2312             : 
    2313             :         /* The first page we visit at the level should be leftmost */
    2314        3746 :         if (first && !BlockNumberIsValid(state->prevrightlink) &&
    2315          22 :             !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
    2316           0 :             ereport(ERROR,
    2317             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2318             :                      errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
    2319             :                             RelationGetRelationName(state->rel)),
    2320             :                      errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2321             :                                         state->targetblock, blkno,
    2322             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    2323             : 
    2324             :         /* Do level sanity check */
    2325        3746 :         if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
    2326        3746 :             opaque->btpo_level != target_level - 1)
    2327           0 :             ereport(ERROR,
    2328             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2329             :                      errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
    2330             :                             RelationGetRelationName(state->rel)),
    2331             :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
    2332             :                                         blkno, target_level - 1, opaque->btpo_level)));
    2333             : 
    2334             :         /* Try to detect circular links */
    2335        3746 :         if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
    2336           0 :             ereport(ERROR,
    2337             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2338             :                      errmsg("circular link chain found in block %u of index \"%s\"",
    2339             :                             blkno, RelationGetRelationName(state->rel))));
    2340             : 
    2341        3746 :         if (blkno != downlink && !P_IGNORE(opaque))
    2342             :         {
    2343             :             /* blkno probably has missing parent downlink */
    2344           0 :             bt_downlink_missing_check(state, rightsplit, blkno, page);
    2345             :         }
    2346             : 
    2347        3746 :         rightsplit = P_INCOMPLETE_SPLIT(opaque);
    2348             : 
    2349             :         /*
    2350             :          * If we visit page with high key, check that it is equal to the
    2351             :          * target key next to corresponding downlink.
    2352             :          */
    2353        3746 :         if (!rightsplit && !P_RIGHTMOST(opaque))
    2354             :         {
    2355             :             BTPageOpaque topaque;
    2356             :             IndexTuple  highkey;
    2357             :             OffsetNumber pivotkey_offset;
    2358             : 
    2359             :             /* Get high key */
    2360        3724 :             itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
    2361        3724 :             highkey = (IndexTuple) PageGetItem(page, itemid);
    2362             : 
    2363             :             /*
    2364             :              * There might be two situations when we examine high key.  If
    2365             :              * current child page is referenced by given target downlink, we
    2366             :              * should look to the next offset number for matching key from
    2367             :              * target page.
    2368             :              *
    2369             :              * Alternatively, we're following rightlinks somewhere in the
    2370             :              * middle between page referenced by previous target's downlink
    2371             :              * and the page referenced by current target's downlink.  If
    2372             :              * current child page hasn't incomplete split flag set, then its
    2373             :              * high key should match to the target's key of current offset
    2374             :              * number. This happens when a previous call here (to
    2375             :              * bt_child_highkey_check()) found an incomplete split, and we
    2376             :              * reach a right sibling page without a downlink -- the right
    2377             :              * sibling page's high key still needs to be matched to a
    2378             :              * separator key on the parent/target level.
    2379             :              *
    2380             :              * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
    2381             :              * already had to step right on the child level. Our traversal of
    2382             :              * the child level must try to move in perfect lockstep behind (to
    2383             :              * the left of) the target/parent level traversal.
    2384             :              */
    2385        3724 :             if (blkno == downlink)
    2386        3724 :                 pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
    2387             :             else
    2388           0 :                 pivotkey_offset = target_downlinkoffnum;
    2389             : 
    2390        3724 :             topaque = BTPageGetOpaque(state->target);
    2391             : 
    2392        3724 :             if (!offset_is_negative_infinity(topaque, pivotkey_offset))
    2393             :             {
    2394             :                 /*
    2395             :                  * If we're looking for the next pivot tuple in target page,
    2396             :                  * but there is no more pivot tuples, then we should match to
    2397             :                  * high key instead.
    2398             :                  */
    2399        3724 :                 if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
    2400             :                 {
    2401           2 :                     if (P_RIGHTMOST(topaque))
    2402           0 :                         ereport(ERROR,
    2403             :                                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2404             :                                  errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
    2405             :                                         RelationGetRelationName(state->rel)),
    2406             :                                  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2407             :                                                     state->targetblock, blkno,
    2408             :                                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2409           2 :                     pivotkey_offset = P_HIKEY;
    2410             :                 }
    2411        3724 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
    2412             :                                               state->target, pivotkey_offset);
    2413        3724 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
    2414             :             }
    2415             :             else
    2416             :             {
    2417             :                 /*
    2418             :                  * We cannot try to match child's high key to a negative
    2419             :                  * infinity key in target, since there is nothing to compare.
    2420             :                  * However, it's still possible to match child's high key
    2421             :                  * outside of target page.  The reason why we're are is that
    2422             :                  * bt_child_highkey_check() was previously called for the
    2423             :                  * cousin page of 'loaded_child', which is incomplete split.
    2424             :                  * So, now we traverse to the right of that cousin page and
    2425             :                  * current child level page under consideration still belongs
    2426             :                  * to the subtree of target's left sibling.  Thus, we need to
    2427             :                  * match child's high key to it's left uncle page high key.
    2428             :                  * Thankfully we saved it, it's called a "low key" of target
    2429             :                  * page.
    2430             :                  */
    2431           0 :                 if (!state->lowkey)
    2432           0 :                     ereport(ERROR,
    2433             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    2434             :                              errmsg("can't find left sibling high key in index \"%s\"",
    2435             :                                     RelationGetRelationName(state->rel)),
    2436             :                              errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2437             :                                                 state->targetblock, blkno,
    2438             :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    2439           0 :                 itup = state->lowkey;
    2440             :             }
    2441             : 
    2442        3724 :             if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
    2443             :             {
    2444           0 :                 ereport(ERROR,
    2445             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    2446             :                          errmsg("mismatch between parent key and child high key in index \"%s\"",
    2447             :                                 RelationGetRelationName(state->rel)),
    2448             :                          errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
    2449             :                                             state->targetblock, blkno,
    2450             :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    2451             :             }
    2452             :         }
    2453             : 
    2454             :         /* Exit if we already found next downlink */
    2455        3746 :         if (blkno == downlink)
    2456             :         {
    2457        3746 :             state->prevrightlink = opaque->btpo_next;
    2458        3746 :             state->previncompletesplit = rightsplit;
    2459        3746 :             return;
    2460             :         }
    2461             : 
    2462             :         /* Traverse to the next page using rightlink */
    2463           0 :         blkno = opaque->btpo_next;
    2464             : 
    2465             :         /* Free page contents if it's allocated by us */
    2466           0 :         if (page != loaded_child)
    2467           0 :             pfree(page);
    2468           0 :         first = false;
    2469             :     }
    2470             : }
    2471             : 
    2472             : /*
    2473             :  * Checks one of target's downlink against its child page.
    2474             :  *
    2475             :  * Conceptually, the target page continues to be what is checked here.  The
    2476             :  * target block is still blamed in the event of finding an invariant violation.
    2477             :  * The downlink insertion into the target is probably where any problem raised
    2478             :  * here arises, and there is no such thing as a parent link, so doing the
    2479             :  * verification this way around is much more practical.
    2480             :  *
    2481             :  * This function visits child page and it's sequentially called for each
    2482             :  * downlink of target page.  Assuming this we also check downlink connectivity
    2483             :  * here in order to save child page visits.
    2484             :  */
    2485             : static void
    2486        3722 : bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
    2487             :                OffsetNumber downlinkoffnum)
    2488             : {
    2489             :     ItemId      itemid;
    2490             :     IndexTuple  itup;
    2491             :     BlockNumber childblock;
    2492             :     OffsetNumber offset;
    2493             :     OffsetNumber maxoffset;
    2494             :     Page        child;
    2495             :     BTPageOpaque copaque;
    2496             :     BTPageOpaque topaque;
    2497             : 
    2498        3722 :     itemid = PageGetItemIdCareful(state, state->targetblock,
    2499             :                                   state->target, downlinkoffnum);
    2500        3722 :     itup = (IndexTuple) PageGetItem(state->target, itemid);
    2501        3722 :     childblock = BTreeTupleGetDownLink(itup);
    2502             : 
    2503             :     /*
    2504             :      * Caller must have ShareLock on target relation, because of
    2505             :      * considerations around page deletion by VACUUM.
    2506             :      *
    2507             :      * NB: In general, page deletion deletes the right sibling's downlink, not
    2508             :      * the downlink of the page being deleted; the deleted page's downlink is
    2509             :      * reused for its sibling.  The key space is thereby consolidated between
    2510             :      * the deleted page and its right sibling.  (We cannot delete a parent
    2511             :      * page's rightmost child unless it is the last child page, and we intend
    2512             :      * to also delete the parent itself.)
    2513             :      *
    2514             :      * If this verification happened without a ShareLock, the following race
    2515             :      * condition could cause false positives:
    2516             :      *
    2517             :      * In general, concurrent page deletion might occur, including deletion of
    2518             :      * the left sibling of the child page that is examined here.  If such a
    2519             :      * page deletion were to occur, closely followed by an insertion into the
    2520             :      * newly expanded key space of the child, a window for the false positive
    2521             :      * opens up: the stale parent/target downlink originally followed to get
    2522             :      * to the child legitimately ceases to be a lower bound on all items in
    2523             :      * the page, since the key space was concurrently expanded "left".
    2524             :      * (Insertion followed the "new" downlink for the child, not our now-stale
    2525             :      * downlink, which was concurrently physically removed in target/parent as
    2526             :      * part of deletion's first phase.)
    2527             :      *
    2528             :      * While we use various techniques elsewhere to perform cross-page
    2529             :      * verification for !readonly callers, a similar trick seems difficult
    2530             :      * here.  The tricks used by bt_recheck_sibling_links and by
    2531             :      * bt_right_page_check_scankey both involve verification of a same-level,
    2532             :      * cross-sibling invariant.  Cross-level invariants are far more squishy,
    2533             :      * though.  The nbtree REDO routines do not actually couple buffer locks
    2534             :      * across levels during page splits, so making any cross-level check work
    2535             :      * reliably in !readonly mode may be impossible.
    2536             :      */
    2537             :     Assert(state->readonly);
    2538             : 
    2539             :     /*
    2540             :      * Verify child page has the downlink key from target page (its parent) as
    2541             :      * a lower bound; downlink must be strictly less than all keys on the
    2542             :      * page.
    2543             :      *
    2544             :      * Check all items, rather than checking just the first and trusting that
    2545             :      * the operator class obeys the transitive law.
    2546             :      */
    2547        3722 :     topaque = BTPageGetOpaque(state->target);
    2548        3722 :     child = palloc_btree_page(state, childblock);
    2549        3722 :     copaque = BTPageGetOpaque(child);
    2550        3722 :     maxoffset = PageGetMaxOffsetNumber(child);
    2551             : 
    2552             :     /*
    2553             :      * Since we've already loaded the child block, combine this check with
    2554             :      * check for downlink connectivity.
    2555             :      */
    2556        3722 :     bt_child_highkey_check(state, downlinkoffnum,
    2557             :                            child, topaque->btpo_level);
    2558             : 
    2559             :     /*
    2560             :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2561             :      * and since a page has no links within other pages (siblings and parent)
    2562             :      * once it is marked fully deleted, it should be impossible to land on a
    2563             :      * fully deleted page.
    2564             :      *
    2565             :      * It does not quite make sense to enforce that the page cannot even be
    2566             :      * half-dead, despite the fact the downlink is modified at the same stage
    2567             :      * that the child leaf page is marked half-dead.  That's incorrect because
    2568             :      * there may occasionally be multiple downlinks from a chain of pages
    2569             :      * undergoing deletion, where multiple successive calls are made to
    2570             :      * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
    2571             :      * the leaf page as fully dead.  While _bt_mark_page_halfdead() usually
    2572             :      * removes the downlink to the leaf page that is marked half-dead, that's
    2573             :      * not guaranteed, so it's possible we'll land on a half-dead page with a
    2574             :      * downlink due to an interrupted multi-level page deletion.
    2575             :      *
    2576             :      * We go ahead with our checks if the child page is half-dead.  It's safe
    2577             :      * to do so because we do not test the child's high key, so it does not
    2578             :      * matter that the original high key will have been replaced by a dummy
    2579             :      * truncated high key within _bt_mark_page_halfdead().  All other page
    2580             :      * items are left intact on a half-dead page, so there is still something
    2581             :      * to test.
    2582             :      */
    2583        3722 :     if (P_ISDELETED(copaque))
    2584           0 :         ereport(ERROR,
    2585             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2586             :                  errmsg("downlink to deleted page found in index \"%s\"",
    2587             :                         RelationGetRelationName(state->rel)),
    2588             :                  errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
    2589             :                                     state->targetblock, childblock,
    2590             :                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2591             : 
    2592     1200700 :     for (offset = P_FIRSTDATAKEY(copaque);
    2593             :          offset <= maxoffset;
    2594     1196978 :          offset = OffsetNumberNext(offset))
    2595             :     {
    2596             :         /*
    2597             :          * Skip comparison of target page key against "negative infinity"
    2598             :          * item, if any.  Checking it would indicate that it's not a strict
    2599             :          * lower bound, but that's only because of the hard-coding for
    2600             :          * negative infinity items within _bt_compare().
    2601             :          *
    2602             :          * If nbtree didn't truncate negative infinity tuples during internal
    2603             :          * page splits then we'd expect child's negative infinity key to be
    2604             :          * equal to the scankey/downlink from target/parent (it would be a
    2605             :          * "low key" in this hypothetical scenario, and so it would still need
    2606             :          * to be treated as a special case here).
    2607             :          *
    2608             :          * Negative infinity items can be thought of as a strict lower bound
    2609             :          * that works transitively, with the last non-negative-infinity pivot
    2610             :          * followed during a descent from the root as its "true" strict lower
    2611             :          * bound.  Only a small number of negative infinity items are truly
    2612             :          * negative infinity; those that are the first items of leftmost
    2613             :          * internal pages.  In more general terms, a negative infinity item is
    2614             :          * only negative infinity with respect to the subtree that the page is
    2615             :          * at the root of.
    2616             :          *
    2617             :          * See also: bt_rootdescend(), which can even detect transitive
    2618             :          * inconsistencies on cousin leaf pages.
    2619             :          */
    2620     1196978 :         if (offset_is_negative_infinity(copaque, offset))
    2621           2 :             continue;
    2622             : 
    2623     1196976 :         if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
    2624             :                                           offset))
    2625           0 :             ereport(ERROR,
    2626             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2627             :                      errmsg("down-link lower bound invariant violated for index \"%s\"",
    2628             :                             RelationGetRelationName(state->rel)),
    2629             :                      errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
    2630             :                                         state->targetblock, childblock, offset,
    2631             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    2632             :     }
    2633             : 
    2634        3722 :     pfree(child);
    2635        3722 : }
    2636             : 
    2637             : /*
    2638             :  * Checks if page is missing a downlink that it should have.
    2639             :  *
    2640             :  * A page that lacks a downlink/parent may indicate corruption.  However, we
    2641             :  * must account for the fact that a missing downlink can occasionally be
    2642             :  * encountered in a non-corrupt index.  This can be due to an interrupted page
    2643             :  * split, or an interrupted multi-level page deletion (i.e. there was a hard
    2644             :  * crash or an error during a page split, or while VACUUM was deleting a
    2645             :  * multi-level chain of pages).
    2646             :  *
    2647             :  * Note that this can only be called in readonly mode, so there is no need to
    2648             :  * be concerned about concurrent page splits or page deletions.
    2649             :  */
    2650             : static void
    2651           0 : bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
    2652             :                           BlockNumber blkno, Page page)
    2653             : {
    2654           0 :     BTPageOpaque opaque = BTPageGetOpaque(page);
    2655             :     ItemId      itemid;
    2656             :     IndexTuple  itup;
    2657             :     Page        child;
    2658             :     BTPageOpaque copaque;
    2659             :     uint32      level;
    2660             :     BlockNumber childblk;
    2661             :     XLogRecPtr  pagelsn;
    2662             : 
    2663             :     Assert(state->readonly);
    2664             :     Assert(!P_IGNORE(opaque));
    2665             : 
    2666             :     /* No next level up with downlinks to fingerprint from the true root */
    2667           0 :     if (P_ISROOT(opaque))
    2668           0 :         return;
    2669             : 
    2670           0 :     pagelsn = PageGetLSN(page);
    2671             : 
    2672             :     /*
    2673             :      * Incomplete (interrupted) page splits can account for the lack of a
    2674             :      * downlink.  Some inserting transaction should eventually complete the
    2675             :      * page split in passing, when it notices that the left sibling page is
    2676             :      * P_INCOMPLETE_SPLIT().
    2677             :      *
    2678             :      * In general, VACUUM is not prepared for there to be no downlink to a
    2679             :      * page that it deletes.  This is the main reason why the lack of a
    2680             :      * downlink can be reported as corruption here.  It's not obvious that an
    2681             :      * invalid missing downlink can result in wrong answers to queries,
    2682             :      * though, since index scans that land on the child may end up
    2683             :      * consistently moving right. The handling of concurrent page splits (and
    2684             :      * page deletions) within _bt_moveright() cannot distinguish
    2685             :      * inconsistencies that last for a moment from inconsistencies that are
    2686             :      * permanent and irrecoverable.
    2687             :      *
    2688             :      * VACUUM isn't even prepared to delete pages that have no downlink due to
    2689             :      * an incomplete page split, but it can detect and reason about that case
    2690             :      * by design, so it shouldn't be taken to indicate corruption.  See
    2691             :      * _bt_pagedel() for full details.
    2692             :      */
    2693           0 :     if (rightsplit)
    2694             :     {
    2695           0 :         ereport(DEBUG1,
    2696             :                 (errcode(ERRCODE_NO_DATA),
    2697             :                  errmsg_internal("harmless interrupted page split detected in index \"%s\"",
    2698             :                                  RelationGetRelationName(state->rel)),
    2699             :                  errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
    2700             :                                     blkno, opaque->btpo_level,
    2701             :                                     opaque->btpo_prev,
    2702             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2703           0 :         return;
    2704             :     }
    2705             : 
    2706             :     /*
    2707             :      * Page under check is probably the "top parent" of a multi-level page
    2708             :      * deletion.  We'll need to descend the subtree to make sure that
    2709             :      * descendant pages are consistent with that, though.
    2710             :      *
    2711             :      * If the page (which must be non-ignorable) is a leaf page, then clearly
    2712             :      * it can't be the top parent.  The lack of a downlink is probably a
    2713             :      * symptom of a broad problem that could just as easily cause
    2714             :      * inconsistencies anywhere else.
    2715             :      */
    2716           0 :     if (P_ISLEAF(opaque))
    2717           0 :         ereport(ERROR,
    2718             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2719             :                  errmsg("leaf index block lacks downlink in index \"%s\"",
    2720             :                         RelationGetRelationName(state->rel)),
    2721             :                  errdetail_internal("Block=%u page lsn=%X/%X.",
    2722             :                                     blkno,
    2723             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2724             : 
    2725             :     /* Descend from the given page, which is an internal page */
    2726           0 :     elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
    2727             :          RelationGetRelationName(state->rel));
    2728             : 
    2729           0 :     level = opaque->btpo_level;
    2730           0 :     itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
    2731           0 :     itup = (IndexTuple) PageGetItem(page, itemid);
    2732           0 :     childblk = BTreeTupleGetDownLink(itup);
    2733             :     for (;;)
    2734             :     {
    2735           0 :         CHECK_FOR_INTERRUPTS();
    2736             : 
    2737           0 :         child = palloc_btree_page(state, childblk);
    2738           0 :         copaque = BTPageGetOpaque(child);
    2739             : 
    2740           0 :         if (P_ISLEAF(copaque))
    2741           0 :             break;
    2742             : 
    2743             :         /* Do an extra sanity check in passing on internal pages */
    2744           0 :         if (copaque->btpo_level != level - 1)
    2745           0 :             ereport(ERROR,
    2746             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2747             :                      errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
    2748             :                                      RelationGetRelationName(state->rel)),
    2749             :                      errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
    2750             :                                         blkno, childblk,
    2751             :                                         level - 1, copaque->btpo_level)));
    2752             : 
    2753           0 :         level = copaque->btpo_level;
    2754           0 :         itemid = PageGetItemIdCareful(state, childblk, child,
    2755           0 :                                       P_FIRSTDATAKEY(copaque));
    2756           0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2757           0 :         childblk = BTreeTupleGetDownLink(itup);
    2758             :         /* Be slightly more pro-active in freeing this memory, just in case */
    2759           0 :         pfree(child);
    2760             :     }
    2761             : 
    2762             :     /*
    2763             :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2764             :      * and since a page has no links within other pages (siblings and parent)
    2765             :      * once it is marked fully deleted, it should be impossible to land on a
    2766             :      * fully deleted page.  See bt_child_check() for further details.
    2767             :      *
    2768             :      * The bt_child_check() P_ISDELETED() check is repeated here because
    2769             :      * bt_child_check() does not visit pages reachable through negative
    2770             :      * infinity items.  Besides, bt_child_check() is unwilling to descend
    2771             :      * multiple levels.  (The similar bt_child_check() P_ISDELETED() check
    2772             :      * within bt_check_level_from_leftmost() won't reach the page either,
    2773             :      * since the leaf's live siblings should have their sibling links updated
    2774             :      * to bypass the deletion target page when it is marked fully dead.)
    2775             :      *
    2776             :      * If this error is raised, it might be due to a previous multi-level page
    2777             :      * deletion that failed to realize that it wasn't yet safe to mark the
    2778             :      * leaf page as fully dead.  A "dangling downlink" will still remain when
    2779             :      * this happens.  The fact that the dangling downlink's page (the leaf's
    2780             :      * parent/ancestor page) lacked a downlink is incidental.
    2781             :      */
    2782           0 :     if (P_ISDELETED(copaque))
    2783           0 :         ereport(ERROR,
    2784             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2785             :                  errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
    2786             :                                  RelationGetRelationName(state->rel)),
    2787             :                  errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
    2788             :                                     blkno, childblk,
    2789             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2790             : 
    2791             :     /*
    2792             :      * Iff leaf page is half-dead, its high key top parent link should point
    2793             :      * to what VACUUM considered to be the top parent page at the instant it
    2794             :      * was interrupted.  Provided the high key link actually points to the
    2795             :      * page under check, the missing downlink we detected is consistent with
    2796             :      * there having been an interrupted multi-level page deletion.  This means
    2797             :      * that the subtree with the page under check at its root (a page deletion
    2798             :      * chain) is in a consistent state, enabling VACUUM to resume deleting the
    2799             :      * entire chain the next time it encounters the half-dead leaf page.
    2800             :      */
    2801           0 :     if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
    2802             :     {
    2803           0 :         itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
    2804           0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2805           0 :         if (BTreeTupleGetTopParent(itup) == blkno)
    2806           0 :             return;
    2807             :     }
    2808             : 
    2809           0 :     ereport(ERROR,
    2810             :             (errcode(ERRCODE_INDEX_CORRUPTED),
    2811             :              errmsg("internal index block lacks downlink in index \"%s\"",
    2812             :                     RelationGetRelationName(state->rel)),
    2813             :              errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
    2814             :                                 blkno, opaque->btpo_level,
    2815             :                                 LSN_FORMAT_ARGS(pagelsn))));
    2816             : }
    2817             : 
    2818             : /*
    2819             :  * Per-tuple callback from table_index_build_scan, used to determine if index has
    2820             :  * all the entries that definitely should have been observed in leaf pages of
    2821             :  * the target index (that is, all IndexTuples that were fingerprinted by our
    2822             :  * Bloom filter).  All heapallindexed checks occur here.
    2823             :  *
    2824             :  * The redundancy between an index and the table it indexes provides a good
    2825             :  * opportunity to detect corruption, especially corruption within the table.
    2826             :  * The high level principle behind the verification performed here is that any
    2827             :  * IndexTuple that should be in an index following a fresh CREATE INDEX (based
    2828             :  * on the same index definition) should also have been in the original,
    2829             :  * existing index, which should have used exactly the same representation
    2830             :  *
    2831             :  * Since the overall structure of the index has already been verified, the most
    2832             :  * likely explanation for error here is a corrupt heap page (could be logical
    2833             :  * or physical corruption).  Index corruption may still be detected here,
    2834             :  * though.  Only readonly callers will have verified that left links and right
    2835             :  * links are in agreement, and so it's possible that a leaf page transposition
    2836             :  * within index is actually the source of corruption detected here (for
    2837             :  * !readonly callers).  The checks performed only for readonly callers might
    2838             :  * more accurately frame the problem as a cross-page invariant issue (this
    2839             :  * could even be due to recovery not replaying all WAL records).  The !readonly
    2840             :  * ERROR message raised here includes a HINT about retrying with readonly
    2841             :  * verification, just in case it's a cross-page invariant issue, though that
    2842             :  * isn't particularly likely.
    2843             :  *
    2844             :  * table_index_build_scan() expects to be able to find the root tuple when a
    2845             :  * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
    2846             :  * indexed, in order to replace the actual tuple's TID with the root tuple's
    2847             :  * TID (which is what we're actually passed back here).  The index build heap
    2848             :  * scan code will raise an error when a tuple that claims to be the root of the
    2849             :  * heap-only tuple's HOT chain cannot be located.  This catches cases where the
    2850             :  * original root item offset/root tuple for a HOT chain indicates (for whatever
    2851             :  * reason) that the entire HOT chain is dead, despite the fact that the latest
    2852             :  * heap-only tuple should be indexed.  When this happens, sequential scans may
    2853             :  * always give correct answers, and all indexes may be considered structurally
    2854             :  * consistent (i.e. the nbtree structural checks would not detect corruption).
    2855             :  * It may be the case that only index scans give wrong answers, and yet heap or
    2856             :  * SLRU corruption is the real culprit.  (While it's true that LP_DEAD bit
    2857             :  * setting will probably also leave the index in a corrupt state before too
    2858             :  * long, the problem is nonetheless that there is heap corruption.)
    2859             :  *
    2860             :  * Heap-only tuple handling within table_index_build_scan() works in a way that
    2861             :  * helps us to detect index tuples that contain the wrong values (values that
    2862             :  * don't match the latest tuple in the HOT chain).  This can happen when there
    2863             :  * is no superseding index tuple due to a faulty assessment of HOT safety,
    2864             :  * perhaps during the original CREATE INDEX.  Because the latest tuple's
    2865             :  * contents are used with the root TID, an error will be raised when a tuple
    2866             :  * with the same TID but non-matching attribute values is passed back to us.
    2867             :  * Faulty assessment of HOT-safety was behind at least two distinct CREATE
    2868             :  * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
    2869             :  * undetected for many years.  In short, the same principle that allows a
    2870             :  * REINDEX to repair corruption when there was an (undetected) broken HOT chain
    2871             :  * also allows us to detect the corruption in many cases.
    2872             :  */
    2873             : static void
    2874     1072692 : bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values,
    2875             :                           bool *isnull, bool tupleIsAlive, void *checkstate)
    2876             : {
    2877     1072692 :     BtreeCheckState *state = (BtreeCheckState *) checkstate;
    2878             :     IndexTuple  itup,
    2879             :                 norm;
    2880             : 
    2881             :     Assert(state->heapallindexed);
    2882             : 
    2883             :     /* Generate a normalized index tuple for fingerprinting */
    2884     1072692 :     itup = index_form_tuple(RelationGetDescr(index), values, isnull);
    2885     1072692 :     itup->t_tid = *tid;
    2886     1072692 :     norm = bt_normalize_tuple(state, itup);
    2887             : 
    2888             :     /* Probe Bloom filter -- tuple should be present */
    2889     1072692 :     if (bloom_lacks_element(state->filter, (unsigned char *) norm,
    2890     1072692 :                             IndexTupleSize(norm)))
    2891           0 :         ereport(ERROR,
    2892             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    2893             :                  errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
    2894             :                         ItemPointerGetBlockNumber(&(itup->t_tid)),
    2895             :                         ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2896             :                         RelationGetRelationName(state->heaprel),
    2897             :                         RelationGetRelationName(state->rel)),
    2898             :                  !state->readonly
    2899             :                  ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
    2900             :                  : 0));
    2901             : 
    2902     1072692 :     state->heaptuplespresent++;
    2903     1072692 :     pfree(itup);
    2904             :     /* Cannot leak memory here */
    2905     1072692 :     if (norm != itup)
    2906          10 :         pfree(norm);
    2907     1072692 : }
    2908             : 
    2909             : /*
    2910             :  * Normalize an index tuple for fingerprinting.
    2911             :  *
    2912             :  * In general, index tuple formation is assumed to be deterministic by
    2913             :  * heapallindexed verification, and IndexTuples are assumed immutable.  While
    2914             :  * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
    2915             :  * not fingerprinted.  Normalization is required to compensate for corner
    2916             :  * cases where the determinism assumption doesn't quite work.
    2917             :  *
    2918             :  * There is currently one such case: index_form_tuple() does not try to hide
    2919             :  * the source TOAST state of input datums.  The executor applies TOAST
    2920             :  * compression for heap tuples based on different criteria to the compression
    2921             :  * applied within btinsert()'s call to index_form_tuple(): it sometimes
    2922             :  * compresses more aggressively, resulting in compressed heap tuple datums but
    2923             :  * uncompressed corresponding index tuple datums.  A subsequent heapallindexed
    2924             :  * verification will get a logically equivalent though bitwise unequal tuple
    2925             :  * from index_form_tuple().  False positive heapallindexed corruption reports
    2926             :  * could occur without normalizing away the inconsistency.
    2927             :  *
    2928             :  * Returned tuple is often caller's own original tuple.  Otherwise, it is a
    2929             :  * new representation of caller's original index tuple, palloc()'d in caller's
    2930             :  * memory context.
    2931             :  *
    2932             :  * Note: This routine is not concerned with distinctions about the
    2933             :  * representation of tuples beyond those that might break heapallindexed
    2934             :  * verification.  In particular, it won't try to normalize opclass-equal
    2935             :  * datums with potentially distinct representations (e.g., btree/numeric_ops
    2936             :  * index datums will not get their display scale normalized-away here).
    2937             :  * Caller does normalization for non-pivot tuples that have a posting list,
    2938             :  * since dummy CREATE INDEX callback code generates new tuples with the same
    2939             :  * normalized representation.
    2940             :  */
    2941             : static IndexTuple
    2942     2150202 : bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
    2943             : {
    2944     2150202 :     TupleDesc   tupleDescriptor = RelationGetDescr(state->rel);
    2945             :     Datum       normalized[INDEX_MAX_KEYS];
    2946             :     bool        isnull[INDEX_MAX_KEYS];
    2947             :     bool        need_free[INDEX_MAX_KEYS];
    2948     2150202 :     bool        formnewtup = false;
    2949             :     IndexTuple  reformed;
    2950             :     int         i;
    2951             : 
    2952             :     /* Caller should only pass "logical" non-pivot tuples here */
    2953             :     Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
    2954             : 
    2955             :     /* Easy case: It's immediately clear that tuple has no varlena datums */
    2956     2150202 :     if (!IndexTupleHasVarwidths(itup))
    2957     2150154 :         return itup;
    2958             : 
    2959          96 :     for (i = 0; i < tupleDescriptor->natts; i++)
    2960             :     {
    2961             :         Form_pg_attribute att;
    2962             : 
    2963          48 :         att = TupleDescAttr(tupleDescriptor, i);
    2964             : 
    2965             :         /* Assume untoasted/already normalized datum initially */
    2966          48 :         need_free[i] = false;
    2967          48 :         normalized[i] = index_getattr(itup, att->attnum,
    2968             :                                       tupleDescriptor,
    2969             :                                       &isnull[i]);
    2970          48 :         if (att->attbyval || att->attlen != -1 || isnull[i])
    2971           0 :             continue;
    2972             : 
    2973             :         /*
    2974             :          * Callers always pass a tuple that could safely be inserted into the
    2975             :          * index without further processing, so an external varlena header
    2976             :          * should never be encountered here
    2977             :          */
    2978          48 :         if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
    2979           0 :             ereport(ERROR,
    2980             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2981             :                      errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
    2982             :                             ItemPointerGetBlockNumber(&(itup->t_tid)),
    2983             :                             ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2984             :                             RelationGetRelationName(state->rel))));
    2985          48 :         else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
    2986          44 :                  VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
    2987          42 :                  (att->attstorage == TYPSTORAGE_EXTENDED ||
    2988          32 :                   att->attstorage == TYPSTORAGE_MAIN))
    2989             :         {
    2990             :             /*
    2991             :              * This value will be compressed by index_form_tuple() with the
    2992             :              * current storage settings.  We may be here because this tuple
    2993             :              * was formed with different storage settings.  So, force forming.
    2994             :              */
    2995          10 :             formnewtup = true;
    2996             :         }
    2997          38 :         else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
    2998             :         {
    2999           4 :             formnewtup = true;
    3000           4 :             normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
    3001           4 :             need_free[i] = true;
    3002             :         }
    3003             : 
    3004             :         /*
    3005             :          * Short tuples may have 1B or 4B header. Convert 4B header of short
    3006             :          * tuples to 1B
    3007             :          */
    3008          34 :         else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
    3009             :         {
    3010             :             /* convert to short varlena */
    3011           2 :             Size        len = VARATT_CONVERTED_SHORT_SIZE(DatumGetPointer(normalized[i]));
    3012           2 :             char       *data = palloc(len);
    3013             : 
    3014           2 :             SET_VARSIZE_SHORT(data, len);
    3015           2 :             memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
    3016             : 
    3017           2 :             formnewtup = true;
    3018           2 :             normalized[i] = PointerGetDatum(data);
    3019           2 :             need_free[i] = true;
    3020             :         }
    3021             :     }
    3022             : 
    3023             :     /*
    3024             :      * Easier case: Tuple has varlena datums, none of which are compressed or
    3025             :      * short with 4B header
    3026             :      */
    3027          48 :     if (!formnewtup)
    3028          32 :         return itup;
    3029             : 
    3030             :     /*
    3031             :      * Hard case: Tuple had compressed varlena datums that necessitate
    3032             :      * creating normalized version of the tuple from uncompressed input datums
    3033             :      * (normalized input datums).  This is rather naive, but shouldn't be
    3034             :      * necessary too often.
    3035             :      *
    3036             :      * In the heap, tuples may contain short varlena datums with both 1B
    3037             :      * header and 4B headers.  But the corresponding index tuple should always
    3038             :      * have such varlena's with 1B headers.  So, if there is a short varlena
    3039             :      * with 4B header, we need to convert it for fingerprinting.
    3040             :      *
    3041             :      * Note that we rely on deterministic index_form_tuple() TOAST compression
    3042             :      * of normalized input.
    3043             :      */
    3044          16 :     reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
    3045          16 :     reformed->t_tid = itup->t_tid;
    3046             : 
    3047             :     /* Cannot leak memory here */
    3048          32 :     for (i = 0; i < tupleDescriptor->natts; i++)
    3049          16 :         if (need_free[i])
    3050           6 :             pfree(DatumGetPointer(normalized[i]));
    3051             : 
    3052          16 :     return reformed;
    3053             : }
    3054             : 
    3055             : /*
    3056             :  * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
    3057             :  *
    3058             :  * In general, deduplication is not supposed to change the logical contents of
    3059             :  * an index.  Multiple index tuples are merged together into one equivalent
    3060             :  * posting list index tuple when convenient.
    3061             :  *
    3062             :  * heapallindexed verification must normalize-away this variation in
    3063             :  * representation by converting posting list tuples into two or more "plain"
    3064             :  * tuples.  Each tuple must be fingerprinted separately -- there must be one
    3065             :  * tuple for each corresponding Bloom filter probe during the heap scan.
    3066             :  *
    3067             :  * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
    3068             :  */
    3069             : static inline IndexTuple
    3070       63946 : bt_posting_plain_tuple(IndexTuple itup, int n)
    3071             : {
    3072             :     Assert(BTreeTupleIsPosting(itup));
    3073             : 
    3074             :     /* Returns non-posting-list tuple */
    3075       63946 :     return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
    3076             : }
    3077             : 
    3078             : /*
    3079             :  * Search for itup in index, starting from fast root page.  itup must be a
    3080             :  * non-pivot tuple.  This is only supported with heapkeyspace indexes, since
    3081             :  * we rely on having fully unique keys to find a match with only a single
    3082             :  * visit to a leaf page, barring an interrupted page split, where we may have
    3083             :  * to move right.  (A concurrent page split is impossible because caller must
    3084             :  * be readonly caller.)
    3085             :  *
    3086             :  * This routine can detect very subtle transitive consistency issues across
    3087             :  * more than one level of the tree.  Leaf pages all have a high key (even the
    3088             :  * rightmost page has a conceptual positive infinity high key), but not a low
    3089             :  * key.  Their downlink in parent is a lower bound, which along with the high
    3090             :  * key is almost enough to detect every possible inconsistency.  A downlink
    3091             :  * separator key value won't always be available from parent, though, because
    3092             :  * the first items of internal pages are negative infinity items, truncated
    3093             :  * down to zero attributes during internal page splits.  While it's true that
    3094             :  * bt_child_check() and the high key check can detect most imaginable key
    3095             :  * space problems, there are remaining problems it won't detect with non-pivot
    3096             :  * tuples in cousin leaf pages.  Starting a search from the root for every
    3097             :  * existing leaf tuple detects small inconsistencies in upper levels of the
    3098             :  * tree that cannot be detected any other way.  (Besides all this, this is
    3099             :  * probably also useful as a direct test of the code used by index scans
    3100             :  * themselves.)
    3101             :  */
    3102             : static bool
    3103      402196 : bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
    3104             : {
    3105             :     BTScanInsert key;
    3106             :     BTStack     stack;
    3107             :     Buffer      lbuf;
    3108             :     bool        exists;
    3109             : 
    3110      402196 :     key = _bt_mkscankey(state->rel, itup);
    3111             :     Assert(key->heapkeyspace && key->scantid != NULL);
    3112             : 
    3113             :     /*
    3114             :      * Search from root.
    3115             :      *
    3116             :      * Ideally, we would arrange to only move right within _bt_search() when
    3117             :      * an interrupted page split is detected (i.e. when the incomplete split
    3118             :      * bit is found to be set), but for now we accept the possibility that
    3119             :      * that could conceal an inconsistency.
    3120             :      */
    3121             :     Assert(state->readonly && state->rootdescend);
    3122      402196 :     exists = false;
    3123      402196 :     stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
    3124             : 
    3125      402196 :     if (BufferIsValid(lbuf))
    3126             :     {
    3127             :         BTInsertStateData insertstate;
    3128             :         OffsetNumber offnum;
    3129             :         Page        page;
    3130             : 
    3131      402196 :         insertstate.itup = itup;
    3132      402196 :         insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
    3133      402196 :         insertstate.itup_key = key;
    3134      402196 :         insertstate.postingoff = 0;
    3135      402196 :         insertstate.bounds_valid = false;
    3136      402196 :         insertstate.buf = lbuf;
    3137             : 
    3138             :         /* Get matching tuple on leaf page */
    3139      402196 :         offnum = _bt_binsrch_insert(state->rel, &insertstate);
    3140             :         /* Compare first >= matching item on leaf page, if any */
    3141      402196 :         page = BufferGetPage(lbuf);
    3142             :         /* Should match on first heap TID when tuple has a posting list */
    3143      402196 :         if (offnum <= PageGetMaxOffsetNumber(page) &&
    3144      804392 :             insertstate.postingoff <= 0 &&
    3145      402196 :             _bt_compare(state->rel, key, page, offnum) == 0)
    3146      402196 :             exists = true;
    3147      402196 :         _bt_relbuf(state->rel, lbuf);
    3148             :     }
    3149             : 
    3150      402196 :     _bt_freestack(stack);
    3151      402196 :     pfree(key);
    3152             : 
    3153      402196 :     return exists;
    3154             : }
    3155             : 
    3156             : /*
    3157             :  * Is particular offset within page (whose special state is passed by caller)
    3158             :  * the page negative-infinity item?
    3159             :  *
    3160             :  * As noted in comments above _bt_compare(), there is special handling of the
    3161             :  * first data item as a "negative infinity" item.  The hard-coding within
    3162             :  * _bt_compare() makes comparing this item for the purposes of verification
    3163             :  * pointless at best, since the IndexTuple only contains a valid TID (a
    3164             :  * reference TID to child page).
    3165             :  */
    3166             : static inline bool
    3167     5181552 : offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
    3168             : {
    3169             :     /*
    3170             :      * For internal pages only, the first item after high key, if any, is
    3171             :      * negative infinity item.  Internal pages always have a negative infinity
    3172             :      * item, whereas leaf pages never have one.  This implies that negative
    3173             :      * infinity item is either first or second line item, or there is none
    3174             :      * within page.
    3175             :      *
    3176             :      * Negative infinity items are a special case among pivot tuples.  They
    3177             :      * always have zero attributes, while all other pivot tuples always have
    3178             :      * nkeyatts attributes.
    3179             :      *
    3180             :      * Right-most pages don't have a high key, but could be said to
    3181             :      * conceptually have a "positive infinity" high key.  Thus, there is a
    3182             :      * symmetry between down link items in parent pages, and high keys in
    3183             :      * children.  Together, they represent the part of the key space that
    3184             :      * belongs to each page in the index.  For example, all children of the
    3185             :      * root page will have negative infinity as a lower bound from root
    3186             :      * negative infinity downlink, and positive infinity as an upper bound
    3187             :      * (implicitly, from "imaginary" positive infinity high key in root).
    3188             :      */
    3189     5181552 :     return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
    3190             : }
    3191             : 
    3192             : /*
    3193             :  * Does the invariant hold that the key is strictly less than a given upper
    3194             :  * bound offset item?
    3195             :  *
    3196             :  * Verifies line pointer on behalf of caller.
    3197             :  *
    3198             :  * If this function returns false, convention is that caller throws error due
    3199             :  * to corruption.
    3200             :  */
    3201             : static inline bool
    3202     3963130 : invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
    3203             :                    OffsetNumber upperbound)
    3204             : {
    3205             :     ItemId      itemid;
    3206             :     int32       cmp;
    3207             : 
    3208             :     Assert(!key->nextkey && key->backward);
    3209             : 
    3210             :     /* Verify line pointer before checking tuple */
    3211     3963130 :     itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
    3212             :                                   upperbound);
    3213             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3214     3963130 :     if (!key->heapkeyspace)
    3215           0 :         return invariant_leq_offset(state, key, upperbound);
    3216             : 
    3217     3963130 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    3218             : 
    3219             :     /*
    3220             :      * _bt_compare() is capable of determining that a scankey with a
    3221             :      * filled-out attribute is greater than pivot tuples where the comparison
    3222             :      * is resolved at a truncated attribute (value of attribute in pivot is
    3223             :      * minus infinity).  However, it is not capable of determining that a
    3224             :      * scankey is _less than_ a tuple on the basis of a comparison resolved at
    3225             :      * _scankey_ minus infinity attribute.  Complete an extra step to simulate
    3226             :      * having minus infinity values for omitted scankey attribute(s).
    3227             :      */
    3228     3963130 :     if (cmp == 0)
    3229             :     {
    3230             :         BTPageOpaque topaque;
    3231             :         IndexTuple  ritup;
    3232             :         int         uppnkeyatts;
    3233             :         ItemPointer rheaptid;
    3234             :         bool        nonpivot;
    3235             : 
    3236           0 :         ritup = (IndexTuple) PageGetItem(state->target, itemid);
    3237           0 :         topaque = BTPageGetOpaque(state->target);
    3238           0 :         nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
    3239             : 
    3240             :         /* Get number of keys + heap TID for item to the right */
    3241           0 :         uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
    3242           0 :         rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
    3243             : 
    3244             :         /* Heap TID is tiebreaker key attribute */
    3245           0 :         if (key->keysz == uppnkeyatts)
    3246           0 :             return key->scantid == NULL && rheaptid != NULL;
    3247             : 
    3248           0 :         return key->keysz < uppnkeyatts;
    3249             :     }
    3250             : 
    3251     3963130 :     return cmp < 0;
    3252             : }
    3253             : 
    3254             : /*
    3255             :  * Does the invariant hold that the key is less than or equal to a given upper
    3256             :  * bound offset item?
    3257             :  *
    3258             :  * Caller should have verified that upperbound's line pointer is consistent
    3259             :  * using PageGetItemIdCareful() call.
    3260             :  *
    3261             :  * If this function returns false, convention is that caller throws error due
    3262             :  * to corruption.
    3263             :  */
    3264             : static inline bool
    3265     3652980 : invariant_leq_offset(BtreeCheckState *state, BTScanInsert key,
    3266             :                      OffsetNumber upperbound)
    3267             : {
    3268             :     int32       cmp;
    3269             : 
    3270             :     Assert(!key->nextkey && key->backward);
    3271             : 
    3272     3652980 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    3273             : 
    3274     3652980 :     return cmp <= 0;
    3275             : }
    3276             : 
    3277             : /*
    3278             :  * Does the invariant hold that the key is strictly greater than a given lower
    3279             :  * bound offset item?
    3280             :  *
    3281             :  * Caller should have verified that lowerbound's line pointer is consistent
    3282             :  * using PageGetItemIdCareful() call.
    3283             :  *
    3284             :  * If this function returns false, convention is that caller throws error due
    3285             :  * to corruption.
    3286             :  */
    3287             : static inline bool
    3288       12894 : invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
    3289             :                    OffsetNumber lowerbound)
    3290             : {
    3291             :     int32       cmp;
    3292             : 
    3293             :     Assert(!key->nextkey && key->backward);
    3294             : 
    3295       12894 :     cmp = _bt_compare(state->rel, key, state->target, lowerbound);
    3296             : 
    3297             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3298       12894 :     if (!key->heapkeyspace)
    3299           0 :         return cmp >= 0;
    3300             : 
    3301             :     /*
    3302             :      * No need to consider the possibility that scankey has attributes that we
    3303             :      * need to force to be interpreted as negative infinity.  _bt_compare() is
    3304             :      * able to determine that scankey is greater than negative infinity.  The
    3305             :      * distinction between "==" and "<" isn't interesting here, since
    3306             :      * corruption is indicated either way.
    3307             :      */
    3308       12894 :     return cmp > 0;
    3309             : }
    3310             : 
    3311             : /*
    3312             :  * Does the invariant hold that the key is strictly less than a given upper
    3313             :  * bound offset item, with the offset relating to a caller-supplied page that
    3314             :  * is not the current target page?
    3315             :  *
    3316             :  * Caller's non-target page is a child page of the target, checked as part of
    3317             :  * checking a property of the target page (i.e. the key comes from the
    3318             :  * target).  Verifies line pointer on behalf of caller.
    3319             :  *
    3320             :  * If this function returns false, convention is that caller throws error due
    3321             :  * to corruption.
    3322             :  */
    3323             : static inline bool
    3324     1196976 : invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key,
    3325             :                              BlockNumber nontargetblock, Page nontarget,
    3326             :                              OffsetNumber upperbound)
    3327             : {
    3328             :     ItemId      itemid;
    3329             :     int32       cmp;
    3330             : 
    3331             :     Assert(!key->nextkey && key->backward);
    3332             : 
    3333             :     /* Verify line pointer before checking tuple */
    3334     1196976 :     itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
    3335             :                                   upperbound);
    3336     1196976 :     cmp = _bt_compare(state->rel, key, nontarget, upperbound);
    3337             : 
    3338             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3339     1196976 :     if (!key->heapkeyspace)
    3340           0 :         return cmp <= 0;
    3341             : 
    3342             :     /* See invariant_l_offset() for an explanation of this extra step */
    3343     1196976 :     if (cmp == 0)
    3344             :     {
    3345             :         IndexTuple  child;
    3346             :         int         uppnkeyatts;
    3347             :         ItemPointer childheaptid;
    3348             :         BTPageOpaque copaque;
    3349             :         bool        nonpivot;
    3350             : 
    3351        3720 :         child = (IndexTuple) PageGetItem(nontarget, itemid);
    3352        3720 :         copaque = BTPageGetOpaque(nontarget);
    3353        3720 :         nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
    3354             : 
    3355             :         /* Get number of keys + heap TID for child/non-target item */
    3356        3720 :         uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
    3357        3720 :         childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
    3358             : 
    3359             :         /* Heap TID is tiebreaker key attribute */
    3360        3720 :         if (key->keysz == uppnkeyatts)
    3361        3720 :             return key->scantid == NULL && childheaptid != NULL;
    3362             : 
    3363           0 :         return key->keysz < uppnkeyatts;
    3364             :     }
    3365             : 
    3366     1193256 :     return cmp < 0;
    3367             : }
    3368             : 
    3369             : /*
    3370             :  * Given a block number of a B-Tree page, return page in palloc()'d memory.
    3371             :  * While at it, perform some basic checks of the page.
    3372             :  *
    3373             :  * There is never an attempt to get a consistent view of multiple pages using
    3374             :  * multiple concurrent buffer locks; in general, we only acquire a single pin
    3375             :  * and buffer lock at a time, which is often all that the nbtree code requires.
    3376             :  * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
    3377             :  * exception to this general rule.)
    3378             :  *
    3379             :  * Operating on a copy of the page is useful because it prevents control
    3380             :  * getting stuck in an uninterruptible state when an underlying operator class
    3381             :  * misbehaves.
    3382             :  */
    3383             : static Page
    3384       42530 : palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
    3385             : {
    3386             :     Buffer      buffer;
    3387             :     Page        page;
    3388             :     BTPageOpaque opaque;
    3389             :     OffsetNumber maxoffset;
    3390             : 
    3391       42530 :     page = palloc(BLCKSZ);
    3392             : 
    3393             :     /*
    3394             :      * We copy the page into local storage to avoid holding pin on the buffer
    3395             :      * longer than we must.
    3396             :      */
    3397       42530 :     buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
    3398             :                                 state->checkstrategy);
    3399       42506 :     LockBuffer(buffer, BT_READ);
    3400             : 
    3401             :     /*
    3402             :      * Perform the same basic sanity checking that nbtree itself performs for
    3403             :      * every page:
    3404             :      */
    3405       42506 :     _bt_checkpage(state->rel, buffer);
    3406             : 
    3407             :     /* Only use copy of page in palloc()'d memory */
    3408       42506 :     memcpy(page, BufferGetPage(buffer), BLCKSZ);
    3409       42506 :     UnlockReleaseBuffer(buffer);
    3410             : 
    3411       42506 :     opaque = BTPageGetOpaque(page);
    3412             : 
    3413       42506 :     if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
    3414           0 :         ereport(ERROR,
    3415             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3416             :                  errmsg("invalid meta page found at block %u in index \"%s\"",
    3417             :                         blocknum, RelationGetRelationName(state->rel))));
    3418             : 
    3419             :     /* Check page from block that ought to be meta page */
    3420       42506 :     if (blocknum == BTREE_METAPAGE)
    3421             :     {
    3422        8024 :         BTMetaPageData *metad = BTPageGetMeta(page);
    3423             : 
    3424        8024 :         if (!P_ISMETA(opaque) ||
    3425        8024 :             metad->btm_magic != BTREE_MAGIC)
    3426           0 :             ereport(ERROR,
    3427             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3428             :                      errmsg("index \"%s\" meta page is corrupt",
    3429             :                             RelationGetRelationName(state->rel))));
    3430             : 
    3431        8024 :         if (metad->btm_version < BTREE_MIN_VERSION ||
    3432        8024 :             metad->btm_version > BTREE_VERSION)
    3433           0 :             ereport(ERROR,
    3434             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3435             :                      errmsg("version mismatch in index \"%s\": file version %d, "
    3436             :                             "current version %d, minimum supported version %d",
    3437             :                             RelationGetRelationName(state->rel),
    3438             :                             metad->btm_version, BTREE_VERSION,
    3439             :                             BTREE_MIN_VERSION)));
    3440             : 
    3441             :         /* Finished with metapage checks */
    3442        8024 :         return page;
    3443             :     }
    3444             : 
    3445             :     /*
    3446             :      * Deleted pages that still use the old 32-bit XID representation have no
    3447             :      * sane "level" field because they type pun the field, but all other pages
    3448             :      * (including pages deleted on Postgres 14+) have a valid value.
    3449             :      */
    3450       34482 :     if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
    3451             :     {
    3452             :         /* Okay, no reason not to trust btpo_level field from page */
    3453             : 
    3454       34482 :         if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
    3455           0 :             ereport(ERROR,
    3456             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3457             :                      errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
    3458             :                                      opaque->btpo_level, blocknum,
    3459             :                                      RelationGetRelationName(state->rel))));
    3460             : 
    3461       34482 :         if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
    3462           0 :             ereport(ERROR,
    3463             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3464             :                      errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
    3465             :                                      blocknum,
    3466             :                                      RelationGetRelationName(state->rel))));
    3467             :     }
    3468             : 
    3469             :     /*
    3470             :      * Sanity checks for number of items on page.
    3471             :      *
    3472             :      * As noted at the beginning of _bt_binsrch(), an internal page must have
    3473             :      * children, since there must always be a negative infinity downlink
    3474             :      * (there may also be a highkey).  In the case of non-rightmost leaf
    3475             :      * pages, there must be at least a highkey.  The exceptions are deleted
    3476             :      * pages, which contain no items.
    3477             :      *
    3478             :      * This is correct when pages are half-dead, since internal pages are
    3479             :      * never half-dead, and leaf pages must have a high key when half-dead
    3480             :      * (the rightmost page can never be deleted).  It's also correct with
    3481             :      * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
    3482             :      * about the target page other than setting the page as fully dead, and
    3483             :      * setting its xact field.  In particular, it doesn't change the sibling
    3484             :      * links in the deletion target itself, since they're required when index
    3485             :      * scans land on the deletion target, and then need to move right (or need
    3486             :      * to move left, in the case of backward index scans).
    3487             :      */
    3488       34482 :     maxoffset = PageGetMaxOffsetNumber(page);
    3489       34482 :     if (maxoffset > MaxIndexTuplesPerPage)
    3490           0 :         ereport(ERROR,
    3491             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3492             :                  errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
    3493             :                         blocknum, RelationGetRelationName(state->rel),
    3494             :                         MaxIndexTuplesPerPage)));
    3495             : 
    3496       34482 :     if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
    3497           0 :         ereport(ERROR,
    3498             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3499             :                  errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
    3500             :                         blocknum, RelationGetRelationName(state->rel))));
    3501             : 
    3502       34482 :     if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
    3503           0 :         ereport(ERROR,
    3504             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3505             :                  errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
    3506             :                         blocknum, RelationGetRelationName(state->rel))));
    3507             : 
    3508             :     /*
    3509             :      * In general, internal pages are never marked half-dead, except on
    3510             :      * versions of Postgres prior to 9.4, where it can be valid transient
    3511             :      * state.  This state is nonetheless treated as corruption by VACUUM on
    3512             :      * from version 9.4 on, so do the same here.  See _bt_pagedel() for full
    3513             :      * details.
    3514             :      */
    3515       34482 :     if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
    3516           0 :         ereport(ERROR,
    3517             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3518             :                  errmsg("internal page block %u in index \"%s\" is half-dead",
    3519             :                         blocknum, RelationGetRelationName(state->rel)),
    3520             :                  errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
    3521             : 
    3522             :     /*
    3523             :      * Check that internal pages have no garbage items, and that no page has
    3524             :      * an invalid combination of deletion-related page level flags
    3525             :      */
    3526       34482 :     if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
    3527           0 :         ereport(ERROR,
    3528             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3529             :                  errmsg_internal("internal page block %u in index \"%s\" has garbage items",
    3530             :                                  blocknum, RelationGetRelationName(state->rel))));
    3531             : 
    3532       34482 :     if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
    3533           0 :         ereport(ERROR,
    3534             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3535             :                  errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
    3536             :                                  blocknum, RelationGetRelationName(state->rel))));
    3537             : 
    3538       34482 :     if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
    3539           0 :         ereport(ERROR,
    3540             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3541             :                  errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
    3542             :                                  blocknum, RelationGetRelationName(state->rel))));
    3543             : 
    3544       34482 :     return page;
    3545             : }
    3546             : 
    3547             : /*
    3548             :  * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
    3549             :  * being considered greater than the pivot tuple that its values originated
    3550             :  * from (or some other identical pivot tuple) in the common case where there
    3551             :  * are truncated/minus infinity attributes.  Without this extra step, there
    3552             :  * are forms of corruption that amcheck could theoretically fail to report.
    3553             :  *
    3554             :  * For example, invariant_g_offset() might miss a cross-page invariant failure
    3555             :  * on an internal level if the scankey built from the first item on the
    3556             :  * target's right sibling page happened to be equal to (not greater than) the
    3557             :  * last item on target page.  The !backward tiebreaker in _bt_compare() might
    3558             :  * otherwise cause amcheck to assume (rather than actually verify) that the
    3559             :  * scankey is greater.
    3560             :  */
    3561             : static inline BTScanInsert
    3562     3992714 : bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
    3563             : {
    3564             :     BTScanInsert skey;
    3565             : 
    3566     3992714 :     skey = _bt_mkscankey(rel, itup);
    3567     3992714 :     skey->backward = true;
    3568             : 
    3569     3992714 :     return skey;
    3570             : }
    3571             : 
    3572             : /*
    3573             :  * PageGetItemId() wrapper that validates returned line pointer.
    3574             :  *
    3575             :  * Buffer page/page item access macros generally trust that line pointers are
    3576             :  * not corrupt, which might cause problems for verification itself.  For
    3577             :  * example, there is no bounds checking in PageGetItem().  Passing it a
    3578             :  * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
    3579             :  * to dereference.
    3580             :  *
    3581             :  * Validating line pointers before tuples avoids undefined behavior and
    3582             :  * assertion failures with corrupt indexes, making the verification process
    3583             :  * more robust and predictable.
    3584             :  */
    3585             : static ItemId
    3586     9186424 : PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page,
    3587             :                      OffsetNumber offset)
    3588             : {
    3589     9186424 :     ItemId      itemid = PageGetItemId(page, offset);
    3590             : 
    3591     9186424 :     if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
    3592             :         BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
    3593           0 :         ereport(ERROR,
    3594             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3595             :                  errmsg("line pointer points past end of tuple space in index \"%s\"",
    3596             :                         RelationGetRelationName(state->rel)),
    3597             :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3598             :                                     block, offset, ItemIdGetOffset(itemid),
    3599             :                                     ItemIdGetLength(itemid),
    3600             :                                     ItemIdGetFlags(itemid))));
    3601             : 
    3602             :     /*
    3603             :      * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
    3604             :      * never uses either.  Verify that line pointer has storage, too, since
    3605             :      * even LP_DEAD items should within nbtree.
    3606             :      */
    3607     9186424 :     if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
    3608     9186424 :         ItemIdGetLength(itemid) == 0)
    3609           0 :         ereport(ERROR,
    3610             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3611             :                  errmsg("invalid line pointer storage in index \"%s\"",
    3612             :                         RelationGetRelationName(state->rel)),
    3613             :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3614             :                                     block, offset, ItemIdGetOffset(itemid),
    3615             :                                     ItemIdGetLength(itemid),
    3616             :                                     ItemIdGetFlags(itemid))));
    3617             : 
    3618     9186424 :     return itemid;
    3619             : }
    3620             : 
    3621             : /*
    3622             :  * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
    3623             :  * cases where that is mandatory (i.e. for non-pivot tuples)
    3624             :  */
    3625             : static inline ItemPointer
    3626        3720 : BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup,
    3627             :                             bool nonpivot)
    3628             : {
    3629             :     ItemPointer htid;
    3630             : 
    3631             :     /*
    3632             :      * Caller determines whether this is supposed to be a pivot or non-pivot
    3633             :      * tuple using page type and item offset number.  Verify that tuple
    3634             :      * metadata agrees with this.
    3635             :      */
    3636             :     Assert(state->heapkeyspace);
    3637        3720 :     if (BTreeTupleIsPivot(itup) && nonpivot)
    3638           0 :         ereport(ERROR,
    3639             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3640             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
    3641             :                                  state->targetblock,
    3642             :                                  RelationGetRelationName(state->rel))));
    3643             : 
    3644        3720 :     if (!BTreeTupleIsPivot(itup) && !nonpivot)
    3645           0 :         ereport(ERROR,
    3646             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3647             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
    3648             :                                  state->targetblock,
    3649             :                                  RelationGetRelationName(state->rel))));
    3650             : 
    3651        3720 :     htid = BTreeTupleGetHeapTID(itup);
    3652        3720 :     if (!ItemPointerIsValid(htid) && nonpivot)
    3653           0 :         ereport(ERROR,
    3654             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3655             :                  errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
    3656             :                         state->targetblock,
    3657             :                         RelationGetRelationName(state->rel))));
    3658             : 
    3659        3720 :     return htid;
    3660             : }
    3661             : 
    3662             : /*
    3663             :  * Return the "pointed to" TID for itup, which is used to generate a
    3664             :  * descriptive error message.  itup must be a "data item" tuple (it wouldn't
    3665             :  * make much sense to call here with a high key tuple, since there won't be a
    3666             :  * valid downlink/block number to display).
    3667             :  *
    3668             :  * Returns either a heap TID (which will be the first heap TID in posting list
    3669             :  * if itup is posting list tuple), or a TID that contains downlink block
    3670             :  * number, plus some encoded metadata (e.g., the number of attributes present
    3671             :  * in itup).
    3672             :  */
    3673             : static inline ItemPointer
    3674          12 : BTreeTupleGetPointsToTID(IndexTuple itup)
    3675             : {
    3676             :     /*
    3677             :      * Rely on the assumption that !heapkeyspace internal page data items will
    3678             :      * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
    3679             :      * recognize it as a pivot tuple, but everything still works out because
    3680             :      * the t_tid field is still returned
    3681             :      */
    3682          12 :     if (!BTreeTupleIsPivot(itup))
    3683           8 :         return BTreeTupleGetHeapTID(itup);
    3684             : 
    3685             :     /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
    3686           4 :     return &itup->t_tid;
    3687             : }

Generated by: LCOV version 1.14