LCOV - code coverage report
Current view: top level - contrib/amcheck - verify_nbtree.c (source / functions) Hit Total Coverage
Test: PostgreSQL 19devel Lines: 546 746 73.2 %
Date: 2025-12-31 13:17:17 Functions: 31 33 93.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*-------------------------------------------------------------------------
       2             :  *
       3             :  * verify_nbtree.c
       4             :  *      Verifies the integrity of nbtree indexes based on invariants.
       5             :  *
       6             :  * For B-Tree indexes, verification includes checking that each page in the
       7             :  * target index has items in logical order as reported by an insertion scankey
       8             :  * (the insertion scankey sort-wise NULL semantics are needed for
       9             :  * verification).
      10             :  *
      11             :  * When index-to-heap verification is requested, a Bloom filter is used to
      12             :  * fingerprint all tuples in the target index, as the index is traversed to
      13             :  * verify its structure.  A heap scan later uses Bloom filter probes to verify
      14             :  * that every visible heap tuple has a matching index tuple.
      15             :  *
      16             :  *
      17             :  * Copyright (c) 2017-2025, PostgreSQL Global Development Group
      18             :  *
      19             :  * IDENTIFICATION
      20             :  *    contrib/amcheck/verify_nbtree.c
      21             :  *
      22             :  *-------------------------------------------------------------------------
      23             :  */
      24             : #include "postgres.h"
      25             : 
      26             : #include "access/heaptoast.h"
      27             : #include "access/htup_details.h"
      28             : #include "access/nbtree.h"
      29             : #include "access/table.h"
      30             : #include "access/tableam.h"
      31             : #include "access/transam.h"
      32             : #include "access/xact.h"
      33             : #include "verify_common.h"
      34             : #include "catalog/index.h"
      35             : #include "catalog/pg_am.h"
      36             : #include "catalog/pg_opfamily_d.h"
      37             : #include "common/pg_prng.h"
      38             : #include "lib/bloomfilter.h"
      39             : #include "miscadmin.h"
      40             : #include "storage/smgr.h"
      41             : #include "utils/guc.h"
      42             : #include "utils/memutils.h"
      43             : #include "utils/snapmgr.h"
      44             : 
      45             : 
      46         650 : PG_MODULE_MAGIC_EXT(
      47             :                     .name = "amcheck",
      48             :                     .version = PG_VERSION
      49             : );
      50             : 
      51             : /*
      52             :  * A B-Tree cannot possibly have this many levels, since there must be one
      53             :  * block per level, which is bound by the range of BlockNumber:
      54             :  */
      55             : #define InvalidBtreeLevel   ((uint32) InvalidBlockNumber)
      56             : #define BTreeTupleGetNKeyAtts(itup, rel)   \
      57             :     Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
      58             : 
      59             : /*
      60             :  * State associated with verifying a B-Tree index
      61             :  *
      62             :  * target is the point of reference for a verification operation.
      63             :  *
      64             :  * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
      65             :  * they are current target's child pages).  Conceptually, problems are only
      66             :  * ever found in the current target page (or for a particular heap tuple during
      67             :  * heapallindexed verification).  Each page found by verification's left/right,
      68             :  * top/bottom scan becomes the target exactly once.
      69             :  */
      70             : typedef struct BtreeCheckState
      71             : {
      72             :     /*
      73             :      * Unchanging state, established at start of verification:
      74             :      */
      75             : 
      76             :     /* B-Tree Index Relation and associated heap relation */
      77             :     Relation    rel;
      78             :     Relation    heaprel;
      79             :     /* rel is heapkeyspace index? */
      80             :     bool        heapkeyspace;
      81             :     /* ShareLock held on heap/index, rather than AccessShareLock? */
      82             :     bool        readonly;
      83             :     /* Also verifying heap has no unindexed tuples? */
      84             :     bool        heapallindexed;
      85             :     /* Also making sure non-pivot tuples can be found by new search? */
      86             :     bool        rootdescend;
      87             :     /* Also check uniqueness constraint if index is unique */
      88             :     bool        checkunique;
      89             :     /* Per-page context */
      90             :     MemoryContext targetcontext;
      91             :     /* Buffer access strategy */
      92             :     BufferAccessStrategy checkstrategy;
      93             : 
      94             :     /*
      95             :      * Info for uniqueness checking. Fill these fields once per index check.
      96             :      */
      97             :     IndexInfo  *indexinfo;
      98             :     Snapshot    snapshot;
      99             : 
     100             :     /*
     101             :      * Mutable state, for verification of particular page:
     102             :      */
     103             : 
     104             :     /* Current target page */
     105             :     Page        target;
     106             :     /* Target block number */
     107             :     BlockNumber targetblock;
     108             :     /* Target page's LSN */
     109             :     XLogRecPtr  targetlsn;
     110             : 
     111             :     /*
     112             :      * Low key: high key of left sibling of target page.  Used only for child
     113             :      * verification.  So, 'lowkey' is kept only when 'readonly' is set.
     114             :      */
     115             :     IndexTuple  lowkey;
     116             : 
     117             :     /*
     118             :      * The rightlink and incomplete split flag of block one level down to the
     119             :      * target page, which was visited last time via downlink from target page.
     120             :      * We use it to check for missing downlinks.
     121             :      */
     122             :     BlockNumber prevrightlink;
     123             :     bool        previncompletesplit;
     124             : 
     125             :     /*
     126             :      * Mutable state, for optional heapallindexed verification:
     127             :      */
     128             : 
     129             :     /* Bloom filter fingerprints B-Tree index */
     130             :     bloom_filter *filter;
     131             :     /* Debug counter */
     132             :     int64       heaptuplespresent;
     133             : } BtreeCheckState;
     134             : 
     135             : /*
     136             :  * Starting point for verifying an entire B-Tree index level
     137             :  */
     138             : typedef struct BtreeLevel
     139             : {
     140             :     /* Level number (0 is leaf page level). */
     141             :     uint32      level;
     142             : 
     143             :     /* Left most block on level.  Scan of level begins here. */
     144             :     BlockNumber leftmost;
     145             : 
     146             :     /* Is this level reported as "true" root level by meta page? */
     147             :     bool        istruerootlevel;
     148             : } BtreeLevel;
     149             : 
     150             : /*
     151             :  * Information about the last visible entry with current B-tree key.  Used
     152             :  * for validation of the unique constraint.
     153             :  */
     154             : typedef struct BtreeLastVisibleEntry
     155             : {
     156             :     BlockNumber blkno;          /* Index block */
     157             :     OffsetNumber offset;        /* Offset on index block */
     158             :     int         postingIndex;   /* Number in the posting list (-1 for
     159             :                                  * non-deduplicated tuples) */
     160             :     ItemPointer tid;            /* Heap tid */
     161             : } BtreeLastVisibleEntry;
     162             : 
     163             : /*
     164             :  * arguments for the bt_index_check_callback callback
     165             :  */
     166             : typedef struct BTCallbackState
     167             : {
     168             :     bool        parentcheck;
     169             :     bool        heapallindexed;
     170             :     bool        rootdescend;
     171             :     bool        checkunique;
     172             : } BTCallbackState;
     173             : 
     174         180 : PG_FUNCTION_INFO_V1(bt_index_check);
     175         130 : PG_FUNCTION_INFO_V1(bt_index_parent_check);
     176             : 
     177             : static void bt_index_check_callback(Relation indrel, Relation heaprel,
     178             :                                     void *state, bool readonly);
     179             : static void bt_check_every_level(Relation rel, Relation heaprel,
     180             :                                  bool heapkeyspace, bool readonly, bool heapallindexed,
     181             :                                  bool rootdescend, bool checkunique);
     182             : static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state,
     183             :                                                BtreeLevel level);
     184             : static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
     185             :                                            BlockNumber start,
     186             :                                            BTPageOpaque start_opaque);
     187             : static void bt_recheck_sibling_links(BtreeCheckState *state,
     188             :                                      BlockNumber btpo_prev_from_target,
     189             :                                      BlockNumber leftcurrent);
     190             : static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid);
     191             : static void bt_report_duplicate(BtreeCheckState *state,
     192             :                                 BtreeLastVisibleEntry *lVis,
     193             :                                 ItemPointer nexttid,
     194             :                                 BlockNumber nblock, OffsetNumber noffset,
     195             :                                 int nposting);
     196             : static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
     197             :                                   BlockNumber targetblock, OffsetNumber offset,
     198             :                                   BtreeLastVisibleEntry *lVis);
     199             : static void bt_target_page_check(BtreeCheckState *state);
     200             : static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state,
     201             :                                                 OffsetNumber *rightfirstoffset);
     202             : static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
     203             :                            OffsetNumber downlinkoffnum);
     204             : static void bt_child_highkey_check(BtreeCheckState *state,
     205             :                                    OffsetNumber target_downlinkoffnum,
     206             :                                    Page loaded_child,
     207             :                                    uint32 target_level);
     208             : static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
     209             :                                       BlockNumber blkno, Page page);
     210             : static void bt_tuple_present_callback(Relation index, ItemPointer tid,
     211             :                                       Datum *values, bool *isnull,
     212             :                                       bool tupleIsAlive, void *checkstate);
     213             : static IndexTuple bt_normalize_tuple(BtreeCheckState *state,
     214             :                                      IndexTuple itup);
     215             : static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
     216             : static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
     217             : static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
     218             :                                                OffsetNumber offset);
     219             : static inline bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
     220             :                                       OffsetNumber upperbound);
     221             : static inline bool invariant_leq_offset(BtreeCheckState *state,
     222             :                                         BTScanInsert key,
     223             :                                         OffsetNumber upperbound);
     224             : static inline bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
     225             :                                       OffsetNumber lowerbound);
     226             : static inline bool invariant_l_nontarget_offset(BtreeCheckState *state,
     227             :                                                 BTScanInsert key,
     228             :                                                 BlockNumber nontargetblock,
     229             :                                                 Page nontarget,
     230             :                                                 OffsetNumber upperbound);
     231             : static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum);
     232             : static inline BTScanInsert bt_mkscankey_pivotsearch(Relation rel,
     233             :                                                     IndexTuple itup);
     234             : static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block,
     235             :                                    Page page, OffsetNumber offset);
     236             : static inline ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state,
     237             :                                                       IndexTuple itup, bool nonpivot);
     238             : static inline ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup);
     239             : 
     240             : /*
     241             :  * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
     242             :  *
     243             :  * Verify integrity of B-Tree index.
     244             :  *
     245             :  * Acquires AccessShareLock on heap & index relations.  Does not consider
     246             :  * invariants that exist between parent/child pages.  Optionally verifies
     247             :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     248             :  */
     249             : Datum
     250        7878 : bt_index_check(PG_FUNCTION_ARGS)
     251             : {
     252        7878 :     Oid         indrelid = PG_GETARG_OID(0);
     253             :     BTCallbackState args;
     254             : 
     255        7878 :     args.heapallindexed = false;
     256        7878 :     args.rootdescend = false;
     257        7878 :     args.parentcheck = false;
     258        7878 :     args.checkunique = false;
     259             : 
     260        7878 :     if (PG_NARGS() >= 2)
     261        7866 :         args.heapallindexed = PG_GETARG_BOOL(1);
     262        7878 :     if (PG_NARGS() >= 3)
     263        1364 :         args.checkunique = PG_GETARG_BOOL(2);
     264             : 
     265        7878 :     amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
     266             :                                     bt_index_check_callback,
     267             :                                     AccessShareLock, &args);
     268             : 
     269        7826 :     PG_RETURN_VOID();
     270             : }
     271             : 
     272             : /*
     273             :  * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
     274             :  *
     275             :  * Verify integrity of B-Tree index.
     276             :  *
     277             :  * Acquires ShareLock on heap & index relations.  Verifies that downlinks in
     278             :  * parent pages are valid lower bounds on child pages.  Optionally verifies
     279             :  * that heap does not contain any unindexed or incorrectly indexed tuples.
     280             :  */
     281             : Datum
     282         124 : bt_index_parent_check(PG_FUNCTION_ARGS)
     283             : {
     284         124 :     Oid         indrelid = PG_GETARG_OID(0);
     285             :     BTCallbackState args;
     286             : 
     287         124 :     args.heapallindexed = false;
     288         124 :     args.rootdescend = false;
     289         124 :     args.parentcheck = true;
     290         124 :     args.checkunique = false;
     291             : 
     292         124 :     if (PG_NARGS() >= 2)
     293         112 :         args.heapallindexed = PG_GETARG_BOOL(1);
     294         124 :     if (PG_NARGS() >= 3)
     295         104 :         args.rootdescend = PG_GETARG_BOOL(2);
     296         124 :     if (PG_NARGS() >= 4)
     297          52 :         args.checkunique = PG_GETARG_BOOL(3);
     298             : 
     299         124 :     amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
     300             :                                     bt_index_check_callback,
     301             :                                     ShareLock, &args);
     302             : 
     303          88 :     PG_RETURN_VOID();
     304             : }
     305             : 
     306             : /*
     307             :  * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
     308             :  */
     309             : static void
     310        7990 : bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
     311             : {
     312        7990 :     BTCallbackState *args = (BTCallbackState *) state;
     313             :     bool        heapkeyspace,
     314             :                 allequalimage;
     315             : 
     316        7990 :     if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
     317          36 :         ereport(ERROR,
     318             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
     319             :                  errmsg("index \"%s\" lacks a main relation fork",
     320             :                         RelationGetRelationName(indrel))));
     321             : 
     322             :     /* Extract metadata from metapage, and sanitize it in passing */
     323        7954 :     _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
     324        7954 :     if (allequalimage && !heapkeyspace)
     325           0 :         ereport(ERROR,
     326             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
     327             :                  errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
     328             :                         RelationGetRelationName(indrel))));
     329        7954 :     if (allequalimage && !_bt_allequalimage(indrel, false))
     330             :     {
     331           0 :         bool        has_interval_ops = false;
     332             : 
     333           0 :         for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
     334           0 :             if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
     335             :             {
     336           0 :                 has_interval_ops = true;
     337           0 :                 ereport(ERROR,
     338             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     339             :                          errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
     340             :                                 RelationGetRelationName(indrel)),
     341             :                          has_interval_ops
     342             :                          ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
     343             :                          : 0));
     344             :             }
     345             :     }
     346             : 
     347             :     /* Check index, possibly against table it is an index on */
     348        7954 :     bt_check_every_level(indrel, heaprel, heapkeyspace, readonly,
     349        7954 :                          args->heapallindexed, args->rootdescend, args->checkunique);
     350        7914 : }
     351             : 
     352             : /*
     353             :  * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
     354             :  * logical order, verifying invariants as it goes.  Optionally, verification
     355             :  * checks if the heap relation contains any tuples that are not represented in
     356             :  * the index but should be.
     357             :  *
     358             :  * It is the caller's responsibility to acquire appropriate heavyweight lock on
     359             :  * the index relation, and advise us if extra checks are safe when a ShareLock
     360             :  * is held.  (A lock of the same type must also have been acquired on the heap
     361             :  * relation.)
     362             :  *
     363             :  * A ShareLock is generally assumed to prevent any kind of physical
     364             :  * modification to the index structure, including modifications that VACUUM may
     365             :  * make.  This does not include setting of the LP_DEAD bit by concurrent index
     366             :  * scans, although that is just metadata that is not able to directly affect
     367             :  * any check performed here.  Any concurrent process that might act on the
     368             :  * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
     369             :  * cannot be held while we hold a ShareLock.  (Besides, even if that could
     370             :  * happen, the ad-hoc recycling when a page might otherwise split is performed
     371             :  * per-page, and requires an exclusive buffer lock, which wouldn't cause us
     372             :  * trouble.  _bt_delitems_vacuum() may only delete leaf items, and so the extra
     373             :  * parent/child check cannot be affected.)
     374             :  */
     375             : static void
     376        7954 : bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
     377             :                      bool readonly, bool heapallindexed, bool rootdescend,
     378             :                      bool checkunique)
     379             : {
     380             :     BtreeCheckState *state;
     381             :     Page        metapage;
     382             :     BTMetaPageData *metad;
     383             :     uint32      previouslevel;
     384             :     BtreeLevel  current;
     385             : 
     386        7954 :     if (!readonly)
     387        7854 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
     388             :              RelationGetRelationName(rel));
     389             :     else
     390         100 :         elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
     391             :              RelationGetRelationName(rel));
     392             : 
     393             :     /*
     394             :      * This assertion matches the one in index_getnext_tid().  See page
     395             :      * recycling/"visible to everyone" notes in nbtree README.
     396             :      */
     397             :     Assert(TransactionIdIsValid(RecentXmin));
     398             : 
     399             :     /*
     400             :      * Initialize state for entire verification operation
     401             :      */
     402        7954 :     state = palloc0_object(BtreeCheckState);
     403        7954 :     state->rel = rel;
     404        7954 :     state->heaprel = heaprel;
     405        7954 :     state->heapkeyspace = heapkeyspace;
     406        7954 :     state->readonly = readonly;
     407        7954 :     state->heapallindexed = heapallindexed;
     408        7954 :     state->rootdescend = rootdescend;
     409        7954 :     state->checkunique = checkunique;
     410        7954 :     state->snapshot = InvalidSnapshot;
     411             : 
     412        7954 :     if (state->heapallindexed)
     413             :     {
     414             :         int64       total_pages;
     415             :         int64       total_elems;
     416             :         uint64      seed;
     417             : 
     418             :         /*
     419             :          * Size Bloom filter based on estimated number of tuples in index,
     420             :          * while conservatively assuming that each block must contain at least
     421             :          * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
     422             :          * bt_posting_plain_tuple() for definition, and details of how posting
     423             :          * list tuples are handled.
     424             :          */
     425         152 :         total_pages = RelationGetNumberOfBlocks(rel);
     426         152 :         total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
     427             :                           (int64) state->rel->rd_rel->reltuples);
     428             :         /* Generate a random seed to avoid repetition */
     429         152 :         seed = pg_prng_uint64(&pg_global_prng_state);
     430             :         /* Create Bloom filter to fingerprint index */
     431         152 :         state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
     432         152 :         state->heaptuplespresent = 0;
     433             : 
     434             :         /*
     435             :          * Register our own snapshot for heapallindexed, rather than asking
     436             :          * table_index_build_scan() to do this for us later.  This needs to
     437             :          * happen before index fingerprinting begins, so we can later be
     438             :          * certain that index fingerprinting should have reached all tuples
     439             :          * returned by table_index_build_scan().
     440             :          */
     441         152 :         state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
     442             : 
     443             :         /*
     444             :          * GetTransactionSnapshot() always acquires a new MVCC snapshot in
     445             :          * READ COMMITTED mode.  A new snapshot is guaranteed to have all the
     446             :          * entries it requires in the index.
     447             :          *
     448             :          * We must defend against the possibility that an old xact snapshot
     449             :          * was returned at higher isolation levels when that snapshot is not
     450             :          * safe for index scans of the target index.  This is possible when
     451             :          * the snapshot sees tuples that are before the index's indcheckxmin
     452             :          * horizon.  Throwing an error here should be very rare.  It doesn't
     453             :          * seem worth using a secondary snapshot to avoid this.
     454             :          */
     455         152 :         if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
     456           0 :             !TransactionIdPrecedes(HeapTupleHeaderGetXmin(rel->rd_indextuple->t_data),
     457           0 :                                    state->snapshot->xmin))
     458           0 :             ereport(ERROR,
     459             :                     errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
     460             :                     errmsg("index \"%s\" cannot be verified using transaction snapshot",
     461             :                            RelationGetRelationName(rel)));
     462             :     }
     463             : 
     464             :     /*
     465             :      * We need a snapshot to check the uniqueness of the index.  For better
     466             :      * performance, take it once per index check.  If one was already taken
     467             :      * above, use that.
     468             :      */
     469        7954 :     if (state->checkunique)
     470             :     {
     471        1408 :         state->indexinfo = BuildIndexInfo(state->rel);
     472             : 
     473        1408 :         if (state->indexinfo->ii_Unique && state->snapshot == InvalidSnapshot)
     474        1242 :             state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
     475             :     }
     476             : 
     477             :     Assert(!state->rootdescend || state->readonly);
     478        7954 :     if (state->rootdescend && !state->heapkeyspace)
     479           0 :         ereport(ERROR,
     480             :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
     481             :                  errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
     482             :                         RelationGetRelationName(rel)),
     483             :                  errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
     484             : 
     485             :     /* Create context for page */
     486        7954 :     state->targetcontext = AllocSetContextCreate(CurrentMemoryContext,
     487             :                                                  "amcheck context",
     488             :                                                  ALLOCSET_DEFAULT_SIZES);
     489        7954 :     state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
     490             : 
     491             :     /* Get true root block from meta-page */
     492        7954 :     metapage = palloc_btree_page(state, BTREE_METAPAGE);
     493        7954 :     metad = BTPageGetMeta(metapage);
     494             : 
     495             :     /*
     496             :      * Certain deletion patterns can result in "skinny" B-Tree indexes, where
     497             :      * the fast root and true root differ.
     498             :      *
     499             :      * Start from the true root, not the fast root, unlike conventional index
     500             :      * scans.  This approach is more thorough, and removes the risk of
     501             :      * following a stale fast root from the meta page.
     502             :      */
     503        7954 :     if (metad->btm_fastroot != metad->btm_root)
     504          26 :         ereport(DEBUG1,
     505             :                 (errcode(ERRCODE_NO_DATA),
     506             :                  errmsg_internal("harmless fast root mismatch in index \"%s\"",
     507             :                                  RelationGetRelationName(rel)),
     508             :                  errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
     509             :                                     metad->btm_fastroot, metad->btm_fastlevel,
     510             :                                     metad->btm_root, metad->btm_level)));
     511             : 
     512             :     /*
     513             :      * Starting at the root, verify every level.  Move left to right, top to
     514             :      * bottom.  Note that there may be no pages other than the meta page (meta
     515             :      * page can indicate that root is P_NONE when the index is totally empty).
     516             :      */
     517        7954 :     previouslevel = InvalidBtreeLevel;
     518        7954 :     current.level = metad->btm_level;
     519        7954 :     current.leftmost = metad->btm_root;
     520        7954 :     current.istruerootlevel = true;
     521       12942 :     while (current.leftmost != P_NONE)
     522             :     {
     523             :         /*
     524             :          * Verify this level, and get left most page for next level down, if
     525             :          * not at leaf level
     526             :          */
     527        5024 :         current = bt_check_level_from_leftmost(state, current);
     528             : 
     529        4988 :         if (current.leftmost == InvalidBlockNumber)
     530           0 :             ereport(ERROR,
     531             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     532             :                      errmsg("index \"%s\" has no valid pages on level below %u or first level",
     533             :                             RelationGetRelationName(rel), previouslevel)));
     534             : 
     535        4988 :         previouslevel = current.level;
     536             :     }
     537             : 
     538             :     /*
     539             :      * * Check whether heap contains unindexed/malformed tuples *
     540             :      */
     541        7918 :     if (state->heapallindexed)
     542             :     {
     543         138 :         IndexInfo  *indexinfo = BuildIndexInfo(state->rel);
     544             :         TableScanDesc scan;
     545             : 
     546             :         /*
     547             :          * Create our own scan for table_index_build_scan(), rather than
     548             :          * getting it to do so for us.  This is required so that we can
     549             :          * actually use the MVCC snapshot registered earlier.
     550             :          *
     551             :          * Note that table_index_build_scan() calls heap_endscan() for us.
     552             :          */
     553         138 :         scan = table_beginscan_strat(state->heaprel, /* relation */
     554             :                                      state->snapshot,    /* snapshot */
     555             :                                      0, /* number of keys */
     556             :                                      NULL,  /* scan key */
     557             :                                      true,  /* buffer access strategy OK */
     558             :                                      true); /* syncscan OK? */
     559             : 
     560             :         /*
     561             :          * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
     562             :          * behaves.
     563             :          *
     564             :          * It's okay that we don't actually use the same lock strength for the
     565             :          * heap relation as any other ii_Concurrent caller would.  We have no
     566             :          * reason to care about a concurrent VACUUM operation, since there
     567             :          * isn't going to be a second scan of the heap that needs to be sure
     568             :          * that there was no concurrent recycling of TIDs.
     569             :          */
     570         134 :         indexinfo->ii_Concurrent = true;
     571             : 
     572             :         /*
     573             :          * Don't wait for uncommitted tuple xact commit/abort when index is a
     574             :          * unique index on a catalog (or an index used by an exclusion
     575             :          * constraint).  This could otherwise happen in the readonly case.
     576             :          */
     577         134 :         indexinfo->ii_Unique = false;
     578         134 :         indexinfo->ii_ExclusionOps = NULL;
     579         134 :         indexinfo->ii_ExclusionProcs = NULL;
     580         134 :         indexinfo->ii_ExclusionStrats = NULL;
     581             : 
     582         134 :         elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
     583             :              RelationGetRelationName(state->rel),
     584             :              RelationGetRelationName(state->heaprel));
     585             : 
     586         134 :         table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
     587             :                                bt_tuple_present_callback, state, scan);
     588             : 
     589         134 :         ereport(DEBUG1,
     590             :                 (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
     591             :                                  state->heaptuplespresent, RelationGetRelationName(heaprel),
     592             :                                  100.0 * bloom_prop_bits_set(state->filter))));
     593             : 
     594         134 :         bloom_free(state->filter);
     595             :     }
     596             : 
     597             :     /* Be tidy: */
     598        7914 :     if (state->snapshot != InvalidSnapshot)
     599        1376 :         UnregisterSnapshot(state->snapshot);
     600        7914 :     MemoryContextDelete(state->targetcontext);
     601        7914 : }
     602             : 
     603             : /*
     604             :  * Given a left-most block at some level, move right, verifying each page
     605             :  * individually (with more verification across pages for "readonly"
     606             :  * callers).  Caller should pass the true root page as the leftmost initially,
     607             :  * working their way down by passing what is returned for the last call here
     608             :  * until level 0 (leaf page level) was reached.
     609             :  *
     610             :  * Returns state for next call, if any.  This includes left-most block number
     611             :  * one level lower that should be passed on next level/call, which is set to
     612             :  * P_NONE on last call here (when leaf level is verified).  Level numbers
     613             :  * follow the nbtree convention: higher levels have higher numbers, because new
     614             :  * levels are added only due to a root page split.  Note that prior to the
     615             :  * first root page split, the root is also a leaf page, so there is always a
     616             :  * level 0 (leaf level), and it's always the last level processed.
     617             :  *
     618             :  * Note on memory management:  State's per-page context is reset here, between
     619             :  * each call to bt_target_page_check().
     620             :  */
     621             : static BtreeLevel
     622        5024 : bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
     623             : {
     624             :     /* State to establish early, concerning entire level */
     625             :     BTPageOpaque opaque;
     626             :     MemoryContext oldcontext;
     627             :     BtreeLevel  nextleveldown;
     628             : 
     629             :     /* Variables for iterating across level using right links */
     630        5024 :     BlockNumber leftcurrent = P_NONE;
     631        5024 :     BlockNumber current = level.leftmost;
     632             : 
     633             :     /* Initialize return state */
     634        5024 :     nextleveldown.leftmost = InvalidBlockNumber;
     635        5024 :     nextleveldown.level = InvalidBtreeLevel;
     636        5024 :     nextleveldown.istruerootlevel = false;
     637             : 
     638             :     /* Use page-level context for duration of this call */
     639        5024 :     oldcontext = MemoryContextSwitchTo(state->targetcontext);
     640             : 
     641        5024 :     elog(DEBUG1, "verifying level %u%s", level.level,
     642             :          level.istruerootlevel ?
     643             :          " (true root level)" : level.level == 0 ? " (leaf level)" : "");
     644             : 
     645        5024 :     state->prevrightlink = InvalidBlockNumber;
     646        5024 :     state->previncompletesplit = false;
     647             : 
     648             :     do
     649             :     {
     650             :         /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
     651       18252 :         CHECK_FOR_INTERRUPTS();
     652             : 
     653             :         /* Initialize state for this iteration */
     654       18252 :         state->targetblock = current;
     655       18252 :         state->target = palloc_btree_page(state, state->targetblock);
     656       18228 :         state->targetlsn = PageGetLSN(state->target);
     657             : 
     658       18228 :         opaque = BTPageGetOpaque(state->target);
     659             : 
     660       18228 :         if (P_IGNORE(opaque))
     661             :         {
     662             :             /*
     663             :              * Since there cannot be a concurrent VACUUM operation in readonly
     664             :              * mode, and since a page has no links within other pages
     665             :              * (siblings and parent) once it is marked fully deleted, it
     666             :              * should be impossible to land on a fully deleted page in
     667             :              * readonly mode. See bt_child_check() for further details.
     668             :              *
     669             :              * The bt_child_check() P_ISDELETED() check is repeated here so
     670             :              * that pages that are only reachable through sibling links get
     671             :              * checked.
     672             :              */
     673           0 :             if (state->readonly && P_ISDELETED(opaque))
     674           0 :                 ereport(ERROR,
     675             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     676             :                          errmsg("downlink or sibling link points to deleted block in index \"%s\"",
     677             :                                 RelationGetRelationName(state->rel)),
     678             :                          errdetail_internal("Block=%u left block=%u left link from block=%u.",
     679             :                                             current, leftcurrent, opaque->btpo_prev)));
     680             : 
     681           0 :             if (P_RIGHTMOST(opaque))
     682           0 :                 ereport(ERROR,
     683             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
     684             :                          errmsg("block %u fell off the end of index \"%s\"",
     685             :                                 current, RelationGetRelationName(state->rel))));
     686             :             else
     687           0 :                 ereport(DEBUG1,
     688             :                         (errcode(ERRCODE_NO_DATA),
     689             :                          errmsg_internal("block %u of index \"%s\" concurrently deleted",
     690             :                                          current, RelationGetRelationName(state->rel))));
     691           0 :             goto nextpage;
     692             :         }
     693       18228 :         else if (nextleveldown.leftmost == InvalidBlockNumber)
     694             :         {
     695             :             /*
     696             :              * A concurrent page split could make the caller supplied leftmost
     697             :              * block no longer contain the leftmost page, or no longer be the
     698             :              * true root, but where that isn't possible due to heavyweight
     699             :              * locking, check that the first valid page meets caller's
     700             :              * expectations.
     701             :              */
     702        5000 :             if (state->readonly)
     703             :             {
     704          90 :                 if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
     705           0 :                     ereport(ERROR,
     706             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     707             :                              errmsg("block %u is not leftmost in index \"%s\"",
     708             :                                     current, RelationGetRelationName(state->rel))));
     709             : 
     710          90 :                 if (level.istruerootlevel && (!P_ISROOT(opaque) && !P_INCOMPLETE_SPLIT(opaque)))
     711           0 :                     ereport(ERROR,
     712             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
     713             :                              errmsg("block %u is not true root in index \"%s\"",
     714             :                                     current, RelationGetRelationName(state->rel))));
     715             :             }
     716             : 
     717             :             /*
     718             :              * Before beginning any non-trivial examination of level, prepare
     719             :              * state for next bt_check_level_from_leftmost() invocation for
     720             :              * the next level for the next level down (if any).
     721             :              *
     722             :              * There should be at least one non-ignorable page per level,
     723             :              * unless this is the leaf level, which is assumed by caller to be
     724             :              * final level.
     725             :              */
     726        5000 :             if (!P_ISLEAF(opaque))
     727             :             {
     728             :                 IndexTuple  itup;
     729             :                 ItemId      itemid;
     730             : 
     731             :                 /* Internal page -- downlink gets leftmost on next level */
     732        1110 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
     733             :                                               state->target,
     734        1110 :                                               P_FIRSTDATAKEY(opaque));
     735        1110 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
     736        1110 :                 nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
     737        1110 :                 nextleveldown.level = opaque->btpo_level - 1;
     738             :             }
     739             :             else
     740             :             {
     741             :                 /*
     742             :                  * Leaf page -- final level caller must process.
     743             :                  *
     744             :                  * Note that this could also be the root page, if there has
     745             :                  * been no root page split yet.
     746             :                  */
     747        3890 :                 nextleveldown.leftmost = P_NONE;
     748        3890 :                 nextleveldown.level = InvalidBtreeLevel;
     749             :             }
     750             : 
     751             :             /*
     752             :              * Finished setting up state for this call/level.  Control will
     753             :              * never end up back here in any future loop iteration for this
     754             :              * level.
     755             :              */
     756             :         }
     757             : 
     758             :         /*
     759             :          * Sibling links should be in mutual agreement.  There arises
     760             :          * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
     761             :          * of the parent's low-key downlink is half-dead.  (A half-dead page
     762             :          * has no downlink from its parent.)  Under heavyweight locking, the
     763             :          * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
     764             :          * Without heavyweight locking, validation of the P_NONE case remains
     765             :          * unimplemented.
     766             :          */
     767       18228 :         if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
     768           0 :             bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
     769             : 
     770             :         /* Check level */
     771       18228 :         if (level.level != opaque->btpo_level)
     772           0 :             ereport(ERROR,
     773             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     774             :                      errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
     775             :                             RelationGetRelationName(state->rel)),
     776             :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
     777             :                                         current, level.level, opaque->btpo_level)));
     778             : 
     779             :         /* Verify invariants for page */
     780       18228 :         bt_target_page_check(state);
     781             : 
     782       18216 : nextpage:
     783             : 
     784             :         /* Try to detect circular links */
     785       18216 :         if (current == leftcurrent || current == opaque->btpo_prev)
     786           0 :             ereport(ERROR,
     787             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
     788             :                      errmsg("circular link chain found in block %u of index \"%s\"",
     789             :                             current, RelationGetRelationName(state->rel))));
     790             : 
     791       18216 :         leftcurrent = current;
     792       18216 :         current = opaque->btpo_next;
     793             : 
     794       18216 :         if (state->lowkey)
     795             :         {
     796             :             Assert(state->readonly);
     797        3724 :             pfree(state->lowkey);
     798        3724 :             state->lowkey = NULL;
     799             :         }
     800             : 
     801             :         /*
     802             :          * Copy current target high key as the low key of right sibling.
     803             :          * Allocate memory in upper level context, so it would be cleared
     804             :          * after reset of target context.
     805             :          *
     806             :          * We only need the low key in corner cases of checking child high
     807             :          * keys. We use high key only when incomplete split on the child level
     808             :          * falls to the boundary of pages on the target level.  See
     809             :          * bt_child_highkey_check() for details.  So, typically we won't end
     810             :          * up doing anything with low key, but it's simpler for general case
     811             :          * high key verification to always have it available.
     812             :          *
     813             :          * The correctness of managing low key in the case of concurrent
     814             :          * splits wasn't investigated yet.  Thankfully we only need low key
     815             :          * for readonly verification and concurrent splits won't happen.
     816             :          */
     817       18216 :         if (state->readonly && !P_RIGHTMOST(opaque))
     818             :         {
     819             :             IndexTuple  itup;
     820             :             ItemId      itemid;
     821             : 
     822        3724 :             itemid = PageGetItemIdCareful(state, state->targetblock,
     823             :                                           state->target, P_HIKEY);
     824        3724 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
     825             : 
     826        3724 :             state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
     827        3724 :             memcpy(state->lowkey, itup, IndexTupleSize(itup));
     828             :         }
     829             : 
     830             :         /* Free page and associated memory for this iteration */
     831       18216 :         MemoryContextReset(state->targetcontext);
     832             :     }
     833       18216 :     while (current != P_NONE);
     834             : 
     835        4988 :     if (state->lowkey)
     836             :     {
     837             :         Assert(state->readonly);
     838           0 :         pfree(state->lowkey);
     839           0 :         state->lowkey = NULL;
     840             :     }
     841             : 
     842             :     /* Don't change context for caller */
     843        4988 :     MemoryContextSwitchTo(oldcontext);
     844             : 
     845        4988 :     return nextleveldown;
     846             : }
     847             : 
     848             : /* Check visibility of the table entry referenced by nbtree index */
     849             : static bool
     850         798 : heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
     851             : {
     852             :     bool        tid_visible;
     853             : 
     854         798 :     TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
     855             : 
     856         798 :     tid_visible = table_tuple_fetch_row_version(state->heaprel,
     857             :                                                 tid, state->snapshot, slot);
     858         798 :     if (slot != NULL)
     859         798 :         ExecDropSingleTupleTableSlot(slot);
     860             : 
     861         798 :     return tid_visible;
     862             : }
     863             : 
     864             : /*
     865             :  * Prepare an error message for unique constrain violation in
     866             :  * a btree index and report ERROR.
     867             :  */
     868             : static void
     869           6 : bt_report_duplicate(BtreeCheckState *state,
     870             :                     BtreeLastVisibleEntry *lVis,
     871             :                     ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
     872             :                     int nposting)
     873             : {
     874             :     char       *htid,
     875             :                *nhtid,
     876             :                *itid,
     877           6 :                *nitid = "",
     878           6 :                *pposting = "",
     879           6 :                *pnposting = "";
     880             : 
     881           6 :     htid = psprintf("tid=(%u,%u)",
     882           6 :                     ItemPointerGetBlockNumberNoCheck(lVis->tid),
     883           6 :                     ItemPointerGetOffsetNumberNoCheck(lVis->tid));
     884           6 :     nhtid = psprintf("tid=(%u,%u)",
     885             :                      ItemPointerGetBlockNumberNoCheck(nexttid),
     886           6 :                      ItemPointerGetOffsetNumberNoCheck(nexttid));
     887           6 :     itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
     888             : 
     889           6 :     if (nblock != lVis->blkno || noffset != lVis->offset)
     890           6 :         nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
     891             : 
     892           6 :     if (lVis->postingIndex >= 0)
     893           0 :         pposting = psprintf(" posting %u", lVis->postingIndex);
     894             : 
     895           6 :     if (nposting >= 0)
     896           0 :         pnposting = psprintf(" posting %u", nposting);
     897             : 
     898           6 :     ereport(ERROR,
     899             :             (errcode(ERRCODE_INDEX_CORRUPTED),
     900             :              errmsg("index uniqueness is violated for index \"%s\"",
     901             :                     RelationGetRelationName(state->rel)),
     902             :              errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%08X.",
     903             :                        itid, pposting, nitid, pnposting, htid, nhtid,
     904             :                        LSN_FORMAT_ARGS(state->targetlsn))));
     905             : }
     906             : 
     907             : /* Check if current nbtree leaf entry complies with UNIQUE constraint */
     908             : static void
     909         766 : bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
     910             :                       BlockNumber targetblock, OffsetNumber offset,
     911             :                       BtreeLastVisibleEntry *lVis)
     912             : {
     913             :     ItemPointer tid;
     914         766 :     bool        has_visible_entry = false;
     915             : 
     916             :     Assert(targetblock != P_NONE);
     917             : 
     918             :     /*
     919             :      * Current tuple has posting list. Report duplicate if TID of any posting
     920             :      * list entry is visible and lVis->tid is valid.
     921             :      */
     922         766 :     if (BTreeTupleIsPosting(itup))
     923             :     {
     924          96 :         for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
     925             :         {
     926          64 :             tid = BTreeTupleGetPostingN(itup, i);
     927          64 :             if (heap_entry_is_visible(state, tid))
     928             :             {
     929          32 :                 has_visible_entry = true;
     930          32 :                 if (ItemPointerIsValid(lVis->tid))
     931             :                 {
     932           0 :                     bt_report_duplicate(state,
     933             :                                         lVis,
     934             :                                         tid, targetblock,
     935             :                                         offset, i);
     936             :                 }
     937             : 
     938             :                 /*
     939             :                  * Prevent double reporting unique constraint violation
     940             :                  * between the posting list entries of the first tuple on the
     941             :                  * page after cross-page check.
     942             :                  */
     943          32 :                 if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
     944           0 :                     return;
     945             : 
     946          32 :                 lVis->blkno = targetblock;
     947          32 :                 lVis->offset = offset;
     948          32 :                 lVis->postingIndex = i;
     949          32 :                 lVis->tid = tid;
     950             :             }
     951             :         }
     952             :     }
     953             : 
     954             :     /*
     955             :      * Current tuple has no posting list. If TID is visible save info about it
     956             :      * for the next comparisons in the loop in bt_target_page_check(). Report
     957             :      * duplicate if lVis->tid is already valid.
     958             :      */
     959             :     else
     960             :     {
     961         734 :         tid = BTreeTupleGetHeapTID(itup);
     962         734 :         if (heap_entry_is_visible(state, tid))
     963             :         {
     964          54 :             has_visible_entry = true;
     965          54 :             if (ItemPointerIsValid(lVis->tid))
     966             :             {
     967           6 :                 bt_report_duplicate(state,
     968             :                                     lVis,
     969             :                                     tid, targetblock,
     970             :                                     offset, -1);
     971             :             }
     972             : 
     973          48 :             lVis->blkno = targetblock;
     974          48 :             lVis->offset = offset;
     975          48 :             lVis->tid = tid;
     976          48 :             lVis->postingIndex = -1;
     977             :         }
     978             :     }
     979             : 
     980         760 :     if (!has_visible_entry &&
     981         680 :         lVis->blkno != InvalidBlockNumber &&
     982          42 :         lVis->blkno != targetblock)
     983             :     {
     984           0 :         char       *posting = "";
     985             : 
     986           0 :         if (lVis->postingIndex >= 0)
     987           0 :             posting = psprintf(" posting %u", lVis->postingIndex);
     988           0 :         ereport(DEBUG1,
     989             :                 (errcode(ERRCODE_NO_DATA),
     990             :                  errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
     991             :                         targetblock, offset,
     992             :                         RelationGetRelationName(state->rel)),
     993             :                  errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
     994             :                            lVis->blkno, lVis->offset, posting,
     995             :                            ItemPointerGetBlockNumberNoCheck(lVis->tid),
     996             :                            ItemPointerGetOffsetNumberNoCheck(lVis->tid)),
     997             :                  errhint("VACUUM the table and repeat the check.")));
     998             :     }
     999             : }
    1000             : 
    1001             : /*
    1002             :  * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
    1003             :  * half-dead, sibling-linked pages to the left.  If a half-dead page appears
    1004             :  * under state->readonly, the database exited recovery between the first-stage
    1005             :  * and second-stage WAL records of a deletion.
    1006             :  */
    1007             : static bool
    1008         112 : bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
    1009             :                                BlockNumber start,
    1010             :                                BTPageOpaque start_opaque)
    1011             : {
    1012         112 :     BlockNumber reached = start_opaque->btpo_prev,
    1013         112 :                 reached_from = start;
    1014         112 :     bool        all_half_dead = true;
    1015             : 
    1016             :     /*
    1017             :      * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
    1018             :      * potentially observe nbtree/README "Page deletion and backwards scans".
    1019             :      */
    1020             :     Assert(state->readonly);
    1021             : 
    1022         116 :     while (reached != P_NONE && all_half_dead)
    1023             :     {
    1024           4 :         Page        page = palloc_btree_page(state, reached);
    1025           4 :         BTPageOpaque reached_opaque = BTPageGetOpaque(page);
    1026             : 
    1027           4 :         CHECK_FOR_INTERRUPTS();
    1028             : 
    1029             :         /*
    1030             :          * Try to detect btpo_prev circular links.  _bt_unlink_halfdead_page()
    1031             :          * writes that side-links will continue to point to the siblings.
    1032             :          * Check btpo_next for that property.
    1033             :          */
    1034           4 :         all_half_dead = P_ISHALFDEAD(reached_opaque) &&
    1035           4 :             reached != start &&
    1036           8 :             reached != reached_from &&
    1037           4 :             reached_opaque->btpo_next == reached_from;
    1038           4 :         if (all_half_dead)
    1039             :         {
    1040           4 :             XLogRecPtr  pagelsn = PageGetLSN(page);
    1041             : 
    1042             :             /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
    1043           4 :             ereport(DEBUG1,
    1044             :                     (errcode(ERRCODE_NO_DATA),
    1045             :                      errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
    1046             :                                      RelationGetRelationName(state->rel)),
    1047             :                      errdetail_internal("Block=%u right block=%u page lsn=%X/%08X.",
    1048             :                                         reached, reached_from,
    1049             :                                         LSN_FORMAT_ARGS(pagelsn))));
    1050             : 
    1051           4 :             reached_from = reached;
    1052           4 :             reached = reached_opaque->btpo_prev;
    1053             :         }
    1054             : 
    1055           4 :         pfree(page);
    1056             :     }
    1057             : 
    1058         112 :     return all_half_dead;
    1059             : }
    1060             : 
    1061             : /*
    1062             :  * Raise an error when target page's left link does not point back to the
    1063             :  * previous target page, called leftcurrent here.  The leftcurrent page's
    1064             :  * right link was followed to get to the current target page, and we expect
    1065             :  * mutual agreement among leftcurrent and the current target page.  Make sure
    1066             :  * that this condition has definitely been violated in the !readonly case,
    1067             :  * where concurrent page splits are something that we need to deal with.
    1068             :  *
    1069             :  * Cross-page inconsistencies involving pages that don't agree about being
    1070             :  * siblings are known to be a particularly good indicator of corruption
    1071             :  * involving partial writes/lost updates.  The bt_right_page_check_scankey
    1072             :  * check also provides a way of detecting cross-page inconsistencies for
    1073             :  * !readonly callers, but it can only detect sibling pages that have an
    1074             :  * out-of-order keyspace, which can't catch many of the problems that we
    1075             :  * expect to catch here.
    1076             :  *
    1077             :  * The classic example of the kind of inconsistency that we can only catch
    1078             :  * with this check (when in !readonly mode) involves three sibling pages that
    1079             :  * were affected by a faulty page split at some point in the past.  The
    1080             :  * effects of the split are reflected in the original page and its new right
    1081             :  * sibling page, with a lack of any accompanying changes for the _original_
    1082             :  * right sibling page.  The original right sibling page's left link fails to
    1083             :  * point to the new right sibling page (its left link still points to the
    1084             :  * original page), even though the first phase of a page split is supposed to
    1085             :  * work as a single atomic action.  This subtle inconsistency will probably
    1086             :  * only break backwards scans in practice.
    1087             :  *
    1088             :  * Note that this is the only place where amcheck will "couple" buffer locks
    1089             :  * (and only for !readonly callers).  In general we prefer to avoid more
    1090             :  * thorough cross-page checks in !readonly mode, but it seems worth the
    1091             :  * complexity here.  Also, the performance overhead of performing lock
    1092             :  * coupling here is negligible in practice.  Control only reaches here with a
    1093             :  * non-corrupt index when there is a concurrent page split at the instant
    1094             :  * caller crossed over to target page from leftcurrent page.
    1095             :  */
    1096             : static void
    1097           0 : bt_recheck_sibling_links(BtreeCheckState *state,
    1098             :                          BlockNumber btpo_prev_from_target,
    1099             :                          BlockNumber leftcurrent)
    1100             : {
    1101             :     /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
    1102             :     Assert(leftcurrent != P_NONE);
    1103             : 
    1104           0 :     if (!state->readonly)
    1105             :     {
    1106             :         Buffer      lbuf;
    1107             :         Buffer      newtargetbuf;
    1108             :         Page        page;
    1109             :         BTPageOpaque opaque;
    1110             :         BlockNumber newtargetblock;
    1111             : 
    1112             :         /* Couple locks in the usual order for nbtree:  Left to right */
    1113           0 :         lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
    1114             :                                   RBM_NORMAL, state->checkstrategy);
    1115           0 :         LockBuffer(lbuf, BT_READ);
    1116           0 :         _bt_checkpage(state->rel, lbuf);
    1117           0 :         page = BufferGetPage(lbuf);
    1118           0 :         opaque = BTPageGetOpaque(page);
    1119           0 :         if (P_ISDELETED(opaque))
    1120             :         {
    1121             :             /*
    1122             :              * Cannot reason about concurrently deleted page -- the left link
    1123             :              * in the page to the right is expected to point to some other
    1124             :              * page to the left (not leftcurrent page).
    1125             :              *
    1126             :              * Note that we deliberately don't give up with a half-dead page.
    1127             :              */
    1128           0 :             UnlockReleaseBuffer(lbuf);
    1129           0 :             return;
    1130             :         }
    1131             : 
    1132           0 :         newtargetblock = opaque->btpo_next;
    1133             :         /* Avoid self-deadlock when newtargetblock == leftcurrent */
    1134           0 :         if (newtargetblock != leftcurrent)
    1135             :         {
    1136           0 :             newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
    1137             :                                               newtargetblock, RBM_NORMAL,
    1138             :                                               state->checkstrategy);
    1139           0 :             LockBuffer(newtargetbuf, BT_READ);
    1140           0 :             _bt_checkpage(state->rel, newtargetbuf);
    1141           0 :             page = BufferGetPage(newtargetbuf);
    1142           0 :             opaque = BTPageGetOpaque(page);
    1143             :             /* btpo_prev_from_target may have changed; update it */
    1144           0 :             btpo_prev_from_target = opaque->btpo_prev;
    1145             :         }
    1146             :         else
    1147             :         {
    1148             :             /*
    1149             :              * leftcurrent right sibling points back to leftcurrent block.
    1150             :              * Index is corrupt.  Easiest way to handle this is to pretend
    1151             :              * that we actually read from a distinct page that has an invalid
    1152             :              * block number in its btpo_prev.
    1153             :              */
    1154           0 :             newtargetbuf = InvalidBuffer;
    1155           0 :             btpo_prev_from_target = InvalidBlockNumber;
    1156             :         }
    1157             : 
    1158             :         /*
    1159             :          * No need to check P_ISDELETED here, since new target block cannot be
    1160             :          * marked deleted as long as we hold a lock on lbuf
    1161             :          */
    1162           0 :         if (BufferIsValid(newtargetbuf))
    1163           0 :             UnlockReleaseBuffer(newtargetbuf);
    1164           0 :         UnlockReleaseBuffer(lbuf);
    1165             : 
    1166           0 :         if (btpo_prev_from_target == leftcurrent)
    1167             :         {
    1168             :             /* Report split in left sibling, not target (or new target) */
    1169           0 :             ereport(DEBUG1,
    1170             :                     (errcode(ERRCODE_INTERNAL_ERROR),
    1171             :                      errmsg_internal("harmless concurrent page split detected in index \"%s\"",
    1172             :                                      RelationGetRelationName(state->rel)),
    1173             :                      errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
    1174             :                                         leftcurrent, newtargetblock,
    1175             :                                         state->targetblock)));
    1176           0 :             return;
    1177             :         }
    1178             : 
    1179             :         /*
    1180             :          * Index is corrupt.  Make sure that we report correct target page.
    1181             :          *
    1182             :          * This could have changed in cases where there was a concurrent page
    1183             :          * split, as well as index corruption (at least in theory).  Note that
    1184             :          * btpo_prev_from_target was already updated above.
    1185             :          */
    1186           0 :         state->targetblock = newtargetblock;
    1187             :     }
    1188             : 
    1189           0 :     ereport(ERROR,
    1190             :             (errcode(ERRCODE_INDEX_CORRUPTED),
    1191             :              errmsg("left link/right link pair in index \"%s\" not in agreement",
    1192             :                     RelationGetRelationName(state->rel)),
    1193             :              errdetail_internal("Block=%u left block=%u left link from block=%u.",
    1194             :                                 state->targetblock, leftcurrent,
    1195             :                                 btpo_prev_from_target)));
    1196             : }
    1197             : 
    1198             : /*
    1199             :  * Function performs the following checks on target page, or pages ancillary to
    1200             :  * target page:
    1201             :  *
    1202             :  * - That every "real" data item is less than or equal to the high key, which
    1203             :  *   is an upper bound on the items on the page.  Data items should be
    1204             :  *   strictly less than the high key when the page is an internal page.
    1205             :  *
    1206             :  * - That within the page, every data item is strictly less than the item
    1207             :  *   immediately to its right, if any (i.e., that the items are in order
    1208             :  *   within the page, so that the binary searches performed by index scans are
    1209             :  *   sane).
    1210             :  *
    1211             :  * - That the last data item stored on the page is strictly less than the
    1212             :  *   first data item on the page to the right (when such a first item is
    1213             :  *   available).
    1214             :  *
    1215             :  * - Various checks on the structure of tuples themselves.  For example, check
    1216             :  *   that non-pivot tuples have no truncated attributes.
    1217             :  *
    1218             :  * - For index with unique constraint make sure that only one of table entries
    1219             :  *   for equal keys is visible.
    1220             :  *
    1221             :  * Furthermore, when state passed shows ShareLock held, function also checks:
    1222             :  *
    1223             :  * - That all child pages respect strict lower bound from parent's pivot
    1224             :  *   tuple.
    1225             :  *
    1226             :  * - That downlink to block was encountered in parent where that's expected.
    1227             :  *
    1228             :  * - That high keys of child pages matches corresponding pivot keys in parent.
    1229             :  *
    1230             :  * This is also where heapallindexed callers use their Bloom filter to
    1231             :  * fingerprint IndexTuples for later table_index_build_scan() verification.
    1232             :  *
    1233             :  * Note:  Memory allocated in this routine is expected to be released by caller
    1234             :  * resetting state->targetcontext.
    1235             :  */
    1236             : static void
    1237       18228 : bt_target_page_check(BtreeCheckState *state)
    1238             : {
    1239             :     OffsetNumber offset;
    1240             :     OffsetNumber max;
    1241             :     BTPageOpaque topaque;
    1242             : 
    1243             :     /* Last visible entry info for checking indexes with unique constraint */
    1244       18228 :     BtreeLastVisibleEntry lVis = {InvalidBlockNumber, InvalidOffsetNumber, -1, NULL};
    1245             : 
    1246       18228 :     topaque = BTPageGetOpaque(state->target);
    1247       18228 :     max = PageGetMaxOffsetNumber(state->target);
    1248             : 
    1249       18228 :     elog(DEBUG2, "verifying %u items on %s block %u", max,
    1250             :          P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
    1251             : 
    1252             :     /*
    1253             :      * Check the number of attributes in high key. Note, rightmost page
    1254             :      * doesn't contain a high key, so nothing to check
    1255             :      */
    1256       18228 :     if (!P_RIGHTMOST(topaque))
    1257             :     {
    1258             :         ItemId      itemid;
    1259             :         IndexTuple  itup;
    1260             : 
    1261             :         /* Verify line pointer before checking tuple */
    1262       13236 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1263             :                                       state->target, P_HIKEY);
    1264       13236 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1265             :                              P_HIKEY))
    1266             :         {
    1267           0 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1268           0 :             ereport(ERROR,
    1269             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1270             :                      errmsg("wrong number of high key index tuple attributes in index \"%s\"",
    1271             :                             RelationGetRelationName(state->rel)),
    1272             :                      errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%08X.",
    1273             :                                         state->targetblock,
    1274             :                                         BTreeTupleGetNAtts(itup, state->rel),
    1275             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1276             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1277             :         }
    1278             :     }
    1279             : 
    1280             :     /*
    1281             :      * Loop over page items, starting from first non-highkey item, not high
    1282             :      * key (if any).  Most tests are not performed for the "negative infinity"
    1283             :      * real item (if any).
    1284             :      */
    1285       18228 :     for (offset = P_FIRSTDATAKEY(topaque);
    1286     4067624 :          offset <= max;
    1287     4049396 :          offset = OffsetNumberNext(offset))
    1288             :     {
    1289             :         ItemId      itemid;
    1290             :         IndexTuple  itup;
    1291             :         size_t      tupsize;
    1292             :         BTScanInsert skey;
    1293             :         bool        lowersizelimit;
    1294             :         ItemPointer scantid;
    1295             : 
    1296             :         /*
    1297             :          * True if we already called bt_entry_unique_check() for the current
    1298             :          * item.  This helps to avoid visiting the heap for keys, which are
    1299             :          * anyway presented only once and can't comprise a unique violation.
    1300             :          */
    1301     4049408 :         bool        unique_checked = false;
    1302             : 
    1303     4049408 :         CHECK_FOR_INTERRUPTS();
    1304             : 
    1305     4049408 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    1306             :                                       state->target, offset);
    1307     4049408 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    1308     4049408 :         tupsize = IndexTupleSize(itup);
    1309             : 
    1310             :         /*
    1311             :          * lp_len should match the IndexTuple reported length exactly, since
    1312             :          * lp_len is completely redundant in indexes, and both sources of
    1313             :          * tuple length are MAXALIGN()'d.  nbtree does not use lp_len all that
    1314             :          * frequently, and is surprisingly tolerant of corrupt lp_len fields.
    1315             :          */
    1316     4049408 :         if (tupsize != ItemIdGetLength(itemid))
    1317           0 :             ereport(ERROR,
    1318             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1319             :                      errmsg("index tuple size does not equal lp_len in index \"%s\"",
    1320             :                             RelationGetRelationName(state->rel)),
    1321             :                      errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%08X.",
    1322             :                                         state->targetblock, offset,
    1323             :                                         tupsize, ItemIdGetLength(itemid),
    1324             :                                         LSN_FORMAT_ARGS(state->targetlsn)),
    1325             :                      errhint("This could be a torn page problem.")));
    1326             : 
    1327             :         /* Check the number of index tuple attributes */
    1328     4049408 :         if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
    1329             :                              offset))
    1330             :         {
    1331             :             ItemPointer tid;
    1332             :             char       *itid,
    1333             :                        *htid;
    1334             : 
    1335           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1336           0 :             tid = BTreeTupleGetPointsToTID(itup);
    1337           0 :             htid = psprintf("(%u,%u)",
    1338             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1339           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1340             : 
    1341           0 :             ereport(ERROR,
    1342             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1343             :                      errmsg("wrong number of index tuple attributes in index \"%s\"",
    1344             :                             RelationGetRelationName(state->rel)),
    1345             :                      errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%08X.",
    1346             :                                         itid,
    1347             :                                         BTreeTupleGetNAtts(itup, state->rel),
    1348             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1349             :                                         htid,
    1350             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1351             :         }
    1352             : 
    1353             :         /*
    1354             :          * Don't try to generate scankey using "negative infinity" item on
    1355             :          * internal pages. They are always truncated to zero attributes.
    1356             :          */
    1357     4049408 :         if (offset_is_negative_infinity(topaque, offset))
    1358             :         {
    1359             :             /*
    1360             :              * We don't call bt_child_check() for "negative infinity" items.
    1361             :              * But if we're performing downlink connectivity check, we do it
    1362             :              * for every item including "negative infinity" one.
    1363             :              */
    1364        1114 :             if (!P_ISLEAF(topaque) && state->readonly)
    1365             :             {
    1366          24 :                 bt_child_highkey_check(state,
    1367             :                                        offset,
    1368             :                                        NULL,
    1369             :                                        topaque->btpo_level);
    1370             :             }
    1371        1114 :             continue;
    1372             :         }
    1373             : 
    1374             :         /*
    1375             :          * Readonly callers may optionally verify that non-pivot tuples can
    1376             :          * each be found by an independent search that starts from the root.
    1377             :          * Note that we deliberately don't do individual searches for each
    1378             :          * TID, since the posting list itself is validated by other checks.
    1379             :          */
    1380     4048294 :         if (state->rootdescend && P_ISLEAF(topaque) &&
    1381      402196 :             !bt_rootdescend(state, itup))
    1382             :         {
    1383           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1384             :             char       *itid,
    1385             :                        *htid;
    1386             : 
    1387           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1388           0 :             htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
    1389           0 :                             ItemPointerGetOffsetNumber(tid));
    1390             : 
    1391           0 :             ereport(ERROR,
    1392             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1393             :                      errmsg("could not find tuple using search from root page in index \"%s\"",
    1394             :                             RelationGetRelationName(state->rel)),
    1395             :                      errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%08X.",
    1396             :                                         itid, htid,
    1397             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1398             :         }
    1399             : 
    1400             :         /*
    1401             :          * If tuple is a posting list tuple, make sure posting list TIDs are
    1402             :          * in order
    1403             :          */
    1404     4048294 :         if (BTreeTupleIsPosting(itup))
    1405             :         {
    1406             :             ItemPointerData last;
    1407             :             ItemPointer current;
    1408             : 
    1409       22338 :             ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
    1410             : 
    1411      164668 :             for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
    1412             :             {
    1413             : 
    1414      142330 :                 current = BTreeTupleGetPostingN(itup, i);
    1415             : 
    1416      142330 :                 if (ItemPointerCompare(current, &last) <= 0)
    1417             :                 {
    1418           0 :                     char       *itid = psprintf("(%u,%u)", state->targetblock, offset);
    1419             : 
    1420           0 :                     ereport(ERROR,
    1421             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    1422             :                              errmsg_internal("posting list contains misplaced TID in index \"%s\"",
    1423             :                                              RelationGetRelationName(state->rel)),
    1424             :                              errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%08X.",
    1425             :                                                 itid, i,
    1426             :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    1427             :                 }
    1428             : 
    1429      142330 :                 ItemPointerCopy(current, &last);
    1430             :             }
    1431             :         }
    1432             : 
    1433             :         /* Build insertion scankey for current page offset */
    1434     4048294 :         skey = bt_mkscankey_pivotsearch(state->rel, itup);
    1435             : 
    1436             :         /*
    1437             :          * Make sure tuple size does not exceed the relevant BTREE_VERSION
    1438             :          * specific limit.
    1439             :          *
    1440             :          * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
    1441             :          * a small amount of space from BTMaxItemSize() in order to ensure
    1442             :          * that suffix truncation always has enough space to add an explicit
    1443             :          * heap TID back to a tuple -- we pessimistically assume that every
    1444             :          * newly inserted tuple will eventually need to have a heap TID
    1445             :          * appended during a future leaf page split, when the tuple becomes
    1446             :          * the basis of the new high key (pivot tuple) for the leaf page.
    1447             :          *
    1448             :          * Since the reclaimed space is reserved for that purpose, we must not
    1449             :          * enforce the slightly lower limit when the extra space has been used
    1450             :          * as intended.  In other words, there is only a cross-version
    1451             :          * difference in the limit on tuple size within leaf pages.
    1452             :          *
    1453             :          * Still, we're particular about the details within BTREE_VERSION 4
    1454             :          * internal pages.  Pivot tuples may only use the extra space for its
    1455             :          * designated purpose.  Enforce the lower limit for pivot tuples when
    1456             :          * an explicit heap TID isn't actually present. (In all other cases
    1457             :          * suffix truncation is guaranteed to generate a pivot tuple that's no
    1458             :          * larger than the firstright tuple provided to it by its caller.)
    1459             :          */
    1460     8096588 :         lowersizelimit = skey->heapkeyspace &&
    1461     4048294 :             (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
    1462     4048294 :         if (tupsize > (lowersizelimit ? BTMaxItemSize : BTMaxItemSizeNoHeapTid))
    1463             :         {
    1464           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1465             :             char       *itid,
    1466             :                        *htid;
    1467             : 
    1468           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1469           0 :             htid = psprintf("(%u,%u)",
    1470             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1471           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1472             : 
    1473           0 :             ereport(ERROR,
    1474             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1475             :                      errmsg("index row size %zu exceeds maximum for index \"%s\"",
    1476             :                             tupsize, RelationGetRelationName(state->rel)),
    1477             :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
    1478             :                                         itid,
    1479             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1480             :                                         htid,
    1481             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1482             :         }
    1483             : 
    1484             :         /* Fingerprint leaf page tuples (those that point to the heap) */
    1485     4048294 :         if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
    1486             :         {
    1487             :             IndexTuple  norm;
    1488             : 
    1489     1014108 :             if (BTreeTupleIsPosting(itup))
    1490             :             {
    1491             :                 /* Fingerprint all elements as distinct "plain" tuples */
    1492       58222 :                 for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
    1493             :                 {
    1494             :                     IndexTuple  logtuple;
    1495             : 
    1496       57804 :                     logtuple = bt_posting_plain_tuple(itup, i);
    1497       57804 :                     norm = bt_normalize_tuple(state, logtuple);
    1498       57804 :                     bloom_add_element(state->filter, (unsigned char *) norm,
    1499             :                                       IndexTupleSize(norm));
    1500             :                     /* Be tidy */
    1501       57804 :                     if (norm != logtuple)
    1502           4 :                         pfree(norm);
    1503       57804 :                     pfree(logtuple);
    1504             :                 }
    1505             :             }
    1506             :             else
    1507             :             {
    1508     1013690 :                 norm = bt_normalize_tuple(state, itup);
    1509     1013690 :                 bloom_add_element(state->filter, (unsigned char *) norm,
    1510             :                                   IndexTupleSize(norm));
    1511             :                 /* Be tidy */
    1512     1013690 :                 if (norm != itup)
    1513           2 :                     pfree(norm);
    1514             :             }
    1515             :         }
    1516             : 
    1517             :         /*
    1518             :          * * High key check *
    1519             :          *
    1520             :          * If there is a high key (if this is not the rightmost page on its
    1521             :          * entire level), check that high key actually is upper bound on all
    1522             :          * page items.  If this is a posting list tuple, we'll need to set
    1523             :          * scantid to be highest TID in posting list.
    1524             :          *
    1525             :          * We prefer to check all items against high key rather than checking
    1526             :          * just the last and trusting that the operator class obeys the
    1527             :          * transitive law (which implies that all previous items also
    1528             :          * respected the high key invariant if they pass the item order
    1529             :          * check).
    1530             :          *
    1531             :          * Ideally, we'd compare every item in the index against every other
    1532             :          * item in the index, and not trust opclass obedience of the
    1533             :          * transitive law to bridge the gap between children and their
    1534             :          * grandparents (as well as great-grandparents, and so on).  We don't
    1535             :          * go to those lengths because that would be prohibitively expensive,
    1536             :          * and probably not markedly more effective in practice.
    1537             :          *
    1538             :          * On the leaf level, we check that the key is <= the highkey.
    1539             :          * However, on non-leaf levels we check that the key is < the highkey,
    1540             :          * because the high key is "just another separator" rather than a copy
    1541             :          * of some existing key item; we expect it to be unique among all keys
    1542             :          * on the same level.  (Suffix truncation will sometimes produce a
    1543             :          * leaf highkey that is an untruncated copy of the lastleft item, but
    1544             :          * never any other item, which necessitates weakening the leaf level
    1545             :          * check to <=.)
    1546             :          *
    1547             :          * Full explanation for why a highkey is never truly a copy of another
    1548             :          * item from the same level on internal levels:
    1549             :          *
    1550             :          * While the new left page's high key is copied from the first offset
    1551             :          * on the right page during an internal page split, that's not the
    1552             :          * full story.  In effect, internal pages are split in the middle of
    1553             :          * the firstright tuple, not between the would-be lastleft and
    1554             :          * firstright tuples: the firstright key ends up on the left side as
    1555             :          * left's new highkey, and the firstright downlink ends up on the
    1556             :          * right side as right's new "negative infinity" item.  The negative
    1557             :          * infinity tuple is truncated to zero attributes, so we're only left
    1558             :          * with the downlink.  In other words, the copying is just an
    1559             :          * implementation detail of splitting in the middle of a (pivot)
    1560             :          * tuple. (See also: "Notes About Data Representation" in the nbtree
    1561             :          * README.)
    1562             :          */
    1563     4048294 :         scantid = skey->scantid;
    1564     4048294 :         if (state->heapkeyspace && BTreeTupleIsPosting(itup))
    1565       22338 :             skey->scantid = BTreeTupleGetMaxHeapTID(itup);
    1566             : 
    1567     7750028 :         if (!P_RIGHTMOST(topaque) &&
    1568     3701734 :             !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
    1569        1132 :               invariant_l_offset(state, skey, P_HIKEY)))
    1570             :         {
    1571           0 :             ItemPointer tid = BTreeTupleGetPointsToTID(itup);
    1572             :             char       *itid,
    1573             :                        *htid;
    1574             : 
    1575           0 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1576           0 :             htid = psprintf("(%u,%u)",
    1577             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1578           0 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1579             : 
    1580           0 :             ereport(ERROR,
    1581             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1582             :                      errmsg("high key invariant violated for index \"%s\"",
    1583             :                             RelationGetRelationName(state->rel)),
    1584             :                      errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
    1585             :                                         itid,
    1586             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1587             :                                         htid,
    1588             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1589             :         }
    1590             :         /* Reset, in case scantid was set to (itup) posting tuple's max TID */
    1591     4048294 :         skey->scantid = scantid;
    1592             : 
    1593             :         /*
    1594             :          * * Item order check *
    1595             :          *
    1596             :          * Check that items are stored on page in logical order, by checking
    1597             :          * current item is strictly less than next item (if any).
    1598             :          */
    1599     4048294 :         if (OffsetNumberNext(offset) <= max &&
    1600     4030082 :             !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
    1601             :         {
    1602             :             ItemPointer tid;
    1603             :             char       *itid,
    1604             :                        *htid,
    1605             :                        *nitid,
    1606             :                        *nhtid;
    1607             : 
    1608           6 :             itid = psprintf("(%u,%u)", state->targetblock, offset);
    1609           6 :             tid = BTreeTupleGetPointsToTID(itup);
    1610           6 :             htid = psprintf("(%u,%u)",
    1611             :                             ItemPointerGetBlockNumberNoCheck(tid),
    1612           6 :                             ItemPointerGetOffsetNumberNoCheck(tid));
    1613           6 :             nitid = psprintf("(%u,%u)", state->targetblock,
    1614           6 :                              OffsetNumberNext(offset));
    1615             : 
    1616             :             /* Reuse itup to get pointed-to heap location of second item */
    1617           6 :             itemid = PageGetItemIdCareful(state, state->targetblock,
    1618             :                                           state->target,
    1619           6 :                                           OffsetNumberNext(offset));
    1620           6 :             itup = (IndexTuple) PageGetItem(state->target, itemid);
    1621           6 :             tid = BTreeTupleGetPointsToTID(itup);
    1622           6 :             nhtid = psprintf("(%u,%u)",
    1623             :                              ItemPointerGetBlockNumberNoCheck(tid),
    1624           6 :                              ItemPointerGetOffsetNumberNoCheck(tid));
    1625             : 
    1626           6 :             ereport(ERROR,
    1627             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    1628             :                      errmsg("item order invariant violated for index \"%s\"",
    1629             :                             RelationGetRelationName(state->rel)),
    1630             :                      errdetail_internal("Lower index tid=%s (points to %s tid=%s) higher index tid=%s (points to %s tid=%s) page lsn=%X/%08X.",
    1631             :                                         itid,
    1632             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1633             :                                         htid,
    1634             :                                         nitid,
    1635             :                                         P_ISLEAF(topaque) ? "heap" : "index",
    1636             :                                         nhtid,
    1637             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    1638             :         }
    1639             : 
    1640             :         /*
    1641             :          * If the index is unique verify entries uniqueness by checking the
    1642             :          * heap tuples visibility.  Immediately check posting tuples and
    1643             :          * tuples with repeated keys.  Postpone check for keys, which have the
    1644             :          * first appearance.
    1645             :          */
    1646     4048288 :         if (state->checkunique && state->indexinfo->ii_Unique &&
    1647      579550 :             P_ISLEAF(topaque) && !skey->anynullkeys &&
    1648      578328 :             (BTreeTupleIsPosting(itup) || ItemPointerIsValid(lVis.tid)))
    1649             :         {
    1650          80 :             bt_entry_unique_check(state, itup, state->targetblock, offset,
    1651             :                                   &lVis);
    1652          74 :             unique_checked = true;
    1653             :         }
    1654             : 
    1655     4048282 :         if (state->checkunique && state->indexinfo->ii_Unique &&
    1656      290364 :             P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
    1657             :         {
    1658             :             /* Save current scankey tid */
    1659      287732 :             scantid = skey->scantid;
    1660             : 
    1661             :             /*
    1662             :              * Invalidate scankey tid to make _bt_compare compare only keys in
    1663             :              * the item to report equality even if heap TIDs are different
    1664             :              */
    1665      287732 :             skey->scantid = NULL;
    1666             : 
    1667             :             /*
    1668             :              * If next key tuple is different, invalidate last visible entry
    1669             :              * data (whole index tuple or last posting in index tuple). Key
    1670             :              * containing null value does not violate unique constraint and
    1671             :              * treated as different to any other key.
    1672             :              *
    1673             :              * If the next key is the same as the previous one, do the
    1674             :              * bt_entry_unique_check() call if it was postponed.
    1675             :              */
    1676      287732 :             if (_bt_compare(state->rel, skey, state->target,
    1677      288558 :                             OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
    1678             :             {
    1679      287046 :                 lVis.blkno = InvalidBlockNumber;
    1680      287046 :                 lVis.offset = InvalidOffsetNumber;
    1681      287046 :                 lVis.postingIndex = -1;
    1682      287046 :                 lVis.tid = NULL;
    1683             :             }
    1684         686 :             else if (!unique_checked)
    1685             :             {
    1686         686 :                 bt_entry_unique_check(state, itup, state->targetblock, offset,
    1687             :                                       &lVis);
    1688             :             }
    1689      287732 :             skey->scantid = scantid; /* Restore saved scan key state */
    1690             :         }
    1691             : 
    1692             :         /*
    1693             :          * * Last item check *
    1694             :          *
    1695             :          * Check last item against next/right page's first data item's when
    1696             :          * last item on page is reached.  This additional check will detect
    1697             :          * transposed pages iff the supposed right sibling page happens to
    1698             :          * belong before target in the key space.  (Otherwise, a subsequent
    1699             :          * heap verification will probably detect the problem.)
    1700             :          *
    1701             :          * This check is similar to the item order check that will have
    1702             :          * already been performed for every other "real" item on target page
    1703             :          * when last item is checked.  The difference is that the next item
    1704             :          * (the item that is compared to target's last item) needs to come
    1705             :          * from the next/sibling page.  There may not be such an item
    1706             :          * available from sibling for various reasons, though (e.g., target is
    1707             :          * the rightmost page on level).
    1708             :          */
    1709     4048282 :         if (offset == max)
    1710             :         {
    1711             :             BTScanInsert rightkey;
    1712             : 
    1713             :             /* first offset on a right index page (log only) */
    1714       18212 :             OffsetNumber rightfirstoffset = InvalidOffsetNumber;
    1715             : 
    1716             :             /* Get item in next/right page */
    1717       18212 :             rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
    1718             : 
    1719       18212 :             if (rightkey &&
    1720       13228 :                 !invariant_g_offset(state, rightkey, max))
    1721             :             {
    1722             :                 /*
    1723             :                  * As explained at length in bt_right_page_check_scankey(),
    1724             :                  * there is a known !readonly race that could account for
    1725             :                  * apparent violation of invariant, which we must check for
    1726             :                  * before actually proceeding with raising error.  Our canary
    1727             :                  * condition is that target page was deleted.
    1728             :                  */
    1729           0 :                 if (!state->readonly)
    1730             :                 {
    1731             :                     /* Get fresh copy of target page */
    1732           0 :                     state->target = palloc_btree_page(state, state->targetblock);
    1733             :                     /* Note that we deliberately do not update target LSN */
    1734           0 :                     topaque = BTPageGetOpaque(state->target);
    1735             : 
    1736             :                     /*
    1737             :                      * All !readonly checks now performed; just return
    1738             :                      */
    1739           0 :                     if (P_IGNORE(topaque))
    1740           0 :                         return;
    1741             :                 }
    1742             : 
    1743           0 :                 ereport(ERROR,
    1744             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    1745             :                          errmsg("cross page item order invariant violated for index \"%s\"",
    1746             :                                 RelationGetRelationName(state->rel)),
    1747             :                          errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%08X.",
    1748             :                                             state->targetblock, offset,
    1749             :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    1750             :             }
    1751             : 
    1752             :             /*
    1753             :              * If index has unique constraint make sure that no more than one
    1754             :              * found equal items is visible.
    1755             :              */
    1756       18212 :             if (state->checkunique && state->indexinfo->ii_Unique &&
    1757        1026 :                 rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
    1758             :             {
    1759        1026 :                 BlockNumber rightblock_number = topaque->btpo_next;
    1760             : 
    1761        1026 :                 elog(DEBUG2, "check cross page unique condition");
    1762             : 
    1763             :                 /*
    1764             :                  * Make _bt_compare compare only index keys without heap TIDs.
    1765             :                  * rightkey->scantid is modified destructively but it is ok
    1766             :                  * for it is not used later.
    1767             :                  */
    1768        1026 :                 rightkey->scantid = NULL;
    1769             : 
    1770             :                 /* The first key on the next page is the same */
    1771        1026 :                 if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
    1772          14 :                     !rightkey->anynullkeys)
    1773             :                 {
    1774             :                     Page        rightpage;
    1775             : 
    1776             :                     /*
    1777             :                      * Do the bt_entry_unique_check() call if it was
    1778             :                      * postponed.
    1779             :                      */
    1780           0 :                     if (!unique_checked)
    1781           0 :                         bt_entry_unique_check(state, itup, state->targetblock,
    1782             :                                               offset, &lVis);
    1783             : 
    1784           0 :                     elog(DEBUG2, "cross page equal keys");
    1785           0 :                     rightpage = palloc_btree_page(state,
    1786             :                                                   rightblock_number);
    1787           0 :                     topaque = BTPageGetOpaque(rightpage);
    1788             : 
    1789           0 :                     if (P_IGNORE(topaque))
    1790             :                     {
    1791           0 :                         pfree(rightpage);
    1792           0 :                         break;
    1793             :                     }
    1794             : 
    1795           0 :                     if (unlikely(!P_ISLEAF(topaque)))
    1796           0 :                         ereport(ERROR,
    1797             :                                 (errcode(ERRCODE_INDEX_CORRUPTED),
    1798             :                                  errmsg("right block of leaf block is non-leaf for index \"%s\"",
    1799             :                                         RelationGetRelationName(state->rel)),
    1800             :                                  errdetail_internal("Block=%u page lsn=%X/%08X.",
    1801             :                                                     state->targetblock,
    1802             :                                                     LSN_FORMAT_ARGS(state->targetlsn))));
    1803             : 
    1804           0 :                     itemid = PageGetItemIdCareful(state, rightblock_number,
    1805             :                                                   rightpage,
    1806             :                                                   rightfirstoffset);
    1807           0 :                     itup = (IndexTuple) PageGetItem(rightpage, itemid);
    1808             : 
    1809           0 :                     bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
    1810             : 
    1811           0 :                     pfree(rightpage);
    1812             :                 }
    1813             :             }
    1814             :         }
    1815             : 
    1816             :         /*
    1817             :          * * Downlink check *
    1818             :          *
    1819             :          * Additional check of child items iff this is an internal page and
    1820             :          * caller holds a ShareLock.  This happens for every downlink (item)
    1821             :          * in target excluding the negative-infinity downlink (again, this is
    1822             :          * because it has no useful value to compare).
    1823             :          */
    1824     4048282 :         if (!P_ISLEAF(topaque) && state->readonly)
    1825        3722 :             bt_child_check(state, skey, offset);
    1826             :     }
    1827             : 
    1828             :     /*
    1829             :      * Special case bt_child_highkey_check() call
    1830             :      *
    1831             :      * We don't pass a real downlink, but we've to finish the level
    1832             :      * processing. If condition is satisfied, we've already processed all the
    1833             :      * downlinks from the target level.  But there still might be pages to the
    1834             :      * right of the child page pointer to by our rightmost downlink.  And they
    1835             :      * might have missing downlinks.  This final call checks for them.
    1836             :      */
    1837       18216 :     if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
    1838             :     {
    1839          22 :         bt_child_highkey_check(state, InvalidOffsetNumber,
    1840             :                                NULL, topaque->btpo_level);
    1841             :     }
    1842             : }
    1843             : 
    1844             : /*
    1845             :  * Return a scankey for an item on page to right of current target (or the
    1846             :  * first non-ignorable page), sufficient to check ordering invariant on last
    1847             :  * item in current target page.  Returned scankey relies on local memory
    1848             :  * allocated for the child page, which caller cannot pfree().  Caller's memory
    1849             :  * context should be reset between calls here.
    1850             :  *
    1851             :  * This is the first data item, and so all adjacent items are checked against
    1852             :  * their immediate sibling item (which may be on a sibling page, or even a
    1853             :  * "cousin" page at parent boundaries where target's rightlink points to page
    1854             :  * with different parent page).  If no such valid item is available, return
    1855             :  * NULL instead.
    1856             :  *
    1857             :  * Note that !readonly callers must reverify that target page has not
    1858             :  * been concurrently deleted.
    1859             :  *
    1860             :  * Save rightfirstoffset for detailed error message.
    1861             :  */
    1862             : static BTScanInsert
    1863       18212 : bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
    1864             : {
    1865             :     BTPageOpaque opaque;
    1866             :     ItemId      rightitem;
    1867             :     IndexTuple  firstitup;
    1868             :     BlockNumber targetnext;
    1869             :     Page        rightpage;
    1870             :     OffsetNumber nline;
    1871             : 
    1872             :     /* Determine target's next block number */
    1873       18212 :     opaque = BTPageGetOpaque(state->target);
    1874             : 
    1875             :     /* If target is already rightmost, no right sibling; nothing to do here */
    1876       18212 :     if (P_RIGHTMOST(opaque))
    1877        4984 :         return NULL;
    1878             : 
    1879             :     /*
    1880             :      * General notes on concurrent page splits and page deletion:
    1881             :      *
    1882             :      * Routines like _bt_search() don't require *any* page split interlock
    1883             :      * when descending the tree, including something very light like a buffer
    1884             :      * pin. That's why it's okay that we don't either.  This avoidance of any
    1885             :      * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
    1886             :      * algorithm, in fact.
    1887             :      *
    1888             :      * That leaves deletion.  A deleted page won't actually be recycled by
    1889             :      * VACUUM early enough for us to fail to at least follow its right link
    1890             :      * (or left link, or downlink) and find its sibling, because recycling
    1891             :      * does not occur until no possible index scan could land on the page.
    1892             :      * Index scans can follow links with nothing more than their snapshot as
    1893             :      * an interlock and be sure of at least that much.  (See page
    1894             :      * recycling/"visible to everyone" notes in nbtree README.)
    1895             :      *
    1896             :      * Furthermore, it's okay if we follow a rightlink and find a half-dead or
    1897             :      * dead (ignorable) page one or more times.  There will either be a
    1898             :      * further right link to follow that leads to a live page before too long
    1899             :      * (before passing by parent's rightmost child), or we will find the end
    1900             :      * of the entire level instead (possible when parent page is itself the
    1901             :      * rightmost on its level).
    1902             :      */
    1903       13228 :     targetnext = opaque->btpo_next;
    1904             :     for (;;)
    1905             :     {
    1906       13228 :         CHECK_FOR_INTERRUPTS();
    1907             : 
    1908       13228 :         rightpage = palloc_btree_page(state, targetnext);
    1909       13228 :         opaque = BTPageGetOpaque(rightpage);
    1910             : 
    1911       13228 :         if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
    1912             :             break;
    1913             : 
    1914             :         /*
    1915             :          * We landed on a deleted or half-dead sibling page.  Step right until
    1916             :          * we locate a live sibling page.
    1917             :          */
    1918           0 :         ereport(DEBUG2,
    1919             :                 (errcode(ERRCODE_NO_DATA),
    1920             :                  errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
    1921             :                                  opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
    1922             :                  errdetail_internal("Deleted page found when building scankey from right sibling.")));
    1923             : 
    1924           0 :         targetnext = opaque->btpo_next;
    1925             : 
    1926             :         /* Be slightly more pro-active in freeing this memory, just in case */
    1927           0 :         pfree(rightpage);
    1928             :     }
    1929             : 
    1930             :     /*
    1931             :      * No ShareLock held case -- why it's safe to proceed.
    1932             :      *
    1933             :      * Problem:
    1934             :      *
    1935             :      * We must avoid false positive reports of corruption when caller treats
    1936             :      * item returned here as an upper bound on target's last item.  In
    1937             :      * general, false positives are disallowed.  Avoiding them here when
    1938             :      * caller is !readonly is subtle.
    1939             :      *
    1940             :      * A concurrent page deletion by VACUUM of the target page can result in
    1941             :      * the insertion of items on to this right sibling page that would
    1942             :      * previously have been inserted on our target page.  There might have
    1943             :      * been insertions that followed the target's downlink after it was made
    1944             :      * to point to right sibling instead of target by page deletion's first
    1945             :      * phase. The inserters insert items that would belong on target page.
    1946             :      * This race is very tight, but it's possible.  This is our only problem.
    1947             :      *
    1948             :      * Non-problems:
    1949             :      *
    1950             :      * We are not hindered by a concurrent page split of the target; we'll
    1951             :      * never land on the second half of the page anyway.  A concurrent split
    1952             :      * of the right page will also not matter, because the first data item
    1953             :      * remains the same within the left half, which we'll reliably land on. If
    1954             :      * we had to skip over ignorable/deleted pages, it cannot matter because
    1955             :      * their key space has already been atomically merged with the first
    1956             :      * non-ignorable page we eventually find (doesn't matter whether the page
    1957             :      * we eventually find is a true sibling or a cousin of target, which we go
    1958             :      * into below).
    1959             :      *
    1960             :      * Solution:
    1961             :      *
    1962             :      * Caller knows that it should reverify that target is not ignorable
    1963             :      * (half-dead or deleted) when cross-page sibling item comparison appears
    1964             :      * to indicate corruption (invariant fails).  This detects the single race
    1965             :      * condition that exists for caller.  This is correct because the
    1966             :      * continued existence of target block as non-ignorable (not half-dead or
    1967             :      * deleted) implies that target page was not merged into from the right by
    1968             :      * deletion; the key space at or after target never moved left.  Target's
    1969             :      * parent either has the same downlink to target as before, or a <
    1970             :      * downlink due to deletion at the left of target.  Target either has the
    1971             :      * same highkey as before, or a highkey < before when there is a page
    1972             :      * split. (The rightmost concurrently-split-from-target-page page will
    1973             :      * still have the same highkey as target was originally found to have,
    1974             :      * which for our purposes is equivalent to target's highkey itself never
    1975             :      * changing, since we reliably skip over
    1976             :      * concurrently-split-from-target-page pages.)
    1977             :      *
    1978             :      * In simpler terms, we allow that the key space of the target may expand
    1979             :      * left (the key space can move left on the left side of target only), but
    1980             :      * the target key space cannot expand right and get ahead of us without
    1981             :      * our detecting it.  The key space of the target cannot shrink, unless it
    1982             :      * shrinks to zero due to the deletion of the original page, our canary
    1983             :      * condition.  (To be very precise, we're a bit stricter than that because
    1984             :      * it might just have been that the target page split and only the
    1985             :      * original target page was deleted.  We can be more strict, just not more
    1986             :      * lax.)
    1987             :      *
    1988             :      * Top level tree walk caller moves on to next page (makes it the new
    1989             :      * target) following recovery from this race.  (cf.  The rationale for
    1990             :      * child/downlink verification needing a ShareLock within
    1991             :      * bt_child_check(), where page deletion is also the main source of
    1992             :      * trouble.)
    1993             :      *
    1994             :      * Note that it doesn't matter if right sibling page here is actually a
    1995             :      * cousin page, because in order for the key space to be readjusted in a
    1996             :      * way that causes us issues in next level up (guiding problematic
    1997             :      * concurrent insertions to the cousin from the grandparent rather than to
    1998             :      * the sibling from the parent), there'd have to be page deletion of
    1999             :      * target's parent page (affecting target's parent's downlink in target's
    2000             :      * grandparent page).  Internal page deletion only occurs when there are
    2001             :      * no child pages (they were all fully deleted), and caller is checking
    2002             :      * that the target's parent has at least one non-deleted (so
    2003             :      * non-ignorable) child: the target page.  (Note that the first phase of
    2004             :      * deletion atomically marks the page to be deleted half-dead/ignorable at
    2005             :      * the same time downlink in its parent is removed, so caller will
    2006             :      * definitely not fail to detect that this happened.)
    2007             :      *
    2008             :      * This trick is inspired by the method backward scans use for dealing
    2009             :      * with concurrent page splits; concurrent page deletion is a problem that
    2010             :      * similarly receives special consideration sometimes (it's possible that
    2011             :      * the backwards scan will re-read its "original" block after failing to
    2012             :      * find a right-link to it, having already moved in the opposite direction
    2013             :      * (right/"forwards") a few times to try to locate one).  Just like us,
    2014             :      * that happens only to determine if there was a concurrent page deletion
    2015             :      * of a reference page, and just like us if there was a page deletion of
    2016             :      * that reference page it means we can move on from caring about the
    2017             :      * reference page.  See the nbtree README for a full description of how
    2018             :      * that works.
    2019             :      */
    2020       13228 :     nline = PageGetMaxOffsetNumber(rightpage);
    2021             : 
    2022             :     /*
    2023             :      * Get first data item, if any
    2024             :      */
    2025       13228 :     if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
    2026             :     {
    2027             :         /* Return first data item (if any) */
    2028       13224 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    2029       13224 :                                          P_FIRSTDATAKEY(opaque));
    2030       13224 :         *rightfirstoffset = P_FIRSTDATAKEY(opaque);
    2031             :     }
    2032           8 :     else if (!P_ISLEAF(opaque) &&
    2033           4 :              nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
    2034             :     {
    2035             :         /*
    2036             :          * Return first item after the internal page's "negative infinity"
    2037             :          * item
    2038             :          */
    2039           4 :         rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
    2040           4 :                                          OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
    2041             :     }
    2042             :     else
    2043             :     {
    2044             :         /*
    2045             :          * No first item.  Page is probably empty leaf page, but it's also
    2046             :          * possible that it's an internal page with only a negative infinity
    2047             :          * item.
    2048             :          */
    2049           0 :         ereport(DEBUG2,
    2050             :                 (errcode(ERRCODE_NO_DATA),
    2051             :                  errmsg_internal("%s block %u of index \"%s\" has no first data item",
    2052             :                                  P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
    2053             :                                  RelationGetRelationName(state->rel))));
    2054           0 :         return NULL;
    2055             :     }
    2056             : 
    2057             :     /*
    2058             :      * Return first real item scankey.  Note that this relies on right page
    2059             :      * memory remaining allocated.
    2060             :      */
    2061       13228 :     firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
    2062       13228 :     return bt_mkscankey_pivotsearch(state->rel, firstitup);
    2063             : }
    2064             : 
    2065             : /*
    2066             :  * Check if two tuples are binary identical except the block number.  So,
    2067             :  * this function is capable to compare pivot keys on different levels.
    2068             :  */
    2069             : static bool
    2070        3724 : bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
    2071             : {
    2072        3724 :     if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
    2073           0 :         return false;
    2074             : 
    2075        3724 :     if (heapkeyspace)
    2076             :     {
    2077             :         /*
    2078             :          * Offset number will contain important information in heapkeyspace
    2079             :          * indexes: the number of attributes left in the pivot tuple following
    2080             :          * suffix truncation.  Don't skip over it (compare it too).
    2081             :          */
    2082        3724 :         if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
    2083        3724 :                    IndexTupleSize(itup1) -
    2084             :                    offsetof(ItemPointerData, ip_posid)) != 0)
    2085           0 :             return false;
    2086             :     }
    2087             :     else
    2088             :     {
    2089             :         /*
    2090             :          * Cannot rely on offset number field having consistent value across
    2091             :          * levels on pg_upgrade'd !heapkeyspace indexes.  Compare contents of
    2092             :          * tuple starting from just after item pointer (i.e. after block
    2093             :          * number and offset number).
    2094             :          */
    2095           0 :         if (memcmp(&itup1->t_info, &itup2->t_info,
    2096           0 :                    IndexTupleSize(itup1) -
    2097             :                    offsetof(IndexTupleData, t_info)) != 0)
    2098           0 :             return false;
    2099             :     }
    2100             : 
    2101        3724 :     return true;
    2102             : }
    2103             : 
    2104             : /*---
    2105             :  * Check high keys on the child level.  Traverse rightlinks from previous
    2106             :  * downlink to the current one.  Check that there are no intermediate pages
    2107             :  * with missing downlinks.
    2108             :  *
    2109             :  * If 'loaded_child' is given, it's assumed to be the page pointed to by the
    2110             :  * downlink referenced by 'downlinkoffnum' of the target page.
    2111             :  *
    2112             :  * Basically this function is called for each target downlink and checks two
    2113             :  * invariants:
    2114             :  *
    2115             :  * 1) You can reach the next child from previous one via rightlinks;
    2116             :  * 2) Each child high key have matching pivot key on target level.
    2117             :  *
    2118             :  * Consider the sample tree picture.
    2119             :  *
    2120             :  *               1
    2121             :  *           /       \
    2122             :  *        2     <->     3
    2123             :  *      /   \        /     \
    2124             :  *    4  <>  5  <> 6 <> 7 <> 8
    2125             :  *
    2126             :  * This function will be called for blocks 4, 5, 6 and 8.  Consider what is
    2127             :  * happening for each function call.
    2128             :  *
    2129             :  * - The function call for block 4 initializes data structure and matches high
    2130             :  *   key of block 4 to downlink's pivot key of block 2.
    2131             :  * - The high key of block 5 is matched to the high key of block 2.
    2132             :  * - The block 6 has an incomplete split flag set, so its high key isn't
    2133             :  *   matched to anything.
    2134             :  * - The function call for block 8 checks that block 8 can be found while
    2135             :  *   following rightlinks from block 6.  The high key of block 7 will be
    2136             :  *   matched to downlink's pivot key in block 3.
    2137             :  *
    2138             :  * There is also final call of this function, which checks that there is no
    2139             :  * missing downlinks for children to the right of the child referenced by
    2140             :  * rightmost downlink in target level.
    2141             :  */
    2142             : static void
    2143        3768 : bt_child_highkey_check(BtreeCheckState *state,
    2144             :                        OffsetNumber target_downlinkoffnum,
    2145             :                        Page loaded_child,
    2146             :                        uint32 target_level)
    2147             : {
    2148        3768 :     BlockNumber blkno = state->prevrightlink;
    2149             :     Page        page;
    2150             :     BTPageOpaque opaque;
    2151        3768 :     bool        rightsplit = state->previncompletesplit;
    2152        3768 :     bool        first = true;
    2153             :     ItemId      itemid;
    2154             :     IndexTuple  itup;
    2155             :     BlockNumber downlink;
    2156             : 
    2157        3768 :     if (OffsetNumberIsValid(target_downlinkoffnum))
    2158             :     {
    2159        3746 :         itemid = PageGetItemIdCareful(state, state->targetblock,
    2160             :                                       state->target, target_downlinkoffnum);
    2161        3746 :         itup = (IndexTuple) PageGetItem(state->target, itemid);
    2162        3746 :         downlink = BTreeTupleGetDownLink(itup);
    2163             :     }
    2164             :     else
    2165             :     {
    2166          22 :         downlink = P_NONE;
    2167             :     }
    2168             : 
    2169             :     /*
    2170             :      * If no previous rightlink is memorized for current level just below
    2171             :      * target page's level, we are about to start from the leftmost page. We
    2172             :      * can't follow rightlinks from previous page, because there is no
    2173             :      * previous page.  But we still can match high key.
    2174             :      *
    2175             :      * So we initialize variables for the loop above like there is previous
    2176             :      * page referencing current child.  Also we imply previous page to not
    2177             :      * have incomplete split flag, that would make us require downlink for
    2178             :      * current child.  That's correct, because leftmost page on the level
    2179             :      * should always have parent downlink.
    2180             :      */
    2181        3768 :     if (!BlockNumberIsValid(blkno))
    2182             :     {
    2183          22 :         blkno = downlink;
    2184          22 :         rightsplit = false;
    2185             :     }
    2186             : 
    2187             :     /* Move to the right on the child level */
    2188             :     while (true)
    2189             :     {
    2190             :         /*
    2191             :          * Did we traverse the whole tree level and this is check for pages to
    2192             :          * the right of rightmost downlink?
    2193             :          */
    2194        3768 :         if (blkno == P_NONE && downlink == P_NONE)
    2195             :         {
    2196          22 :             state->prevrightlink = InvalidBlockNumber;
    2197          22 :             state->previncompletesplit = false;
    2198          22 :             return;
    2199             :         }
    2200             : 
    2201             :         /* Did we traverse the whole tree level and don't find next downlink? */
    2202        3746 :         if (blkno == P_NONE)
    2203           0 :             ereport(ERROR,
    2204             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2205             :                      errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
    2206             :                             state->prevrightlink, downlink,
    2207             :                             RelationGetRelationName(state->rel))));
    2208             : 
    2209             :         /* Load page contents */
    2210        3746 :         if (blkno == downlink && loaded_child)
    2211        3722 :             page = loaded_child;
    2212             :         else
    2213          24 :             page = palloc_btree_page(state, blkno);
    2214             : 
    2215        3746 :         opaque = BTPageGetOpaque(page);
    2216             : 
    2217             :         /* The first page we visit at the level should be leftmost */
    2218        3746 :         if (first && !BlockNumberIsValid(state->prevrightlink) &&
    2219          22 :             !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
    2220           0 :             ereport(ERROR,
    2221             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2222             :                      errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
    2223             :                             RelationGetRelationName(state->rel)),
    2224             :                      errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
    2225             :                                         state->targetblock, blkno,
    2226             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    2227             : 
    2228             :         /* Do level sanity check */
    2229        3746 :         if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
    2230        3746 :             opaque->btpo_level != target_level - 1)
    2231           0 :             ereport(ERROR,
    2232             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2233             :                      errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
    2234             :                             RelationGetRelationName(state->rel)),
    2235             :                      errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
    2236             :                                         blkno, target_level - 1, opaque->btpo_level)));
    2237             : 
    2238             :         /* Try to detect circular links */
    2239        3746 :         if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
    2240           0 :             ereport(ERROR,
    2241             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2242             :                      errmsg("circular link chain found in block %u of index \"%s\"",
    2243             :                             blkno, RelationGetRelationName(state->rel))));
    2244             : 
    2245        3746 :         if (blkno != downlink && !P_IGNORE(opaque))
    2246             :         {
    2247             :             /* blkno probably has missing parent downlink */
    2248           0 :             bt_downlink_missing_check(state, rightsplit, blkno, page);
    2249             :         }
    2250             : 
    2251        3746 :         rightsplit = P_INCOMPLETE_SPLIT(opaque);
    2252             : 
    2253             :         /*
    2254             :          * If we visit page with high key, check that it is equal to the
    2255             :          * target key next to corresponding downlink.
    2256             :          */
    2257        3746 :         if (!rightsplit && !P_RIGHTMOST(opaque) && !P_ISHALFDEAD(opaque))
    2258             :         {
    2259             :             BTPageOpaque topaque;
    2260             :             IndexTuple  highkey;
    2261             :             OffsetNumber pivotkey_offset;
    2262             : 
    2263             :             /* Get high key */
    2264        3724 :             itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
    2265        3724 :             highkey = (IndexTuple) PageGetItem(page, itemid);
    2266             : 
    2267             :             /*
    2268             :              * There might be two situations when we examine high key.  If
    2269             :              * current child page is referenced by given target downlink, we
    2270             :              * should look to the next offset number for matching key from
    2271             :              * target page.
    2272             :              *
    2273             :              * Alternatively, we're following rightlinks somewhere in the
    2274             :              * middle between page referenced by previous target's downlink
    2275             :              * and the page referenced by current target's downlink.  If
    2276             :              * current child page hasn't incomplete split flag set, then its
    2277             :              * high key should match to the target's key of current offset
    2278             :              * number. This happens when a previous call here (to
    2279             :              * bt_child_highkey_check()) found an incomplete split, and we
    2280             :              * reach a right sibling page without a downlink -- the right
    2281             :              * sibling page's high key still needs to be matched to a
    2282             :              * separator key on the parent/target level.
    2283             :              *
    2284             :              * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
    2285             :              * already had to step right on the child level. Our traversal of
    2286             :              * the child level must try to move in perfect lockstep behind (to
    2287             :              * the left of) the target/parent level traversal.
    2288             :              */
    2289        3724 :             if (blkno == downlink)
    2290        3724 :                 pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
    2291             :             else
    2292           0 :                 pivotkey_offset = target_downlinkoffnum;
    2293             : 
    2294        3724 :             topaque = BTPageGetOpaque(state->target);
    2295             : 
    2296        3724 :             if (!offset_is_negative_infinity(topaque, pivotkey_offset))
    2297             :             {
    2298             :                 /*
    2299             :                  * If we're looking for the next pivot tuple in target page,
    2300             :                  * but there is no more pivot tuples, then we should match to
    2301             :                  * high key instead.
    2302             :                  */
    2303        3724 :                 if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
    2304             :                 {
    2305           2 :                     if (P_RIGHTMOST(topaque))
    2306           0 :                         ereport(ERROR,
    2307             :                                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2308             :                                  errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
    2309             :                                         RelationGetRelationName(state->rel)),
    2310             :                                  errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
    2311             :                                                     state->targetblock, blkno,
    2312             :                                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2313           2 :                     pivotkey_offset = P_HIKEY;
    2314             :                 }
    2315        3724 :                 itemid = PageGetItemIdCareful(state, state->targetblock,
    2316             :                                               state->target, pivotkey_offset);
    2317        3724 :                 itup = (IndexTuple) PageGetItem(state->target, itemid);
    2318             :             }
    2319             :             else
    2320             :             {
    2321             :                 /*
    2322             :                  * We cannot try to match child's high key to a negative
    2323             :                  * infinity key in target, since there is nothing to compare.
    2324             :                  * However, it's still possible to match child's high key
    2325             :                  * outside of target page.  The reason why we're are is that
    2326             :                  * bt_child_highkey_check() was previously called for the
    2327             :                  * cousin page of 'loaded_child', which is incomplete split.
    2328             :                  * So, now we traverse to the right of that cousin page and
    2329             :                  * current child level page under consideration still belongs
    2330             :                  * to the subtree of target's left sibling.  Thus, we need to
    2331             :                  * match child's high key to its left uncle page high key.
    2332             :                  * Thankfully we saved it, it's called a "low key" of target
    2333             :                  * page.
    2334             :                  */
    2335           0 :                 if (!state->lowkey)
    2336           0 :                     ereport(ERROR,
    2337             :                             (errcode(ERRCODE_INDEX_CORRUPTED),
    2338             :                              errmsg("can't find left sibling high key in index \"%s\"",
    2339             :                                     RelationGetRelationName(state->rel)),
    2340             :                              errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
    2341             :                                                 state->targetblock, blkno,
    2342             :                                                 LSN_FORMAT_ARGS(state->targetlsn))));
    2343           0 :                 itup = state->lowkey;
    2344             :             }
    2345             : 
    2346        3724 :             if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
    2347             :             {
    2348           0 :                 ereport(ERROR,
    2349             :                         (errcode(ERRCODE_INDEX_CORRUPTED),
    2350             :                          errmsg("mismatch between parent key and child high key in index \"%s\"",
    2351             :                                 RelationGetRelationName(state->rel)),
    2352             :                          errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
    2353             :                                             state->targetblock, blkno,
    2354             :                                             LSN_FORMAT_ARGS(state->targetlsn))));
    2355             :             }
    2356             :         }
    2357             : 
    2358             :         /* Exit if we already found next downlink */
    2359        3746 :         if (blkno == downlink)
    2360             :         {
    2361        3746 :             state->prevrightlink = opaque->btpo_next;
    2362        3746 :             state->previncompletesplit = rightsplit;
    2363        3746 :             return;
    2364             :         }
    2365             : 
    2366             :         /* Traverse to the next page using rightlink */
    2367           0 :         blkno = opaque->btpo_next;
    2368             : 
    2369             :         /* Free page contents if it's allocated by us */
    2370           0 :         if (page != loaded_child)
    2371           0 :             pfree(page);
    2372           0 :         first = false;
    2373             :     }
    2374             : }
    2375             : 
    2376             : /*
    2377             :  * Checks one of target's downlink against its child page.
    2378             :  *
    2379             :  * Conceptually, the target page continues to be what is checked here.  The
    2380             :  * target block is still blamed in the event of finding an invariant violation.
    2381             :  * The downlink insertion into the target is probably where any problem raised
    2382             :  * here arises, and there is no such thing as a parent link, so doing the
    2383             :  * verification this way around is much more practical.
    2384             :  *
    2385             :  * This function visits child page and it's sequentially called for each
    2386             :  * downlink of target page.  Assuming this we also check downlink connectivity
    2387             :  * here in order to save child page visits.
    2388             :  */
    2389             : static void
    2390        3722 : bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
    2391             :                OffsetNumber downlinkoffnum)
    2392             : {
    2393             :     ItemId      itemid;
    2394             :     IndexTuple  itup;
    2395             :     BlockNumber childblock;
    2396             :     OffsetNumber offset;
    2397             :     OffsetNumber maxoffset;
    2398             :     Page        child;
    2399             :     BTPageOpaque copaque;
    2400             :     BTPageOpaque topaque;
    2401             : 
    2402        3722 :     itemid = PageGetItemIdCareful(state, state->targetblock,
    2403             :                                   state->target, downlinkoffnum);
    2404        3722 :     itup = (IndexTuple) PageGetItem(state->target, itemid);
    2405        3722 :     childblock = BTreeTupleGetDownLink(itup);
    2406             : 
    2407             :     /*
    2408             :      * Caller must have ShareLock on target relation, because of
    2409             :      * considerations around page deletion by VACUUM.
    2410             :      *
    2411             :      * NB: In general, page deletion deletes the right sibling's downlink, not
    2412             :      * the downlink of the page being deleted; the deleted page's downlink is
    2413             :      * reused for its sibling.  The key space is thereby consolidated between
    2414             :      * the deleted page and its right sibling.  (We cannot delete a parent
    2415             :      * page's rightmost child unless it is the last child page, and we intend
    2416             :      * to also delete the parent itself.)
    2417             :      *
    2418             :      * If this verification happened without a ShareLock, the following race
    2419             :      * condition could cause false positives:
    2420             :      *
    2421             :      * In general, concurrent page deletion might occur, including deletion of
    2422             :      * the left sibling of the child page that is examined here.  If such a
    2423             :      * page deletion were to occur, closely followed by an insertion into the
    2424             :      * newly expanded key space of the child, a window for the false positive
    2425             :      * opens up: the stale parent/target downlink originally followed to get
    2426             :      * to the child legitimately ceases to be a lower bound on all items in
    2427             :      * the page, since the key space was concurrently expanded "left".
    2428             :      * (Insertion followed the "new" downlink for the child, not our now-stale
    2429             :      * downlink, which was concurrently physically removed in target/parent as
    2430             :      * part of deletion's first phase.)
    2431             :      *
    2432             :      * While we use various techniques elsewhere to perform cross-page
    2433             :      * verification for !readonly callers, a similar trick seems difficult
    2434             :      * here.  The tricks used by bt_recheck_sibling_links and by
    2435             :      * bt_right_page_check_scankey both involve verification of a same-level,
    2436             :      * cross-sibling invariant.  Cross-level invariants are far more squishy,
    2437             :      * though.  The nbtree REDO routines do not actually couple buffer locks
    2438             :      * across levels during page splits, so making any cross-level check work
    2439             :      * reliably in !readonly mode may be impossible.
    2440             :      */
    2441             :     Assert(state->readonly);
    2442             : 
    2443             :     /*
    2444             :      * Verify child page has the downlink key from target page (its parent) as
    2445             :      * a lower bound; downlink must be strictly less than all keys on the
    2446             :      * page.
    2447             :      *
    2448             :      * Check all items, rather than checking just the first and trusting that
    2449             :      * the operator class obeys the transitive law.
    2450             :      */
    2451        3722 :     topaque = BTPageGetOpaque(state->target);
    2452        3722 :     child = palloc_btree_page(state, childblock);
    2453        3722 :     copaque = BTPageGetOpaque(child);
    2454        3722 :     maxoffset = PageGetMaxOffsetNumber(child);
    2455             : 
    2456             :     /*
    2457             :      * Since we've already loaded the child block, combine this check with
    2458             :      * check for downlink connectivity.
    2459             :      */
    2460        3722 :     bt_child_highkey_check(state, downlinkoffnum,
    2461             :                            child, topaque->btpo_level);
    2462             : 
    2463             :     /*
    2464             :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2465             :      * and since a page has no links within other pages (siblings and parent)
    2466             :      * once it is marked fully deleted, it should be impossible to land on a
    2467             :      * fully deleted page.
    2468             :      *
    2469             :      * It does not quite make sense to enforce that the page cannot even be
    2470             :      * half-dead, despite the fact the downlink is modified at the same stage
    2471             :      * that the child leaf page is marked half-dead.  That's incorrect because
    2472             :      * there may occasionally be multiple downlinks from a chain of pages
    2473             :      * undergoing deletion, where multiple successive calls are made to
    2474             :      * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
    2475             :      * the leaf page as fully dead.  While _bt_mark_page_halfdead() usually
    2476             :      * removes the downlink to the leaf page that is marked half-dead, that's
    2477             :      * not guaranteed, so it's possible we'll land on a half-dead page with a
    2478             :      * downlink due to an interrupted multi-level page deletion.
    2479             :      *
    2480             :      * We go ahead with our checks if the child page is half-dead.  It's safe
    2481             :      * to do so because we do not test the child's high key, so it does not
    2482             :      * matter that the original high key will have been replaced by a dummy
    2483             :      * truncated high key within _bt_mark_page_halfdead().  All other page
    2484             :      * items are left intact on a half-dead page, so there is still something
    2485             :      * to test.
    2486             :      */
    2487        3722 :     if (P_ISDELETED(copaque))
    2488           0 :         ereport(ERROR,
    2489             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2490             :                  errmsg("downlink to deleted page found in index \"%s\"",
    2491             :                         RelationGetRelationName(state->rel)),
    2492             :                  errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%08X.",
    2493             :                                     state->targetblock, childblock,
    2494             :                                     LSN_FORMAT_ARGS(state->targetlsn))));
    2495             : 
    2496        3722 :     for (offset = P_FIRSTDATAKEY(copaque);
    2497     1200700 :          offset <= maxoffset;
    2498     1196978 :          offset = OffsetNumberNext(offset))
    2499             :     {
    2500             :         /*
    2501             :          * Skip comparison of target page key against "negative infinity"
    2502             :          * item, if any.  Checking it would indicate that it's not a strict
    2503             :          * lower bound, but that's only because of the hard-coding for
    2504             :          * negative infinity items within _bt_compare().
    2505             :          *
    2506             :          * If nbtree didn't truncate negative infinity tuples during internal
    2507             :          * page splits then we'd expect child's negative infinity key to be
    2508             :          * equal to the scankey/downlink from target/parent (it would be a
    2509             :          * "low key" in this hypothetical scenario, and so it would still need
    2510             :          * to be treated as a special case here).
    2511             :          *
    2512             :          * Negative infinity items can be thought of as a strict lower bound
    2513             :          * that works transitively, with the last non-negative-infinity pivot
    2514             :          * followed during a descent from the root as its "true" strict lower
    2515             :          * bound.  Only a small number of negative infinity items are truly
    2516             :          * negative infinity; those that are the first items of leftmost
    2517             :          * internal pages.  In more general terms, a negative infinity item is
    2518             :          * only negative infinity with respect to the subtree that the page is
    2519             :          * at the root of.
    2520             :          *
    2521             :          * See also: bt_rootdescend(), which can even detect transitive
    2522             :          * inconsistencies on cousin leaf pages.
    2523             :          */
    2524     1196978 :         if (offset_is_negative_infinity(copaque, offset))
    2525           2 :             continue;
    2526             : 
    2527     1196976 :         if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
    2528             :                                           offset))
    2529           0 :             ereport(ERROR,
    2530             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2531             :                      errmsg("down-link lower bound invariant violated for index \"%s\"",
    2532             :                             RelationGetRelationName(state->rel)),
    2533             :                      errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%08X.",
    2534             :                                         state->targetblock, childblock, offset,
    2535             :                                         LSN_FORMAT_ARGS(state->targetlsn))));
    2536             :     }
    2537             : 
    2538        3722 :     pfree(child);
    2539        3722 : }
    2540             : 
    2541             : /*
    2542             :  * Checks if page is missing a downlink that it should have.
    2543             :  *
    2544             :  * A page that lacks a downlink/parent may indicate corruption.  However, we
    2545             :  * must account for the fact that a missing downlink can occasionally be
    2546             :  * encountered in a non-corrupt index.  This can be due to an interrupted page
    2547             :  * split, or an interrupted multi-level page deletion (i.e. there was a hard
    2548             :  * crash or an error during a page split, or while VACUUM was deleting a
    2549             :  * multi-level chain of pages).
    2550             :  *
    2551             :  * Note that this can only be called in readonly mode, so there is no need to
    2552             :  * be concerned about concurrent page splits or page deletions.
    2553             :  */
    2554             : static void
    2555           0 : bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
    2556             :                           BlockNumber blkno, Page page)
    2557             : {
    2558           0 :     BTPageOpaque opaque = BTPageGetOpaque(page);
    2559             :     ItemId      itemid;
    2560             :     IndexTuple  itup;
    2561             :     Page        child;
    2562             :     BTPageOpaque copaque;
    2563             :     uint32      level;
    2564             :     BlockNumber childblk;
    2565             :     XLogRecPtr  pagelsn;
    2566             : 
    2567             :     Assert(state->readonly);
    2568             :     Assert(!P_IGNORE(opaque));
    2569             : 
    2570             :     /* No next level up with downlinks to fingerprint from the true root */
    2571           0 :     if (P_ISROOT(opaque))
    2572           0 :         return;
    2573             : 
    2574           0 :     pagelsn = PageGetLSN(page);
    2575             : 
    2576             :     /*
    2577             :      * Incomplete (interrupted) page splits can account for the lack of a
    2578             :      * downlink.  Some inserting transaction should eventually complete the
    2579             :      * page split in passing, when it notices that the left sibling page is
    2580             :      * P_INCOMPLETE_SPLIT().
    2581             :      *
    2582             :      * In general, VACUUM is not prepared for there to be no downlink to a
    2583             :      * page that it deletes.  This is the main reason why the lack of a
    2584             :      * downlink can be reported as corruption here.  It's not obvious that an
    2585             :      * invalid missing downlink can result in wrong answers to queries,
    2586             :      * though, since index scans that land on the child may end up
    2587             :      * consistently moving right. The handling of concurrent page splits (and
    2588             :      * page deletions) within _bt_moveright() cannot distinguish
    2589             :      * inconsistencies that last for a moment from inconsistencies that are
    2590             :      * permanent and irrecoverable.
    2591             :      *
    2592             :      * VACUUM isn't even prepared to delete pages that have no downlink due to
    2593             :      * an incomplete page split, but it can detect and reason about that case
    2594             :      * by design, so it shouldn't be taken to indicate corruption.  See
    2595             :      * _bt_pagedel() for full details.
    2596             :      */
    2597           0 :     if (rightsplit)
    2598             :     {
    2599           0 :         ereport(DEBUG1,
    2600             :                 (errcode(ERRCODE_NO_DATA),
    2601             :                  errmsg_internal("harmless interrupted page split detected in index \"%s\"",
    2602             :                                  RelationGetRelationName(state->rel)),
    2603             :                  errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%08X.",
    2604             :                                     blkno, opaque->btpo_level,
    2605             :                                     opaque->btpo_prev,
    2606             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2607           0 :         return;
    2608             :     }
    2609             : 
    2610             :     /*
    2611             :      * Page under check is probably the "top parent" of a multi-level page
    2612             :      * deletion.  We'll need to descend the subtree to make sure that
    2613             :      * descendant pages are consistent with that, though.
    2614             :      *
    2615             :      * If the page (which must be non-ignorable) is a leaf page, then clearly
    2616             :      * it can't be the top parent.  The lack of a downlink is probably a
    2617             :      * symptom of a broad problem that could just as easily cause
    2618             :      * inconsistencies anywhere else.
    2619             :      */
    2620           0 :     if (P_ISLEAF(opaque))
    2621           0 :         ereport(ERROR,
    2622             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2623             :                  errmsg("leaf index block lacks downlink in index \"%s\"",
    2624             :                         RelationGetRelationName(state->rel)),
    2625             :                  errdetail_internal("Block=%u page lsn=%X/%08X.",
    2626             :                                     blkno,
    2627             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2628             : 
    2629             :     /* Descend from the given page, which is an internal page */
    2630           0 :     elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
    2631             :          RelationGetRelationName(state->rel));
    2632             : 
    2633           0 :     level = opaque->btpo_level;
    2634           0 :     itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
    2635           0 :     itup = (IndexTuple) PageGetItem(page, itemid);
    2636           0 :     childblk = BTreeTupleGetDownLink(itup);
    2637             :     for (;;)
    2638             :     {
    2639           0 :         CHECK_FOR_INTERRUPTS();
    2640             : 
    2641           0 :         child = palloc_btree_page(state, childblk);
    2642           0 :         copaque = BTPageGetOpaque(child);
    2643             : 
    2644           0 :         if (P_ISLEAF(copaque))
    2645           0 :             break;
    2646             : 
    2647             :         /* Do an extra sanity check in passing on internal pages */
    2648           0 :         if (copaque->btpo_level != level - 1)
    2649           0 :             ereport(ERROR,
    2650             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2651             :                      errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
    2652             :                                      RelationGetRelationName(state->rel)),
    2653             :                      errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
    2654             :                                         blkno, childblk,
    2655             :                                         level - 1, copaque->btpo_level)));
    2656             : 
    2657           0 :         level = copaque->btpo_level;
    2658           0 :         itemid = PageGetItemIdCareful(state, childblk, child,
    2659           0 :                                       P_FIRSTDATAKEY(copaque));
    2660           0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2661           0 :         childblk = BTreeTupleGetDownLink(itup);
    2662             :         /* Be slightly more pro-active in freeing this memory, just in case */
    2663           0 :         pfree(child);
    2664             :     }
    2665             : 
    2666             :     /*
    2667             :      * Since there cannot be a concurrent VACUUM operation in readonly mode,
    2668             :      * and since a page has no links within other pages (siblings and parent)
    2669             :      * once it is marked fully deleted, it should be impossible to land on a
    2670             :      * fully deleted page.  See bt_child_check() for further details.
    2671             :      *
    2672             :      * The bt_child_check() P_ISDELETED() check is repeated here because
    2673             :      * bt_child_check() does not visit pages reachable through negative
    2674             :      * infinity items.  Besides, bt_child_check() is unwilling to descend
    2675             :      * multiple levels.  (The similar bt_child_check() P_ISDELETED() check
    2676             :      * within bt_check_level_from_leftmost() won't reach the page either,
    2677             :      * since the leaf's live siblings should have their sibling links updated
    2678             :      * to bypass the deletion target page when it is marked fully dead.)
    2679             :      *
    2680             :      * If this error is raised, it might be due to a previous multi-level page
    2681             :      * deletion that failed to realize that it wasn't yet safe to mark the
    2682             :      * leaf page as fully dead.  A "dangling downlink" will still remain when
    2683             :      * this happens.  The fact that the dangling downlink's page (the leaf's
    2684             :      * parent/ancestor page) lacked a downlink is incidental.
    2685             :      */
    2686           0 :     if (P_ISDELETED(copaque))
    2687           0 :         ereport(ERROR,
    2688             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    2689             :                  errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
    2690             :                                  RelationGetRelationName(state->rel)),
    2691             :                  errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%08X.",
    2692             :                                     blkno, childblk,
    2693             :                                     LSN_FORMAT_ARGS(pagelsn))));
    2694             : 
    2695             :     /*
    2696             :      * Iff leaf page is half-dead, its high key top parent link should point
    2697             :      * to what VACUUM considered to be the top parent page at the instant it
    2698             :      * was interrupted.  Provided the high key link actually points to the
    2699             :      * page under check, the missing downlink we detected is consistent with
    2700             :      * there having been an interrupted multi-level page deletion.  This means
    2701             :      * that the subtree with the page under check at its root (a page deletion
    2702             :      * chain) is in a consistent state, enabling VACUUM to resume deleting the
    2703             :      * entire chain the next time it encounters the half-dead leaf page.
    2704             :      */
    2705           0 :     if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
    2706             :     {
    2707           0 :         itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
    2708           0 :         itup = (IndexTuple) PageGetItem(child, itemid);
    2709           0 :         if (BTreeTupleGetTopParent(itup) == blkno)
    2710           0 :             return;
    2711             :     }
    2712             : 
    2713           0 :     ereport(ERROR,
    2714             :             (errcode(ERRCODE_INDEX_CORRUPTED),
    2715             :              errmsg("internal index block lacks downlink in index \"%s\"",
    2716             :                     RelationGetRelationName(state->rel)),
    2717             :              errdetail_internal("Block=%u level=%u page lsn=%X/%08X.",
    2718             :                                 blkno, opaque->btpo_level,
    2719             :                                 LSN_FORMAT_ARGS(pagelsn))));
    2720             : }
    2721             : 
    2722             : /*
    2723             :  * Per-tuple callback from table_index_build_scan, used to determine if index has
    2724             :  * all the entries that definitely should have been observed in leaf pages of
    2725             :  * the target index (that is, all IndexTuples that were fingerprinted by our
    2726             :  * Bloom filter).  All heapallindexed checks occur here.
    2727             :  *
    2728             :  * The redundancy between an index and the table it indexes provides a good
    2729             :  * opportunity to detect corruption, especially corruption within the table.
    2730             :  * The high level principle behind the verification performed here is that any
    2731             :  * IndexTuple that should be in an index following a fresh CREATE INDEX (based
    2732             :  * on the same index definition) should also have been in the original,
    2733             :  * existing index, which should have used exactly the same representation
    2734             :  *
    2735             :  * Since the overall structure of the index has already been verified, the most
    2736             :  * likely explanation for error here is a corrupt heap page (could be logical
    2737             :  * or physical corruption).  Index corruption may still be detected here,
    2738             :  * though.  Only readonly callers will have verified that left links and right
    2739             :  * links are in agreement, and so it's possible that a leaf page transposition
    2740             :  * within index is actually the source of corruption detected here (for
    2741             :  * !readonly callers).  The checks performed only for readonly callers might
    2742             :  * more accurately frame the problem as a cross-page invariant issue (this
    2743             :  * could even be due to recovery not replaying all WAL records).  The !readonly
    2744             :  * ERROR message raised here includes a HINT about retrying with readonly
    2745             :  * verification, just in case it's a cross-page invariant issue, though that
    2746             :  * isn't particularly likely.
    2747             :  *
    2748             :  * table_index_build_scan() expects to be able to find the root tuple when a
    2749             :  * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
    2750             :  * indexed, in order to replace the actual tuple's TID with the root tuple's
    2751             :  * TID (which is what we're actually passed back here).  The index build heap
    2752             :  * scan code will raise an error when a tuple that claims to be the root of the
    2753             :  * heap-only tuple's HOT chain cannot be located.  This catches cases where the
    2754             :  * original root item offset/root tuple for a HOT chain indicates (for whatever
    2755             :  * reason) that the entire HOT chain is dead, despite the fact that the latest
    2756             :  * heap-only tuple should be indexed.  When this happens, sequential scans may
    2757             :  * always give correct answers, and all indexes may be considered structurally
    2758             :  * consistent (i.e. the nbtree structural checks would not detect corruption).
    2759             :  * It may be the case that only index scans give wrong answers, and yet heap or
    2760             :  * SLRU corruption is the real culprit.  (While it's true that LP_DEAD bit
    2761             :  * setting will probably also leave the index in a corrupt state before too
    2762             :  * long, the problem is nonetheless that there is heap corruption.)
    2763             :  *
    2764             :  * Heap-only tuple handling within table_index_build_scan() works in a way that
    2765             :  * helps us to detect index tuples that contain the wrong values (values that
    2766             :  * don't match the latest tuple in the HOT chain).  This can happen when there
    2767             :  * is no superseding index tuple due to a faulty assessment of HOT safety,
    2768             :  * perhaps during the original CREATE INDEX.  Because the latest tuple's
    2769             :  * contents are used with the root TID, an error will be raised when a tuple
    2770             :  * with the same TID but non-matching attribute values is passed back to us.
    2771             :  * Faulty assessment of HOT-safety was behind at least two distinct CREATE
    2772             :  * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
    2773             :  * undetected for many years.  In short, the same principle that allows a
    2774             :  * REINDEX to repair corruption when there was an (undetected) broken HOT chain
    2775             :  * also allows us to detect the corruption in many cases.
    2776             :  */
    2777             : static void
    2778     1066710 : bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values,
    2779             :                           bool *isnull, bool tupleIsAlive, void *checkstate)
    2780             : {
    2781     1066710 :     BtreeCheckState *state = (BtreeCheckState *) checkstate;
    2782             :     IndexTuple  itup,
    2783             :                 norm;
    2784             : 
    2785             :     Assert(state->heapallindexed);
    2786             : 
    2787             :     /* Generate a normalized index tuple for fingerprinting */
    2788     1066710 :     itup = index_form_tuple(RelationGetDescr(index), values, isnull);
    2789     1066710 :     itup->t_tid = *tid;
    2790     1066710 :     norm = bt_normalize_tuple(state, itup);
    2791             : 
    2792             :     /* Probe Bloom filter -- tuple should be present */
    2793     1066710 :     if (bloom_lacks_element(state->filter, (unsigned char *) norm,
    2794             :                             IndexTupleSize(norm)))
    2795           0 :         ereport(ERROR,
    2796             :                 (errcode(ERRCODE_DATA_CORRUPTED),
    2797             :                  errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
    2798             :                         ItemPointerGetBlockNumber(&(itup->t_tid)),
    2799             :                         ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2800             :                         RelationGetRelationName(state->heaprel),
    2801             :                         RelationGetRelationName(state->rel)),
    2802             :                  !state->readonly
    2803             :                  ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
    2804             :                  : 0));
    2805             : 
    2806     1066710 :     state->heaptuplespresent++;
    2807     1066710 :     pfree(itup);
    2808             :     /* Cannot leak memory here */
    2809     1066710 :     if (norm != itup)
    2810          10 :         pfree(norm);
    2811     1066710 : }
    2812             : 
    2813             : /*
    2814             :  * Normalize an index tuple for fingerprinting.
    2815             :  *
    2816             :  * In general, index tuple formation is assumed to be deterministic by
    2817             :  * heapallindexed verification, and IndexTuples are assumed immutable.  While
    2818             :  * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
    2819             :  * not fingerprinted.  Normalization is required to compensate for corner
    2820             :  * cases where the determinism assumption doesn't quite work.
    2821             :  *
    2822             :  * There is currently one such case: index_form_tuple() does not try to hide
    2823             :  * the source TOAST state of input datums.  The executor applies TOAST
    2824             :  * compression for heap tuples based on different criteria to the compression
    2825             :  * applied within btinsert()'s call to index_form_tuple(): it sometimes
    2826             :  * compresses more aggressively, resulting in compressed heap tuple datums but
    2827             :  * uncompressed corresponding index tuple datums.  A subsequent heapallindexed
    2828             :  * verification will get a logically equivalent though bitwise unequal tuple
    2829             :  * from index_form_tuple().  False positive heapallindexed corruption reports
    2830             :  * could occur without normalizing away the inconsistency.
    2831             :  *
    2832             :  * Returned tuple is often caller's own original tuple.  Otherwise, it is a
    2833             :  * new representation of caller's original index tuple, palloc()'d in caller's
    2834             :  * memory context.
    2835             :  *
    2836             :  * Note: This routine is not concerned with distinctions about the
    2837             :  * representation of tuples beyond those that might break heapallindexed
    2838             :  * verification.  In particular, it won't try to normalize opclass-equal
    2839             :  * datums with potentially distinct representations (e.g., btree/numeric_ops
    2840             :  * index datums will not get their display scale normalized-away here).
    2841             :  * Caller does normalization for non-pivot tuples that have a posting list,
    2842             :  * since dummy CREATE INDEX callback code generates new tuples with the same
    2843             :  * normalized representation.
    2844             :  */
    2845             : static IndexTuple
    2846     2138204 : bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
    2847             : {
    2848     2138204 :     TupleDesc   tupleDescriptor = RelationGetDescr(state->rel);
    2849             :     Datum       normalized[INDEX_MAX_KEYS];
    2850             :     bool        isnull[INDEX_MAX_KEYS];
    2851             :     bool        need_free[INDEX_MAX_KEYS];
    2852     2138204 :     bool        formnewtup = false;
    2853             :     IndexTuple  reformed;
    2854             :     int         i;
    2855             : 
    2856             :     /* Caller should only pass "logical" non-pivot tuples here */
    2857             :     Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
    2858             : 
    2859             :     /* Easy case: It's immediately clear that tuple has no varlena datums */
    2860     2138204 :     if (!IndexTupleHasVarwidths(itup))
    2861     2138156 :         return itup;
    2862             : 
    2863          96 :     for (i = 0; i < tupleDescriptor->natts; i++)
    2864             :     {
    2865             :         Form_pg_attribute att;
    2866             : 
    2867          48 :         att = TupleDescAttr(tupleDescriptor, i);
    2868             : 
    2869             :         /* Assume untoasted/already normalized datum initially */
    2870          48 :         need_free[i] = false;
    2871          48 :         normalized[i] = index_getattr(itup, att->attnum,
    2872             :                                       tupleDescriptor,
    2873             :                                       &isnull[i]);
    2874          48 :         if (att->attbyval || att->attlen != -1 || isnull[i])
    2875           0 :             continue;
    2876             : 
    2877             :         /*
    2878             :          * Callers always pass a tuple that could safely be inserted into the
    2879             :          * index without further processing, so an external varlena header
    2880             :          * should never be encountered here
    2881             :          */
    2882          48 :         if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
    2883           0 :             ereport(ERROR,
    2884             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    2885             :                      errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
    2886             :                             ItemPointerGetBlockNumber(&(itup->t_tid)),
    2887             :                             ItemPointerGetOffsetNumber(&(itup->t_tid)),
    2888             :                             RelationGetRelationName(state->rel))));
    2889          92 :         else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
    2890          44 :                  VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
    2891          42 :                  (att->attstorage == TYPSTORAGE_EXTENDED ||
    2892          32 :                   att->attstorage == TYPSTORAGE_MAIN))
    2893             :         {
    2894             :             /*
    2895             :              * This value will be compressed by index_form_tuple() with the
    2896             :              * current storage settings.  We may be here because this tuple
    2897             :              * was formed with different storage settings.  So, force forming.
    2898             :              */
    2899          10 :             formnewtup = true;
    2900             :         }
    2901          38 :         else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
    2902             :         {
    2903           4 :             formnewtup = true;
    2904           4 :             normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
    2905           4 :             need_free[i] = true;
    2906             :         }
    2907             : 
    2908             :         /*
    2909             :          * Short tuples may have 1B or 4B header. Convert 4B header of short
    2910             :          * tuples to 1B
    2911             :          */
    2912          34 :         else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
    2913             :         {
    2914             :             /* convert to short varlena */
    2915           2 :             Size        len = VARATT_CONVERTED_SHORT_SIZE(DatumGetPointer(normalized[i]));
    2916           2 :             char       *data = palloc(len);
    2917             : 
    2918           2 :             SET_VARSIZE_SHORT(data, len);
    2919           2 :             memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
    2920             : 
    2921           2 :             formnewtup = true;
    2922           2 :             normalized[i] = PointerGetDatum(data);
    2923           2 :             need_free[i] = true;
    2924             :         }
    2925             :     }
    2926             : 
    2927             :     /*
    2928             :      * Easier case: Tuple has varlena datums, none of which are compressed or
    2929             :      * short with 4B header
    2930             :      */
    2931          48 :     if (!formnewtup)
    2932          32 :         return itup;
    2933             : 
    2934             :     /*
    2935             :      * Hard case: Tuple had compressed varlena datums that necessitate
    2936             :      * creating normalized version of the tuple from uncompressed input datums
    2937             :      * (normalized input datums).  This is rather naive, but shouldn't be
    2938             :      * necessary too often.
    2939             :      *
    2940             :      * In the heap, tuples may contain short varlena datums with both 1B
    2941             :      * header and 4B headers.  But the corresponding index tuple should always
    2942             :      * have such varlena's with 1B headers.  So, if there is a short varlena
    2943             :      * with 4B header, we need to convert it for fingerprinting.
    2944             :      *
    2945             :      * Note that we rely on deterministic index_form_tuple() TOAST compression
    2946             :      * of normalized input.
    2947             :      */
    2948          16 :     reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
    2949          16 :     reformed->t_tid = itup->t_tid;
    2950             : 
    2951             :     /* Cannot leak memory here */
    2952          32 :     for (i = 0; i < tupleDescriptor->natts; i++)
    2953          16 :         if (need_free[i])
    2954           6 :             pfree(DatumGetPointer(normalized[i]));
    2955             : 
    2956          16 :     return reformed;
    2957             : }
    2958             : 
    2959             : /*
    2960             :  * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
    2961             :  *
    2962             :  * In general, deduplication is not supposed to change the logical contents of
    2963             :  * an index.  Multiple index tuples are merged together into one equivalent
    2964             :  * posting list index tuple when convenient.
    2965             :  *
    2966             :  * heapallindexed verification must normalize-away this variation in
    2967             :  * representation by converting posting list tuples into two or more "plain"
    2968             :  * tuples.  Each tuple must be fingerprinted separately -- there must be one
    2969             :  * tuple for each corresponding Bloom filter probe during the heap scan.
    2970             :  *
    2971             :  * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
    2972             :  */
    2973             : static inline IndexTuple
    2974       57804 : bt_posting_plain_tuple(IndexTuple itup, int n)
    2975             : {
    2976             :     Assert(BTreeTupleIsPosting(itup));
    2977             : 
    2978             :     /* Returns non-posting-list tuple */
    2979       57804 :     return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
    2980             : }
    2981             : 
    2982             : /*
    2983             :  * Search for itup in index, starting from fast root page.  itup must be a
    2984             :  * non-pivot tuple.  This is only supported with heapkeyspace indexes, since
    2985             :  * we rely on having fully unique keys to find a match with only a single
    2986             :  * visit to a leaf page, barring an interrupted page split, where we may have
    2987             :  * to move right.  (A concurrent page split is impossible because caller must
    2988             :  * be readonly caller.)
    2989             :  *
    2990             :  * This routine can detect very subtle transitive consistency issues across
    2991             :  * more than one level of the tree.  Leaf pages all have a high key (even the
    2992             :  * rightmost page has a conceptual positive infinity high key), but not a low
    2993             :  * key.  Their downlink in parent is a lower bound, which along with the high
    2994             :  * key is almost enough to detect every possible inconsistency.  A downlink
    2995             :  * separator key value won't always be available from parent, though, because
    2996             :  * the first items of internal pages are negative infinity items, truncated
    2997             :  * down to zero attributes during internal page splits.  While it's true that
    2998             :  * bt_child_check() and the high key check can detect most imaginable key
    2999             :  * space problems, there are remaining problems it won't detect with non-pivot
    3000             :  * tuples in cousin leaf pages.  Starting a search from the root for every
    3001             :  * existing leaf tuple detects small inconsistencies in upper levels of the
    3002             :  * tree that cannot be detected any other way.  (Besides all this, this is
    3003             :  * probably also useful as a direct test of the code used by index scans
    3004             :  * themselves.)
    3005             :  */
    3006             : static bool
    3007      402196 : bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
    3008             : {
    3009             :     BTScanInsert key;
    3010             :     BTStack     stack;
    3011             :     Buffer      lbuf;
    3012             :     bool        exists;
    3013             : 
    3014      402196 :     key = _bt_mkscankey(state->rel, itup);
    3015             :     Assert(key->heapkeyspace && key->scantid != NULL);
    3016             : 
    3017             :     /*
    3018             :      * Search from root.
    3019             :      *
    3020             :      * Ideally, we would arrange to only move right within _bt_search() when
    3021             :      * an interrupted page split is detected (i.e. when the incomplete split
    3022             :      * bit is found to be set), but for now we accept the possibility that
    3023             :      * that could conceal an inconsistency.
    3024             :      */
    3025             :     Assert(state->readonly && state->rootdescend);
    3026      402196 :     exists = false;
    3027      402196 :     stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
    3028             : 
    3029      402196 :     if (BufferIsValid(lbuf))
    3030             :     {
    3031             :         BTInsertStateData insertstate;
    3032             :         OffsetNumber offnum;
    3033             :         Page        page;
    3034             : 
    3035      402196 :         insertstate.itup = itup;
    3036      402196 :         insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
    3037      402196 :         insertstate.itup_key = key;
    3038      402196 :         insertstate.postingoff = 0;
    3039      402196 :         insertstate.bounds_valid = false;
    3040      402196 :         insertstate.buf = lbuf;
    3041             : 
    3042             :         /* Get matching tuple on leaf page */
    3043      402196 :         offnum = _bt_binsrch_insert(state->rel, &insertstate);
    3044             :         /* Compare first >= matching item on leaf page, if any */
    3045      402196 :         page = BufferGetPage(lbuf);
    3046             :         /* Should match on first heap TID when tuple has a posting list */
    3047      402196 :         if (offnum <= PageGetMaxOffsetNumber(page) &&
    3048      804392 :             insertstate.postingoff <= 0 &&
    3049      402196 :             _bt_compare(state->rel, key, page, offnum) == 0)
    3050      402196 :             exists = true;
    3051      402196 :         _bt_relbuf(state->rel, lbuf);
    3052             :     }
    3053             : 
    3054      402196 :     _bt_freestack(stack);
    3055      402196 :     pfree(key);
    3056             : 
    3057      402196 :     return exists;
    3058             : }
    3059             : 
    3060             : /*
    3061             :  * Is particular offset within page (whose special state is passed by caller)
    3062             :  * the page negative-infinity item?
    3063             :  *
    3064             :  * As noted in comments above _bt_compare(), there is special handling of the
    3065             :  * first data item as a "negative infinity" item.  The hard-coding within
    3066             :  * _bt_compare() makes comparing this item for the purposes of verification
    3067             :  * pointless at best, since the IndexTuple only contains a valid TID (a
    3068             :  * reference TID to child page).
    3069             :  */
    3070             : static inline bool
    3071     5250110 : offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
    3072             : {
    3073             :     /*
    3074             :      * For internal pages only, the first item after high key, if any, is
    3075             :      * negative infinity item.  Internal pages always have a negative infinity
    3076             :      * item, whereas leaf pages never have one.  This implies that negative
    3077             :      * infinity item is either first or second line item, or there is none
    3078             :      * within page.
    3079             :      *
    3080             :      * Negative infinity items are a special case among pivot tuples.  They
    3081             :      * always have zero attributes, while all other pivot tuples always have
    3082             :      * nkeyatts attributes.
    3083             :      *
    3084             :      * Right-most pages don't have a high key, but could be said to
    3085             :      * conceptually have a "positive infinity" high key.  Thus, there is a
    3086             :      * symmetry between down link items in parent pages, and high keys in
    3087             :      * children.  Together, they represent the part of the key space that
    3088             :      * belongs to each page in the index.  For example, all children of the
    3089             :      * root page will have negative infinity as a lower bound from root
    3090             :      * negative infinity downlink, and positive infinity as an upper bound
    3091             :      * (implicitly, from "imaginary" positive infinity high key in root).
    3092             :      */
    3093     5250110 :     return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
    3094             : }
    3095             : 
    3096             : /*
    3097             :  * Does the invariant hold that the key is strictly less than a given upper
    3098             :  * bound offset item?
    3099             :  *
    3100             :  * Verifies line pointer on behalf of caller.
    3101             :  *
    3102             :  * If this function returns false, convention is that caller throws error due
    3103             :  * to corruption.
    3104             :  */
    3105             : static inline bool
    3106     4031214 : invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
    3107             :                    OffsetNumber upperbound)
    3108             : {
    3109             :     ItemId      itemid;
    3110             :     int32       cmp;
    3111             : 
    3112             :     Assert(!key->nextkey && key->backward);
    3113             : 
    3114             :     /* Verify line pointer before checking tuple */
    3115     4031214 :     itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
    3116             :                                   upperbound);
    3117             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3118     4031214 :     if (!key->heapkeyspace)
    3119           0 :         return invariant_leq_offset(state, key, upperbound);
    3120             : 
    3121     4031214 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    3122             : 
    3123             :     /*
    3124             :      * _bt_compare() is capable of determining that a scankey with a
    3125             :      * filled-out attribute is greater than pivot tuples where the comparison
    3126             :      * is resolved at a truncated attribute (value of attribute in pivot is
    3127             :      * minus infinity).  However, it is not capable of determining that a
    3128             :      * scankey is _less than_ a tuple on the basis of a comparison resolved at
    3129             :      * _scankey_ minus infinity attribute.  Complete an extra step to simulate
    3130             :      * having minus infinity values for omitted scankey attribute(s).
    3131             :      */
    3132     4031214 :     if (cmp == 0)
    3133             :     {
    3134             :         BTPageOpaque topaque;
    3135             :         IndexTuple  ritup;
    3136             :         int         uppnkeyatts;
    3137             :         ItemPointer rheaptid;
    3138             :         bool        nonpivot;
    3139             : 
    3140           0 :         ritup = (IndexTuple) PageGetItem(state->target, itemid);
    3141           0 :         topaque = BTPageGetOpaque(state->target);
    3142           0 :         nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
    3143             : 
    3144             :         /* Get number of keys + heap TID for item to the right */
    3145           0 :         uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
    3146           0 :         rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
    3147             : 
    3148             :         /* Heap TID is tiebreaker key attribute */
    3149           0 :         if (key->keysz == uppnkeyatts)
    3150           0 :             return key->scantid == NULL && rheaptid != NULL;
    3151             : 
    3152           0 :         return key->keysz < uppnkeyatts;
    3153             :     }
    3154             : 
    3155     4031214 :     return cmp < 0;
    3156             : }
    3157             : 
    3158             : /*
    3159             :  * Does the invariant hold that the key is less than or equal to a given upper
    3160             :  * bound offset item?
    3161             :  *
    3162             :  * Caller should have verified that upperbound's line pointer is consistent
    3163             :  * using PageGetItemIdCareful() call.
    3164             :  *
    3165             :  * If this function returns false, convention is that caller throws error due
    3166             :  * to corruption.
    3167             :  */
    3168             : static inline bool
    3169     3700602 : invariant_leq_offset(BtreeCheckState *state, BTScanInsert key,
    3170             :                      OffsetNumber upperbound)
    3171             : {
    3172             :     int32       cmp;
    3173             : 
    3174             :     Assert(!key->nextkey && key->backward);
    3175             : 
    3176     3700602 :     cmp = _bt_compare(state->rel, key, state->target, upperbound);
    3177             : 
    3178     3700602 :     return cmp <= 0;
    3179             : }
    3180             : 
    3181             : /*
    3182             :  * Does the invariant hold that the key is strictly greater than a given lower
    3183             :  * bound offset item?
    3184             :  *
    3185             :  * Caller should have verified that lowerbound's line pointer is consistent
    3186             :  * using PageGetItemIdCareful() call.
    3187             :  *
    3188             :  * If this function returns false, convention is that caller throws error due
    3189             :  * to corruption.
    3190             :  */
    3191             : static inline bool
    3192       13228 : invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
    3193             :                    OffsetNumber lowerbound)
    3194             : {
    3195             :     int32       cmp;
    3196             : 
    3197             :     Assert(!key->nextkey && key->backward);
    3198             : 
    3199       13228 :     cmp = _bt_compare(state->rel, key, state->target, lowerbound);
    3200             : 
    3201             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3202       13228 :     if (!key->heapkeyspace)
    3203           0 :         return cmp >= 0;
    3204             : 
    3205             :     /*
    3206             :      * No need to consider the possibility that scankey has attributes that we
    3207             :      * need to force to be interpreted as negative infinity.  _bt_compare() is
    3208             :      * able to determine that scankey is greater than negative infinity.  The
    3209             :      * distinction between "==" and "<" isn't interesting here, since
    3210             :      * corruption is indicated either way.
    3211             :      */
    3212       13228 :     return cmp > 0;
    3213             : }
    3214             : 
    3215             : /*
    3216             :  * Does the invariant hold that the key is strictly less than a given upper
    3217             :  * bound offset item, with the offset relating to a caller-supplied page that
    3218             :  * is not the current target page?
    3219             :  *
    3220             :  * Caller's non-target page is a child page of the target, checked as part of
    3221             :  * checking a property of the target page (i.e. the key comes from the
    3222             :  * target).  Verifies line pointer on behalf of caller.
    3223             :  *
    3224             :  * If this function returns false, convention is that caller throws error due
    3225             :  * to corruption.
    3226             :  */
    3227             : static inline bool
    3228     1196976 : invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key,
    3229             :                              BlockNumber nontargetblock, Page nontarget,
    3230             :                              OffsetNumber upperbound)
    3231             : {
    3232             :     ItemId      itemid;
    3233             :     int32       cmp;
    3234             : 
    3235             :     Assert(!key->nextkey && key->backward);
    3236             : 
    3237             :     /* Verify line pointer before checking tuple */
    3238     1196976 :     itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
    3239             :                                   upperbound);
    3240     1196976 :     cmp = _bt_compare(state->rel, key, nontarget, upperbound);
    3241             : 
    3242             :     /* pg_upgrade'd indexes may legally have equal sibling tuples */
    3243     1196976 :     if (!key->heapkeyspace)
    3244           0 :         return cmp <= 0;
    3245             : 
    3246             :     /* See invariant_l_offset() for an explanation of this extra step */
    3247     1196976 :     if (cmp == 0)
    3248             :     {
    3249             :         IndexTuple  child;
    3250             :         int         uppnkeyatts;
    3251             :         ItemPointer childheaptid;
    3252             :         BTPageOpaque copaque;
    3253             :         bool        nonpivot;
    3254             : 
    3255        3720 :         child = (IndexTuple) PageGetItem(nontarget, itemid);
    3256        3720 :         copaque = BTPageGetOpaque(nontarget);
    3257        3720 :         nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
    3258             : 
    3259             :         /* Get number of keys + heap TID for child/non-target item */
    3260        3720 :         uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
    3261        3720 :         childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
    3262             : 
    3263             :         /* Heap TID is tiebreaker key attribute */
    3264        3720 :         if (key->keysz == uppnkeyatts)
    3265        3720 :             return key->scantid == NULL && childheaptid != NULL;
    3266             : 
    3267           0 :         return key->keysz < uppnkeyatts;
    3268             :     }
    3269             : 
    3270     1193256 :     return cmp < 0;
    3271             : }
    3272             : 
    3273             : /*
    3274             :  * Given a block number of a B-Tree page, return page in palloc()'d memory.
    3275             :  * While at it, perform some basic checks of the page.
    3276             :  *
    3277             :  * There is never an attempt to get a consistent view of multiple pages using
    3278             :  * multiple concurrent buffer locks; in general, we only acquire a single pin
    3279             :  * and buffer lock at a time, which is often all that the nbtree code requires.
    3280             :  * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
    3281             :  * exception to this general rule.)
    3282             :  *
    3283             :  * Operating on a copy of the page is useful because it prevents control
    3284             :  * getting stuck in an uninterruptible state when an underlying operator class
    3285             :  * misbehaves.
    3286             :  */
    3287             : static Page
    3288       43184 : palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
    3289             : {
    3290             :     Buffer      buffer;
    3291             :     Page        page;
    3292             :     BTPageOpaque opaque;
    3293             :     OffsetNumber maxoffset;
    3294             : 
    3295       43184 :     page = palloc(BLCKSZ);
    3296             : 
    3297             :     /*
    3298             :      * We copy the page into local storage to avoid holding pin on the buffer
    3299             :      * longer than we must.
    3300             :      */
    3301       43184 :     buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
    3302             :                                 state->checkstrategy);
    3303       43160 :     LockBuffer(buffer, BT_READ);
    3304             : 
    3305             :     /*
    3306             :      * Perform the same basic sanity checking that nbtree itself performs for
    3307             :      * every page:
    3308             :      */
    3309       43160 :     _bt_checkpage(state->rel, buffer);
    3310             : 
    3311             :     /* Only use copy of page in palloc()'d memory */
    3312       43160 :     memcpy(page, BufferGetPage(buffer), BLCKSZ);
    3313       43160 :     UnlockReleaseBuffer(buffer);
    3314             : 
    3315       43160 :     opaque = BTPageGetOpaque(page);
    3316             : 
    3317       43160 :     if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
    3318           0 :         ereport(ERROR,
    3319             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3320             :                  errmsg("invalid meta page found at block %u in index \"%s\"",
    3321             :                         blocknum, RelationGetRelationName(state->rel))));
    3322             : 
    3323             :     /* Check page from block that ought to be meta page */
    3324       43160 :     if (blocknum == BTREE_METAPAGE)
    3325             :     {
    3326        7954 :         BTMetaPageData *metad = BTPageGetMeta(page);
    3327             : 
    3328        7954 :         if (!P_ISMETA(opaque) ||
    3329        7954 :             metad->btm_magic != BTREE_MAGIC)
    3330           0 :             ereport(ERROR,
    3331             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3332             :                      errmsg("index \"%s\" meta page is corrupt",
    3333             :                             RelationGetRelationName(state->rel))));
    3334             : 
    3335        7954 :         if (metad->btm_version < BTREE_MIN_VERSION ||
    3336        7954 :             metad->btm_version > BTREE_VERSION)
    3337           0 :             ereport(ERROR,
    3338             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3339             :                      errmsg("version mismatch in index \"%s\": file version %d, "
    3340             :                             "current version %d, minimum supported version %d",
    3341             :                             RelationGetRelationName(state->rel),
    3342             :                             metad->btm_version, BTREE_VERSION,
    3343             :                             BTREE_MIN_VERSION)));
    3344             : 
    3345             :         /* Finished with metapage checks */
    3346        7954 :         return page;
    3347             :     }
    3348             : 
    3349             :     /*
    3350             :      * Deleted pages that still use the old 32-bit XID representation have no
    3351             :      * sane "level" field because they type pun the field, but all other pages
    3352             :      * (including pages deleted on Postgres 14+) have a valid value.
    3353             :      */
    3354       35206 :     if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
    3355             :     {
    3356             :         /* Okay, no reason not to trust btpo_level field from page */
    3357             : 
    3358       35206 :         if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
    3359           0 :             ereport(ERROR,
    3360             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3361             :                      errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
    3362             :                                      opaque->btpo_level, blocknum,
    3363             :                                      RelationGetRelationName(state->rel))));
    3364             : 
    3365       35206 :         if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
    3366           0 :             ereport(ERROR,
    3367             :                     (errcode(ERRCODE_INDEX_CORRUPTED),
    3368             :                      errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
    3369             :                                      blocknum,
    3370             :                                      RelationGetRelationName(state->rel))));
    3371             :     }
    3372             : 
    3373             :     /*
    3374             :      * Sanity checks for number of items on page.
    3375             :      *
    3376             :      * As noted at the beginning of _bt_binsrch(), an internal page must have
    3377             :      * children, since there must always be a negative infinity downlink
    3378             :      * (there may also be a highkey).  In the case of non-rightmost leaf
    3379             :      * pages, there must be at least a highkey.  The exceptions are deleted
    3380             :      * pages, which contain no items.
    3381             :      *
    3382             :      * This is correct when pages are half-dead, since internal pages are
    3383             :      * never half-dead, and leaf pages must have a high key when half-dead
    3384             :      * (the rightmost page can never be deleted).  It's also correct with
    3385             :      * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
    3386             :      * about the target page other than setting the page as fully dead, and
    3387             :      * setting its xact field.  In particular, it doesn't change the sibling
    3388             :      * links in the deletion target itself, since they're required when index
    3389             :      * scans land on the deletion target, and then need to move right (or need
    3390             :      * to move left, in the case of backward index scans).
    3391             :      */
    3392       35206 :     maxoffset = PageGetMaxOffsetNumber(page);
    3393       35206 :     if (maxoffset > MaxIndexTuplesPerPage)
    3394           0 :         ereport(ERROR,
    3395             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3396             :                  errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
    3397             :                         blocknum, RelationGetRelationName(state->rel),
    3398             :                         MaxIndexTuplesPerPage)));
    3399             : 
    3400       35206 :     if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
    3401           0 :         ereport(ERROR,
    3402             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3403             :                  errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
    3404             :                         blocknum, RelationGetRelationName(state->rel))));
    3405             : 
    3406       35206 :     if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
    3407           0 :         ereport(ERROR,
    3408             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3409             :                  errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
    3410             :                         blocknum, RelationGetRelationName(state->rel))));
    3411             : 
    3412             :     /*
    3413             :      * In general, internal pages are never marked half-dead, except on
    3414             :      * versions of Postgres prior to 9.4, where it can be valid transient
    3415             :      * state.  This state is nonetheless treated as corruption by VACUUM on
    3416             :      * from version 9.4 on, so do the same here.  See _bt_pagedel() for full
    3417             :      * details.
    3418             :      */
    3419       35206 :     if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
    3420           0 :         ereport(ERROR,
    3421             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3422             :                  errmsg("internal page block %u in index \"%s\" is half-dead",
    3423             :                         blocknum, RelationGetRelationName(state->rel)),
    3424             :                  errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
    3425             : 
    3426             :     /*
    3427             :      * Check that internal pages have no garbage items, and that no page has
    3428             :      * an invalid combination of deletion-related page level flags
    3429             :      */
    3430       35206 :     if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
    3431           0 :         ereport(ERROR,
    3432             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3433             :                  errmsg_internal("internal page block %u in index \"%s\" has garbage items",
    3434             :                                  blocknum, RelationGetRelationName(state->rel))));
    3435             : 
    3436       35206 :     if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
    3437           0 :         ereport(ERROR,
    3438             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3439             :                  errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
    3440             :                                  blocknum, RelationGetRelationName(state->rel))));
    3441             : 
    3442       35206 :     if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
    3443           0 :         ereport(ERROR,
    3444             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3445             :                  errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
    3446             :                                  blocknum, RelationGetRelationName(state->rel))));
    3447             : 
    3448       35206 :     return page;
    3449             : }
    3450             : 
    3451             : /*
    3452             :  * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
    3453             :  * being considered greater than the pivot tuple that its values originated
    3454             :  * from (or some other identical pivot tuple) in the common case where there
    3455             :  * are truncated/minus infinity attributes.  Without this extra step, there
    3456             :  * are forms of corruption that amcheck could theoretically fail to report.
    3457             :  *
    3458             :  * For example, invariant_g_offset() might miss a cross-page invariant failure
    3459             :  * on an internal level if the scankey built from the first item on the
    3460             :  * target's right sibling page happened to be equal to (not greater than) the
    3461             :  * last item on target page.  The !backward tiebreaker in _bt_compare() might
    3462             :  * otherwise cause amcheck to assume (rather than actually verify) that the
    3463             :  * scankey is greater.
    3464             :  */
    3465             : static inline BTScanInsert
    3466     4061522 : bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
    3467             : {
    3468             :     BTScanInsert skey;
    3469             : 
    3470     4061522 :     skey = _bt_mkscankey(rel, itup);
    3471     4061522 :     skey->backward = true;
    3472             : 
    3473     4061522 :     return skey;
    3474             : }
    3475             : 
    3476             : /*
    3477             :  * PageGetItemId() wrapper that validates returned line pointer.
    3478             :  *
    3479             :  * Buffer page/page item access macros generally trust that line pointers are
    3480             :  * not corrupt, which might cause problems for verification itself.  For
    3481             :  * example, there is no bounds checking in PageGetItem().  Passing it a
    3482             :  * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
    3483             :  * to dereference.
    3484             :  *
    3485             :  * Validating line pointers before tuples avoids undefined behavior and
    3486             :  * assertion failures with corrupt indexes, making the verification process
    3487             :  * more robust and predictable.
    3488             :  */
    3489             : static ItemId
    3490     9323818 : PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page,
    3491             :                      OffsetNumber offset)
    3492             : {
    3493     9323818 :     ItemId      itemid = PageGetItemId(page, offset);
    3494             : 
    3495     9323818 :     if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
    3496             :         BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
    3497           0 :         ereport(ERROR,
    3498             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3499             :                  errmsg("line pointer points past end of tuple space in index \"%s\"",
    3500             :                         RelationGetRelationName(state->rel)),
    3501             :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3502             :                                     block, offset, ItemIdGetOffset(itemid),
    3503             :                                     ItemIdGetLength(itemid),
    3504             :                                     ItemIdGetFlags(itemid))));
    3505             : 
    3506             :     /*
    3507             :      * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
    3508             :      * never uses either.  Verify that line pointer has storage, too, since
    3509             :      * even LP_DEAD items should within nbtree.
    3510             :      */
    3511     9323818 :     if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
    3512     9323818 :         ItemIdGetLength(itemid) == 0)
    3513           0 :         ereport(ERROR,
    3514             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3515             :                  errmsg("invalid line pointer storage in index \"%s\"",
    3516             :                         RelationGetRelationName(state->rel)),
    3517             :                  errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
    3518             :                                     block, offset, ItemIdGetOffset(itemid),
    3519             :                                     ItemIdGetLength(itemid),
    3520             :                                     ItemIdGetFlags(itemid))));
    3521             : 
    3522     9323818 :     return itemid;
    3523             : }
    3524             : 
    3525             : /*
    3526             :  * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
    3527             :  * cases where that is mandatory (i.e. for non-pivot tuples)
    3528             :  */
    3529             : static inline ItemPointer
    3530        3720 : BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup,
    3531             :                             bool nonpivot)
    3532             : {
    3533             :     ItemPointer htid;
    3534             : 
    3535             :     /*
    3536             :      * Caller determines whether this is supposed to be a pivot or non-pivot
    3537             :      * tuple using page type and item offset number.  Verify that tuple
    3538             :      * metadata agrees with this.
    3539             :      */
    3540             :     Assert(state->heapkeyspace);
    3541        3720 :     if (BTreeTupleIsPivot(itup) && nonpivot)
    3542           0 :         ereport(ERROR,
    3543             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3544             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
    3545             :                                  state->targetblock,
    3546             :                                  RelationGetRelationName(state->rel))));
    3547             : 
    3548        3720 :     if (!BTreeTupleIsPivot(itup) && !nonpivot)
    3549           0 :         ereport(ERROR,
    3550             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3551             :                  errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
    3552             :                                  state->targetblock,
    3553             :                                  RelationGetRelationName(state->rel))));
    3554             : 
    3555        3720 :     htid = BTreeTupleGetHeapTID(itup);
    3556        3720 :     if (!ItemPointerIsValid(htid) && nonpivot)
    3557           0 :         ereport(ERROR,
    3558             :                 (errcode(ERRCODE_INDEX_CORRUPTED),
    3559             :                  errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
    3560             :                         state->targetblock,
    3561             :                         RelationGetRelationName(state->rel))));
    3562             : 
    3563        3720 :     return htid;
    3564             : }
    3565             : 
    3566             : /*
    3567             :  * Return the "pointed to" TID for itup, which is used to generate a
    3568             :  * descriptive error message.  itup must be a "data item" tuple (it wouldn't
    3569             :  * make much sense to call here with a high key tuple, since there won't be a
    3570             :  * valid downlink/block number to display).
    3571             :  *
    3572             :  * Returns either a heap TID (which will be the first heap TID in posting list
    3573             :  * if itup is posting list tuple), or a TID that contains downlink block
    3574             :  * number, plus some encoded metadata (e.g., the number of attributes present
    3575             :  * in itup).
    3576             :  */
    3577             : static inline ItemPointer
    3578          12 : BTreeTupleGetPointsToTID(IndexTuple itup)
    3579             : {
    3580             :     /*
    3581             :      * Rely on the assumption that !heapkeyspace internal page data items will
    3582             :      * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
    3583             :      * recognize it as a pivot tuple, but everything still works out because
    3584             :      * the t_tid field is still returned
    3585             :      */
    3586          12 :     if (!BTreeTupleIsPivot(itup))
    3587           8 :         return BTreeTupleGetHeapTID(itup);
    3588             : 
    3589             :     /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
    3590           4 :     return &itup->t_tid;
    3591             : }

Generated by: LCOV version 1.16