Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * verify_nbtree.c
4 : * Verifies the integrity of nbtree indexes based on invariants.
5 : *
6 : * For B-Tree indexes, verification includes checking that each page in the
7 : * target index has items in logical order as reported by an insertion scankey
8 : * (the insertion scankey sort-wise NULL semantics are needed for
9 : * verification).
10 : *
11 : * When index-to-heap verification is requested, a Bloom filter is used to
12 : * fingerprint all tuples in the target index, as the index is traversed to
13 : * verify its structure. A heap scan later uses Bloom filter probes to verify
14 : * that every visible heap tuple has a matching index tuple.
15 : *
16 : *
17 : * Copyright (c) 2017-2024, PostgreSQL Global Development Group
18 : *
19 : * IDENTIFICATION
20 : * contrib/amcheck/verify_nbtree.c
21 : *
22 : *-------------------------------------------------------------------------
23 : */
24 : #include "postgres.h"
25 :
26 : #include "access/heaptoast.h"
27 : #include "access/htup_details.h"
28 : #include "access/nbtree.h"
29 : #include "access/table.h"
30 : #include "access/tableam.h"
31 : #include "access/transam.h"
32 : #include "access/xact.h"
33 : #include "catalog/index.h"
34 : #include "catalog/pg_am.h"
35 : #include "catalog/pg_opfamily_d.h"
36 : #include "common/pg_prng.h"
37 : #include "lib/bloomfilter.h"
38 : #include "miscadmin.h"
39 : #include "storage/smgr.h"
40 : #include "utils/guc.h"
41 : #include "utils/memutils.h"
42 : #include "utils/snapmgr.h"
43 :
44 :
45 640 : PG_MODULE_MAGIC;
46 :
47 : /*
48 : * A B-Tree cannot possibly have this many levels, since there must be one
49 : * block per level, which is bound by the range of BlockNumber:
50 : */
51 : #define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
52 : #define BTreeTupleGetNKeyAtts(itup, rel) \
53 : Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
54 :
55 : /*
56 : * State associated with verifying a B-Tree index
57 : *
58 : * target is the point of reference for a verification operation.
59 : *
60 : * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
61 : * they are current target's child pages). Conceptually, problems are only
62 : * ever found in the current target page (or for a particular heap tuple during
63 : * heapallindexed verification). Each page found by verification's left/right,
64 : * top/bottom scan becomes the target exactly once.
65 : */
66 : typedef struct BtreeCheckState
67 : {
68 : /*
69 : * Unchanging state, established at start of verification:
70 : */
71 :
72 : /* B-Tree Index Relation and associated heap relation */
73 : Relation rel;
74 : Relation heaprel;
75 : /* rel is heapkeyspace index? */
76 : bool heapkeyspace;
77 : /* ShareLock held on heap/index, rather than AccessShareLock? */
78 : bool readonly;
79 : /* Also verifying heap has no unindexed tuples? */
80 : bool heapallindexed;
81 : /* Also making sure non-pivot tuples can be found by new search? */
82 : bool rootdescend;
83 : /* Also check uniqueness constraint if index is unique */
84 : bool checkunique;
85 : /* Per-page context */
86 : MemoryContext targetcontext;
87 : /* Buffer access strategy */
88 : BufferAccessStrategy checkstrategy;
89 :
90 : /*
91 : * Info for uniqueness checking. Fill these fields once per index check.
92 : */
93 : IndexInfo *indexinfo;
94 : Snapshot snapshot;
95 :
96 : /*
97 : * Mutable state, for verification of particular page:
98 : */
99 :
100 : /* Current target page */
101 : Page target;
102 : /* Target block number */
103 : BlockNumber targetblock;
104 : /* Target page's LSN */
105 : XLogRecPtr targetlsn;
106 :
107 : /*
108 : * Low key: high key of left sibling of target page. Used only for child
109 : * verification. So, 'lowkey' is kept only when 'readonly' is set.
110 : */
111 : IndexTuple lowkey;
112 :
113 : /*
114 : * The rightlink and incomplete split flag of block one level down to the
115 : * target page, which was visited last time via downlink from target page.
116 : * We use it to check for missing downlinks.
117 : */
118 : BlockNumber prevrightlink;
119 : bool previncompletesplit;
120 :
121 : /*
122 : * Mutable state, for optional heapallindexed verification:
123 : */
124 :
125 : /* Bloom filter fingerprints B-Tree index */
126 : bloom_filter *filter;
127 : /* Debug counter */
128 : int64 heaptuplespresent;
129 : } BtreeCheckState;
130 :
131 : /*
132 : * Starting point for verifying an entire B-Tree index level
133 : */
134 : typedef struct BtreeLevel
135 : {
136 : /* Level number (0 is leaf page level). */
137 : uint32 level;
138 :
139 : /* Left most block on level. Scan of level begins here. */
140 : BlockNumber leftmost;
141 :
142 : /* Is this level reported as "true" root level by meta page? */
143 : bool istruerootlevel;
144 : } BtreeLevel;
145 :
146 : /*
147 : * Information about the last visible entry with current B-tree key. Used
148 : * for validation of the unique constraint.
149 : */
150 : typedef struct BtreeLastVisibleEntry
151 : {
152 : BlockNumber blkno; /* Index block */
153 : OffsetNumber offset; /* Offset on index block */
154 : int postingIndex; /* Number in the posting list (-1 for
155 : * non-deduplicated tuples) */
156 : ItemPointer tid; /* Heap tid */
157 : } BtreeLastVisibleEntry;
158 :
159 180 : PG_FUNCTION_INFO_V1(bt_index_check);
160 120 : PG_FUNCTION_INFO_V1(bt_index_parent_check);
161 :
162 : static void bt_index_check_internal(Oid indrelid, bool parentcheck,
163 : bool heapallindexed, bool rootdescend,
164 : bool checkunique);
165 : static inline void btree_index_checkable(Relation rel);
166 : static inline bool btree_index_mainfork_expected(Relation rel);
167 : static void bt_check_every_level(Relation rel, Relation heaprel,
168 : bool heapkeyspace, bool readonly, bool heapallindexed,
169 : bool rootdescend, bool checkunique);
170 : static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state,
171 : BtreeLevel level);
172 : static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
173 : BlockNumber start,
174 : BTPageOpaque start_opaque);
175 : static void bt_recheck_sibling_links(BtreeCheckState *state,
176 : BlockNumber btpo_prev_from_target,
177 : BlockNumber leftcurrent);
178 : static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid);
179 : static void bt_report_duplicate(BtreeCheckState *state,
180 : BtreeLastVisibleEntry *lVis,
181 : ItemPointer nexttid,
182 : BlockNumber nblock, OffsetNumber noffset,
183 : int nposting);
184 : static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
185 : BlockNumber targetblock, OffsetNumber offset,
186 : BtreeLastVisibleEntry *lVis);
187 : static void bt_target_page_check(BtreeCheckState *state);
188 : static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state,
189 : OffsetNumber *rightfirstoffset);
190 : static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
191 : OffsetNumber downlinkoffnum);
192 : static void bt_child_highkey_check(BtreeCheckState *state,
193 : OffsetNumber target_downlinkoffnum,
194 : Page loaded_child,
195 : uint32 target_level);
196 : static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
197 : BlockNumber blkno, Page page);
198 : static void bt_tuple_present_callback(Relation index, ItemPointer tid,
199 : Datum *values, bool *isnull,
200 : bool tupleIsAlive, void *checkstate);
201 : static IndexTuple bt_normalize_tuple(BtreeCheckState *state,
202 : IndexTuple itup);
203 : static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
204 : static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
205 : static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
206 : OffsetNumber offset);
207 : static inline bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
208 : OffsetNumber upperbound);
209 : static inline bool invariant_leq_offset(BtreeCheckState *state,
210 : BTScanInsert key,
211 : OffsetNumber upperbound);
212 : static inline bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
213 : OffsetNumber lowerbound);
214 : static inline bool invariant_l_nontarget_offset(BtreeCheckState *state,
215 : BTScanInsert key,
216 : BlockNumber nontargetblock,
217 : Page nontarget,
218 : OffsetNumber upperbound);
219 : static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum);
220 : static inline BTScanInsert bt_mkscankey_pivotsearch(Relation rel,
221 : IndexTuple itup);
222 : static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block,
223 : Page page, OffsetNumber offset);
224 : static inline ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state,
225 : IndexTuple itup, bool nonpivot);
226 : static inline ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup);
227 :
228 : /*
229 : * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
230 : *
231 : * Verify integrity of B-Tree index.
232 : *
233 : * Acquires AccessShareLock on heap & index relations. Does not consider
234 : * invariants that exist between parent/child pages. Optionally verifies
235 : * that heap does not contain any unindexed or incorrectly indexed tuples.
236 : */
237 : Datum
238 7918 : bt_index_check(PG_FUNCTION_ARGS)
239 : {
240 7918 : Oid indrelid = PG_GETARG_OID(0);
241 7918 : bool heapallindexed = false;
242 7918 : bool checkunique = false;
243 :
244 7918 : if (PG_NARGS() >= 2)
245 7906 : heapallindexed = PG_GETARG_BOOL(1);
246 7918 : if (PG_NARGS() == 3)
247 1372 : checkunique = PG_GETARG_BOOL(2);
248 :
249 7918 : bt_index_check_internal(indrelid, false, heapallindexed, false, checkunique);
250 :
251 7866 : PG_RETURN_VOID();
252 : }
253 :
254 : /*
255 : * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
256 : *
257 : * Verify integrity of B-Tree index.
258 : *
259 : * Acquires ShareLock on heap & index relations. Verifies that downlinks in
260 : * parent pages are valid lower bounds on child pages. Optionally verifies
261 : * that heap does not contain any unindexed or incorrectly indexed tuples.
262 : */
263 : Datum
264 120 : bt_index_parent_check(PG_FUNCTION_ARGS)
265 : {
266 120 : Oid indrelid = PG_GETARG_OID(0);
267 120 : bool heapallindexed = false;
268 120 : bool rootdescend = false;
269 120 : bool checkunique = false;
270 :
271 120 : if (PG_NARGS() >= 2)
272 110 : heapallindexed = PG_GETARG_BOOL(1);
273 120 : if (PG_NARGS() >= 3)
274 104 : rootdescend = PG_GETARG_BOOL(2);
275 120 : if (PG_NARGS() == 4)
276 52 : checkunique = PG_GETARG_BOOL(3);
277 :
278 120 : bt_index_check_internal(indrelid, true, heapallindexed, rootdescend, checkunique);
279 :
280 86 : PG_RETURN_VOID();
281 : }
282 :
283 : /*
284 : * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
285 : */
286 : static void
287 8038 : bt_index_check_internal(Oid indrelid, bool parentcheck, bool heapallindexed,
288 : bool rootdescend, bool checkunique)
289 : {
290 : Oid heapid;
291 : Relation indrel;
292 : Relation heaprel;
293 : LOCKMODE lockmode;
294 : Oid save_userid;
295 : int save_sec_context;
296 : int save_nestlevel;
297 :
298 8038 : if (parentcheck)
299 120 : lockmode = ShareLock;
300 : else
301 7918 : lockmode = AccessShareLock;
302 :
303 : /*
304 : * We must lock table before index to avoid deadlocks. However, if the
305 : * passed indrelid isn't an index then IndexGetRelation() will fail.
306 : * Rather than emitting a not-very-helpful error message, postpone
307 : * complaining, expecting that the is-it-an-index test below will fail.
308 : *
309 : * In hot standby mode this will raise an error when parentcheck is true.
310 : */
311 8038 : heapid = IndexGetRelation(indrelid, true);
312 8038 : if (OidIsValid(heapid))
313 : {
314 8030 : heaprel = table_open(heapid, lockmode);
315 :
316 : /*
317 : * Switch to the table owner's userid, so that any index functions are
318 : * run as that user. Also lock down security-restricted operations
319 : * and arrange to make GUC variable changes local to this command.
320 : */
321 8030 : GetUserIdAndSecContext(&save_userid, &save_sec_context);
322 8030 : SetUserIdAndSecContext(heaprel->rd_rel->relowner,
323 : save_sec_context | SECURITY_RESTRICTED_OPERATION);
324 8030 : save_nestlevel = NewGUCNestLevel();
325 8030 : RestrictSearchPath();
326 : }
327 : else
328 : {
329 8 : heaprel = NULL;
330 : /* Set these just to suppress "uninitialized variable" warnings */
331 8 : save_userid = InvalidOid;
332 8 : save_sec_context = -1;
333 8 : save_nestlevel = -1;
334 : }
335 :
336 : /*
337 : * Open the target index relations separately (like relation_openrv(), but
338 : * with heap relation locked first to prevent deadlocking). In hot
339 : * standby mode this will raise an error when parentcheck is true.
340 : *
341 : * There is no need for the usual indcheckxmin usability horizon test
342 : * here, even in the heapallindexed case, because index undergoing
343 : * verification only needs to have entries for a new transaction snapshot.
344 : * (If this is a parentcheck verification, there is no question about
345 : * committed or recently dead heap tuples lacking index entries due to
346 : * concurrent activity.)
347 : */
348 8038 : indrel = index_open(indrelid, lockmode);
349 :
350 : /*
351 : * Since we did the IndexGetRelation call above without any lock, it's
352 : * barely possible that a race against an index drop/recreation could have
353 : * netted us the wrong table.
354 : */
355 8030 : if (heaprel == NULL || heapid != IndexGetRelation(indrelid, false))
356 0 : ereport(ERROR,
357 : (errcode(ERRCODE_UNDEFINED_TABLE),
358 : errmsg("could not open parent table of index \"%s\"",
359 : RelationGetRelationName(indrel))));
360 :
361 : /* Relation suitable for checking as B-Tree? */
362 8030 : btree_index_checkable(indrel);
363 :
364 8028 : if (btree_index_mainfork_expected(indrel))
365 : {
366 : bool heapkeyspace,
367 : allequalimage;
368 :
369 8028 : if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
370 36 : ereport(ERROR,
371 : (errcode(ERRCODE_INDEX_CORRUPTED),
372 : errmsg("index \"%s\" lacks a main relation fork",
373 : RelationGetRelationName(indrel))));
374 :
375 : /* Extract metadata from metapage, and sanitize it in passing */
376 7992 : _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
377 7992 : if (allequalimage && !heapkeyspace)
378 0 : ereport(ERROR,
379 : (errcode(ERRCODE_INDEX_CORRUPTED),
380 : errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
381 : RelationGetRelationName(indrel))));
382 7992 : if (allequalimage && !_bt_allequalimage(indrel, false))
383 : {
384 0 : bool has_interval_ops = false;
385 :
386 0 : for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
387 0 : if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
388 0 : has_interval_ops = true;
389 0 : ereport(ERROR,
390 : (errcode(ERRCODE_INDEX_CORRUPTED),
391 : errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
392 : RelationGetRelationName(indrel)),
393 : has_interval_ops
394 : ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
395 : : 0));
396 : }
397 :
398 : /* Check index, possibly against table it is an index on */
399 7992 : bt_check_every_level(indrel, heaprel, heapkeyspace, parentcheck,
400 : heapallindexed, rootdescend, checkunique);
401 : }
402 :
403 : /* Roll back any GUC changes executed by index functions */
404 7952 : AtEOXact_GUC(false, save_nestlevel);
405 :
406 : /* Restore userid and security context */
407 7952 : SetUserIdAndSecContext(save_userid, save_sec_context);
408 :
409 : /*
410 : * Release locks early. That's ok here because nothing in the called
411 : * routines will trigger shared cache invalidations to be sent, so we can
412 : * relax the usual pattern of only releasing locks after commit.
413 : */
414 7952 : index_close(indrel, lockmode);
415 7952 : if (heaprel)
416 7952 : table_close(heaprel, lockmode);
417 7952 : }
418 :
419 : /*
420 : * Basic checks about the suitability of a relation for checking as a B-Tree
421 : * index.
422 : *
423 : * NB: Intentionally not checking permissions, the function is normally not
424 : * callable by non-superusers. If granted, it's useful to be able to check a
425 : * whole cluster.
426 : */
427 : static inline void
428 8030 : btree_index_checkable(Relation rel)
429 : {
430 8030 : if (rel->rd_rel->relkind != RELKIND_INDEX ||
431 8030 : rel->rd_rel->relam != BTREE_AM_OID)
432 2 : ereport(ERROR,
433 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
434 : errmsg("only B-Tree indexes are supported as targets for verification"),
435 : errdetail("Relation \"%s\" is not a B-Tree index.",
436 : RelationGetRelationName(rel))));
437 :
438 8028 : if (RELATION_IS_OTHER_TEMP(rel))
439 0 : ereport(ERROR,
440 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
441 : errmsg("cannot access temporary tables of other sessions"),
442 : errdetail("Index \"%s\" is associated with temporary relation.",
443 : RelationGetRelationName(rel))));
444 :
445 8028 : if (!rel->rd_index->indisvalid)
446 0 : ereport(ERROR,
447 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
448 : errmsg("cannot check index \"%s\"",
449 : RelationGetRelationName(rel)),
450 : errdetail("Index is not valid.")));
451 8028 : }
452 :
453 : /*
454 : * Check if B-Tree index relation should have a file for its main relation
455 : * fork. Verification uses this to skip unlogged indexes when in hot standby
456 : * mode, where there is simply nothing to verify. We behave as if the
457 : * relation is empty.
458 : *
459 : * NB: Caller should call btree_index_checkable() before calling here.
460 : */
461 : static inline bool
462 8028 : btree_index_mainfork_expected(Relation rel)
463 : {
464 8028 : if (rel->rd_rel->relpersistence != RELPERSISTENCE_UNLOGGED ||
465 0 : !RecoveryInProgress())
466 8028 : return true;
467 :
468 0 : ereport(DEBUG1,
469 : (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
470 : errmsg("cannot verify unlogged index \"%s\" during recovery, skipping",
471 : RelationGetRelationName(rel))));
472 :
473 0 : return false;
474 : }
475 :
476 : /*
477 : * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
478 : * logical order, verifying invariants as it goes. Optionally, verification
479 : * checks if the heap relation contains any tuples that are not represented in
480 : * the index but should be.
481 : *
482 : * It is the caller's responsibility to acquire appropriate heavyweight lock on
483 : * the index relation, and advise us if extra checks are safe when a ShareLock
484 : * is held. (A lock of the same type must also have been acquired on the heap
485 : * relation.)
486 : *
487 : * A ShareLock is generally assumed to prevent any kind of physical
488 : * modification to the index structure, including modifications that VACUUM may
489 : * make. This does not include setting of the LP_DEAD bit by concurrent index
490 : * scans, although that is just metadata that is not able to directly affect
491 : * any check performed here. Any concurrent process that might act on the
492 : * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
493 : * cannot be held while we hold a ShareLock. (Besides, even if that could
494 : * happen, the ad-hoc recycling when a page might otherwise split is performed
495 : * per-page, and requires an exclusive buffer lock, which wouldn't cause us
496 : * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
497 : * parent/child check cannot be affected.)
498 : */
499 : static void
500 7992 : bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
501 : bool readonly, bool heapallindexed, bool rootdescend,
502 : bool checkunique)
503 : {
504 : BtreeCheckState *state;
505 : Page metapage;
506 : BTMetaPageData *metad;
507 : uint32 previouslevel;
508 : BtreeLevel current;
509 7992 : Snapshot snapshot = SnapshotAny;
510 :
511 7992 : if (!readonly)
512 7894 : elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
513 : RelationGetRelationName(rel));
514 : else
515 98 : elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
516 : RelationGetRelationName(rel));
517 :
518 : /*
519 : * This assertion matches the one in index_getnext_tid(). See page
520 : * recycling/"visible to everyone" notes in nbtree README.
521 : */
522 : Assert(TransactionIdIsValid(RecentXmin));
523 :
524 : /*
525 : * Initialize state for entire verification operation
526 : */
527 7992 : state = palloc0(sizeof(BtreeCheckState));
528 7992 : state->rel = rel;
529 7992 : state->heaprel = heaprel;
530 7992 : state->heapkeyspace = heapkeyspace;
531 7992 : state->readonly = readonly;
532 7992 : state->heapallindexed = heapallindexed;
533 7992 : state->rootdescend = rootdescend;
534 7992 : state->checkunique = checkunique;
535 7992 : state->snapshot = InvalidSnapshot;
536 :
537 7992 : if (state->heapallindexed)
538 : {
539 : int64 total_pages;
540 : int64 total_elems;
541 : uint64 seed;
542 :
543 : /*
544 : * Size Bloom filter based on estimated number of tuples in index,
545 : * while conservatively assuming that each block must contain at least
546 : * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
547 : * bt_posting_plain_tuple() for definition, and details of how posting
548 : * list tuples are handled.
549 : */
550 148 : total_pages = RelationGetNumberOfBlocks(rel);
551 148 : total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
552 : (int64) state->rel->rd_rel->reltuples);
553 : /* Generate a random seed to avoid repetition */
554 148 : seed = pg_prng_uint64(&pg_global_prng_state);
555 : /* Create Bloom filter to fingerprint index */
556 148 : state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
557 148 : state->heaptuplespresent = 0;
558 :
559 : /*
560 : * Register our own snapshot in !readonly case, rather than asking
561 : * table_index_build_scan() to do this for us later. This needs to
562 : * happen before index fingerprinting begins, so we can later be
563 : * certain that index fingerprinting should have reached all tuples
564 : * returned by table_index_build_scan().
565 : */
566 148 : if (!state->readonly)
567 : {
568 94 : snapshot = RegisterSnapshot(GetTransactionSnapshot());
569 :
570 : /*
571 : * GetTransactionSnapshot() always acquires a new MVCC snapshot in
572 : * READ COMMITTED mode. A new snapshot is guaranteed to have all
573 : * the entries it requires in the index.
574 : *
575 : * We must defend against the possibility that an old xact
576 : * snapshot was returned at higher isolation levels when that
577 : * snapshot is not safe for index scans of the target index. This
578 : * is possible when the snapshot sees tuples that are before the
579 : * index's indcheckxmin horizon. Throwing an error here should be
580 : * very rare. It doesn't seem worth using a secondary snapshot to
581 : * avoid this.
582 : */
583 94 : if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
584 0 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(rel->rd_indextuple->t_data),
585 : snapshot->xmin))
586 0 : ereport(ERROR,
587 : (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
588 : errmsg("index \"%s\" cannot be verified using transaction snapshot",
589 : RelationGetRelationName(rel))));
590 : }
591 : }
592 :
593 : /*
594 : * We need a snapshot to check the uniqueness of the index. For better
595 : * performance take it once per index check. If snapshot already taken
596 : * reuse it.
597 : */
598 7992 : if (state->checkunique)
599 : {
600 1416 : state->indexinfo = BuildIndexInfo(state->rel);
601 1416 : if (state->indexinfo->ii_Unique)
602 : {
603 1276 : if (snapshot != SnapshotAny)
604 14 : state->snapshot = snapshot;
605 : else
606 1262 : state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
607 : }
608 : }
609 :
610 : Assert(!state->rootdescend || state->readonly);
611 7992 : if (state->rootdescend && !state->heapkeyspace)
612 0 : ereport(ERROR,
613 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
614 : errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
615 : RelationGetRelationName(rel)),
616 : errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
617 :
618 : /* Create context for page */
619 7992 : state->targetcontext = AllocSetContextCreate(CurrentMemoryContext,
620 : "amcheck context",
621 : ALLOCSET_DEFAULT_SIZES);
622 7992 : state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
623 :
624 : /* Get true root block from meta-page */
625 7992 : metapage = palloc_btree_page(state, BTREE_METAPAGE);
626 7992 : metad = BTPageGetMeta(metapage);
627 :
628 : /*
629 : * Certain deletion patterns can result in "skinny" B-Tree indexes, where
630 : * the fast root and true root differ.
631 : *
632 : * Start from the true root, not the fast root, unlike conventional index
633 : * scans. This approach is more thorough, and removes the risk of
634 : * following a stale fast root from the meta page.
635 : */
636 7992 : if (metad->btm_fastroot != metad->btm_root)
637 26 : ereport(DEBUG1,
638 : (errcode(ERRCODE_NO_DATA),
639 : errmsg_internal("harmless fast root mismatch in index \"%s\"",
640 : RelationGetRelationName(rel)),
641 : errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
642 : metad->btm_fastroot, metad->btm_fastlevel,
643 : metad->btm_root, metad->btm_level)));
644 :
645 : /*
646 : * Starting at the root, verify every level. Move left to right, top to
647 : * bottom. Note that there may be no pages other than the meta page (meta
648 : * page can indicate that root is P_NONE when the index is totally empty).
649 : */
650 7992 : previouslevel = InvalidBtreeLevel;
651 7992 : current.level = metad->btm_level;
652 7992 : current.leftmost = metad->btm_root;
653 7992 : current.istruerootlevel = true;
654 12976 : while (current.leftmost != P_NONE)
655 : {
656 : /*
657 : * Verify this level, and get left most page for next level down, if
658 : * not at leaf level
659 : */
660 5020 : current = bt_check_level_from_leftmost(state, current);
661 :
662 4984 : if (current.leftmost == InvalidBlockNumber)
663 0 : ereport(ERROR,
664 : (errcode(ERRCODE_INDEX_CORRUPTED),
665 : errmsg("index \"%s\" has no valid pages on level below %u or first level",
666 : RelationGetRelationName(rel), previouslevel)));
667 :
668 4984 : previouslevel = current.level;
669 : }
670 :
671 : /*
672 : * * Check whether heap contains unindexed/malformed tuples *
673 : */
674 7956 : if (state->heapallindexed)
675 : {
676 134 : IndexInfo *indexinfo = BuildIndexInfo(state->rel);
677 : TableScanDesc scan;
678 :
679 : /*
680 : * Create our own scan for table_index_build_scan(), rather than
681 : * getting it to do so for us. This is required so that we can
682 : * actually use the MVCC snapshot registered earlier in !readonly
683 : * case.
684 : *
685 : * Note that table_index_build_scan() calls heap_endscan() for us.
686 : */
687 134 : scan = table_beginscan_strat(state->heaprel, /* relation */
688 : snapshot, /* snapshot */
689 : 0, /* number of keys */
690 : NULL, /* scan key */
691 : true, /* buffer access strategy OK */
692 : true); /* syncscan OK? */
693 :
694 : /*
695 : * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
696 : * behaves in !readonly case.
697 : *
698 : * It's okay that we don't actually use the same lock strength for the
699 : * heap relation as any other ii_Concurrent caller would in !readonly
700 : * case. We have no reason to care about a concurrent VACUUM
701 : * operation, since there isn't going to be a second scan of the heap
702 : * that needs to be sure that there was no concurrent recycling of
703 : * TIDs.
704 : */
705 130 : indexinfo->ii_Concurrent = !state->readonly;
706 :
707 : /*
708 : * Don't wait for uncommitted tuple xact commit/abort when index is a
709 : * unique index on a catalog (or an index used by an exclusion
710 : * constraint). This could otherwise happen in the readonly case.
711 : */
712 130 : indexinfo->ii_Unique = false;
713 130 : indexinfo->ii_ExclusionOps = NULL;
714 130 : indexinfo->ii_ExclusionProcs = NULL;
715 130 : indexinfo->ii_ExclusionStrats = NULL;
716 :
717 130 : elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
718 : RelationGetRelationName(state->rel),
719 : RelationGetRelationName(state->heaprel));
720 :
721 130 : table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
722 : bt_tuple_present_callback, (void *) state, scan);
723 :
724 130 : ereport(DEBUG1,
725 : (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
726 : state->heaptuplespresent, RelationGetRelationName(heaprel),
727 : 100.0 * bloom_prop_bits_set(state->filter))));
728 :
729 130 : if (snapshot != SnapshotAny)
730 84 : UnregisterSnapshot(snapshot);
731 :
732 130 : bloom_free(state->filter);
733 : }
734 :
735 : /* Be tidy: */
736 7952 : if (snapshot == SnapshotAny && state->snapshot != InvalidSnapshot)
737 1262 : UnregisterSnapshot(state->snapshot);
738 7952 : MemoryContextDelete(state->targetcontext);
739 7952 : }
740 :
741 : /*
742 : * Given a left-most block at some level, move right, verifying each page
743 : * individually (with more verification across pages for "readonly"
744 : * callers). Caller should pass the true root page as the leftmost initially,
745 : * working their way down by passing what is returned for the last call here
746 : * until level 0 (leaf page level) was reached.
747 : *
748 : * Returns state for next call, if any. This includes left-most block number
749 : * one level lower that should be passed on next level/call, which is set to
750 : * P_NONE on last call here (when leaf level is verified). Level numbers
751 : * follow the nbtree convention: higher levels have higher numbers, because new
752 : * levels are added only due to a root page split. Note that prior to the
753 : * first root page split, the root is also a leaf page, so there is always a
754 : * level 0 (leaf level), and it's always the last level processed.
755 : *
756 : * Note on memory management: State's per-page context is reset here, between
757 : * each call to bt_target_page_check().
758 : */
759 : static BtreeLevel
760 5020 : bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
761 : {
762 : /* State to establish early, concerning entire level */
763 : BTPageOpaque opaque;
764 : MemoryContext oldcontext;
765 : BtreeLevel nextleveldown;
766 :
767 : /* Variables for iterating across level using right links */
768 5020 : BlockNumber leftcurrent = P_NONE;
769 5020 : BlockNumber current = level.leftmost;
770 :
771 : /* Initialize return state */
772 5020 : nextleveldown.leftmost = InvalidBlockNumber;
773 5020 : nextleveldown.level = InvalidBtreeLevel;
774 5020 : nextleveldown.istruerootlevel = false;
775 :
776 : /* Use page-level context for duration of this call */
777 5020 : oldcontext = MemoryContextSwitchTo(state->targetcontext);
778 :
779 5020 : elog(DEBUG1, "verifying level %u%s", level.level,
780 : level.istruerootlevel ?
781 : " (true root level)" : level.level == 0 ? " (leaf level)" : "");
782 :
783 5020 : state->prevrightlink = InvalidBlockNumber;
784 5020 : state->previncompletesplit = false;
785 :
786 : do
787 : {
788 : /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
789 18176 : CHECK_FOR_INTERRUPTS();
790 :
791 : /* Initialize state for this iteration */
792 18176 : state->targetblock = current;
793 18176 : state->target = palloc_btree_page(state, state->targetblock);
794 18152 : state->targetlsn = PageGetLSN(state->target);
795 :
796 18152 : opaque = BTPageGetOpaque(state->target);
797 :
798 18152 : if (P_IGNORE(opaque))
799 : {
800 : /*
801 : * Since there cannot be a concurrent VACUUM operation in readonly
802 : * mode, and since a page has no links within other pages
803 : * (siblings and parent) once it is marked fully deleted, it
804 : * should be impossible to land on a fully deleted page in
805 : * readonly mode. See bt_child_check() for further details.
806 : *
807 : * The bt_child_check() P_ISDELETED() check is repeated here so
808 : * that pages that are only reachable through sibling links get
809 : * checked.
810 : */
811 0 : if (state->readonly && P_ISDELETED(opaque))
812 0 : ereport(ERROR,
813 : (errcode(ERRCODE_INDEX_CORRUPTED),
814 : errmsg("downlink or sibling link points to deleted block in index \"%s\"",
815 : RelationGetRelationName(state->rel)),
816 : errdetail_internal("Block=%u left block=%u left link from block=%u.",
817 : current, leftcurrent, opaque->btpo_prev)));
818 :
819 0 : if (P_RIGHTMOST(opaque))
820 0 : ereport(ERROR,
821 : (errcode(ERRCODE_INDEX_CORRUPTED),
822 : errmsg("block %u fell off the end of index \"%s\"",
823 : current, RelationGetRelationName(state->rel))));
824 : else
825 0 : ereport(DEBUG1,
826 : (errcode(ERRCODE_NO_DATA),
827 : errmsg_internal("block %u of index \"%s\" concurrently deleted",
828 : current, RelationGetRelationName(state->rel))));
829 0 : goto nextpage;
830 : }
831 18152 : else if (nextleveldown.leftmost == InvalidBlockNumber)
832 : {
833 : /*
834 : * A concurrent page split could make the caller supplied leftmost
835 : * block no longer contain the leftmost page, or no longer be the
836 : * true root, but where that isn't possible due to heavyweight
837 : * locking, check that the first valid page meets caller's
838 : * expectations.
839 : */
840 4996 : if (state->readonly)
841 : {
842 88 : if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
843 0 : ereport(ERROR,
844 : (errcode(ERRCODE_INDEX_CORRUPTED),
845 : errmsg("block %u is not leftmost in index \"%s\"",
846 : current, RelationGetRelationName(state->rel))));
847 :
848 88 : if (level.istruerootlevel && !P_ISROOT(opaque))
849 0 : ereport(ERROR,
850 : (errcode(ERRCODE_INDEX_CORRUPTED),
851 : errmsg("block %u is not true root in index \"%s\"",
852 : current, RelationGetRelationName(state->rel))));
853 : }
854 :
855 : /*
856 : * Before beginning any non-trivial examination of level, prepare
857 : * state for next bt_check_level_from_leftmost() invocation for
858 : * the next level for the next level down (if any).
859 : *
860 : * There should be at least one non-ignorable page per level,
861 : * unless this is the leaf level, which is assumed by caller to be
862 : * final level.
863 : */
864 4996 : if (!P_ISLEAF(opaque))
865 : {
866 : IndexTuple itup;
867 : ItemId itemid;
868 :
869 : /* Internal page -- downlink gets leftmost on next level */
870 1110 : itemid = PageGetItemIdCareful(state, state->targetblock,
871 : state->target,
872 1110 : P_FIRSTDATAKEY(opaque));
873 1110 : itup = (IndexTuple) PageGetItem(state->target, itemid);
874 1110 : nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
875 1110 : nextleveldown.level = opaque->btpo_level - 1;
876 : }
877 : else
878 : {
879 : /*
880 : * Leaf page -- final level caller must process.
881 : *
882 : * Note that this could also be the root page, if there has
883 : * been no root page split yet.
884 : */
885 3886 : nextleveldown.leftmost = P_NONE;
886 3886 : nextleveldown.level = InvalidBtreeLevel;
887 : }
888 :
889 : /*
890 : * Finished setting up state for this call/level. Control will
891 : * never end up back here in any future loop iteration for this
892 : * level.
893 : */
894 : }
895 :
896 : /*
897 : * Sibling links should be in mutual agreement. There arises
898 : * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
899 : * of the parent's low-key downlink is half-dead. (A half-dead page
900 : * has no downlink from its parent.) Under heavyweight locking, the
901 : * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
902 : * Without heavyweight locking, validation of the P_NONE case remains
903 : * unimplemented.
904 : */
905 18152 : if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
906 0 : bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
907 :
908 : /* Check level */
909 18152 : if (level.level != opaque->btpo_level)
910 0 : ereport(ERROR,
911 : (errcode(ERRCODE_INDEX_CORRUPTED),
912 : errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
913 : RelationGetRelationName(state->rel)),
914 : errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
915 : current, level.level, opaque->btpo_level)));
916 :
917 : /* Verify invariants for page */
918 18152 : bt_target_page_check(state);
919 :
920 18140 : nextpage:
921 :
922 : /* Try to detect circular links */
923 18140 : if (current == leftcurrent || current == opaque->btpo_prev)
924 0 : ereport(ERROR,
925 : (errcode(ERRCODE_INDEX_CORRUPTED),
926 : errmsg("circular link chain found in block %u of index \"%s\"",
927 : current, RelationGetRelationName(state->rel))));
928 :
929 18140 : leftcurrent = current;
930 18140 : current = opaque->btpo_next;
931 :
932 18140 : if (state->lowkey)
933 : {
934 : Assert(state->readonly);
935 3724 : pfree(state->lowkey);
936 3724 : state->lowkey = NULL;
937 : }
938 :
939 : /*
940 : * Copy current target high key as the low key of right sibling.
941 : * Allocate memory in upper level context, so it would be cleared
942 : * after reset of target context.
943 : *
944 : * We only need the low key in corner cases of checking child high
945 : * keys. We use high key only when incomplete split on the child level
946 : * falls to the boundary of pages on the target level. See
947 : * bt_child_highkey_check() for details. So, typically we won't end
948 : * up doing anything with low key, but it's simpler for general case
949 : * high key verification to always have it available.
950 : *
951 : * The correctness of managing low key in the case of concurrent
952 : * splits wasn't investigated yet. Thankfully we only need low key
953 : * for readonly verification and concurrent splits won't happen.
954 : */
955 18140 : if (state->readonly && !P_RIGHTMOST(opaque))
956 : {
957 : IndexTuple itup;
958 : ItemId itemid;
959 :
960 3724 : itemid = PageGetItemIdCareful(state, state->targetblock,
961 : state->target, P_HIKEY);
962 3724 : itup = (IndexTuple) PageGetItem(state->target, itemid);
963 :
964 3724 : state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
965 3724 : memcpy(state->lowkey, itup, IndexTupleSize(itup));
966 : }
967 :
968 : /* Free page and associated memory for this iteration */
969 18140 : MemoryContextReset(state->targetcontext);
970 : }
971 18140 : while (current != P_NONE);
972 :
973 4984 : if (state->lowkey)
974 : {
975 : Assert(state->readonly);
976 0 : pfree(state->lowkey);
977 0 : state->lowkey = NULL;
978 : }
979 :
980 : /* Don't change context for caller */
981 4984 : MemoryContextSwitchTo(oldcontext);
982 :
983 4984 : return nextleveldown;
984 : }
985 :
986 : /* Check visibility of the table entry referenced by nbtree index */
987 : static bool
988 678 : heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
989 : {
990 : bool tid_visible;
991 :
992 678 : TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
993 :
994 678 : tid_visible = table_tuple_fetch_row_version(state->heaprel,
995 : tid, state->snapshot, slot);
996 678 : if (slot != NULL)
997 678 : ExecDropSingleTupleTableSlot(slot);
998 :
999 678 : return tid_visible;
1000 : }
1001 :
1002 : /*
1003 : * Prepare an error message for unique constrain violation in
1004 : * a btree index and report ERROR.
1005 : */
1006 : static void
1007 6 : bt_report_duplicate(BtreeCheckState *state,
1008 : BtreeLastVisibleEntry *lVis,
1009 : ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
1010 : int nposting)
1011 : {
1012 : char *htid,
1013 : *nhtid,
1014 : *itid,
1015 6 : *nitid = "",
1016 6 : *pposting = "",
1017 6 : *pnposting = "";
1018 :
1019 6 : htid = psprintf("tid=(%u,%u)",
1020 6 : ItemPointerGetBlockNumberNoCheck(lVis->tid),
1021 6 : ItemPointerGetOffsetNumberNoCheck(lVis->tid));
1022 6 : nhtid = psprintf("tid=(%u,%u)",
1023 : ItemPointerGetBlockNumberNoCheck(nexttid),
1024 6 : ItemPointerGetOffsetNumberNoCheck(nexttid));
1025 6 : itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
1026 :
1027 6 : if (nblock != lVis->blkno || noffset != lVis->offset)
1028 6 : nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
1029 :
1030 6 : if (lVis->postingIndex >= 0)
1031 0 : pposting = psprintf(" posting %u", lVis->postingIndex);
1032 :
1033 6 : if (nposting >= 0)
1034 0 : pnposting = psprintf(" posting %u", nposting);
1035 :
1036 6 : ereport(ERROR,
1037 : (errcode(ERRCODE_INDEX_CORRUPTED),
1038 : errmsg("index uniqueness is violated for index \"%s\"",
1039 : RelationGetRelationName(state->rel)),
1040 : errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%X.",
1041 : itid, pposting, nitid, pnposting, htid, nhtid,
1042 : LSN_FORMAT_ARGS(state->targetlsn))));
1043 : }
1044 :
1045 : /* Check if current nbtree leaf entry complies with UNIQUE constraint */
1046 : static void
1047 678 : bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
1048 : BlockNumber targetblock, OffsetNumber offset,
1049 : BtreeLastVisibleEntry *lVis)
1050 : {
1051 : ItemPointer tid;
1052 678 : bool has_visible_entry = false;
1053 :
1054 : Assert(targetblock != P_NONE);
1055 :
1056 : /*
1057 : * Current tuple has posting list. Report duplicate if TID of any posting
1058 : * list entry is visible and lVis->tid is valid.
1059 : */
1060 678 : if (BTreeTupleIsPosting(itup))
1061 : {
1062 0 : for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1063 : {
1064 0 : tid = BTreeTupleGetPostingN(itup, i);
1065 0 : if (heap_entry_is_visible(state, tid))
1066 : {
1067 0 : has_visible_entry = true;
1068 0 : if (ItemPointerIsValid(lVis->tid))
1069 : {
1070 0 : bt_report_duplicate(state,
1071 : lVis,
1072 : tid, targetblock,
1073 : offset, i);
1074 : }
1075 :
1076 : /*
1077 : * Prevent double reporting unique constraint violation
1078 : * between the posting list entries of the first tuple on the
1079 : * page after cross-page check.
1080 : */
1081 0 : if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
1082 0 : return;
1083 :
1084 0 : lVis->blkno = targetblock;
1085 0 : lVis->offset = offset;
1086 0 : lVis->postingIndex = i;
1087 0 : lVis->tid = tid;
1088 : }
1089 : }
1090 : }
1091 :
1092 : /*
1093 : * Current tuple has no posting list. If TID is visible save info about it
1094 : * for the next comparisons in the loop in bt_target_page_check(). Report
1095 : * duplicate if lVis->tid is already valid.
1096 : */
1097 : else
1098 : {
1099 678 : tid = BTreeTupleGetHeapTID(itup);
1100 678 : if (heap_entry_is_visible(state, tid))
1101 : {
1102 30 : has_visible_entry = true;
1103 30 : if (ItemPointerIsValid(lVis->tid))
1104 : {
1105 6 : bt_report_duplicate(state,
1106 : lVis,
1107 : tid, targetblock,
1108 : offset, -1);
1109 : }
1110 :
1111 24 : lVis->blkno = targetblock;
1112 24 : lVis->offset = offset;
1113 24 : lVis->tid = tid;
1114 24 : lVis->postingIndex = -1;
1115 : }
1116 : }
1117 :
1118 672 : if (!has_visible_entry &&
1119 648 : lVis->blkno != InvalidBlockNumber &&
1120 18 : lVis->blkno != targetblock)
1121 : {
1122 0 : char *posting = "";
1123 :
1124 0 : if (lVis->postingIndex >= 0)
1125 0 : posting = psprintf(" posting %u", lVis->postingIndex);
1126 0 : ereport(DEBUG1,
1127 : (errcode(ERRCODE_NO_DATA),
1128 : errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
1129 : targetblock, offset,
1130 : RelationGetRelationName(state->rel)),
1131 : errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
1132 : lVis->blkno, lVis->offset, posting,
1133 : ItemPointerGetBlockNumberNoCheck(lVis->tid),
1134 : ItemPointerGetOffsetNumberNoCheck(lVis->tid)),
1135 : errhint("VACUUM the table and repeat the check.")));
1136 : }
1137 : }
1138 :
1139 : /*
1140 : * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
1141 : * half-dead, sibling-linked pages to the left. If a half-dead page appears
1142 : * under state->readonly, the database exited recovery between the first-stage
1143 : * and second-stage WAL records of a deletion.
1144 : */
1145 : static bool
1146 110 : bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
1147 : BlockNumber start,
1148 : BTPageOpaque start_opaque)
1149 : {
1150 110 : BlockNumber reached = start_opaque->btpo_prev,
1151 110 : reached_from = start;
1152 110 : bool all_half_dead = true;
1153 :
1154 : /*
1155 : * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
1156 : * potentially observe nbtree/README "Page deletion and backwards scans".
1157 : */
1158 : Assert(state->readonly);
1159 :
1160 114 : while (reached != P_NONE && all_half_dead)
1161 : {
1162 4 : Page page = palloc_btree_page(state, reached);
1163 4 : BTPageOpaque reached_opaque = BTPageGetOpaque(page);
1164 :
1165 4 : CHECK_FOR_INTERRUPTS();
1166 :
1167 : /*
1168 : * Try to detect btpo_prev circular links. _bt_unlink_halfdead_page()
1169 : * writes that side-links will continue to point to the siblings.
1170 : * Check btpo_next for that property.
1171 : */
1172 4 : all_half_dead = P_ISHALFDEAD(reached_opaque) &&
1173 4 : reached != start &&
1174 8 : reached != reached_from &&
1175 4 : reached_opaque->btpo_next == reached_from;
1176 4 : if (all_half_dead)
1177 : {
1178 4 : XLogRecPtr pagelsn = PageGetLSN(page);
1179 :
1180 : /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
1181 4 : ereport(DEBUG1,
1182 : (errcode(ERRCODE_NO_DATA),
1183 : errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
1184 : RelationGetRelationName(state->rel)),
1185 : errdetail_internal("Block=%u right block=%u page lsn=%X/%X.",
1186 : reached, reached_from,
1187 : LSN_FORMAT_ARGS(pagelsn))));
1188 :
1189 4 : reached_from = reached;
1190 4 : reached = reached_opaque->btpo_prev;
1191 : }
1192 :
1193 4 : pfree(page);
1194 : }
1195 :
1196 110 : return all_half_dead;
1197 : }
1198 :
1199 : /*
1200 : * Raise an error when target page's left link does not point back to the
1201 : * previous target page, called leftcurrent here. The leftcurrent page's
1202 : * right link was followed to get to the current target page, and we expect
1203 : * mutual agreement among leftcurrent and the current target page. Make sure
1204 : * that this condition has definitely been violated in the !readonly case,
1205 : * where concurrent page splits are something that we need to deal with.
1206 : *
1207 : * Cross-page inconsistencies involving pages that don't agree about being
1208 : * siblings are known to be a particularly good indicator of corruption
1209 : * involving partial writes/lost updates. The bt_right_page_check_scankey
1210 : * check also provides a way of detecting cross-page inconsistencies for
1211 : * !readonly callers, but it can only detect sibling pages that have an
1212 : * out-of-order keyspace, which can't catch many of the problems that we
1213 : * expect to catch here.
1214 : *
1215 : * The classic example of the kind of inconsistency that we can only catch
1216 : * with this check (when in !readonly mode) involves three sibling pages that
1217 : * were affected by a faulty page split at some point in the past. The
1218 : * effects of the split are reflected in the original page and its new right
1219 : * sibling page, with a lack of any accompanying changes for the _original_
1220 : * right sibling page. The original right sibling page's left link fails to
1221 : * point to the new right sibling page (its left link still points to the
1222 : * original page), even though the first phase of a page split is supposed to
1223 : * work as a single atomic action. This subtle inconsistency will probably
1224 : * only break backwards scans in practice.
1225 : *
1226 : * Note that this is the only place where amcheck will "couple" buffer locks
1227 : * (and only for !readonly callers). In general we prefer to avoid more
1228 : * thorough cross-page checks in !readonly mode, but it seems worth the
1229 : * complexity here. Also, the performance overhead of performing lock
1230 : * coupling here is negligible in practice. Control only reaches here with a
1231 : * non-corrupt index when there is a concurrent page split at the instant
1232 : * caller crossed over to target page from leftcurrent page.
1233 : */
1234 : static void
1235 0 : bt_recheck_sibling_links(BtreeCheckState *state,
1236 : BlockNumber btpo_prev_from_target,
1237 : BlockNumber leftcurrent)
1238 : {
1239 : /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
1240 : Assert(leftcurrent != P_NONE);
1241 :
1242 0 : if (!state->readonly)
1243 : {
1244 : Buffer lbuf;
1245 : Buffer newtargetbuf;
1246 : Page page;
1247 : BTPageOpaque opaque;
1248 : BlockNumber newtargetblock;
1249 :
1250 : /* Couple locks in the usual order for nbtree: Left to right */
1251 0 : lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
1252 : RBM_NORMAL, state->checkstrategy);
1253 0 : LockBuffer(lbuf, BT_READ);
1254 0 : _bt_checkpage(state->rel, lbuf);
1255 0 : page = BufferGetPage(lbuf);
1256 0 : opaque = BTPageGetOpaque(page);
1257 0 : if (P_ISDELETED(opaque))
1258 : {
1259 : /*
1260 : * Cannot reason about concurrently deleted page -- the left link
1261 : * in the page to the right is expected to point to some other
1262 : * page to the left (not leftcurrent page).
1263 : *
1264 : * Note that we deliberately don't give up with a half-dead page.
1265 : */
1266 0 : UnlockReleaseBuffer(lbuf);
1267 0 : return;
1268 : }
1269 :
1270 0 : newtargetblock = opaque->btpo_next;
1271 : /* Avoid self-deadlock when newtargetblock == leftcurrent */
1272 0 : if (newtargetblock != leftcurrent)
1273 : {
1274 0 : newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
1275 : newtargetblock, RBM_NORMAL,
1276 : state->checkstrategy);
1277 0 : LockBuffer(newtargetbuf, BT_READ);
1278 0 : _bt_checkpage(state->rel, newtargetbuf);
1279 0 : page = BufferGetPage(newtargetbuf);
1280 0 : opaque = BTPageGetOpaque(page);
1281 : /* btpo_prev_from_target may have changed; update it */
1282 0 : btpo_prev_from_target = opaque->btpo_prev;
1283 : }
1284 : else
1285 : {
1286 : /*
1287 : * leftcurrent right sibling points back to leftcurrent block.
1288 : * Index is corrupt. Easiest way to handle this is to pretend
1289 : * that we actually read from a distinct page that has an invalid
1290 : * block number in its btpo_prev.
1291 : */
1292 0 : newtargetbuf = InvalidBuffer;
1293 0 : btpo_prev_from_target = InvalidBlockNumber;
1294 : }
1295 :
1296 : /*
1297 : * No need to check P_ISDELETED here, since new target block cannot be
1298 : * marked deleted as long as we hold a lock on lbuf
1299 : */
1300 0 : if (BufferIsValid(newtargetbuf))
1301 0 : UnlockReleaseBuffer(newtargetbuf);
1302 0 : UnlockReleaseBuffer(lbuf);
1303 :
1304 0 : if (btpo_prev_from_target == leftcurrent)
1305 : {
1306 : /* Report split in left sibling, not target (or new target) */
1307 0 : ereport(DEBUG1,
1308 : (errcode(ERRCODE_INTERNAL_ERROR),
1309 : errmsg_internal("harmless concurrent page split detected in index \"%s\"",
1310 : RelationGetRelationName(state->rel)),
1311 : errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
1312 : leftcurrent, newtargetblock,
1313 : state->targetblock)));
1314 0 : return;
1315 : }
1316 :
1317 : /*
1318 : * Index is corrupt. Make sure that we report correct target page.
1319 : *
1320 : * This could have changed in cases where there was a concurrent page
1321 : * split, as well as index corruption (at least in theory). Note that
1322 : * btpo_prev_from_target was already updated above.
1323 : */
1324 0 : state->targetblock = newtargetblock;
1325 : }
1326 :
1327 0 : ereport(ERROR,
1328 : (errcode(ERRCODE_INDEX_CORRUPTED),
1329 : errmsg("left link/right link pair in index \"%s\" not in agreement",
1330 : RelationGetRelationName(state->rel)),
1331 : errdetail_internal("Block=%u left block=%u left link from block=%u.",
1332 : state->targetblock, leftcurrent,
1333 : btpo_prev_from_target)));
1334 : }
1335 :
1336 : /*
1337 : * Function performs the following checks on target page, or pages ancillary to
1338 : * target page:
1339 : *
1340 : * - That every "real" data item is less than or equal to the high key, which
1341 : * is an upper bound on the items on the page. Data items should be
1342 : * strictly less than the high key when the page is an internal page.
1343 : *
1344 : * - That within the page, every data item is strictly less than the item
1345 : * immediately to its right, if any (i.e., that the items are in order
1346 : * within the page, so that the binary searches performed by index scans are
1347 : * sane).
1348 : *
1349 : * - That the last data item stored on the page is strictly less than the
1350 : * first data item on the page to the right (when such a first item is
1351 : * available).
1352 : *
1353 : * - Various checks on the structure of tuples themselves. For example, check
1354 : * that non-pivot tuples have no truncated attributes.
1355 : *
1356 : * - For index with unique constraint make sure that only one of table entries
1357 : * for equal keys is visible.
1358 : *
1359 : * Furthermore, when state passed shows ShareLock held, function also checks:
1360 : *
1361 : * - That all child pages respect strict lower bound from parent's pivot
1362 : * tuple.
1363 : *
1364 : * - That downlink to block was encountered in parent where that's expected.
1365 : *
1366 : * - That high keys of child pages matches corresponding pivot keys in parent.
1367 : *
1368 : * This is also where heapallindexed callers use their Bloom filter to
1369 : * fingerprint IndexTuples for later table_index_build_scan() verification.
1370 : *
1371 : * Note: Memory allocated in this routine is expected to be released by caller
1372 : * resetting state->targetcontext.
1373 : */
1374 : static void
1375 18152 : bt_target_page_check(BtreeCheckState *state)
1376 : {
1377 : OffsetNumber offset;
1378 : OffsetNumber max;
1379 : BTPageOpaque topaque;
1380 :
1381 : /* Last visible entry info for checking indexes with unique constraint */
1382 18152 : BtreeLastVisibleEntry lVis = {InvalidBlockNumber, InvalidOffsetNumber, -1, NULL};
1383 :
1384 18152 : topaque = BTPageGetOpaque(state->target);
1385 18152 : max = PageGetMaxOffsetNumber(state->target);
1386 :
1387 18152 : elog(DEBUG2, "verifying %u items on %s block %u", max,
1388 : P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
1389 :
1390 : /*
1391 : * Check the number of attributes in high key. Note, rightmost page
1392 : * doesn't contain a high key, so nothing to check
1393 : */
1394 18152 : if (!P_RIGHTMOST(topaque))
1395 : {
1396 : ItemId itemid;
1397 : IndexTuple itup;
1398 :
1399 : /* Verify line pointer before checking tuple */
1400 13164 : itemid = PageGetItemIdCareful(state, state->targetblock,
1401 : state->target, P_HIKEY);
1402 13164 : if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1403 : P_HIKEY))
1404 : {
1405 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1406 0 : ereport(ERROR,
1407 : (errcode(ERRCODE_INDEX_CORRUPTED),
1408 : errmsg("wrong number of high key index tuple attributes in index \"%s\"",
1409 : RelationGetRelationName(state->rel)),
1410 : errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%X.",
1411 : state->targetblock,
1412 : BTreeTupleGetNAtts(itup, state->rel),
1413 : P_ISLEAF(topaque) ? "heap" : "index",
1414 : LSN_FORMAT_ARGS(state->targetlsn))));
1415 : }
1416 : }
1417 :
1418 : /*
1419 : * Loop over page items, starting from first non-highkey item, not high
1420 : * key (if any). Most tests are not performed for the "negative infinity"
1421 : * real item (if any).
1422 : */
1423 4043840 : for (offset = P_FIRSTDATAKEY(topaque);
1424 : offset <= max;
1425 4025688 : offset = OffsetNumberNext(offset))
1426 : {
1427 : ItemId itemid;
1428 : IndexTuple itup;
1429 : size_t tupsize;
1430 : BTScanInsert skey;
1431 : bool lowersizelimit;
1432 : ItemPointer scantid;
1433 :
1434 : /*
1435 : * True if we already called bt_entry_unique_check() for the current
1436 : * item. This helps to avoid visiting the heap for keys, which are
1437 : * anyway presented only once and can't comprise a unique violation.
1438 : */
1439 4025700 : bool unique_checked = false;
1440 :
1441 4025700 : CHECK_FOR_INTERRUPTS();
1442 :
1443 4025700 : itemid = PageGetItemIdCareful(state, state->targetblock,
1444 : state->target, offset);
1445 4025700 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1446 4025700 : tupsize = IndexTupleSize(itup);
1447 :
1448 : /*
1449 : * lp_len should match the IndexTuple reported length exactly, since
1450 : * lp_len is completely redundant in indexes, and both sources of
1451 : * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
1452 : * frequently, and is surprisingly tolerant of corrupt lp_len fields.
1453 : */
1454 4025700 : if (tupsize != ItemIdGetLength(itemid))
1455 0 : ereport(ERROR,
1456 : (errcode(ERRCODE_INDEX_CORRUPTED),
1457 : errmsg("index tuple size does not equal lp_len in index \"%s\"",
1458 : RelationGetRelationName(state->rel)),
1459 : errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%X.",
1460 : state->targetblock, offset,
1461 : tupsize, ItemIdGetLength(itemid),
1462 : LSN_FORMAT_ARGS(state->targetlsn)),
1463 : errhint("This could be a torn page problem.")));
1464 :
1465 : /* Check the number of index tuple attributes */
1466 4025700 : if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1467 : offset))
1468 : {
1469 : ItemPointer tid;
1470 : char *itid,
1471 : *htid;
1472 :
1473 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1474 0 : tid = BTreeTupleGetPointsToTID(itup);
1475 0 : htid = psprintf("(%u,%u)",
1476 : ItemPointerGetBlockNumberNoCheck(tid),
1477 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1478 :
1479 0 : ereport(ERROR,
1480 : (errcode(ERRCODE_INDEX_CORRUPTED),
1481 : errmsg("wrong number of index tuple attributes in index \"%s\"",
1482 : RelationGetRelationName(state->rel)),
1483 : errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%X.",
1484 : itid,
1485 : BTreeTupleGetNAtts(itup, state->rel),
1486 : P_ISLEAF(topaque) ? "heap" : "index",
1487 : htid,
1488 : LSN_FORMAT_ARGS(state->targetlsn))));
1489 : }
1490 :
1491 : /*
1492 : * Don't try to generate scankey using "negative infinity" item on
1493 : * internal pages. They are always truncated to zero attributes.
1494 : */
1495 4025700 : if (offset_is_negative_infinity(topaque, offset))
1496 : {
1497 : /*
1498 : * We don't call bt_child_check() for "negative infinity" items.
1499 : * But if we're performing downlink connectivity check, we do it
1500 : * for every item including "negative infinity" one.
1501 : */
1502 1114 : if (!P_ISLEAF(topaque) && state->readonly)
1503 : {
1504 24 : bt_child_highkey_check(state,
1505 : offset,
1506 : NULL,
1507 : topaque->btpo_level);
1508 : }
1509 1114 : continue;
1510 : }
1511 :
1512 : /*
1513 : * Readonly callers may optionally verify that non-pivot tuples can
1514 : * each be found by an independent search that starts from the root.
1515 : * Note that we deliberately don't do individual searches for each
1516 : * TID, since the posting list itself is validated by other checks.
1517 : */
1518 4024586 : if (state->rootdescend && P_ISLEAF(topaque) &&
1519 402196 : !bt_rootdescend(state, itup))
1520 : {
1521 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1522 : char *itid,
1523 : *htid;
1524 :
1525 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1526 0 : htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1527 0 : ItemPointerGetOffsetNumber(tid));
1528 :
1529 0 : ereport(ERROR,
1530 : (errcode(ERRCODE_INDEX_CORRUPTED),
1531 : errmsg("could not find tuple using search from root page in index \"%s\"",
1532 : RelationGetRelationName(state->rel)),
1533 : errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%X.",
1534 : itid, htid,
1535 : LSN_FORMAT_ARGS(state->targetlsn))));
1536 : }
1537 :
1538 : /*
1539 : * If tuple is a posting list tuple, make sure posting list TIDs are
1540 : * in order
1541 : */
1542 4024586 : if (BTreeTupleIsPosting(itup))
1543 : {
1544 : ItemPointerData last;
1545 : ItemPointer current;
1546 :
1547 22106 : ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
1548 :
1549 162198 : for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1550 : {
1551 :
1552 140092 : current = BTreeTupleGetPostingN(itup, i);
1553 :
1554 140092 : if (ItemPointerCompare(current, &last) <= 0)
1555 : {
1556 0 : char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1557 :
1558 0 : ereport(ERROR,
1559 : (errcode(ERRCODE_INDEX_CORRUPTED),
1560 : errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1561 : RelationGetRelationName(state->rel)),
1562 : errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%X.",
1563 : itid, i,
1564 : LSN_FORMAT_ARGS(state->targetlsn))));
1565 : }
1566 :
1567 140092 : ItemPointerCopy(current, &last);
1568 : }
1569 : }
1570 :
1571 : /* Build insertion scankey for current page offset */
1572 4024586 : skey = bt_mkscankey_pivotsearch(state->rel, itup);
1573 :
1574 : /*
1575 : * Make sure tuple size does not exceed the relevant BTREE_VERSION
1576 : * specific limit.
1577 : *
1578 : * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1579 : * a small amount of space from BTMaxItemSize() in order to ensure
1580 : * that suffix truncation always has enough space to add an explicit
1581 : * heap TID back to a tuple -- we pessimistically assume that every
1582 : * newly inserted tuple will eventually need to have a heap TID
1583 : * appended during a future leaf page split, when the tuple becomes
1584 : * the basis of the new high key (pivot tuple) for the leaf page.
1585 : *
1586 : * Since the reclaimed space is reserved for that purpose, we must not
1587 : * enforce the slightly lower limit when the extra space has been used
1588 : * as intended. In other words, there is only a cross-version
1589 : * difference in the limit on tuple size within leaf pages.
1590 : *
1591 : * Still, we're particular about the details within BTREE_VERSION 4
1592 : * internal pages. Pivot tuples may only use the extra space for its
1593 : * designated purpose. Enforce the lower limit for pivot tuples when
1594 : * an explicit heap TID isn't actually present. (In all other cases
1595 : * suffix truncation is guaranteed to generate a pivot tuple that's no
1596 : * larger than the firstright tuple provided to it by its caller.)
1597 : */
1598 8049172 : lowersizelimit = skey->heapkeyspace &&
1599 4024586 : (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1600 4024618 : if (tupsize > (lowersizelimit ? BTMaxItemSize(state->target) :
1601 32 : BTMaxItemSizeNoHeapTid(state->target)))
1602 : {
1603 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1604 : char *itid,
1605 : *htid;
1606 :
1607 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1608 0 : htid = psprintf("(%u,%u)",
1609 : ItemPointerGetBlockNumberNoCheck(tid),
1610 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1611 :
1612 0 : ereport(ERROR,
1613 : (errcode(ERRCODE_INDEX_CORRUPTED),
1614 : errmsg("index row size %zu exceeds maximum for index \"%s\"",
1615 : tupsize, RelationGetRelationName(state->rel)),
1616 : errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1617 : itid,
1618 : P_ISLEAF(topaque) ? "heap" : "index",
1619 : htid,
1620 : LSN_FORMAT_ARGS(state->targetlsn))));
1621 : }
1622 :
1623 : /* Fingerprint leaf page tuples (those that point to the heap) */
1624 4024586 : if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1625 : {
1626 : IndexTuple norm;
1627 :
1628 1013836 : if (BTreeTupleIsPosting(itup))
1629 : {
1630 : /* Fingerprint all elements as distinct "plain" tuples */
1631 55834 : for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1632 : {
1633 : IndexTuple logtuple;
1634 :
1635 55450 : logtuple = bt_posting_plain_tuple(itup, i);
1636 55450 : norm = bt_normalize_tuple(state, logtuple);
1637 55450 : bloom_add_element(state->filter, (unsigned char *) norm,
1638 55450 : IndexTupleSize(norm));
1639 : /* Be tidy */
1640 55450 : if (norm != logtuple)
1641 4 : pfree(norm);
1642 55450 : pfree(logtuple);
1643 : }
1644 : }
1645 : else
1646 : {
1647 1013452 : norm = bt_normalize_tuple(state, itup);
1648 1013452 : bloom_add_element(state->filter, (unsigned char *) norm,
1649 1013452 : IndexTupleSize(norm));
1650 : /* Be tidy */
1651 1013452 : if (norm != itup)
1652 2 : pfree(norm);
1653 : }
1654 : }
1655 :
1656 : /*
1657 : * * High key check *
1658 : *
1659 : * If there is a high key (if this is not the rightmost page on its
1660 : * entire level), check that high key actually is upper bound on all
1661 : * page items. If this is a posting list tuple, we'll need to set
1662 : * scantid to be highest TID in posting list.
1663 : *
1664 : * We prefer to check all items against high key rather than checking
1665 : * just the last and trusting that the operator class obeys the
1666 : * transitive law (which implies that all previous items also
1667 : * respected the high key invariant if they pass the item order
1668 : * check).
1669 : *
1670 : * Ideally, we'd compare every item in the index against every other
1671 : * item in the index, and not trust opclass obedience of the
1672 : * transitive law to bridge the gap between children and their
1673 : * grandparents (as well as great-grandparents, and so on). We don't
1674 : * go to those lengths because that would be prohibitively expensive,
1675 : * and probably not markedly more effective in practice.
1676 : *
1677 : * On the leaf level, we check that the key is <= the highkey.
1678 : * However, on non-leaf levels we check that the key is < the highkey,
1679 : * because the high key is "just another separator" rather than a copy
1680 : * of some existing key item; we expect it to be unique among all keys
1681 : * on the same level. (Suffix truncation will sometimes produce a
1682 : * leaf highkey that is an untruncated copy of the lastleft item, but
1683 : * never any other item, which necessitates weakening the leaf level
1684 : * check to <=.)
1685 : *
1686 : * Full explanation for why a highkey is never truly a copy of another
1687 : * item from the same level on internal levels:
1688 : *
1689 : * While the new left page's high key is copied from the first offset
1690 : * on the right page during an internal page split, that's not the
1691 : * full story. In effect, internal pages are split in the middle of
1692 : * the firstright tuple, not between the would-be lastleft and
1693 : * firstright tuples: the firstright key ends up on the left side as
1694 : * left's new highkey, and the firstright downlink ends up on the
1695 : * right side as right's new "negative infinity" item. The negative
1696 : * infinity tuple is truncated to zero attributes, so we're only left
1697 : * with the downlink. In other words, the copying is just an
1698 : * implementation detail of splitting in the middle of a (pivot)
1699 : * tuple. (See also: "Notes About Data Representation" in the nbtree
1700 : * README.)
1701 : */
1702 4024586 : scantid = skey->scantid;
1703 4024586 : if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1704 22106 : skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1705 :
1706 7706000 : if (!P_RIGHTMOST(topaque) &&
1707 3681414 : !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1708 1132 : invariant_l_offset(state, skey, P_HIKEY)))
1709 : {
1710 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1711 : char *itid,
1712 : *htid;
1713 :
1714 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1715 0 : htid = psprintf("(%u,%u)",
1716 : ItemPointerGetBlockNumberNoCheck(tid),
1717 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1718 :
1719 0 : ereport(ERROR,
1720 : (errcode(ERRCODE_INDEX_CORRUPTED),
1721 : errmsg("high key invariant violated for index \"%s\"",
1722 : RelationGetRelationName(state->rel)),
1723 : errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%X.",
1724 : itid,
1725 : P_ISLEAF(topaque) ? "heap" : "index",
1726 : htid,
1727 : LSN_FORMAT_ARGS(state->targetlsn))));
1728 : }
1729 : /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1730 4024586 : skey->scantid = scantid;
1731 :
1732 : /*
1733 : * * Item order check *
1734 : *
1735 : * Check that items are stored on page in logical order, by checking
1736 : * current item is strictly less than next item (if any).
1737 : */
1738 4024586 : if (OffsetNumberNext(offset) <= max &&
1739 4006450 : !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1740 : {
1741 : ItemPointer tid;
1742 : char *itid,
1743 : *htid,
1744 : *nitid,
1745 : *nhtid;
1746 :
1747 6 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1748 6 : tid = BTreeTupleGetPointsToTID(itup);
1749 6 : htid = psprintf("(%u,%u)",
1750 : ItemPointerGetBlockNumberNoCheck(tid),
1751 6 : ItemPointerGetOffsetNumberNoCheck(tid));
1752 6 : nitid = psprintf("(%u,%u)", state->targetblock,
1753 6 : OffsetNumberNext(offset));
1754 :
1755 : /* Reuse itup to get pointed-to heap location of second item */
1756 6 : itemid = PageGetItemIdCareful(state, state->targetblock,
1757 : state->target,
1758 6 : OffsetNumberNext(offset));
1759 6 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1760 6 : tid = BTreeTupleGetPointsToTID(itup);
1761 6 : nhtid = psprintf("(%u,%u)",
1762 : ItemPointerGetBlockNumberNoCheck(tid),
1763 6 : ItemPointerGetOffsetNumberNoCheck(tid));
1764 :
1765 6 : ereport(ERROR,
1766 : (errcode(ERRCODE_INDEX_CORRUPTED),
1767 : errmsg("item order invariant violated for index \"%s\"",
1768 : RelationGetRelationName(state->rel)),
1769 : errdetail_internal("Lower index tid=%s (points to %s tid=%s) "
1770 : "higher index tid=%s (points to %s tid=%s) "
1771 : "page lsn=%X/%X.",
1772 : itid,
1773 : P_ISLEAF(topaque) ? "heap" : "index",
1774 : htid,
1775 : nitid,
1776 : P_ISLEAF(topaque) ? "heap" : "index",
1777 : nhtid,
1778 : LSN_FORMAT_ARGS(state->targetlsn))));
1779 : }
1780 :
1781 : /*
1782 : * If the index is unique verify entries uniqueness by checking the
1783 : * heap tuples visibility. Immediately check posting tuples and
1784 : * tuples with repeated keys. Postpone check for keys, which have the
1785 : * first appearance.
1786 : */
1787 4024580 : if (state->checkunique && state->indexinfo->ii_Unique &&
1788 571784 : P_ISLEAF(topaque) && !skey->anynullkeys &&
1789 570604 : (BTreeTupleIsPosting(itup) || ItemPointerIsValid(lVis.tid)))
1790 : {
1791 24 : bt_entry_unique_check(state, itup, state->targetblock, offset,
1792 : &lVis);
1793 18 : unique_checked = true;
1794 : }
1795 :
1796 4024574 : if (state->checkunique && state->indexinfo->ii_Unique &&
1797 286476 : P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
1798 : {
1799 : /* Save current scankey tid */
1800 283864 : scantid = skey->scantid;
1801 :
1802 : /*
1803 : * Invalidate scankey tid to make _bt_compare compare only keys in
1804 : * the item to report equality even if heap TIDs are different
1805 : */
1806 283864 : skey->scantid = NULL;
1807 :
1808 : /*
1809 : * If next key tuple is different, invalidate last visible entry
1810 : * data (whole index tuple or last posting in index tuple). Key
1811 : * containing null value does not violate unique constraint and
1812 : * treated as different to any other key.
1813 : *
1814 : * If the next key is the same as the previous one, do the
1815 : * bt_entry_unique_check() call if it was postponed.
1816 : */
1817 283864 : if (_bt_compare(state->rel, skey, state->target,
1818 284658 : OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
1819 : {
1820 283210 : lVis.blkno = InvalidBlockNumber;
1821 283210 : lVis.offset = InvalidOffsetNumber;
1822 283210 : lVis.postingIndex = -1;
1823 283210 : lVis.tid = NULL;
1824 : }
1825 654 : else if (!unique_checked)
1826 : {
1827 654 : bt_entry_unique_check(state, itup, state->targetblock, offset,
1828 : &lVis);
1829 : }
1830 283864 : skey->scantid = scantid; /* Restore saved scan key state */
1831 : }
1832 :
1833 : /*
1834 : * * Last item check *
1835 : *
1836 : * Check last item against next/right page's first data item's when
1837 : * last item on page is reached. This additional check will detect
1838 : * transposed pages iff the supposed right sibling page happens to
1839 : * belong before target in the key space. (Otherwise, a subsequent
1840 : * heap verification will probably detect the problem.)
1841 : *
1842 : * This check is similar to the item order check that will have
1843 : * already been performed for every other "real" item on target page
1844 : * when last item is checked. The difference is that the next item
1845 : * (the item that is compared to target's last item) needs to come
1846 : * from the next/sibling page. There may not be such an item
1847 : * available from sibling for various reasons, though (e.g., target is
1848 : * the rightmost page on level).
1849 : */
1850 4024574 : if (offset == max)
1851 : {
1852 : BTScanInsert rightkey;
1853 :
1854 : /* first offset on a right index page (log only) */
1855 18136 : OffsetNumber rightfirstoffset = InvalidOffsetNumber;
1856 :
1857 : /* Get item in next/right page */
1858 18136 : rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
1859 :
1860 18136 : if (rightkey &&
1861 13156 : !invariant_g_offset(state, rightkey, max))
1862 : {
1863 : /*
1864 : * As explained at length in bt_right_page_check_scankey(),
1865 : * there is a known !readonly race that could account for
1866 : * apparent violation of invariant, which we must check for
1867 : * before actually proceeding with raising error. Our canary
1868 : * condition is that target page was deleted.
1869 : */
1870 0 : if (!state->readonly)
1871 : {
1872 : /* Get fresh copy of target page */
1873 0 : state->target = palloc_btree_page(state, state->targetblock);
1874 : /* Note that we deliberately do not update target LSN */
1875 0 : topaque = BTPageGetOpaque(state->target);
1876 :
1877 : /*
1878 : * All !readonly checks now performed; just return
1879 : */
1880 0 : if (P_IGNORE(topaque))
1881 0 : return;
1882 : }
1883 :
1884 0 : ereport(ERROR,
1885 : (errcode(ERRCODE_INDEX_CORRUPTED),
1886 : errmsg("cross page item order invariant violated for index \"%s\"",
1887 : RelationGetRelationName(state->rel)),
1888 : errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%X.",
1889 : state->targetblock, offset,
1890 : LSN_FORMAT_ARGS(state->targetlsn))));
1891 : }
1892 :
1893 : /*
1894 : * If index has unique constraint make sure that no more than one
1895 : * found equal items is visible.
1896 : */
1897 18136 : if (state->checkunique && state->indexinfo->ii_Unique &&
1898 1016 : rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
1899 : {
1900 1016 : BlockNumber rightblock_number = topaque->btpo_next;
1901 :
1902 1016 : elog(DEBUG2, "check cross page unique condition");
1903 :
1904 : /*
1905 : * Make _bt_compare compare only index keys without heap TIDs.
1906 : * rightkey->scantid is modified destructively but it is ok
1907 : * for it is not used later.
1908 : */
1909 1016 : rightkey->scantid = NULL;
1910 :
1911 : /* The first key on the next page is the same */
1912 1016 : if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
1913 14 : !rightkey->anynullkeys)
1914 : {
1915 : Page rightpage;
1916 :
1917 : /*
1918 : * Do the bt_entry_unique_check() call if it was
1919 : * postponed.
1920 : */
1921 0 : if (!unique_checked)
1922 0 : bt_entry_unique_check(state, itup, state->targetblock,
1923 : offset, &lVis);
1924 :
1925 0 : elog(DEBUG2, "cross page equal keys");
1926 0 : rightpage = palloc_btree_page(state,
1927 : rightblock_number);
1928 0 : topaque = BTPageGetOpaque(rightpage);
1929 :
1930 0 : if (P_IGNORE(topaque))
1931 : {
1932 0 : pfree(rightpage);
1933 0 : break;
1934 : }
1935 :
1936 0 : if (unlikely(!P_ISLEAF(topaque)))
1937 0 : ereport(ERROR,
1938 : (errcode(ERRCODE_INDEX_CORRUPTED),
1939 : errmsg("right block of leaf block is non-leaf for index \"%s\"",
1940 : RelationGetRelationName(state->rel)),
1941 : errdetail_internal("Block=%u page lsn=%X/%X.",
1942 : state->targetblock,
1943 : LSN_FORMAT_ARGS(state->targetlsn))));
1944 :
1945 0 : itemid = PageGetItemIdCareful(state, rightblock_number,
1946 : rightpage,
1947 : rightfirstoffset);
1948 0 : itup = (IndexTuple) PageGetItem(rightpage, itemid);
1949 :
1950 0 : bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
1951 :
1952 0 : pfree(rightpage);
1953 : }
1954 : }
1955 : }
1956 :
1957 : /*
1958 : * * Downlink check *
1959 : *
1960 : * Additional check of child items iff this is an internal page and
1961 : * caller holds a ShareLock. This happens for every downlink (item)
1962 : * in target excluding the negative-infinity downlink (again, this is
1963 : * because it has no useful value to compare).
1964 : */
1965 4024574 : if (!P_ISLEAF(topaque) && state->readonly)
1966 3722 : bt_child_check(state, skey, offset);
1967 : }
1968 :
1969 : /*
1970 : * Special case bt_child_highkey_check() call
1971 : *
1972 : * We don't pass a real downlink, but we've to finish the level
1973 : * processing. If condition is satisfied, we've already processed all the
1974 : * downlinks from the target level. But there still might be pages to the
1975 : * right of the child page pointer to by our rightmost downlink. And they
1976 : * might have missing downlinks. This final call checks for them.
1977 : */
1978 18140 : if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1979 : {
1980 22 : bt_child_highkey_check(state, InvalidOffsetNumber,
1981 : NULL, topaque->btpo_level);
1982 : }
1983 : }
1984 :
1985 : /*
1986 : * Return a scankey for an item on page to right of current target (or the
1987 : * first non-ignorable page), sufficient to check ordering invariant on last
1988 : * item in current target page. Returned scankey relies on local memory
1989 : * allocated for the child page, which caller cannot pfree(). Caller's memory
1990 : * context should be reset between calls here.
1991 : *
1992 : * This is the first data item, and so all adjacent items are checked against
1993 : * their immediate sibling item (which may be on a sibling page, or even a
1994 : * "cousin" page at parent boundaries where target's rightlink points to page
1995 : * with different parent page). If no such valid item is available, return
1996 : * NULL instead.
1997 : *
1998 : * Note that !readonly callers must reverify that target page has not
1999 : * been concurrently deleted.
2000 : *
2001 : * Save rightfirstoffset for detailed error message.
2002 : */
2003 : static BTScanInsert
2004 18136 : bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
2005 : {
2006 : BTPageOpaque opaque;
2007 : ItemId rightitem;
2008 : IndexTuple firstitup;
2009 : BlockNumber targetnext;
2010 : Page rightpage;
2011 : OffsetNumber nline;
2012 :
2013 : /* Determine target's next block number */
2014 18136 : opaque = BTPageGetOpaque(state->target);
2015 :
2016 : /* If target is already rightmost, no right sibling; nothing to do here */
2017 18136 : if (P_RIGHTMOST(opaque))
2018 4980 : return NULL;
2019 :
2020 : /*
2021 : * General notes on concurrent page splits and page deletion:
2022 : *
2023 : * Routines like _bt_search() don't require *any* page split interlock
2024 : * when descending the tree, including something very light like a buffer
2025 : * pin. That's why it's okay that we don't either. This avoidance of any
2026 : * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
2027 : * algorithm, in fact.
2028 : *
2029 : * That leaves deletion. A deleted page won't actually be recycled by
2030 : * VACUUM early enough for us to fail to at least follow its right link
2031 : * (or left link, or downlink) and find its sibling, because recycling
2032 : * does not occur until no possible index scan could land on the page.
2033 : * Index scans can follow links with nothing more than their snapshot as
2034 : * an interlock and be sure of at least that much. (See page
2035 : * recycling/"visible to everyone" notes in nbtree README.)
2036 : *
2037 : * Furthermore, it's okay if we follow a rightlink and find a half-dead or
2038 : * dead (ignorable) page one or more times. There will either be a
2039 : * further right link to follow that leads to a live page before too long
2040 : * (before passing by parent's rightmost child), or we will find the end
2041 : * of the entire level instead (possible when parent page is itself the
2042 : * rightmost on its level).
2043 : */
2044 13156 : targetnext = opaque->btpo_next;
2045 : for (;;)
2046 : {
2047 13156 : CHECK_FOR_INTERRUPTS();
2048 :
2049 13156 : rightpage = palloc_btree_page(state, targetnext);
2050 13156 : opaque = BTPageGetOpaque(rightpage);
2051 :
2052 13156 : if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
2053 : break;
2054 :
2055 : /*
2056 : * We landed on a deleted or half-dead sibling page. Step right until
2057 : * we locate a live sibling page.
2058 : */
2059 0 : ereport(DEBUG2,
2060 : (errcode(ERRCODE_NO_DATA),
2061 : errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
2062 : opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
2063 : errdetail_internal("Deleted page found when building scankey from right sibling.")));
2064 :
2065 0 : targetnext = opaque->btpo_next;
2066 :
2067 : /* Be slightly more pro-active in freeing this memory, just in case */
2068 0 : pfree(rightpage);
2069 : }
2070 :
2071 : /*
2072 : * No ShareLock held case -- why it's safe to proceed.
2073 : *
2074 : * Problem:
2075 : *
2076 : * We must avoid false positive reports of corruption when caller treats
2077 : * item returned here as an upper bound on target's last item. In
2078 : * general, false positives are disallowed. Avoiding them here when
2079 : * caller is !readonly is subtle.
2080 : *
2081 : * A concurrent page deletion by VACUUM of the target page can result in
2082 : * the insertion of items on to this right sibling page that would
2083 : * previously have been inserted on our target page. There might have
2084 : * been insertions that followed the target's downlink after it was made
2085 : * to point to right sibling instead of target by page deletion's first
2086 : * phase. The inserters insert items that would belong on target page.
2087 : * This race is very tight, but it's possible. This is our only problem.
2088 : *
2089 : * Non-problems:
2090 : *
2091 : * We are not hindered by a concurrent page split of the target; we'll
2092 : * never land on the second half of the page anyway. A concurrent split
2093 : * of the right page will also not matter, because the first data item
2094 : * remains the same within the left half, which we'll reliably land on. If
2095 : * we had to skip over ignorable/deleted pages, it cannot matter because
2096 : * their key space has already been atomically merged with the first
2097 : * non-ignorable page we eventually find (doesn't matter whether the page
2098 : * we eventually find is a true sibling or a cousin of target, which we go
2099 : * into below).
2100 : *
2101 : * Solution:
2102 : *
2103 : * Caller knows that it should reverify that target is not ignorable
2104 : * (half-dead or deleted) when cross-page sibling item comparison appears
2105 : * to indicate corruption (invariant fails). This detects the single race
2106 : * condition that exists for caller. This is correct because the
2107 : * continued existence of target block as non-ignorable (not half-dead or
2108 : * deleted) implies that target page was not merged into from the right by
2109 : * deletion; the key space at or after target never moved left. Target's
2110 : * parent either has the same downlink to target as before, or a <
2111 : * downlink due to deletion at the left of target. Target either has the
2112 : * same highkey as before, or a highkey < before when there is a page
2113 : * split. (The rightmost concurrently-split-from-target-page page will
2114 : * still have the same highkey as target was originally found to have,
2115 : * which for our purposes is equivalent to target's highkey itself never
2116 : * changing, since we reliably skip over
2117 : * concurrently-split-from-target-page pages.)
2118 : *
2119 : * In simpler terms, we allow that the key space of the target may expand
2120 : * left (the key space can move left on the left side of target only), but
2121 : * the target key space cannot expand right and get ahead of us without
2122 : * our detecting it. The key space of the target cannot shrink, unless it
2123 : * shrinks to zero due to the deletion of the original page, our canary
2124 : * condition. (To be very precise, we're a bit stricter than that because
2125 : * it might just have been that the target page split and only the
2126 : * original target page was deleted. We can be more strict, just not more
2127 : * lax.)
2128 : *
2129 : * Top level tree walk caller moves on to next page (makes it the new
2130 : * target) following recovery from this race. (cf. The rationale for
2131 : * child/downlink verification needing a ShareLock within
2132 : * bt_child_check(), where page deletion is also the main source of
2133 : * trouble.)
2134 : *
2135 : * Note that it doesn't matter if right sibling page here is actually a
2136 : * cousin page, because in order for the key space to be readjusted in a
2137 : * way that causes us issues in next level up (guiding problematic
2138 : * concurrent insertions to the cousin from the grandparent rather than to
2139 : * the sibling from the parent), there'd have to be page deletion of
2140 : * target's parent page (affecting target's parent's downlink in target's
2141 : * grandparent page). Internal page deletion only occurs when there are
2142 : * no child pages (they were all fully deleted), and caller is checking
2143 : * that the target's parent has at least one non-deleted (so
2144 : * non-ignorable) child: the target page. (Note that the first phase of
2145 : * deletion atomically marks the page to be deleted half-dead/ignorable at
2146 : * the same time downlink in its parent is removed, so caller will
2147 : * definitely not fail to detect that this happened.)
2148 : *
2149 : * This trick is inspired by the method backward scans use for dealing
2150 : * with concurrent page splits; concurrent page deletion is a problem that
2151 : * similarly receives special consideration sometimes (it's possible that
2152 : * the backwards scan will re-read its "original" block after failing to
2153 : * find a right-link to it, having already moved in the opposite direction
2154 : * (right/"forwards") a few times to try to locate one). Just like us,
2155 : * that happens only to determine if there was a concurrent page deletion
2156 : * of a reference page, and just like us if there was a page deletion of
2157 : * that reference page it means we can move on from caring about the
2158 : * reference page. See the nbtree README for a full description of how
2159 : * that works.
2160 : */
2161 13156 : nline = PageGetMaxOffsetNumber(rightpage);
2162 :
2163 : /*
2164 : * Get first data item, if any
2165 : */
2166 13156 : if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
2167 : {
2168 : /* Return first data item (if any) */
2169 13152 : rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2170 13152 : P_FIRSTDATAKEY(opaque));
2171 13152 : *rightfirstoffset = P_FIRSTDATAKEY(opaque);
2172 : }
2173 8 : else if (!P_ISLEAF(opaque) &&
2174 4 : nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
2175 : {
2176 : /*
2177 : * Return first item after the internal page's "negative infinity"
2178 : * item
2179 : */
2180 4 : rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2181 4 : OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
2182 : }
2183 : else
2184 : {
2185 : /*
2186 : * No first item. Page is probably empty leaf page, but it's also
2187 : * possible that it's an internal page with only a negative infinity
2188 : * item.
2189 : */
2190 0 : ereport(DEBUG2,
2191 : (errcode(ERRCODE_NO_DATA),
2192 : errmsg_internal("%s block %u of index \"%s\" has no first data item",
2193 : P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
2194 : RelationGetRelationName(state->rel))));
2195 0 : return NULL;
2196 : }
2197 :
2198 : /*
2199 : * Return first real item scankey. Note that this relies on right page
2200 : * memory remaining allocated.
2201 : */
2202 13156 : firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
2203 13156 : return bt_mkscankey_pivotsearch(state->rel, firstitup);
2204 : }
2205 :
2206 : /*
2207 : * Check if two tuples are binary identical except the block number. So,
2208 : * this function is capable to compare pivot keys on different levels.
2209 : */
2210 : static bool
2211 3724 : bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
2212 : {
2213 3724 : if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
2214 0 : return false;
2215 :
2216 3724 : if (heapkeyspace)
2217 : {
2218 : /*
2219 : * Offset number will contain important information in heapkeyspace
2220 : * indexes: the number of attributes left in the pivot tuple following
2221 : * suffix truncation. Don't skip over it (compare it too).
2222 : */
2223 3724 : if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
2224 3724 : IndexTupleSize(itup1) -
2225 : offsetof(ItemPointerData, ip_posid)) != 0)
2226 0 : return false;
2227 : }
2228 : else
2229 : {
2230 : /*
2231 : * Cannot rely on offset number field having consistent value across
2232 : * levels on pg_upgrade'd !heapkeyspace indexes. Compare contents of
2233 : * tuple starting from just after item pointer (i.e. after block
2234 : * number and offset number).
2235 : */
2236 0 : if (memcmp(&itup1->t_info, &itup2->t_info,
2237 0 : IndexTupleSize(itup1) -
2238 : offsetof(IndexTupleData, t_info)) != 0)
2239 0 : return false;
2240 : }
2241 :
2242 3724 : return true;
2243 : }
2244 :
2245 : /*---
2246 : * Check high keys on the child level. Traverse rightlinks from previous
2247 : * downlink to the current one. Check that there are no intermediate pages
2248 : * with missing downlinks.
2249 : *
2250 : * If 'loaded_child' is given, it's assumed to be the page pointed to by the
2251 : * downlink referenced by 'downlinkoffnum' of the target page.
2252 : *
2253 : * Basically this function is called for each target downlink and checks two
2254 : * invariants:
2255 : *
2256 : * 1) You can reach the next child from previous one via rightlinks;
2257 : * 2) Each child high key have matching pivot key on target level.
2258 : *
2259 : * Consider the sample tree picture.
2260 : *
2261 : * 1
2262 : * / \
2263 : * 2 <-> 3
2264 : * / \ / \
2265 : * 4 <> 5 <> 6 <> 7 <> 8
2266 : *
2267 : * This function will be called for blocks 4, 5, 6 and 8. Consider what is
2268 : * happening for each function call.
2269 : *
2270 : * - The function call for block 4 initializes data structure and matches high
2271 : * key of block 4 to downlink's pivot key of block 2.
2272 : * - The high key of block 5 is matched to the high key of block 2.
2273 : * - The block 6 has an incomplete split flag set, so its high key isn't
2274 : * matched to anything.
2275 : * - The function call for block 8 checks that block 8 can be found while
2276 : * following rightlinks from block 6. The high key of block 7 will be
2277 : * matched to downlink's pivot key in block 3.
2278 : *
2279 : * There is also final call of this function, which checks that there is no
2280 : * missing downlinks for children to the right of the child referenced by
2281 : * rightmost downlink in target level.
2282 : */
2283 : static void
2284 3768 : bt_child_highkey_check(BtreeCheckState *state,
2285 : OffsetNumber target_downlinkoffnum,
2286 : Page loaded_child,
2287 : uint32 target_level)
2288 : {
2289 3768 : BlockNumber blkno = state->prevrightlink;
2290 : Page page;
2291 : BTPageOpaque opaque;
2292 3768 : bool rightsplit = state->previncompletesplit;
2293 3768 : bool first = true;
2294 : ItemId itemid;
2295 : IndexTuple itup;
2296 : BlockNumber downlink;
2297 :
2298 3768 : if (OffsetNumberIsValid(target_downlinkoffnum))
2299 : {
2300 3746 : itemid = PageGetItemIdCareful(state, state->targetblock,
2301 : state->target, target_downlinkoffnum);
2302 3746 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2303 3746 : downlink = BTreeTupleGetDownLink(itup);
2304 : }
2305 : else
2306 : {
2307 22 : downlink = P_NONE;
2308 : }
2309 :
2310 : /*
2311 : * If no previous rightlink is memorized for current level just below
2312 : * target page's level, we are about to start from the leftmost page. We
2313 : * can't follow rightlinks from previous page, because there is no
2314 : * previous page. But we still can match high key.
2315 : *
2316 : * So we initialize variables for the loop above like there is previous
2317 : * page referencing current child. Also we imply previous page to not
2318 : * have incomplete split flag, that would make us require downlink for
2319 : * current child. That's correct, because leftmost page on the level
2320 : * should always have parent downlink.
2321 : */
2322 3768 : if (!BlockNumberIsValid(blkno))
2323 : {
2324 22 : blkno = downlink;
2325 22 : rightsplit = false;
2326 : }
2327 :
2328 : /* Move to the right on the child level */
2329 : while (true)
2330 : {
2331 : /*
2332 : * Did we traverse the whole tree level and this is check for pages to
2333 : * the right of rightmost downlink?
2334 : */
2335 3768 : if (blkno == P_NONE && downlink == P_NONE)
2336 : {
2337 22 : state->prevrightlink = InvalidBlockNumber;
2338 22 : state->previncompletesplit = false;
2339 22 : return;
2340 : }
2341 :
2342 : /* Did we traverse the whole tree level and don't find next downlink? */
2343 3746 : if (blkno == P_NONE)
2344 0 : ereport(ERROR,
2345 : (errcode(ERRCODE_INDEX_CORRUPTED),
2346 : errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
2347 : state->prevrightlink, downlink,
2348 : RelationGetRelationName(state->rel))));
2349 :
2350 : /* Load page contents */
2351 3746 : if (blkno == downlink && loaded_child)
2352 3722 : page = loaded_child;
2353 : else
2354 24 : page = palloc_btree_page(state, blkno);
2355 :
2356 3746 : opaque = BTPageGetOpaque(page);
2357 :
2358 : /* The first page we visit at the level should be leftmost */
2359 3746 : if (first && !BlockNumberIsValid(state->prevrightlink) &&
2360 22 : !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
2361 0 : ereport(ERROR,
2362 : (errcode(ERRCODE_INDEX_CORRUPTED),
2363 : errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
2364 : RelationGetRelationName(state->rel)),
2365 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2366 : state->targetblock, blkno,
2367 : LSN_FORMAT_ARGS(state->targetlsn))));
2368 :
2369 : /* Do level sanity check */
2370 3746 : if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
2371 3746 : opaque->btpo_level != target_level - 1)
2372 0 : ereport(ERROR,
2373 : (errcode(ERRCODE_INDEX_CORRUPTED),
2374 : errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
2375 : RelationGetRelationName(state->rel)),
2376 : errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
2377 : blkno, target_level - 1, opaque->btpo_level)));
2378 :
2379 : /* Try to detect circular links */
2380 3746 : if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
2381 0 : ereport(ERROR,
2382 : (errcode(ERRCODE_INDEX_CORRUPTED),
2383 : errmsg("circular link chain found in block %u of index \"%s\"",
2384 : blkno, RelationGetRelationName(state->rel))));
2385 :
2386 3746 : if (blkno != downlink && !P_IGNORE(opaque))
2387 : {
2388 : /* blkno probably has missing parent downlink */
2389 0 : bt_downlink_missing_check(state, rightsplit, blkno, page);
2390 : }
2391 :
2392 3746 : rightsplit = P_INCOMPLETE_SPLIT(opaque);
2393 :
2394 : /*
2395 : * If we visit page with high key, check that it is equal to the
2396 : * target key next to corresponding downlink.
2397 : */
2398 3746 : if (!rightsplit && !P_RIGHTMOST(opaque))
2399 : {
2400 : BTPageOpaque topaque;
2401 : IndexTuple highkey;
2402 : OffsetNumber pivotkey_offset;
2403 :
2404 : /* Get high key */
2405 3724 : itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
2406 3724 : highkey = (IndexTuple) PageGetItem(page, itemid);
2407 :
2408 : /*
2409 : * There might be two situations when we examine high key. If
2410 : * current child page is referenced by given target downlink, we
2411 : * should look to the next offset number for matching key from
2412 : * target page.
2413 : *
2414 : * Alternatively, we're following rightlinks somewhere in the
2415 : * middle between page referenced by previous target's downlink
2416 : * and the page referenced by current target's downlink. If
2417 : * current child page hasn't incomplete split flag set, then its
2418 : * high key should match to the target's key of current offset
2419 : * number. This happens when a previous call here (to
2420 : * bt_child_highkey_check()) found an incomplete split, and we
2421 : * reach a right sibling page without a downlink -- the right
2422 : * sibling page's high key still needs to be matched to a
2423 : * separator key on the parent/target level.
2424 : *
2425 : * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
2426 : * already had to step right on the child level. Our traversal of
2427 : * the child level must try to move in perfect lockstep behind (to
2428 : * the left of) the target/parent level traversal.
2429 : */
2430 3724 : if (blkno == downlink)
2431 3724 : pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
2432 : else
2433 0 : pivotkey_offset = target_downlinkoffnum;
2434 :
2435 3724 : topaque = BTPageGetOpaque(state->target);
2436 :
2437 3724 : if (!offset_is_negative_infinity(topaque, pivotkey_offset))
2438 : {
2439 : /*
2440 : * If we're looking for the next pivot tuple in target page,
2441 : * but there is no more pivot tuples, then we should match to
2442 : * high key instead.
2443 : */
2444 3724 : if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
2445 : {
2446 2 : if (P_RIGHTMOST(topaque))
2447 0 : ereport(ERROR,
2448 : (errcode(ERRCODE_INDEX_CORRUPTED),
2449 : errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
2450 : RelationGetRelationName(state->rel)),
2451 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2452 : state->targetblock, blkno,
2453 : LSN_FORMAT_ARGS(state->targetlsn))));
2454 2 : pivotkey_offset = P_HIKEY;
2455 : }
2456 3724 : itemid = PageGetItemIdCareful(state, state->targetblock,
2457 : state->target, pivotkey_offset);
2458 3724 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2459 : }
2460 : else
2461 : {
2462 : /*
2463 : * We cannot try to match child's high key to a negative
2464 : * infinity key in target, since there is nothing to compare.
2465 : * However, it's still possible to match child's high key
2466 : * outside of target page. The reason why we're are is that
2467 : * bt_child_highkey_check() was previously called for the
2468 : * cousin page of 'loaded_child', which is incomplete split.
2469 : * So, now we traverse to the right of that cousin page and
2470 : * current child level page under consideration still belongs
2471 : * to the subtree of target's left sibling. Thus, we need to
2472 : * match child's high key to it's left uncle page high key.
2473 : * Thankfully we saved it, it's called a "low key" of target
2474 : * page.
2475 : */
2476 0 : if (!state->lowkey)
2477 0 : ereport(ERROR,
2478 : (errcode(ERRCODE_INDEX_CORRUPTED),
2479 : errmsg("can't find left sibling high key in index \"%s\"",
2480 : RelationGetRelationName(state->rel)),
2481 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2482 : state->targetblock, blkno,
2483 : LSN_FORMAT_ARGS(state->targetlsn))));
2484 0 : itup = state->lowkey;
2485 : }
2486 :
2487 3724 : if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
2488 : {
2489 0 : ereport(ERROR,
2490 : (errcode(ERRCODE_INDEX_CORRUPTED),
2491 : errmsg("mismatch between parent key and child high key in index \"%s\"",
2492 : RelationGetRelationName(state->rel)),
2493 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%X.",
2494 : state->targetblock, blkno,
2495 : LSN_FORMAT_ARGS(state->targetlsn))));
2496 : }
2497 : }
2498 :
2499 : /* Exit if we already found next downlink */
2500 3746 : if (blkno == downlink)
2501 : {
2502 3746 : state->prevrightlink = opaque->btpo_next;
2503 3746 : state->previncompletesplit = rightsplit;
2504 3746 : return;
2505 : }
2506 :
2507 : /* Traverse to the next page using rightlink */
2508 0 : blkno = opaque->btpo_next;
2509 :
2510 : /* Free page contents if it's allocated by us */
2511 0 : if (page != loaded_child)
2512 0 : pfree(page);
2513 0 : first = false;
2514 : }
2515 : }
2516 :
2517 : /*
2518 : * Checks one of target's downlink against its child page.
2519 : *
2520 : * Conceptually, the target page continues to be what is checked here. The
2521 : * target block is still blamed in the event of finding an invariant violation.
2522 : * The downlink insertion into the target is probably where any problem raised
2523 : * here arises, and there is no such thing as a parent link, so doing the
2524 : * verification this way around is much more practical.
2525 : *
2526 : * This function visits child page and it's sequentially called for each
2527 : * downlink of target page. Assuming this we also check downlink connectivity
2528 : * here in order to save child page visits.
2529 : */
2530 : static void
2531 3722 : bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
2532 : OffsetNumber downlinkoffnum)
2533 : {
2534 : ItemId itemid;
2535 : IndexTuple itup;
2536 : BlockNumber childblock;
2537 : OffsetNumber offset;
2538 : OffsetNumber maxoffset;
2539 : Page child;
2540 : BTPageOpaque copaque;
2541 : BTPageOpaque topaque;
2542 :
2543 3722 : itemid = PageGetItemIdCareful(state, state->targetblock,
2544 : state->target, downlinkoffnum);
2545 3722 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2546 3722 : childblock = BTreeTupleGetDownLink(itup);
2547 :
2548 : /*
2549 : * Caller must have ShareLock on target relation, because of
2550 : * considerations around page deletion by VACUUM.
2551 : *
2552 : * NB: In general, page deletion deletes the right sibling's downlink, not
2553 : * the downlink of the page being deleted; the deleted page's downlink is
2554 : * reused for its sibling. The key space is thereby consolidated between
2555 : * the deleted page and its right sibling. (We cannot delete a parent
2556 : * page's rightmost child unless it is the last child page, and we intend
2557 : * to also delete the parent itself.)
2558 : *
2559 : * If this verification happened without a ShareLock, the following race
2560 : * condition could cause false positives:
2561 : *
2562 : * In general, concurrent page deletion might occur, including deletion of
2563 : * the left sibling of the child page that is examined here. If such a
2564 : * page deletion were to occur, closely followed by an insertion into the
2565 : * newly expanded key space of the child, a window for the false positive
2566 : * opens up: the stale parent/target downlink originally followed to get
2567 : * to the child legitimately ceases to be a lower bound on all items in
2568 : * the page, since the key space was concurrently expanded "left".
2569 : * (Insertion followed the "new" downlink for the child, not our now-stale
2570 : * downlink, which was concurrently physically removed in target/parent as
2571 : * part of deletion's first phase.)
2572 : *
2573 : * While we use various techniques elsewhere to perform cross-page
2574 : * verification for !readonly callers, a similar trick seems difficult
2575 : * here. The tricks used by bt_recheck_sibling_links and by
2576 : * bt_right_page_check_scankey both involve verification of a same-level,
2577 : * cross-sibling invariant. Cross-level invariants are far more squishy,
2578 : * though. The nbtree REDO routines do not actually couple buffer locks
2579 : * across levels during page splits, so making any cross-level check work
2580 : * reliably in !readonly mode may be impossible.
2581 : */
2582 : Assert(state->readonly);
2583 :
2584 : /*
2585 : * Verify child page has the downlink key from target page (its parent) as
2586 : * a lower bound; downlink must be strictly less than all keys on the
2587 : * page.
2588 : *
2589 : * Check all items, rather than checking just the first and trusting that
2590 : * the operator class obeys the transitive law.
2591 : */
2592 3722 : topaque = BTPageGetOpaque(state->target);
2593 3722 : child = palloc_btree_page(state, childblock);
2594 3722 : copaque = BTPageGetOpaque(child);
2595 3722 : maxoffset = PageGetMaxOffsetNumber(child);
2596 :
2597 : /*
2598 : * Since we've already loaded the child block, combine this check with
2599 : * check for downlink connectivity.
2600 : */
2601 3722 : bt_child_highkey_check(state, downlinkoffnum,
2602 : child, topaque->btpo_level);
2603 :
2604 : /*
2605 : * Since there cannot be a concurrent VACUUM operation in readonly mode,
2606 : * and since a page has no links within other pages (siblings and parent)
2607 : * once it is marked fully deleted, it should be impossible to land on a
2608 : * fully deleted page.
2609 : *
2610 : * It does not quite make sense to enforce that the page cannot even be
2611 : * half-dead, despite the fact the downlink is modified at the same stage
2612 : * that the child leaf page is marked half-dead. That's incorrect because
2613 : * there may occasionally be multiple downlinks from a chain of pages
2614 : * undergoing deletion, where multiple successive calls are made to
2615 : * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2616 : * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2617 : * removes the downlink to the leaf page that is marked half-dead, that's
2618 : * not guaranteed, so it's possible we'll land on a half-dead page with a
2619 : * downlink due to an interrupted multi-level page deletion.
2620 : *
2621 : * We go ahead with our checks if the child page is half-dead. It's safe
2622 : * to do so because we do not test the child's high key, so it does not
2623 : * matter that the original high key will have been replaced by a dummy
2624 : * truncated high key within _bt_mark_page_halfdead(). All other page
2625 : * items are left intact on a half-dead page, so there is still something
2626 : * to test.
2627 : */
2628 3722 : if (P_ISDELETED(copaque))
2629 0 : ereport(ERROR,
2630 : (errcode(ERRCODE_INDEX_CORRUPTED),
2631 : errmsg("downlink to deleted page found in index \"%s\"",
2632 : RelationGetRelationName(state->rel)),
2633 : errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%X.",
2634 : state->targetblock, childblock,
2635 : LSN_FORMAT_ARGS(state->targetlsn))));
2636 :
2637 1200700 : for (offset = P_FIRSTDATAKEY(copaque);
2638 : offset <= maxoffset;
2639 1196978 : offset = OffsetNumberNext(offset))
2640 : {
2641 : /*
2642 : * Skip comparison of target page key against "negative infinity"
2643 : * item, if any. Checking it would indicate that it's not a strict
2644 : * lower bound, but that's only because of the hard-coding for
2645 : * negative infinity items within _bt_compare().
2646 : *
2647 : * If nbtree didn't truncate negative infinity tuples during internal
2648 : * page splits then we'd expect child's negative infinity key to be
2649 : * equal to the scankey/downlink from target/parent (it would be a
2650 : * "low key" in this hypothetical scenario, and so it would still need
2651 : * to be treated as a special case here).
2652 : *
2653 : * Negative infinity items can be thought of as a strict lower bound
2654 : * that works transitively, with the last non-negative-infinity pivot
2655 : * followed during a descent from the root as its "true" strict lower
2656 : * bound. Only a small number of negative infinity items are truly
2657 : * negative infinity; those that are the first items of leftmost
2658 : * internal pages. In more general terms, a negative infinity item is
2659 : * only negative infinity with respect to the subtree that the page is
2660 : * at the root of.
2661 : *
2662 : * See also: bt_rootdescend(), which can even detect transitive
2663 : * inconsistencies on cousin leaf pages.
2664 : */
2665 1196978 : if (offset_is_negative_infinity(copaque, offset))
2666 2 : continue;
2667 :
2668 1196976 : if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2669 : offset))
2670 0 : ereport(ERROR,
2671 : (errcode(ERRCODE_INDEX_CORRUPTED),
2672 : errmsg("down-link lower bound invariant violated for index \"%s\"",
2673 : RelationGetRelationName(state->rel)),
2674 : errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%X.",
2675 : state->targetblock, childblock, offset,
2676 : LSN_FORMAT_ARGS(state->targetlsn))));
2677 : }
2678 :
2679 3722 : pfree(child);
2680 3722 : }
2681 :
2682 : /*
2683 : * Checks if page is missing a downlink that it should have.
2684 : *
2685 : * A page that lacks a downlink/parent may indicate corruption. However, we
2686 : * must account for the fact that a missing downlink can occasionally be
2687 : * encountered in a non-corrupt index. This can be due to an interrupted page
2688 : * split, or an interrupted multi-level page deletion (i.e. there was a hard
2689 : * crash or an error during a page split, or while VACUUM was deleting a
2690 : * multi-level chain of pages).
2691 : *
2692 : * Note that this can only be called in readonly mode, so there is no need to
2693 : * be concerned about concurrent page splits or page deletions.
2694 : */
2695 : static void
2696 0 : bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
2697 : BlockNumber blkno, Page page)
2698 : {
2699 0 : BTPageOpaque opaque = BTPageGetOpaque(page);
2700 : ItemId itemid;
2701 : IndexTuple itup;
2702 : Page child;
2703 : BTPageOpaque copaque;
2704 : uint32 level;
2705 : BlockNumber childblk;
2706 : XLogRecPtr pagelsn;
2707 :
2708 : Assert(state->readonly);
2709 : Assert(!P_IGNORE(opaque));
2710 :
2711 : /* No next level up with downlinks to fingerprint from the true root */
2712 0 : if (P_ISROOT(opaque))
2713 0 : return;
2714 :
2715 0 : pagelsn = PageGetLSN(page);
2716 :
2717 : /*
2718 : * Incomplete (interrupted) page splits can account for the lack of a
2719 : * downlink. Some inserting transaction should eventually complete the
2720 : * page split in passing, when it notices that the left sibling page is
2721 : * P_INCOMPLETE_SPLIT().
2722 : *
2723 : * In general, VACUUM is not prepared for there to be no downlink to a
2724 : * page that it deletes. This is the main reason why the lack of a
2725 : * downlink can be reported as corruption here. It's not obvious that an
2726 : * invalid missing downlink can result in wrong answers to queries,
2727 : * though, since index scans that land on the child may end up
2728 : * consistently moving right. The handling of concurrent page splits (and
2729 : * page deletions) within _bt_moveright() cannot distinguish
2730 : * inconsistencies that last for a moment from inconsistencies that are
2731 : * permanent and irrecoverable.
2732 : *
2733 : * VACUUM isn't even prepared to delete pages that have no downlink due to
2734 : * an incomplete page split, but it can detect and reason about that case
2735 : * by design, so it shouldn't be taken to indicate corruption. See
2736 : * _bt_pagedel() for full details.
2737 : */
2738 0 : if (rightsplit)
2739 : {
2740 0 : ereport(DEBUG1,
2741 : (errcode(ERRCODE_NO_DATA),
2742 : errmsg_internal("harmless interrupted page split detected in index \"%s\"",
2743 : RelationGetRelationName(state->rel)),
2744 : errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%X.",
2745 : blkno, opaque->btpo_level,
2746 : opaque->btpo_prev,
2747 : LSN_FORMAT_ARGS(pagelsn))));
2748 0 : return;
2749 : }
2750 :
2751 : /*
2752 : * Page under check is probably the "top parent" of a multi-level page
2753 : * deletion. We'll need to descend the subtree to make sure that
2754 : * descendant pages are consistent with that, though.
2755 : *
2756 : * If the page (which must be non-ignorable) is a leaf page, then clearly
2757 : * it can't be the top parent. The lack of a downlink is probably a
2758 : * symptom of a broad problem that could just as easily cause
2759 : * inconsistencies anywhere else.
2760 : */
2761 0 : if (P_ISLEAF(opaque))
2762 0 : ereport(ERROR,
2763 : (errcode(ERRCODE_INDEX_CORRUPTED),
2764 : errmsg("leaf index block lacks downlink in index \"%s\"",
2765 : RelationGetRelationName(state->rel)),
2766 : errdetail_internal("Block=%u page lsn=%X/%X.",
2767 : blkno,
2768 : LSN_FORMAT_ARGS(pagelsn))));
2769 :
2770 : /* Descend from the given page, which is an internal page */
2771 0 : elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2772 : RelationGetRelationName(state->rel));
2773 :
2774 0 : level = opaque->btpo_level;
2775 0 : itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2776 0 : itup = (IndexTuple) PageGetItem(page, itemid);
2777 0 : childblk = BTreeTupleGetDownLink(itup);
2778 : for (;;)
2779 : {
2780 0 : CHECK_FOR_INTERRUPTS();
2781 :
2782 0 : child = palloc_btree_page(state, childblk);
2783 0 : copaque = BTPageGetOpaque(child);
2784 :
2785 0 : if (P_ISLEAF(copaque))
2786 0 : break;
2787 :
2788 : /* Do an extra sanity check in passing on internal pages */
2789 0 : if (copaque->btpo_level != level - 1)
2790 0 : ereport(ERROR,
2791 : (errcode(ERRCODE_INDEX_CORRUPTED),
2792 : errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2793 : RelationGetRelationName(state->rel)),
2794 : errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2795 : blkno, childblk,
2796 : level - 1, copaque->btpo_level)));
2797 :
2798 0 : level = copaque->btpo_level;
2799 0 : itemid = PageGetItemIdCareful(state, childblk, child,
2800 0 : P_FIRSTDATAKEY(copaque));
2801 0 : itup = (IndexTuple) PageGetItem(child, itemid);
2802 0 : childblk = BTreeTupleGetDownLink(itup);
2803 : /* Be slightly more pro-active in freeing this memory, just in case */
2804 0 : pfree(child);
2805 : }
2806 :
2807 : /*
2808 : * Since there cannot be a concurrent VACUUM operation in readonly mode,
2809 : * and since a page has no links within other pages (siblings and parent)
2810 : * once it is marked fully deleted, it should be impossible to land on a
2811 : * fully deleted page. See bt_child_check() for further details.
2812 : *
2813 : * The bt_child_check() P_ISDELETED() check is repeated here because
2814 : * bt_child_check() does not visit pages reachable through negative
2815 : * infinity items. Besides, bt_child_check() is unwilling to descend
2816 : * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2817 : * within bt_check_level_from_leftmost() won't reach the page either,
2818 : * since the leaf's live siblings should have their sibling links updated
2819 : * to bypass the deletion target page when it is marked fully dead.)
2820 : *
2821 : * If this error is raised, it might be due to a previous multi-level page
2822 : * deletion that failed to realize that it wasn't yet safe to mark the
2823 : * leaf page as fully dead. A "dangling downlink" will still remain when
2824 : * this happens. The fact that the dangling downlink's page (the leaf's
2825 : * parent/ancestor page) lacked a downlink is incidental.
2826 : */
2827 0 : if (P_ISDELETED(copaque))
2828 0 : ereport(ERROR,
2829 : (errcode(ERRCODE_INDEX_CORRUPTED),
2830 : errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2831 : RelationGetRelationName(state->rel)),
2832 : errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%X.",
2833 : blkno, childblk,
2834 : LSN_FORMAT_ARGS(pagelsn))));
2835 :
2836 : /*
2837 : * Iff leaf page is half-dead, its high key top parent link should point
2838 : * to what VACUUM considered to be the top parent page at the instant it
2839 : * was interrupted. Provided the high key link actually points to the
2840 : * page under check, the missing downlink we detected is consistent with
2841 : * there having been an interrupted multi-level page deletion. This means
2842 : * that the subtree with the page under check at its root (a page deletion
2843 : * chain) is in a consistent state, enabling VACUUM to resume deleting the
2844 : * entire chain the next time it encounters the half-dead leaf page.
2845 : */
2846 0 : if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2847 : {
2848 0 : itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2849 0 : itup = (IndexTuple) PageGetItem(child, itemid);
2850 0 : if (BTreeTupleGetTopParent(itup) == blkno)
2851 0 : return;
2852 : }
2853 :
2854 0 : ereport(ERROR,
2855 : (errcode(ERRCODE_INDEX_CORRUPTED),
2856 : errmsg("internal index block lacks downlink in index \"%s\"",
2857 : RelationGetRelationName(state->rel)),
2858 : errdetail_internal("Block=%u level=%u page lsn=%X/%X.",
2859 : blkno, opaque->btpo_level,
2860 : LSN_FORMAT_ARGS(pagelsn))));
2861 : }
2862 :
2863 : /*
2864 : * Per-tuple callback from table_index_build_scan, used to determine if index has
2865 : * all the entries that definitely should have been observed in leaf pages of
2866 : * the target index (that is, all IndexTuples that were fingerprinted by our
2867 : * Bloom filter). All heapallindexed checks occur here.
2868 : *
2869 : * The redundancy between an index and the table it indexes provides a good
2870 : * opportunity to detect corruption, especially corruption within the table.
2871 : * The high level principle behind the verification performed here is that any
2872 : * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2873 : * on the same index definition) should also have been in the original,
2874 : * existing index, which should have used exactly the same representation
2875 : *
2876 : * Since the overall structure of the index has already been verified, the most
2877 : * likely explanation for error here is a corrupt heap page (could be logical
2878 : * or physical corruption). Index corruption may still be detected here,
2879 : * though. Only readonly callers will have verified that left links and right
2880 : * links are in agreement, and so it's possible that a leaf page transposition
2881 : * within index is actually the source of corruption detected here (for
2882 : * !readonly callers). The checks performed only for readonly callers might
2883 : * more accurately frame the problem as a cross-page invariant issue (this
2884 : * could even be due to recovery not replaying all WAL records). The !readonly
2885 : * ERROR message raised here includes a HINT about retrying with readonly
2886 : * verification, just in case it's a cross-page invariant issue, though that
2887 : * isn't particularly likely.
2888 : *
2889 : * table_index_build_scan() expects to be able to find the root tuple when a
2890 : * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2891 : * indexed, in order to replace the actual tuple's TID with the root tuple's
2892 : * TID (which is what we're actually passed back here). The index build heap
2893 : * scan code will raise an error when a tuple that claims to be the root of the
2894 : * heap-only tuple's HOT chain cannot be located. This catches cases where the
2895 : * original root item offset/root tuple for a HOT chain indicates (for whatever
2896 : * reason) that the entire HOT chain is dead, despite the fact that the latest
2897 : * heap-only tuple should be indexed. When this happens, sequential scans may
2898 : * always give correct answers, and all indexes may be considered structurally
2899 : * consistent (i.e. the nbtree structural checks would not detect corruption).
2900 : * It may be the case that only index scans give wrong answers, and yet heap or
2901 : * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2902 : * setting will probably also leave the index in a corrupt state before too
2903 : * long, the problem is nonetheless that there is heap corruption.)
2904 : *
2905 : * Heap-only tuple handling within table_index_build_scan() works in a way that
2906 : * helps us to detect index tuples that contain the wrong values (values that
2907 : * don't match the latest tuple in the HOT chain). This can happen when there
2908 : * is no superseding index tuple due to a faulty assessment of HOT safety,
2909 : * perhaps during the original CREATE INDEX. Because the latest tuple's
2910 : * contents are used with the root TID, an error will be raised when a tuple
2911 : * with the same TID but non-matching attribute values is passed back to us.
2912 : * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2913 : * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2914 : * undetected for many years. In short, the same principle that allows a
2915 : * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2916 : * also allows us to detect the corruption in many cases.
2917 : */
2918 : static void
2919 1064082 : bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values,
2920 : bool *isnull, bool tupleIsAlive, void *checkstate)
2921 : {
2922 1064082 : BtreeCheckState *state = (BtreeCheckState *) checkstate;
2923 : IndexTuple itup,
2924 : norm;
2925 :
2926 : Assert(state->heapallindexed);
2927 :
2928 : /* Generate a normalized index tuple for fingerprinting */
2929 1064082 : itup = index_form_tuple(RelationGetDescr(index), values, isnull);
2930 1064082 : itup->t_tid = *tid;
2931 1064082 : norm = bt_normalize_tuple(state, itup);
2932 :
2933 : /* Probe Bloom filter -- tuple should be present */
2934 1064082 : if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2935 1064082 : IndexTupleSize(norm)))
2936 0 : ereport(ERROR,
2937 : (errcode(ERRCODE_DATA_CORRUPTED),
2938 : errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2939 : ItemPointerGetBlockNumber(&(itup->t_tid)),
2940 : ItemPointerGetOffsetNumber(&(itup->t_tid)),
2941 : RelationGetRelationName(state->heaprel),
2942 : RelationGetRelationName(state->rel)),
2943 : !state->readonly
2944 : ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2945 : : 0));
2946 :
2947 1064082 : state->heaptuplespresent++;
2948 1064082 : pfree(itup);
2949 : /* Cannot leak memory here */
2950 1064082 : if (norm != itup)
2951 10 : pfree(norm);
2952 1064082 : }
2953 :
2954 : /*
2955 : * Normalize an index tuple for fingerprinting.
2956 : *
2957 : * In general, index tuple formation is assumed to be deterministic by
2958 : * heapallindexed verification, and IndexTuples are assumed immutable. While
2959 : * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2960 : * not fingerprinted. Normalization is required to compensate for corner
2961 : * cases where the determinism assumption doesn't quite work.
2962 : *
2963 : * There is currently one such case: index_form_tuple() does not try to hide
2964 : * the source TOAST state of input datums. The executor applies TOAST
2965 : * compression for heap tuples based on different criteria to the compression
2966 : * applied within btinsert()'s call to index_form_tuple(): it sometimes
2967 : * compresses more aggressively, resulting in compressed heap tuple datums but
2968 : * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2969 : * verification will get a logically equivalent though bitwise unequal tuple
2970 : * from index_form_tuple(). False positive heapallindexed corruption reports
2971 : * could occur without normalizing away the inconsistency.
2972 : *
2973 : * Returned tuple is often caller's own original tuple. Otherwise, it is a
2974 : * new representation of caller's original index tuple, palloc()'d in caller's
2975 : * memory context.
2976 : *
2977 : * Note: This routine is not concerned with distinctions about the
2978 : * representation of tuples beyond those that might break heapallindexed
2979 : * verification. In particular, it won't try to normalize opclass-equal
2980 : * datums with potentially distinct representations (e.g., btree/numeric_ops
2981 : * index datums will not get their display scale normalized-away here).
2982 : * Caller does normalization for non-pivot tuples that have a posting list,
2983 : * since dummy CREATE INDEX callback code generates new tuples with the same
2984 : * normalized representation.
2985 : */
2986 : static IndexTuple
2987 2132984 : bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
2988 : {
2989 2132984 : TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2990 : Datum normalized[INDEX_MAX_KEYS];
2991 : bool isnull[INDEX_MAX_KEYS];
2992 : bool need_free[INDEX_MAX_KEYS];
2993 2132984 : bool formnewtup = false;
2994 : IndexTuple reformed;
2995 : int i;
2996 :
2997 : /* Caller should only pass "logical" non-pivot tuples here */
2998 : Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
2999 :
3000 : /* Easy case: It's immediately clear that tuple has no varlena datums */
3001 2132984 : if (!IndexTupleHasVarwidths(itup))
3002 2132936 : return itup;
3003 :
3004 96 : for (i = 0; i < tupleDescriptor->natts; i++)
3005 : {
3006 : Form_pg_attribute att;
3007 :
3008 48 : att = TupleDescAttr(tupleDescriptor, i);
3009 :
3010 : /* Assume untoasted/already normalized datum initially */
3011 48 : need_free[i] = false;
3012 48 : normalized[i] = index_getattr(itup, att->attnum,
3013 : tupleDescriptor,
3014 : &isnull[i]);
3015 48 : if (att->attbyval || att->attlen != -1 || isnull[i])
3016 0 : continue;
3017 :
3018 : /*
3019 : * Callers always pass a tuple that could safely be inserted into the
3020 : * index without further processing, so an external varlena header
3021 : * should never be encountered here
3022 : */
3023 48 : if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
3024 0 : ereport(ERROR,
3025 : (errcode(ERRCODE_INDEX_CORRUPTED),
3026 : errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
3027 : ItemPointerGetBlockNumber(&(itup->t_tid)),
3028 : ItemPointerGetOffsetNumber(&(itup->t_tid)),
3029 : RelationGetRelationName(state->rel))));
3030 48 : else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
3031 44 : VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
3032 42 : (att->attstorage == TYPSTORAGE_EXTENDED ||
3033 32 : att->attstorage == TYPSTORAGE_MAIN))
3034 : {
3035 : /*
3036 : * This value will be compressed by index_form_tuple() with the
3037 : * current storage settings. We may be here because this tuple
3038 : * was formed with different storage settings. So, force forming.
3039 : */
3040 10 : formnewtup = true;
3041 : }
3042 38 : else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
3043 : {
3044 4 : formnewtup = true;
3045 4 : normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
3046 4 : need_free[i] = true;
3047 : }
3048 :
3049 : /*
3050 : * Short tuples may have 1B or 4B header. Convert 4B header of short
3051 : * tuples to 1B
3052 : */
3053 34 : else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
3054 : {
3055 : /* convert to short varlena */
3056 2 : Size len = VARATT_CONVERTED_SHORT_SIZE(DatumGetPointer(normalized[i]));
3057 2 : char *data = palloc(len);
3058 :
3059 2 : SET_VARSIZE_SHORT(data, len);
3060 2 : memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
3061 :
3062 2 : formnewtup = true;
3063 2 : normalized[i] = PointerGetDatum(data);
3064 2 : need_free[i] = true;
3065 : }
3066 : }
3067 :
3068 : /*
3069 : * Easier case: Tuple has varlena datums, none of which are compressed or
3070 : * short with 4B header
3071 : */
3072 48 : if (!formnewtup)
3073 32 : return itup;
3074 :
3075 : /*
3076 : * Hard case: Tuple had compressed varlena datums that necessitate
3077 : * creating normalized version of the tuple from uncompressed input datums
3078 : * (normalized input datums). This is rather naive, but shouldn't be
3079 : * necessary too often.
3080 : *
3081 : * In the heap, tuples may contain short varlena datums with both 1B
3082 : * header and 4B headers. But the corresponding index tuple should always
3083 : * have such varlena's with 1B headers. So, if there is a short varlena
3084 : * with 4B header, we need to convert it for fingerprinting.
3085 : *
3086 : * Note that we rely on deterministic index_form_tuple() TOAST compression
3087 : * of normalized input.
3088 : */
3089 16 : reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
3090 16 : reformed->t_tid = itup->t_tid;
3091 :
3092 : /* Cannot leak memory here */
3093 32 : for (i = 0; i < tupleDescriptor->natts; i++)
3094 16 : if (need_free[i])
3095 6 : pfree(DatumGetPointer(normalized[i]));
3096 :
3097 16 : return reformed;
3098 : }
3099 :
3100 : /*
3101 : * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
3102 : *
3103 : * In general, deduplication is not supposed to change the logical contents of
3104 : * an index. Multiple index tuples are merged together into one equivalent
3105 : * posting list index tuple when convenient.
3106 : *
3107 : * heapallindexed verification must normalize-away this variation in
3108 : * representation by converting posting list tuples into two or more "plain"
3109 : * tuples. Each tuple must be fingerprinted separately -- there must be one
3110 : * tuple for each corresponding Bloom filter probe during the heap scan.
3111 : *
3112 : * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
3113 : */
3114 : static inline IndexTuple
3115 55450 : bt_posting_plain_tuple(IndexTuple itup, int n)
3116 : {
3117 : Assert(BTreeTupleIsPosting(itup));
3118 :
3119 : /* Returns non-posting-list tuple */
3120 55450 : return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
3121 : }
3122 :
3123 : /*
3124 : * Search for itup in index, starting from fast root page. itup must be a
3125 : * non-pivot tuple. This is only supported with heapkeyspace indexes, since
3126 : * we rely on having fully unique keys to find a match with only a single
3127 : * visit to a leaf page, barring an interrupted page split, where we may have
3128 : * to move right. (A concurrent page split is impossible because caller must
3129 : * be readonly caller.)
3130 : *
3131 : * This routine can detect very subtle transitive consistency issues across
3132 : * more than one level of the tree. Leaf pages all have a high key (even the
3133 : * rightmost page has a conceptual positive infinity high key), but not a low
3134 : * key. Their downlink in parent is a lower bound, which along with the high
3135 : * key is almost enough to detect every possible inconsistency. A downlink
3136 : * separator key value won't always be available from parent, though, because
3137 : * the first items of internal pages are negative infinity items, truncated
3138 : * down to zero attributes during internal page splits. While it's true that
3139 : * bt_child_check() and the high key check can detect most imaginable key
3140 : * space problems, there are remaining problems it won't detect with non-pivot
3141 : * tuples in cousin leaf pages. Starting a search from the root for every
3142 : * existing leaf tuple detects small inconsistencies in upper levels of the
3143 : * tree that cannot be detected any other way. (Besides all this, this is
3144 : * probably also useful as a direct test of the code used by index scans
3145 : * themselves.)
3146 : */
3147 : static bool
3148 402196 : bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
3149 : {
3150 : BTScanInsert key;
3151 : BTStack stack;
3152 : Buffer lbuf;
3153 : bool exists;
3154 :
3155 402196 : key = _bt_mkscankey(state->rel, itup);
3156 : Assert(key->heapkeyspace && key->scantid != NULL);
3157 :
3158 : /*
3159 : * Search from root.
3160 : *
3161 : * Ideally, we would arrange to only move right within _bt_search() when
3162 : * an interrupted page split is detected (i.e. when the incomplete split
3163 : * bit is found to be set), but for now we accept the possibility that
3164 : * that could conceal an inconsistency.
3165 : */
3166 : Assert(state->readonly && state->rootdescend);
3167 402196 : exists = false;
3168 402196 : stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
3169 :
3170 402196 : if (BufferIsValid(lbuf))
3171 : {
3172 : BTInsertStateData insertstate;
3173 : OffsetNumber offnum;
3174 : Page page;
3175 :
3176 402196 : insertstate.itup = itup;
3177 402196 : insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
3178 402196 : insertstate.itup_key = key;
3179 402196 : insertstate.postingoff = 0;
3180 402196 : insertstate.bounds_valid = false;
3181 402196 : insertstate.buf = lbuf;
3182 :
3183 : /* Get matching tuple on leaf page */
3184 402196 : offnum = _bt_binsrch_insert(state->rel, &insertstate);
3185 : /* Compare first >= matching item on leaf page, if any */
3186 402196 : page = BufferGetPage(lbuf);
3187 : /* Should match on first heap TID when tuple has a posting list */
3188 402196 : if (offnum <= PageGetMaxOffsetNumber(page) &&
3189 804392 : insertstate.postingoff <= 0 &&
3190 402196 : _bt_compare(state->rel, key, page, offnum) == 0)
3191 402196 : exists = true;
3192 402196 : _bt_relbuf(state->rel, lbuf);
3193 : }
3194 :
3195 402196 : _bt_freestack(stack);
3196 402196 : pfree(key);
3197 :
3198 402196 : return exists;
3199 : }
3200 :
3201 : /*
3202 : * Is particular offset within page (whose special state is passed by caller)
3203 : * the page negative-infinity item?
3204 : *
3205 : * As noted in comments above _bt_compare(), there is special handling of the
3206 : * first data item as a "negative infinity" item. The hard-coding within
3207 : * _bt_compare() makes comparing this item for the purposes of verification
3208 : * pointless at best, since the IndexTuple only contains a valid TID (a
3209 : * reference TID to child page).
3210 : */
3211 : static inline bool
3212 5226402 : offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
3213 : {
3214 : /*
3215 : * For internal pages only, the first item after high key, if any, is
3216 : * negative infinity item. Internal pages always have a negative infinity
3217 : * item, whereas leaf pages never have one. This implies that negative
3218 : * infinity item is either first or second line item, or there is none
3219 : * within page.
3220 : *
3221 : * Negative infinity items are a special case among pivot tuples. They
3222 : * always have zero attributes, while all other pivot tuples always have
3223 : * nkeyatts attributes.
3224 : *
3225 : * Right-most pages don't have a high key, but could be said to
3226 : * conceptually have a "positive infinity" high key. Thus, there is a
3227 : * symmetry between down link items in parent pages, and high keys in
3228 : * children. Together, they represent the part of the key space that
3229 : * belongs to each page in the index. For example, all children of the
3230 : * root page will have negative infinity as a lower bound from root
3231 : * negative infinity downlink, and positive infinity as an upper bound
3232 : * (implicitly, from "imaginary" positive infinity high key in root).
3233 : */
3234 5226402 : return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
3235 : }
3236 :
3237 : /*
3238 : * Does the invariant hold that the key is strictly less than a given upper
3239 : * bound offset item?
3240 : *
3241 : * Verifies line pointer on behalf of caller.
3242 : *
3243 : * If this function returns false, convention is that caller throws error due
3244 : * to corruption.
3245 : */
3246 : static inline bool
3247 4007582 : invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
3248 : OffsetNumber upperbound)
3249 : {
3250 : ItemId itemid;
3251 : int32 cmp;
3252 :
3253 : Assert(!key->nextkey && key->backward);
3254 :
3255 : /* Verify line pointer before checking tuple */
3256 4007582 : itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
3257 : upperbound);
3258 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3259 4007582 : if (!key->heapkeyspace)
3260 0 : return invariant_leq_offset(state, key, upperbound);
3261 :
3262 4007582 : cmp = _bt_compare(state->rel, key, state->target, upperbound);
3263 :
3264 : /*
3265 : * _bt_compare() is capable of determining that a scankey with a
3266 : * filled-out attribute is greater than pivot tuples where the comparison
3267 : * is resolved at a truncated attribute (value of attribute in pivot is
3268 : * minus infinity). However, it is not capable of determining that a
3269 : * scankey is _less than_ a tuple on the basis of a comparison resolved at
3270 : * _scankey_ minus infinity attribute. Complete an extra step to simulate
3271 : * having minus infinity values for omitted scankey attribute(s).
3272 : */
3273 4007582 : if (cmp == 0)
3274 : {
3275 : BTPageOpaque topaque;
3276 : IndexTuple ritup;
3277 : int uppnkeyatts;
3278 : ItemPointer rheaptid;
3279 : bool nonpivot;
3280 :
3281 0 : ritup = (IndexTuple) PageGetItem(state->target, itemid);
3282 0 : topaque = BTPageGetOpaque(state->target);
3283 0 : nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
3284 :
3285 : /* Get number of keys + heap TID for item to the right */
3286 0 : uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
3287 0 : rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
3288 :
3289 : /* Heap TID is tiebreaker key attribute */
3290 0 : if (key->keysz == uppnkeyatts)
3291 0 : return key->scantid == NULL && rheaptid != NULL;
3292 :
3293 0 : return key->keysz < uppnkeyatts;
3294 : }
3295 :
3296 4007582 : return cmp < 0;
3297 : }
3298 :
3299 : /*
3300 : * Does the invariant hold that the key is less than or equal to a given upper
3301 : * bound offset item?
3302 : *
3303 : * Caller should have verified that upperbound's line pointer is consistent
3304 : * using PageGetItemIdCareful() call.
3305 : *
3306 : * If this function returns false, convention is that caller throws error due
3307 : * to corruption.
3308 : */
3309 : static inline bool
3310 3680282 : invariant_leq_offset(BtreeCheckState *state, BTScanInsert key,
3311 : OffsetNumber upperbound)
3312 : {
3313 : int32 cmp;
3314 :
3315 : Assert(!key->nextkey && key->backward);
3316 :
3317 3680282 : cmp = _bt_compare(state->rel, key, state->target, upperbound);
3318 :
3319 3680282 : return cmp <= 0;
3320 : }
3321 :
3322 : /*
3323 : * Does the invariant hold that the key is strictly greater than a given lower
3324 : * bound offset item?
3325 : *
3326 : * Caller should have verified that lowerbound's line pointer is consistent
3327 : * using PageGetItemIdCareful() call.
3328 : *
3329 : * If this function returns false, convention is that caller throws error due
3330 : * to corruption.
3331 : */
3332 : static inline bool
3333 13156 : invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
3334 : OffsetNumber lowerbound)
3335 : {
3336 : int32 cmp;
3337 :
3338 : Assert(!key->nextkey && key->backward);
3339 :
3340 13156 : cmp = _bt_compare(state->rel, key, state->target, lowerbound);
3341 :
3342 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3343 13156 : if (!key->heapkeyspace)
3344 0 : return cmp >= 0;
3345 :
3346 : /*
3347 : * No need to consider the possibility that scankey has attributes that we
3348 : * need to force to be interpreted as negative infinity. _bt_compare() is
3349 : * able to determine that scankey is greater than negative infinity. The
3350 : * distinction between "==" and "<" isn't interesting here, since
3351 : * corruption is indicated either way.
3352 : */
3353 13156 : return cmp > 0;
3354 : }
3355 :
3356 : /*
3357 : * Does the invariant hold that the key is strictly less than a given upper
3358 : * bound offset item, with the offset relating to a caller-supplied page that
3359 : * is not the current target page?
3360 : *
3361 : * Caller's non-target page is a child page of the target, checked as part of
3362 : * checking a property of the target page (i.e. the key comes from the
3363 : * target). Verifies line pointer on behalf of caller.
3364 : *
3365 : * If this function returns false, convention is that caller throws error due
3366 : * to corruption.
3367 : */
3368 : static inline bool
3369 1196976 : invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key,
3370 : BlockNumber nontargetblock, Page nontarget,
3371 : OffsetNumber upperbound)
3372 : {
3373 : ItemId itemid;
3374 : int32 cmp;
3375 :
3376 : Assert(!key->nextkey && key->backward);
3377 :
3378 : /* Verify line pointer before checking tuple */
3379 1196976 : itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
3380 : upperbound);
3381 1196976 : cmp = _bt_compare(state->rel, key, nontarget, upperbound);
3382 :
3383 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3384 1196976 : if (!key->heapkeyspace)
3385 0 : return cmp <= 0;
3386 :
3387 : /* See invariant_l_offset() for an explanation of this extra step */
3388 1196976 : if (cmp == 0)
3389 : {
3390 : IndexTuple child;
3391 : int uppnkeyatts;
3392 : ItemPointer childheaptid;
3393 : BTPageOpaque copaque;
3394 : bool nonpivot;
3395 :
3396 3720 : child = (IndexTuple) PageGetItem(nontarget, itemid);
3397 3720 : copaque = BTPageGetOpaque(nontarget);
3398 3720 : nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
3399 :
3400 : /* Get number of keys + heap TID for child/non-target item */
3401 3720 : uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
3402 3720 : childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
3403 :
3404 : /* Heap TID is tiebreaker key attribute */
3405 3720 : if (key->keysz == uppnkeyatts)
3406 3720 : return key->scantid == NULL && childheaptid != NULL;
3407 :
3408 0 : return key->keysz < uppnkeyatts;
3409 : }
3410 :
3411 1193256 : return cmp < 0;
3412 : }
3413 :
3414 : /*
3415 : * Given a block number of a B-Tree page, return page in palloc()'d memory.
3416 : * While at it, perform some basic checks of the page.
3417 : *
3418 : * There is never an attempt to get a consistent view of multiple pages using
3419 : * multiple concurrent buffer locks; in general, we only acquire a single pin
3420 : * and buffer lock at a time, which is often all that the nbtree code requires.
3421 : * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
3422 : * exception to this general rule.)
3423 : *
3424 : * Operating on a copy of the page is useful because it prevents control
3425 : * getting stuck in an uninterruptible state when an underlying operator class
3426 : * misbehaves.
3427 : */
3428 : static Page
3429 43074 : palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
3430 : {
3431 : Buffer buffer;
3432 : Page page;
3433 : BTPageOpaque opaque;
3434 : OffsetNumber maxoffset;
3435 :
3436 43074 : page = palloc(BLCKSZ);
3437 :
3438 : /*
3439 : * We copy the page into local storage to avoid holding pin on the buffer
3440 : * longer than we must.
3441 : */
3442 43074 : buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
3443 : state->checkstrategy);
3444 43050 : LockBuffer(buffer, BT_READ);
3445 :
3446 : /*
3447 : * Perform the same basic sanity checking that nbtree itself performs for
3448 : * every page:
3449 : */
3450 43050 : _bt_checkpage(state->rel, buffer);
3451 :
3452 : /* Only use copy of page in palloc()'d memory */
3453 43050 : memcpy(page, BufferGetPage(buffer), BLCKSZ);
3454 43050 : UnlockReleaseBuffer(buffer);
3455 :
3456 43050 : opaque = BTPageGetOpaque(page);
3457 :
3458 43050 : if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
3459 0 : ereport(ERROR,
3460 : (errcode(ERRCODE_INDEX_CORRUPTED),
3461 : errmsg("invalid meta page found at block %u in index \"%s\"",
3462 : blocknum, RelationGetRelationName(state->rel))));
3463 :
3464 : /* Check page from block that ought to be meta page */
3465 43050 : if (blocknum == BTREE_METAPAGE)
3466 : {
3467 7992 : BTMetaPageData *metad = BTPageGetMeta(page);
3468 :
3469 7992 : if (!P_ISMETA(opaque) ||
3470 7992 : metad->btm_magic != BTREE_MAGIC)
3471 0 : ereport(ERROR,
3472 : (errcode(ERRCODE_INDEX_CORRUPTED),
3473 : errmsg("index \"%s\" meta page is corrupt",
3474 : RelationGetRelationName(state->rel))));
3475 :
3476 7992 : if (metad->btm_version < BTREE_MIN_VERSION ||
3477 7992 : metad->btm_version > BTREE_VERSION)
3478 0 : ereport(ERROR,
3479 : (errcode(ERRCODE_INDEX_CORRUPTED),
3480 : errmsg("version mismatch in index \"%s\": file version %d, "
3481 : "current version %d, minimum supported version %d",
3482 : RelationGetRelationName(state->rel),
3483 : metad->btm_version, BTREE_VERSION,
3484 : BTREE_MIN_VERSION)));
3485 :
3486 : /* Finished with metapage checks */
3487 7992 : return page;
3488 : }
3489 :
3490 : /*
3491 : * Deleted pages that still use the old 32-bit XID representation have no
3492 : * sane "level" field because they type pun the field, but all other pages
3493 : * (including pages deleted on Postgres 14+) have a valid value.
3494 : */
3495 35058 : if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
3496 : {
3497 : /* Okay, no reason not to trust btpo_level field from page */
3498 :
3499 35058 : if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
3500 0 : ereport(ERROR,
3501 : (errcode(ERRCODE_INDEX_CORRUPTED),
3502 : errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
3503 : opaque->btpo_level, blocknum,
3504 : RelationGetRelationName(state->rel))));
3505 :
3506 35058 : if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
3507 0 : ereport(ERROR,
3508 : (errcode(ERRCODE_INDEX_CORRUPTED),
3509 : errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
3510 : blocknum,
3511 : RelationGetRelationName(state->rel))));
3512 : }
3513 :
3514 : /*
3515 : * Sanity checks for number of items on page.
3516 : *
3517 : * As noted at the beginning of _bt_binsrch(), an internal page must have
3518 : * children, since there must always be a negative infinity downlink
3519 : * (there may also be a highkey). In the case of non-rightmost leaf
3520 : * pages, there must be at least a highkey. The exceptions are deleted
3521 : * pages, which contain no items.
3522 : *
3523 : * This is correct when pages are half-dead, since internal pages are
3524 : * never half-dead, and leaf pages must have a high key when half-dead
3525 : * (the rightmost page can never be deleted). It's also correct with
3526 : * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
3527 : * about the target page other than setting the page as fully dead, and
3528 : * setting its xact field. In particular, it doesn't change the sibling
3529 : * links in the deletion target itself, since they're required when index
3530 : * scans land on the deletion target, and then need to move right (or need
3531 : * to move left, in the case of backward index scans).
3532 : */
3533 35058 : maxoffset = PageGetMaxOffsetNumber(page);
3534 35058 : if (maxoffset > MaxIndexTuplesPerPage)
3535 0 : ereport(ERROR,
3536 : (errcode(ERRCODE_INDEX_CORRUPTED),
3537 : errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
3538 : blocknum, RelationGetRelationName(state->rel),
3539 : MaxIndexTuplesPerPage)));
3540 :
3541 35058 : if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
3542 0 : ereport(ERROR,
3543 : (errcode(ERRCODE_INDEX_CORRUPTED),
3544 : errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
3545 : blocknum, RelationGetRelationName(state->rel))));
3546 :
3547 35058 : if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
3548 0 : ereport(ERROR,
3549 : (errcode(ERRCODE_INDEX_CORRUPTED),
3550 : errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
3551 : blocknum, RelationGetRelationName(state->rel))));
3552 :
3553 : /*
3554 : * In general, internal pages are never marked half-dead, except on
3555 : * versions of Postgres prior to 9.4, where it can be valid transient
3556 : * state. This state is nonetheless treated as corruption by VACUUM on
3557 : * from version 9.4 on, so do the same here. See _bt_pagedel() for full
3558 : * details.
3559 : */
3560 35058 : if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
3561 0 : ereport(ERROR,
3562 : (errcode(ERRCODE_INDEX_CORRUPTED),
3563 : errmsg("internal page block %u in index \"%s\" is half-dead",
3564 : blocknum, RelationGetRelationName(state->rel)),
3565 : errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
3566 :
3567 : /*
3568 : * Check that internal pages have no garbage items, and that no page has
3569 : * an invalid combination of deletion-related page level flags
3570 : */
3571 35058 : if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
3572 0 : ereport(ERROR,
3573 : (errcode(ERRCODE_INDEX_CORRUPTED),
3574 : errmsg_internal("internal page block %u in index \"%s\" has garbage items",
3575 : blocknum, RelationGetRelationName(state->rel))));
3576 :
3577 35058 : if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
3578 0 : ereport(ERROR,
3579 : (errcode(ERRCODE_INDEX_CORRUPTED),
3580 : errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
3581 : blocknum, RelationGetRelationName(state->rel))));
3582 :
3583 35058 : if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
3584 0 : ereport(ERROR,
3585 : (errcode(ERRCODE_INDEX_CORRUPTED),
3586 : errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
3587 : blocknum, RelationGetRelationName(state->rel))));
3588 :
3589 35058 : return page;
3590 : }
3591 :
3592 : /*
3593 : * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
3594 : * being considered greater than the pivot tuple that its values originated
3595 : * from (or some other identical pivot tuple) in the common case where there
3596 : * are truncated/minus infinity attributes. Without this extra step, there
3597 : * are forms of corruption that amcheck could theoretically fail to report.
3598 : *
3599 : * For example, invariant_g_offset() might miss a cross-page invariant failure
3600 : * on an internal level if the scankey built from the first item on the
3601 : * target's right sibling page happened to be equal to (not greater than) the
3602 : * last item on target page. The !backward tiebreaker in _bt_compare() might
3603 : * otherwise cause amcheck to assume (rather than actually verify) that the
3604 : * scankey is greater.
3605 : */
3606 : static inline BTScanInsert
3607 4037742 : bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
3608 : {
3609 : BTScanInsert skey;
3610 :
3611 4037742 : skey = _bt_mkscankey(rel, itup);
3612 4037742 : skey->backward = true;
3613 :
3614 4037742 : return skey;
3615 : }
3616 :
3617 : /*
3618 : * PageGetItemId() wrapper that validates returned line pointer.
3619 : *
3620 : * Buffer page/page item access macros generally trust that line pointers are
3621 : * not corrupt, which might cause problems for verification itself. For
3622 : * example, there is no bounds checking in PageGetItem(). Passing it a
3623 : * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
3624 : * to dereference.
3625 : *
3626 : * Validating line pointers before tuples avoids undefined behavior and
3627 : * assertion failures with corrupt indexes, making the verification process
3628 : * more robust and predictable.
3629 : */
3630 : static ItemId
3631 9276334 : PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page,
3632 : OffsetNumber offset)
3633 : {
3634 9276334 : ItemId itemid = PageGetItemId(page, offset);
3635 :
3636 9276334 : if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
3637 : BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
3638 0 : ereport(ERROR,
3639 : (errcode(ERRCODE_INDEX_CORRUPTED),
3640 : errmsg("line pointer points past end of tuple space in index \"%s\"",
3641 : RelationGetRelationName(state->rel)),
3642 : errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3643 : block, offset, ItemIdGetOffset(itemid),
3644 : ItemIdGetLength(itemid),
3645 : ItemIdGetFlags(itemid))));
3646 :
3647 : /*
3648 : * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
3649 : * never uses either. Verify that line pointer has storage, too, since
3650 : * even LP_DEAD items should within nbtree.
3651 : */
3652 9276334 : if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
3653 9276334 : ItemIdGetLength(itemid) == 0)
3654 0 : ereport(ERROR,
3655 : (errcode(ERRCODE_INDEX_CORRUPTED),
3656 : errmsg("invalid line pointer storage in index \"%s\"",
3657 : RelationGetRelationName(state->rel)),
3658 : errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3659 : block, offset, ItemIdGetOffset(itemid),
3660 : ItemIdGetLength(itemid),
3661 : ItemIdGetFlags(itemid))));
3662 :
3663 9276334 : return itemid;
3664 : }
3665 :
3666 : /*
3667 : * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3668 : * cases where that is mandatory (i.e. for non-pivot tuples)
3669 : */
3670 : static inline ItemPointer
3671 3720 : BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup,
3672 : bool nonpivot)
3673 : {
3674 : ItemPointer htid;
3675 :
3676 : /*
3677 : * Caller determines whether this is supposed to be a pivot or non-pivot
3678 : * tuple using page type and item offset number. Verify that tuple
3679 : * metadata agrees with this.
3680 : */
3681 : Assert(state->heapkeyspace);
3682 3720 : if (BTreeTupleIsPivot(itup) && nonpivot)
3683 0 : ereport(ERROR,
3684 : (errcode(ERRCODE_INDEX_CORRUPTED),
3685 : errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3686 : state->targetblock,
3687 : RelationGetRelationName(state->rel))));
3688 :
3689 3720 : if (!BTreeTupleIsPivot(itup) && !nonpivot)
3690 0 : ereport(ERROR,
3691 : (errcode(ERRCODE_INDEX_CORRUPTED),
3692 : errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3693 : state->targetblock,
3694 : RelationGetRelationName(state->rel))));
3695 :
3696 3720 : htid = BTreeTupleGetHeapTID(itup);
3697 3720 : if (!ItemPointerIsValid(htid) && nonpivot)
3698 0 : ereport(ERROR,
3699 : (errcode(ERRCODE_INDEX_CORRUPTED),
3700 : errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3701 : state->targetblock,
3702 : RelationGetRelationName(state->rel))));
3703 :
3704 3720 : return htid;
3705 : }
3706 :
3707 : /*
3708 : * Return the "pointed to" TID for itup, which is used to generate a
3709 : * descriptive error message. itup must be a "data item" tuple (it wouldn't
3710 : * make much sense to call here with a high key tuple, since there won't be a
3711 : * valid downlink/block number to display).
3712 : *
3713 : * Returns either a heap TID (which will be the first heap TID in posting list
3714 : * if itup is posting list tuple), or a TID that contains downlink block
3715 : * number, plus some encoded metadata (e.g., the number of attributes present
3716 : * in itup).
3717 : */
3718 : static inline ItemPointer
3719 12 : BTreeTupleGetPointsToTID(IndexTuple itup)
3720 : {
3721 : /*
3722 : * Rely on the assumption that !heapkeyspace internal page data items will
3723 : * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3724 : * recognize it as a pivot tuple, but everything still works out because
3725 : * the t_tid field is still returned
3726 : */
3727 12 : if (!BTreeTupleIsPivot(itup))
3728 8 : return BTreeTupleGetHeapTID(itup);
3729 :
3730 : /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3731 4 : return &itup->t_tid;
3732 : }
|