LCOV - code coverage report
Current view: top level - src/include/access - htup_details.h (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 96.8 % 158 153
Test Date: 2026-02-17 17:20:33 Functions: 98.1 % 54 53
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * htup_details.h
       4              :  *    POSTGRES heap tuple header definitions.
       5              :  *
       6              :  *
       7              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       8              :  * Portions Copyright (c) 1994, Regents of the University of California
       9              :  *
      10              :  * src/include/access/htup_details.h
      11              :  *
      12              :  *-------------------------------------------------------------------------
      13              :  */
      14              : #ifndef HTUP_DETAILS_H
      15              : #define HTUP_DETAILS_H
      16              : 
      17              : #include "access/htup.h"
      18              : #include "access/transam.h"
      19              : #include "access/tupdesc.h"
      20              : #include "access/tupmacs.h"
      21              : #include "storage/bufpage.h"
      22              : #include "varatt.h"
      23              : 
      24              : /*
      25              :  * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
      26              :  * The key limit on this value is that the size of the fixed overhead for
      27              :  * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
      28              :  * plus MAXALIGN alignment, must fit into t_hoff which is uint8.  On most
      29              :  * machines the upper limit without making t_hoff wider would be a little
      30              :  * over 1700.  We use round numbers here and for MaxHeapAttributeNumber
      31              :  * so that alterations in HeapTupleHeaderData layout won't change the
      32              :  * supported max number of columns.
      33              :  */
      34              : #define MaxTupleAttributeNumber 1664    /* 8 * 208 */
      35              : 
      36              : /*
      37              :  * MaxHeapAttributeNumber limits the number of (user) columns in a table.
      38              :  * This should be somewhat less than MaxTupleAttributeNumber.  It must be
      39              :  * at least one less, else we will fail to do UPDATEs on a maximal-width
      40              :  * table (because UPDATE has to form working tuples that include CTID).
      41              :  * In practice we want some additional daylight so that we can gracefully
      42              :  * support operations that add hidden "resjunk" columns, for example
      43              :  * SELECT * FROM wide_table ORDER BY foo, bar, baz.
      44              :  * In any case, depending on column data types you will likely be running
      45              :  * into the disk-block-based limit on overall tuple size if you have more
      46              :  * than a thousand or so columns.  TOAST won't help.
      47              :  */
      48              : #define MaxHeapAttributeNumber  1600    /* 8 * 200 */
      49              : 
      50              : /*
      51              :  * Heap tuple header.  To avoid wasting space, the fields should be
      52              :  * laid out in such a way as to avoid structure padding.
      53              :  *
      54              :  * Datums of composite types (row types) share the same general structure
      55              :  * as on-disk tuples, so that the same routines can be used to build and
      56              :  * examine them.  However the requirements are slightly different: a Datum
      57              :  * does not need any transaction visibility information, and it does need
      58              :  * a length word and some embedded type information.  We can achieve this
      59              :  * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
      60              :  * with the fields needed in the Datum case.  Typically, all tuples built
      61              :  * in-memory will be initialized with the Datum fields; but when a tuple is
      62              :  * about to be inserted in a table, the transaction fields will be filled,
      63              :  * overwriting the datum fields.
      64              :  *
      65              :  * The overall structure of a heap tuple looks like:
      66              :  *          fixed fields (HeapTupleHeaderData struct)
      67              :  *          nulls bitmap (if HEAP_HASNULL is set in t_infomask)
      68              :  *          alignment padding (as needed to make user data MAXALIGN'd)
      69              :  *          object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
      70              :  *          anymore)
      71              :  *          user data fields
      72              :  *
      73              :  * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
      74              :  * physical fields.  Xmin and Xmax are always really stored, but Cmin, Cmax
      75              :  * and Xvac share a field.  This works because we know that Cmin and Cmax
      76              :  * are only interesting for the lifetime of the inserting and deleting
      77              :  * transaction respectively.  If a tuple is inserted and deleted in the same
      78              :  * transaction, we store a "combo" command id that can be mapped to the real
      79              :  * cmin and cmax, but only by use of local state within the originating
      80              :  * backend.  See combocid.c for more details.  Meanwhile, Xvac is only set by
      81              :  * old-style VACUUM FULL, which does not have any command sub-structure and so
      82              :  * does not need either Cmin or Cmax.  (This requires that old-style VACUUM
      83              :  * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
      84              :  * ie, an insert-in-progress or delete-in-progress tuple.)
      85              :  *
      86              :  * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
      87              :  * is initialized with its own TID (location).  If the tuple is ever updated,
      88              :  * its t_ctid is changed to point to the replacement version of the tuple.  Or
      89              :  * if the tuple is moved from one partition to another, due to an update of
      90              :  * the partition key, t_ctid is set to a special value to indicate that
      91              :  * (see ItemPointerSetMovedPartitions).  Thus, a tuple is the latest version
      92              :  * of its row iff XMAX is invalid or
      93              :  * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
      94              :  * either locked or deleted).  One can follow the chain of t_ctid links
      95              :  * to find the newest version of the row, unless it was moved to a different
      96              :  * partition.  Beware however that VACUUM might
      97              :  * erase the pointed-to (newer) tuple before erasing the pointing (older)
      98              :  * tuple.  Hence, when following a t_ctid link, it is necessary to check
      99              :  * to see if the referenced slot is empty or contains an unrelated tuple.
     100              :  * Check that the referenced tuple has XMIN equal to the referencing tuple's
     101              :  * XMAX to verify that it is actually the descendant version and not an
     102              :  * unrelated tuple stored into a slot recently freed by VACUUM.  If either
     103              :  * check fails, one may assume that there is no live descendant version.
     104              :  *
     105              :  * t_ctid is sometimes used to store a speculative insertion token, instead
     106              :  * of a real TID.  A speculative token is set on a tuple that's being
     107              :  * inserted, until the inserter is sure that it wants to go ahead with the
     108              :  * insertion.  Hence a token should only be seen on a tuple with an XMAX
     109              :  * that's still in-progress, or invalid/aborted.  The token is replaced with
     110              :  * the tuple's real TID when the insertion is confirmed.  One should never
     111              :  * see a speculative insertion token while following a chain of t_ctid links,
     112              :  * because they are not used on updates, only insertions.
     113              :  *
     114              :  * Following the fixed header fields, the nulls bitmap is stored (beginning
     115              :  * at t_bits).  The bitmap is *not* stored if t_infomask shows that there
     116              :  * are no nulls in the tuple.  If an OID field is present (as indicated by
     117              :  * t_infomask), then it is stored just before the user data, which begins at
     118              :  * the offset shown by t_hoff.  Note that t_hoff must be a multiple of
     119              :  * MAXALIGN.
     120              :  */
     121              : 
     122              : typedef struct HeapTupleFields
     123              : {
     124              :     TransactionId t_xmin;       /* inserting xact ID */
     125              :     TransactionId t_xmax;       /* deleting or locking xact ID */
     126              : 
     127              :     union
     128              :     {
     129              :         CommandId   t_cid;      /* inserting or deleting command ID, or both */
     130              :         TransactionId t_xvac;   /* old-style VACUUM FULL xact ID */
     131              :     }           t_field3;
     132              : } HeapTupleFields;
     133              : 
     134              : typedef struct DatumTupleFields
     135              : {
     136              :     int32       datum_len_;     /* varlena header (do not touch directly!) */
     137              : 
     138              :     int32       datum_typmod;   /* -1, or identifier of a record type */
     139              : 
     140              :     Oid         datum_typeid;   /* composite type OID, or RECORDOID */
     141              : 
     142              :     /*
     143              :      * datum_typeid cannot be a domain over composite, only plain composite,
     144              :      * even if the datum is meant as a value of a domain-over-composite type.
     145              :      * This is in line with the general principle that CoerceToDomain does not
     146              :      * change the physical representation of the base type value.
     147              :      *
     148              :      * Note: field ordering is chosen with thought that Oid might someday
     149              :      * widen to 64 bits.
     150              :      */
     151              : } DatumTupleFields;
     152              : 
     153              : struct HeapTupleHeaderData
     154              : {
     155              :     union
     156              :     {
     157              :         HeapTupleFields t_heap;
     158              :         DatumTupleFields t_datum;
     159              :     }           t_choice;
     160              : 
     161              :     ItemPointerData t_ctid;     /* current TID of this or newer tuple (or a
     162              :                                  * speculative insertion token) */
     163              : 
     164              :     /* Fields below here must match MinimalTupleData! */
     165              : 
     166              : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
     167              :     uint16      t_infomask2;    /* number of attributes + various flags */
     168              : 
     169              : #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
     170              :     uint16      t_infomask;     /* various flag bits, see below */
     171              : 
     172              : #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
     173              :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     174              : 
     175              :     /* ^ - 23 bytes - ^ */
     176              : 
     177              : #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
     178              :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     179              : 
     180              :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     181              : };
     182              : 
     183              : /* typedef appears in htup.h */
     184              : 
     185              : #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
     186              : 
     187              : /*
     188              :  * information stored in t_infomask:
     189              :  */
     190              : #define HEAP_HASNULL            0x0001  /* has null attribute(s) */
     191              : #define HEAP_HASVARWIDTH        0x0002  /* has variable-width attribute(s) */
     192              : #define HEAP_HASEXTERNAL        0x0004  /* has external stored attribute(s) */
     193              : #define HEAP_HASOID_OLD         0x0008  /* has an object-id field */
     194              : #define HEAP_XMAX_KEYSHR_LOCK   0x0010  /* xmax is a key-shared locker */
     195              : #define HEAP_COMBOCID           0x0020  /* t_cid is a combo CID */
     196              : #define HEAP_XMAX_EXCL_LOCK     0x0040  /* xmax is exclusive locker */
     197              : #define HEAP_XMAX_LOCK_ONLY     0x0080  /* xmax, if valid, is only a locker */
     198              : 
     199              :  /* xmax is a shared locker */
     200              : #define HEAP_XMAX_SHR_LOCK  (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
     201              : 
     202              : #define HEAP_LOCK_MASK  (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
     203              :                          HEAP_XMAX_KEYSHR_LOCK)
     204              : #define HEAP_XMIN_COMMITTED     0x0100  /* t_xmin committed */
     205              : #define HEAP_XMIN_INVALID       0x0200  /* t_xmin invalid/aborted */
     206              : #define HEAP_XMIN_FROZEN        (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
     207              : #define HEAP_XMAX_COMMITTED     0x0400  /* t_xmax committed */
     208              : #define HEAP_XMAX_INVALID       0x0800  /* t_xmax invalid/aborted */
     209              : #define HEAP_XMAX_IS_MULTI      0x1000  /* t_xmax is a MultiXactId */
     210              : #define HEAP_UPDATED            0x2000  /* this is UPDATEd version of row */
     211              : #define HEAP_MOVED_OFF          0x4000  /* moved to another place by pre-9.0
     212              :                                          * VACUUM FULL; kept for binary
     213              :                                          * upgrade support */
     214              : #define HEAP_MOVED_IN           0x8000  /* moved from another place by pre-9.0
     215              :                                          * VACUUM FULL; kept for binary
     216              :                                          * upgrade support */
     217              : #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
     218              : 
     219              : #define HEAP_XACT_MASK          0xFFF0  /* visibility-related bits */
     220              : 
     221              : /*
     222              :  * A tuple is only locked (i.e. not updated by its Xmax) if the
     223              :  * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
     224              :  * not a multi and the EXCL_LOCK bit is set.
     225              :  *
     226              :  * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
     227              :  * aborted updater transaction.
     228              :  */
     229              : static inline bool
     230     25180492 : HEAP_XMAX_IS_LOCKED_ONLY(uint16 infomask)
     231              : {
     232     49312815 :     return (infomask & HEAP_XMAX_LOCK_ONLY) ||
     233     24132323 :         (infomask & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK;
     234              : }
     235              : 
     236              : /*
     237              :  * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
     238              :  * HEAP_XMAX_EXCL_LOCK and HEAP_XMAX_KEYSHR_LOCK must come from a tuple that was
     239              :  * share-locked in 9.2 or earlier and then pg_upgrade'd.
     240              :  *
     241              :  * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
     242              :  * FOR SHARE lockers of that tuple.  That set HEAP_XMAX_LOCK_ONLY (with a
     243              :  * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
     244              :  * HEAP_XMAX_KEYSHR_LOCK.  That combination is no longer possible in 9.3 and
     245              :  * up, so if we see that combination we know for certain that the tuple was
     246              :  * locked in an earlier release; since all such lockers are gone (they cannot
     247              :  * survive through pg_upgrade), such tuples can safely be considered not
     248              :  * locked.
     249              :  *
     250              :  * We must not resolve such multixacts locally, because the result would be
     251              :  * bogus, regardless of where they stand with respect to the current valid
     252              :  * multixact range.
     253              :  */
     254              : static inline bool
     255       186103 : HEAP_LOCKED_UPGRADED(uint16 infomask)
     256              : {
     257              :     return
     258       336350 :         (infomask & HEAP_XMAX_IS_MULTI) != 0 &&
     259       332004 :         (infomask & HEAP_XMAX_LOCK_ONLY) != 0 &&
     260       145901 :         (infomask & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0;
     261              : }
     262              : 
     263              : /*
     264              :  * Use these to test whether a particular lock is applied to a tuple
     265              :  */
     266              : static inline bool
     267        99394 : HEAP_XMAX_IS_SHR_LOCKED(uint16 infomask)
     268              : {
     269        99394 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK;
     270              : }
     271              : 
     272              : static inline bool
     273       106187 : HEAP_XMAX_IS_EXCL_LOCKED(uint16 infomask)
     274              : {
     275       106187 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK;
     276              : }
     277              : 
     278              : static inline bool
     279       105380 : HEAP_XMAX_IS_KEYSHR_LOCKED(uint16 infomask)
     280              : {
     281       105380 :     return (infomask & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK;
     282              : }
     283              : 
     284              : /* turn these all off when Xmax is to change */
     285              : #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
     286              :                         HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
     287              : 
     288              : /*
     289              :  * information stored in t_infomask2:
     290              :  */
     291              : #define HEAP_NATTS_MASK         0x07FF  /* 11 bits for number of attributes */
     292              : /* bits 0x1800 are available */
     293              : #define HEAP_KEYS_UPDATED       0x2000  /* tuple was updated and key cols
     294              :                                          * modified, or tuple deleted */
     295              : #define HEAP_HOT_UPDATED        0x4000  /* tuple was HOT-updated */
     296              : #define HEAP_ONLY_TUPLE         0x8000  /* this is heap-only tuple */
     297              : 
     298              : #define HEAP2_XACT_MASK         0xE000  /* visibility-related bits */
     299              : 
     300              : /*
     301              :  * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins.  It is
     302              :  * only used in tuples that are in the hash table, and those don't need
     303              :  * any visibility information, so we can overlay it on a visibility flag
     304              :  * instead of using up a dedicated bit.
     305              :  */
     306              : #define HEAP_TUPLE_HAS_MATCH    HEAP_ONLY_TUPLE /* tuple has a join match */
     307              : 
     308              : /*
     309              :  * HeapTupleHeader accessor functions
     310              :  */
     311              : 
     312              : static bool HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup);
     313              : 
     314              : /*
     315              :  * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
     316              :  * originally used to insert the tuple.  However, the tuple might actually
     317              :  * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
     318              :  * is visible to every snapshot.  Prior to PostgreSQL 9.4, we actually changed
     319              :  * the xmin to FrozenTransactionId, and that value may still be encountered
     320              :  * on disk.
     321              :  */
     322              : static inline TransactionId
     323    155619236 : HeapTupleHeaderGetRawXmin(const HeapTupleHeaderData *tup)
     324              : {
     325    155619236 :     return tup->t_choice.t_heap.t_xmin;
     326              : }
     327              : 
     328              : static inline TransactionId
     329     65629752 : HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
     330              : {
     331     65629752 :     return HeapTupleHeaderXminFrozen(tup) ?
     332     65629752 :         FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup);
     333              : }
     334              : 
     335              : static inline void
     336     11930017 : HeapTupleHeaderSetXmin(HeapTupleHeaderData *tup, TransactionId xid)
     337              : {
     338     11930017 :     tup->t_choice.t_heap.t_xmin = xid;
     339     11930017 : }
     340              : 
     341              : static inline bool
     342    155616802 : HeapTupleHeaderXminCommitted(const HeapTupleHeaderData *tup)
     343              : {
     344    155616802 :     return (tup->t_infomask & HEAP_XMIN_COMMITTED) != 0;
     345              : }
     346              : 
     347              : static inline bool
     348     34357878 : HeapTupleHeaderXminInvalid(const HeapTupleHeaderData *tup) \
     349              : {
     350     34357878 :     return (tup->t_infomask & (HEAP_XMIN_COMMITTED | HEAP_XMIN_INVALID)) ==
     351              :         HEAP_XMIN_INVALID;
     352              : }
     353              : 
     354              : static inline bool
     355    361304038 : HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup)
     356              : {
     357    361304038 :     return (tup->t_infomask & HEAP_XMIN_FROZEN) == HEAP_XMIN_FROZEN;
     358              : }
     359              : 
     360              : static inline void
     361       103247 : HeapTupleHeaderSetXminFrozen(HeapTupleHeaderData *tup)
     362              : {
     363              :     Assert(!HeapTupleHeaderXminInvalid(tup));
     364       103247 :     tup->t_infomask |= HEAP_XMIN_FROZEN;
     365       103247 : }
     366              : 
     367              : static inline TransactionId
     368     71318110 : HeapTupleHeaderGetRawXmax(const HeapTupleHeaderData *tup)
     369              : {
     370     71318110 :     return tup->t_choice.t_heap.t_xmax;
     371              : }
     372              : 
     373              : static inline void
     374     14300728 : HeapTupleHeaderSetXmax(HeapTupleHeaderData *tup, TransactionId xid)
     375              : {
     376     14300728 :     tup->t_choice.t_heap.t_xmax = xid;
     377     14300728 : }
     378              : 
     379              : #ifndef FRONTEND
     380              : /*
     381              :  * HeapTupleHeaderGetRawXmax gets you the raw Xmax field.  To find out the Xid
     382              :  * that updated a tuple, you might need to resolve the MultiXactId if certain
     383              :  * bits are set.  HeapTupleHeaderGetUpdateXid checks those bits and takes care
     384              :  * to resolve the MultiXactId if necessary.  This might involve multixact I/O,
     385              :  * so it should only be used if absolutely necessary.
     386              :  */
     387              : static inline TransactionId
     388      9617777 : HeapTupleHeaderGetUpdateXid(const HeapTupleHeaderData *tup)
     389              : {
     390      9617777 :     if (!((tup)->t_infomask & HEAP_XMAX_INVALID) &&
     391      8965659 :         ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) &&
     392        76748 :         !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY))
     393        76708 :         return HeapTupleGetUpdateXid(tup);
     394              :     else
     395      9541069 :         return HeapTupleHeaderGetRawXmax(tup);
     396              : }
     397              : #endif                          /* FRONTEND */
     398              : 
     399              : /*
     400              :  * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
     401              :  * it is useful or not.  Most code should use HeapTupleHeaderGetCmin or
     402              :  * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
     403              :  * get a legitimate result, ie you are in the originating transaction!
     404              :  */
     405              : static inline CommandId
     406     14662451 : HeapTupleHeaderGetRawCommandId(const HeapTupleHeaderData *tup)
     407              : {
     408     14662451 :     return tup->t_choice.t_heap.t_field3.t_cid;
     409              : }
     410              : 
     411              : /* SetCmin is reasonably simple since we never need a combo CID */
     412              : static inline void
     413     11907717 : HeapTupleHeaderSetCmin(HeapTupleHeaderData *tup, CommandId cid)
     414              : {
     415              :     Assert(!(tup->t_infomask & HEAP_MOVED));
     416     11907717 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     417     11907717 :     tup->t_infomask &= ~HEAP_COMBOCID;
     418     11907717 : }
     419              : 
     420              : /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
     421              : static inline void
     422      2439356 : HeapTupleHeaderSetCmax(HeapTupleHeaderData *tup, CommandId cid, bool iscombo)
     423              : {
     424              :     Assert(!((tup)->t_infomask & HEAP_MOVED));
     425      2439356 :     tup->t_choice.t_heap.t_field3.t_cid = cid;
     426      2439356 :     if (iscombo)
     427       225622 :         tup->t_infomask |= HEAP_COMBOCID;
     428              :     else
     429      2213734 :         tup->t_infomask &= ~HEAP_COMBOCID;
     430      2439356 : }
     431              : 
     432              : static inline TransactionId
     433     23387378 : HeapTupleHeaderGetXvac(const HeapTupleHeaderData *tup)
     434              : {
     435     23387378 :     if (tup->t_infomask & HEAP_MOVED)
     436            0 :         return tup->t_choice.t_heap.t_field3.t_xvac;
     437              :     else
     438     23387378 :         return InvalidTransactionId;
     439              : }
     440              : 
     441              : static inline void
     442            0 : HeapTupleHeaderSetXvac(HeapTupleHeaderData *tup, TransactionId xid)
     443              : {
     444              :     Assert(tup->t_infomask & HEAP_MOVED);
     445            0 :     tup->t_choice.t_heap.t_field3.t_xvac = xid;
     446            0 : }
     447              : 
     448              : StaticAssertDecl(MaxOffsetNumber < SpecTokenOffsetNumber,
     449              :                  "invalid speculative token constant");
     450              : 
     451              : static inline bool
     452    225935603 : HeapTupleHeaderIsSpeculative(const HeapTupleHeaderData *tup)
     453              : {
     454    225935603 :     return ItemPointerGetOffsetNumberNoCheck(&tup->t_ctid) == SpecTokenOffsetNumber;
     455              : }
     456              : 
     457              : static inline BlockNumber
     458            2 : HeapTupleHeaderGetSpeculativeToken(const HeapTupleHeaderData *tup)
     459              : {
     460              :     Assert(HeapTupleHeaderIsSpeculative(tup));
     461            2 :     return ItemPointerGetBlockNumber(&tup->t_ctid);
     462              : }
     463              : 
     464              : static inline void
     465         2132 : HeapTupleHeaderSetSpeculativeToken(HeapTupleHeaderData *tup, BlockNumber token)
     466              : {
     467         2132 :     ItemPointerSet(&tup->t_ctid, token, SpecTokenOffsetNumber);
     468         2132 : }
     469              : 
     470              : static inline bool
     471        15253 : HeapTupleHeaderIndicatesMovedPartitions(const HeapTupleHeaderData *tup)
     472              : {
     473        15253 :     return ItemPointerIndicatesMovedPartitions(&tup->t_ctid);
     474              : }
     475              : 
     476              : static inline void
     477          638 : HeapTupleHeaderSetMovedPartitions(HeapTupleHeaderData *tup)
     478              : {
     479          638 :     ItemPointerSetMovedPartitions(&tup->t_ctid);
     480          638 : }
     481              : 
     482              : static inline uint32
     483      1285452 : HeapTupleHeaderGetDatumLength(const HeapTupleHeaderData *tup)
     484              : {
     485      1285452 :     return VARSIZE(tup);
     486              : }
     487              : 
     488              : static inline void
     489     12823187 : HeapTupleHeaderSetDatumLength(HeapTupleHeaderData *tup, uint32 len)
     490              : {
     491     12823187 :     SET_VARSIZE(tup, len);
     492     12823187 : }
     493              : 
     494              : static inline Oid
     495      1277751 : HeapTupleHeaderGetTypeId(const HeapTupleHeaderData *tup)
     496              : {
     497      1277751 :     return tup->t_choice.t_datum.datum_typeid;
     498              : }
     499              : 
     500              : static inline void
     501     12846652 : HeapTupleHeaderSetTypeId(HeapTupleHeaderData *tup, Oid datum_typeid)
     502              : {
     503     12846652 :     tup->t_choice.t_datum.datum_typeid = datum_typeid;
     504     12846652 : }
     505              : 
     506              : static inline int32
     507      1277751 : HeapTupleHeaderGetTypMod(const HeapTupleHeaderData *tup)
     508              : {
     509      1277751 :     return tup->t_choice.t_datum.datum_typmod;
     510              : }
     511              : 
     512              : static inline void
     513     12846652 : HeapTupleHeaderSetTypMod(HeapTupleHeaderData *tup, int32 typmod)
     514              : {
     515     12846652 :     tup->t_choice.t_datum.datum_typmod = typmod;
     516     12846652 : }
     517              : 
     518              : /*
     519              :  * Note that we stop considering a tuple HOT-updated as soon as it is known
     520              :  * aborted or the would-be updating transaction is known aborted.  For best
     521              :  * efficiency, check tuple visibility before using this function, so that the
     522              :  * INVALID bits will be as up to date as possible.
     523              :  */
     524              : static inline bool
     525     18863549 : HeapTupleHeaderIsHotUpdated(const HeapTupleHeaderData *tup)
     526              : {
     527              :     return
     528     20121107 :         (tup->t_infomask2 & HEAP_HOT_UPDATED) != 0 &&
     529     20121104 :         (tup->t_infomask & HEAP_XMAX_INVALID) == 0 &&
     530      1257555 :         !HeapTupleHeaderXminInvalid(tup);
     531              : }
     532              : 
     533              : static inline void
     534       185973 : HeapTupleHeaderSetHotUpdated(HeapTupleHeaderData *tup)
     535              : {
     536       185973 :     tup->t_infomask2 |= HEAP_HOT_UPDATED;
     537       185973 : }
     538              : 
     539              : static inline void
     540      2407899 : HeapTupleHeaderClearHotUpdated(HeapTupleHeaderData *tup)
     541              : {
     542      2407899 :     tup->t_infomask2 &= ~HEAP_HOT_UPDATED;
     543      2407899 : }
     544              : 
     545              : static inline bool
     546     67750044 : HeapTupleHeaderIsHeapOnly(const HeapTupleHeaderData *tup) \
     547              : {
     548     67750044 :     return (tup->t_infomask2 & HEAP_ONLY_TUPLE) != 0;
     549              : }
     550              : 
     551              : static inline void
     552       297216 : HeapTupleHeaderSetHeapOnly(HeapTupleHeaderData *tup)
     553              : {
     554       297216 :     tup->t_infomask2 |= HEAP_ONLY_TUPLE;
     555       297216 : }
     556              : 
     557              : static inline void
     558       328476 : HeapTupleHeaderClearHeapOnly(HeapTupleHeaderData *tup)
     559              : {
     560       328476 :     tup->t_infomask2 &= ~HEAP_ONLY_TUPLE;
     561       328476 : }
     562              : 
     563              : /*
     564              :  * These are used with both HeapTuple and MinimalTuple, so they must be
     565              :  * macros.
     566              :  */
     567              : 
     568              : #define HeapTupleHeaderGetNatts(tup) \
     569              :     ((tup)->t_infomask2 & HEAP_NATTS_MASK)
     570              : 
     571              : #define HeapTupleHeaderSetNatts(tup, natts) \
     572              : ( \
     573              :     (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
     574              : )
     575              : 
     576              : #define HeapTupleHeaderHasExternal(tup) \
     577              :         (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
     578              : 
     579              : 
     580              : /*
     581              :  * BITMAPLEN(NATTS) -
     582              :  *      Computes size of null bitmap given number of data columns.
     583              :  */
     584              : static inline int
     585      3894870 : BITMAPLEN(int NATTS)
     586              : {
     587      3894870 :     return (NATTS + 7) / 8;
     588              : }
     589              : 
     590              : /*
     591              :  * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
     592              :  * header and MAXALIGN alignment padding.  Basically it's BLCKSZ minus the
     593              :  * other stuff that has to be on a disk page.  Since heap pages use no
     594              :  * "special space", there's no deduction for that.
     595              :  *
     596              :  * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
     597              :  * an otherwise-empty page can indeed hold a tuple of this size.  Because
     598              :  * ItemIds and tuples have different alignment requirements, don't assume that
     599              :  * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
     600              :  */
     601              : #define MaxHeapTupleSize  (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
     602              : #define MinHeapTupleSize  MAXALIGN(SizeofHeapTupleHeader)
     603              : 
     604              : /*
     605              :  * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
     606              :  * fit on one heap page.  (Note that indexes could have more, because they
     607              :  * use a smaller tuple header.)  We arrive at the divisor because each tuple
     608              :  * must be maxaligned, and it must have an associated line pointer.
     609              :  *
     610              :  * Note: with HOT, there could theoretically be more line pointers (not actual
     611              :  * tuples) than this on a heap page.  However we constrain the number of line
     612              :  * pointers to this anyway, to avoid excessive line-pointer bloat and not
     613              :  * require increases in the size of work arrays.
     614              :  */
     615              : #define MaxHeapTuplesPerPage    \
     616              :     ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
     617              :             (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
     618              : 
     619              : /*
     620              :  * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
     621              :  * data fields of char(n) and similar types.  It need not have anything
     622              :  * directly to do with the *actual* upper limit of varlena values, which
     623              :  * is currently 1Gb (see TOAST structures in varatt.h).  I've set it
     624              :  * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
     625              :  */
     626              : #define MaxAttrSize     (10 * 1024 * 1024)
     627              : 
     628              : 
     629              : /*
     630              :  * MinimalTuple is an alternative representation that is used for transient
     631              :  * tuples inside the executor, in places where transaction status information
     632              :  * is not required, the tuple rowtype is known, and shaving off a few bytes
     633              :  * is worthwhile because we need to store many tuples.  The representation
     634              :  * is chosen so that tuple access routines can work with either full or
     635              :  * minimal tuples via a HeapTupleData pointer structure.  The access routines
     636              :  * see no difference, except that they must not access the transaction status
     637              :  * or t_ctid fields because those aren't there.
     638              :  *
     639              :  * For the most part, MinimalTuples should be accessed via TupleTableSlot
     640              :  * routines.  These routines will prevent access to the "system columns"
     641              :  * and thereby prevent accidental use of the nonexistent fields.
     642              :  *
     643              :  * MinimalTupleData contains a length word, some padding, and fields matching
     644              :  * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
     645              :  * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
     646              :  * structs.   This makes data alignment rules equivalent in both cases.
     647              :  *
     648              :  * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
     649              :  * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
     650              :  * minimal tuple --- that is, where a full tuple matching the minimal tuple's
     651              :  * data would start.  This trick is what makes the structs seem equivalent.
     652              :  *
     653              :  * Note that t_hoff is computed the same as in a full tuple, hence it includes
     654              :  * the MINIMAL_TUPLE_OFFSET distance.  t_len does not include that, however.
     655              :  *
     656              :  * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
     657              :  * other than the length word.  tuplesort.c and tuplestore.c use this to avoid
     658              :  * writing the padding to disk.
     659              :  */
     660              : #define MINIMAL_TUPLE_OFFSET \
     661              :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
     662              : #define MINIMAL_TUPLE_PADDING \
     663              :     ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
     664              : #define MINIMAL_TUPLE_DATA_OFFSET \
     665              :     offsetof(MinimalTupleData, t_infomask2)
     666              : 
     667              : struct MinimalTupleData
     668              : {
     669              :     uint32      t_len;          /* actual length of minimal tuple */
     670              : 
     671              :     char        mt_padding[MINIMAL_TUPLE_PADDING];
     672              : 
     673              :     /* Fields below here must match HeapTupleHeaderData! */
     674              : 
     675              :     uint16      t_infomask2;    /* number of attributes + various flags */
     676              : 
     677              :     uint16      t_infomask;     /* various flag bits, see below */
     678              : 
     679              :     uint8       t_hoff;         /* sizeof header incl. bitmap, padding */
     680              : 
     681              :     /* ^ - 23 bytes - ^ */
     682              : 
     683              :     bits8       t_bits[FLEXIBLE_ARRAY_MEMBER];  /* bitmap of NULLs */
     684              : 
     685              :     /* MORE DATA FOLLOWS AT END OF STRUCT */
     686              : };
     687              : 
     688              : /* typedef appears in htup.h */
     689              : 
     690              : #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
     691              : 
     692              : /*
     693              :  * MinimalTuple accessor functions
     694              :  */
     695              : 
     696              : static inline bool
     697      6990346 : HeapTupleHeaderHasMatch(const MinimalTupleData *tup)
     698              : {
     699      6990346 :     return (tup->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0;
     700              : }
     701              : 
     702              : static inline void
     703      2969535 : HeapTupleHeaderSetMatch(MinimalTupleData *tup)
     704              : {
     705      2969535 :     tup->t_infomask2 |= HEAP_TUPLE_HAS_MATCH;
     706      2969535 : }
     707              : 
     708              : static inline void
     709      5835031 : HeapTupleHeaderClearMatch(MinimalTupleData *tup)
     710              : {
     711      5835031 :     tup->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH;
     712      5835031 : }
     713              : 
     714              : 
     715              : /*
     716              :  * GETSTRUCT - given a HeapTuple pointer, return address of the user data
     717              :  */
     718              : static inline void *
     719     72347052 : GETSTRUCT(const HeapTupleData *tuple)
     720              : {
     721     72347052 :     return ((char *) (tuple->t_data) + tuple->t_data->t_hoff);
     722              : }
     723              : 
     724              : /*
     725              :  * Accessor functions to be used with HeapTuple pointers.
     726              :  */
     727              : 
     728              : static inline bool
     729    547073940 : HeapTupleHasNulls(const HeapTupleData *tuple)
     730              : {
     731    547073940 :     return (tuple->t_data->t_infomask & HEAP_HASNULL) != 0;
     732              : }
     733              : 
     734              : static inline bool
     735    276309944 : HeapTupleNoNulls(const HeapTupleData *tuple)
     736              : {
     737    276309944 :     return !HeapTupleHasNulls(tuple);
     738              : }
     739              : 
     740              : static inline bool
     741     29574231 : HeapTupleHasVarWidth(const HeapTupleData *tuple)
     742              : {
     743     29574231 :     return (tuple->t_data->t_infomask & HEAP_HASVARWIDTH) != 0;
     744              : }
     745              : 
     746              : static inline bool
     747              : HeapTupleAllFixed(const HeapTupleData *tuple)
     748              : {
     749              :     return !HeapTupleHasVarWidth(tuple);
     750              : }
     751              : 
     752              : static inline bool
     753     15432994 : HeapTupleHasExternal(const HeapTupleData *tuple)
     754              : {
     755     15432994 :     return (tuple->t_data->t_infomask & HEAP_HASEXTERNAL) != 0;
     756              : }
     757              : 
     758              : static inline bool
     759      7489652 : HeapTupleIsHotUpdated(const HeapTupleData *tuple)
     760              : {
     761      7489652 :     return HeapTupleHeaderIsHotUpdated(tuple->t_data);
     762              : }
     763              : 
     764              : static inline void
     765       148608 : HeapTupleSetHotUpdated(const HeapTupleData *tuple)
     766              : {
     767       148608 :     HeapTupleHeaderSetHotUpdated(tuple->t_data);
     768       148608 : }
     769              : 
     770              : static inline void
     771       316482 : HeapTupleClearHotUpdated(const HeapTupleData *tuple)
     772              : {
     773       316482 :     HeapTupleHeaderClearHotUpdated(tuple->t_data);
     774       316482 : }
     775              : 
     776              : static inline bool
     777     32925995 : HeapTupleIsHeapOnly(const HeapTupleData *tuple)
     778              : {
     779     32925995 :     return HeapTupleHeaderIsHeapOnly(tuple->t_data);
     780              : }
     781              : 
     782              : static inline void
     783       297216 : HeapTupleSetHeapOnly(const HeapTupleData *tuple)
     784              : {
     785       297216 :     HeapTupleHeaderSetHeapOnly(tuple->t_data);
     786       297216 : }
     787              : 
     788              : static inline void
     789       328476 : HeapTupleClearHeapOnly(const HeapTupleData *tuple)
     790              : {
     791       328476 :     HeapTupleHeaderClearHeapOnly(tuple->t_data);
     792       328476 : }
     793              : 
     794              : /* prototypes for functions in common/heaptuple.c */
     795              : extern Size heap_compute_data_size(TupleDesc tupleDesc,
     796              :                                    const Datum *values, const bool *isnull);
     797              : extern void heap_fill_tuple(TupleDesc tupleDesc,
     798              :                             const Datum *values, const bool *isnull,
     799              :                             char *data, Size data_size,
     800              :                             uint16 *infomask, bits8 *bit);
     801              : extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
     802              : extern Datum nocachegetattr(HeapTuple tup, int attnum,
     803              :                             TupleDesc tupleDesc);
     804              : extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
     805              :                              bool *isnull);
     806              : extern Datum getmissingattr(TupleDesc tupleDesc,
     807              :                             int attnum, bool *isnull);
     808              : extern HeapTuple heap_copytuple(HeapTuple tuple);
     809              : extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
     810              : extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
     811              : extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
     812              :                                  const Datum *values, const bool *isnull);
     813              : extern HeapTuple heap_modify_tuple(HeapTuple tuple,
     814              :                                    TupleDesc tupleDesc,
     815              :                                    const Datum *replValues,
     816              :                                    const bool *replIsnull,
     817              :                                    const bool *doReplace);
     818              : extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
     819              :                                            TupleDesc tupleDesc,
     820              :                                            int nCols,
     821              :                                            const int *replCols,
     822              :                                            const Datum *replValues,
     823              :                                            const bool *replIsnull);
     824              : extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
     825              :                               Datum *values, bool *isnull);
     826              : extern void heap_freetuple(HeapTuple htup);
     827              : extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
     828              :                                             const Datum *values, const bool *isnull,
     829              :                                             Size extra);
     830              : extern void heap_free_minimal_tuple(MinimalTuple mtup);
     831              : extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup, Size extra);
     832              : extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
     833              : extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup, Size extra);
     834              : extern size_t varsize_any(void *p);
     835              : extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     836              : extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
     837              : 
     838              : #ifndef FRONTEND
     839              : /*
     840              :  *  fastgetattr
     841              :  *      Fetch a user attribute's value as a Datum (might be either a
     842              :  *      value, or a pointer into the data area of the tuple).
     843              :  *
     844              :  *      This must not be used when a system attribute might be requested.
     845              :  *      Furthermore, the passed attnum MUST be valid.  Use heap_getattr()
     846              :  *      instead, if in doubt.
     847              :  *
     848              :  *      This gets called many times, so we macro the cacheable and NULL
     849              :  *      lookups, and call nocachegetattr() for the rest.
     850              :  */
     851              : static inline Datum
     852    160973842 : fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     853              : {
     854              :     Assert(attnum > 0);
     855              : 
     856    160973842 :     *isnull = false;
     857    160973842 :     if (HeapTupleNoNulls(tup))
     858              :     {
     859              :         CompactAttribute *att;
     860              : 
     861     66411383 :         att = TupleDescCompactAttr(tupleDesc, attnum - 1);
     862     66411383 :         if (att->attcacheoff >= 0)
     863     39178838 :             return fetchatt(att, (char *) tup->t_data + tup->t_data->t_hoff +
     864              :                             att->attcacheoff);
     865              :         else
     866     27232545 :             return nocachegetattr(tup, attnum, tupleDesc);
     867              :     }
     868              :     else
     869              :     {
     870     94562459 :         if (att_isnull(attnum - 1, tup->t_data->t_bits))
     871              :         {
     872     11309991 :             *isnull = true;
     873     11309991 :             return (Datum) 0;
     874              :         }
     875              :         else
     876     83252468 :             return nocachegetattr(tup, attnum, tupleDesc);
     877              :     }
     878              : }
     879              : 
     880              : /*
     881              :  *  heap_getattr
     882              :  *      Extract an attribute of a heap tuple and return it as a Datum.
     883              :  *      This works for either system or user attributes.  The given attnum
     884              :  *      is properly range-checked.
     885              :  *
     886              :  *      If the field in question has a NULL value, we return a zero Datum
     887              :  *      and set *isnull == true.  Otherwise, we set *isnull == false.
     888              :  *
     889              :  *      <tup> is the pointer to the heap tuple.  <attnum> is the attribute
     890              :  *      number of the column (field) caller wants.  <tupleDesc> is a
     891              :  *      pointer to the structure describing the row and all its fields.
     892              :  *
     893              :  */
     894              : static inline Datum
     895    150614848 : heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
     896              : {
     897    150614848 :     if (attnum > 0)
     898              :     {
     899    150614848 :         if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
     900          166 :             return getmissingattr(tupleDesc, attnum, isnull);
     901              :         else
     902    150614682 :             return fastgetattr(tup, attnum, tupleDesc, isnull);
     903              :     }
     904              :     else
     905            0 :         return heap_getsysattr(tup, attnum, tupleDesc, isnull);
     906              : }
     907              : #endif                          /* FRONTEND */
     908              : 
     909              : #endif                          /* HTUP_DETAILS_H */
        

Generated by: LCOV version 2.0-1