LCOV - code coverage report
Current view: top level - src/backend/storage/lmgr - predicate.c (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 72.5 % 1317 955
Test Date: 2026-02-17 17:20:33 Functions: 88.7 % 71 63
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * predicate.c
       4              :  *    POSTGRES predicate locking
       5              :  *    to support full serializable transaction isolation
       6              :  *
       7              :  *
       8              :  * The approach taken is to implement Serializable Snapshot Isolation (SSI)
       9              :  * as initially described in this paper:
      10              :  *
      11              :  *  Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
      12              :  *  Serializable isolation for snapshot databases.
      13              :  *  In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
      14              :  *  international conference on Management of data,
      15              :  *  pages 729-738, New York, NY, USA. ACM.
      16              :  *  http://doi.acm.org/10.1145/1376616.1376690
      17              :  *
      18              :  * and further elaborated in Cahill's doctoral thesis:
      19              :  *
      20              :  *  Michael James Cahill. 2009.
      21              :  *  Serializable Isolation for Snapshot Databases.
      22              :  *  Sydney Digital Theses.
      23              :  *  University of Sydney, School of Information Technologies.
      24              :  *  http://hdl.handle.net/2123/5353
      25              :  *
      26              :  *
      27              :  * Predicate locks for Serializable Snapshot Isolation (SSI) are SIREAD
      28              :  * locks, which are so different from normal locks that a distinct set of
      29              :  * structures is required to handle them.  They are needed to detect
      30              :  * rw-conflicts when the read happens before the write.  (When the write
      31              :  * occurs first, the reading transaction can check for a conflict by
      32              :  * examining the MVCC data.)
      33              :  *
      34              :  * (1)  Besides tuples actually read, they must cover ranges of tuples
      35              :  *      which would have been read based on the predicate.  This will
      36              :  *      require modelling the predicates through locks against database
      37              :  *      objects such as pages, index ranges, or entire tables.
      38              :  *
      39              :  * (2)  They must be kept in RAM for quick access.  Because of this, it
      40              :  *      isn't possible to always maintain tuple-level granularity -- when
      41              :  *      the space allocated to store these approaches exhaustion, a
      42              :  *      request for a lock may need to scan for situations where a single
      43              :  *      transaction holds many fine-grained locks which can be coalesced
      44              :  *      into a single coarser-grained lock.
      45              :  *
      46              :  * (3)  They never block anything; they are more like flags than locks
      47              :  *      in that regard; although they refer to database objects and are
      48              :  *      used to identify rw-conflicts with normal write locks.
      49              :  *
      50              :  * (4)  While they are associated with a transaction, they must survive
      51              :  *      a successful COMMIT of that transaction, and remain until all
      52              :  *      overlapping transactions complete.  This even means that they
      53              :  *      must survive termination of the transaction's process.  If a
      54              :  *      top level transaction is rolled back, however, it is immediately
      55              :  *      flagged so that it can be ignored, and its SIREAD locks can be
      56              :  *      released any time after that.
      57              :  *
      58              :  * (5)  The only transactions which create SIREAD locks or check for
      59              :  *      conflicts with them are serializable transactions.
      60              :  *
      61              :  * (6)  When a write lock for a top level transaction is found to cover
      62              :  *      an existing SIREAD lock for the same transaction, the SIREAD lock
      63              :  *      can be deleted.
      64              :  *
      65              :  * (7)  A write from a serializable transaction must ensure that an xact
      66              :  *      record exists for the transaction, with the same lifespan (until
      67              :  *      all concurrent transaction complete or the transaction is rolled
      68              :  *      back) so that rw-dependencies to that transaction can be
      69              :  *      detected.
      70              :  *
      71              :  * We use an optimization for read-only transactions. Under certain
      72              :  * circumstances, a read-only transaction's snapshot can be shown to
      73              :  * never have conflicts with other transactions.  This is referred to
      74              :  * as a "safe" snapshot (and one known not to be is "unsafe").
      75              :  * However, it can't be determined whether a snapshot is safe until
      76              :  * all concurrent read/write transactions complete.
      77              :  *
      78              :  * Once a read-only transaction is known to have a safe snapshot, it
      79              :  * can release its predicate locks and exempt itself from further
      80              :  * predicate lock tracking. READ ONLY DEFERRABLE transactions run only
      81              :  * on safe snapshots, waiting as necessary for one to be available.
      82              :  *
      83              :  *
      84              :  * Lightweight locks to manage access to the predicate locking shared
      85              :  * memory objects must be taken in this order, and should be released in
      86              :  * reverse order:
      87              :  *
      88              :  *  SerializableFinishedListLock
      89              :  *      - Protects the list of transactions which have completed but which
      90              :  *          may yet matter because they overlap still-active transactions.
      91              :  *
      92              :  *  SerializablePredicateListLock
      93              :  *      - Protects the linked list of locks held by a transaction.  Note
      94              :  *          that the locks themselves are also covered by the partition
      95              :  *          locks of their respective lock targets; this lock only affects
      96              :  *          the linked list connecting the locks related to a transaction.
      97              :  *      - All transactions share this single lock (with no partitioning).
      98              :  *      - There is never a need for a process other than the one running
      99              :  *          an active transaction to walk the list of locks held by that
     100              :  *          transaction, except parallel query workers sharing the leader's
     101              :  *          transaction.  In the parallel case, an extra per-sxact lock is
     102              :  *          taken; see below.
     103              :  *      - It is relatively infrequent that another process needs to
     104              :  *          modify the list for a transaction, but it does happen for such
     105              :  *          things as index page splits for pages with predicate locks and
     106              :  *          freeing of predicate locked pages by a vacuum process.  When
     107              :  *          removing a lock in such cases, the lock itself contains the
     108              :  *          pointers needed to remove it from the list.  When adding a
     109              :  *          lock in such cases, the lock can be added using the anchor in
     110              :  *          the transaction structure.  Neither requires walking the list.
     111              :  *      - Cleaning up the list for a terminated transaction is sometimes
     112              :  *          not done on a retail basis, in which case no lock is required.
     113              :  *      - Due to the above, a process accessing its active transaction's
     114              :  *          list always uses a shared lock, regardless of whether it is
     115              :  *          walking or maintaining the list.  This improves concurrency
     116              :  *          for the common access patterns.
     117              :  *      - A process which needs to alter the list of a transaction other
     118              :  *          than its own active transaction must acquire an exclusive
     119              :  *          lock.
     120              :  *
     121              :  *  SERIALIZABLEXACT's member 'perXactPredicateListLock'
     122              :  *      - Protects the linked list of predicate locks held by a transaction.
     123              :  *          Only needed for parallel mode, where multiple backends share the
     124              :  *          same SERIALIZABLEXACT object.  Not needed if
     125              :  *          SerializablePredicateListLock is held exclusively.
     126              :  *
     127              :  *  PredicateLockHashPartitionLock(hashcode)
     128              :  *      - The same lock protects a target, all locks on that target, and
     129              :  *          the linked list of locks on the target.
     130              :  *      - When more than one is needed, acquire in ascending address order.
     131              :  *      - When all are needed (rare), acquire in ascending index order with
     132              :  *          PredicateLockHashPartitionLockByIndex(index).
     133              :  *
     134              :  *  SerializableXactHashLock
     135              :  *      - Protects both PredXact and SerializableXidHash.
     136              :  *
     137              :  *  SerialControlLock
     138              :  *      - Protects SerialControlData members
     139              :  *
     140              :  *  SLRU per-bank locks
     141              :  *      - Protects SerialSlruCtl
     142              :  *
     143              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
     144              :  * Portions Copyright (c) 1994, Regents of the University of California
     145              :  *
     146              :  *
     147              :  * IDENTIFICATION
     148              :  *    src/backend/storage/lmgr/predicate.c
     149              :  *
     150              :  *-------------------------------------------------------------------------
     151              :  */
     152              : /*
     153              :  * INTERFACE ROUTINES
     154              :  *
     155              :  * housekeeping for setting up shared memory predicate lock structures
     156              :  *      PredicateLockShmemInit(void)
     157              :  *      PredicateLockShmemSize(void)
     158              :  *
     159              :  * predicate lock reporting
     160              :  *      GetPredicateLockStatusData(void)
     161              :  *      PageIsPredicateLocked(Relation relation, BlockNumber blkno)
     162              :  *
     163              :  * predicate lock maintenance
     164              :  *      GetSerializableTransactionSnapshot(Snapshot snapshot)
     165              :  *      SetSerializableTransactionSnapshot(Snapshot snapshot,
     166              :  *                                         VirtualTransactionId *sourcevxid)
     167              :  *      RegisterPredicateLockingXid(void)
     168              :  *      PredicateLockRelation(Relation relation, Snapshot snapshot)
     169              :  *      PredicateLockPage(Relation relation, BlockNumber blkno,
     170              :  *                      Snapshot snapshot)
     171              :  *      PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot,
     172              :  *                       TransactionId tuple_xid)
     173              :  *      PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
     174              :  *                             BlockNumber newblkno)
     175              :  *      PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
     176              :  *                               BlockNumber newblkno)
     177              :  *      TransferPredicateLocksToHeapRelation(Relation relation)
     178              :  *      ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
     179              :  *
     180              :  * conflict detection (may also trigger rollback)
     181              :  *      CheckForSerializableConflictOut(Relation relation, TransactionId xid,
     182              :  *                                      Snapshot snapshot)
     183              :  *      CheckForSerializableConflictIn(Relation relation, const ItemPointerData *tid,
     184              :  *                                     BlockNumber blkno)
     185              :  *      CheckTableForSerializableConflictIn(Relation relation)
     186              :  *
     187              :  * final rollback checking
     188              :  *      PreCommit_CheckForSerializationFailure(void)
     189              :  *
     190              :  * two-phase commit support
     191              :  *      AtPrepare_PredicateLocks(void);
     192              :  *      PostPrepare_PredicateLocks(TransactionId xid);
     193              :  *      PredicateLockTwoPhaseFinish(FullTransactionId fxid, bool isCommit);
     194              :  *      predicatelock_twophase_recover(FullTransactionId fxid, uint16 info,
     195              :  *                                     void *recdata, uint32 len);
     196              :  */
     197              : 
     198              : #include "postgres.h"
     199              : 
     200              : #include "access/parallel.h"
     201              : #include "access/slru.h"
     202              : #include "access/transam.h"
     203              : #include "access/twophase.h"
     204              : #include "access/twophase_rmgr.h"
     205              : #include "access/xact.h"
     206              : #include "access/xlog.h"
     207              : #include "miscadmin.h"
     208              : #include "pgstat.h"
     209              : #include "port/pg_lfind.h"
     210              : #include "storage/predicate.h"
     211              : #include "storage/predicate_internals.h"
     212              : #include "storage/proc.h"
     213              : #include "storage/procarray.h"
     214              : #include "utils/guc_hooks.h"
     215              : #include "utils/rel.h"
     216              : #include "utils/snapmgr.h"
     217              : 
     218              : /* Uncomment the next line to test the graceful degradation code. */
     219              : /* #define TEST_SUMMARIZE_SERIAL */
     220              : 
     221              : /*
     222              :  * Test the most selective fields first, for performance.
     223              :  *
     224              :  * a is covered by b if all of the following hold:
     225              :  *  1) a.database = b.database
     226              :  *  2) a.relation = b.relation
     227              :  *  3) b.offset is invalid (b is page-granularity or higher)
     228              :  *  4) either of the following:
     229              :  *      4a) a.offset is valid (a is tuple-granularity) and a.page = b.page
     230              :  *   or 4b) a.offset is invalid and b.page is invalid (a is
     231              :  *          page-granularity and b is relation-granularity
     232              :  */
     233              : #define TargetTagIsCoveredBy(covered_target, covering_target)           \
     234              :     ((GET_PREDICATELOCKTARGETTAG_RELATION(covered_target) == /* (2) */  \
     235              :       GET_PREDICATELOCKTARGETTAG_RELATION(covering_target))             \
     236              :      && (GET_PREDICATELOCKTARGETTAG_OFFSET(covering_target) ==          \
     237              :          InvalidOffsetNumber)                                /* (3) */  \
     238              :      && (((GET_PREDICATELOCKTARGETTAG_OFFSET(covered_target) !=         \
     239              :            InvalidOffsetNumber)                              /* (4a) */ \
     240              :           && (GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) ==       \
     241              :               GET_PREDICATELOCKTARGETTAG_PAGE(covered_target)))         \
     242              :          || ((GET_PREDICATELOCKTARGETTAG_PAGE(covering_target) ==       \
     243              :               InvalidBlockNumber)                            /* (4b) */ \
     244              :              && (GET_PREDICATELOCKTARGETTAG_PAGE(covered_target)        \
     245              :                  != InvalidBlockNumber)))                               \
     246              :      && (GET_PREDICATELOCKTARGETTAG_DB(covered_target) ==    /* (1) */  \
     247              :          GET_PREDICATELOCKTARGETTAG_DB(covering_target)))
     248              : 
     249              : /*
     250              :  * The predicate locking target and lock shared hash tables are partitioned to
     251              :  * reduce contention.  To determine which partition a given target belongs to,
     252              :  * compute the tag's hash code with PredicateLockTargetTagHashCode(), then
     253              :  * apply one of these macros.
     254              :  * NB: NUM_PREDICATELOCK_PARTITIONS must be a power of 2!
     255              :  */
     256              : #define PredicateLockHashPartition(hashcode) \
     257              :     ((hashcode) % NUM_PREDICATELOCK_PARTITIONS)
     258              : #define PredicateLockHashPartitionLock(hashcode) \
     259              :     (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + \
     260              :         PredicateLockHashPartition(hashcode)].lock)
     261              : #define PredicateLockHashPartitionLockByIndex(i) \
     262              :     (&MainLWLockArray[PREDICATELOCK_MANAGER_LWLOCK_OFFSET + (i)].lock)
     263              : 
     264              : #define NPREDICATELOCKTARGETENTS() \
     265              :     mul_size(max_predicate_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
     266              : 
     267              : #define SxactIsOnFinishedList(sxact) (!dlist_node_is_detached(&(sxact)->finishedLink))
     268              : 
     269              : /*
     270              :  * Note that a sxact is marked "prepared" once it has passed
     271              :  * PreCommit_CheckForSerializationFailure, even if it isn't using
     272              :  * 2PC. This is the point at which it can no longer be aborted.
     273              :  *
     274              :  * The PREPARED flag remains set after commit, so SxactIsCommitted
     275              :  * implies SxactIsPrepared.
     276              :  */
     277              : #define SxactIsCommitted(sxact) (((sxact)->flags & SXACT_FLAG_COMMITTED) != 0)
     278              : #define SxactIsPrepared(sxact) (((sxact)->flags & SXACT_FLAG_PREPARED) != 0)
     279              : #define SxactIsRolledBack(sxact) (((sxact)->flags & SXACT_FLAG_ROLLED_BACK) != 0)
     280              : #define SxactIsDoomed(sxact) (((sxact)->flags & SXACT_FLAG_DOOMED) != 0)
     281              : #define SxactIsReadOnly(sxact) (((sxact)->flags & SXACT_FLAG_READ_ONLY) != 0)
     282              : #define SxactHasSummaryConflictIn(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_IN) != 0)
     283              : #define SxactHasSummaryConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_SUMMARY_CONFLICT_OUT) != 0)
     284              : /*
     285              :  * The following macro actually means that the specified transaction has a
     286              :  * conflict out *to a transaction which committed ahead of it*.  It's hard
     287              :  * to get that into a name of a reasonable length.
     288              :  */
     289              : #define SxactHasConflictOut(sxact) (((sxact)->flags & SXACT_FLAG_CONFLICT_OUT) != 0)
     290              : #define SxactIsDeferrableWaiting(sxact) (((sxact)->flags & SXACT_FLAG_DEFERRABLE_WAITING) != 0)
     291              : #define SxactIsROSafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_SAFE) != 0)
     292              : #define SxactIsROUnsafe(sxact) (((sxact)->flags & SXACT_FLAG_RO_UNSAFE) != 0)
     293              : #define SxactIsPartiallyReleased(sxact) (((sxact)->flags & SXACT_FLAG_PARTIALLY_RELEASED) != 0)
     294              : 
     295              : /*
     296              :  * Compute the hash code associated with a PREDICATELOCKTARGETTAG.
     297              :  *
     298              :  * To avoid unnecessary recomputations of the hash code, we try to do this
     299              :  * just once per function, and then pass it around as needed.  Aside from
     300              :  * passing the hashcode to hash_search_with_hash_value(), we can extract
     301              :  * the lock partition number from the hashcode.
     302              :  */
     303              : #define PredicateLockTargetTagHashCode(predicatelocktargettag) \
     304              :     get_hash_value(PredicateLockTargetHash, predicatelocktargettag)
     305              : 
     306              : /*
     307              :  * Given a predicate lock tag, and the hash for its target,
     308              :  * compute the lock hash.
     309              :  *
     310              :  * To make the hash code also depend on the transaction, we xor the sxid
     311              :  * struct's address into the hash code, left-shifted so that the
     312              :  * partition-number bits don't change.  Since this is only a hash, we
     313              :  * don't care if we lose high-order bits of the address; use an
     314              :  * intermediate variable to suppress cast-pointer-to-int warnings.
     315              :  */
     316              : #define PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash) \
     317              :     ((targethash) ^ ((uint32) PointerGetDatum((predicatelocktag)->myXact)) \
     318              :      << LOG2_NUM_PREDICATELOCK_PARTITIONS)
     319              : 
     320              : 
     321              : /*
     322              :  * The SLRU buffer area through which we access the old xids.
     323              :  */
     324              : static SlruCtlData SerialSlruCtlData;
     325              : 
     326              : #define SerialSlruCtl           (&SerialSlruCtlData)
     327              : 
     328              : #define SERIAL_PAGESIZE         BLCKSZ
     329              : #define SERIAL_ENTRYSIZE            sizeof(SerCommitSeqNo)
     330              : #define SERIAL_ENTRIESPERPAGE   (SERIAL_PAGESIZE / SERIAL_ENTRYSIZE)
     331              : 
     332              : /*
     333              :  * Set maximum pages based on the number needed to track all transactions.
     334              :  */
     335              : #define SERIAL_MAX_PAGE         (MaxTransactionId / SERIAL_ENTRIESPERPAGE)
     336              : 
     337              : #define SerialNextPage(page) (((page) >= SERIAL_MAX_PAGE) ? 0 : (page) + 1)
     338              : 
     339              : #define SerialValue(slotno, xid) (*((SerCommitSeqNo *) \
     340              :     (SerialSlruCtl->shared->page_buffer[slotno] + \
     341              :     ((((uint32) (xid)) % SERIAL_ENTRIESPERPAGE) * SERIAL_ENTRYSIZE))))
     342              : 
     343              : #define SerialPage(xid) (((uint32) (xid)) / SERIAL_ENTRIESPERPAGE)
     344              : 
     345              : typedef struct SerialControlData
     346              : {
     347              :     int64       headPage;       /* newest initialized page */
     348              :     TransactionId headXid;      /* newest valid Xid in the SLRU */
     349              :     TransactionId tailXid;      /* oldest xmin we might be interested in */
     350              : }           SerialControlData;
     351              : 
     352              : typedef struct SerialControlData *SerialControl;
     353              : 
     354              : static SerialControl serialControl;
     355              : 
     356              : /*
     357              :  * When the oldest committed transaction on the "finished" list is moved to
     358              :  * SLRU, its predicate locks will be moved to this "dummy" transaction,
     359              :  * collapsing duplicate targets.  When a duplicate is found, the later
     360              :  * commitSeqNo is used.
     361              :  */
     362              : static SERIALIZABLEXACT *OldCommittedSxact;
     363              : 
     364              : 
     365              : /*
     366              :  * These configuration variables are used to set the predicate lock table size
     367              :  * and to control promotion of predicate locks to coarser granularity in an
     368              :  * attempt to degrade performance (mostly as false positive serialization
     369              :  * failure) gracefully in the face of memory pressure.
     370              :  */
     371              : int         max_predicate_locks_per_xact;   /* in guc_tables.c */
     372              : int         max_predicate_locks_per_relation;   /* in guc_tables.c */
     373              : int         max_predicate_locks_per_page;   /* in guc_tables.c */
     374              : 
     375              : /*
     376              :  * This provides a list of objects in order to track transactions
     377              :  * participating in predicate locking.  Entries in the list are fixed size,
     378              :  * and reside in shared memory.  The memory address of an entry must remain
     379              :  * fixed during its lifetime.  The list will be protected from concurrent
     380              :  * update externally; no provision is made in this code to manage that.  The
     381              :  * number of entries in the list, and the size allowed for each entry is
     382              :  * fixed upon creation.
     383              :  */
     384              : static PredXactList PredXact;
     385              : 
     386              : /*
     387              :  * This provides a pool of RWConflict data elements to use in conflict lists
     388              :  * between transactions.
     389              :  */
     390              : static RWConflictPoolHeader RWConflictPool;
     391              : 
     392              : /*
     393              :  * The predicate locking hash tables are in shared memory.
     394              :  * Each backend keeps pointers to them.
     395              :  */
     396              : static HTAB *SerializableXidHash;
     397              : static HTAB *PredicateLockTargetHash;
     398              : static HTAB *PredicateLockHash;
     399              : static dlist_head *FinishedSerializableTransactions;
     400              : 
     401              : /*
     402              :  * Tag for a dummy entry in PredicateLockTargetHash. By temporarily removing
     403              :  * this entry, you can ensure that there's enough scratch space available for
     404              :  * inserting one entry in the hash table. This is an otherwise-invalid tag.
     405              :  */
     406              : static const PREDICATELOCKTARGETTAG ScratchTargetTag = {0, 0, 0, 0};
     407              : static uint32 ScratchTargetTagHash;
     408              : static LWLock *ScratchPartitionLock;
     409              : 
     410              : /*
     411              :  * The local hash table used to determine when to combine multiple fine-
     412              :  * grained locks into a single courser-grained lock.
     413              :  */
     414              : static HTAB *LocalPredicateLockHash = NULL;
     415              : 
     416              : /*
     417              :  * Keep a pointer to the currently-running serializable transaction (if any)
     418              :  * for quick reference. Also, remember if we have written anything that could
     419              :  * cause a rw-conflict.
     420              :  */
     421              : static SERIALIZABLEXACT *MySerializableXact = InvalidSerializableXact;
     422              : static bool MyXactDidWrite = false;
     423              : 
     424              : /*
     425              :  * The SXACT_FLAG_RO_UNSAFE optimization might lead us to release
     426              :  * MySerializableXact early.  If that happens in a parallel query, the leader
     427              :  * needs to defer the destruction of the SERIALIZABLEXACT until end of
     428              :  * transaction, because the workers still have a reference to it.  In that
     429              :  * case, the leader stores it here.
     430              :  */
     431              : static SERIALIZABLEXACT *SavedSerializableXact = InvalidSerializableXact;
     432              : 
     433              : /* local functions */
     434              : 
     435              : static SERIALIZABLEXACT *CreatePredXact(void);
     436              : static void ReleasePredXact(SERIALIZABLEXACT *sxact);
     437              : 
     438              : static bool RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer);
     439              : static void SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
     440              : static void SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact, SERIALIZABLEXACT *activeXact);
     441              : static void ReleaseRWConflict(RWConflict conflict);
     442              : static void FlagSxactUnsafe(SERIALIZABLEXACT *sxact);
     443              : 
     444              : static bool SerialPagePrecedesLogically(int64 page1, int64 page2);
     445              : static void SerialInit(void);
     446              : static void SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo);
     447              : static SerCommitSeqNo SerialGetMinConflictCommitSeqNo(TransactionId xid);
     448              : static void SerialSetActiveSerXmin(TransactionId xid);
     449              : 
     450              : static uint32 predicatelock_hash(const void *key, Size keysize);
     451              : static void SummarizeOldestCommittedSxact(void);
     452              : static Snapshot GetSafeSnapshot(Snapshot origSnapshot);
     453              : static Snapshot GetSerializableTransactionSnapshotInt(Snapshot snapshot,
     454              :                                                       VirtualTransactionId *sourcevxid,
     455              :                                                       int sourcepid);
     456              : static bool PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag);
     457              : static bool GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
     458              :                                       PREDICATELOCKTARGETTAG *parent);
     459              : static bool CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag);
     460              : static void RemoveScratchTarget(bool lockheld);
     461              : static void RestoreScratchTarget(bool lockheld);
     462              : static void RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target,
     463              :                                        uint32 targettaghash);
     464              : static void DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag);
     465              : static int  MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag);
     466              : static bool CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag);
     467              : static void DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag);
     468              : static void CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
     469              :                                 uint32 targettaghash,
     470              :                                 SERIALIZABLEXACT *sxact);
     471              : static void DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash);
     472              : static bool TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
     473              :                                               PREDICATELOCKTARGETTAG newtargettag,
     474              :                                               bool removeOld);
     475              : static void PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag);
     476              : static void DropAllPredicateLocksFromTable(Relation relation,
     477              :                                            bool transfer);
     478              : static void SetNewSxactGlobalXmin(void);
     479              : static void ClearOldPredicateLocks(void);
     480              : static void ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
     481              :                                        bool summarize);
     482              : static bool XidIsConcurrent(TransactionId xid);
     483              : static void CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag);
     484              : static void FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer);
     485              : static void OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
     486              :                                                     SERIALIZABLEXACT *writer);
     487              : static void CreateLocalPredicateLockHash(void);
     488              : static void ReleasePredicateLocksLocal(void);
     489              : 
     490              : 
     491              : /*------------------------------------------------------------------------*/
     492              : 
     493              : /*
     494              :  * Does this relation participate in predicate locking? Temporary and system
     495              :  * relations are exempt.
     496              :  */
     497              : static inline bool
     498       160843 : PredicateLockingNeededForRelation(Relation relation)
     499              : {
     500       218060 :     return !(relation->rd_id < FirstUnpinnedObjectId ||
     501        57217 :              RelationUsesLocalBuffers(relation));
     502              : }
     503              : 
     504              : /*
     505              :  * When a public interface method is called for a read, this is the test to
     506              :  * see if we should do a quick return.
     507              :  *
     508              :  * Note: this function has side-effects! If this transaction has been flagged
     509              :  * as RO-safe since the last call, we release all predicate locks and reset
     510              :  * MySerializableXact. That makes subsequent calls to return quickly.
     511              :  *
     512              :  * This is marked as 'inline' to eliminate the function call overhead in the
     513              :  * common case that serialization is not needed.
     514              :  */
     515              : static inline bool
     516     62751136 : SerializationNeededForRead(Relation relation, Snapshot snapshot)
     517              : {
     518              :     /* Nothing to do if this is not a serializable transaction */
     519     62751136 :     if (MySerializableXact == InvalidSerializableXact)
     520     62596145 :         return false;
     521              : 
     522              :     /*
     523              :      * Don't acquire locks or conflict when scanning with a special snapshot.
     524              :      * This excludes things like CLUSTER and REINDEX. They use the wholesale
     525              :      * functions TransferPredicateLocksToHeapRelation() and
     526              :      * CheckTableForSerializableConflictIn() to participate in serialization,
     527              :      * but the scans involved don't need serialization.
     528              :      */
     529       154991 :     if (!IsMVCCSnapshot(snapshot))
     530         2157 :         return false;
     531              : 
     532              :     /*
     533              :      * Check if we have just become "RO-safe". If we have, immediately release
     534              :      * all locks as they're not needed anymore. This also resets
     535              :      * MySerializableXact, so that subsequent calls to this function can exit
     536              :      * quickly.
     537              :      *
     538              :      * A transaction is flagged as RO_SAFE if all concurrent R/W transactions
     539              :      * commit without having conflicts out to an earlier snapshot, thus
     540              :      * ensuring that no conflicts are possible for this transaction.
     541              :      */
     542       152834 :     if (SxactIsROSafe(MySerializableXact))
     543              :     {
     544           33 :         ReleasePredicateLocks(false, true);
     545           33 :         return false;
     546              :     }
     547              : 
     548              :     /* Check if the relation doesn't participate in predicate locking */
     549       152801 :     if (!PredicateLockingNeededForRelation(relation))
     550       100271 :         return false;
     551              : 
     552        52530 :     return true;                /* no excuse to skip predicate locking */
     553              : }
     554              : 
     555              : /*
     556              :  * Like SerializationNeededForRead(), but called on writes.
     557              :  * The logic is the same, but there is no snapshot and we can't be RO-safe.
     558              :  */
     559              : static inline bool
     560     16746877 : SerializationNeededForWrite(Relation relation)
     561              : {
     562              :     /* Nothing to do if this is not a serializable transaction */
     563     16746877 :     if (MySerializableXact == InvalidSerializableXact)
     564     16738892 :         return false;
     565              : 
     566              :     /* Check if the relation doesn't participate in predicate locking */
     567         7985 :     if (!PredicateLockingNeededForRelation(relation))
     568         3487 :         return false;
     569              : 
     570         4498 :     return true;                /* no excuse to skip predicate locking */
     571              : }
     572              : 
     573              : 
     574              : /*------------------------------------------------------------------------*/
     575              : 
     576              : /*
     577              :  * These functions are a simple implementation of a list for this specific
     578              :  * type of struct.  If there is ever a generalized shared memory list, we
     579              :  * should probably switch to that.
     580              :  */
     581              : static SERIALIZABLEXACT *
     582         2815 : CreatePredXact(void)
     583              : {
     584              :     SERIALIZABLEXACT *sxact;
     585              : 
     586         2815 :     if (dlist_is_empty(&PredXact->availableList))
     587            0 :         return NULL;
     588              : 
     589         2815 :     sxact = dlist_container(SERIALIZABLEXACT, xactLink,
     590              :                             dlist_pop_head_node(&PredXact->availableList));
     591         2815 :     dlist_push_tail(&PredXact->activeList, &sxact->xactLink);
     592         2815 :     return sxact;
     593              : }
     594              : 
     595              : static void
     596         1675 : ReleasePredXact(SERIALIZABLEXACT *sxact)
     597              : {
     598              :     Assert(ShmemAddrIsValid(sxact));
     599              : 
     600         1675 :     dlist_delete(&sxact->xactLink);
     601         1675 :     dlist_push_tail(&PredXact->availableList, &sxact->xactLink);
     602         1675 : }
     603              : 
     604              : /*------------------------------------------------------------------------*/
     605              : 
     606              : /*
     607              :  * These functions manage primitive access to the RWConflict pool and lists.
     608              :  */
     609              : static bool
     610         1890 : RWConflictExists(const SERIALIZABLEXACT *reader, const SERIALIZABLEXACT *writer)
     611              : {
     612              :     dlist_iter  iter;
     613              : 
     614              :     Assert(reader != writer);
     615              : 
     616              :     /* Check the ends of the purported conflict first. */
     617         1890 :     if (SxactIsDoomed(reader)
     618         1890 :         || SxactIsDoomed(writer)
     619         1890 :         || dlist_is_empty(&reader->outConflicts)
     620          569 :         || dlist_is_empty(&writer->inConflicts))
     621         1361 :         return false;
     622              : 
     623              :     /*
     624              :      * A conflict is possible; walk the list to find out.
     625              :      *
     626              :      * The unconstify is needed as we have no const version of
     627              :      * dlist_foreach().
     628              :      */
     629          545 :     dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->outConflicts)
     630              :     {
     631          529 :         RWConflict  conflict =
     632              :             dlist_container(RWConflictData, outLink, iter.cur);
     633              : 
     634          529 :         if (conflict->sxactIn == writer)
     635          513 :             return true;
     636              :     }
     637              : 
     638              :     /* No conflict found. */
     639           16 :     return false;
     640              : }
     641              : 
     642              : static void
     643          792 : SetRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
     644              : {
     645              :     RWConflict  conflict;
     646              : 
     647              :     Assert(reader != writer);
     648              :     Assert(!RWConflictExists(reader, writer));
     649              : 
     650          792 :     if (dlist_is_empty(&RWConflictPool->availableList))
     651            0 :         ereport(ERROR,
     652              :                 (errcode(ERRCODE_OUT_OF_MEMORY),
     653              :                  errmsg("not enough elements in RWConflictPool to record a read/write conflict"),
     654              :                  errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
     655              : 
     656          792 :     conflict = dlist_head_element(RWConflictData, outLink, &RWConflictPool->availableList);
     657          792 :     dlist_delete(&conflict->outLink);
     658              : 
     659          792 :     conflict->sxactOut = reader;
     660          792 :     conflict->sxactIn = writer;
     661          792 :     dlist_push_tail(&reader->outConflicts, &conflict->outLink);
     662          792 :     dlist_push_tail(&writer->inConflicts, &conflict->inLink);
     663          792 : }
     664              : 
     665              : static void
     666          134 : SetPossibleUnsafeConflict(SERIALIZABLEXACT *roXact,
     667              :                           SERIALIZABLEXACT *activeXact)
     668              : {
     669              :     RWConflict  conflict;
     670              : 
     671              :     Assert(roXact != activeXact);
     672              :     Assert(SxactIsReadOnly(roXact));
     673              :     Assert(!SxactIsReadOnly(activeXact));
     674              : 
     675          134 :     if (dlist_is_empty(&RWConflictPool->availableList))
     676            0 :         ereport(ERROR,
     677              :                 (errcode(ERRCODE_OUT_OF_MEMORY),
     678              :                  errmsg("not enough elements in RWConflictPool to record a potential read/write conflict"),
     679              :                  errhint("You might need to run fewer transactions at a time or increase \"max_connections\".")));
     680              : 
     681          134 :     conflict = dlist_head_element(RWConflictData, outLink, &RWConflictPool->availableList);
     682          134 :     dlist_delete(&conflict->outLink);
     683              : 
     684          134 :     conflict->sxactOut = activeXact;
     685          134 :     conflict->sxactIn = roXact;
     686          134 :     dlist_push_tail(&activeXact->possibleUnsafeConflicts, &conflict->outLink);
     687          134 :     dlist_push_tail(&roXact->possibleUnsafeConflicts, &conflict->inLink);
     688          134 : }
     689              : 
     690              : static void
     691          926 : ReleaseRWConflict(RWConflict conflict)
     692              : {
     693          926 :     dlist_delete(&conflict->inLink);
     694          926 :     dlist_delete(&conflict->outLink);
     695          926 :     dlist_push_tail(&RWConflictPool->availableList, &conflict->outLink);
     696          926 : }
     697              : 
     698              : static void
     699            3 : FlagSxactUnsafe(SERIALIZABLEXACT *sxact)
     700              : {
     701              :     dlist_mutable_iter iter;
     702              : 
     703              :     Assert(SxactIsReadOnly(sxact));
     704              :     Assert(!SxactIsROSafe(sxact));
     705              : 
     706            3 :     sxact->flags |= SXACT_FLAG_RO_UNSAFE;
     707              : 
     708              :     /*
     709              :      * We know this isn't a safe snapshot, so we can stop looking for other
     710              :      * potential conflicts.
     711              :      */
     712            6 :     dlist_foreach_modify(iter, &sxact->possibleUnsafeConflicts)
     713              :     {
     714            3 :         RWConflict  conflict =
     715            3 :             dlist_container(RWConflictData, inLink, iter.cur);
     716              : 
     717              :         Assert(!SxactIsReadOnly(conflict->sxactOut));
     718              :         Assert(sxact == conflict->sxactIn);
     719              : 
     720            3 :         ReleaseRWConflict(conflict);
     721              :     }
     722            3 : }
     723              : 
     724              : /*------------------------------------------------------------------------*/
     725              : 
     726              : /*
     727              :  * Decide whether a Serial page number is "older" for truncation purposes.
     728              :  * Analogous to CLOGPagePrecedes().
     729              :  */
     730              : static bool
     731            0 : SerialPagePrecedesLogically(int64 page1, int64 page2)
     732              : {
     733              :     TransactionId xid1;
     734              :     TransactionId xid2;
     735              : 
     736            0 :     xid1 = ((TransactionId) page1) * SERIAL_ENTRIESPERPAGE;
     737            0 :     xid1 += FirstNormalTransactionId + 1;
     738            0 :     xid2 = ((TransactionId) page2) * SERIAL_ENTRIESPERPAGE;
     739            0 :     xid2 += FirstNormalTransactionId + 1;
     740              : 
     741            0 :     return (TransactionIdPrecedes(xid1, xid2) &&
     742            0 :             TransactionIdPrecedes(xid1, xid2 + SERIAL_ENTRIESPERPAGE - 1));
     743              : }
     744              : 
     745              : #ifdef USE_ASSERT_CHECKING
     746              : static void
     747              : SerialPagePrecedesLogicallyUnitTests(void)
     748              : {
     749              :     int         per_page = SERIAL_ENTRIESPERPAGE,
     750              :                 offset = per_page / 2;
     751              :     int64       newestPage,
     752              :                 oldestPage,
     753              :                 headPage,
     754              :                 targetPage;
     755              :     TransactionId newestXact,
     756              :                 oldestXact;
     757              : 
     758              :     /* GetNewTransactionId() has assigned the last XID it can safely use. */
     759              :     newestPage = 2 * SLRU_PAGES_PER_SEGMENT - 1;    /* nothing special */
     760              :     newestXact = newestPage * per_page + offset;
     761              :     Assert(newestXact / per_page == newestPage);
     762              :     oldestXact = newestXact + 1;
     763              :     oldestXact -= 1U << 31;
     764              :     oldestPage = oldestXact / per_page;
     765              : 
     766              :     /*
     767              :      * In this scenario, the SLRU headPage pertains to the last ~1000 XIDs
     768              :      * assigned.  oldestXact finishes, ~2B XIDs having elapsed since it
     769              :      * started.  Further transactions cause us to summarize oldestXact to
     770              :      * tailPage.  Function must return false so SerialAdd() doesn't zero
     771              :      * tailPage (which may contain entries for other old, recently-finished
     772              :      * XIDs) and half the SLRU.  Reaching this requires burning ~2B XIDs in
     773              :      * single-user mode, a negligible possibility.
     774              :      */
     775              :     headPage = newestPage;
     776              :     targetPage = oldestPage;
     777              :     Assert(!SerialPagePrecedesLogically(headPage, targetPage));
     778              : 
     779              :     /*
     780              :      * In this scenario, the SLRU headPage pertains to oldestXact.  We're
     781              :      * summarizing an XID near newestXact.  (Assume few other XIDs used
     782              :      * SERIALIZABLE, hence the minimal headPage advancement.  Assume
     783              :      * oldestXact was long-running and only recently reached the SLRU.)
     784              :      * Function must return true to make SerialAdd() create targetPage.
     785              :      *
     786              :      * Today's implementation mishandles this case, but it doesn't matter
     787              :      * enough to fix.  Verify that the defect affects just one page by
     788              :      * asserting correct treatment of its prior page.  Reaching this case
     789              :      * requires burning ~2B XIDs in single-user mode, a negligible
     790              :      * possibility.  Moreover, if it does happen, the consequence would be
     791              :      * mild, namely a new transaction failing in SimpleLruReadPage().
     792              :      */
     793              :     headPage = oldestPage;
     794              :     targetPage = newestPage;
     795              :     Assert(SerialPagePrecedesLogically(headPage, targetPage - 1));
     796              : #if 0
     797              :     Assert(SerialPagePrecedesLogically(headPage, targetPage));
     798              : #endif
     799              : }
     800              : #endif
     801              : 
     802              : /*
     803              :  * Initialize for the tracking of old serializable committed xids.
     804              :  */
     805              : static void
     806         1140 : SerialInit(void)
     807              : {
     808              :     bool        found;
     809              : 
     810              :     /*
     811              :      * Set up SLRU management of the pg_serial data.
     812              :      */
     813         1140 :     SerialSlruCtl->PagePrecedes = SerialPagePrecedesLogically;
     814         1140 :     SimpleLruInit(SerialSlruCtl, "serializable",
     815              :                   serializable_buffers, 0, "pg_serial",
     816              :                   LWTRANCHE_SERIAL_BUFFER, LWTRANCHE_SERIAL_SLRU,
     817              :                   SYNC_HANDLER_NONE, false);
     818              : #ifdef USE_ASSERT_CHECKING
     819              :     SerialPagePrecedesLogicallyUnitTests();
     820              : #endif
     821              :     SlruPagePrecedesUnitTests(SerialSlruCtl, SERIAL_ENTRIESPERPAGE);
     822              : 
     823              :     /*
     824              :      * Create or attach to the SerialControl structure.
     825              :      */
     826         1140 :     serialControl = (SerialControl)
     827         1140 :         ShmemInitStruct("SerialControlData", sizeof(SerialControlData), &found);
     828              : 
     829              :     Assert(found == IsUnderPostmaster);
     830         1140 :     if (!found)
     831              :     {
     832              :         /*
     833              :          * Set control information to reflect empty SLRU.
     834              :          */
     835         1140 :         LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
     836         1140 :         serialControl->headPage = -1;
     837         1140 :         serialControl->headXid = InvalidTransactionId;
     838         1140 :         serialControl->tailXid = InvalidTransactionId;
     839         1140 :         LWLockRelease(SerialControlLock);
     840              :     }
     841         1140 : }
     842              : 
     843              : /*
     844              :  * GUC check_hook for serializable_buffers
     845              :  */
     846              : bool
     847         1177 : check_serial_buffers(int *newval, void **extra, GucSource source)
     848              : {
     849         1177 :     return check_slru_buffers("serializable_buffers", newval);
     850              : }
     851              : 
     852              : /*
     853              :  * Record a committed read write serializable xid and the minimum
     854              :  * commitSeqNo of any transactions to which this xid had a rw-conflict out.
     855              :  * An invalid commitSeqNo means that there were no conflicts out from xid.
     856              :  */
     857              : static void
     858            0 : SerialAdd(TransactionId xid, SerCommitSeqNo minConflictCommitSeqNo)
     859              : {
     860              :     TransactionId tailXid;
     861              :     int64       targetPage;
     862              :     int         slotno;
     863              :     int64       firstZeroPage;
     864              :     bool        isNewPage;
     865              :     LWLock     *lock;
     866              : 
     867              :     Assert(TransactionIdIsValid(xid));
     868              : 
     869            0 :     targetPage = SerialPage(xid);
     870            0 :     lock = SimpleLruGetBankLock(SerialSlruCtl, targetPage);
     871              : 
     872              :     /*
     873              :      * In this routine, we must hold both SerialControlLock and the SLRU bank
     874              :      * lock simultaneously while making the SLRU data catch up with the new
     875              :      * state that we determine.
     876              :      */
     877            0 :     LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
     878              : 
     879              :     /*
     880              :      * If 'xid' is older than the global xmin (== tailXid), there's no need to
     881              :      * store it, after all. This can happen if the oldest transaction holding
     882              :      * back the global xmin just finished, making 'xid' uninteresting, but
     883              :      * ClearOldPredicateLocks() has not yet run.
     884              :      */
     885            0 :     tailXid = serialControl->tailXid;
     886            0 :     if (!TransactionIdIsValid(tailXid) || TransactionIdPrecedes(xid, tailXid))
     887              :     {
     888            0 :         LWLockRelease(SerialControlLock);
     889            0 :         return;
     890              :     }
     891              : 
     892              :     /*
     893              :      * If the SLRU is currently unused, zero out the whole active region from
     894              :      * tailXid to headXid before taking it into use. Otherwise zero out only
     895              :      * any new pages that enter the tailXid-headXid range as we advance
     896              :      * headXid.
     897              :      */
     898            0 :     if (serialControl->headPage < 0)
     899              :     {
     900            0 :         firstZeroPage = SerialPage(tailXid);
     901            0 :         isNewPage = true;
     902              :     }
     903              :     else
     904              :     {
     905            0 :         firstZeroPage = SerialNextPage(serialControl->headPage);
     906            0 :         isNewPage = SerialPagePrecedesLogically(serialControl->headPage,
     907              :                                                 targetPage);
     908              :     }
     909              : 
     910            0 :     if (!TransactionIdIsValid(serialControl->headXid)
     911            0 :         || TransactionIdFollows(xid, serialControl->headXid))
     912            0 :         serialControl->headXid = xid;
     913            0 :     if (isNewPage)
     914            0 :         serialControl->headPage = targetPage;
     915              : 
     916            0 :     if (isNewPage)
     917              :     {
     918              :         /* Initialize intervening pages; might involve trading locks */
     919              :         for (;;)
     920              :         {
     921            0 :             lock = SimpleLruGetBankLock(SerialSlruCtl, firstZeroPage);
     922            0 :             LWLockAcquire(lock, LW_EXCLUSIVE);
     923            0 :             slotno = SimpleLruZeroPage(SerialSlruCtl, firstZeroPage);
     924            0 :             if (firstZeroPage == targetPage)
     925            0 :                 break;
     926            0 :             firstZeroPage = SerialNextPage(firstZeroPage);
     927            0 :             LWLockRelease(lock);
     928              :         }
     929              :     }
     930              :     else
     931              :     {
     932            0 :         LWLockAcquire(lock, LW_EXCLUSIVE);
     933            0 :         slotno = SimpleLruReadPage(SerialSlruCtl, targetPage, true, xid);
     934              :     }
     935              : 
     936            0 :     SerialValue(slotno, xid) = minConflictCommitSeqNo;
     937            0 :     SerialSlruCtl->shared->page_dirty[slotno] = true;
     938              : 
     939            0 :     LWLockRelease(lock);
     940            0 :     LWLockRelease(SerialControlLock);
     941              : }
     942              : 
     943              : /*
     944              :  * Get the minimum commitSeqNo for any conflict out for the given xid.  For
     945              :  * a transaction which exists but has no conflict out, InvalidSerCommitSeqNo
     946              :  * will be returned.
     947              :  */
     948              : static SerCommitSeqNo
     949           24 : SerialGetMinConflictCommitSeqNo(TransactionId xid)
     950              : {
     951              :     TransactionId headXid;
     952              :     TransactionId tailXid;
     953              :     SerCommitSeqNo val;
     954              :     int         slotno;
     955              : 
     956              :     Assert(TransactionIdIsValid(xid));
     957              : 
     958           24 :     LWLockAcquire(SerialControlLock, LW_SHARED);
     959           24 :     headXid = serialControl->headXid;
     960           24 :     tailXid = serialControl->tailXid;
     961           24 :     LWLockRelease(SerialControlLock);
     962              : 
     963           24 :     if (!TransactionIdIsValid(headXid))
     964           24 :         return 0;
     965              : 
     966              :     Assert(TransactionIdIsValid(tailXid));
     967              : 
     968            0 :     if (TransactionIdPrecedes(xid, tailXid)
     969            0 :         || TransactionIdFollows(xid, headXid))
     970            0 :         return 0;
     971              : 
     972              :     /*
     973              :      * The following function must be called without holding SLRU bank lock,
     974              :      * but will return with that lock held, which must then be released.
     975              :      */
     976            0 :     slotno = SimpleLruReadPage_ReadOnly(SerialSlruCtl,
     977              :                                         SerialPage(xid), xid);
     978            0 :     val = SerialValue(slotno, xid);
     979            0 :     LWLockRelease(SimpleLruGetBankLock(SerialSlruCtl, SerialPage(xid)));
     980            0 :     return val;
     981              : }
     982              : 
     983              : /*
     984              :  * Call this whenever there is a new xmin for active serializable
     985              :  * transactions.  We don't need to keep information on transactions which
     986              :  * precede that.  InvalidTransactionId means none active, so everything in
     987              :  * the SLRU can be discarded.
     988              :  */
     989              : static void
     990         1700 : SerialSetActiveSerXmin(TransactionId xid)
     991              : {
     992         1700 :     LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
     993              : 
     994              :     /*
     995              :      * When no sxacts are active, nothing overlaps, set the xid values to
     996              :      * invalid to show that there are no valid entries.  Don't clear headPage,
     997              :      * though.  A new xmin might still land on that page, and we don't want to
     998              :      * repeatedly zero out the same page.
     999              :      */
    1000         1700 :     if (!TransactionIdIsValid(xid))
    1001              :     {
    1002          840 :         serialControl->tailXid = InvalidTransactionId;
    1003          840 :         serialControl->headXid = InvalidTransactionId;
    1004          840 :         LWLockRelease(SerialControlLock);
    1005          840 :         return;
    1006              :     }
    1007              : 
    1008              :     /*
    1009              :      * When we're recovering prepared transactions, the global xmin might move
    1010              :      * backwards depending on the order they're recovered. Normally that's not
    1011              :      * OK, but during recovery no serializable transactions will commit, so
    1012              :      * the SLRU is empty and we can get away with it.
    1013              :      */
    1014          860 :     if (RecoveryInProgress())
    1015              :     {
    1016              :         Assert(serialControl->headPage < 0);
    1017            0 :         if (!TransactionIdIsValid(serialControl->tailXid)
    1018            0 :             || TransactionIdPrecedes(xid, serialControl->tailXid))
    1019              :         {
    1020            0 :             serialControl->tailXid = xid;
    1021              :         }
    1022            0 :         LWLockRelease(SerialControlLock);
    1023            0 :         return;
    1024              :     }
    1025              : 
    1026              :     Assert(!TransactionIdIsValid(serialControl->tailXid)
    1027              :            || TransactionIdFollows(xid, serialControl->tailXid));
    1028              : 
    1029          860 :     serialControl->tailXid = xid;
    1030              : 
    1031          860 :     LWLockRelease(SerialControlLock);
    1032              : }
    1033              : 
    1034              : /*
    1035              :  * Perform a checkpoint --- either during shutdown, or on-the-fly
    1036              :  *
    1037              :  * We don't have any data that needs to survive a restart, but this is a
    1038              :  * convenient place to truncate the SLRU.
    1039              :  */
    1040              : void
    1041         1783 : CheckPointPredicate(void)
    1042              : {
    1043              :     int64       truncateCutoffPage;
    1044              : 
    1045         1783 :     LWLockAcquire(SerialControlLock, LW_EXCLUSIVE);
    1046              : 
    1047              :     /* Exit quickly if the SLRU is currently not in use. */
    1048         1783 :     if (serialControl->headPage < 0)
    1049              :     {
    1050         1783 :         LWLockRelease(SerialControlLock);
    1051         1783 :         return;
    1052              :     }
    1053              : 
    1054            0 :     if (TransactionIdIsValid(serialControl->tailXid))
    1055              :     {
    1056              :         int64       tailPage;
    1057              : 
    1058            0 :         tailPage = SerialPage(serialControl->tailXid);
    1059              : 
    1060              :         /*
    1061              :          * It is possible for the tailXid to be ahead of the headXid.  This
    1062              :          * occurs if we checkpoint while there are in-progress serializable
    1063              :          * transaction(s) advancing the tail but we are yet to summarize the
    1064              :          * transactions.  In this case, we cutoff up to the headPage and the
    1065              :          * next summary will advance the headXid.
    1066              :          */
    1067            0 :         if (SerialPagePrecedesLogically(tailPage, serialControl->headPage))
    1068              :         {
    1069              :             /* We can truncate the SLRU up to the page containing tailXid */
    1070            0 :             truncateCutoffPage = tailPage;
    1071              :         }
    1072              :         else
    1073            0 :             truncateCutoffPage = serialControl->headPage;
    1074              :     }
    1075              :     else
    1076              :     {
    1077              :         /*----------
    1078              :          * The SLRU is no longer needed. Truncate to head before we set head
    1079              :          * invalid.
    1080              :          *
    1081              :          * XXX: It's possible that the SLRU is not needed again until XID
    1082              :          * wrap-around has happened, so that the segment containing headPage
    1083              :          * that we leave behind will appear to be new again. In that case it
    1084              :          * won't be removed until XID horizon advances enough to make it
    1085              :          * current again.
    1086              :          *
    1087              :          * XXX: This should happen in vac_truncate_clog(), not in checkpoints.
    1088              :          * Consider this scenario, starting from a system with no in-progress
    1089              :          * transactions and VACUUM FREEZE having maximized oldestXact:
    1090              :          * - Start a SERIALIZABLE transaction.
    1091              :          * - Start, finish, and summarize a SERIALIZABLE transaction, creating
    1092              :          *   one SLRU page.
    1093              :          * - Consume XIDs to reach xidStopLimit.
    1094              :          * - Finish all transactions.  Due to the long-running SERIALIZABLE
    1095              :          *   transaction, earlier checkpoints did not touch headPage.  The
    1096              :          *   next checkpoint will change it, but that checkpoint happens after
    1097              :          *   the end of the scenario.
    1098              :          * - VACUUM to advance XID limits.
    1099              :          * - Consume ~2M XIDs, crossing the former xidWrapLimit.
    1100              :          * - Start, finish, and summarize a SERIALIZABLE transaction.
    1101              :          *   SerialAdd() declines to create the targetPage, because headPage
    1102              :          *   is not regarded as in the past relative to that targetPage.  The
    1103              :          *   transaction instigating the summarize fails in
    1104              :          *   SimpleLruReadPage().
    1105              :          */
    1106            0 :         truncateCutoffPage = serialControl->headPage;
    1107            0 :         serialControl->headPage = -1;
    1108              :     }
    1109              : 
    1110            0 :     LWLockRelease(SerialControlLock);
    1111              : 
    1112              :     /*
    1113              :      * Truncate away pages that are no longer required.  Note that no
    1114              :      * additional locking is required, because this is only called as part of
    1115              :      * a checkpoint, and the validity limits have already been determined.
    1116              :      */
    1117            0 :     SimpleLruTruncate(SerialSlruCtl, truncateCutoffPage);
    1118              : 
    1119              :     /*
    1120              :      * Write dirty SLRU pages to disk
    1121              :      *
    1122              :      * This is not actually necessary from a correctness point of view. We do
    1123              :      * it merely as a debugging aid.
    1124              :      *
    1125              :      * We're doing this after the truncation to avoid writing pages right
    1126              :      * before deleting the file in which they sit, which would be completely
    1127              :      * pointless.
    1128              :      */
    1129            0 :     SimpleLruWriteAll(SerialSlruCtl, true);
    1130              : }
    1131              : 
    1132              : /*------------------------------------------------------------------------*/
    1133              : 
    1134              : /*
    1135              :  * PredicateLockShmemInit -- Initialize the predicate locking data structures.
    1136              :  *
    1137              :  * This is called from CreateSharedMemoryAndSemaphores(), which see for
    1138              :  * more comments.  In the normal postmaster case, the shared hash tables
    1139              :  * are created here.  Backends inherit the pointers
    1140              :  * to the shared tables via fork().  In the EXEC_BACKEND case, each
    1141              :  * backend re-executes this code to obtain pointers to the already existing
    1142              :  * shared hash tables.
    1143              :  */
    1144              : void
    1145         1140 : PredicateLockShmemInit(void)
    1146              : {
    1147              :     HASHCTL     info;
    1148              :     int64       max_table_size;
    1149              :     Size        requestSize;
    1150              :     bool        found;
    1151              : 
    1152              : #ifndef EXEC_BACKEND
    1153              :     Assert(!IsUnderPostmaster);
    1154              : #endif
    1155              : 
    1156              :     /*
    1157              :      * Compute size of predicate lock target hashtable. Note these
    1158              :      * calculations must agree with PredicateLockShmemSize!
    1159              :      */
    1160         1140 :     max_table_size = NPREDICATELOCKTARGETENTS();
    1161              : 
    1162              :     /*
    1163              :      * Allocate hash table for PREDICATELOCKTARGET structs.  This stores
    1164              :      * per-predicate-lock-target information.
    1165              :      */
    1166         1140 :     info.keysize = sizeof(PREDICATELOCKTARGETTAG);
    1167         1140 :     info.entrysize = sizeof(PREDICATELOCKTARGET);
    1168         1140 :     info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
    1169              : 
    1170         1140 :     PredicateLockTargetHash = ShmemInitHash("PREDICATELOCKTARGET hash",
    1171              :                                             max_table_size,
    1172              :                                             max_table_size,
    1173              :                                             &info,
    1174              :                                             HASH_ELEM | HASH_BLOBS |
    1175              :                                             HASH_PARTITION | HASH_FIXED_SIZE);
    1176              : 
    1177              :     /*
    1178              :      * Reserve a dummy entry in the hash table; we use it to make sure there's
    1179              :      * always one entry available when we need to split or combine a page,
    1180              :      * because running out of space there could mean aborting a
    1181              :      * non-serializable transaction.
    1182              :      */
    1183         1140 :     if (!IsUnderPostmaster)
    1184              :     {
    1185         1140 :         (void) hash_search(PredicateLockTargetHash, &ScratchTargetTag,
    1186              :                            HASH_ENTER, &found);
    1187              :         Assert(!found);
    1188              :     }
    1189              : 
    1190              :     /* Pre-calculate the hash and partition lock of the scratch entry */
    1191         1140 :     ScratchTargetTagHash = PredicateLockTargetTagHashCode(&ScratchTargetTag);
    1192         1140 :     ScratchPartitionLock = PredicateLockHashPartitionLock(ScratchTargetTagHash);
    1193              : 
    1194              :     /*
    1195              :      * Allocate hash table for PREDICATELOCK structs.  This stores per
    1196              :      * xact-lock-of-a-target information.
    1197              :      */
    1198         1140 :     info.keysize = sizeof(PREDICATELOCKTAG);
    1199         1140 :     info.entrysize = sizeof(PREDICATELOCK);
    1200         1140 :     info.hash = predicatelock_hash;
    1201         1140 :     info.num_partitions = NUM_PREDICATELOCK_PARTITIONS;
    1202              : 
    1203              :     /* Assume an average of 2 xacts per target */
    1204         1140 :     max_table_size *= 2;
    1205              : 
    1206         1140 :     PredicateLockHash = ShmemInitHash("PREDICATELOCK hash",
    1207              :                                       max_table_size,
    1208              :                                       max_table_size,
    1209              :                                       &info,
    1210              :                                       HASH_ELEM | HASH_FUNCTION |
    1211              :                                       HASH_PARTITION | HASH_FIXED_SIZE);
    1212              : 
    1213              :     /*
    1214              :      * Compute size for serializable transaction hashtable. Note these
    1215              :      * calculations must agree with PredicateLockShmemSize!
    1216              :      */
    1217         1140 :     max_table_size = (MaxBackends + max_prepared_xacts);
    1218              : 
    1219              :     /*
    1220              :      * Allocate a list to hold information on transactions participating in
    1221              :      * predicate locking.
    1222              :      *
    1223              :      * Assume an average of 10 predicate locking transactions per backend.
    1224              :      * This allows aggressive cleanup while detail is present before data must
    1225              :      * be summarized for storage in SLRU and the "dummy" transaction.
    1226              :      */
    1227         1140 :     max_table_size *= 10;
    1228              : 
    1229         1140 :     requestSize = add_size(PredXactListDataSize,
    1230              :                            (mul_size((Size) max_table_size,
    1231              :                                      sizeof(SERIALIZABLEXACT))));
    1232              : 
    1233         1140 :     PredXact = ShmemInitStruct("PredXactList",
    1234              :                                requestSize,
    1235              :                                &found);
    1236              :     Assert(found == IsUnderPostmaster);
    1237         1140 :     if (!found)
    1238              :     {
    1239              :         int         i;
    1240              : 
    1241              :         /* clean everything, both the header and the element */
    1242         1140 :         memset(PredXact, 0, requestSize);
    1243              : 
    1244         1140 :         dlist_init(&PredXact->availableList);
    1245         1140 :         dlist_init(&PredXact->activeList);
    1246         1140 :         PredXact->SxactGlobalXmin = InvalidTransactionId;
    1247         1140 :         PredXact->SxactGlobalXminCount = 0;
    1248         1140 :         PredXact->WritableSxactCount = 0;
    1249         1140 :         PredXact->LastSxactCommitSeqNo = FirstNormalSerCommitSeqNo - 1;
    1250         1140 :         PredXact->CanPartialClearThrough = 0;
    1251         1140 :         PredXact->HavePartialClearedThrough = 0;
    1252         1140 :         PredXact->element
    1253         1140 :             = (SERIALIZABLEXACT *) ((char *) PredXact + PredXactListDataSize);
    1254              :         /* Add all elements to available list, clean. */
    1255      1055800 :         for (i = 0; i < max_table_size; i++)
    1256              :         {
    1257      1054660 :             LWLockInitialize(&PredXact->element[i].perXactPredicateListLock,
    1258              :                              LWTRANCHE_PER_XACT_PREDICATE_LIST);
    1259      1054660 :             dlist_push_tail(&PredXact->availableList, &PredXact->element[i].xactLink);
    1260              :         }
    1261         1140 :         PredXact->OldCommittedSxact = CreatePredXact();
    1262         1140 :         SetInvalidVirtualTransactionId(PredXact->OldCommittedSxact->vxid);
    1263         1140 :         PredXact->OldCommittedSxact->prepareSeqNo = 0;
    1264         1140 :         PredXact->OldCommittedSxact->commitSeqNo = 0;
    1265         1140 :         PredXact->OldCommittedSxact->SeqNo.lastCommitBeforeSnapshot = 0;
    1266         1140 :         dlist_init(&PredXact->OldCommittedSxact->outConflicts);
    1267         1140 :         dlist_init(&PredXact->OldCommittedSxact->inConflicts);
    1268         1140 :         dlist_init(&PredXact->OldCommittedSxact->predicateLocks);
    1269         1140 :         dlist_node_init(&PredXact->OldCommittedSxact->finishedLink);
    1270         1140 :         dlist_init(&PredXact->OldCommittedSxact->possibleUnsafeConflicts);
    1271         1140 :         PredXact->OldCommittedSxact->topXid = InvalidTransactionId;
    1272         1140 :         PredXact->OldCommittedSxact->finishedBefore = InvalidTransactionId;
    1273         1140 :         PredXact->OldCommittedSxact->xmin = InvalidTransactionId;
    1274         1140 :         PredXact->OldCommittedSxact->flags = SXACT_FLAG_COMMITTED;
    1275         1140 :         PredXact->OldCommittedSxact->pid = 0;
    1276         1140 :         PredXact->OldCommittedSxact->pgprocno = INVALID_PROC_NUMBER;
    1277              :     }
    1278              :     /* This never changes, so let's keep a local copy. */
    1279         1140 :     OldCommittedSxact = PredXact->OldCommittedSxact;
    1280              : 
    1281              :     /*
    1282              :      * Allocate hash table for SERIALIZABLEXID structs.  This stores per-xid
    1283              :      * information for serializable transactions which have accessed data.
    1284              :      */
    1285         1140 :     info.keysize = sizeof(SERIALIZABLEXIDTAG);
    1286         1140 :     info.entrysize = sizeof(SERIALIZABLEXID);
    1287              : 
    1288         1140 :     SerializableXidHash = ShmemInitHash("SERIALIZABLEXID hash",
    1289              :                                         max_table_size,
    1290              :                                         max_table_size,
    1291              :                                         &info,
    1292              :                                         HASH_ELEM | HASH_BLOBS |
    1293              :                                         HASH_FIXED_SIZE);
    1294              : 
    1295              :     /*
    1296              :      * Allocate space for tracking rw-conflicts in lists attached to the
    1297              :      * transactions.
    1298              :      *
    1299              :      * Assume an average of 5 conflicts per transaction.  Calculations suggest
    1300              :      * that this will prevent resource exhaustion in even the most pessimal
    1301              :      * loads up to max_connections = 200 with all 200 connections pounding the
    1302              :      * database with serializable transactions.  Beyond that, there may be
    1303              :      * occasional transactions canceled when trying to flag conflicts. That's
    1304              :      * probably OK.
    1305              :      */
    1306         1140 :     max_table_size *= 5;
    1307              : 
    1308         1140 :     requestSize = RWConflictPoolHeaderDataSize +
    1309         1140 :         mul_size((Size) max_table_size,
    1310              :                  RWConflictDataSize);
    1311              : 
    1312         1140 :     RWConflictPool = ShmemInitStruct("RWConflictPool",
    1313              :                                      requestSize,
    1314              :                                      &found);
    1315              :     Assert(found == IsUnderPostmaster);
    1316         1140 :     if (!found)
    1317              :     {
    1318              :         int         i;
    1319              : 
    1320              :         /* clean everything, including the elements */
    1321         1140 :         memset(RWConflictPool, 0, requestSize);
    1322              : 
    1323         1140 :         dlist_init(&RWConflictPool->availableList);
    1324         1140 :         RWConflictPool->element = (RWConflict) ((char *) RWConflictPool +
    1325              :                                                 RWConflictPoolHeaderDataSize);
    1326              :         /* Add all elements to available list, clean. */
    1327      5274440 :         for (i = 0; i < max_table_size; i++)
    1328              :         {
    1329      5273300 :             dlist_push_tail(&RWConflictPool->availableList,
    1330      5273300 :                             &RWConflictPool->element[i].outLink);
    1331              :         }
    1332              :     }
    1333              : 
    1334              :     /*
    1335              :      * Create or attach to the header for the list of finished serializable
    1336              :      * transactions.
    1337              :      */
    1338         1140 :     FinishedSerializableTransactions = (dlist_head *)
    1339         1140 :         ShmemInitStruct("FinishedSerializableTransactions",
    1340              :                         sizeof(dlist_head),
    1341              :                         &found);
    1342              :     Assert(found == IsUnderPostmaster);
    1343         1140 :     if (!found)
    1344         1140 :         dlist_init(FinishedSerializableTransactions);
    1345              : 
    1346              :     /*
    1347              :      * Initialize the SLRU storage for old committed serializable
    1348              :      * transactions.
    1349              :      */
    1350         1140 :     SerialInit();
    1351         1140 : }
    1352              : 
    1353              : /*
    1354              :  * Estimate shared-memory space used for predicate lock table
    1355              :  */
    1356              : Size
    1357         2127 : PredicateLockShmemSize(void)
    1358              : {
    1359         2127 :     Size        size = 0;
    1360              :     long        max_table_size;
    1361              : 
    1362              :     /* predicate lock target hash table */
    1363         2127 :     max_table_size = NPREDICATELOCKTARGETENTS();
    1364         2127 :     size = add_size(size, hash_estimate_size(max_table_size,
    1365              :                                              sizeof(PREDICATELOCKTARGET)));
    1366              : 
    1367              :     /* predicate lock hash table */
    1368         2127 :     max_table_size *= 2;
    1369         2127 :     size = add_size(size, hash_estimate_size(max_table_size,
    1370              :                                              sizeof(PREDICATELOCK)));
    1371              : 
    1372              :     /*
    1373              :      * Since NPREDICATELOCKTARGETENTS is only an estimate, add 10% safety
    1374              :      * margin.
    1375              :      */
    1376         2127 :     size = add_size(size, size / 10);
    1377              : 
    1378              :     /* transaction list */
    1379         2127 :     max_table_size = MaxBackends + max_prepared_xacts;
    1380         2127 :     max_table_size *= 10;
    1381         2127 :     size = add_size(size, PredXactListDataSize);
    1382         2127 :     size = add_size(size, mul_size((Size) max_table_size,
    1383              :                                    sizeof(SERIALIZABLEXACT)));
    1384              : 
    1385              :     /* transaction xid table */
    1386         2127 :     size = add_size(size, hash_estimate_size(max_table_size,
    1387              :                                              sizeof(SERIALIZABLEXID)));
    1388              : 
    1389              :     /* rw-conflict pool */
    1390         2127 :     max_table_size *= 5;
    1391         2127 :     size = add_size(size, RWConflictPoolHeaderDataSize);
    1392         2127 :     size = add_size(size, mul_size((Size) max_table_size,
    1393              :                                    RWConflictDataSize));
    1394              : 
    1395              :     /* Head for list of finished serializable transactions. */
    1396         2127 :     size = add_size(size, sizeof(dlist_head));
    1397              : 
    1398              :     /* Shared memory structures for SLRU tracking of old committed xids. */
    1399         2127 :     size = add_size(size, sizeof(SerialControlData));
    1400         2127 :     size = add_size(size, SimpleLruShmemSize(serializable_buffers, 0));
    1401              : 
    1402         2127 :     return size;
    1403              : }
    1404              : 
    1405              : 
    1406              : /*
    1407              :  * Compute the hash code associated with a PREDICATELOCKTAG.
    1408              :  *
    1409              :  * Because we want to use just one set of partition locks for both the
    1410              :  * PREDICATELOCKTARGET and PREDICATELOCK hash tables, we have to make sure
    1411              :  * that PREDICATELOCKs fall into the same partition number as their
    1412              :  * associated PREDICATELOCKTARGETs.  dynahash.c expects the partition number
    1413              :  * to be the low-order bits of the hash code, and therefore a
    1414              :  * PREDICATELOCKTAG's hash code must have the same low-order bits as the
    1415              :  * associated PREDICATELOCKTARGETTAG's hash code.  We achieve this with this
    1416              :  * specialized hash function.
    1417              :  */
    1418              : static uint32
    1419            0 : predicatelock_hash(const void *key, Size keysize)
    1420              : {
    1421            0 :     const PREDICATELOCKTAG *predicatelocktag = (const PREDICATELOCKTAG *) key;
    1422              :     uint32      targethash;
    1423              : 
    1424              :     Assert(keysize == sizeof(PREDICATELOCKTAG));
    1425              : 
    1426              :     /* Look into the associated target object, and compute its hash code */
    1427            0 :     targethash = PredicateLockTargetTagHashCode(&predicatelocktag->myTarget->tag);
    1428              : 
    1429            0 :     return PredicateLockHashCodeFromTargetHashCode(predicatelocktag, targethash);
    1430              : }
    1431              : 
    1432              : 
    1433              : /*
    1434              :  * GetPredicateLockStatusData
    1435              :  *      Return a table containing the internal state of the predicate
    1436              :  *      lock manager for use in pg_lock_status.
    1437              :  *
    1438              :  * Like GetLockStatusData, this function tries to hold the partition LWLocks
    1439              :  * for as short a time as possible by returning two arrays that simply
    1440              :  * contain the PREDICATELOCKTARGETTAG and SERIALIZABLEXACT for each lock
    1441              :  * table entry. Multiple copies of the same PREDICATELOCKTARGETTAG and
    1442              :  * SERIALIZABLEXACT will likely appear.
    1443              :  */
    1444              : PredicateLockData *
    1445          226 : GetPredicateLockStatusData(void)
    1446              : {
    1447              :     PredicateLockData *data;
    1448              :     int         i;
    1449              :     int         els,
    1450              :                 el;
    1451              :     HASH_SEQ_STATUS seqstat;
    1452              :     PREDICATELOCK *predlock;
    1453              : 
    1454          226 :     data = palloc_object(PredicateLockData);
    1455              : 
    1456              :     /*
    1457              :      * To ensure consistency, take simultaneous locks on all partition locks
    1458              :      * in ascending order, then SerializableXactHashLock.
    1459              :      */
    1460         3842 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    1461         3616 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
    1462          226 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    1463              : 
    1464              :     /* Get number of locks and allocate appropriately-sized arrays. */
    1465          226 :     els = hash_get_num_entries(PredicateLockHash);
    1466          226 :     data->nelements = els;
    1467          226 :     data->locktags = palloc_array(PREDICATELOCKTARGETTAG, els);
    1468          226 :     data->xacts = palloc_array(SERIALIZABLEXACT, els);
    1469              : 
    1470              : 
    1471              :     /* Scan through PredicateLockHash and copy contents */
    1472          226 :     hash_seq_init(&seqstat, PredicateLockHash);
    1473              : 
    1474          226 :     el = 0;
    1475              : 
    1476          229 :     while ((predlock = (PREDICATELOCK *) hash_seq_search(&seqstat)))
    1477              :     {
    1478            3 :         data->locktags[el] = predlock->tag.myTarget->tag;
    1479            3 :         data->xacts[el] = *predlock->tag.myXact;
    1480            3 :         el++;
    1481              :     }
    1482              : 
    1483              :     Assert(el == els);
    1484              : 
    1485              :     /* Release locks in reverse order */
    1486          226 :     LWLockRelease(SerializableXactHashLock);
    1487         3842 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    1488         3616 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    1489              : 
    1490          226 :     return data;
    1491              : }
    1492              : 
    1493              : /*
    1494              :  * Free up shared memory structures by pushing the oldest sxact (the one at
    1495              :  * the front of the SummarizeOldestCommittedSxact queue) into summary form.
    1496              :  * Each call will free exactly one SERIALIZABLEXACT structure and may also
    1497              :  * free one or more of these structures: SERIALIZABLEXID, PREDICATELOCK,
    1498              :  * PREDICATELOCKTARGET, RWConflictData.
    1499              :  */
    1500              : static void
    1501            0 : SummarizeOldestCommittedSxact(void)
    1502              : {
    1503              :     SERIALIZABLEXACT *sxact;
    1504              : 
    1505            0 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    1506              : 
    1507              :     /*
    1508              :      * This function is only called if there are no sxact slots available.
    1509              :      * Some of them must belong to old, already-finished transactions, so
    1510              :      * there should be something in FinishedSerializableTransactions list that
    1511              :      * we can summarize. However, there's a race condition: while we were not
    1512              :      * holding any locks, a transaction might have ended and cleaned up all
    1513              :      * the finished sxact entries already, freeing up their sxact slots. In
    1514              :      * that case, we have nothing to do here. The caller will find one of the
    1515              :      * slots released by the other backend when it retries.
    1516              :      */
    1517            0 :     if (dlist_is_empty(FinishedSerializableTransactions))
    1518              :     {
    1519            0 :         LWLockRelease(SerializableFinishedListLock);
    1520            0 :         return;
    1521              :     }
    1522              : 
    1523              :     /*
    1524              :      * Grab the first sxact off the finished list -- this will be the earliest
    1525              :      * commit.  Remove it from the list.
    1526              :      */
    1527            0 :     sxact = dlist_head_element(SERIALIZABLEXACT, finishedLink,
    1528              :                                FinishedSerializableTransactions);
    1529            0 :     dlist_delete_thoroughly(&sxact->finishedLink);
    1530              : 
    1531              :     /* Add to SLRU summary information. */
    1532            0 :     if (TransactionIdIsValid(sxact->topXid) && !SxactIsReadOnly(sxact))
    1533            0 :         SerialAdd(sxact->topXid, SxactHasConflictOut(sxact)
    1534              :                   ? sxact->SeqNo.earliestOutConflictCommit : InvalidSerCommitSeqNo);
    1535              : 
    1536              :     /* Summarize and release the detail. */
    1537            0 :     ReleaseOneSerializableXact(sxact, false, true);
    1538              : 
    1539            0 :     LWLockRelease(SerializableFinishedListLock);
    1540              : }
    1541              : 
    1542              : /*
    1543              :  * GetSafeSnapshot
    1544              :  *      Obtain and register a snapshot for a READ ONLY DEFERRABLE
    1545              :  *      transaction. Ensures that the snapshot is "safe", i.e. a
    1546              :  *      read-only transaction running on it can execute serializably
    1547              :  *      without further checks. This requires waiting for concurrent
    1548              :  *      transactions to complete, and retrying with a new snapshot if
    1549              :  *      one of them could possibly create a conflict.
    1550              :  *
    1551              :  *      As with GetSerializableTransactionSnapshot (which this is a subroutine
    1552              :  *      for), the passed-in Snapshot pointer should reference a static data
    1553              :  *      area that can safely be passed to GetSnapshotData.
    1554              :  */
    1555              : static Snapshot
    1556            4 : GetSafeSnapshot(Snapshot origSnapshot)
    1557              : {
    1558              :     Snapshot    snapshot;
    1559              : 
    1560              :     Assert(XactReadOnly && XactDeferrable);
    1561              : 
    1562              :     while (true)
    1563              :     {
    1564              :         /*
    1565              :          * GetSerializableTransactionSnapshotInt is going to call
    1566              :          * GetSnapshotData, so we need to provide it the static snapshot area
    1567              :          * our caller passed to us.  The pointer returned is actually the same
    1568              :          * one passed to it, but we avoid assuming that here.
    1569              :          */
    1570            5 :         snapshot = GetSerializableTransactionSnapshotInt(origSnapshot,
    1571              :                                                          NULL, InvalidPid);
    1572              : 
    1573            5 :         if (MySerializableXact == InvalidSerializableXact)
    1574            3 :             return snapshot;    /* no concurrent r/w xacts; it's safe */
    1575              : 
    1576            2 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1577              : 
    1578              :         /*
    1579              :          * Wait for concurrent transactions to finish. Stop early if one of
    1580              :          * them marked us as conflicted.
    1581              :          */
    1582            2 :         MySerializableXact->flags |= SXACT_FLAG_DEFERRABLE_WAITING;
    1583            4 :         while (!(dlist_is_empty(&MySerializableXact->possibleUnsafeConflicts) ||
    1584            2 :                  SxactIsROUnsafe(MySerializableXact)))
    1585              :         {
    1586            2 :             LWLockRelease(SerializableXactHashLock);
    1587            2 :             ProcWaitForSignal(WAIT_EVENT_SAFE_SNAPSHOT);
    1588            2 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1589              :         }
    1590            2 :         MySerializableXact->flags &= ~SXACT_FLAG_DEFERRABLE_WAITING;
    1591              : 
    1592            2 :         if (!SxactIsROUnsafe(MySerializableXact))
    1593              :         {
    1594            1 :             LWLockRelease(SerializableXactHashLock);
    1595            1 :             break;              /* success */
    1596              :         }
    1597              : 
    1598            1 :         LWLockRelease(SerializableXactHashLock);
    1599              : 
    1600              :         /* else, need to retry... */
    1601            1 :         ereport(DEBUG2,
    1602              :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    1603              :                  errmsg_internal("deferrable snapshot was unsafe; trying a new one")));
    1604            1 :         ReleasePredicateLocks(false, false);
    1605              :     }
    1606              : 
    1607              :     /*
    1608              :      * Now we have a safe snapshot, so we don't need to do any further checks.
    1609              :      */
    1610              :     Assert(SxactIsROSafe(MySerializableXact));
    1611            1 :     ReleasePredicateLocks(false, true);
    1612              : 
    1613            1 :     return snapshot;
    1614              : }
    1615              : 
    1616              : /*
    1617              :  * GetSafeSnapshotBlockingPids
    1618              :  *      If the specified process is currently blocked in GetSafeSnapshot,
    1619              :  *      write the process IDs of all processes that it is blocked by
    1620              :  *      into the caller-supplied buffer output[].  The list is truncated at
    1621              :  *      output_size, and the number of PIDs written into the buffer is
    1622              :  *      returned.  Returns zero if the given PID is not currently blocked
    1623              :  *      in GetSafeSnapshot.
    1624              :  */
    1625              : int
    1626         1019 : GetSafeSnapshotBlockingPids(int blocked_pid, int *output, int output_size)
    1627              : {
    1628         1019 :     int         num_written = 0;
    1629              :     dlist_iter  iter;
    1630         1019 :     SERIALIZABLEXACT *blocking_sxact = NULL;
    1631              : 
    1632         1019 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    1633              : 
    1634              :     /* Find blocked_pid's SERIALIZABLEXACT by linear search. */
    1635         2408 :     dlist_foreach(iter, &PredXact->activeList)
    1636              :     {
    1637         1643 :         SERIALIZABLEXACT *sxact =
    1638         1643 :             dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    1639              : 
    1640         1643 :         if (sxact->pid == blocked_pid)
    1641              :         {
    1642          254 :             blocking_sxact = sxact;
    1643          254 :             break;
    1644              :         }
    1645              :     }
    1646              : 
    1647              :     /* Did we find it, and is it currently waiting in GetSafeSnapshot? */
    1648         1019 :     if (blocking_sxact != NULL && SxactIsDeferrableWaiting(blocking_sxact))
    1649              :     {
    1650              :         /* Traverse the list of possible unsafe conflicts collecting PIDs. */
    1651            2 :         dlist_foreach(iter, &blocking_sxact->possibleUnsafeConflicts)
    1652              :         {
    1653            2 :             RWConflict  possibleUnsafeConflict =
    1654            2 :                 dlist_container(RWConflictData, inLink, iter.cur);
    1655              : 
    1656            2 :             output[num_written++] = possibleUnsafeConflict->sxactOut->pid;
    1657              : 
    1658            2 :             if (num_written >= output_size)
    1659            2 :                 break;
    1660              :         }
    1661              :     }
    1662              : 
    1663         1019 :     LWLockRelease(SerializableXactHashLock);
    1664              : 
    1665         1019 :     return num_written;
    1666              : }
    1667              : 
    1668              : /*
    1669              :  * Acquire a snapshot that can be used for the current transaction.
    1670              :  *
    1671              :  * Make sure we have a SERIALIZABLEXACT reference in MySerializableXact.
    1672              :  * It should be current for this process and be contained in PredXact.
    1673              :  *
    1674              :  * The passed-in Snapshot pointer should reference a static data area that
    1675              :  * can safely be passed to GetSnapshotData.  The return value is actually
    1676              :  * always this same pointer; no new snapshot data structure is allocated
    1677              :  * within this function.
    1678              :  */
    1679              : Snapshot
    1680         1674 : GetSerializableTransactionSnapshot(Snapshot snapshot)
    1681              : {
    1682              :     Assert(IsolationIsSerializable());
    1683              : 
    1684              :     /*
    1685              :      * Can't use serializable mode while recovery is still active, as it is,
    1686              :      * for example, on a hot standby.  We could get here despite the check in
    1687              :      * check_transaction_isolation() if default_transaction_isolation is set
    1688              :      * to serializable, so phrase the hint accordingly.
    1689              :      */
    1690         1674 :     if (RecoveryInProgress())
    1691            0 :         ereport(ERROR,
    1692              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1693              :                  errmsg("cannot use serializable mode in a hot standby"),
    1694              :                  errdetail("\"default_transaction_isolation\" is set to \"serializable\"."),
    1695              :                  errhint("You can use \"SET default_transaction_isolation = 'repeatable read'\" to change the default.")));
    1696              : 
    1697              :     /*
    1698              :      * A special optimization is available for SERIALIZABLE READ ONLY
    1699              :      * DEFERRABLE transactions -- we can wait for a suitable snapshot and
    1700              :      * thereby avoid all SSI overhead once it's running.
    1701              :      */
    1702         1674 :     if (XactReadOnly && XactDeferrable)
    1703            4 :         return GetSafeSnapshot(snapshot);
    1704              : 
    1705         1670 :     return GetSerializableTransactionSnapshotInt(snapshot,
    1706              :                                                  NULL, InvalidPid);
    1707              : }
    1708              : 
    1709              : /*
    1710              :  * Import a snapshot to be used for the current transaction.
    1711              :  *
    1712              :  * This is nearly the same as GetSerializableTransactionSnapshot, except that
    1713              :  * we don't take a new snapshot, but rather use the data we're handed.
    1714              :  *
    1715              :  * The caller must have verified that the snapshot came from a serializable
    1716              :  * transaction; and if we're read-write, the source transaction must not be
    1717              :  * read-only.
    1718              :  */
    1719              : void
    1720           13 : SetSerializableTransactionSnapshot(Snapshot snapshot,
    1721              :                                    VirtualTransactionId *sourcevxid,
    1722              :                                    int sourcepid)
    1723              : {
    1724              :     Assert(IsolationIsSerializable());
    1725              : 
    1726              :     /*
    1727              :      * If this is called by parallel.c in a parallel worker, we don't want to
    1728              :      * create a SERIALIZABLEXACT just yet because the leader's
    1729              :      * SERIALIZABLEXACT will be installed with AttachSerializableXact().  We
    1730              :      * also don't want to reject SERIALIZABLE READ ONLY DEFERRABLE in this
    1731              :      * case, because the leader has already determined that the snapshot it
    1732              :      * has passed us is safe.  So there is nothing for us to do.
    1733              :      */
    1734           13 :     if (IsParallelWorker())
    1735           13 :         return;
    1736              : 
    1737              :     /*
    1738              :      * We do not allow SERIALIZABLE READ ONLY DEFERRABLE transactions to
    1739              :      * import snapshots, since there's no way to wait for a safe snapshot when
    1740              :      * we're using the snap we're told to.  (XXX instead of throwing an error,
    1741              :      * we could just ignore the XactDeferrable flag?)
    1742              :      */
    1743            0 :     if (XactReadOnly && XactDeferrable)
    1744            0 :         ereport(ERROR,
    1745              :                 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1746              :                  errmsg("a snapshot-importing transaction must not be READ ONLY DEFERRABLE")));
    1747              : 
    1748            0 :     (void) GetSerializableTransactionSnapshotInt(snapshot, sourcevxid,
    1749              :                                                  sourcepid);
    1750              : }
    1751              : 
    1752              : /*
    1753              :  * Guts of GetSerializableTransactionSnapshot
    1754              :  *
    1755              :  * If sourcevxid is valid, this is actually an import operation and we should
    1756              :  * skip calling GetSnapshotData, because the snapshot contents are already
    1757              :  * loaded up.  HOWEVER: to avoid race conditions, we must check that the
    1758              :  * source xact is still running after we acquire SerializableXactHashLock.
    1759              :  * We do that by calling ProcArrayInstallImportedXmin.
    1760              :  */
    1761              : static Snapshot
    1762         1675 : GetSerializableTransactionSnapshotInt(Snapshot snapshot,
    1763              :                                       VirtualTransactionId *sourcevxid,
    1764              :                                       int sourcepid)
    1765              : {
    1766              :     PGPROC     *proc;
    1767              :     VirtualTransactionId vxid;
    1768              :     SERIALIZABLEXACT *sxact,
    1769              :                *othersxact;
    1770              : 
    1771              :     /* We only do this for serializable transactions.  Once. */
    1772              :     Assert(MySerializableXact == InvalidSerializableXact);
    1773              : 
    1774              :     Assert(!RecoveryInProgress());
    1775              : 
    1776              :     /*
    1777              :      * Since all parts of a serializable transaction must use the same
    1778              :      * snapshot, it is too late to establish one after a parallel operation
    1779              :      * has begun.
    1780              :      */
    1781         1675 :     if (IsInParallelMode())
    1782            0 :         elog(ERROR, "cannot establish serializable snapshot during a parallel operation");
    1783              : 
    1784         1675 :     proc = MyProc;
    1785              :     Assert(proc != NULL);
    1786         1675 :     GET_VXID_FROM_PGPROC(vxid, *proc);
    1787              : 
    1788              :     /*
    1789              :      * First we get the sxact structure, which may involve looping and access
    1790              :      * to the "finished" list to free a structure for use.
    1791              :      *
    1792              :      * We must hold SerializableXactHashLock when taking/checking the snapshot
    1793              :      * to avoid race conditions, for much the same reasons that
    1794              :      * GetSnapshotData takes the ProcArrayLock.  Since we might have to
    1795              :      * release SerializableXactHashLock to call SummarizeOldestCommittedSxact,
    1796              :      * this means we have to create the sxact first, which is a bit annoying
    1797              :      * (in particular, an elog(ERROR) in procarray.c would cause us to leak
    1798              :      * the sxact).  Consider refactoring to avoid this.
    1799              :      */
    1800              : #ifdef TEST_SUMMARIZE_SERIAL
    1801              :     SummarizeOldestCommittedSxact();
    1802              : #endif
    1803         1675 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1804              :     do
    1805              :     {
    1806         1675 :         sxact = CreatePredXact();
    1807              :         /* If null, push out committed sxact to SLRU summary & retry. */
    1808         1675 :         if (!sxact)
    1809              :         {
    1810            0 :             LWLockRelease(SerializableXactHashLock);
    1811            0 :             SummarizeOldestCommittedSxact();
    1812            0 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1813              :         }
    1814         1675 :     } while (!sxact);
    1815              : 
    1816              :     /* Get the snapshot, or check that it's safe to use */
    1817         1675 :     if (!sourcevxid)
    1818         1675 :         snapshot = GetSnapshotData(snapshot);
    1819            0 :     else if (!ProcArrayInstallImportedXmin(snapshot->xmin, sourcevxid))
    1820              :     {
    1821            0 :         ReleasePredXact(sxact);
    1822            0 :         LWLockRelease(SerializableXactHashLock);
    1823            0 :         ereport(ERROR,
    1824              :                 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
    1825              :                  errmsg("could not import the requested snapshot"),
    1826              :                  errdetail("The source process with PID %d is not running anymore.",
    1827              :                            sourcepid)));
    1828              :     }
    1829              : 
    1830              :     /*
    1831              :      * If there are no serializable transactions which are not read-only, we
    1832              :      * can "opt out" of predicate locking and conflict checking for a
    1833              :      * read-only transaction.
    1834              :      *
    1835              :      * The reason this is safe is that a read-only transaction can only become
    1836              :      * part of a dangerous structure if it overlaps a writable transaction
    1837              :      * which in turn overlaps a writable transaction which committed before
    1838              :      * the read-only transaction started.  A new writable transaction can
    1839              :      * overlap this one, but it can't meet the other condition of overlapping
    1840              :      * a transaction which committed before this one started.
    1841              :      */
    1842         1675 :     if (XactReadOnly && PredXact->WritableSxactCount == 0)
    1843              :     {
    1844          111 :         ReleasePredXact(sxact);
    1845          111 :         LWLockRelease(SerializableXactHashLock);
    1846          111 :         return snapshot;
    1847              :     }
    1848              : 
    1849              :     /* Initialize the structure. */
    1850         1564 :     sxact->vxid = vxid;
    1851         1564 :     sxact->SeqNo.lastCommitBeforeSnapshot = PredXact->LastSxactCommitSeqNo;
    1852         1564 :     sxact->prepareSeqNo = InvalidSerCommitSeqNo;
    1853         1564 :     sxact->commitSeqNo = InvalidSerCommitSeqNo;
    1854         1564 :     dlist_init(&(sxact->outConflicts));
    1855         1564 :     dlist_init(&(sxact->inConflicts));
    1856         1564 :     dlist_init(&(sxact->possibleUnsafeConflicts));
    1857         1564 :     sxact->topXid = GetTopTransactionIdIfAny();
    1858         1564 :     sxact->finishedBefore = InvalidTransactionId;
    1859         1564 :     sxact->xmin = snapshot->xmin;
    1860         1564 :     sxact->pid = MyProcPid;
    1861         1564 :     sxact->pgprocno = MyProcNumber;
    1862         1564 :     dlist_init(&sxact->predicateLocks);
    1863         1564 :     dlist_node_init(&sxact->finishedLink);
    1864         1564 :     sxact->flags = 0;
    1865         1564 :     if (XactReadOnly)
    1866              :     {
    1867              :         dlist_iter  iter;
    1868              : 
    1869          107 :         sxact->flags |= SXACT_FLAG_READ_ONLY;
    1870              : 
    1871              :         /*
    1872              :          * Register all concurrent r/w transactions as possible conflicts; if
    1873              :          * all of them commit without any outgoing conflicts to earlier
    1874              :          * transactions then this snapshot can be deemed safe (and we can run
    1875              :          * without tracking predicate locks).
    1876              :          */
    1877          469 :         dlist_foreach(iter, &PredXact->activeList)
    1878              :         {
    1879          362 :             othersxact = dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    1880              : 
    1881          362 :             if (!SxactIsCommitted(othersxact)
    1882          242 :                 && !SxactIsDoomed(othersxact)
    1883          242 :                 && !SxactIsReadOnly(othersxact))
    1884              :             {
    1885          134 :                 SetPossibleUnsafeConflict(sxact, othersxact);
    1886              :             }
    1887              :         }
    1888              : 
    1889              :         /*
    1890              :          * If we didn't find any possibly unsafe conflicts because every
    1891              :          * uncommitted writable transaction turned out to be doomed, then we
    1892              :          * can "opt out" immediately.  See comments above the earlier check
    1893              :          * for PredXact->WritableSxactCount == 0.
    1894              :          */
    1895          107 :         if (dlist_is_empty(&sxact->possibleUnsafeConflicts))
    1896              :         {
    1897            0 :             ReleasePredXact(sxact);
    1898            0 :             LWLockRelease(SerializableXactHashLock);
    1899            0 :             return snapshot;
    1900              :         }
    1901              :     }
    1902              :     else
    1903              :     {
    1904         1457 :         ++(PredXact->WritableSxactCount);
    1905              :         Assert(PredXact->WritableSxactCount <=
    1906              :                (MaxBackends + max_prepared_xacts));
    1907              :     }
    1908              : 
    1909              :     /* Maintain serializable global xmin info. */
    1910         1564 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    1911              :     {
    1912              :         Assert(PredXact->SxactGlobalXminCount == 0);
    1913          840 :         PredXact->SxactGlobalXmin = snapshot->xmin;
    1914          840 :         PredXact->SxactGlobalXminCount = 1;
    1915          840 :         SerialSetActiveSerXmin(snapshot->xmin);
    1916              :     }
    1917          724 :     else if (TransactionIdEquals(snapshot->xmin, PredXact->SxactGlobalXmin))
    1918              :     {
    1919              :         Assert(PredXact->SxactGlobalXminCount > 0);
    1920          684 :         PredXact->SxactGlobalXminCount++;
    1921              :     }
    1922              :     else
    1923              :     {
    1924              :         Assert(TransactionIdFollows(snapshot->xmin, PredXact->SxactGlobalXmin));
    1925              :     }
    1926              : 
    1927         1564 :     MySerializableXact = sxact;
    1928         1564 :     MyXactDidWrite = false;     /* haven't written anything yet */
    1929              : 
    1930         1564 :     LWLockRelease(SerializableXactHashLock);
    1931              : 
    1932         1564 :     CreateLocalPredicateLockHash();
    1933              : 
    1934         1564 :     return snapshot;
    1935              : }
    1936              : 
    1937              : static void
    1938         1577 : CreateLocalPredicateLockHash(void)
    1939              : {
    1940              :     HASHCTL     hash_ctl;
    1941              : 
    1942              :     /* Initialize the backend-local hash table of parent locks */
    1943              :     Assert(LocalPredicateLockHash == NULL);
    1944         1577 :     hash_ctl.keysize = sizeof(PREDICATELOCKTARGETTAG);
    1945         1577 :     hash_ctl.entrysize = sizeof(LOCALPREDICATELOCK);
    1946         1577 :     LocalPredicateLockHash = hash_create("Local predicate lock",
    1947              :                                          max_predicate_locks_per_xact,
    1948              :                                          &hash_ctl,
    1949              :                                          HASH_ELEM | HASH_BLOBS);
    1950         1577 : }
    1951              : 
    1952              : /*
    1953              :  * Register the top level XID in SerializableXidHash.
    1954              :  * Also store it for easy reference in MySerializableXact.
    1955              :  */
    1956              : void
    1957       139279 : RegisterPredicateLockingXid(TransactionId xid)
    1958              : {
    1959              :     SERIALIZABLEXIDTAG sxidtag;
    1960              :     SERIALIZABLEXID *sxid;
    1961              :     bool        found;
    1962              : 
    1963              :     /*
    1964              :      * If we're not tracking predicate lock data for this transaction, we
    1965              :      * should ignore the request and return quickly.
    1966              :      */
    1967       139279 :     if (MySerializableXact == InvalidSerializableXact)
    1968       137982 :         return;
    1969              : 
    1970              :     /* We should have a valid XID and be at the top level. */
    1971              :     Assert(TransactionIdIsValid(xid));
    1972              : 
    1973         1297 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    1974              : 
    1975              :     /* This should only be done once per transaction. */
    1976              :     Assert(MySerializableXact->topXid == InvalidTransactionId);
    1977              : 
    1978         1297 :     MySerializableXact->topXid = xid;
    1979              : 
    1980         1297 :     sxidtag.xid = xid;
    1981         1297 :     sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
    1982              :                                            &sxidtag,
    1983              :                                            HASH_ENTER, &found);
    1984              :     Assert(!found);
    1985              : 
    1986              :     /* Initialize the structure. */
    1987         1297 :     sxid->myXact = MySerializableXact;
    1988         1297 :     LWLockRelease(SerializableXactHashLock);
    1989              : }
    1990              : 
    1991              : 
    1992              : /*
    1993              :  * Check whether there are any predicate locks held by any transaction
    1994              :  * for the page at the given block number.
    1995              :  *
    1996              :  * Note that the transaction may be completed but not yet subject to
    1997              :  * cleanup due to overlapping serializable transactions.  This must
    1998              :  * return valid information regardless of transaction isolation level.
    1999              :  *
    2000              :  * Also note that this doesn't check for a conflicting relation lock,
    2001              :  * just a lock specifically on the given page.
    2002              :  *
    2003              :  * One use is to support proper behavior during GiST index vacuum.
    2004              :  */
    2005              : bool
    2006            0 : PageIsPredicateLocked(Relation relation, BlockNumber blkno)
    2007              : {
    2008              :     PREDICATELOCKTARGETTAG targettag;
    2009              :     uint32      targettaghash;
    2010              :     LWLock     *partitionLock;
    2011              :     PREDICATELOCKTARGET *target;
    2012              : 
    2013            0 :     SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
    2014              :                                     relation->rd_locator.dbOid,
    2015              :                                     relation->rd_id,
    2016              :                                     blkno);
    2017              : 
    2018            0 :     targettaghash = PredicateLockTargetTagHashCode(&targettag);
    2019            0 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    2020            0 :     LWLockAcquire(partitionLock, LW_SHARED);
    2021              :     target = (PREDICATELOCKTARGET *)
    2022            0 :         hash_search_with_hash_value(PredicateLockTargetHash,
    2023              :                                     &targettag, targettaghash,
    2024              :                                     HASH_FIND, NULL);
    2025            0 :     LWLockRelease(partitionLock);
    2026              : 
    2027            0 :     return (target != NULL);
    2028              : }
    2029              : 
    2030              : 
    2031              : /*
    2032              :  * Check whether a particular lock is held by this transaction.
    2033              :  *
    2034              :  * Important note: this function may return false even if the lock is
    2035              :  * being held, because it uses the local lock table which is not
    2036              :  * updated if another transaction modifies our lock list (e.g. to
    2037              :  * split an index page). It can also return true when a coarser
    2038              :  * granularity lock that covers this target is being held. Be careful
    2039              :  * to only use this function in circumstances where such errors are
    2040              :  * acceptable!
    2041              :  */
    2042              : static bool
    2043        77308 : PredicateLockExists(const PREDICATELOCKTARGETTAG *targettag)
    2044              : {
    2045              :     LOCALPREDICATELOCK *lock;
    2046              : 
    2047              :     /* check local hash table */
    2048        77308 :     lock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
    2049              :                                               targettag,
    2050              :                                               HASH_FIND, NULL);
    2051              : 
    2052        77308 :     if (!lock)
    2053        30202 :         return false;
    2054              : 
    2055              :     /*
    2056              :      * Found entry in the table, but still need to check whether it's actually
    2057              :      * held -- it could just be a parent of some held lock.
    2058              :      */
    2059        47106 :     return lock->held;
    2060              : }
    2061              : 
    2062              : /*
    2063              :  * Return the parent lock tag in the lock hierarchy: the next coarser
    2064              :  * lock that covers the provided tag.
    2065              :  *
    2066              :  * Returns true and sets *parent to the parent tag if one exists,
    2067              :  * returns false if none exists.
    2068              :  */
    2069              : static bool
    2070        45367 : GetParentPredicateLockTag(const PREDICATELOCKTARGETTAG *tag,
    2071              :                           PREDICATELOCKTARGETTAG *parent)
    2072              : {
    2073        45367 :     switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
    2074              :     {
    2075         9906 :         case PREDLOCKTAG_RELATION:
    2076              :             /* relation locks have no parent lock */
    2077         9906 :             return false;
    2078              : 
    2079         8488 :         case PREDLOCKTAG_PAGE:
    2080              :             /* parent lock is relation lock */
    2081         8488 :             SET_PREDICATELOCKTARGETTAG_RELATION(*parent,
    2082              :                                                 GET_PREDICATELOCKTARGETTAG_DB(*tag),
    2083              :                                                 GET_PREDICATELOCKTARGETTAG_RELATION(*tag));
    2084              : 
    2085         8488 :             return true;
    2086              : 
    2087        26973 :         case PREDLOCKTAG_TUPLE:
    2088              :             /* parent lock is page lock */
    2089        26973 :             SET_PREDICATELOCKTARGETTAG_PAGE(*parent,
    2090              :                                             GET_PREDICATELOCKTARGETTAG_DB(*tag),
    2091              :                                             GET_PREDICATELOCKTARGETTAG_RELATION(*tag),
    2092              :                                             GET_PREDICATELOCKTARGETTAG_PAGE(*tag));
    2093        26973 :             return true;
    2094              :     }
    2095              : 
    2096              :     /* not reachable */
    2097              :     Assert(false);
    2098            0 :     return false;
    2099              : }
    2100              : 
    2101              : /*
    2102              :  * Check whether the lock we are considering is already covered by a
    2103              :  * coarser lock for our transaction.
    2104              :  *
    2105              :  * Like PredicateLockExists, this function might return a false
    2106              :  * negative, but it will never return a false positive.
    2107              :  */
    2108              : static bool
    2109        26080 : CoarserLockCovers(const PREDICATELOCKTARGETTAG *newtargettag)
    2110              : {
    2111              :     PREDICATELOCKTARGETTAG targettag,
    2112              :                 parenttag;
    2113              : 
    2114        26080 :     targettag = *newtargettag;
    2115              : 
    2116              :     /* check parents iteratively until no more */
    2117        31512 :     while (GetParentPredicateLockTag(&targettag, &parenttag))
    2118              :     {
    2119        27253 :         targettag = parenttag;
    2120        27253 :         if (PredicateLockExists(&targettag))
    2121        21821 :             return true;
    2122              :     }
    2123              : 
    2124              :     /* no more parents to check; lock is not covered */
    2125         4259 :     return false;
    2126              : }
    2127              : 
    2128              : /*
    2129              :  * Remove the dummy entry from the predicate lock target hash, to free up some
    2130              :  * scratch space. The caller must be holding SerializablePredicateListLock,
    2131              :  * and must restore the entry with RestoreScratchTarget() before releasing the
    2132              :  * lock.
    2133              :  *
    2134              :  * If lockheld is true, the caller is already holding the partition lock
    2135              :  * of the partition containing the scratch entry.
    2136              :  */
    2137              : static void
    2138           29 : RemoveScratchTarget(bool lockheld)
    2139              : {
    2140              :     bool        found;
    2141              : 
    2142              :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2143              : 
    2144           29 :     if (!lockheld)
    2145            0 :         LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
    2146           29 :     hash_search_with_hash_value(PredicateLockTargetHash,
    2147              :                                 &ScratchTargetTag,
    2148              :                                 ScratchTargetTagHash,
    2149              :                                 HASH_REMOVE, &found);
    2150              :     Assert(found);
    2151           29 :     if (!lockheld)
    2152            0 :         LWLockRelease(ScratchPartitionLock);
    2153           29 : }
    2154              : 
    2155              : /*
    2156              :  * Re-insert the dummy entry in predicate lock target hash.
    2157              :  */
    2158              : static void
    2159           29 : RestoreScratchTarget(bool lockheld)
    2160              : {
    2161              :     bool        found;
    2162              : 
    2163              :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2164              : 
    2165           29 :     if (!lockheld)
    2166            0 :         LWLockAcquire(ScratchPartitionLock, LW_EXCLUSIVE);
    2167           29 :     hash_search_with_hash_value(PredicateLockTargetHash,
    2168              :                                 &ScratchTargetTag,
    2169              :                                 ScratchTargetTagHash,
    2170              :                                 HASH_ENTER, &found);
    2171              :     Assert(!found);
    2172           29 :     if (!lockheld)
    2173            0 :         LWLockRelease(ScratchPartitionLock);
    2174           29 : }
    2175              : 
    2176              : /*
    2177              :  * Check whether the list of related predicate locks is empty for a
    2178              :  * predicate lock target, and remove the target if it is.
    2179              :  */
    2180              : static void
    2181         4253 : RemoveTargetIfNoLongerUsed(PREDICATELOCKTARGET *target, uint32 targettaghash)
    2182              : {
    2183              :     PREDICATELOCKTARGET *rmtarget PG_USED_FOR_ASSERTS_ONLY;
    2184              : 
    2185              :     Assert(LWLockHeldByMe(SerializablePredicateListLock));
    2186              : 
    2187              :     /* Can't remove it until no locks at this target. */
    2188         4253 :     if (!dlist_is_empty(&target->predicateLocks))
    2189          973 :         return;
    2190              : 
    2191              :     /* Actually remove the target. */
    2192         3280 :     rmtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2193         3280 :                                            &target->tag,
    2194              :                                            targettaghash,
    2195              :                                            HASH_REMOVE, NULL);
    2196              :     Assert(rmtarget == target);
    2197              : }
    2198              : 
    2199              : /*
    2200              :  * Delete child target locks owned by this process.
    2201              :  * This implementation is assuming that the usage of each target tag field
    2202              :  * is uniform.  No need to make this hard if we don't have to.
    2203              :  *
    2204              :  * We acquire an LWLock in the case of parallel mode, because worker
    2205              :  * backends have access to the leader's SERIALIZABLEXACT.  Otherwise,
    2206              :  * we aren't acquiring LWLocks for the predicate lock or lock
    2207              :  * target structures associated with this transaction unless we're going
    2208              :  * to modify them, because no other process is permitted to modify our
    2209              :  * locks.
    2210              :  */
    2211              : static void
    2212         2377 : DeleteChildTargetLocks(const PREDICATELOCKTARGETTAG *newtargettag)
    2213              : {
    2214              :     SERIALIZABLEXACT *sxact;
    2215              :     PREDICATELOCK *predlock;
    2216              :     dlist_mutable_iter iter;
    2217              : 
    2218         2377 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    2219         2377 :     sxact = MySerializableXact;
    2220         2377 :     if (IsInParallelMode())
    2221           11 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    2222              : 
    2223         7843 :     dlist_foreach_modify(iter, &sxact->predicateLocks)
    2224              :     {
    2225              :         PREDICATELOCKTAG oldlocktag;
    2226              :         PREDICATELOCKTARGET *oldtarget;
    2227              :         PREDICATELOCKTARGETTAG oldtargettag;
    2228              : 
    2229         5466 :         predlock = dlist_container(PREDICATELOCK, xactLink, iter.cur);
    2230              : 
    2231         5466 :         oldlocktag = predlock->tag;
    2232              :         Assert(oldlocktag.myXact == sxact);
    2233         5466 :         oldtarget = oldlocktag.myTarget;
    2234         5466 :         oldtargettag = oldtarget->tag;
    2235              : 
    2236         5466 :         if (TargetTagIsCoveredBy(oldtargettag, *newtargettag))
    2237              :         {
    2238              :             uint32      oldtargettaghash;
    2239              :             LWLock     *partitionLock;
    2240              :             PREDICATELOCK *rmpredlock PG_USED_FOR_ASSERTS_ONLY;
    2241              : 
    2242          999 :             oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
    2243          999 :             partitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
    2244              : 
    2245          999 :             LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    2246              : 
    2247          999 :             dlist_delete(&predlock->xactLink);
    2248          999 :             dlist_delete(&predlock->targetLink);
    2249          999 :             rmpredlock = hash_search_with_hash_value
    2250              :                 (PredicateLockHash,
    2251              :                  &oldlocktag,
    2252          999 :                  PredicateLockHashCodeFromTargetHashCode(&oldlocktag,
    2253              :                                                          oldtargettaghash),
    2254              :                  HASH_REMOVE, NULL);
    2255              :             Assert(rmpredlock == predlock);
    2256              : 
    2257          999 :             RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
    2258              : 
    2259          999 :             LWLockRelease(partitionLock);
    2260              : 
    2261          999 :             DecrementParentLocks(&oldtargettag);
    2262              :         }
    2263              :     }
    2264         2377 :     if (IsInParallelMode())
    2265           11 :         LWLockRelease(&sxact->perXactPredicateListLock);
    2266         2377 :     LWLockRelease(SerializablePredicateListLock);
    2267         2377 : }
    2268              : 
    2269              : /*
    2270              :  * Returns the promotion limit for a given predicate lock target.  This is the
    2271              :  * max number of descendant locks allowed before promoting to the specified
    2272              :  * tag. Note that the limit includes non-direct descendants (e.g., both tuples
    2273              :  * and pages for a relation lock).
    2274              :  *
    2275              :  * Currently the default limit is 2 for a page lock, and half of the value of
    2276              :  * max_pred_locks_per_transaction - 1 for a relation lock, to match behavior
    2277              :  * of earlier releases when upgrading.
    2278              :  *
    2279              :  * TODO SSI: We should probably add additional GUCs to allow a maximum ratio
    2280              :  * of page and tuple locks based on the pages in a relation, and the maximum
    2281              :  * ratio of tuple locks to tuples in a page.  This would provide more
    2282              :  * generally "balanced" allocation of locks to where they are most useful,
    2283              :  * while still allowing the absolute numbers to prevent one relation from
    2284              :  * tying up all predicate lock resources.
    2285              :  */
    2286              : static int
    2287         5432 : MaxPredicateChildLocks(const PREDICATELOCKTARGETTAG *tag)
    2288              : {
    2289         5432 :     switch (GET_PREDICATELOCKTARGETTAG_TYPE(*tag))
    2290              :     {
    2291         3550 :         case PREDLOCKTAG_RELATION:
    2292         3550 :             return max_predicate_locks_per_relation < 0
    2293              :                 ? (max_predicate_locks_per_xact
    2294         3550 :                    / (-max_predicate_locks_per_relation)) - 1
    2295         3550 :                 : max_predicate_locks_per_relation;
    2296              : 
    2297         1882 :         case PREDLOCKTAG_PAGE:
    2298         1882 :             return max_predicate_locks_per_page;
    2299              : 
    2300            0 :         case PREDLOCKTAG_TUPLE:
    2301              : 
    2302              :             /*
    2303              :              * not reachable: nothing is finer-granularity than a tuple, so we
    2304              :              * should never try to promote to it.
    2305              :              */
    2306              :             Assert(false);
    2307            0 :             return 0;
    2308              :     }
    2309              : 
    2310              :     /* not reachable */
    2311              :     Assert(false);
    2312            0 :     return 0;
    2313              : }
    2314              : 
    2315              : /*
    2316              :  * For all ancestors of a newly-acquired predicate lock, increment
    2317              :  * their child count in the parent hash table. If any of them have
    2318              :  * more descendants than their promotion threshold, acquire the
    2319              :  * coarsest such lock.
    2320              :  *
    2321              :  * Returns true if a parent lock was acquired and false otherwise.
    2322              :  */
    2323              : static bool
    2324         4259 : CheckAndPromotePredicateLockRequest(const PREDICATELOCKTARGETTAG *reqtag)
    2325              : {
    2326              :     PREDICATELOCKTARGETTAG targettag,
    2327              :                 nexttag,
    2328              :                 promotiontag;
    2329              :     LOCALPREDICATELOCK *parentlock;
    2330              :     bool        found,
    2331              :                 promote;
    2332              : 
    2333         4259 :     promote = false;
    2334              : 
    2335         4259 :     targettag = *reqtag;
    2336              : 
    2337              :     /* check parents iteratively */
    2338        13950 :     while (GetParentPredicateLockTag(&targettag, &nexttag))
    2339              :     {
    2340         5432 :         targettag = nexttag;
    2341         5432 :         parentlock = (LOCALPREDICATELOCK *) hash_search(LocalPredicateLockHash,
    2342              :                                                         &targettag,
    2343              :                                                         HASH_ENTER,
    2344              :                                                         &found);
    2345         5432 :         if (!found)
    2346              :         {
    2347         3371 :             parentlock->held = false;
    2348         3371 :             parentlock->childLocks = 1;
    2349              :         }
    2350              :         else
    2351         2061 :             parentlock->childLocks++;
    2352              : 
    2353         5432 :         if (parentlock->childLocks >
    2354         5432 :             MaxPredicateChildLocks(&targettag))
    2355              :         {
    2356              :             /*
    2357              :              * We should promote to this parent lock. Continue to check its
    2358              :              * ancestors, however, both to get their child counts right and to
    2359              :              * check whether we should just go ahead and promote to one of
    2360              :              * them.
    2361              :              */
    2362          333 :             promotiontag = targettag;
    2363          333 :             promote = true;
    2364              :         }
    2365              :     }
    2366              : 
    2367         4259 :     if (promote)
    2368              :     {
    2369              :         /* acquire coarsest ancestor eligible for promotion */
    2370          333 :         PredicateLockAcquire(&promotiontag);
    2371          333 :         return true;
    2372              :     }
    2373              :     else
    2374         3926 :         return false;
    2375              : }
    2376              : 
    2377              : /*
    2378              :  * When releasing a lock, decrement the child count on all ancestor
    2379              :  * locks.
    2380              :  *
    2381              :  * This is called only when releasing a lock via
    2382              :  * DeleteChildTargetLocks (i.e. when a lock becomes redundant because
    2383              :  * we've acquired its parent, possibly due to promotion) or when a new
    2384              :  * MVCC write lock makes the predicate lock unnecessary. There's no
    2385              :  * point in calling it when locks are released at transaction end, as
    2386              :  * this information is no longer needed.
    2387              :  */
    2388              : static void
    2389         1388 : DecrementParentLocks(const PREDICATELOCKTARGETTAG *targettag)
    2390              : {
    2391              :     PREDICATELOCKTARGETTAG parenttag,
    2392              :                 nexttag;
    2393              : 
    2394         1388 :     parenttag = *targettag;
    2395              : 
    2396         4164 :     while (GetParentPredicateLockTag(&parenttag, &nexttag))
    2397              :     {
    2398              :         uint32      targettaghash;
    2399              :         LOCALPREDICATELOCK *parentlock,
    2400              :                    *rmlock PG_USED_FOR_ASSERTS_ONLY;
    2401              : 
    2402         2776 :         parenttag = nexttag;
    2403         2776 :         targettaghash = PredicateLockTargetTagHashCode(&parenttag);
    2404              :         parentlock = (LOCALPREDICATELOCK *)
    2405         2776 :             hash_search_with_hash_value(LocalPredicateLockHash,
    2406              :                                         &parenttag, targettaghash,
    2407              :                                         HASH_FIND, NULL);
    2408              : 
    2409              :         /*
    2410              :          * There's a small chance the parent lock doesn't exist in the lock
    2411              :          * table. This can happen if we prematurely removed it because an
    2412              :          * index split caused the child refcount to be off.
    2413              :          */
    2414         2776 :         if (parentlock == NULL)
    2415            0 :             continue;
    2416              : 
    2417         2776 :         parentlock->childLocks--;
    2418              : 
    2419              :         /*
    2420              :          * Under similar circumstances the parent lock's refcount might be
    2421              :          * zero. This only happens if we're holding that lock (otherwise we
    2422              :          * would have removed the entry).
    2423              :          */
    2424         2776 :         if (parentlock->childLocks < 0)
    2425              :         {
    2426              :             Assert(parentlock->held);
    2427            0 :             parentlock->childLocks = 0;
    2428              :         }
    2429              : 
    2430         2776 :         if ((parentlock->childLocks == 0) && (!parentlock->held))
    2431              :         {
    2432              :             rmlock = (LOCALPREDICATELOCK *)
    2433          766 :                 hash_search_with_hash_value(LocalPredicateLockHash,
    2434              :                                             &parenttag, targettaghash,
    2435              :                                             HASH_REMOVE, NULL);
    2436              :             Assert(rmlock == parentlock);
    2437              :         }
    2438              :     }
    2439         1388 : }
    2440              : 
    2441              : /*
    2442              :  * Indicate that a predicate lock on the given target is held by the
    2443              :  * specified transaction. Has no effect if the lock is already held.
    2444              :  *
    2445              :  * This updates the lock table and the sxact's lock list, and creates
    2446              :  * the lock target if necessary, but does *not* do anything related to
    2447              :  * granularity promotion or the local lock table. See
    2448              :  * PredicateLockAcquire for that.
    2449              :  */
    2450              : static void
    2451         4259 : CreatePredicateLock(const PREDICATELOCKTARGETTAG *targettag,
    2452              :                     uint32 targettaghash,
    2453              :                     SERIALIZABLEXACT *sxact)
    2454              : {
    2455              :     PREDICATELOCKTARGET *target;
    2456              :     PREDICATELOCKTAG locktag;
    2457              :     PREDICATELOCK *lock;
    2458              :     LWLock     *partitionLock;
    2459              :     bool        found;
    2460              : 
    2461         4259 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    2462              : 
    2463         4259 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    2464         4259 :     if (IsInParallelMode())
    2465           16 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    2466         4259 :     LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    2467              : 
    2468              :     /* Make sure that the target is represented. */
    2469              :     target = (PREDICATELOCKTARGET *)
    2470         4259 :         hash_search_with_hash_value(PredicateLockTargetHash,
    2471              :                                     targettag, targettaghash,
    2472              :                                     HASH_ENTER_NULL, &found);
    2473         4259 :     if (!target)
    2474            0 :         ereport(ERROR,
    2475              :                 (errcode(ERRCODE_OUT_OF_MEMORY),
    2476              :                  errmsg("out of shared memory"),
    2477              :                  errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
    2478         4259 :     if (!found)
    2479         3280 :         dlist_init(&target->predicateLocks);
    2480              : 
    2481              :     /* We've got the sxact and target, make sure they're joined. */
    2482         4259 :     locktag.myTarget = target;
    2483         4259 :     locktag.myXact = sxact;
    2484              :     lock = (PREDICATELOCK *)
    2485         4259 :         hash_search_with_hash_value(PredicateLockHash, &locktag,
    2486         4259 :                                     PredicateLockHashCodeFromTargetHashCode(&locktag, targettaghash),
    2487              :                                     HASH_ENTER_NULL, &found);
    2488         4259 :     if (!lock)
    2489            0 :         ereport(ERROR,
    2490              :                 (errcode(ERRCODE_OUT_OF_MEMORY),
    2491              :                  errmsg("out of shared memory"),
    2492              :                  errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
    2493              : 
    2494         4259 :     if (!found)
    2495              :     {
    2496         4253 :         dlist_push_tail(&target->predicateLocks, &lock->targetLink);
    2497         4253 :         dlist_push_tail(&sxact->predicateLocks, &lock->xactLink);
    2498         4253 :         lock->commitSeqNo = InvalidSerCommitSeqNo;
    2499              :     }
    2500              : 
    2501         4259 :     LWLockRelease(partitionLock);
    2502         4259 :     if (IsInParallelMode())
    2503           16 :         LWLockRelease(&sxact->perXactPredicateListLock);
    2504         4259 :     LWLockRelease(SerializablePredicateListLock);
    2505         4259 : }
    2506              : 
    2507              : /*
    2508              :  * Acquire a predicate lock on the specified target for the current
    2509              :  * connection if not already held. This updates the local lock table
    2510              :  * and uses it to implement granularity promotion. It will consolidate
    2511              :  * multiple locks into a coarser lock if warranted, and will release
    2512              :  * any finer-grained locks covered by the new one.
    2513              :  */
    2514              : static void
    2515        26285 : PredicateLockAcquire(const PREDICATELOCKTARGETTAG *targettag)
    2516              : {
    2517              :     uint32      targettaghash;
    2518              :     bool        found;
    2519              :     LOCALPREDICATELOCK *locallock;
    2520              : 
    2521              :     /* Do we have the lock already, or a covering lock? */
    2522        26285 :     if (PredicateLockExists(targettag))
    2523        22026 :         return;
    2524              : 
    2525        26080 :     if (CoarserLockCovers(targettag))
    2526        21821 :         return;
    2527              : 
    2528              :     /* the same hash and LW lock apply to the lock target and the local lock. */
    2529         4259 :     targettaghash = PredicateLockTargetTagHashCode(targettag);
    2530              : 
    2531              :     /* Acquire lock in local table */
    2532              :     locallock = (LOCALPREDICATELOCK *)
    2533         4259 :         hash_search_with_hash_value(LocalPredicateLockHash,
    2534              :                                     targettag, targettaghash,
    2535              :                                     HASH_ENTER, &found);
    2536         4259 :     locallock->held = true;
    2537         4259 :     if (!found)
    2538         3926 :         locallock->childLocks = 0;
    2539              : 
    2540              :     /* Actually create the lock */
    2541         4259 :     CreatePredicateLock(targettag, targettaghash, MySerializableXact);
    2542              : 
    2543              :     /*
    2544              :      * Lock has been acquired. Check whether it should be promoted to a
    2545              :      * coarser granularity, or whether there are finer-granularity locks to
    2546              :      * clean up.
    2547              :      */
    2548         4259 :     if (CheckAndPromotePredicateLockRequest(targettag))
    2549              :     {
    2550              :         /*
    2551              :          * Lock request was promoted to a coarser-granularity lock, and that
    2552              :          * lock was acquired. It will delete this lock and any of its
    2553              :          * children, so we're done.
    2554              :          */
    2555              :     }
    2556              :     else
    2557              :     {
    2558              :         /* Clean up any finer-granularity locks */
    2559         3926 :         if (GET_PREDICATELOCKTARGETTAG_TYPE(*targettag) != PREDLOCKTAG_TUPLE)
    2560         2377 :             DeleteChildTargetLocks(targettag);
    2561              :     }
    2562              : }
    2563              : 
    2564              : 
    2565              : /*
    2566              :  *      PredicateLockRelation
    2567              :  *
    2568              :  * Gets a predicate lock at the relation level.
    2569              :  * Skip if not in full serializable transaction isolation level.
    2570              :  * Skip if this is a temporary table.
    2571              :  * Clear any finer-grained predicate locks this session has on the relation.
    2572              :  */
    2573              : void
    2574       387273 : PredicateLockRelation(Relation relation, Snapshot snapshot)
    2575              : {
    2576              :     PREDICATELOCKTARGETTAG tag;
    2577              : 
    2578       387273 :     if (!SerializationNeededForRead(relation, snapshot))
    2579       386543 :         return;
    2580              : 
    2581          730 :     SET_PREDICATELOCKTARGETTAG_RELATION(tag,
    2582              :                                         relation->rd_locator.dbOid,
    2583              :                                         relation->rd_id);
    2584          730 :     PredicateLockAcquire(&tag);
    2585              : }
    2586              : 
    2587              : /*
    2588              :  *      PredicateLockPage
    2589              :  *
    2590              :  * Gets a predicate lock at the page level.
    2591              :  * Skip if not in full serializable transaction isolation level.
    2592              :  * Skip if this is a temporary table.
    2593              :  * Skip if a coarser predicate lock already covers this page.
    2594              :  * Clear any finer-grained predicate locks this session has on the relation.
    2595              :  */
    2596              : void
    2597     10002947 : PredicateLockPage(Relation relation, BlockNumber blkno, Snapshot snapshot)
    2598              : {
    2599              :     PREDICATELOCKTARGETTAG tag;
    2600              : 
    2601     10002947 :     if (!SerializationNeededForRead(relation, snapshot))
    2602     10001495 :         return;
    2603              : 
    2604         1452 :     SET_PREDICATELOCKTARGETTAG_PAGE(tag,
    2605              :                                     relation->rd_locator.dbOid,
    2606              :                                     relation->rd_id,
    2607              :                                     blkno);
    2608         1452 :     PredicateLockAcquire(&tag);
    2609              : }
    2610              : 
    2611              : /*
    2612              :  *      PredicateLockTID
    2613              :  *
    2614              :  * Gets a predicate lock at the tuple level.
    2615              :  * Skip if not in full serializable transaction isolation level.
    2616              :  * Skip if this is a temporary table.
    2617              :  */
    2618              : void
    2619     17346647 : PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot,
    2620              :                  TransactionId tuple_xid)
    2621              : {
    2622              :     PREDICATELOCKTARGETTAG tag;
    2623              : 
    2624     17346647 :     if (!SerializationNeededForRead(relation, snapshot))
    2625     17322877 :         return;
    2626              : 
    2627              :     /*
    2628              :      * Return if this xact wrote it.
    2629              :      */
    2630        23772 :     if (relation->rd_index == NULL)
    2631              :     {
    2632              :         /* If we wrote it; we already have a write lock. */
    2633        23772 :         if (TransactionIdIsCurrentTransactionId(tuple_xid))
    2634            2 :             return;
    2635              :     }
    2636              : 
    2637              :     /*
    2638              :      * Do quick-but-not-definitive test for a relation lock first.  This will
    2639              :      * never cause a return when the relation is *not* locked, but will
    2640              :      * occasionally let the check continue when there really *is* a relation
    2641              :      * level lock.
    2642              :      */
    2643        23770 :     SET_PREDICATELOCKTARGETTAG_RELATION(tag,
    2644              :                                         relation->rd_locator.dbOid,
    2645              :                                         relation->rd_id);
    2646        23770 :     if (PredicateLockExists(&tag))
    2647            0 :         return;
    2648              : 
    2649        23770 :     SET_PREDICATELOCKTARGETTAG_TUPLE(tag,
    2650              :                                      relation->rd_locator.dbOid,
    2651              :                                      relation->rd_id,
    2652              :                                      ItemPointerGetBlockNumber(tid),
    2653              :                                      ItemPointerGetOffsetNumber(tid));
    2654        23770 :     PredicateLockAcquire(&tag);
    2655              : }
    2656              : 
    2657              : 
    2658              : /*
    2659              :  *      DeleteLockTarget
    2660              :  *
    2661              :  * Remove a predicate lock target along with any locks held for it.
    2662              :  *
    2663              :  * Caller must hold SerializablePredicateListLock and the
    2664              :  * appropriate hash partition lock for the target.
    2665              :  */
    2666              : static void
    2667            0 : DeleteLockTarget(PREDICATELOCKTARGET *target, uint32 targettaghash)
    2668              : {
    2669              :     dlist_mutable_iter iter;
    2670              : 
    2671              :     Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
    2672              :                                 LW_EXCLUSIVE));
    2673              :     Assert(LWLockHeldByMe(PredicateLockHashPartitionLock(targettaghash)));
    2674              : 
    2675            0 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2676              : 
    2677            0 :     dlist_foreach_modify(iter, &target->predicateLocks)
    2678              :     {
    2679            0 :         PREDICATELOCK *predlock =
    2680            0 :             dlist_container(PREDICATELOCK, targetLink, iter.cur);
    2681              :         bool        found;
    2682              : 
    2683            0 :         dlist_delete(&(predlock->xactLink));
    2684            0 :         dlist_delete(&(predlock->targetLink));
    2685              : 
    2686            0 :         hash_search_with_hash_value
    2687              :             (PredicateLockHash,
    2688            0 :              &predlock->tag,
    2689            0 :              PredicateLockHashCodeFromTargetHashCode(&predlock->tag,
    2690              :                                                      targettaghash),
    2691              :              HASH_REMOVE, &found);
    2692              :         Assert(found);
    2693              :     }
    2694            0 :     LWLockRelease(SerializableXactHashLock);
    2695              : 
    2696              :     /* Remove the target itself, if possible. */
    2697            0 :     RemoveTargetIfNoLongerUsed(target, targettaghash);
    2698            0 : }
    2699              : 
    2700              : 
    2701              : /*
    2702              :  *      TransferPredicateLocksToNewTarget
    2703              :  *
    2704              :  * Move or copy all the predicate locks for a lock target, for use by
    2705              :  * index page splits/combines and other things that create or replace
    2706              :  * lock targets. If 'removeOld' is true, the old locks and the target
    2707              :  * will be removed.
    2708              :  *
    2709              :  * Returns true on success, or false if we ran out of shared memory to
    2710              :  * allocate the new target or locks. Guaranteed to always succeed if
    2711              :  * removeOld is set (by using the scratch entry in PredicateLockTargetHash
    2712              :  * for scratch space).
    2713              :  *
    2714              :  * Warning: the "removeOld" option should be used only with care,
    2715              :  * because this function does not (indeed, can not) update other
    2716              :  * backends' LocalPredicateLockHash. If we are only adding new
    2717              :  * entries, this is not a problem: the local lock table is used only
    2718              :  * as a hint, so missing entries for locks that are held are
    2719              :  * OK. Having entries for locks that are no longer held, as can happen
    2720              :  * when using "removeOld", is not in general OK. We can only use it
    2721              :  * safely when replacing a lock with a coarser-granularity lock that
    2722              :  * covers it, or if we are absolutely certain that no one will need to
    2723              :  * refer to that lock in the future.
    2724              :  *
    2725              :  * Caller must hold SerializablePredicateListLock exclusively.
    2726              :  */
    2727              : static bool
    2728            0 : TransferPredicateLocksToNewTarget(PREDICATELOCKTARGETTAG oldtargettag,
    2729              :                                   PREDICATELOCKTARGETTAG newtargettag,
    2730              :                                   bool removeOld)
    2731              : {
    2732              :     uint32      oldtargettaghash;
    2733              :     LWLock     *oldpartitionLock;
    2734              :     PREDICATELOCKTARGET *oldtarget;
    2735              :     uint32      newtargettaghash;
    2736              :     LWLock     *newpartitionLock;
    2737              :     bool        found;
    2738            0 :     bool        outOfShmem = false;
    2739              : 
    2740              :     Assert(LWLockHeldByMeInMode(SerializablePredicateListLock,
    2741              :                                 LW_EXCLUSIVE));
    2742              : 
    2743            0 :     oldtargettaghash = PredicateLockTargetTagHashCode(&oldtargettag);
    2744            0 :     newtargettaghash = PredicateLockTargetTagHashCode(&newtargettag);
    2745            0 :     oldpartitionLock = PredicateLockHashPartitionLock(oldtargettaghash);
    2746            0 :     newpartitionLock = PredicateLockHashPartitionLock(newtargettaghash);
    2747              : 
    2748            0 :     if (removeOld)
    2749              :     {
    2750              :         /*
    2751              :          * Remove the dummy entry to give us scratch space, so we know we'll
    2752              :          * be able to create the new lock target.
    2753              :          */
    2754            0 :         RemoveScratchTarget(false);
    2755              :     }
    2756              : 
    2757              :     /*
    2758              :      * We must get the partition locks in ascending sequence to avoid
    2759              :      * deadlocks. If old and new partitions are the same, we must request the
    2760              :      * lock only once.
    2761              :      */
    2762            0 :     if (oldpartitionLock < newpartitionLock)
    2763              :     {
    2764            0 :         LWLockAcquire(oldpartitionLock,
    2765            0 :                       (removeOld ? LW_EXCLUSIVE : LW_SHARED));
    2766            0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2767              :     }
    2768            0 :     else if (oldpartitionLock > newpartitionLock)
    2769              :     {
    2770            0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2771            0 :         LWLockAcquire(oldpartitionLock,
    2772            0 :                       (removeOld ? LW_EXCLUSIVE : LW_SHARED));
    2773              :     }
    2774              :     else
    2775            0 :         LWLockAcquire(newpartitionLock, LW_EXCLUSIVE);
    2776              : 
    2777              :     /*
    2778              :      * Look for the old target.  If not found, that's OK; no predicate locks
    2779              :      * are affected, so we can just clean up and return. If it does exist,
    2780              :      * walk its list of predicate locks and move or copy them to the new
    2781              :      * target.
    2782              :      */
    2783            0 :     oldtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2784              :                                             &oldtargettag,
    2785              :                                             oldtargettaghash,
    2786              :                                             HASH_FIND, NULL);
    2787              : 
    2788            0 :     if (oldtarget)
    2789              :     {
    2790              :         PREDICATELOCKTARGET *newtarget;
    2791              :         PREDICATELOCKTAG newpredlocktag;
    2792              :         dlist_mutable_iter iter;
    2793              : 
    2794            0 :         newtarget = hash_search_with_hash_value(PredicateLockTargetHash,
    2795              :                                                 &newtargettag,
    2796              :                                                 newtargettaghash,
    2797              :                                                 HASH_ENTER_NULL, &found);
    2798              : 
    2799            0 :         if (!newtarget)
    2800              :         {
    2801              :             /* Failed to allocate due to insufficient shmem */
    2802            0 :             outOfShmem = true;
    2803            0 :             goto exit;
    2804              :         }
    2805              : 
    2806              :         /* If we created a new entry, initialize it */
    2807            0 :         if (!found)
    2808            0 :             dlist_init(&newtarget->predicateLocks);
    2809              : 
    2810            0 :         newpredlocktag.myTarget = newtarget;
    2811              : 
    2812              :         /*
    2813              :          * Loop through all the locks on the old target, replacing them with
    2814              :          * locks on the new target.
    2815              :          */
    2816            0 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2817              : 
    2818            0 :         dlist_foreach_modify(iter, &oldtarget->predicateLocks)
    2819              :         {
    2820            0 :             PREDICATELOCK *oldpredlock =
    2821            0 :                 dlist_container(PREDICATELOCK, targetLink, iter.cur);
    2822              :             PREDICATELOCK *newpredlock;
    2823            0 :             SerCommitSeqNo oldCommitSeqNo = oldpredlock->commitSeqNo;
    2824              : 
    2825            0 :             newpredlocktag.myXact = oldpredlock->tag.myXact;
    2826              : 
    2827            0 :             if (removeOld)
    2828              :             {
    2829            0 :                 dlist_delete(&(oldpredlock->xactLink));
    2830            0 :                 dlist_delete(&(oldpredlock->targetLink));
    2831              : 
    2832            0 :                 hash_search_with_hash_value
    2833              :                     (PredicateLockHash,
    2834            0 :                      &oldpredlock->tag,
    2835            0 :                      PredicateLockHashCodeFromTargetHashCode(&oldpredlock->tag,
    2836              :                                                              oldtargettaghash),
    2837              :                      HASH_REMOVE, &found);
    2838              :                 Assert(found);
    2839              :             }
    2840              : 
    2841              :             newpredlock = (PREDICATELOCK *)
    2842            0 :                 hash_search_with_hash_value(PredicateLockHash,
    2843              :                                             &newpredlocktag,
    2844            0 :                                             PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
    2845              :                                                                                     newtargettaghash),
    2846              :                                             HASH_ENTER_NULL,
    2847              :                                             &found);
    2848            0 :             if (!newpredlock)
    2849              :             {
    2850              :                 /* Out of shared memory. Undo what we've done so far. */
    2851            0 :                 LWLockRelease(SerializableXactHashLock);
    2852            0 :                 DeleteLockTarget(newtarget, newtargettaghash);
    2853            0 :                 outOfShmem = true;
    2854            0 :                 goto exit;
    2855              :             }
    2856            0 :             if (!found)
    2857              :             {
    2858            0 :                 dlist_push_tail(&(newtarget->predicateLocks),
    2859              :                                 &(newpredlock->targetLink));
    2860            0 :                 dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
    2861              :                                 &(newpredlock->xactLink));
    2862            0 :                 newpredlock->commitSeqNo = oldCommitSeqNo;
    2863              :             }
    2864              :             else
    2865              :             {
    2866            0 :                 if (newpredlock->commitSeqNo < oldCommitSeqNo)
    2867            0 :                     newpredlock->commitSeqNo = oldCommitSeqNo;
    2868              :             }
    2869              : 
    2870              :             Assert(newpredlock->commitSeqNo != 0);
    2871              :             Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
    2872              :                    || (newpredlock->tag.myXact == OldCommittedSxact));
    2873              :         }
    2874            0 :         LWLockRelease(SerializableXactHashLock);
    2875              : 
    2876            0 :         if (removeOld)
    2877              :         {
    2878              :             Assert(dlist_is_empty(&oldtarget->predicateLocks));
    2879            0 :             RemoveTargetIfNoLongerUsed(oldtarget, oldtargettaghash);
    2880              :         }
    2881              :     }
    2882              : 
    2883              : 
    2884            0 : exit:
    2885              :     /* Release partition locks in reverse order of acquisition. */
    2886            0 :     if (oldpartitionLock < newpartitionLock)
    2887              :     {
    2888            0 :         LWLockRelease(newpartitionLock);
    2889            0 :         LWLockRelease(oldpartitionLock);
    2890              :     }
    2891            0 :     else if (oldpartitionLock > newpartitionLock)
    2892              :     {
    2893            0 :         LWLockRelease(oldpartitionLock);
    2894            0 :         LWLockRelease(newpartitionLock);
    2895              :     }
    2896              :     else
    2897            0 :         LWLockRelease(newpartitionLock);
    2898              : 
    2899            0 :     if (removeOld)
    2900              :     {
    2901              :         /* We shouldn't run out of memory if we're moving locks */
    2902              :         Assert(!outOfShmem);
    2903              : 
    2904              :         /* Put the scratch entry back */
    2905            0 :         RestoreScratchTarget(false);
    2906              :     }
    2907              : 
    2908            0 :     return !outOfShmem;
    2909              : }
    2910              : 
    2911              : /*
    2912              :  * Drop all predicate locks of any granularity from the specified relation,
    2913              :  * which can be a heap relation or an index relation.  If 'transfer' is true,
    2914              :  * acquire a relation lock on the heap for any transactions with any lock(s)
    2915              :  * on the specified relation.
    2916              :  *
    2917              :  * This requires grabbing a lot of LW locks and scanning the entire lock
    2918              :  * target table for matches.  That makes this more expensive than most
    2919              :  * predicate lock management functions, but it will only be called for DDL
    2920              :  * type commands that are expensive anyway, and there are fast returns when
    2921              :  * no serializable transactions are active or the relation is temporary.
    2922              :  *
    2923              :  * We don't use the TransferPredicateLocksToNewTarget function because it
    2924              :  * acquires its own locks on the partitions of the two targets involved,
    2925              :  * and we'll already be holding all partition locks.
    2926              :  *
    2927              :  * We can't throw an error from here, because the call could be from a
    2928              :  * transaction which is not serializable.
    2929              :  *
    2930              :  * NOTE: This is currently only called with transfer set to true, but that may
    2931              :  * change.  If we decide to clean up the locks from a table on commit of a
    2932              :  * transaction which executed DROP TABLE, the false condition will be useful.
    2933              :  */
    2934              : static void
    2935        17741 : DropAllPredicateLocksFromTable(Relation relation, bool transfer)
    2936              : {
    2937              :     HASH_SEQ_STATUS seqstat;
    2938              :     PREDICATELOCKTARGET *oldtarget;
    2939              :     PREDICATELOCKTARGET *heaptarget;
    2940              :     Oid         dbId;
    2941              :     Oid         relId;
    2942              :     Oid         heapId;
    2943              :     int         i;
    2944              :     bool        isIndex;
    2945              :     bool        found;
    2946              :     uint32      heaptargettaghash;
    2947              : 
    2948              :     /*
    2949              :      * Bail out quickly if there are no serializable transactions running.
    2950              :      * It's safe to check this without taking locks because the caller is
    2951              :      * holding an ACCESS EXCLUSIVE lock on the relation.  No new locks which
    2952              :      * would matter here can be acquired while that is held.
    2953              :      */
    2954        17741 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    2955        17712 :         return;
    2956              : 
    2957           45 :     if (!PredicateLockingNeededForRelation(relation))
    2958           16 :         return;
    2959              : 
    2960           29 :     dbId = relation->rd_locator.dbOid;
    2961           29 :     relId = relation->rd_id;
    2962           29 :     if (relation->rd_index == NULL)
    2963              :     {
    2964            0 :         isIndex = false;
    2965            0 :         heapId = relId;
    2966              :     }
    2967              :     else
    2968              :     {
    2969           29 :         isIndex = true;
    2970           29 :         heapId = relation->rd_index->indrelid;
    2971              :     }
    2972              :     Assert(heapId != InvalidOid);
    2973              :     Assert(transfer || !isIndex);   /* index OID only makes sense with
    2974              :                                      * transfer */
    2975              : 
    2976              :     /* Retrieve first time needed, then keep. */
    2977           29 :     heaptargettaghash = 0;
    2978           29 :     heaptarget = NULL;
    2979              : 
    2980              :     /* Acquire locks on all lock partitions */
    2981           29 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    2982          493 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    2983          464 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_EXCLUSIVE);
    2984           29 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    2985              : 
    2986              :     /*
    2987              :      * Remove the dummy entry to give us scratch space, so we know we'll be
    2988              :      * able to create the new lock target.
    2989              :      */
    2990           29 :     if (transfer)
    2991           29 :         RemoveScratchTarget(true);
    2992              : 
    2993              :     /* Scan through target map */
    2994           29 :     hash_seq_init(&seqstat, PredicateLockTargetHash);
    2995              : 
    2996           61 :     while ((oldtarget = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
    2997              :     {
    2998              :         dlist_mutable_iter iter;
    2999              : 
    3000              :         /*
    3001              :          * Check whether this is a target which needs attention.
    3002              :          */
    3003           32 :         if (GET_PREDICATELOCKTARGETTAG_RELATION(oldtarget->tag) != relId)
    3004           32 :             continue;           /* wrong relation id */
    3005            0 :         if (GET_PREDICATELOCKTARGETTAG_DB(oldtarget->tag) != dbId)
    3006            0 :             continue;           /* wrong database id */
    3007            0 :         if (transfer && !isIndex
    3008            0 :             && GET_PREDICATELOCKTARGETTAG_TYPE(oldtarget->tag) == PREDLOCKTAG_RELATION)
    3009            0 :             continue;           /* already the right lock */
    3010              : 
    3011              :         /*
    3012              :          * If we made it here, we have work to do.  We make sure the heap
    3013              :          * relation lock exists, then we walk the list of predicate locks for
    3014              :          * the old target we found, moving all locks to the heap relation lock
    3015              :          * -- unless they already hold that.
    3016              :          */
    3017              : 
    3018              :         /*
    3019              :          * First make sure we have the heap relation target.  We only need to
    3020              :          * do this once.
    3021              :          */
    3022            0 :         if (transfer && heaptarget == NULL)
    3023              :         {
    3024              :             PREDICATELOCKTARGETTAG heaptargettag;
    3025              : 
    3026            0 :             SET_PREDICATELOCKTARGETTAG_RELATION(heaptargettag, dbId, heapId);
    3027            0 :             heaptargettaghash = PredicateLockTargetTagHashCode(&heaptargettag);
    3028            0 :             heaptarget = hash_search_with_hash_value(PredicateLockTargetHash,
    3029              :                                                      &heaptargettag,
    3030              :                                                      heaptargettaghash,
    3031              :                                                      HASH_ENTER, &found);
    3032            0 :             if (!found)
    3033            0 :                 dlist_init(&heaptarget->predicateLocks);
    3034              :         }
    3035              : 
    3036              :         /*
    3037              :          * Loop through all the locks on the old target, replacing them with
    3038              :          * locks on the new target.
    3039              :          */
    3040            0 :         dlist_foreach_modify(iter, &oldtarget->predicateLocks)
    3041              :         {
    3042            0 :             PREDICATELOCK *oldpredlock =
    3043            0 :                 dlist_container(PREDICATELOCK, targetLink, iter.cur);
    3044              :             PREDICATELOCK *newpredlock;
    3045              :             SerCommitSeqNo oldCommitSeqNo;
    3046              :             SERIALIZABLEXACT *oldXact;
    3047              : 
    3048              :             /*
    3049              :              * Remove the old lock first. This avoids the chance of running
    3050              :              * out of lock structure entries for the hash table.
    3051              :              */
    3052            0 :             oldCommitSeqNo = oldpredlock->commitSeqNo;
    3053            0 :             oldXact = oldpredlock->tag.myXact;
    3054              : 
    3055            0 :             dlist_delete(&(oldpredlock->xactLink));
    3056              : 
    3057              :             /*
    3058              :              * No need for retail delete from oldtarget list, we're removing
    3059              :              * the whole target anyway.
    3060              :              */
    3061            0 :             hash_search(PredicateLockHash,
    3062            0 :                         &oldpredlock->tag,
    3063              :                         HASH_REMOVE, &found);
    3064              :             Assert(found);
    3065              : 
    3066            0 :             if (transfer)
    3067              :             {
    3068              :                 PREDICATELOCKTAG newpredlocktag;
    3069              : 
    3070            0 :                 newpredlocktag.myTarget = heaptarget;
    3071            0 :                 newpredlocktag.myXact = oldXact;
    3072              :                 newpredlock = (PREDICATELOCK *)
    3073            0 :                     hash_search_with_hash_value(PredicateLockHash,
    3074              :                                                 &newpredlocktag,
    3075            0 :                                                 PredicateLockHashCodeFromTargetHashCode(&newpredlocktag,
    3076              :                                                                                         heaptargettaghash),
    3077              :                                                 HASH_ENTER,
    3078              :                                                 &found);
    3079            0 :                 if (!found)
    3080              :                 {
    3081            0 :                     dlist_push_tail(&(heaptarget->predicateLocks),
    3082              :                                     &(newpredlock->targetLink));
    3083            0 :                     dlist_push_tail(&(newpredlocktag.myXact->predicateLocks),
    3084              :                                     &(newpredlock->xactLink));
    3085            0 :                     newpredlock->commitSeqNo = oldCommitSeqNo;
    3086              :                 }
    3087              :                 else
    3088              :                 {
    3089            0 :                     if (newpredlock->commitSeqNo < oldCommitSeqNo)
    3090            0 :                         newpredlock->commitSeqNo = oldCommitSeqNo;
    3091              :                 }
    3092              : 
    3093              :                 Assert(newpredlock->commitSeqNo != 0);
    3094              :                 Assert((newpredlock->commitSeqNo == InvalidSerCommitSeqNo)
    3095              :                        || (newpredlock->tag.myXact == OldCommittedSxact));
    3096              :             }
    3097              :         }
    3098              : 
    3099            0 :         hash_search(PredicateLockTargetHash, &oldtarget->tag, HASH_REMOVE,
    3100              :                     &found);
    3101              :         Assert(found);
    3102              :     }
    3103              : 
    3104              :     /* Put the scratch entry back */
    3105           29 :     if (transfer)
    3106           29 :         RestoreScratchTarget(true);
    3107              : 
    3108              :     /* Release locks in reverse order */
    3109           29 :     LWLockRelease(SerializableXactHashLock);
    3110          493 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    3111          464 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    3112           29 :     LWLockRelease(SerializablePredicateListLock);
    3113              : }
    3114              : 
    3115              : /*
    3116              :  * TransferPredicateLocksToHeapRelation
    3117              :  *      For all transactions, transfer all predicate locks for the given
    3118              :  *      relation to a single relation lock on the heap.
    3119              :  */
    3120              : void
    3121        17741 : TransferPredicateLocksToHeapRelation(Relation relation)
    3122              : {
    3123        17741 :     DropAllPredicateLocksFromTable(relation, true);
    3124        17741 : }
    3125              : 
    3126              : 
    3127              : /*
    3128              :  *      PredicateLockPageSplit
    3129              :  *
    3130              :  * Copies any predicate locks for the old page to the new page.
    3131              :  * Skip if this is a temporary table or toast table.
    3132              :  *
    3133              :  * NOTE: A page split (or overflow) affects all serializable transactions,
    3134              :  * even if it occurs in the context of another transaction isolation level.
    3135              :  *
    3136              :  * NOTE: This currently leaves the local copy of the locks without
    3137              :  * information on the new lock which is in shared memory.  This could cause
    3138              :  * problems if enough page splits occur on locked pages without the processes
    3139              :  * which hold the locks getting in and noticing.
    3140              :  */
    3141              : void
    3142        30548 : PredicateLockPageSplit(Relation relation, BlockNumber oldblkno,
    3143              :                        BlockNumber newblkno)
    3144              : {
    3145              :     PREDICATELOCKTARGETTAG oldtargettag;
    3146              :     PREDICATELOCKTARGETTAG newtargettag;
    3147              :     bool        success;
    3148              : 
    3149              :     /*
    3150              :      * Bail out quickly if there are no serializable transactions running.
    3151              :      *
    3152              :      * It's safe to do this check without taking any additional locks. Even if
    3153              :      * a serializable transaction starts concurrently, we know it can't take
    3154              :      * any SIREAD locks on the page being split because the caller is holding
    3155              :      * the associated buffer page lock. Memory reordering isn't an issue; the
    3156              :      * memory barrier in the LWLock acquisition guarantees that this read
    3157              :      * occurs while the buffer page lock is held.
    3158              :      */
    3159        30548 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    3160        30548 :         return;
    3161              : 
    3162           12 :     if (!PredicateLockingNeededForRelation(relation))
    3163           12 :         return;
    3164              : 
    3165              :     Assert(oldblkno != newblkno);
    3166              :     Assert(BlockNumberIsValid(oldblkno));
    3167              :     Assert(BlockNumberIsValid(newblkno));
    3168              : 
    3169            0 :     SET_PREDICATELOCKTARGETTAG_PAGE(oldtargettag,
    3170              :                                     relation->rd_locator.dbOid,
    3171              :                                     relation->rd_id,
    3172              :                                     oldblkno);
    3173            0 :     SET_PREDICATELOCKTARGETTAG_PAGE(newtargettag,
    3174              :                                     relation->rd_locator.dbOid,
    3175              :                                     relation->rd_id,
    3176              :                                     newblkno);
    3177              : 
    3178            0 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    3179              : 
    3180              :     /*
    3181              :      * Try copying the locks over to the new page's tag, creating it if
    3182              :      * necessary.
    3183              :      */
    3184            0 :     success = TransferPredicateLocksToNewTarget(oldtargettag,
    3185              :                                                 newtargettag,
    3186              :                                                 false);
    3187              : 
    3188            0 :     if (!success)
    3189              :     {
    3190              :         /*
    3191              :          * No more predicate lock entries are available. Failure isn't an
    3192              :          * option here, so promote the page lock to a relation lock.
    3193              :          */
    3194              : 
    3195              :         /* Get the parent relation lock's lock tag */
    3196            0 :         success = GetParentPredicateLockTag(&oldtargettag,
    3197              :                                             &newtargettag);
    3198              :         Assert(success);
    3199              : 
    3200              :         /*
    3201              :          * Move the locks to the parent. This shouldn't fail.
    3202              :          *
    3203              :          * Note that here we are removing locks held by other backends,
    3204              :          * leading to a possible inconsistency in their local lock hash table.
    3205              :          * This is OK because we're replacing it with a lock that covers the
    3206              :          * old one.
    3207              :          */
    3208            0 :         success = TransferPredicateLocksToNewTarget(oldtargettag,
    3209              :                                                     newtargettag,
    3210              :                                                     true);
    3211              :         Assert(success);
    3212              :     }
    3213              : 
    3214            0 :     LWLockRelease(SerializablePredicateListLock);
    3215              : }
    3216              : 
    3217              : /*
    3218              :  *      PredicateLockPageCombine
    3219              :  *
    3220              :  * Combines predicate locks for two existing pages.
    3221              :  * Skip if this is a temporary table or toast table.
    3222              :  *
    3223              :  * NOTE: A page combine affects all serializable transactions, even if it
    3224              :  * occurs in the context of another transaction isolation level.
    3225              :  */
    3226              : void
    3227         2828 : PredicateLockPageCombine(Relation relation, BlockNumber oldblkno,
    3228              :                          BlockNumber newblkno)
    3229              : {
    3230              :     /*
    3231              :      * Page combines differ from page splits in that we ought to be able to
    3232              :      * remove the locks on the old page after transferring them to the new
    3233              :      * page, instead of duplicating them. However, because we can't edit other
    3234              :      * backends' local lock tables, removing the old lock would leave them
    3235              :      * with an entry in their LocalPredicateLockHash for a lock they're not
    3236              :      * holding, which isn't acceptable. So we wind up having to do the same
    3237              :      * work as a page split, acquiring a lock on the new page and keeping the
    3238              :      * old page locked too. That can lead to some false positives, but should
    3239              :      * be rare in practice.
    3240              :      */
    3241         2828 :     PredicateLockPageSplit(relation, oldblkno, newblkno);
    3242         2828 : }
    3243              : 
    3244              : /*
    3245              :  * Walk the list of in-progress serializable transactions and find the new
    3246              :  * xmin.
    3247              :  */
    3248              : static void
    3249          860 : SetNewSxactGlobalXmin(void)
    3250              : {
    3251              :     dlist_iter  iter;
    3252              : 
    3253              :     Assert(LWLockHeldByMe(SerializableXactHashLock));
    3254              : 
    3255          860 :     PredXact->SxactGlobalXmin = InvalidTransactionId;
    3256          860 :     PredXact->SxactGlobalXminCount = 0;
    3257              : 
    3258         3302 :     dlist_foreach(iter, &PredXact->activeList)
    3259              :     {
    3260         2442 :         SERIALIZABLEXACT *sxact =
    3261         2442 :             dlist_container(SERIALIZABLEXACT, xactLink, iter.cur);
    3262              : 
    3263         2442 :         if (!SxactIsRolledBack(sxact)
    3264         2137 :             && !SxactIsCommitted(sxact)
    3265           21 :             && sxact != OldCommittedSxact)
    3266              :         {
    3267              :             Assert(sxact->xmin != InvalidTransactionId);
    3268           21 :             if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
    3269            1 :                 || TransactionIdPrecedes(sxact->xmin,
    3270            1 :                                          PredXact->SxactGlobalXmin))
    3271              :             {
    3272           20 :                 PredXact->SxactGlobalXmin = sxact->xmin;
    3273           20 :                 PredXact->SxactGlobalXminCount = 1;
    3274              :             }
    3275            1 :             else if (TransactionIdEquals(sxact->xmin,
    3276              :                                          PredXact->SxactGlobalXmin))
    3277            0 :                 PredXact->SxactGlobalXminCount++;
    3278              :         }
    3279              :     }
    3280              : 
    3281          860 :     SerialSetActiveSerXmin(PredXact->SxactGlobalXmin);
    3282          860 : }
    3283              : 
    3284              : /*
    3285              :  *      ReleasePredicateLocks
    3286              :  *
    3287              :  * Releases predicate locks based on completion of the current transaction,
    3288              :  * whether committed or rolled back.  It can also be called for a read only
    3289              :  * transaction when it becomes impossible for the transaction to become
    3290              :  * part of a dangerous structure.
    3291              :  *
    3292              :  * We do nothing unless this is a serializable transaction.
    3293              :  *
    3294              :  * This method must ensure that shared memory hash tables are cleaned
    3295              :  * up in some relatively timely fashion.
    3296              :  *
    3297              :  * If this transaction is committing and is holding any predicate locks,
    3298              :  * it must be added to a list of completed serializable transactions still
    3299              :  * holding locks.
    3300              :  *
    3301              :  * If isReadOnlySafe is true, then predicate locks are being released before
    3302              :  * the end of the transaction because MySerializableXact has been determined
    3303              :  * to be RO_SAFE.  In non-parallel mode we can release it completely, but it
    3304              :  * in parallel mode we partially release the SERIALIZABLEXACT and keep it
    3305              :  * around until the end of the transaction, allowing each backend to clear its
    3306              :  * MySerializableXact variable and benefit from the optimization in its own
    3307              :  * time.
    3308              :  */
    3309              : void
    3310       552629 : ReleasePredicateLocks(bool isCommit, bool isReadOnlySafe)
    3311              : {
    3312       552629 :     bool        partiallyReleasing = false;
    3313              :     bool        needToClear;
    3314              :     SERIALIZABLEXACT *roXact;
    3315              :     dlist_mutable_iter iter;
    3316              : 
    3317              :     /*
    3318              :      * We can't trust XactReadOnly here, because a transaction which started
    3319              :      * as READ WRITE can show as READ ONLY later, e.g., within
    3320              :      * subtransactions.  We want to flag a transaction as READ ONLY if it
    3321              :      * commits without writing so that de facto READ ONLY transactions get the
    3322              :      * benefit of some RO optimizations, so we will use this local variable to
    3323              :      * get some cleanup logic right which is based on whether the transaction
    3324              :      * was declared READ ONLY at the top level.
    3325              :      */
    3326              :     bool        topLevelIsDeclaredReadOnly;
    3327              : 
    3328              :     /* We can't be both committing and releasing early due to RO_SAFE. */
    3329              :     Assert(!(isCommit && isReadOnlySafe));
    3330              : 
    3331              :     /* Are we at the end of a transaction, that is, a commit or abort? */
    3332       552629 :     if (!isReadOnlySafe)
    3333              :     {
    3334              :         /*
    3335              :          * Parallel workers mustn't release predicate locks at the end of
    3336              :          * their transaction.  The leader will do that at the end of its
    3337              :          * transaction.
    3338              :          */
    3339       552595 :         if (IsParallelWorker())
    3340              :         {
    3341         4452 :             ReleasePredicateLocksLocal();
    3342       551063 :             return;
    3343              :         }
    3344              : 
    3345              :         /*
    3346              :          * By the time the leader in a parallel query reaches end of
    3347              :          * transaction, it has waited for all workers to exit.
    3348              :          */
    3349              :         Assert(!ParallelContextActive());
    3350              : 
    3351              :         /*
    3352              :          * If the leader in a parallel query earlier stashed a partially
    3353              :          * released SERIALIZABLEXACT for final clean-up at end of transaction
    3354              :          * (because workers might still have been accessing it), then it's
    3355              :          * time to restore it.
    3356              :          */
    3357       548143 :         if (SavedSerializableXact != InvalidSerializableXact)
    3358              :         {
    3359              :             Assert(MySerializableXact == InvalidSerializableXact);
    3360            1 :             MySerializableXact = SavedSerializableXact;
    3361            1 :             SavedSerializableXact = InvalidSerializableXact;
    3362              :             Assert(SxactIsPartiallyReleased(MySerializableXact));
    3363              :         }
    3364              :     }
    3365              : 
    3366       548177 :     if (MySerializableXact == InvalidSerializableXact)
    3367              :     {
    3368              :         Assert(LocalPredicateLockHash == NULL);
    3369       546608 :         return;
    3370              :     }
    3371              : 
    3372         1569 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    3373              : 
    3374              :     /*
    3375              :      * If the transaction is committing, but it has been partially released
    3376              :      * already, then treat this as a roll back.  It was marked as rolled back.
    3377              :      */
    3378         1569 :     if (isCommit && SxactIsPartiallyReleased(MySerializableXact))
    3379            2 :         isCommit = false;
    3380              : 
    3381              :     /*
    3382              :      * If we're called in the middle of a transaction because we discovered
    3383              :      * that the SXACT_FLAG_RO_SAFE flag was set, then we'll partially release
    3384              :      * it (that is, release the predicate locks and conflicts, but not the
    3385              :      * SERIALIZABLEXACT itself) if we're the first backend to have noticed.
    3386              :      */
    3387         1569 :     if (isReadOnlySafe && IsInParallelMode())
    3388              :     {
    3389              :         /*
    3390              :          * The leader needs to stash a pointer to it, so that it can
    3391              :          * completely release it at end-of-transaction.
    3392              :          */
    3393            5 :         if (!IsParallelWorker())
    3394            1 :             SavedSerializableXact = MySerializableXact;
    3395              : 
    3396              :         /*
    3397              :          * The first backend to reach this condition will partially release
    3398              :          * the SERIALIZABLEXACT.  All others will just clear their
    3399              :          * backend-local state so that they stop doing SSI checks for the rest
    3400              :          * of the transaction.
    3401              :          */
    3402            5 :         if (SxactIsPartiallyReleased(MySerializableXact))
    3403              :         {
    3404            3 :             LWLockRelease(SerializableXactHashLock);
    3405            3 :             ReleasePredicateLocksLocal();
    3406            3 :             return;
    3407              :         }
    3408              :         else
    3409              :         {
    3410            2 :             MySerializableXact->flags |= SXACT_FLAG_PARTIALLY_RELEASED;
    3411            2 :             partiallyReleasing = true;
    3412              :             /* ... and proceed to perform the partial release below. */
    3413              :         }
    3414              :     }
    3415              :     Assert(!isCommit || SxactIsPrepared(MySerializableXact));
    3416              :     Assert(!isCommit || !SxactIsDoomed(MySerializableXact));
    3417              :     Assert(!SxactIsCommitted(MySerializableXact));
    3418              :     Assert(SxactIsPartiallyReleased(MySerializableXact)
    3419              :            || !SxactIsRolledBack(MySerializableXact));
    3420              : 
    3421              :     /* may not be serializable during COMMIT/ROLLBACK PREPARED */
    3422              :     Assert(MySerializableXact->pid == 0 || IsolationIsSerializable());
    3423              : 
    3424              :     /* We'd better not already be on the cleanup list. */
    3425              :     Assert(!SxactIsOnFinishedList(MySerializableXact));
    3426              : 
    3427         1566 :     topLevelIsDeclaredReadOnly = SxactIsReadOnly(MySerializableXact);
    3428              : 
    3429              :     /*
    3430              :      * We don't hold XidGenLock lock here, assuming that TransactionId is
    3431              :      * atomic!
    3432              :      *
    3433              :      * If this value is changing, we don't care that much whether we get the
    3434              :      * old or new value -- it is just used to determine how far
    3435              :      * SxactGlobalXmin must advance before this transaction can be fully
    3436              :      * cleaned up.  The worst that could happen is we wait for one more
    3437              :      * transaction to complete before freeing some RAM; correctness of visible
    3438              :      * behavior is not affected.
    3439              :      */
    3440         1566 :     MySerializableXact->finishedBefore = XidFromFullTransactionId(TransamVariables->nextXid);
    3441              : 
    3442              :     /*
    3443              :      * If it's not a commit it's either a rollback or a read-only transaction
    3444              :      * flagged SXACT_FLAG_RO_SAFE, and we can clear our locks immediately.
    3445              :      */
    3446         1566 :     if (isCommit)
    3447              :     {
    3448         1234 :         MySerializableXact->flags |= SXACT_FLAG_COMMITTED;
    3449         1234 :         MySerializableXact->commitSeqNo = ++(PredXact->LastSxactCommitSeqNo);
    3450              :         /* Recognize implicit read-only transaction (commit without write). */
    3451         1234 :         if (!MyXactDidWrite)
    3452          233 :             MySerializableXact->flags |= SXACT_FLAG_READ_ONLY;
    3453              :     }
    3454              :     else
    3455              :     {
    3456              :         /*
    3457              :          * The DOOMED flag indicates that we intend to roll back this
    3458              :          * transaction and so it should not cause serialization failures for
    3459              :          * other transactions that conflict with it. Note that this flag might
    3460              :          * already be set, if another backend marked this transaction for
    3461              :          * abort.
    3462              :          *
    3463              :          * The ROLLED_BACK flag further indicates that ReleasePredicateLocks
    3464              :          * has been called, and so the SerializableXact is eligible for
    3465              :          * cleanup. This means it should not be considered when calculating
    3466              :          * SxactGlobalXmin.
    3467              :          */
    3468          332 :         MySerializableXact->flags |= SXACT_FLAG_DOOMED;
    3469          332 :         MySerializableXact->flags |= SXACT_FLAG_ROLLED_BACK;
    3470              : 
    3471              :         /*
    3472              :          * If the transaction was previously prepared, but is now failing due
    3473              :          * to a ROLLBACK PREPARED or (hopefully very rare) error after the
    3474              :          * prepare, clear the prepared flag.  This simplifies conflict
    3475              :          * checking.
    3476              :          */
    3477          332 :         MySerializableXact->flags &= ~SXACT_FLAG_PREPARED;
    3478              :     }
    3479              : 
    3480         1566 :     if (!topLevelIsDeclaredReadOnly)
    3481              :     {
    3482              :         Assert(PredXact->WritableSxactCount > 0);
    3483         1457 :         if (--(PredXact->WritableSxactCount) == 0)
    3484              :         {
    3485              :             /*
    3486              :              * Release predicate locks and rw-conflicts in for all committed
    3487              :              * transactions.  There are no longer any transactions which might
    3488              :              * conflict with the locks and no chance for new transactions to
    3489              :              * overlap.  Similarly, existing conflicts in can't cause pivots,
    3490              :              * and any conflicts in which could have completed a dangerous
    3491              :              * structure would already have caused a rollback, so any
    3492              :              * remaining ones must be benign.
    3493              :              */
    3494          850 :             PredXact->CanPartialClearThrough = PredXact->LastSxactCommitSeqNo;
    3495              :         }
    3496              :     }
    3497              :     else
    3498              :     {
    3499              :         /*
    3500              :          * Read-only transactions: clear the list of transactions that might
    3501              :          * make us unsafe. Note that we use 'inLink' for the iteration as
    3502              :          * opposed to 'outLink' for the r/w xacts.
    3503              :          */
    3504          151 :         dlist_foreach_modify(iter, &MySerializableXact->possibleUnsafeConflicts)
    3505              :         {
    3506           42 :             RWConflict  possibleUnsafeConflict =
    3507           42 :                 dlist_container(RWConflictData, inLink, iter.cur);
    3508              : 
    3509              :             Assert(!SxactIsReadOnly(possibleUnsafeConflict->sxactOut));
    3510              :             Assert(MySerializableXact == possibleUnsafeConflict->sxactIn);
    3511              : 
    3512           42 :             ReleaseRWConflict(possibleUnsafeConflict);
    3513              :         }
    3514              :     }
    3515              : 
    3516              :     /* Check for conflict out to old committed transactions. */
    3517         1566 :     if (isCommit
    3518         1234 :         && !SxactIsReadOnly(MySerializableXact)
    3519         1001 :         && SxactHasSummaryConflictOut(MySerializableXact))
    3520              :     {
    3521              :         /*
    3522              :          * we don't know which old committed transaction we conflicted with,
    3523              :          * so be conservative and use FirstNormalSerCommitSeqNo here
    3524              :          */
    3525            0 :         MySerializableXact->SeqNo.earliestOutConflictCommit =
    3526              :             FirstNormalSerCommitSeqNo;
    3527            0 :         MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
    3528              :     }
    3529              : 
    3530              :     /*
    3531              :      * Release all outConflicts to committed transactions.  If we're rolling
    3532              :      * back clear them all.  Set SXACT_FLAG_CONFLICT_OUT if any point to
    3533              :      * previously committed transactions.
    3534              :      */
    3535         2252 :     dlist_foreach_modify(iter, &MySerializableXact->outConflicts)
    3536              :     {
    3537          686 :         RWConflict  conflict =
    3538              :             dlist_container(RWConflictData, outLink, iter.cur);
    3539              : 
    3540          686 :         if (isCommit
    3541          454 :             && !SxactIsReadOnly(MySerializableXact)
    3542          346 :             && SxactIsCommitted(conflict->sxactIn))
    3543              :         {
    3544           96 :             if ((MySerializableXact->flags & SXACT_FLAG_CONFLICT_OUT) == 0
    3545            0 :                 || conflict->sxactIn->prepareSeqNo < MySerializableXact->SeqNo.earliestOutConflictCommit)
    3546           96 :                 MySerializableXact->SeqNo.earliestOutConflictCommit = conflict->sxactIn->prepareSeqNo;
    3547           96 :             MySerializableXact->flags |= SXACT_FLAG_CONFLICT_OUT;
    3548              :         }
    3549              : 
    3550          686 :         if (!isCommit
    3551          454 :             || SxactIsCommitted(conflict->sxactIn)
    3552          336 :             || (conflict->sxactIn->SeqNo.lastCommitBeforeSnapshot >= PredXact->LastSxactCommitSeqNo))
    3553          350 :             ReleaseRWConflict(conflict);
    3554              :     }
    3555              : 
    3556              :     /*
    3557              :      * Release all inConflicts from committed and read-only transactions. If
    3558              :      * we're rolling back, clear them all.
    3559              :      */
    3560         2346 :     dlist_foreach_modify(iter, &MySerializableXact->inConflicts)
    3561              :     {
    3562          780 :         RWConflict  conflict =
    3563          780 :             dlist_container(RWConflictData, inLink, iter.cur);
    3564              : 
    3565          780 :         if (!isCommit
    3566          603 :             || SxactIsCommitted(conflict->sxactOut)
    3567          418 :             || SxactIsReadOnly(conflict->sxactOut))
    3568          442 :             ReleaseRWConflict(conflict);
    3569              :     }
    3570              : 
    3571         1566 :     if (!topLevelIsDeclaredReadOnly)
    3572              :     {
    3573              :         /*
    3574              :          * Remove ourselves from the list of possible conflicts for concurrent
    3575              :          * READ ONLY transactions, flagging them as unsafe if we have a
    3576              :          * conflict out. If any are waiting DEFERRABLE transactions, wake them
    3577              :          * up if they are known safe or known unsafe.
    3578              :          */
    3579         1549 :         dlist_foreach_modify(iter, &MySerializableXact->possibleUnsafeConflicts)
    3580              :         {
    3581           92 :             RWConflict  possibleUnsafeConflict =
    3582              :                 dlist_container(RWConflictData, outLink, iter.cur);
    3583              : 
    3584           92 :             roXact = possibleUnsafeConflict->sxactIn;
    3585              :             Assert(MySerializableXact == possibleUnsafeConflict->sxactOut);
    3586              :             Assert(SxactIsReadOnly(roXact));
    3587              : 
    3588              :             /* Mark conflicted if necessary. */
    3589           92 :             if (isCommit
    3590           90 :                 && MyXactDidWrite
    3591           85 :                 && SxactHasConflictOut(MySerializableXact)
    3592           13 :                 && (MySerializableXact->SeqNo.earliestOutConflictCommit
    3593           13 :                     <= roXact->SeqNo.lastCommitBeforeSnapshot))
    3594              :             {
    3595              :                 /*
    3596              :                  * This releases possibleUnsafeConflict (as well as all other
    3597              :                  * possible conflicts for roXact)
    3598              :                  */
    3599            3 :                 FlagSxactUnsafe(roXact);
    3600              :             }
    3601              :             else
    3602              :             {
    3603           89 :                 ReleaseRWConflict(possibleUnsafeConflict);
    3604              : 
    3605              :                 /*
    3606              :                  * If we were the last possible conflict, flag it safe. The
    3607              :                  * transaction can now safely release its predicate locks (but
    3608              :                  * that transaction's backend has to do that itself).
    3609              :                  */
    3610           89 :                 if (dlist_is_empty(&roXact->possibleUnsafeConflicts))
    3611           66 :                     roXact->flags |= SXACT_FLAG_RO_SAFE;
    3612              :             }
    3613              : 
    3614              :             /*
    3615              :              * Wake up the process for a waiting DEFERRABLE transaction if we
    3616              :              * now know it's either safe or conflicted.
    3617              :              */
    3618           92 :             if (SxactIsDeferrableWaiting(roXact) &&
    3619            3 :                 (SxactIsROUnsafe(roXact) || SxactIsROSafe(roXact)))
    3620            2 :                 ProcSendSignal(roXact->pgprocno);
    3621              :         }
    3622              :     }
    3623              : 
    3624              :     /*
    3625              :      * Check whether it's time to clean up old transactions. This can only be
    3626              :      * done when the last serializable transaction with the oldest xmin among
    3627              :      * serializable transactions completes.  We then find the "new oldest"
    3628              :      * xmin and purge any transactions which finished before this transaction
    3629              :      * was launched.
    3630              :      *
    3631              :      * For parallel queries in read-only transactions, it might run twice. We
    3632              :      * only release the reference on the first call.
    3633              :      */
    3634         1566 :     needToClear = false;
    3635         1566 :     if ((partiallyReleasing ||
    3636         1564 :          !SxactIsPartiallyReleased(MySerializableXact)) &&
    3637         1564 :         TransactionIdEquals(MySerializableXact->xmin,
    3638              :                             PredXact->SxactGlobalXmin))
    3639              :     {
    3640              :         Assert(PredXact->SxactGlobalXminCount > 0);
    3641         1544 :         if (--(PredXact->SxactGlobalXminCount) == 0)
    3642              :         {
    3643          860 :             SetNewSxactGlobalXmin();
    3644          860 :             needToClear = true;
    3645              :         }
    3646              :     }
    3647              : 
    3648         1566 :     LWLockRelease(SerializableXactHashLock);
    3649              : 
    3650         1566 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    3651              : 
    3652              :     /* Add this to the list of transactions to check for later cleanup. */
    3653         1566 :     if (isCommit)
    3654         1234 :         dlist_push_tail(FinishedSerializableTransactions,
    3655         1234 :                         &MySerializableXact->finishedLink);
    3656              : 
    3657              :     /*
    3658              :      * If we're releasing a RO_SAFE transaction in parallel mode, we'll only
    3659              :      * partially release it.  That's necessary because other backends may have
    3660              :      * a reference to it.  The leader will release the SERIALIZABLEXACT itself
    3661              :      * at the end of the transaction after workers have stopped running.
    3662              :      */
    3663         1566 :     if (!isCommit)
    3664          332 :         ReleaseOneSerializableXact(MySerializableXact,
    3665          332 :                                    isReadOnlySafe && IsInParallelMode(),
    3666          332 :                                    false);
    3667              : 
    3668         1566 :     LWLockRelease(SerializableFinishedListLock);
    3669              : 
    3670         1566 :     if (needToClear)
    3671          860 :         ClearOldPredicateLocks();
    3672              : 
    3673         1566 :     ReleasePredicateLocksLocal();
    3674              : }
    3675              : 
    3676              : static void
    3677         6021 : ReleasePredicateLocksLocal(void)
    3678              : {
    3679         6021 :     MySerializableXact = InvalidSerializableXact;
    3680         6021 :     MyXactDidWrite = false;
    3681              : 
    3682              :     /* Delete per-transaction lock table */
    3683         6021 :     if (LocalPredicateLockHash != NULL)
    3684              :     {
    3685         1565 :         hash_destroy(LocalPredicateLockHash);
    3686         1565 :         LocalPredicateLockHash = NULL;
    3687              :     }
    3688         6021 : }
    3689              : 
    3690              : /*
    3691              :  * Clear old predicate locks, belonging to committed transactions that are no
    3692              :  * longer interesting to any in-progress transaction.
    3693              :  */
    3694              : static void
    3695          860 : ClearOldPredicateLocks(void)
    3696              : {
    3697              :     dlist_mutable_iter iter;
    3698              : 
    3699              :     /*
    3700              :      * Loop through finished transactions. They are in commit order, so we can
    3701              :      * stop as soon as we find one that's still interesting.
    3702              :      */
    3703          860 :     LWLockAcquire(SerializableFinishedListLock, LW_EXCLUSIVE);
    3704          860 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3705         2103 :     dlist_foreach_modify(iter, FinishedSerializableTransactions)
    3706              :     {
    3707         1253 :         SERIALIZABLEXACT *finishedSxact =
    3708         1253 :             dlist_container(SERIALIZABLEXACT, finishedLink, iter.cur);
    3709              : 
    3710         1253 :         if (!TransactionIdIsValid(PredXact->SxactGlobalXmin)
    3711           34 :             || TransactionIdPrecedesOrEquals(finishedSxact->finishedBefore,
    3712           34 :                                              PredXact->SxactGlobalXmin))
    3713              :         {
    3714              :             /*
    3715              :              * This transaction committed before any in-progress transaction
    3716              :              * took its snapshot. It's no longer interesting.
    3717              :              */
    3718         1234 :             LWLockRelease(SerializableXactHashLock);
    3719         1234 :             dlist_delete_thoroughly(&finishedSxact->finishedLink);
    3720         1234 :             ReleaseOneSerializableXact(finishedSxact, false, false);
    3721         1234 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3722              :         }
    3723           19 :         else if (finishedSxact->commitSeqNo > PredXact->HavePartialClearedThrough
    3724           19 :                  && finishedSxact->commitSeqNo <= PredXact->CanPartialClearThrough)
    3725              :         {
    3726              :             /*
    3727              :              * Any active transactions that took their snapshot before this
    3728              :              * transaction committed are read-only, so we can clear part of
    3729              :              * its state.
    3730              :              */
    3731            9 :             LWLockRelease(SerializableXactHashLock);
    3732              : 
    3733            9 :             if (SxactIsReadOnly(finishedSxact))
    3734              :             {
    3735              :                 /* A read-only transaction can be removed entirely */
    3736            0 :                 dlist_delete_thoroughly(&(finishedSxact->finishedLink));
    3737            0 :                 ReleaseOneSerializableXact(finishedSxact, false, false);
    3738              :             }
    3739              :             else
    3740              :             {
    3741              :                 /*
    3742              :                  * A read-write transaction can only be partially cleared. We
    3743              :                  * need to keep the SERIALIZABLEXACT but can release the
    3744              :                  * SIREAD locks and conflicts in.
    3745              :                  */
    3746            9 :                 ReleaseOneSerializableXact(finishedSxact, true, false);
    3747              :             }
    3748              : 
    3749            9 :             PredXact->HavePartialClearedThrough = finishedSxact->commitSeqNo;
    3750            9 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3751              :         }
    3752              :         else
    3753              :         {
    3754              :             /* Still interesting. */
    3755              :             break;
    3756              :         }
    3757              :     }
    3758          860 :     LWLockRelease(SerializableXactHashLock);
    3759              : 
    3760              :     /*
    3761              :      * Loop through predicate locks on dummy transaction for summarized data.
    3762              :      */
    3763          860 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    3764          860 :     dlist_foreach_modify(iter, &OldCommittedSxact->predicateLocks)
    3765              :     {
    3766            0 :         PREDICATELOCK *predlock =
    3767            0 :             dlist_container(PREDICATELOCK, xactLink, iter.cur);
    3768              :         bool        canDoPartialCleanup;
    3769              : 
    3770            0 :         LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    3771              :         Assert(predlock->commitSeqNo != 0);
    3772              :         Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
    3773            0 :         canDoPartialCleanup = (predlock->commitSeqNo <= PredXact->CanPartialClearThrough);
    3774            0 :         LWLockRelease(SerializableXactHashLock);
    3775              : 
    3776              :         /*
    3777              :          * If this lock originally belonged to an old enough transaction, we
    3778              :          * can release it.
    3779              :          */
    3780            0 :         if (canDoPartialCleanup)
    3781              :         {
    3782              :             PREDICATELOCKTAG tag;
    3783              :             PREDICATELOCKTARGET *target;
    3784              :             PREDICATELOCKTARGETTAG targettag;
    3785              :             uint32      targettaghash;
    3786              :             LWLock     *partitionLock;
    3787              : 
    3788            0 :             tag = predlock->tag;
    3789            0 :             target = tag.myTarget;
    3790            0 :             targettag = target->tag;
    3791            0 :             targettaghash = PredicateLockTargetTagHashCode(&targettag);
    3792            0 :             partitionLock = PredicateLockHashPartitionLock(targettaghash);
    3793              : 
    3794            0 :             LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    3795              : 
    3796            0 :             dlist_delete(&(predlock->targetLink));
    3797            0 :             dlist_delete(&(predlock->xactLink));
    3798              : 
    3799            0 :             hash_search_with_hash_value(PredicateLockHash, &tag,
    3800            0 :                                         PredicateLockHashCodeFromTargetHashCode(&tag,
    3801              :                                                                                 targettaghash),
    3802              :                                         HASH_REMOVE, NULL);
    3803            0 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    3804              : 
    3805            0 :             LWLockRelease(partitionLock);
    3806              :         }
    3807              :     }
    3808              : 
    3809          860 :     LWLockRelease(SerializablePredicateListLock);
    3810          860 :     LWLockRelease(SerializableFinishedListLock);
    3811          860 : }
    3812              : 
    3813              : /*
    3814              :  * This is the normal way to delete anything from any of the predicate
    3815              :  * locking hash tables.  Given a transaction which we know can be deleted:
    3816              :  * delete all predicate locks held by that transaction and any predicate
    3817              :  * lock targets which are now unreferenced by a lock; delete all conflicts
    3818              :  * for the transaction; delete all xid values for the transaction; then
    3819              :  * delete the transaction.
    3820              :  *
    3821              :  * When the partial flag is set, we can release all predicate locks and
    3822              :  * in-conflict information -- we've established that there are no longer
    3823              :  * any overlapping read write transactions for which this transaction could
    3824              :  * matter -- but keep the transaction entry itself and any outConflicts.
    3825              :  *
    3826              :  * When the summarize flag is set, we've run short of room for sxact data
    3827              :  * and must summarize to the SLRU.  Predicate locks are transferred to a
    3828              :  * dummy "old" transaction, with duplicate locks on a single target
    3829              :  * collapsing to a single lock with the "latest" commitSeqNo from among
    3830              :  * the conflicting locks..
    3831              :  */
    3832              : static void
    3833         1575 : ReleaseOneSerializableXact(SERIALIZABLEXACT *sxact, bool partial,
    3834              :                            bool summarize)
    3835              : {
    3836              :     SERIALIZABLEXIDTAG sxidtag;
    3837              :     dlist_mutable_iter iter;
    3838              : 
    3839              :     Assert(sxact != NULL);
    3840              :     Assert(SxactIsRolledBack(sxact) || SxactIsCommitted(sxact));
    3841              :     Assert(partial || !SxactIsOnFinishedList(sxact));
    3842              :     Assert(LWLockHeldByMe(SerializableFinishedListLock));
    3843              : 
    3844              :     /*
    3845              :      * First release all the predicate locks held by this xact (or transfer
    3846              :      * them to OldCommittedSxact if summarize is true)
    3847              :      */
    3848         1575 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    3849         1575 :     if (IsInParallelMode())
    3850            3 :         LWLockAcquire(&sxact->perXactPredicateListLock, LW_EXCLUSIVE);
    3851         4440 :     dlist_foreach_modify(iter, &sxact->predicateLocks)
    3852              :     {
    3853         2865 :         PREDICATELOCK *predlock =
    3854         2865 :             dlist_container(PREDICATELOCK, xactLink, iter.cur);
    3855              :         PREDICATELOCKTAG tag;
    3856              :         PREDICATELOCKTARGET *target;
    3857              :         PREDICATELOCKTARGETTAG targettag;
    3858              :         uint32      targettaghash;
    3859              :         LWLock     *partitionLock;
    3860              : 
    3861         2865 :         tag = predlock->tag;
    3862         2865 :         target = tag.myTarget;
    3863         2865 :         targettag = target->tag;
    3864         2865 :         targettaghash = PredicateLockTargetTagHashCode(&targettag);
    3865         2865 :         partitionLock = PredicateLockHashPartitionLock(targettaghash);
    3866              : 
    3867         2865 :         LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    3868              : 
    3869         2865 :         dlist_delete(&predlock->targetLink);
    3870              : 
    3871         2865 :         hash_search_with_hash_value(PredicateLockHash, &tag,
    3872         2865 :                                     PredicateLockHashCodeFromTargetHashCode(&tag,
    3873              :                                                                             targettaghash),
    3874              :                                     HASH_REMOVE, NULL);
    3875         2865 :         if (summarize)
    3876              :         {
    3877              :             bool        found;
    3878              : 
    3879              :             /* Fold into dummy transaction list. */
    3880            0 :             tag.myXact = OldCommittedSxact;
    3881            0 :             predlock = hash_search_with_hash_value(PredicateLockHash, &tag,
    3882            0 :                                                    PredicateLockHashCodeFromTargetHashCode(&tag,
    3883              :                                                                                            targettaghash),
    3884              :                                                    HASH_ENTER_NULL, &found);
    3885            0 :             if (!predlock)
    3886            0 :                 ereport(ERROR,
    3887              :                         (errcode(ERRCODE_OUT_OF_MEMORY),
    3888              :                          errmsg("out of shared memory"),
    3889              :                          errhint("You might need to increase \"%s\".", "max_pred_locks_per_transaction")));
    3890            0 :             if (found)
    3891              :             {
    3892              :                 Assert(predlock->commitSeqNo != 0);
    3893              :                 Assert(predlock->commitSeqNo != InvalidSerCommitSeqNo);
    3894            0 :                 if (predlock->commitSeqNo < sxact->commitSeqNo)
    3895            0 :                     predlock->commitSeqNo = sxact->commitSeqNo;
    3896              :             }
    3897              :             else
    3898              :             {
    3899            0 :                 dlist_push_tail(&target->predicateLocks,
    3900              :                                 &predlock->targetLink);
    3901            0 :                 dlist_push_tail(&OldCommittedSxact->predicateLocks,
    3902              :                                 &predlock->xactLink);
    3903            0 :                 predlock->commitSeqNo = sxact->commitSeqNo;
    3904              :             }
    3905              :         }
    3906              :         else
    3907         2865 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    3908              : 
    3909         2865 :         LWLockRelease(partitionLock);
    3910              :     }
    3911              : 
    3912              :     /*
    3913              :      * Rather than retail removal, just re-init the head after we've run
    3914              :      * through the list.
    3915              :      */
    3916         1575 :     dlist_init(&sxact->predicateLocks);
    3917              : 
    3918         1575 :     if (IsInParallelMode())
    3919            3 :         LWLockRelease(&sxact->perXactPredicateListLock);
    3920         1575 :     LWLockRelease(SerializablePredicateListLock);
    3921              : 
    3922         1575 :     sxidtag.xid = sxact->topXid;
    3923         1575 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    3924              : 
    3925              :     /* Release all outConflicts (unless 'partial' is true) */
    3926         1575 :     if (!partial)
    3927              :     {
    3928         1564 :         dlist_foreach_modify(iter, &sxact->outConflicts)
    3929              :         {
    3930            0 :             RWConflict  conflict =
    3931              :                 dlist_container(RWConflictData, outLink, iter.cur);
    3932              : 
    3933            0 :             if (summarize)
    3934            0 :                 conflict->sxactIn->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    3935            0 :             ReleaseRWConflict(conflict);
    3936              :         }
    3937              :     }
    3938              : 
    3939              :     /* Release all inConflicts. */
    3940         1575 :     dlist_foreach_modify(iter, &sxact->inConflicts)
    3941              :     {
    3942            0 :         RWConflict  conflict =
    3943            0 :             dlist_container(RWConflictData, inLink, iter.cur);
    3944              : 
    3945            0 :         if (summarize)
    3946            0 :             conflict->sxactOut->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    3947            0 :         ReleaseRWConflict(conflict);
    3948              :     }
    3949              : 
    3950              :     /* Finally, get rid of the xid and the record of the transaction itself. */
    3951         1575 :     if (!partial)
    3952              :     {
    3953         1564 :         if (sxidtag.xid != InvalidTransactionId)
    3954         1297 :             hash_search(SerializableXidHash, &sxidtag, HASH_REMOVE, NULL);
    3955         1564 :         ReleasePredXact(sxact);
    3956              :     }
    3957              : 
    3958         1575 :     LWLockRelease(SerializableXactHashLock);
    3959         1575 : }
    3960              : 
    3961              : /*
    3962              :  * Tests whether the given top level transaction is concurrent with
    3963              :  * (overlaps) our current transaction.
    3964              :  *
    3965              :  * We need to identify the top level transaction for SSI, anyway, so pass
    3966              :  * that to this function to save the overhead of checking the snapshot's
    3967              :  * subxip array.
    3968              :  */
    3969              : static bool
    3970          536 : XidIsConcurrent(TransactionId xid)
    3971              : {
    3972              :     Snapshot    snap;
    3973              : 
    3974              :     Assert(TransactionIdIsValid(xid));
    3975              :     Assert(!TransactionIdEquals(xid, GetTopTransactionIdIfAny()));
    3976              : 
    3977          536 :     snap = GetTransactionSnapshot();
    3978              : 
    3979          536 :     if (TransactionIdPrecedes(xid, snap->xmin))
    3980            0 :         return false;
    3981              : 
    3982          536 :     if (TransactionIdFollowsOrEquals(xid, snap->xmax))
    3983          524 :         return true;
    3984              : 
    3985           12 :     return pg_lfind32(xid, snap->xip, snap->xcnt);
    3986              : }
    3987              : 
    3988              : bool
    3989     35013699 : CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
    3990              : {
    3991     35013699 :     if (!SerializationNeededForRead(relation, snapshot))
    3992     34987693 :         return false;
    3993              : 
    3994              :     /* Check if someone else has already decided that we need to die */
    3995        26006 :     if (SxactIsDoomed(MySerializableXact))
    3996              :     {
    3997            0 :         ereport(ERROR,
    3998              :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    3999              :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4000              :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
    4001              :                  errhint("The transaction might succeed if retried.")));
    4002              :     }
    4003              : 
    4004        26006 :     return true;
    4005              : }
    4006              : 
    4007              : /*
    4008              :  * CheckForSerializableConflictOut
    4009              :  *      A table AM is reading a tuple that has been modified.  If it determines
    4010              :  *      that the tuple version it is reading is not visible to us, it should
    4011              :  *      pass in the top level xid of the transaction that created it.
    4012              :  *      Otherwise, if it determines that it is visible to us but it has been
    4013              :  *      deleted or there is a newer version available due to an update, it
    4014              :  *      should pass in the top level xid of the modifying transaction.
    4015              :  *
    4016              :  * This function will check for overlap with our own transaction.  If the given
    4017              :  * xid is also serializable and the transactions overlap (i.e., they cannot see
    4018              :  * each other's writes), then we have a conflict out.
    4019              :  */
    4020              : void
    4021          570 : CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
    4022              : {
    4023              :     SERIALIZABLEXIDTAG sxidtag;
    4024              :     SERIALIZABLEXID *sxid;
    4025              :     SERIALIZABLEXACT *sxact;
    4026              : 
    4027          570 :     if (!SerializationNeededForRead(relation, snapshot))
    4028          203 :         return;
    4029              : 
    4030              :     /* Check if someone else has already decided that we need to die */
    4031          570 :     if (SxactIsDoomed(MySerializableXact))
    4032              :     {
    4033            0 :         ereport(ERROR,
    4034              :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4035              :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4036              :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict out checking."),
    4037              :                  errhint("The transaction might succeed if retried.")));
    4038              :     }
    4039              :     Assert(TransactionIdIsValid(xid));
    4040              : 
    4041          570 :     if (TransactionIdEquals(xid, GetTopTransactionIdIfAny()))
    4042            0 :         return;
    4043              : 
    4044              :     /*
    4045              :      * Find sxact or summarized info for the top level xid.
    4046              :      */
    4047          570 :     sxidtag.xid = xid;
    4048          570 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4049              :     sxid = (SERIALIZABLEXID *)
    4050          570 :         hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    4051          570 :     if (!sxid)
    4052              :     {
    4053              :         /*
    4054              :          * Transaction not found in "normal" SSI structures.  Check whether it
    4055              :          * got pushed out to SLRU storage for "old committed" transactions.
    4056              :          */
    4057              :         SerCommitSeqNo conflictCommitSeqNo;
    4058              : 
    4059           24 :         conflictCommitSeqNo = SerialGetMinConflictCommitSeqNo(xid);
    4060           24 :         if (conflictCommitSeqNo != 0)
    4061              :         {
    4062            0 :             if (conflictCommitSeqNo != InvalidSerCommitSeqNo
    4063            0 :                 && (!SxactIsReadOnly(MySerializableXact)
    4064            0 :                     || conflictCommitSeqNo
    4065            0 :                     <= MySerializableXact->SeqNo.lastCommitBeforeSnapshot))
    4066            0 :                 ereport(ERROR,
    4067              :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4068              :                          errmsg("could not serialize access due to read/write dependencies among transactions"),
    4069              :                          errdetail_internal("Reason code: Canceled on conflict out to old pivot %u.", xid),
    4070              :                          errhint("The transaction might succeed if retried.")));
    4071              : 
    4072            0 :             if (SxactHasSummaryConflictIn(MySerializableXact)
    4073            0 :                 || !dlist_is_empty(&MySerializableXact->inConflicts))
    4074            0 :                 ereport(ERROR,
    4075              :                         (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4076              :                          errmsg("could not serialize access due to read/write dependencies among transactions"),
    4077              :                          errdetail_internal("Reason code: Canceled on identification as a pivot, with conflict out to old committed transaction %u.", xid),
    4078              :                          errhint("The transaction might succeed if retried.")));
    4079              : 
    4080            0 :             MySerializableXact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4081              :         }
    4082              : 
    4083              :         /* It's not serializable or otherwise not important. */
    4084           24 :         LWLockRelease(SerializableXactHashLock);
    4085           24 :         return;
    4086              :     }
    4087          546 :     sxact = sxid->myXact;
    4088              :     Assert(TransactionIdEquals(sxact->topXid, xid));
    4089          546 :     if (sxact == MySerializableXact || SxactIsDoomed(sxact))
    4090              :     {
    4091              :         /* Can't conflict with ourself or a transaction that will roll back. */
    4092            4 :         LWLockRelease(SerializableXactHashLock);
    4093            4 :         return;
    4094              :     }
    4095              : 
    4096              :     /*
    4097              :      * We have a conflict out to a transaction which has a conflict out to a
    4098              :      * summarized transaction.  That summarized transaction must have
    4099              :      * committed first, and we can't tell when it committed in relation to our
    4100              :      * snapshot acquisition, so something needs to be canceled.
    4101              :      */
    4102          542 :     if (SxactHasSummaryConflictOut(sxact))
    4103              :     {
    4104            0 :         if (!SxactIsPrepared(sxact))
    4105              :         {
    4106            0 :             sxact->flags |= SXACT_FLAG_DOOMED;
    4107            0 :             LWLockRelease(SerializableXactHashLock);
    4108            0 :             return;
    4109              :         }
    4110              :         else
    4111              :         {
    4112            0 :             LWLockRelease(SerializableXactHashLock);
    4113            0 :             ereport(ERROR,
    4114              :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4115              :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4116              :                      errdetail_internal("Reason code: Canceled on conflict out to old pivot."),
    4117              :                      errhint("The transaction might succeed if retried.")));
    4118              :         }
    4119              :     }
    4120              : 
    4121              :     /*
    4122              :      * If this is a read-only transaction and the writing transaction has
    4123              :      * committed, and it doesn't have a rw-conflict to a transaction which
    4124              :      * committed before it, no conflict.
    4125              :      */
    4126          542 :     if (SxactIsReadOnly(MySerializableXact)
    4127          119 :         && SxactIsCommitted(sxact)
    4128            8 :         && !SxactHasSummaryConflictOut(sxact)
    4129            8 :         && (!SxactHasConflictOut(sxact)
    4130            2 :             || MySerializableXact->SeqNo.lastCommitBeforeSnapshot < sxact->SeqNo.earliestOutConflictCommit))
    4131              :     {
    4132              :         /* Read-only transaction will appear to run first.  No conflict. */
    4133            6 :         LWLockRelease(SerializableXactHashLock);
    4134            6 :         return;
    4135              :     }
    4136              : 
    4137          536 :     if (!XidIsConcurrent(xid))
    4138              :     {
    4139              :         /* This write was already in our snapshot; no conflict. */
    4140            0 :         LWLockRelease(SerializableXactHashLock);
    4141            0 :         return;
    4142              :     }
    4143              : 
    4144          536 :     if (RWConflictExists(MySerializableXact, sxact))
    4145              :     {
    4146              :         /* We don't want duplicate conflict records in the list. */
    4147          169 :         LWLockRelease(SerializableXactHashLock);
    4148          169 :         return;
    4149              :     }
    4150              : 
    4151              :     /*
    4152              :      * Flag the conflict.  But first, if this conflict creates a dangerous
    4153              :      * structure, ereport an error.
    4154              :      */
    4155          367 :     FlagRWConflict(MySerializableXact, sxact);
    4156          354 :     LWLockRelease(SerializableXactHashLock);
    4157              : }
    4158              : 
    4159              : /*
    4160              :  * Check a particular target for rw-dependency conflict in. A subroutine of
    4161              :  * CheckForSerializableConflictIn().
    4162              :  */
    4163              : static void
    4164         7558 : CheckTargetForConflictsIn(PREDICATELOCKTARGETTAG *targettag)
    4165              : {
    4166              :     uint32      targettaghash;
    4167              :     LWLock     *partitionLock;
    4168              :     PREDICATELOCKTARGET *target;
    4169         7558 :     PREDICATELOCK *mypredlock = NULL;
    4170              :     PREDICATELOCKTAG mypredlocktag;
    4171              :     dlist_mutable_iter iter;
    4172              : 
    4173              :     Assert(MySerializableXact != InvalidSerializableXact);
    4174              : 
    4175              :     /*
    4176              :      * The same hash and LW lock apply to the lock target and the lock itself.
    4177              :      */
    4178         7558 :     targettaghash = PredicateLockTargetTagHashCode(targettag);
    4179         7558 :     partitionLock = PredicateLockHashPartitionLock(targettaghash);
    4180         7558 :     LWLockAcquire(partitionLock, LW_SHARED);
    4181              :     target = (PREDICATELOCKTARGET *)
    4182         7558 :         hash_search_with_hash_value(PredicateLockTargetHash,
    4183              :                                     targettag, targettaghash,
    4184              :                                     HASH_FIND, NULL);
    4185         7558 :     if (!target)
    4186              :     {
    4187              :         /* Nothing has this target locked; we're done here. */
    4188         5671 :         LWLockRelease(partitionLock);
    4189         5671 :         return;
    4190              :     }
    4191              : 
    4192              :     /*
    4193              :      * Each lock for an overlapping transaction represents a conflict: a
    4194              :      * rw-dependency in to this transaction.
    4195              :      */
    4196         1887 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4197              : 
    4198         4254 :     dlist_foreach_modify(iter, &target->predicateLocks)
    4199              :     {
    4200         2434 :         PREDICATELOCK *predlock =
    4201         2434 :             dlist_container(PREDICATELOCK, targetLink, iter.cur);
    4202         2434 :         SERIALIZABLEXACT *sxact = predlock->tag.myXact;
    4203              : 
    4204         2434 :         if (sxact == MySerializableXact)
    4205              :         {
    4206              :             /*
    4207              :              * If we're getting a write lock on a tuple, we don't need a
    4208              :              * predicate (SIREAD) lock on the same tuple. We can safely remove
    4209              :              * our SIREAD lock, but we'll defer doing so until after the loop
    4210              :              * because that requires upgrading to an exclusive partition lock.
    4211              :              *
    4212              :              * We can't use this optimization within a subtransaction because
    4213              :              * the subtransaction could roll back, and we would be left
    4214              :              * without any lock at the top level.
    4215              :              */
    4216         1576 :             if (!IsSubTransaction()
    4217         1576 :                 && GET_PREDICATELOCKTARGETTAG_OFFSET(*targettag))
    4218              :             {
    4219          396 :                 mypredlock = predlock;
    4220          396 :                 mypredlocktag = predlock->tag;
    4221              :             }
    4222              :         }
    4223          858 :         else if (!SxactIsDoomed(sxact)
    4224          858 :                  && (!SxactIsCommitted(sxact)
    4225           89 :                      || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
    4226              :                                               sxact->finishedBefore))
    4227          849 :                  && !RWConflictExists(sxact, MySerializableXact))
    4228              :         {
    4229          505 :             LWLockRelease(SerializableXactHashLock);
    4230          505 :             LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4231              : 
    4232              :             /*
    4233              :              * Re-check after getting exclusive lock because the other
    4234              :              * transaction may have flagged a conflict.
    4235              :              */
    4236          505 :             if (!SxactIsDoomed(sxact)
    4237          505 :                 && (!SxactIsCommitted(sxact)
    4238           78 :                     || TransactionIdPrecedes(GetTransactionSnapshot()->xmin,
    4239              :                                              sxact->finishedBefore))
    4240          505 :                 && !RWConflictExists(sxact, MySerializableXact))
    4241              :             {
    4242          505 :                 FlagRWConflict(sxact, MySerializableXact);
    4243              :             }
    4244              : 
    4245          438 :             LWLockRelease(SerializableXactHashLock);
    4246          438 :             LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4247              :         }
    4248              :     }
    4249         1820 :     LWLockRelease(SerializableXactHashLock);
    4250         1820 :     LWLockRelease(partitionLock);
    4251              : 
    4252              :     /*
    4253              :      * If we found one of our own SIREAD locks to remove, remove it now.
    4254              :      *
    4255              :      * At this point our transaction already has a RowExclusiveLock on the
    4256              :      * relation, so we are OK to drop the predicate lock on the tuple, if
    4257              :      * found, without fearing that another write against the tuple will occur
    4258              :      * before the MVCC information makes it to the buffer.
    4259              :      */
    4260         1820 :     if (mypredlock != NULL)
    4261              :     {
    4262              :         uint32      predlockhashcode;
    4263              :         PREDICATELOCK *rmpredlock;
    4264              : 
    4265          389 :         LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    4266          389 :         if (IsInParallelMode())
    4267            0 :             LWLockAcquire(&MySerializableXact->perXactPredicateListLock, LW_EXCLUSIVE);
    4268          389 :         LWLockAcquire(partitionLock, LW_EXCLUSIVE);
    4269          389 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4270              : 
    4271              :         /*
    4272              :          * Remove the predicate lock from shared memory, if it wasn't removed
    4273              :          * while the locks were released.  One way that could happen is from
    4274              :          * autovacuum cleaning up an index.
    4275              :          */
    4276          389 :         predlockhashcode = PredicateLockHashCodeFromTargetHashCode
    4277              :             (&mypredlocktag, targettaghash);
    4278              :         rmpredlock = (PREDICATELOCK *)
    4279          389 :             hash_search_with_hash_value(PredicateLockHash,
    4280              :                                         &mypredlocktag,
    4281              :                                         predlockhashcode,
    4282              :                                         HASH_FIND, NULL);
    4283          389 :         if (rmpredlock != NULL)
    4284              :         {
    4285              :             Assert(rmpredlock == mypredlock);
    4286              : 
    4287          389 :             dlist_delete(&(mypredlock->targetLink));
    4288          389 :             dlist_delete(&(mypredlock->xactLink));
    4289              : 
    4290              :             rmpredlock = (PREDICATELOCK *)
    4291          389 :                 hash_search_with_hash_value(PredicateLockHash,
    4292              :                                             &mypredlocktag,
    4293              :                                             predlockhashcode,
    4294              :                                             HASH_REMOVE, NULL);
    4295              :             Assert(rmpredlock == mypredlock);
    4296              : 
    4297          389 :             RemoveTargetIfNoLongerUsed(target, targettaghash);
    4298              :         }
    4299              : 
    4300          389 :         LWLockRelease(SerializableXactHashLock);
    4301          389 :         LWLockRelease(partitionLock);
    4302          389 :         if (IsInParallelMode())
    4303            0 :             LWLockRelease(&MySerializableXact->perXactPredicateListLock);
    4304          389 :         LWLockRelease(SerializablePredicateListLock);
    4305              : 
    4306          389 :         if (rmpredlock != NULL)
    4307              :         {
    4308              :             /*
    4309              :              * Remove entry in local lock table if it exists. It's OK if it
    4310              :              * doesn't exist; that means the lock was transferred to a new
    4311              :              * target by a different backend.
    4312              :              */
    4313          389 :             hash_search_with_hash_value(LocalPredicateLockHash,
    4314              :                                         targettag, targettaghash,
    4315              :                                         HASH_REMOVE, NULL);
    4316              : 
    4317          389 :             DecrementParentLocks(targettag);
    4318              :         }
    4319              :     }
    4320              : }
    4321              : 
    4322              : /*
    4323              :  * CheckForSerializableConflictIn
    4324              :  *      We are writing the given tuple.  If that indicates a rw-conflict
    4325              :  *      in from another serializable transaction, take appropriate action.
    4326              :  *
    4327              :  * Skip checking for any granularity for which a parameter is missing.
    4328              :  *
    4329              :  * A tuple update or delete is in conflict if we have a predicate lock
    4330              :  * against the relation or page in which the tuple exists, or against the
    4331              :  * tuple itself.
    4332              :  */
    4333              : void
    4334     16746745 : CheckForSerializableConflictIn(Relation relation, const ItemPointerData *tid, BlockNumber blkno)
    4335              : {
    4336              :     PREDICATELOCKTARGETTAG targettag;
    4337              : 
    4338     16746745 :     if (!SerializationNeededForWrite(relation))
    4339     16742268 :         return;
    4340              : 
    4341              :     /* Check if someone else has already decided that we need to die */
    4342         4477 :     if (SxactIsDoomed(MySerializableXact))
    4343            1 :         ereport(ERROR,
    4344              :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4345              :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4346              :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during conflict in checking."),
    4347              :                  errhint("The transaction might succeed if retried.")));
    4348              : 
    4349              :     /*
    4350              :      * We're doing a write which might cause rw-conflicts now or later.
    4351              :      * Memorize that fact.
    4352              :      */
    4353         4476 :     MyXactDidWrite = true;
    4354              : 
    4355              :     /*
    4356              :      * It is important that we check for locks from the finest granularity to
    4357              :      * the coarsest granularity, so that granularity promotion doesn't cause
    4358              :      * us to miss a lock.  The new (coarser) lock will be acquired before the
    4359              :      * old (finer) locks are released.
    4360              :      *
    4361              :      * It is not possible to take and hold a lock across the checks for all
    4362              :      * granularities because each target could be in a separate partition.
    4363              :      */
    4364         4476 :     if (tid != NULL)
    4365              :     {
    4366          651 :         SET_PREDICATELOCKTARGETTAG_TUPLE(targettag,
    4367              :                                          relation->rd_locator.dbOid,
    4368              :                                          relation->rd_id,
    4369              :                                          ItemPointerGetBlockNumber(tid),
    4370              :                                          ItemPointerGetOffsetNumber(tid));
    4371          651 :         CheckTargetForConflictsIn(&targettag);
    4372              :     }
    4373              : 
    4374         4453 :     if (blkno != InvalidBlockNumber)
    4375              :     {
    4376         2484 :         SET_PREDICATELOCKTARGETTAG_PAGE(targettag,
    4377              :                                         relation->rd_locator.dbOid,
    4378              :                                         relation->rd_id,
    4379              :                                         blkno);
    4380         2484 :         CheckTargetForConflictsIn(&targettag);
    4381              :     }
    4382              : 
    4383         4423 :     SET_PREDICATELOCKTARGETTAG_RELATION(targettag,
    4384              :                                         relation->rd_locator.dbOid,
    4385              :                                         relation->rd_id);
    4386         4423 :     CheckTargetForConflictsIn(&targettag);
    4387              : }
    4388              : 
    4389              : /*
    4390              :  * CheckTableForSerializableConflictIn
    4391              :  *      The entire table is going through a DDL-style logical mass delete
    4392              :  *      like TRUNCATE or DROP TABLE.  If that causes a rw-conflict in from
    4393              :  *      another serializable transaction, take appropriate action.
    4394              :  *
    4395              :  * While these operations do not operate entirely within the bounds of
    4396              :  * snapshot isolation, they can occur inside a serializable transaction, and
    4397              :  * will logically occur after any reads which saw rows which were destroyed
    4398              :  * by these operations, so we do what we can to serialize properly under
    4399              :  * SSI.
    4400              :  *
    4401              :  * The relation passed in must be a heap relation. Any predicate lock of any
    4402              :  * granularity on the heap will cause a rw-conflict in to this transaction.
    4403              :  * Predicate locks on indexes do not matter because they only exist to guard
    4404              :  * against conflicting inserts into the index, and this is a mass *delete*.
    4405              :  * When a table is truncated or dropped, the index will also be truncated
    4406              :  * or dropped, and we'll deal with locks on the index when that happens.
    4407              :  *
    4408              :  * Dropping or truncating a table also needs to drop any existing predicate
    4409              :  * locks on heap tuples or pages, because they're about to go away. This
    4410              :  * should be done before altering the predicate locks because the transaction
    4411              :  * could be rolled back because of a conflict, in which case the lock changes
    4412              :  * are not needed. (At the moment, we don't actually bother to drop the
    4413              :  * existing locks on a dropped or truncated table at the moment. That might
    4414              :  * lead to some false positives, but it doesn't seem worth the trouble.)
    4415              :  */
    4416              : void
    4417        27472 : CheckTableForSerializableConflictIn(Relation relation)
    4418              : {
    4419              :     HASH_SEQ_STATUS seqstat;
    4420              :     PREDICATELOCKTARGET *target;
    4421              :     Oid         dbId;
    4422              :     Oid         heapId;
    4423              :     int         i;
    4424              : 
    4425              :     /*
    4426              :      * Bail out quickly if there are no serializable transactions running.
    4427              :      * It's safe to check this without taking locks because the caller is
    4428              :      * holding an ACCESS EXCLUSIVE lock on the relation.  No new locks which
    4429              :      * would matter here can be acquired while that is held.
    4430              :      */
    4431        27472 :     if (!TransactionIdIsValid(PredXact->SxactGlobalXmin))
    4432        27451 :         return;
    4433              : 
    4434          132 :     if (!SerializationNeededForWrite(relation))
    4435          111 :         return;
    4436              : 
    4437              :     /*
    4438              :      * We're doing a write which might cause rw-conflicts now or later.
    4439              :      * Memorize that fact.
    4440              :      */
    4441           21 :     MyXactDidWrite = true;
    4442              : 
    4443              :     Assert(relation->rd_index == NULL); /* not an index relation */
    4444              : 
    4445           21 :     dbId = relation->rd_locator.dbOid;
    4446           21 :     heapId = relation->rd_id;
    4447              : 
    4448           21 :     LWLockAcquire(SerializablePredicateListLock, LW_EXCLUSIVE);
    4449          357 :     for (i = 0; i < NUM_PREDICATELOCK_PARTITIONS; i++)
    4450          336 :         LWLockAcquire(PredicateLockHashPartitionLockByIndex(i), LW_SHARED);
    4451           21 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4452              : 
    4453              :     /* Scan through target list */
    4454           21 :     hash_seq_init(&seqstat, PredicateLockTargetHash);
    4455              : 
    4456           72 :     while ((target = (PREDICATELOCKTARGET *) hash_seq_search(&seqstat)))
    4457              :     {
    4458              :         dlist_mutable_iter iter;
    4459              : 
    4460              :         /*
    4461              :          * Check whether this is a target which needs attention.
    4462              :          */
    4463           51 :         if (GET_PREDICATELOCKTARGETTAG_RELATION(target->tag) != heapId)
    4464           42 :             continue;           /* wrong relation id */
    4465            9 :         if (GET_PREDICATELOCKTARGETTAG_DB(target->tag) != dbId)
    4466            0 :             continue;           /* wrong database id */
    4467              : 
    4468              :         /*
    4469              :          * Loop through locks for this target and flag conflicts.
    4470              :          */
    4471           18 :         dlist_foreach_modify(iter, &target->predicateLocks)
    4472              :         {
    4473            9 :             PREDICATELOCK *predlock =
    4474            9 :                 dlist_container(PREDICATELOCK, targetLink, iter.cur);
    4475              : 
    4476            9 :             if (predlock->tag.myXact != MySerializableXact
    4477            0 :                 && !RWConflictExists(predlock->tag.myXact, MySerializableXact))
    4478              :             {
    4479            0 :                 FlagRWConflict(predlock->tag.myXact, MySerializableXact);
    4480              :             }
    4481              :         }
    4482              :     }
    4483              : 
    4484              :     /* Release locks in reverse order */
    4485           21 :     LWLockRelease(SerializableXactHashLock);
    4486          357 :     for (i = NUM_PREDICATELOCK_PARTITIONS - 1; i >= 0; i--)
    4487          336 :         LWLockRelease(PredicateLockHashPartitionLockByIndex(i));
    4488           21 :     LWLockRelease(SerializablePredicateListLock);
    4489              : }
    4490              : 
    4491              : 
    4492              : /*
    4493              :  * Flag a rw-dependency between two serializable transactions.
    4494              :  *
    4495              :  * The caller is responsible for ensuring that we have a LW lock on
    4496              :  * the transaction hash table.
    4497              :  */
    4498              : static void
    4499          872 : FlagRWConflict(SERIALIZABLEXACT *reader, SERIALIZABLEXACT *writer)
    4500              : {
    4501              :     Assert(reader != writer);
    4502              : 
    4503              :     /* First, see if this conflict causes failure. */
    4504          872 :     OnConflict_CheckForSerializationFailure(reader, writer);
    4505              : 
    4506              :     /* Actually do the conflict flagging. */
    4507          792 :     if (reader == OldCommittedSxact)
    4508            0 :         writer->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    4509          792 :     else if (writer == OldCommittedSxact)
    4510            0 :         reader->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4511              :     else
    4512          792 :         SetRWConflict(reader, writer);
    4513          792 : }
    4514              : 
    4515              : /*----------------------------------------------------------------------------
    4516              :  * We are about to add a RW-edge to the dependency graph - check that we don't
    4517              :  * introduce a dangerous structure by doing so, and abort one of the
    4518              :  * transactions if so.
    4519              :  *
    4520              :  * A serialization failure can only occur if there is a dangerous structure
    4521              :  * in the dependency graph:
    4522              :  *
    4523              :  *      Tin ------> Tpivot ------> Tout
    4524              :  *            rw             rw
    4525              :  *
    4526              :  * Furthermore, Tout must commit first.
    4527              :  *
    4528              :  * One more optimization is that if Tin is declared READ ONLY (or commits
    4529              :  * without writing), we can only have a problem if Tout committed before Tin
    4530              :  * acquired its snapshot.
    4531              :  *----------------------------------------------------------------------------
    4532              :  */
    4533              : static void
    4534          872 : OnConflict_CheckForSerializationFailure(const SERIALIZABLEXACT *reader,
    4535              :                                         SERIALIZABLEXACT *writer)
    4536              : {
    4537              :     bool        failure;
    4538              : 
    4539              :     Assert(LWLockHeldByMe(SerializableXactHashLock));
    4540              : 
    4541          872 :     failure = false;
    4542              : 
    4543              :     /*------------------------------------------------------------------------
    4544              :      * Check for already-committed writer with rw-conflict out flagged
    4545              :      * (conflict-flag on W means that T2 committed before W):
    4546              :      *
    4547              :      *      R ------> W ------> T2
    4548              :      *          rw        rw
    4549              :      *
    4550              :      * That is a dangerous structure, so we must abort. (Since the writer
    4551              :      * has already committed, we must be the reader)
    4552              :      *------------------------------------------------------------------------
    4553              :      */
    4554          872 :     if (SxactIsCommitted(writer)
    4555           18 :         && (SxactHasConflictOut(writer) || SxactHasSummaryConflictOut(writer)))
    4556            2 :         failure = true;
    4557              : 
    4558              :     /*------------------------------------------------------------------------
    4559              :      * Check whether the writer has become a pivot with an out-conflict
    4560              :      * committed transaction (T2), and T2 committed first:
    4561              :      *
    4562              :      *      R ------> W ------> T2
    4563              :      *          rw        rw
    4564              :      *
    4565              :      * Because T2 must've committed first, there is no anomaly if:
    4566              :      * - the reader committed before T2
    4567              :      * - the writer committed before T2
    4568              :      * - the reader is a READ ONLY transaction and the reader was concurrent
    4569              :      *   with T2 (= reader acquired its snapshot before T2 committed)
    4570              :      *
    4571              :      * We also handle the case that T2 is prepared but not yet committed
    4572              :      * here. In that case T2 has already checked for conflicts, so if it
    4573              :      * commits first, making the above conflict real, it's too late for it
    4574              :      * to abort.
    4575              :      *------------------------------------------------------------------------
    4576              :      */
    4577          872 :     if (!failure && SxactHasSummaryConflictOut(writer))
    4578            0 :         failure = true;
    4579          872 :     else if (!failure)
    4580              :     {
    4581              :         dlist_iter  iter;
    4582              : 
    4583         1087 :         dlist_foreach(iter, &writer->outConflicts)
    4584              :         {
    4585          292 :             RWConflict  conflict =
    4586              :                 dlist_container(RWConflictData, outLink, iter.cur);
    4587          292 :             SERIALIZABLEXACT *t2 = conflict->sxactIn;
    4588              : 
    4589          292 :             if (SxactIsPrepared(t2)
    4590           81 :                 && (!SxactIsCommitted(reader)
    4591           65 :                     || t2->prepareSeqNo <= reader->commitSeqNo)
    4592           81 :                 && (!SxactIsCommitted(writer)
    4593            0 :                     || t2->prepareSeqNo <= writer->commitSeqNo)
    4594           81 :                 && (!SxactIsReadOnly(reader)
    4595           12 :                     || t2->prepareSeqNo <= reader->SeqNo.lastCommitBeforeSnapshot))
    4596              :             {
    4597           75 :                 failure = true;
    4598           75 :                 break;
    4599              :             }
    4600              :         }
    4601              :     }
    4602              : 
    4603              :     /*------------------------------------------------------------------------
    4604              :      * Check whether the reader has become a pivot with a writer
    4605              :      * that's committed (or prepared):
    4606              :      *
    4607              :      *      T0 ------> R ------> W
    4608              :      *           rw        rw
    4609              :      *
    4610              :      * Because W must've committed first for an anomaly to occur, there is no
    4611              :      * anomaly if:
    4612              :      * - T0 committed before the writer
    4613              :      * - T0 is READ ONLY, and overlaps the writer
    4614              :      *------------------------------------------------------------------------
    4615              :      */
    4616          872 :     if (!failure && SxactIsPrepared(writer) && !SxactIsReadOnly(reader))
    4617              :     {
    4618           18 :         if (SxactHasSummaryConflictIn(reader))
    4619              :         {
    4620            0 :             failure = true;
    4621              :         }
    4622              :         else
    4623              :         {
    4624              :             dlist_iter  iter;
    4625              : 
    4626              :             /*
    4627              :              * The unconstify is needed as we have no const version of
    4628              :              * dlist_foreach().
    4629              :              */
    4630           18 :             dlist_foreach(iter, &unconstify(SERIALIZABLEXACT *, reader)->inConflicts)
    4631              :             {
    4632           11 :                 const RWConflict conflict =
    4633           11 :                     dlist_container(RWConflictData, inLink, iter.cur);
    4634           11 :                 const SERIALIZABLEXACT *t0 = conflict->sxactOut;
    4635              : 
    4636           11 :                 if (!SxactIsDoomed(t0)
    4637           11 :                     && (!SxactIsCommitted(t0)
    4638           11 :                         || t0->commitSeqNo >= writer->prepareSeqNo)
    4639           11 :                     && (!SxactIsReadOnly(t0)
    4640            0 :                         || t0->SeqNo.lastCommitBeforeSnapshot >= writer->prepareSeqNo))
    4641              :                 {
    4642           11 :                     failure = true;
    4643           11 :                     break;
    4644              :                 }
    4645              :             }
    4646              :         }
    4647              :     }
    4648              : 
    4649          872 :     if (failure)
    4650              :     {
    4651              :         /*
    4652              :          * We have to kill a transaction to avoid a possible anomaly from
    4653              :          * occurring. If the writer is us, we can just ereport() to cause a
    4654              :          * transaction abort. Otherwise we flag the writer for termination,
    4655              :          * causing it to abort when it tries to commit. However, if the writer
    4656              :          * is a prepared transaction, already prepared, we can't abort it
    4657              :          * anymore, so we have to kill the reader instead.
    4658              :          */
    4659           88 :         if (MySerializableXact == writer)
    4660              :         {
    4661           67 :             LWLockRelease(SerializableXactHashLock);
    4662           67 :             ereport(ERROR,
    4663              :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4664              :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4665              :                      errdetail_internal("Reason code: Canceled on identification as a pivot, during write."),
    4666              :                      errhint("The transaction might succeed if retried.")));
    4667              :         }
    4668           21 :         else if (SxactIsPrepared(writer))
    4669              :         {
    4670           13 :             LWLockRelease(SerializableXactHashLock);
    4671              : 
    4672              :             /* if we're not the writer, we have to be the reader */
    4673              :             Assert(MySerializableXact == reader);
    4674           13 :             ereport(ERROR,
    4675              :                     (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4676              :                      errmsg("could not serialize access due to read/write dependencies among transactions"),
    4677              :                      errdetail_internal("Reason code: Canceled on conflict out to pivot %u, during read.", writer->topXid),
    4678              :                      errhint("The transaction might succeed if retried.")));
    4679              :         }
    4680            8 :         writer->flags |= SXACT_FLAG_DOOMED;
    4681              :     }
    4682          792 : }
    4683              : 
    4684              : /*
    4685              :  * PreCommit_CheckForSerializationFailure
    4686              :  *      Check for dangerous structures in a serializable transaction
    4687              :  *      at commit.
    4688              :  *
    4689              :  * We're checking for a dangerous structure as each conflict is recorded.
    4690              :  * The only way we could have a problem at commit is if this is the "out"
    4691              :  * side of a pivot, and neither the "in" side nor the pivot has yet
    4692              :  * committed.
    4693              :  *
    4694              :  * If a dangerous structure is found, the pivot (the near conflict) is
    4695              :  * marked for death, because rolling back another transaction might mean
    4696              :  * that we fail without ever making progress.  This transaction is
    4697              :  * committing writes, so letting it commit ensures progress.  If we
    4698              :  * canceled the far conflict, it might immediately fail again on retry.
    4699              :  */
    4700              : void
    4701       524869 : PreCommit_CheckForSerializationFailure(void)
    4702              : {
    4703              :     dlist_iter  near_iter;
    4704              : 
    4705       524869 :     if (MySerializableXact == InvalidSerializableXact)
    4706       523463 :         return;
    4707              : 
    4708              :     Assert(IsolationIsSerializable());
    4709              : 
    4710         1406 :     LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4711              : 
    4712              :     /*
    4713              :      * Check if someone else has already decided that we need to die.  Since
    4714              :      * we set our own DOOMED flag when partially releasing, ignore in that
    4715              :      * case.
    4716              :      */
    4717         1406 :     if (SxactIsDoomed(MySerializableXact) &&
    4718          156 :         !SxactIsPartiallyReleased(MySerializableXact))
    4719              :     {
    4720          155 :         LWLockRelease(SerializableXactHashLock);
    4721          155 :         ereport(ERROR,
    4722              :                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4723              :                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4724              :                  errdetail_internal("Reason code: Canceled on identification as a pivot, during commit attempt."),
    4725              :                  errhint("The transaction might succeed if retried.")));
    4726              :     }
    4727              : 
    4728         1857 :     dlist_foreach(near_iter, &MySerializableXact->inConflicts)
    4729              :     {
    4730          606 :         RWConflict  nearConflict =
    4731          606 :             dlist_container(RWConflictData, inLink, near_iter.cur);
    4732              : 
    4733          606 :         if (!SxactIsCommitted(nearConflict->sxactOut)
    4734          421 :             && !SxactIsDoomed(nearConflict->sxactOut))
    4735              :         {
    4736              :             dlist_iter  far_iter;
    4737              : 
    4738          451 :             dlist_foreach(far_iter, &nearConflict->sxactOut->inConflicts)
    4739              :             {
    4740          182 :                 RWConflict  farConflict =
    4741          182 :                     dlist_container(RWConflictData, inLink, far_iter.cur);
    4742              : 
    4743          182 :                 if (farConflict->sxactOut == MySerializableXact
    4744           42 :                     || (!SxactIsCommitted(farConflict->sxactOut)
    4745           24 :                         && !SxactIsReadOnly(farConflict->sxactOut)
    4746           12 :                         && !SxactIsDoomed(farConflict->sxactOut)))
    4747              :                 {
    4748              :                     /*
    4749              :                      * Normally, we kill the pivot transaction to make sure we
    4750              :                      * make progress if the failing transaction is retried.
    4751              :                      * However, we can't kill it if it's already prepared, so
    4752              :                      * in that case we commit suicide instead.
    4753              :                      */
    4754          152 :                     if (SxactIsPrepared(nearConflict->sxactOut))
    4755              :                     {
    4756            0 :                         LWLockRelease(SerializableXactHashLock);
    4757            0 :                         ereport(ERROR,
    4758              :                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
    4759              :                                  errmsg("could not serialize access due to read/write dependencies among transactions"),
    4760              :                                  errdetail_internal("Reason code: Canceled on commit attempt with conflict in from prepared pivot."),
    4761              :                                  errhint("The transaction might succeed if retried.")));
    4762              :                     }
    4763          152 :                     nearConflict->sxactOut->flags |= SXACT_FLAG_DOOMED;
    4764          152 :                     break;
    4765              :                 }
    4766              :             }
    4767              :         }
    4768              :     }
    4769              : 
    4770         1251 :     MySerializableXact->prepareSeqNo = ++(PredXact->LastSxactCommitSeqNo);
    4771         1251 :     MySerializableXact->flags |= SXACT_FLAG_PREPARED;
    4772              : 
    4773         1251 :     LWLockRelease(SerializableXactHashLock);
    4774              : }
    4775              : 
    4776              : /*------------------------------------------------------------------------*/
    4777              : 
    4778              : /*
    4779              :  * Two-phase commit support
    4780              :  */
    4781              : 
    4782              : /*
    4783              :  * AtPrepare_Locks
    4784              :  *      Do the preparatory work for a PREPARE: make 2PC state file
    4785              :  *      records for all predicate locks currently held.
    4786              :  */
    4787              : void
    4788          306 : AtPrepare_PredicateLocks(void)
    4789              : {
    4790              :     SERIALIZABLEXACT *sxact;
    4791              :     TwoPhasePredicateRecord record;
    4792              :     TwoPhasePredicateXactRecord *xactRecord;
    4793              :     TwoPhasePredicateLockRecord *lockRecord;
    4794              :     dlist_iter  iter;
    4795              : 
    4796          306 :     sxact = MySerializableXact;
    4797          306 :     xactRecord = &(record.data.xactRecord);
    4798          306 :     lockRecord = &(record.data.lockRecord);
    4799              : 
    4800          306 :     if (MySerializableXact == InvalidSerializableXact)
    4801          294 :         return;
    4802              : 
    4803              :     /* Generate an xact record for our SERIALIZABLEXACT */
    4804           12 :     record.type = TWOPHASEPREDICATERECORD_XACT;
    4805           12 :     xactRecord->xmin = MySerializableXact->xmin;
    4806           12 :     xactRecord->flags = MySerializableXact->flags;
    4807              : 
    4808              :     /*
    4809              :      * Note that we don't include the list of conflicts in our out in the
    4810              :      * statefile, because new conflicts can be added even after the
    4811              :      * transaction prepares. We'll just make a conservative assumption during
    4812              :      * recovery instead.
    4813              :      */
    4814              : 
    4815           12 :     RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
    4816              :                            &record, sizeof(record));
    4817              : 
    4818              :     /*
    4819              :      * Generate a lock record for each lock.
    4820              :      *
    4821              :      * To do this, we need to walk the predicate lock list in our sxact rather
    4822              :      * than using the local predicate lock table because the latter is not
    4823              :      * guaranteed to be accurate.
    4824              :      */
    4825           12 :     LWLockAcquire(SerializablePredicateListLock, LW_SHARED);
    4826              : 
    4827              :     /*
    4828              :      * No need to take sxact->perXactPredicateListLock in parallel mode
    4829              :      * because there cannot be any parallel workers running while we are
    4830              :      * preparing a transaction.
    4831              :      */
    4832              :     Assert(!IsParallelWorker() && !ParallelContextActive());
    4833              : 
    4834           22 :     dlist_foreach(iter, &sxact->predicateLocks)
    4835              :     {
    4836           10 :         PREDICATELOCK *predlock =
    4837           10 :             dlist_container(PREDICATELOCK, xactLink, iter.cur);
    4838              : 
    4839           10 :         record.type = TWOPHASEPREDICATERECORD_LOCK;
    4840           10 :         lockRecord->target = predlock->tag.myTarget->tag;
    4841              : 
    4842           10 :         RegisterTwoPhaseRecord(TWOPHASE_RM_PREDICATELOCK_ID, 0,
    4843              :                                &record, sizeof(record));
    4844              :     }
    4845              : 
    4846           12 :     LWLockRelease(SerializablePredicateListLock);
    4847              : }
    4848              : 
    4849              : /*
    4850              :  * PostPrepare_Locks
    4851              :  *      Clean up after successful PREPARE. Unlike the non-predicate
    4852              :  *      lock manager, we do not need to transfer locks to a dummy
    4853              :  *      PGPROC because our SERIALIZABLEXACT will stay around
    4854              :  *      anyway. We only need to clean up our local state.
    4855              :  */
    4856              : void
    4857          306 : PostPrepare_PredicateLocks(FullTransactionId fxid)
    4858              : {
    4859          306 :     if (MySerializableXact == InvalidSerializableXact)
    4860          294 :         return;
    4861              : 
    4862              :     Assert(SxactIsPrepared(MySerializableXact));
    4863              : 
    4864           12 :     MySerializableXact->pid = 0;
    4865           12 :     MySerializableXact->pgprocno = INVALID_PROC_NUMBER;
    4866              : 
    4867           12 :     hash_destroy(LocalPredicateLockHash);
    4868           12 :     LocalPredicateLockHash = NULL;
    4869              : 
    4870           12 :     MySerializableXact = InvalidSerializableXact;
    4871           12 :     MyXactDidWrite = false;
    4872              : }
    4873              : 
    4874              : /*
    4875              :  * PredicateLockTwoPhaseFinish
    4876              :  *      Release a prepared transaction's predicate locks once it
    4877              :  *      commits or aborts.
    4878              :  */
    4879              : void
    4880          316 : PredicateLockTwoPhaseFinish(FullTransactionId fxid, bool isCommit)
    4881              : {
    4882              :     SERIALIZABLEXID *sxid;
    4883              :     SERIALIZABLEXIDTAG sxidtag;
    4884              : 
    4885          316 :     sxidtag.xid = XidFromFullTransactionId(fxid);
    4886              : 
    4887          316 :     LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    4888              :     sxid = (SERIALIZABLEXID *)
    4889          316 :         hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    4890          316 :     LWLockRelease(SerializableXactHashLock);
    4891              : 
    4892              :     /* xid will not be found if it wasn't a serializable transaction */
    4893          316 :     if (sxid == NULL)
    4894          304 :         return;
    4895              : 
    4896              :     /* Release its locks */
    4897           12 :     MySerializableXact = sxid->myXact;
    4898           12 :     MyXactDidWrite = true;      /* conservatively assume that we wrote
    4899              :                                  * something */
    4900           12 :     ReleasePredicateLocks(isCommit, false);
    4901              : }
    4902              : 
    4903              : /*
    4904              :  * Re-acquire a predicate lock belonging to a transaction that was prepared.
    4905              :  */
    4906              : void
    4907            0 : predicatelock_twophase_recover(FullTransactionId fxid, uint16 info,
    4908              :                                void *recdata, uint32 len)
    4909              : {
    4910              :     TwoPhasePredicateRecord *record;
    4911            0 :     TransactionId xid = XidFromFullTransactionId(fxid);
    4912              : 
    4913              :     Assert(len == sizeof(TwoPhasePredicateRecord));
    4914              : 
    4915            0 :     record = (TwoPhasePredicateRecord *) recdata;
    4916              : 
    4917              :     Assert((record->type == TWOPHASEPREDICATERECORD_XACT) ||
    4918              :            (record->type == TWOPHASEPREDICATERECORD_LOCK));
    4919              : 
    4920            0 :     if (record->type == TWOPHASEPREDICATERECORD_XACT)
    4921              :     {
    4922              :         /* Per-transaction record. Set up a SERIALIZABLEXACT. */
    4923              :         TwoPhasePredicateXactRecord *xactRecord;
    4924              :         SERIALIZABLEXACT *sxact;
    4925              :         SERIALIZABLEXID *sxid;
    4926              :         SERIALIZABLEXIDTAG sxidtag;
    4927              :         bool        found;
    4928              : 
    4929            0 :         xactRecord = (TwoPhasePredicateXactRecord *) &record->data.xactRecord;
    4930              : 
    4931            0 :         LWLockAcquire(SerializableXactHashLock, LW_EXCLUSIVE);
    4932            0 :         sxact = CreatePredXact();
    4933            0 :         if (!sxact)
    4934            0 :             ereport(ERROR,
    4935              :                     (errcode(ERRCODE_OUT_OF_MEMORY),
    4936              :                      errmsg("out of shared memory")));
    4937              : 
    4938              :         /* vxid for a prepared xact is INVALID_PROC_NUMBER/xid; no pid */
    4939            0 :         sxact->vxid.procNumber = INVALID_PROC_NUMBER;
    4940            0 :         sxact->vxid.localTransactionId = (LocalTransactionId) xid;
    4941            0 :         sxact->pid = 0;
    4942            0 :         sxact->pgprocno = INVALID_PROC_NUMBER;
    4943              : 
    4944              :         /* a prepared xact hasn't committed yet */
    4945            0 :         sxact->prepareSeqNo = RecoverySerCommitSeqNo;
    4946            0 :         sxact->commitSeqNo = InvalidSerCommitSeqNo;
    4947            0 :         sxact->finishedBefore = InvalidTransactionId;
    4948              : 
    4949            0 :         sxact->SeqNo.lastCommitBeforeSnapshot = RecoverySerCommitSeqNo;
    4950              : 
    4951              :         /*
    4952              :          * Don't need to track this; no transactions running at the time the
    4953              :          * recovered xact started are still active, except possibly other
    4954              :          * prepared xacts and we don't care whether those are RO_SAFE or not.
    4955              :          */
    4956            0 :         dlist_init(&(sxact->possibleUnsafeConflicts));
    4957              : 
    4958            0 :         dlist_init(&(sxact->predicateLocks));
    4959            0 :         dlist_node_init(&sxact->finishedLink);
    4960              : 
    4961            0 :         sxact->topXid = xid;
    4962            0 :         sxact->xmin = xactRecord->xmin;
    4963            0 :         sxact->flags = xactRecord->flags;
    4964              :         Assert(SxactIsPrepared(sxact));
    4965            0 :         if (!SxactIsReadOnly(sxact))
    4966              :         {
    4967            0 :             ++(PredXact->WritableSxactCount);
    4968              :             Assert(PredXact->WritableSxactCount <=
    4969              :                    (MaxBackends + max_prepared_xacts));
    4970              :         }
    4971              : 
    4972              :         /*
    4973              :          * We don't know whether the transaction had any conflicts or not, so
    4974              :          * we'll conservatively assume that it had both a conflict in and a
    4975              :          * conflict out, and represent that with the summary conflict flags.
    4976              :          */
    4977            0 :         dlist_init(&(sxact->outConflicts));
    4978            0 :         dlist_init(&(sxact->inConflicts));
    4979            0 :         sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_IN;
    4980            0 :         sxact->flags |= SXACT_FLAG_SUMMARY_CONFLICT_OUT;
    4981              : 
    4982              :         /* Register the transaction's xid */
    4983            0 :         sxidtag.xid = xid;
    4984            0 :         sxid = (SERIALIZABLEXID *) hash_search(SerializableXidHash,
    4985              :                                                &sxidtag,
    4986              :                                                HASH_ENTER, &found);
    4987              :         Assert(sxid != NULL);
    4988              :         Assert(!found);
    4989            0 :         sxid->myXact = sxact;
    4990              : 
    4991              :         /*
    4992              :          * Update global xmin. Note that this is a special case compared to
    4993              :          * registering a normal transaction, because the global xmin might go
    4994              :          * backwards. That's OK, because until recovery is over we're not
    4995              :          * going to complete any transactions or create any non-prepared
    4996              :          * transactions, so there's no danger of throwing away.
    4997              :          */
    4998            0 :         if ((!TransactionIdIsValid(PredXact->SxactGlobalXmin)) ||
    4999            0 :             (TransactionIdFollows(PredXact->SxactGlobalXmin, sxact->xmin)))
    5000              :         {
    5001            0 :             PredXact->SxactGlobalXmin = sxact->xmin;
    5002            0 :             PredXact->SxactGlobalXminCount = 1;
    5003            0 :             SerialSetActiveSerXmin(sxact->xmin);
    5004              :         }
    5005            0 :         else if (TransactionIdEquals(sxact->xmin, PredXact->SxactGlobalXmin))
    5006              :         {
    5007              :             Assert(PredXact->SxactGlobalXminCount > 0);
    5008            0 :             PredXact->SxactGlobalXminCount++;
    5009              :         }
    5010              : 
    5011            0 :         LWLockRelease(SerializableXactHashLock);
    5012              :     }
    5013            0 :     else if (record->type == TWOPHASEPREDICATERECORD_LOCK)
    5014              :     {
    5015              :         /* Lock record. Recreate the PREDICATELOCK */
    5016              :         TwoPhasePredicateLockRecord *lockRecord;
    5017              :         SERIALIZABLEXID *sxid;
    5018              :         SERIALIZABLEXACT *sxact;
    5019              :         SERIALIZABLEXIDTAG sxidtag;
    5020              :         uint32      targettaghash;
    5021              : 
    5022            0 :         lockRecord = (TwoPhasePredicateLockRecord *) &record->data.lockRecord;
    5023            0 :         targettaghash = PredicateLockTargetTagHashCode(&lockRecord->target);
    5024              : 
    5025            0 :         LWLockAcquire(SerializableXactHashLock, LW_SHARED);
    5026            0 :         sxidtag.xid = xid;
    5027              :         sxid = (SERIALIZABLEXID *)
    5028            0 :             hash_search(SerializableXidHash, &sxidtag, HASH_FIND, NULL);
    5029            0 :         LWLockRelease(SerializableXactHashLock);
    5030              : 
    5031              :         Assert(sxid != NULL);
    5032            0 :         sxact = sxid->myXact;
    5033              :         Assert(sxact != InvalidSerializableXact);
    5034              : 
    5035            0 :         CreatePredicateLock(&lockRecord->target, targettaghash, sxact);
    5036              :     }
    5037            0 : }
    5038              : 
    5039              : /*
    5040              :  * Prepare to share the current SERIALIZABLEXACT with parallel workers.
    5041              :  * Return a handle object that can be used by AttachSerializableXact() in a
    5042              :  * parallel worker.
    5043              :  */
    5044              : SerializableXactHandle
    5045          498 : ShareSerializableXact(void)
    5046              : {
    5047          498 :     return MySerializableXact;
    5048              : }
    5049              : 
    5050              : /*
    5051              :  * Allow parallel workers to import the leader's SERIALIZABLEXACT.
    5052              :  */
    5053              : void
    5054         1484 : AttachSerializableXact(SerializableXactHandle handle)
    5055              : {
    5056              : 
    5057              :     Assert(MySerializableXact == InvalidSerializableXact);
    5058              : 
    5059         1484 :     MySerializableXact = (SERIALIZABLEXACT *) handle;
    5060         1484 :     if (MySerializableXact != InvalidSerializableXact)
    5061           13 :         CreateLocalPredicateLockHash();
    5062         1484 : }
        

Generated by: LCOV version 2.0-1