Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * setrefs.c
4 : * Post-processing of a completed plan tree: fix references to subplan
5 : * vars, compute regproc values for operators, etc
6 : *
7 : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : * Portions Copyright (c) 1994, Regents of the University of California
9 : *
10 : *
11 : * IDENTIFICATION
12 : * src/backend/optimizer/plan/setrefs.c
13 : *
14 : *-------------------------------------------------------------------------
15 : */
16 : #include "postgres.h"
17 :
18 : #include "access/transam.h"
19 : #include "catalog/pg_type.h"
20 : #include "nodes/makefuncs.h"
21 : #include "nodes/nodeFuncs.h"
22 : #include "optimizer/optimizer.h"
23 : #include "optimizer/pathnode.h"
24 : #include "optimizer/planmain.h"
25 : #include "optimizer/planner.h"
26 : #include "optimizer/subselect.h"
27 : #include "optimizer/tlist.h"
28 : #include "parser/parse_relation.h"
29 : #include "rewrite/rewriteManip.h"
30 : #include "tcop/utility.h"
31 : #include "utils/syscache.h"
32 :
33 :
34 : typedef enum
35 : {
36 : NRM_EQUAL, /* expect exact match of nullingrels */
37 : NRM_SUBSET, /* actual Var may have a subset of input */
38 : NRM_SUPERSET, /* actual Var may have a superset of input */
39 : } NullingRelsMatch;
40 :
41 : typedef struct
42 : {
43 : int varno; /* RT index of Var */
44 : AttrNumber varattno; /* attr number of Var */
45 : AttrNumber resno; /* TLE position of Var */
46 : Bitmapset *varnullingrels; /* Var's varnullingrels */
47 : } tlist_vinfo;
48 :
49 : typedef struct
50 : {
51 : List *tlist; /* underlying target list */
52 : int num_vars; /* number of plain Var tlist entries */
53 : bool has_ph_vars; /* are there PlaceHolderVar entries? */
54 : bool has_non_vars; /* are there other entries? */
55 : tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
56 : } indexed_tlist;
57 :
58 : typedef struct
59 : {
60 : PlannerInfo *root;
61 : int rtoffset;
62 : double num_exec;
63 : } fix_scan_expr_context;
64 :
65 : typedef struct
66 : {
67 : PlannerInfo *root;
68 : indexed_tlist *outer_itlist;
69 : indexed_tlist *inner_itlist;
70 : Index acceptable_rel;
71 : int rtoffset;
72 : NullingRelsMatch nrm_match;
73 : double num_exec;
74 : } fix_join_expr_context;
75 :
76 : typedef struct
77 : {
78 : PlannerInfo *root;
79 : indexed_tlist *subplan_itlist;
80 : int newvarno;
81 : int rtoffset;
82 : NullingRelsMatch nrm_match;
83 : double num_exec;
84 : } fix_upper_expr_context;
85 :
86 : typedef struct
87 : {
88 : PlannerInfo *root;
89 : indexed_tlist *subplan_itlist;
90 : int newvarno;
91 : } fix_windowagg_cond_context;
92 :
93 : /* Context info for flatten_rtes_walker() */
94 : typedef struct
95 : {
96 : PlannerGlobal *glob;
97 : Query *query;
98 : } flatten_rtes_walker_context;
99 :
100 : /*
101 : * Selecting the best alternative in an AlternativeSubPlan expression requires
102 : * estimating how many times that expression will be evaluated. For an
103 : * expression in a plan node's targetlist, the plan's estimated number of
104 : * output rows is clearly what to use, but for an expression in a qual it's
105 : * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
106 : * want to expend a lot of cycles making such estimates. What we use is twice
107 : * the number of output rows. That's not entirely unfounded: we know that
108 : * clause_selectivity() would fall back to a default selectivity estimate
109 : * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
110 : * to be applied (which it likely would be, thanks to order_qual_clauses()),
111 : * this matches what we could have estimated in a far more laborious fashion.
112 : * Obviously there are many other scenarios, but it's probably not worth the
113 : * trouble to try to improve on this estimate, especially not when we don't
114 : * have a better estimate for the selectivity of the SubPlan qual itself.
115 : */
116 : #define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
117 : #define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
118 :
119 : /*
120 : * Check if a Const node is a regclass value. We accept plain OID too,
121 : * since a regclass Const will get folded to that type if it's an argument
122 : * to oideq or similar operators. (This might result in some extraneous
123 : * values in a plan's list of relation dependencies, but the worst result
124 : * would be occasional useless replans.)
125 : */
126 : #define ISREGCLASSCONST(con) \
127 : (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
128 : !(con)->constisnull)
129 :
130 : #define fix_scan_list(root, lst, rtoffset, num_exec) \
131 : ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
132 :
133 : static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
134 : static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
135 : static bool flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt);
136 : static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
137 : RangeTblEntry *rte);
138 : static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
139 : static Plan *set_indexonlyscan_references(PlannerInfo *root,
140 : IndexOnlyScan *plan,
141 : int rtoffset);
142 : static Plan *set_subqueryscan_references(PlannerInfo *root,
143 : SubqueryScan *plan,
144 : int rtoffset);
145 : static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
146 : static void set_foreignscan_references(PlannerInfo *root,
147 : ForeignScan *fscan,
148 : int rtoffset);
149 : static void set_customscan_references(PlannerInfo *root,
150 : CustomScan *cscan,
151 : int rtoffset);
152 : static Plan *set_append_references(PlannerInfo *root,
153 : Append *aplan,
154 : int rtoffset);
155 : static Plan *set_mergeappend_references(PlannerInfo *root,
156 : MergeAppend *mplan,
157 : int rtoffset);
158 : static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
159 : static Relids offset_relid_set(Relids relids, int rtoffset);
160 : static Node *fix_scan_expr(PlannerInfo *root, Node *node,
161 : int rtoffset, double num_exec);
162 : static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context);
163 : static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
164 : static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
165 : static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
166 : static void set_param_references(PlannerInfo *root, Plan *plan);
167 : static Node *convert_combining_aggrefs(Node *node, void *context);
168 : static void set_dummy_tlist_references(Plan *plan, int rtoffset);
169 : static indexed_tlist *build_tlist_index(List *tlist);
170 : static Var *search_indexed_tlist_for_var(Var *var,
171 : indexed_tlist *itlist,
172 : int newvarno,
173 : int rtoffset,
174 : NullingRelsMatch nrm_match);
175 : static Var *search_indexed_tlist_for_phv(PlaceHolderVar *phv,
176 : indexed_tlist *itlist,
177 : int newvarno,
178 : NullingRelsMatch nrm_match);
179 : static Var *search_indexed_tlist_for_non_var(Expr *node,
180 : indexed_tlist *itlist,
181 : int newvarno);
182 : static Var *search_indexed_tlist_for_sortgroupref(Expr *node,
183 : Index sortgroupref,
184 : indexed_tlist *itlist,
185 : int newvarno);
186 : static List *fix_join_expr(PlannerInfo *root,
187 : List *clauses,
188 : indexed_tlist *outer_itlist,
189 : indexed_tlist *inner_itlist,
190 : Index acceptable_rel,
191 : int rtoffset,
192 : NullingRelsMatch nrm_match,
193 : double num_exec);
194 : static Node *fix_join_expr_mutator(Node *node,
195 : fix_join_expr_context *context);
196 : static Node *fix_upper_expr(PlannerInfo *root,
197 : Node *node,
198 : indexed_tlist *subplan_itlist,
199 : int newvarno,
200 : int rtoffset,
201 : NullingRelsMatch nrm_match,
202 : double num_exec);
203 : static Node *fix_upper_expr_mutator(Node *node,
204 : fix_upper_expr_context *context);
205 : static List *set_returning_clause_references(PlannerInfo *root,
206 : List *rlist,
207 : Plan *topplan,
208 : Index resultRelation,
209 : int rtoffset);
210 : static List *set_windowagg_runcondition_references(PlannerInfo *root,
211 : List *runcondition,
212 : Plan *plan);
213 :
214 : static void record_elided_node(PlannerGlobal *glob, int plan_node_id,
215 : NodeTag elided_type, Bitmapset *relids);
216 :
217 :
218 : /*****************************************************************************
219 : *
220 : * SUBPLAN REFERENCES
221 : *
222 : *****************************************************************************/
223 :
224 : /*
225 : * set_plan_references
226 : *
227 : * This is the final processing pass of the planner/optimizer. The plan
228 : * tree is complete; we just have to adjust some representational details
229 : * for the convenience of the executor:
230 : *
231 : * 1. We flatten the various subquery rangetables into a single list, and
232 : * zero out RangeTblEntry fields that are not useful to the executor.
233 : *
234 : * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
235 : *
236 : * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
237 : * subplans.
238 : *
239 : * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
240 : * partial aggregation or minmax aggregate optimization.
241 : *
242 : * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
243 : * now that we have finished planning all MULTIEXPR subplans.
244 : *
245 : * 6. AlternativeSubPlan expressions are replaced by just one of their
246 : * alternatives, using an estimate of how many times they'll be executed.
247 : *
248 : * 7. We compute regproc OIDs for operators (ie, we look up the function
249 : * that implements each op).
250 : *
251 : * 8. We create lists of specific objects that the plan depends on.
252 : * This will be used by plancache.c to drive invalidation of cached plans.
253 : * Relation dependencies are represented by OIDs, and everything else by
254 : * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
255 : * Currently, relations, user-defined functions, and domains are the only
256 : * types of objects that are explicitly tracked this way.
257 : *
258 : * 9. We assign every plan node in the tree a unique ID.
259 : *
260 : * We also perform one final optimization step, which is to delete
261 : * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
262 : * anything useful. The reason for doing this last is that
263 : * it can't readily be done before set_plan_references, because it would
264 : * break set_upper_references: the Vars in the child plan's top tlist
265 : * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
266 : * serves a necessary function as a buffer between outer query and subquery
267 : * variable numbering ... but after we've flattened the rangetable this is
268 : * no longer a problem, since then there's only one rtindex namespace.
269 : * Likewise, Append and MergeAppend buffer between the parent and child vars
270 : * of an appendrel, but we don't need to worry about that once we've done
271 : * set_plan_references.
272 : *
273 : * set_plan_references recursively traverses the whole plan tree.
274 : *
275 : * The return value is normally the same Plan node passed in, but can be
276 : * different when the passed-in Plan is a node we decide isn't needed.
277 : *
278 : * The flattened rangetable entries are appended to root->glob->finalrtable.
279 : * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
280 : * RT indexes of ModifyTable result relations to root->glob->resultRelations,
281 : * and flattened AppendRelInfos are appended to root->glob->appendRelations.
282 : * Plan dependencies are appended to root->glob->relationOids (for relations)
283 : * and root->glob->invalItems (for everything else).
284 : *
285 : * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
286 : * to process targetlist and qual expressions. We can assume that the Plan
287 : * nodes were just built by the planner and are not multiply referenced, but
288 : * it's not so safe to assume that for expression tree nodes.
289 : */
290 : Plan *
291 548588 : set_plan_references(PlannerInfo *root, Plan *plan)
292 : {
293 : Plan *result;
294 548588 : PlannerGlobal *glob = root->glob;
295 548588 : int rtoffset = list_length(glob->finalrtable);
296 : ListCell *lc;
297 :
298 : /*
299 : * Add all the query's RTEs to the flattened rangetable. The live ones
300 : * will have their rangetable indexes increased by rtoffset. (Additional
301 : * RTEs, not referenced by the Plan tree, might get added after those.)
302 : */
303 548588 : add_rtes_to_flat_rtable(root, false);
304 :
305 : /*
306 : * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
307 : */
308 567604 : foreach(lc, root->rowMarks)
309 : {
310 19016 : PlanRowMark *rc = lfirst_node(PlanRowMark, lc);
311 : PlanRowMark *newrc;
312 :
313 : /* sanity check on existing row marks */
314 : Assert(root->simple_rel_array[rc->rti] != NULL &&
315 : root->simple_rte_array[rc->rti] != NULL);
316 :
317 : /* flat copy is enough since all fields are scalars */
318 19016 : newrc = palloc_object(PlanRowMark);
319 19016 : memcpy(newrc, rc, sizeof(PlanRowMark));
320 :
321 : /* adjust indexes ... but *not* the rowmarkId */
322 19016 : newrc->rti += rtoffset;
323 19016 : newrc->prti += rtoffset;
324 :
325 19016 : glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
326 : }
327 :
328 : /*
329 : * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
330 : * We assume the AppendRelInfos were built during planning and don't need
331 : * to be copied.
332 : */
333 607830 : foreach(lc, root->append_rel_list)
334 : {
335 59242 : AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
336 :
337 : /* adjust RT indexes */
338 59242 : appinfo->parent_relid += rtoffset;
339 59242 : appinfo->child_relid += rtoffset;
340 :
341 : /*
342 : * Rather than adjust the translated_vars entries, just drop 'em.
343 : * Neither the executor nor EXPLAIN currently need that data.
344 : */
345 59242 : appinfo->translated_vars = NIL;
346 :
347 59242 : glob->appendRelations = lappend(glob->appendRelations, appinfo);
348 : }
349 :
350 : /* If needed, create workspace for processing AlternativeSubPlans */
351 548588 : if (root->hasAlternativeSubPlans)
352 : {
353 1102 : root->isAltSubplan = (bool *)
354 1102 : palloc0(list_length(glob->subplans) * sizeof(bool));
355 1102 : root->isUsedSubplan = (bool *)
356 1102 : palloc0(list_length(glob->subplans) * sizeof(bool));
357 : }
358 :
359 : /* Now fix the Plan tree */
360 548588 : result = set_plan_refs(root, plan, rtoffset);
361 :
362 : /*
363 : * If we have AlternativeSubPlans, it is likely that we now have some
364 : * unreferenced subplans in glob->subplans. To avoid expending cycles on
365 : * those subplans later, get rid of them by setting those list entries to
366 : * NULL. (Note: we can't do this immediately upon processing an
367 : * AlternativeSubPlan, because there may be multiple copies of the
368 : * AlternativeSubPlan, and they can get resolved differently.)
369 : */
370 548588 : if (root->hasAlternativeSubPlans)
371 : {
372 5346 : foreach(lc, glob->subplans)
373 : {
374 4244 : int ndx = foreach_current_index(lc);
375 :
376 : /*
377 : * If it was used by some AlternativeSubPlan in this query level,
378 : * but wasn't selected as best by any AlternativeSubPlan, then we
379 : * don't need it. Do not touch subplans that aren't parts of
380 : * AlternativeSubPlans.
381 : */
382 4244 : if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
383 1692 : lfirst(lc) = NULL;
384 : }
385 : }
386 :
387 548588 : return result;
388 : }
389 :
390 : /*
391 : * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
392 : *
393 : * This can recurse into subquery plans; "recursing" is true if so.
394 : *
395 : * This also seems like a good place to add the query's RTEPermissionInfos to
396 : * the flat rteperminfos.
397 : */
398 : static void
399 548850 : add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
400 : {
401 548850 : PlannerGlobal *glob = root->glob;
402 : Index rti;
403 : ListCell *lc;
404 :
405 : /*
406 : * Record enough information to make it possible for code that looks at
407 : * the final range table to understand how it was constructed. (If
408 : * finalrtable is still NIL, then this is the very topmost PlannerInfo,
409 : * which will always have plan_name == NULL and rtoffset == 0; we omit the
410 : * degenerate list entry.)
411 : */
412 548850 : if (root->glob->finalrtable != NIL)
413 : {
414 84768 : SubPlanRTInfo *rtinfo = makeNode(SubPlanRTInfo);
415 :
416 84768 : rtinfo->plan_name = root->plan_name;
417 84768 : rtinfo->rtoffset = list_length(root->glob->finalrtable);
418 :
419 : /* When recursing = true, it's an unplanned or dummy subquery. */
420 84768 : rtinfo->dummy = recursing;
421 :
422 84768 : root->glob->subrtinfos = lappend(root->glob->subrtinfos, rtinfo);
423 : }
424 :
425 : /*
426 : * Add the query's own RTEs to the flattened rangetable.
427 : *
428 : * At top level, we must add all RTEs so that their indexes in the
429 : * flattened rangetable match up with their original indexes. When
430 : * recursing, we only care about extracting relation RTEs (and subquery
431 : * RTEs that were once relation RTEs).
432 : */
433 1543396 : foreach(lc, root->parse->rtable)
434 : {
435 994546 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
436 :
437 994546 : if (!recursing || rte->rtekind == RTE_RELATION ||
438 246 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
439 994300 : add_rte_to_flat_rtable(glob, root->parse->rteperminfos, rte);
440 : }
441 :
442 : /*
443 : * If there are any dead subqueries, they are not referenced in the Plan
444 : * tree, so we must add RTEs contained in them to the flattened rtable
445 : * separately. (If we failed to do this, the executor would not perform
446 : * expected permission checks for tables mentioned in such subqueries.)
447 : *
448 : * Note: this pass over the rangetable can't be combined with the previous
449 : * one, because that would mess up the numbering of the live RTEs in the
450 : * flattened rangetable.
451 : */
452 548850 : rti = 1;
453 1543396 : foreach(lc, root->parse->rtable)
454 : {
455 994546 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
456 :
457 : /*
458 : * We should ignore inheritance-parent RTEs: their contents have been
459 : * pulled up into our rangetable already. Also ignore any subquery
460 : * RTEs without matching RelOptInfos, as they likewise have been
461 : * pulled up.
462 : */
463 994546 : if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
464 77992 : rti < root->simple_rel_array_size)
465 : {
466 77992 : RelOptInfo *rel = root->simple_rel_array[rti];
467 :
468 77992 : if (rel != NULL)
469 : {
470 : Assert(rel->relid == rti); /* sanity check on array */
471 :
472 : /*
473 : * The subquery might never have been planned at all, if it
474 : * was excluded on the basis of self-contradictory constraints
475 : * in our query level. In this case apply
476 : * flatten_unplanned_rtes.
477 : *
478 : * If it was planned but the result rel is dummy, we assume
479 : * that it has been omitted from our plan tree (see
480 : * set_subquery_pathlist), and recurse to pull up its RTEs.
481 : *
482 : * Otherwise, it should be represented by a SubqueryScan node
483 : * somewhere in our plan tree, and we'll pull up its RTEs when
484 : * we process that plan node.
485 : *
486 : * However, if we're recursing, then we should pull up RTEs
487 : * whether the subquery is dummy or not, because we've found
488 : * that some upper query level is treating this one as dummy,
489 : * and so we won't scan this level's plan tree at all.
490 : */
491 40464 : if (rel->subroot == NULL)
492 24 : flatten_unplanned_rtes(glob, rte);
493 80832 : else if (recursing ||
494 40392 : IS_DUMMY_REL(fetch_upper_rel(rel->subroot,
495 : UPPERREL_FINAL, NULL)))
496 262 : add_rtes_to_flat_rtable(rel->subroot, true);
497 : }
498 : }
499 994546 : rti++;
500 : }
501 548850 : }
502 :
503 : /*
504 : * Extract RangeTblEntries from a subquery that was never planned at all
505 : */
506 :
507 : static void
508 24 : flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
509 : {
510 24 : flatten_rtes_walker_context cxt = {glob, rte->subquery};
511 :
512 : /* Use query_tree_walker to find all RTEs in the parse tree */
513 24 : (void) query_tree_walker(rte->subquery,
514 : flatten_rtes_walker,
515 : &cxt,
516 : QTW_EXAMINE_RTES_BEFORE);
517 24 : }
518 :
519 : static bool
520 600 : flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt)
521 : {
522 600 : if (node == NULL)
523 348 : return false;
524 252 : if (IsA(node, RangeTblEntry))
525 : {
526 18 : RangeTblEntry *rte = (RangeTblEntry *) node;
527 :
528 : /* As above, we need only save relation RTEs and former relations */
529 18 : if (rte->rtekind == RTE_RELATION ||
530 0 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
531 18 : add_rte_to_flat_rtable(cxt->glob, cxt->query->rteperminfos, rte);
532 18 : return false;
533 : }
534 234 : if (IsA(node, Query))
535 : {
536 : /*
537 : * Recurse into subselects. Must update cxt->query to this query so
538 : * that the rtable and rteperminfos correspond with each other.
539 : */
540 6 : Query *save_query = cxt->query;
541 : bool result;
542 :
543 6 : cxt->query = (Query *) node;
544 6 : result = query_tree_walker((Query *) node,
545 : flatten_rtes_walker,
546 : cxt,
547 : QTW_EXAMINE_RTES_BEFORE);
548 6 : cxt->query = save_query;
549 6 : return result;
550 : }
551 228 : return expression_tree_walker(node, flatten_rtes_walker, cxt);
552 : }
553 :
554 : /*
555 : * Add (a copy of) the given RTE to the final rangetable and also the
556 : * corresponding RTEPermissionInfo, if any, to final rteperminfos.
557 : *
558 : * In the flat rangetable, we zero out substructure pointers that are not
559 : * needed by the executor; this reduces the storage space and copying cost
560 : * for cached plans. We keep only the ctename, alias, eref Alias fields,
561 : * which are needed by EXPLAIN, and perminfoindex which is needed by the
562 : * executor to fetch the RTE's RTEPermissionInfo.
563 : */
564 : static void
565 994318 : add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
566 : RangeTblEntry *rte)
567 : {
568 : RangeTblEntry *newrte;
569 :
570 : /* flat copy to duplicate all the scalar fields */
571 994318 : newrte = palloc_object(RangeTblEntry);
572 994318 : memcpy(newrte, rte, sizeof(RangeTblEntry));
573 :
574 : /* zap unneeded sub-structure */
575 994318 : newrte->tablesample = NULL;
576 994318 : newrte->subquery = NULL;
577 994318 : newrte->joinaliasvars = NIL;
578 994318 : newrte->joinleftcols = NIL;
579 994318 : newrte->joinrightcols = NIL;
580 994318 : newrte->join_using_alias = NULL;
581 994318 : newrte->functions = NIL;
582 994318 : newrte->tablefunc = NULL;
583 994318 : newrte->values_lists = NIL;
584 994318 : newrte->coltypes = NIL;
585 994318 : newrte->coltypmods = NIL;
586 994318 : newrte->colcollations = NIL;
587 994318 : newrte->groupexprs = NIL;
588 994318 : newrte->securityQuals = NIL;
589 :
590 994318 : glob->finalrtable = lappend(glob->finalrtable, newrte);
591 :
592 : /*
593 : * If it's a plain relation RTE (or a subquery that was once a view
594 : * reference), add the relation OID to relationOids. Also add its new RT
595 : * index to the set of relations to be potentially accessed during
596 : * execution.
597 : *
598 : * We do this even though the RTE might be unreferenced in the plan tree;
599 : * this would correspond to cases such as views that were expanded, child
600 : * tables that were eliminated by constraint exclusion, etc. Schema
601 : * invalidation on such a rel must still force rebuilding of the plan.
602 : *
603 : * Note we don't bother to avoid making duplicate list entries. We could,
604 : * but it would probably cost more cycles than it would save.
605 : */
606 994318 : if (newrte->rtekind == RTE_RELATION ||
607 458380 : (newrte->rtekind == RTE_SUBQUERY && OidIsValid(newrte->relid)))
608 : {
609 552828 : glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
610 552828 : glob->allRelids = bms_add_member(glob->allRelids,
611 552828 : list_length(glob->finalrtable));
612 : }
613 :
614 : /*
615 : * Add a copy of the RTEPermissionInfo, if any, corresponding to this RTE
616 : * to the flattened global list.
617 : */
618 994318 : if (rte->perminfoindex > 0)
619 : {
620 : RTEPermissionInfo *perminfo;
621 : RTEPermissionInfo *newperminfo;
622 :
623 : /* Get the existing one from this query's rteperminfos. */
624 509412 : perminfo = getRTEPermissionInfo(rteperminfos, newrte);
625 :
626 : /*
627 : * Add a new one to finalrteperminfos and copy the contents of the
628 : * existing one into it. Note that addRTEPermissionInfo() also
629 : * updates newrte->perminfoindex to point to newperminfo in
630 : * finalrteperminfos.
631 : */
632 509412 : newrte->perminfoindex = 0; /* expected by addRTEPermissionInfo() */
633 509412 : newperminfo = addRTEPermissionInfo(&glob->finalrteperminfos, newrte);
634 509412 : memcpy(newperminfo, perminfo, sizeof(RTEPermissionInfo));
635 : }
636 994318 : }
637 :
638 : /*
639 : * set_plan_refs: recurse through the Plan nodes of a single subquery level
640 : */
641 : static Plan *
642 2946756 : set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
643 : {
644 : ListCell *l;
645 :
646 2946756 : if (plan == NULL)
647 1695776 : return NULL;
648 :
649 : /* Assign this node a unique ID. */
650 1250980 : plan->plan_node_id = root->glob->lastPlanNodeId++;
651 :
652 : /*
653 : * Plan-type-specific fixes
654 : */
655 1250980 : switch (nodeTag(plan))
656 : {
657 223632 : case T_SeqScan:
658 : {
659 223632 : SeqScan *splan = (SeqScan *) plan;
660 :
661 223632 : splan->scan.scanrelid += rtoffset;
662 223632 : splan->scan.plan.targetlist =
663 223632 : fix_scan_list(root, splan->scan.plan.targetlist,
664 : rtoffset, NUM_EXEC_TLIST(plan));
665 223632 : splan->scan.plan.qual =
666 223632 : fix_scan_list(root, splan->scan.plan.qual,
667 : rtoffset, NUM_EXEC_QUAL(plan));
668 : }
669 223632 : break;
670 306 : case T_SampleScan:
671 : {
672 306 : SampleScan *splan = (SampleScan *) plan;
673 :
674 306 : splan->scan.scanrelid += rtoffset;
675 306 : splan->scan.plan.targetlist =
676 306 : fix_scan_list(root, splan->scan.plan.targetlist,
677 : rtoffset, NUM_EXEC_TLIST(plan));
678 306 : splan->scan.plan.qual =
679 306 : fix_scan_list(root, splan->scan.plan.qual,
680 : rtoffset, NUM_EXEC_QUAL(plan));
681 306 : splan->tablesample = (TableSampleClause *)
682 306 : fix_scan_expr(root, (Node *) splan->tablesample,
683 : rtoffset, 1);
684 : }
685 306 : break;
686 144414 : case T_IndexScan:
687 : {
688 144414 : IndexScan *splan = (IndexScan *) plan;
689 :
690 144414 : splan->scan.scanrelid += rtoffset;
691 144414 : splan->scan.plan.targetlist =
692 144414 : fix_scan_list(root, splan->scan.plan.targetlist,
693 : rtoffset, NUM_EXEC_TLIST(plan));
694 144414 : splan->scan.plan.qual =
695 144414 : fix_scan_list(root, splan->scan.plan.qual,
696 : rtoffset, NUM_EXEC_QUAL(plan));
697 144414 : splan->indexqual =
698 144414 : fix_scan_list(root, splan->indexqual,
699 : rtoffset, 1);
700 144414 : splan->indexqualorig =
701 144414 : fix_scan_list(root, splan->indexqualorig,
702 : rtoffset, NUM_EXEC_QUAL(plan));
703 144414 : splan->indexorderby =
704 144414 : fix_scan_list(root, splan->indexorderby,
705 : rtoffset, 1);
706 144414 : splan->indexorderbyorig =
707 144414 : fix_scan_list(root, splan->indexorderbyorig,
708 : rtoffset, NUM_EXEC_QUAL(plan));
709 : }
710 144414 : break;
711 18512 : case T_IndexOnlyScan:
712 : {
713 18512 : IndexOnlyScan *splan = (IndexOnlyScan *) plan;
714 :
715 18512 : return set_indexonlyscan_references(root, splan, rtoffset);
716 : }
717 : break;
718 26992 : case T_BitmapIndexScan:
719 : {
720 26992 : BitmapIndexScan *splan = (BitmapIndexScan *) plan;
721 :
722 26992 : splan->scan.scanrelid += rtoffset;
723 : /* no need to fix targetlist and qual */
724 : Assert(splan->scan.plan.targetlist == NIL);
725 : Assert(splan->scan.plan.qual == NIL);
726 26992 : splan->indexqual =
727 26992 : fix_scan_list(root, splan->indexqual, rtoffset, 1);
728 26992 : splan->indexqualorig =
729 26992 : fix_scan_list(root, splan->indexqualorig,
730 : rtoffset, NUM_EXEC_QUAL(plan));
731 : }
732 26992 : break;
733 26306 : case T_BitmapHeapScan:
734 : {
735 26306 : BitmapHeapScan *splan = (BitmapHeapScan *) plan;
736 :
737 26306 : splan->scan.scanrelid += rtoffset;
738 26306 : splan->scan.plan.targetlist =
739 26306 : fix_scan_list(root, splan->scan.plan.targetlist,
740 : rtoffset, NUM_EXEC_TLIST(plan));
741 26306 : splan->scan.plan.qual =
742 26306 : fix_scan_list(root, splan->scan.plan.qual,
743 : rtoffset, NUM_EXEC_QUAL(plan));
744 26306 : splan->bitmapqualorig =
745 26306 : fix_scan_list(root, splan->bitmapqualorig,
746 : rtoffset, NUM_EXEC_QUAL(plan));
747 : }
748 26306 : break;
749 752 : case T_TidScan:
750 : {
751 752 : TidScan *splan = (TidScan *) plan;
752 :
753 752 : splan->scan.scanrelid += rtoffset;
754 752 : splan->scan.plan.targetlist =
755 752 : fix_scan_list(root, splan->scan.plan.targetlist,
756 : rtoffset, NUM_EXEC_TLIST(plan));
757 752 : splan->scan.plan.qual =
758 752 : fix_scan_list(root, splan->scan.plan.qual,
759 : rtoffset, NUM_EXEC_QUAL(plan));
760 752 : splan->tidquals =
761 752 : fix_scan_list(root, splan->tidquals,
762 : rtoffset, 1);
763 : }
764 752 : break;
765 2004 : case T_TidRangeScan:
766 : {
767 2004 : TidRangeScan *splan = (TidRangeScan *) plan;
768 :
769 2004 : splan->scan.scanrelid += rtoffset;
770 2004 : splan->scan.plan.targetlist =
771 2004 : fix_scan_list(root, splan->scan.plan.targetlist,
772 : rtoffset, NUM_EXEC_TLIST(plan));
773 2004 : splan->scan.plan.qual =
774 2004 : fix_scan_list(root, splan->scan.plan.qual,
775 : rtoffset, NUM_EXEC_QUAL(plan));
776 2004 : splan->tidrangequals =
777 2004 : fix_scan_list(root, splan->tidrangequals,
778 : rtoffset, 1);
779 : }
780 2004 : break;
781 40142 : case T_SubqueryScan:
782 : /* Needs special treatment, see comments below */
783 40142 : return set_subqueryscan_references(root,
784 : (SubqueryScan *) plan,
785 : rtoffset);
786 53216 : case T_FunctionScan:
787 : {
788 53216 : FunctionScan *splan = (FunctionScan *) plan;
789 :
790 53216 : splan->scan.scanrelid += rtoffset;
791 53216 : splan->scan.plan.targetlist =
792 53216 : fix_scan_list(root, splan->scan.plan.targetlist,
793 : rtoffset, NUM_EXEC_TLIST(plan));
794 53216 : splan->scan.plan.qual =
795 53216 : fix_scan_list(root, splan->scan.plan.qual,
796 : rtoffset, NUM_EXEC_QUAL(plan));
797 53216 : splan->functions =
798 53216 : fix_scan_list(root, splan->functions, rtoffset, 1);
799 : }
800 53216 : break;
801 626 : case T_TableFuncScan:
802 : {
803 626 : TableFuncScan *splan = (TableFuncScan *) plan;
804 :
805 626 : splan->scan.scanrelid += rtoffset;
806 626 : splan->scan.plan.targetlist =
807 626 : fix_scan_list(root, splan->scan.plan.targetlist,
808 : rtoffset, NUM_EXEC_TLIST(plan));
809 626 : splan->scan.plan.qual =
810 626 : fix_scan_list(root, splan->scan.plan.qual,
811 : rtoffset, NUM_EXEC_QUAL(plan));
812 626 : splan->tablefunc = (TableFunc *)
813 626 : fix_scan_expr(root, (Node *) splan->tablefunc,
814 : rtoffset, 1);
815 : }
816 626 : break;
817 8536 : case T_ValuesScan:
818 : {
819 8536 : ValuesScan *splan = (ValuesScan *) plan;
820 :
821 8536 : splan->scan.scanrelid += rtoffset;
822 8536 : splan->scan.plan.targetlist =
823 8536 : fix_scan_list(root, splan->scan.plan.targetlist,
824 : rtoffset, NUM_EXEC_TLIST(plan));
825 8536 : splan->scan.plan.qual =
826 8536 : fix_scan_list(root, splan->scan.plan.qual,
827 : rtoffset, NUM_EXEC_QUAL(plan));
828 8536 : splan->values_lists =
829 8536 : fix_scan_list(root, splan->values_lists,
830 : rtoffset, 1);
831 : }
832 8536 : break;
833 4444 : case T_CteScan:
834 : {
835 4444 : CteScan *splan = (CteScan *) plan;
836 :
837 4444 : splan->scan.scanrelid += rtoffset;
838 4444 : splan->scan.plan.targetlist =
839 4444 : fix_scan_list(root, splan->scan.plan.targetlist,
840 : rtoffset, NUM_EXEC_TLIST(plan));
841 4444 : splan->scan.plan.qual =
842 4444 : fix_scan_list(root, splan->scan.plan.qual,
843 : rtoffset, NUM_EXEC_QUAL(plan));
844 : }
845 4444 : break;
846 474 : case T_NamedTuplestoreScan:
847 : {
848 474 : NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan;
849 :
850 474 : splan->scan.scanrelid += rtoffset;
851 474 : splan->scan.plan.targetlist =
852 474 : fix_scan_list(root, splan->scan.plan.targetlist,
853 : rtoffset, NUM_EXEC_TLIST(plan));
854 474 : splan->scan.plan.qual =
855 474 : fix_scan_list(root, splan->scan.plan.qual,
856 : rtoffset, NUM_EXEC_QUAL(plan));
857 : }
858 474 : break;
859 936 : case T_WorkTableScan:
860 : {
861 936 : WorkTableScan *splan = (WorkTableScan *) plan;
862 :
863 936 : splan->scan.scanrelid += rtoffset;
864 936 : splan->scan.plan.targetlist =
865 936 : fix_scan_list(root, splan->scan.plan.targetlist,
866 : rtoffset, NUM_EXEC_TLIST(plan));
867 936 : splan->scan.plan.qual =
868 936 : fix_scan_list(root, splan->scan.plan.qual,
869 : rtoffset, NUM_EXEC_QUAL(plan));
870 : }
871 936 : break;
872 2048 : case T_ForeignScan:
873 2048 : set_foreignscan_references(root, (ForeignScan *) plan, rtoffset);
874 2048 : break;
875 0 : case T_CustomScan:
876 0 : set_customscan_references(root, (CustomScan *) plan, rtoffset);
877 0 : break;
878 :
879 144828 : case T_NestLoop:
880 : case T_MergeJoin:
881 : case T_HashJoin:
882 144828 : set_join_references(root, (Join *) plan, rtoffset);
883 144828 : break;
884 :
885 1508 : case T_Gather:
886 : case T_GatherMerge:
887 : {
888 1508 : set_upper_references(root, plan, rtoffset);
889 1508 : set_param_references(root, plan);
890 : }
891 1508 : break;
892 :
893 35628 : case T_Hash:
894 35628 : set_hash_references(root, plan, rtoffset);
895 35628 : break;
896 :
897 2008 : case T_Memoize:
898 : {
899 2008 : Memoize *mplan = (Memoize *) plan;
900 :
901 : /*
902 : * Memoize does not evaluate its targetlist. It just uses the
903 : * same targetlist from its outer subnode.
904 : */
905 2008 : set_dummy_tlist_references(plan, rtoffset);
906 :
907 2008 : mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
908 : rtoffset,
909 : NUM_EXEC_TLIST(plan));
910 2008 : break;
911 : }
912 :
913 93260 : case T_Material:
914 : case T_Sort:
915 : case T_IncrementalSort:
916 : case T_Unique:
917 : case T_SetOp:
918 :
919 : /*
920 : * These plan types don't actually bother to evaluate their
921 : * targetlists, because they just return their unmodified input
922 : * tuples. Even though the targetlist won't be used by the
923 : * executor, we fix it up for possible use by EXPLAIN (not to
924 : * mention ease of debugging --- wrong varnos are very confusing).
925 : */
926 93260 : set_dummy_tlist_references(plan, rtoffset);
927 :
928 : /*
929 : * Since these plan types don't check quals either, we should not
930 : * find any qual expression attached to them.
931 : */
932 : Assert(plan->qual == NIL);
933 93260 : break;
934 13560 : case T_LockRows:
935 : {
936 13560 : LockRows *splan = (LockRows *) plan;
937 :
938 : /*
939 : * Like the plan types above, LockRows doesn't evaluate its
940 : * tlist or quals. But we have to fix up the RT indexes in
941 : * its rowmarks.
942 : */
943 13560 : set_dummy_tlist_references(plan, rtoffset);
944 : Assert(splan->plan.qual == NIL);
945 :
946 29582 : foreach(l, splan->rowMarks)
947 : {
948 16022 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
949 :
950 16022 : rc->rti += rtoffset;
951 16022 : rc->prti += rtoffset;
952 : }
953 : }
954 13560 : break;
955 5086 : case T_Limit:
956 : {
957 5086 : Limit *splan = (Limit *) plan;
958 :
959 : /*
960 : * Like the plan types above, Limit doesn't evaluate its tlist
961 : * or quals. It does have live expressions for limit/offset,
962 : * however; and those cannot contain subplan variable refs, so
963 : * fix_scan_expr works for them.
964 : */
965 5086 : set_dummy_tlist_references(plan, rtoffset);
966 : Assert(splan->plan.qual == NIL);
967 :
968 5086 : splan->limitOffset =
969 5086 : fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
970 5086 : splan->limitCount =
971 5086 : fix_scan_expr(root, splan->limitCount, rtoffset, 1);
972 : }
973 5086 : break;
974 49654 : case T_Agg:
975 : {
976 49654 : Agg *agg = (Agg *) plan;
977 :
978 : /*
979 : * If this node is combining partial-aggregation results, we
980 : * must convert its Aggrefs to contain references to the
981 : * partial-aggregate subexpressions that will be available
982 : * from the child plan node.
983 : */
984 49654 : if (DO_AGGSPLIT_COMBINE(agg->aggsplit))
985 : {
986 1408 : plan->targetlist = (List *)
987 1408 : convert_combining_aggrefs((Node *) plan->targetlist,
988 : NULL);
989 1408 : plan->qual = (List *)
990 1408 : convert_combining_aggrefs((Node *) plan->qual,
991 : NULL);
992 : }
993 :
994 49654 : set_upper_references(root, plan, rtoffset);
995 : }
996 49654 : break;
997 246 : case T_Group:
998 246 : set_upper_references(root, plan, rtoffset);
999 246 : break;
1000 2862 : case T_WindowAgg:
1001 : {
1002 2862 : WindowAgg *wplan = (WindowAgg *) plan;
1003 :
1004 : /*
1005 : * Adjust the WindowAgg's run conditions by swapping the
1006 : * WindowFuncs references out to instead reference the Var in
1007 : * the scan slot so that when the executor evaluates the
1008 : * runCondition, it receives the WindowFunc's value from the
1009 : * slot that the result has just been stored into rather than
1010 : * evaluating the WindowFunc all over again.
1011 : */
1012 2862 : wplan->runCondition = set_windowagg_runcondition_references(root,
1013 : wplan->runCondition,
1014 : (Plan *) wplan);
1015 :
1016 2862 : set_upper_references(root, plan, rtoffset);
1017 :
1018 : /*
1019 : * Like Limit node limit/offset expressions, WindowAgg has
1020 : * frame offset expressions, which cannot contain subplan
1021 : * variable refs, so fix_scan_expr works for them.
1022 : */
1023 2862 : wplan->startOffset =
1024 2862 : fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
1025 2862 : wplan->endOffset =
1026 2862 : fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
1027 2862 : wplan->runCondition = fix_scan_list(root,
1028 : wplan->runCondition,
1029 : rtoffset,
1030 : NUM_EXEC_TLIST(plan));
1031 2862 : wplan->runConditionOrig = fix_scan_list(root,
1032 : wplan->runConditionOrig,
1033 : rtoffset,
1034 : NUM_EXEC_TLIST(plan));
1035 : }
1036 2862 : break;
1037 216730 : case T_Result:
1038 : {
1039 216730 : Result *splan = (Result *) plan;
1040 :
1041 : /*
1042 : * Result may or may not have a subplan; if not, it's more
1043 : * like a scan node than an upper node.
1044 : */
1045 216730 : if (splan->plan.lefttree != NULL)
1046 12070 : set_upper_references(root, plan, rtoffset);
1047 : else
1048 : {
1049 : /*
1050 : * The tlist of a childless Result could contain
1051 : * unresolved ROWID_VAR Vars, in case it's representing a
1052 : * target relation which is completely empty because of
1053 : * constraint exclusion. Replace any such Vars by null
1054 : * constants, as though they'd been resolved for a leaf
1055 : * scan node that doesn't support them. We could have
1056 : * fix_scan_expr do this, but since the case is only
1057 : * expected to occur here, it seems safer to special-case
1058 : * it here and keep the assertions that ROWID_VARs
1059 : * shouldn't be seen by fix_scan_expr.
1060 : *
1061 : * We also must handle the case where set operations have
1062 : * been short-circuited resulting in a dummy Result node.
1063 : * prepunion.c uses varno==0 for the set op targetlist.
1064 : * See generate_setop_tlist() and generate_setop_tlist().
1065 : * Here we rewrite these to use varno==1, which is the
1066 : * varno of the first set-op child. Without this, EXPLAIN
1067 : * will have trouble displaying targetlists of dummy set
1068 : * operations.
1069 : */
1070 476286 : foreach(l, splan->plan.targetlist)
1071 : {
1072 271626 : TargetEntry *tle = (TargetEntry *) lfirst(l);
1073 271626 : Var *var = (Var *) tle->expr;
1074 :
1075 271626 : if (var && IsA(var, Var))
1076 : {
1077 1864 : if (var->varno == ROWID_VAR)
1078 80 : tle->expr = (Expr *) makeNullConst(var->vartype,
1079 : var->vartypmod,
1080 : var->varcollid);
1081 1784 : else if (var->varno == 0)
1082 30 : tle->expr = (Expr *) makeVar(1,
1083 30 : var->varattno,
1084 : var->vartype,
1085 : var->vartypmod,
1086 : var->varcollid,
1087 : var->varlevelsup);
1088 : }
1089 : }
1090 :
1091 204660 : splan->plan.targetlist =
1092 204660 : fix_scan_list(root, splan->plan.targetlist,
1093 : rtoffset, NUM_EXEC_TLIST(plan));
1094 204660 : splan->plan.qual =
1095 204660 : fix_scan_list(root, splan->plan.qual,
1096 : rtoffset, NUM_EXEC_QUAL(plan));
1097 : }
1098 : /* resconstantqual can't contain any subplan variable refs */
1099 216730 : splan->resconstantqual =
1100 216730 : fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
1101 : /* adjust the relids set */
1102 216730 : splan->relids = offset_relid_set(splan->relids, rtoffset);
1103 : }
1104 216730 : break;
1105 12086 : case T_ProjectSet:
1106 12086 : set_upper_references(root, plan, rtoffset);
1107 12086 : break;
1108 93086 : case T_ModifyTable:
1109 : {
1110 93086 : ModifyTable *splan = (ModifyTable *) plan;
1111 93086 : Plan *subplan = outerPlan(splan);
1112 :
1113 : Assert(splan->plan.targetlist == NIL);
1114 : Assert(splan->plan.qual == NIL);
1115 :
1116 93086 : splan->withCheckOptionLists =
1117 93086 : fix_scan_list(root, splan->withCheckOptionLists,
1118 : rtoffset, 1);
1119 :
1120 93086 : if (splan->returningLists)
1121 : {
1122 3032 : List *newRL = NIL;
1123 : ListCell *lcrl,
1124 : *lcrr;
1125 :
1126 : /*
1127 : * Pass each per-resultrel returningList through
1128 : * set_returning_clause_references().
1129 : */
1130 : Assert(list_length(splan->returningLists) == list_length(splan->resultRelations));
1131 6456 : forboth(lcrl, splan->returningLists,
1132 : lcrr, splan->resultRelations)
1133 : {
1134 3424 : List *rlist = (List *) lfirst(lcrl);
1135 3424 : Index resultrel = lfirst_int(lcrr);
1136 :
1137 3424 : rlist = set_returning_clause_references(root,
1138 : rlist,
1139 : subplan,
1140 : resultrel,
1141 : rtoffset);
1142 3424 : newRL = lappend(newRL, rlist);
1143 : }
1144 3032 : splan->returningLists = newRL;
1145 :
1146 : /*
1147 : * Set up the visible plan targetlist as being the same as
1148 : * the first RETURNING list. This is mostly for the use
1149 : * of EXPLAIN; the executor won't execute that targetlist,
1150 : * although it does use it to prepare the node's result
1151 : * tuple slot. We postpone this step until here so that
1152 : * we don't have to do set_returning_clause_references()
1153 : * twice on identical targetlists.
1154 : */
1155 3032 : splan->plan.targetlist = copyObject(linitial(newRL));
1156 : }
1157 :
1158 : /*
1159 : * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
1160 : * join', where the inner side is the EXCLUDED tuple.
1161 : * Therefore use fix_join_expr to setup the relevant variables
1162 : * to INNER_VAR. We explicitly don't create any OUTER_VARs as
1163 : * those are already used by RETURNING and it seems better to
1164 : * be non-conflicting.
1165 : */
1166 93086 : if (splan->onConflictSet)
1167 : {
1168 : indexed_tlist *itlist;
1169 :
1170 1048 : itlist = build_tlist_index(splan->exclRelTlist);
1171 :
1172 1048 : splan->onConflictSet =
1173 2096 : fix_join_expr(root, splan->onConflictSet,
1174 : NULL, itlist,
1175 1048 : linitial_int(splan->resultRelations),
1176 1048 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1177 :
1178 1048 : splan->onConflictWhere = (Node *)
1179 2096 : fix_join_expr(root, (List *) splan->onConflictWhere,
1180 : NULL, itlist,
1181 1048 : linitial_int(splan->resultRelations),
1182 1048 : rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1183 :
1184 1048 : pfree(itlist);
1185 :
1186 1048 : splan->exclRelTlist =
1187 1048 : fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
1188 : }
1189 :
1190 : /*
1191 : * The MERGE statement produces the target rows by performing
1192 : * a right join between the target relation and the source
1193 : * relation (which could be a plain relation or a subquery).
1194 : * The INSERT and UPDATE actions of the MERGE statement
1195 : * require access to the columns from the source relation. We
1196 : * arrange things so that the source relation attributes are
1197 : * available as INNER_VAR and the target relation attributes
1198 : * are available from the scan tuple.
1199 : */
1200 93086 : if (splan->mergeActionLists != NIL)
1201 : {
1202 1852 : List *newMJC = NIL;
1203 : ListCell *lca,
1204 : *lcj,
1205 : *lcr;
1206 :
1207 : /*
1208 : * Fix the targetList of individual action nodes so that
1209 : * the so-called "source relation" Vars are referenced as
1210 : * INNER_VAR. Note that for this to work correctly during
1211 : * execution, the ecxt_innertuple must be set to the tuple
1212 : * obtained by executing the subplan, which is what
1213 : * constitutes the "source relation".
1214 : *
1215 : * We leave the Vars from the result relation (i.e. the
1216 : * target relation) unchanged i.e. those Vars would be
1217 : * picked from the scan slot. So during execution, we must
1218 : * ensure that ecxt_scantuple is setup correctly to refer
1219 : * to the tuple from the target relation.
1220 : */
1221 : indexed_tlist *itlist;
1222 :
1223 1852 : itlist = build_tlist_index(subplan->targetlist);
1224 :
1225 3994 : forthree(lca, splan->mergeActionLists,
1226 : lcj, splan->mergeJoinConditions,
1227 : lcr, splan->resultRelations)
1228 : {
1229 2142 : List *mergeActionList = lfirst(lca);
1230 2142 : Node *mergeJoinCondition = lfirst(lcj);
1231 2142 : Index resultrel = lfirst_int(lcr);
1232 :
1233 5720 : foreach(l, mergeActionList)
1234 : {
1235 3578 : MergeAction *action = (MergeAction *) lfirst(l);
1236 :
1237 : /* Fix targetList of each action. */
1238 3578 : action->targetList = fix_join_expr(root,
1239 : action->targetList,
1240 : NULL, itlist,
1241 : resultrel,
1242 : rtoffset,
1243 : NRM_EQUAL,
1244 : NUM_EXEC_TLIST(plan));
1245 :
1246 : /* Fix quals too. */
1247 3578 : action->qual = (Node *) fix_join_expr(root,
1248 3578 : (List *) action->qual,
1249 : NULL, itlist,
1250 : resultrel,
1251 : rtoffset,
1252 : NRM_EQUAL,
1253 3578 : NUM_EXEC_QUAL(plan));
1254 : }
1255 :
1256 : /* Fix join condition too. */
1257 : mergeJoinCondition = (Node *)
1258 2142 : fix_join_expr(root,
1259 : (List *) mergeJoinCondition,
1260 : NULL, itlist,
1261 : resultrel,
1262 : rtoffset,
1263 : NRM_EQUAL,
1264 2142 : NUM_EXEC_QUAL(plan));
1265 2142 : newMJC = lappend(newMJC, mergeJoinCondition);
1266 : }
1267 1852 : splan->mergeJoinConditions = newMJC;
1268 : }
1269 :
1270 93086 : splan->nominalRelation += rtoffset;
1271 93086 : if (splan->rootRelation)
1272 2914 : splan->rootRelation += rtoffset;
1273 93086 : splan->exclRelRTI += rtoffset;
1274 :
1275 188668 : foreach(l, splan->resultRelations)
1276 : {
1277 95582 : lfirst_int(l) += rtoffset;
1278 : }
1279 96040 : foreach(l, splan->rowMarks)
1280 : {
1281 2954 : PlanRowMark *rc = (PlanRowMark *) lfirst(l);
1282 :
1283 2954 : rc->rti += rtoffset;
1284 2954 : rc->prti += rtoffset;
1285 : }
1286 :
1287 : /*
1288 : * Append this ModifyTable node's final result relation RT
1289 : * index(es) to the global list for the plan.
1290 : */
1291 186172 : root->glob->resultRelations =
1292 93086 : list_concat(root->glob->resultRelations,
1293 93086 : splan->resultRelations);
1294 93086 : if (splan->rootRelation)
1295 : {
1296 2914 : root->glob->resultRelations =
1297 2914 : lappend_int(root->glob->resultRelations,
1298 2914 : splan->rootRelation);
1299 : }
1300 : }
1301 93086 : break;
1302 24904 : case T_Append:
1303 : /* Needs special treatment, see comments below */
1304 24904 : return set_append_references(root,
1305 : (Append *) plan,
1306 : rtoffset);
1307 578 : case T_MergeAppend:
1308 : /* Needs special treatment, see comments below */
1309 578 : return set_mergeappend_references(root,
1310 : (MergeAppend *) plan,
1311 : rtoffset);
1312 936 : case T_RecursiveUnion:
1313 : /* This doesn't evaluate targetlist or check quals either */
1314 936 : set_dummy_tlist_references(plan, rtoffset);
1315 : Assert(plan->qual == NIL);
1316 936 : break;
1317 250 : case T_BitmapAnd:
1318 : {
1319 250 : BitmapAnd *splan = (BitmapAnd *) plan;
1320 :
1321 : /* BitmapAnd works like Append, but has no tlist */
1322 : Assert(splan->plan.targetlist == NIL);
1323 : Assert(splan->plan.qual == NIL);
1324 750 : foreach(l, splan->bitmapplans)
1325 : {
1326 500 : lfirst(l) = set_plan_refs(root,
1327 500 : (Plan *) lfirst(l),
1328 : rtoffset);
1329 : }
1330 : }
1331 250 : break;
1332 430 : case T_BitmapOr:
1333 : {
1334 430 : BitmapOr *splan = (BitmapOr *) plan;
1335 :
1336 : /* BitmapOr works like Append, but has no tlist */
1337 : Assert(splan->plan.targetlist == NIL);
1338 : Assert(splan->plan.qual == NIL);
1339 1296 : foreach(l, splan->bitmapplans)
1340 : {
1341 866 : lfirst(l) = set_plan_refs(root,
1342 866 : (Plan *) lfirst(l),
1343 : rtoffset);
1344 : }
1345 : }
1346 430 : break;
1347 0 : default:
1348 0 : elog(ERROR, "unrecognized node type: %d",
1349 : (int) nodeTag(plan));
1350 : break;
1351 : }
1352 :
1353 : /*
1354 : * Now recurse into child plans, if any
1355 : *
1356 : * NOTE: it is essential that we recurse into child plans AFTER we set
1357 : * subplan references in this plan's tlist and quals. If we did the
1358 : * reference-adjustments bottom-up, then we would fail to match this
1359 : * plan's var nodes against the already-modified nodes of the children.
1360 : */
1361 1166844 : plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1362 1166844 : plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1363 :
1364 1166844 : return plan;
1365 : }
1366 :
1367 : /*
1368 : * set_indexonlyscan_references
1369 : * Do set_plan_references processing on an IndexOnlyScan
1370 : *
1371 : * This is unlike the handling of a plain IndexScan because we have to
1372 : * convert Vars referencing the heap into Vars referencing the index.
1373 : * We can use the fix_upper_expr machinery for that, by working from a
1374 : * targetlist describing the index columns.
1375 : */
1376 : static Plan *
1377 18512 : set_indexonlyscan_references(PlannerInfo *root,
1378 : IndexOnlyScan *plan,
1379 : int rtoffset)
1380 : {
1381 : indexed_tlist *index_itlist;
1382 : List *stripped_indextlist;
1383 : ListCell *lc;
1384 :
1385 : /*
1386 : * Vars in the plan node's targetlist, qual, and recheckqual must only
1387 : * reference columns that the index AM can actually return. To ensure
1388 : * this, remove non-returnable columns (which are marked as resjunk) from
1389 : * the indexed tlist. We can just drop them because the indexed_tlist
1390 : * machinery pays attention to TLE resnos, not physical list position.
1391 : */
1392 18512 : stripped_indextlist = NIL;
1393 43380 : foreach(lc, plan->indextlist)
1394 : {
1395 24868 : TargetEntry *indextle = (TargetEntry *) lfirst(lc);
1396 :
1397 24868 : if (!indextle->resjunk)
1398 24816 : stripped_indextlist = lappend(stripped_indextlist, indextle);
1399 : }
1400 :
1401 18512 : index_itlist = build_tlist_index(stripped_indextlist);
1402 :
1403 18512 : plan->scan.scanrelid += rtoffset;
1404 18512 : plan->scan.plan.targetlist = (List *)
1405 18512 : fix_upper_expr(root,
1406 18512 : (Node *) plan->scan.plan.targetlist,
1407 : index_itlist,
1408 : INDEX_VAR,
1409 : rtoffset,
1410 : NRM_EQUAL,
1411 : NUM_EXEC_TLIST((Plan *) plan));
1412 18512 : plan->scan.plan.qual = (List *)
1413 18512 : fix_upper_expr(root,
1414 18512 : (Node *) plan->scan.plan.qual,
1415 : index_itlist,
1416 : INDEX_VAR,
1417 : rtoffset,
1418 : NRM_EQUAL,
1419 18512 : NUM_EXEC_QUAL((Plan *) plan));
1420 18512 : plan->recheckqual = (List *)
1421 18512 : fix_upper_expr(root,
1422 18512 : (Node *) plan->recheckqual,
1423 : index_itlist,
1424 : INDEX_VAR,
1425 : rtoffset,
1426 : NRM_EQUAL,
1427 18512 : NUM_EXEC_QUAL((Plan *) plan));
1428 : /* indexqual is already transformed to reference index columns */
1429 18512 : plan->indexqual = fix_scan_list(root, plan->indexqual,
1430 : rtoffset, 1);
1431 : /* indexorderby is already transformed to reference index columns */
1432 18512 : plan->indexorderby = fix_scan_list(root, plan->indexorderby,
1433 : rtoffset, 1);
1434 : /* indextlist must NOT be transformed to reference index columns */
1435 18512 : plan->indextlist = fix_scan_list(root, plan->indextlist,
1436 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1437 :
1438 18512 : pfree(index_itlist);
1439 :
1440 18512 : return (Plan *) plan;
1441 : }
1442 :
1443 : /*
1444 : * set_subqueryscan_references
1445 : * Do set_plan_references processing on a SubqueryScan
1446 : *
1447 : * We try to strip out the SubqueryScan entirely; if we can't, we have
1448 : * to do the normal processing on it.
1449 : */
1450 : static Plan *
1451 40142 : set_subqueryscan_references(PlannerInfo *root,
1452 : SubqueryScan *plan,
1453 : int rtoffset)
1454 : {
1455 : RelOptInfo *rel;
1456 : Plan *result;
1457 :
1458 : /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1459 40142 : rel = find_base_rel(root, plan->scan.scanrelid);
1460 :
1461 : /* Recursively process the subplan */
1462 40142 : plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1463 :
1464 40142 : if (trivial_subqueryscan(plan))
1465 : {
1466 : Index scanrelid;
1467 :
1468 : /*
1469 : * We can omit the SubqueryScan node and just pull up the subplan.
1470 : */
1471 18304 : result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1472 :
1473 : /* Remember that we removed a SubqueryScan */
1474 18304 : scanrelid = plan->scan.scanrelid + rtoffset;
1475 18304 : record_elided_node(root->glob, plan->subplan->plan_node_id,
1476 : T_SubqueryScan, bms_make_singleton(scanrelid));
1477 : }
1478 : else
1479 : {
1480 : /*
1481 : * Keep the SubqueryScan node. We have to do the processing that
1482 : * set_plan_references would otherwise have done on it. Notice we do
1483 : * not do set_upper_references() here, because a SubqueryScan will
1484 : * always have been created with correct references to its subplan's
1485 : * outputs to begin with.
1486 : */
1487 21838 : plan->scan.scanrelid += rtoffset;
1488 21838 : plan->scan.plan.targetlist =
1489 21838 : fix_scan_list(root, plan->scan.plan.targetlist,
1490 : rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1491 21838 : plan->scan.plan.qual =
1492 21838 : fix_scan_list(root, plan->scan.plan.qual,
1493 : rtoffset, NUM_EXEC_QUAL((Plan *) plan));
1494 :
1495 21838 : result = (Plan *) plan;
1496 : }
1497 :
1498 40142 : return result;
1499 : }
1500 :
1501 : /*
1502 : * trivial_subqueryscan
1503 : * Detect whether a SubqueryScan can be deleted from the plan tree.
1504 : *
1505 : * We can delete it if it has no qual to check and the targetlist just
1506 : * regurgitates the output of the child plan.
1507 : *
1508 : * This can be called from mark_async_capable_plan(), a helper function for
1509 : * create_append_plan(), before set_subqueryscan_references(), to determine
1510 : * triviality of a SubqueryScan that is a child of an Append node. So we
1511 : * cache the result in the SubqueryScan node to avoid repeated computation.
1512 : *
1513 : * Note: when called from mark_async_capable_plan(), we determine the result
1514 : * before running finalize_plan() on the SubqueryScan node (if needed) and
1515 : * set_plan_references() on the subplan tree, but this would be safe, because
1516 : * 1) finalize_plan() doesn't modify the tlist or quals for the SubqueryScan
1517 : * node (or that for any plan node in the subplan tree), and
1518 : * 2) set_plan_references() modifies the tlist for every plan node in the
1519 : * subplan tree, but keeps const/resjunk columns as const/resjunk ones and
1520 : * preserves the length and order of the tlist, and
1521 : * 3) set_plan_references() might delete the topmost plan node like an Append
1522 : * or MergeAppend from the subplan tree and pull up the child plan node,
1523 : * but in that case, the tlist for the child plan node exactly matches the
1524 : * parent.
1525 : */
1526 : bool
1527 51502 : trivial_subqueryscan(SubqueryScan *plan)
1528 : {
1529 : int attrno;
1530 : ListCell *lp,
1531 : *lc;
1532 :
1533 : /* We might have detected this already; in which case reuse the result */
1534 51502 : if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1535 4620 : return true;
1536 46882 : if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1537 6740 : return false;
1538 : Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1539 : /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1540 40142 : plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1541 :
1542 40142 : if (plan->scan.plan.qual != NIL)
1543 730 : return false;
1544 :
1545 78824 : if (list_length(plan->scan.plan.targetlist) !=
1546 39412 : list_length(plan->subplan->targetlist))
1547 12864 : return false; /* tlists not same length */
1548 :
1549 26548 : attrno = 1;
1550 82208 : forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1551 : {
1552 63904 : TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1553 63904 : TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1554 :
1555 63904 : if (ptle->resjunk != ctle->resjunk)
1556 8244 : return false; /* tlist doesn't match junk status */
1557 :
1558 : /*
1559 : * We accept either a Var referencing the corresponding element of the
1560 : * subplan tlist, or a Const equaling the subplan element. See
1561 : * generate_setop_tlist() for motivation.
1562 : */
1563 63880 : if (ptle->expr && IsA(ptle->expr, Var))
1564 53248 : {
1565 53440 : Var *var = (Var *) ptle->expr;
1566 :
1567 : Assert(var->varno == plan->scan.scanrelid);
1568 : Assert(var->varlevelsup == 0);
1569 53440 : if (var->varattno != attrno)
1570 192 : return false; /* out of order */
1571 : }
1572 10440 : else if (ptle->expr && IsA(ptle->expr, Const))
1573 : {
1574 8984 : if (!equal(ptle->expr, ctle->expr))
1575 6572 : return false;
1576 : }
1577 : else
1578 1456 : return false;
1579 :
1580 55660 : attrno++;
1581 : }
1582 :
1583 : /* Re-mark the SubqueryScan as deletable from the plan tree */
1584 18304 : plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1585 :
1586 18304 : return true;
1587 : }
1588 :
1589 : /*
1590 : * clean_up_removed_plan_level
1591 : * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1592 : *
1593 : * We are dropping the "parent" plan in favor of returning just its "child".
1594 : * A few small tweaks are needed.
1595 : */
1596 : static Plan *
1597 25042 : clean_up_removed_plan_level(Plan *parent, Plan *child)
1598 : {
1599 : /*
1600 : * We have to be sure we don't lose any initplans, so move any that were
1601 : * attached to the parent plan to the child. If any are parallel-unsafe,
1602 : * the child is no longer parallel-safe. As a cosmetic matter, also add
1603 : * the initplans' run costs to the child's costs.
1604 : */
1605 25042 : if (parent->initPlan)
1606 : {
1607 : Cost initplan_cost;
1608 : bool unsafe_initplans;
1609 :
1610 42 : SS_compute_initplan_cost(parent->initPlan,
1611 : &initplan_cost, &unsafe_initplans);
1612 42 : child->startup_cost += initplan_cost;
1613 42 : child->total_cost += initplan_cost;
1614 42 : if (unsafe_initplans)
1615 18 : child->parallel_safe = false;
1616 :
1617 : /*
1618 : * Attach plans this way so that parent's initplans are processed
1619 : * before any pre-existing initplans of the child. Probably doesn't
1620 : * matter, but let's preserve the ordering just in case.
1621 : */
1622 42 : child->initPlan = list_concat(parent->initPlan,
1623 42 : child->initPlan);
1624 : }
1625 :
1626 : /*
1627 : * We also have to transfer the parent's column labeling info into the
1628 : * child, else columns sent to client will be improperly labeled if this
1629 : * is the topmost plan level. resjunk and so on may be important too.
1630 : */
1631 25042 : apply_tlist_labeling(child->targetlist, parent->targetlist);
1632 :
1633 25042 : return child;
1634 : }
1635 :
1636 : /*
1637 : * set_foreignscan_references
1638 : * Do set_plan_references processing on a ForeignScan
1639 : */
1640 : static void
1641 2048 : set_foreignscan_references(PlannerInfo *root,
1642 : ForeignScan *fscan,
1643 : int rtoffset)
1644 : {
1645 : /* Adjust scanrelid if it's valid */
1646 2048 : if (fscan->scan.scanrelid > 0)
1647 1476 : fscan->scan.scanrelid += rtoffset;
1648 :
1649 2048 : if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1650 572 : {
1651 : /*
1652 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1653 : * foreign scan tuple
1654 : */
1655 572 : indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist);
1656 :
1657 572 : fscan->scan.plan.targetlist = (List *)
1658 572 : fix_upper_expr(root,
1659 572 : (Node *) fscan->scan.plan.targetlist,
1660 : itlist,
1661 : INDEX_VAR,
1662 : rtoffset,
1663 : NRM_EQUAL,
1664 : NUM_EXEC_TLIST((Plan *) fscan));
1665 572 : fscan->scan.plan.qual = (List *)
1666 572 : fix_upper_expr(root,
1667 572 : (Node *) fscan->scan.plan.qual,
1668 : itlist,
1669 : INDEX_VAR,
1670 : rtoffset,
1671 : NRM_EQUAL,
1672 572 : NUM_EXEC_QUAL((Plan *) fscan));
1673 572 : fscan->fdw_exprs = (List *)
1674 572 : fix_upper_expr(root,
1675 572 : (Node *) fscan->fdw_exprs,
1676 : itlist,
1677 : INDEX_VAR,
1678 : rtoffset,
1679 : NRM_EQUAL,
1680 572 : NUM_EXEC_QUAL((Plan *) fscan));
1681 572 : fscan->fdw_recheck_quals = (List *)
1682 572 : fix_upper_expr(root,
1683 572 : (Node *) fscan->fdw_recheck_quals,
1684 : itlist,
1685 : INDEX_VAR,
1686 : rtoffset,
1687 : NRM_EQUAL,
1688 572 : NUM_EXEC_QUAL((Plan *) fscan));
1689 572 : pfree(itlist);
1690 : /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1691 572 : fscan->fdw_scan_tlist =
1692 572 : fix_scan_list(root, fscan->fdw_scan_tlist,
1693 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1694 : }
1695 : else
1696 : {
1697 : /*
1698 : * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1699 : * way
1700 : */
1701 1476 : fscan->scan.plan.targetlist =
1702 1476 : fix_scan_list(root, fscan->scan.plan.targetlist,
1703 : rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1704 1476 : fscan->scan.plan.qual =
1705 1476 : fix_scan_list(root, fscan->scan.plan.qual,
1706 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1707 1476 : fscan->fdw_exprs =
1708 1476 : fix_scan_list(root, fscan->fdw_exprs,
1709 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1710 1476 : fscan->fdw_recheck_quals =
1711 1476 : fix_scan_list(root, fscan->fdw_recheck_quals,
1712 : rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1713 : }
1714 :
1715 2048 : fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
1716 2048 : fscan->fs_base_relids = offset_relid_set(fscan->fs_base_relids, rtoffset);
1717 :
1718 : /* Adjust resultRelation if it's valid */
1719 2048 : if (fscan->resultRelation > 0)
1720 208 : fscan->resultRelation += rtoffset;
1721 2048 : }
1722 :
1723 : /*
1724 : * set_customscan_references
1725 : * Do set_plan_references processing on a CustomScan
1726 : */
1727 : static void
1728 0 : set_customscan_references(PlannerInfo *root,
1729 : CustomScan *cscan,
1730 : int rtoffset)
1731 : {
1732 : ListCell *lc;
1733 :
1734 : /* Adjust scanrelid if it's valid */
1735 0 : if (cscan->scan.scanrelid > 0)
1736 0 : cscan->scan.scanrelid += rtoffset;
1737 :
1738 0 : if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1739 0 : {
1740 : /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1741 0 : indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist);
1742 :
1743 0 : cscan->scan.plan.targetlist = (List *)
1744 0 : fix_upper_expr(root,
1745 0 : (Node *) cscan->scan.plan.targetlist,
1746 : itlist,
1747 : INDEX_VAR,
1748 : rtoffset,
1749 : NRM_EQUAL,
1750 : NUM_EXEC_TLIST((Plan *) cscan));
1751 0 : cscan->scan.plan.qual = (List *)
1752 0 : fix_upper_expr(root,
1753 0 : (Node *) cscan->scan.plan.qual,
1754 : itlist,
1755 : INDEX_VAR,
1756 : rtoffset,
1757 : NRM_EQUAL,
1758 0 : NUM_EXEC_QUAL((Plan *) cscan));
1759 0 : cscan->custom_exprs = (List *)
1760 0 : fix_upper_expr(root,
1761 0 : (Node *) cscan->custom_exprs,
1762 : itlist,
1763 : INDEX_VAR,
1764 : rtoffset,
1765 : NRM_EQUAL,
1766 0 : NUM_EXEC_QUAL((Plan *) cscan));
1767 0 : pfree(itlist);
1768 : /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1769 0 : cscan->custom_scan_tlist =
1770 0 : fix_scan_list(root, cscan->custom_scan_tlist,
1771 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1772 : }
1773 : else
1774 : {
1775 : /* Adjust tlist, qual, custom_exprs in the standard way */
1776 0 : cscan->scan.plan.targetlist =
1777 0 : fix_scan_list(root, cscan->scan.plan.targetlist,
1778 : rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1779 0 : cscan->scan.plan.qual =
1780 0 : fix_scan_list(root, cscan->scan.plan.qual,
1781 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1782 0 : cscan->custom_exprs =
1783 0 : fix_scan_list(root, cscan->custom_exprs,
1784 : rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1785 : }
1786 :
1787 : /* Adjust child plan-nodes recursively, if needed */
1788 0 : foreach(lc, cscan->custom_plans)
1789 : {
1790 0 : lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1791 : }
1792 :
1793 0 : cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
1794 0 : }
1795 :
1796 : /*
1797 : * register_partpruneinfo
1798 : * Subroutine for set_append_references and set_mergeappend_references
1799 : *
1800 : * Add the PartitionPruneInfo from root->partPruneInfos at the given index
1801 : * into PlannerGlobal->partPruneInfos and return its index there.
1802 : *
1803 : * Also update the RT indexes present in PartitionedRelPruneInfos to add the
1804 : * offset.
1805 : *
1806 : * Finally, if there are initial pruning steps, add the RT indexes of the
1807 : * leaf partitions to the set of relations that are prunable at execution
1808 : * startup time.
1809 : */
1810 : static int
1811 568 : register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
1812 : {
1813 568 : PlannerGlobal *glob = root->glob;
1814 : PartitionPruneInfo *pinfo;
1815 : ListCell *l;
1816 :
1817 : Assert(part_prune_index >= 0 &&
1818 : part_prune_index < list_length(root->partPruneInfos));
1819 568 : pinfo = list_nth_node(PartitionPruneInfo, root->partPruneInfos,
1820 : part_prune_index);
1821 :
1822 568 : pinfo->relids = offset_relid_set(pinfo->relids, rtoffset);
1823 1148 : foreach(l, pinfo->prune_infos)
1824 : {
1825 580 : List *prune_infos = lfirst(l);
1826 : ListCell *l2;
1827 :
1828 1580 : foreach(l2, prune_infos)
1829 : {
1830 1000 : PartitionedRelPruneInfo *prelinfo = lfirst(l2);
1831 : int i;
1832 :
1833 1000 : prelinfo->rtindex += rtoffset;
1834 1000 : prelinfo->initial_pruning_steps =
1835 1000 : fix_scan_list(root, prelinfo->initial_pruning_steps,
1836 : rtoffset, 1);
1837 1000 : prelinfo->exec_pruning_steps =
1838 1000 : fix_scan_list(root, prelinfo->exec_pruning_steps,
1839 : rtoffset, 1);
1840 :
1841 3954 : for (i = 0; i < prelinfo->nparts; i++)
1842 : {
1843 : /*
1844 : * Non-leaf partitions and partitions that do not have a
1845 : * subplan are not included in this map as mentioned in
1846 : * make_partitionedrel_pruneinfo().
1847 : */
1848 2954 : if (prelinfo->leafpart_rti_map[i])
1849 : {
1850 2392 : prelinfo->leafpart_rti_map[i] += rtoffset;
1851 2392 : if (prelinfo->initial_pruning_steps)
1852 748 : glob->prunableRelids = bms_add_member(glob->prunableRelids,
1853 748 : prelinfo->leafpart_rti_map[i]);
1854 : }
1855 : }
1856 : }
1857 : }
1858 :
1859 568 : glob->partPruneInfos = lappend(glob->partPruneInfos, pinfo);
1860 :
1861 568 : return list_length(glob->partPruneInfos) - 1;
1862 : }
1863 :
1864 : /*
1865 : * set_append_references
1866 : * Do set_plan_references processing on an Append
1867 : *
1868 : * We try to strip out the Append entirely; if we can't, we have
1869 : * to do the normal processing on it.
1870 : */
1871 : static Plan *
1872 24904 : set_append_references(PlannerInfo *root,
1873 : Append *aplan,
1874 : int rtoffset)
1875 : {
1876 : ListCell *l;
1877 :
1878 : /*
1879 : * Append, like Sort et al, doesn't actually evaluate its targetlist or
1880 : * check quals. If it's got exactly one child plan, then it's not doing
1881 : * anything useful at all, and we can strip it out.
1882 : */
1883 : Assert(aplan->plan.qual == NIL);
1884 :
1885 : /* First, we gotta recurse on the children */
1886 86396 : foreach(l, aplan->appendplans)
1887 : {
1888 61492 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1889 : }
1890 :
1891 : /*
1892 : * See if it's safe to get rid of the Append entirely. For this to be
1893 : * safe, there must be only one child plan and that child plan's parallel
1894 : * awareness must match the Append's. The reason for the latter is that
1895 : * if the Append is parallel aware and the child is not, then the calling
1896 : * plan may execute the non-parallel aware child multiple times. (If you
1897 : * change these rules, update create_append_path to match.)
1898 : */
1899 24904 : if (list_length(aplan->appendplans) == 1)
1900 : {
1901 6734 : Plan *p = (Plan *) linitial(aplan->appendplans);
1902 :
1903 6734 : if (p->parallel_aware == aplan->plan.parallel_aware)
1904 : {
1905 : Plan *result;
1906 :
1907 6734 : result = clean_up_removed_plan_level((Plan *) aplan, p);
1908 :
1909 : /* Remember that we removed an Append */
1910 6734 : record_elided_node(root->glob, p->plan_node_id, T_Append,
1911 : offset_relid_set(aplan->apprelids, rtoffset));
1912 :
1913 6734 : return result;
1914 : }
1915 : }
1916 :
1917 : /*
1918 : * Otherwise, clean up the Append as needed. It's okay to do this after
1919 : * recursing to the children, because set_dummy_tlist_references doesn't
1920 : * look at those.
1921 : */
1922 18170 : set_dummy_tlist_references((Plan *) aplan, rtoffset);
1923 :
1924 18170 : aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
1925 :
1926 : /*
1927 : * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1928 : * Also update the RT indexes present in it to add the offset.
1929 : */
1930 18170 : if (aplan->part_prune_index >= 0)
1931 532 : aplan->part_prune_index =
1932 532 : register_partpruneinfo(root, aplan->part_prune_index, rtoffset);
1933 :
1934 : /* We don't need to recurse to lefttree or righttree ... */
1935 : Assert(aplan->plan.lefttree == NULL);
1936 : Assert(aplan->plan.righttree == NULL);
1937 :
1938 18170 : return (Plan *) aplan;
1939 : }
1940 :
1941 : /*
1942 : * set_mergeappend_references
1943 : * Do set_plan_references processing on a MergeAppend
1944 : *
1945 : * We try to strip out the MergeAppend entirely; if we can't, we have
1946 : * to do the normal processing on it.
1947 : */
1948 : static Plan *
1949 578 : set_mergeappend_references(PlannerInfo *root,
1950 : MergeAppend *mplan,
1951 : int rtoffset)
1952 : {
1953 : ListCell *l;
1954 :
1955 : /*
1956 : * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1957 : * or check quals. If it's got exactly one child plan, then it's not
1958 : * doing anything useful at all, and we can strip it out.
1959 : */
1960 : Assert(mplan->plan.qual == NIL);
1961 :
1962 : /* First, we gotta recurse on the children */
1963 2200 : foreach(l, mplan->mergeplans)
1964 : {
1965 1622 : lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1966 : }
1967 :
1968 : /*
1969 : * See if it's safe to get rid of the MergeAppend entirely. For this to
1970 : * be safe, there must be only one child plan and that child plan's
1971 : * parallel awareness must match the MergeAppend's. The reason for the
1972 : * latter is that if the MergeAppend is parallel aware and the child is
1973 : * not, then the calling plan may execute the non-parallel aware child
1974 : * multiple times. (If you change these rules, update
1975 : * create_merge_append_path to match.)
1976 : */
1977 578 : if (list_length(mplan->mergeplans) == 1)
1978 : {
1979 4 : Plan *p = (Plan *) linitial(mplan->mergeplans);
1980 :
1981 4 : if (p->parallel_aware == mplan->plan.parallel_aware)
1982 : {
1983 : Plan *result;
1984 :
1985 4 : result = clean_up_removed_plan_level((Plan *) mplan, p);
1986 :
1987 : /* Remember that we removed a MergeAppend */
1988 4 : record_elided_node(root->glob, p->plan_node_id, T_MergeAppend,
1989 : offset_relid_set(mplan->apprelids, rtoffset));
1990 :
1991 4 : return result;
1992 : }
1993 : }
1994 :
1995 : /*
1996 : * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1997 : * after recursing to the children, because set_dummy_tlist_references
1998 : * doesn't look at those.
1999 : */
2000 574 : set_dummy_tlist_references((Plan *) mplan, rtoffset);
2001 :
2002 574 : mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
2003 :
2004 : /*
2005 : * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
2006 : * Also update the RT indexes present in it to add the offset.
2007 : */
2008 574 : if (mplan->part_prune_index >= 0)
2009 36 : mplan->part_prune_index =
2010 36 : register_partpruneinfo(root, mplan->part_prune_index, rtoffset);
2011 :
2012 : /* We don't need to recurse to lefttree or righttree ... */
2013 : Assert(mplan->plan.lefttree == NULL);
2014 : Assert(mplan->plan.righttree == NULL);
2015 :
2016 574 : return (Plan *) mplan;
2017 : }
2018 :
2019 : /*
2020 : * set_hash_references
2021 : * Do set_plan_references processing on a Hash node
2022 : */
2023 : static void
2024 35628 : set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
2025 : {
2026 35628 : Hash *hplan = (Hash *) plan;
2027 35628 : Plan *outer_plan = plan->lefttree;
2028 : indexed_tlist *outer_itlist;
2029 :
2030 : /*
2031 : * Hash's hashkeys are used when feeding tuples into the hashtable,
2032 : * therefore have them reference Hash's outer plan (which itself is the
2033 : * inner plan of the HashJoin).
2034 : */
2035 35628 : outer_itlist = build_tlist_index(outer_plan->targetlist);
2036 35628 : hplan->hashkeys = (List *)
2037 35628 : fix_upper_expr(root,
2038 35628 : (Node *) hplan->hashkeys,
2039 : outer_itlist,
2040 : OUTER_VAR,
2041 : rtoffset,
2042 : NRM_EQUAL,
2043 35628 : NUM_EXEC_QUAL(plan));
2044 :
2045 : /* Hash doesn't project */
2046 35628 : set_dummy_tlist_references(plan, rtoffset);
2047 :
2048 : /* Hash nodes don't have their own quals */
2049 : Assert(plan->qual == NIL);
2050 35628 : }
2051 :
2052 : /*
2053 : * offset_relid_set
2054 : * Apply rtoffset to the members of a Relids set.
2055 : */
2056 : static Relids
2057 246876 : offset_relid_set(Relids relids, int rtoffset)
2058 : {
2059 246876 : Relids result = NULL;
2060 : int rtindex;
2061 :
2062 : /* If there's no offset to apply, we needn't recompute the value */
2063 246876 : if (rtoffset == 0)
2064 225982 : return relids;
2065 20894 : rtindex = -1;
2066 31802 : while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
2067 10908 : result = bms_add_member(result, rtindex + rtoffset);
2068 20894 : return result;
2069 : }
2070 :
2071 : /*
2072 : * copyVar
2073 : * Copy a Var node.
2074 : *
2075 : * fix_scan_expr and friends do this enough times that it's worth having
2076 : * a bespoke routine instead of using the generic copyObject() function.
2077 : */
2078 : static inline Var *
2079 2192862 : copyVar(Var *var)
2080 : {
2081 2192862 : Var *newvar = palloc_object(Var);
2082 :
2083 2192862 : *newvar = *var;
2084 2192862 : return newvar;
2085 : }
2086 :
2087 : /*
2088 : * fix_expr_common
2089 : * Do generic set_plan_references processing on an expression node
2090 : *
2091 : * This is code that is common to all variants of expression-fixing.
2092 : * We must look up operator opcode info for OpExpr and related nodes,
2093 : * add OIDs from regclass Const nodes into root->glob->relationOids, and
2094 : * add PlanInvalItems for user-defined functions into root->glob->invalItems.
2095 : * We also fill in column index lists for GROUPING() expressions.
2096 : *
2097 : * We assume it's okay to update opcode info in-place. So this could possibly
2098 : * scribble on the planner's input data structures, but it's OK.
2099 : */
2100 : static void
2101 14699160 : fix_expr_common(PlannerInfo *root, Node *node)
2102 : {
2103 : /* We assume callers won't call us on a NULL pointer */
2104 14699160 : if (IsA(node, Aggref))
2105 : {
2106 63600 : record_plan_function_dependency(root,
2107 : ((Aggref *) node)->aggfnoid);
2108 : }
2109 14635560 : else if (IsA(node, WindowFunc))
2110 : {
2111 3996 : record_plan_function_dependency(root,
2112 : ((WindowFunc *) node)->winfnoid);
2113 : }
2114 14631564 : else if (IsA(node, FuncExpr))
2115 : {
2116 311436 : record_plan_function_dependency(root,
2117 : ((FuncExpr *) node)->funcid);
2118 : }
2119 14320128 : else if (IsA(node, OpExpr))
2120 : {
2121 889804 : set_opfuncid((OpExpr *) node);
2122 889804 : record_plan_function_dependency(root,
2123 : ((OpExpr *) node)->opfuncid);
2124 : }
2125 13430324 : else if (IsA(node, DistinctExpr))
2126 : {
2127 1104 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2128 1104 : record_plan_function_dependency(root,
2129 : ((DistinctExpr *) node)->opfuncid);
2130 : }
2131 13429220 : else if (IsA(node, NullIfExpr))
2132 : {
2133 130 : set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2134 130 : record_plan_function_dependency(root,
2135 : ((NullIfExpr *) node)->opfuncid);
2136 : }
2137 13429090 : else if (IsA(node, ScalarArrayOpExpr))
2138 : {
2139 39088 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2140 :
2141 39088 : set_sa_opfuncid(saop);
2142 39088 : record_plan_function_dependency(root, saop->opfuncid);
2143 :
2144 39088 : if (OidIsValid(saop->hashfuncid))
2145 650 : record_plan_function_dependency(root, saop->hashfuncid);
2146 :
2147 39088 : if (OidIsValid(saop->negfuncid))
2148 70 : record_plan_function_dependency(root, saop->negfuncid);
2149 : }
2150 13390002 : else if (IsA(node, Const))
2151 : {
2152 1471416 : Const *con = (Const *) node;
2153 :
2154 : /* Check for regclass reference */
2155 1471416 : if (ISREGCLASSCONST(con))
2156 266442 : root->glob->relationOids =
2157 266442 : lappend_oid(root->glob->relationOids,
2158 : DatumGetObjectId(con->constvalue));
2159 : }
2160 11918586 : else if (IsA(node, GroupingFunc))
2161 : {
2162 358 : GroupingFunc *g = (GroupingFunc *) node;
2163 358 : AttrNumber *grouping_map = root->grouping_map;
2164 :
2165 : /* If there are no grouping sets, we don't need this. */
2166 :
2167 : Assert(grouping_map || g->cols == NIL);
2168 :
2169 358 : if (grouping_map)
2170 : {
2171 : ListCell *lc;
2172 260 : List *cols = NIL;
2173 :
2174 684 : foreach(lc, g->refs)
2175 : {
2176 424 : cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
2177 : }
2178 :
2179 : Assert(!g->cols || equal(cols, g->cols));
2180 :
2181 260 : if (!g->cols)
2182 260 : g->cols = cols;
2183 : }
2184 : }
2185 14699160 : }
2186 :
2187 : /*
2188 : * fix_param_node
2189 : * Do set_plan_references processing on a Param
2190 : *
2191 : * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
2192 : * root->multiexpr_params; otherwise no change is needed.
2193 : * Just for paranoia's sake, we make a copy of the node in either case.
2194 : */
2195 : static Node *
2196 110768 : fix_param_node(PlannerInfo *root, Param *p)
2197 : {
2198 110768 : if (p->paramkind == PARAM_MULTIEXPR)
2199 : {
2200 286 : int subqueryid = p->paramid >> 16;
2201 286 : int colno = p->paramid & 0xFFFF;
2202 : List *params;
2203 :
2204 572 : if (subqueryid <= 0 ||
2205 286 : subqueryid > list_length(root->multiexpr_params))
2206 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2207 286 : params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
2208 286 : if (colno <= 0 || colno > list_length(params))
2209 0 : elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2210 286 : return copyObject(list_nth(params, colno - 1));
2211 : }
2212 110482 : return (Node *) copyObject(p);
2213 : }
2214 :
2215 : /*
2216 : * fix_alternative_subplan
2217 : * Do set_plan_references processing on an AlternativeSubPlan
2218 : *
2219 : * Choose one of the alternative implementations and return just that one,
2220 : * discarding the rest of the AlternativeSubPlan structure.
2221 : * Note: caller must still recurse into the result!
2222 : *
2223 : * We don't make any attempt to fix up cost estimates in the parent plan
2224 : * node or higher-level nodes.
2225 : */
2226 : static Node *
2227 1836 : fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan,
2228 : double num_exec)
2229 : {
2230 1836 : SubPlan *bestplan = NULL;
2231 1836 : Cost bestcost = 0;
2232 : ListCell *lc;
2233 :
2234 : /*
2235 : * Compute the estimated cost of each subplan assuming num_exec
2236 : * executions, and keep the cheapest one. In event of exact equality of
2237 : * estimates, we prefer the later plan; this is a bit arbitrary, but in
2238 : * current usage it biases us to break ties against fast-start subplans.
2239 : */
2240 : Assert(asplan->subplans != NIL);
2241 :
2242 5508 : foreach(lc, asplan->subplans)
2243 : {
2244 3672 : SubPlan *curplan = (SubPlan *) lfirst(lc);
2245 : Cost curcost;
2246 :
2247 3672 : curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
2248 3672 : if (bestplan == NULL || curcost <= bestcost)
2249 : {
2250 2586 : bestplan = curplan;
2251 2586 : bestcost = curcost;
2252 : }
2253 :
2254 : /* Also mark all subplans that are in AlternativeSubPlans */
2255 3672 : root->isAltSubplan[curplan->plan_id - 1] = true;
2256 : }
2257 :
2258 : /* Mark the subplan we selected */
2259 1836 : root->isUsedSubplan[bestplan->plan_id - 1] = true;
2260 :
2261 1836 : return (Node *) bestplan;
2262 : }
2263 :
2264 : /*
2265 : * fix_scan_expr
2266 : * Do set_plan_references processing on a scan-level expression
2267 : *
2268 : * This consists of incrementing all Vars' varnos by rtoffset,
2269 : * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
2270 : * replacing Aggref nodes that should be replaced by initplan output Params,
2271 : * choosing the best implementation for AlternativeSubPlans,
2272 : * looking up operator opcode info for OpExpr and related nodes,
2273 : * and adding OIDs from regclass Const nodes into root->glob->relationOids.
2274 : *
2275 : * 'node': the expression to be modified
2276 : * 'rtoffset': how much to increment varnos by
2277 : * 'num_exec': estimated number of executions of expression
2278 : *
2279 : * The expression tree is either copied-and-modified, or modified in-place
2280 : * if that seems safe.
2281 : */
2282 : static Node *
2283 2506178 : fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
2284 : {
2285 : fix_scan_expr_context context;
2286 :
2287 2506178 : context.root = root;
2288 2506178 : context.rtoffset = rtoffset;
2289 2506178 : context.num_exec = num_exec;
2290 :
2291 2506178 : if (rtoffset != 0 ||
2292 2067318 : root->multiexpr_params != NIL ||
2293 2066736 : root->glob->lastPHId != 0 ||
2294 2055588 : root->minmax_aggs != NIL ||
2295 2054778 : root->hasAlternativeSubPlans)
2296 : {
2297 464812 : return fix_scan_expr_mutator(node, &context);
2298 : }
2299 : else
2300 : {
2301 : /*
2302 : * If rtoffset == 0, we don't need to change any Vars, and if there
2303 : * are no MULTIEXPR subqueries then we don't need to replace
2304 : * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
2305 : * we won't need to remove them, and if there are no minmax Aggrefs we
2306 : * won't need to replace them, and if there are no AlternativeSubPlans
2307 : * we won't need to remove them. Then it's OK to just scribble on the
2308 : * input node tree instead of copying (since the only change, filling
2309 : * in any unset opfuncid fields, is harmless). This saves just enough
2310 : * cycles to be noticeable on trivial queries.
2311 : */
2312 2041366 : (void) fix_scan_expr_walker(node, &context);
2313 2041366 : return node;
2314 : }
2315 : }
2316 :
2317 : static Node *
2318 2901180 : fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
2319 : {
2320 2901180 : if (node == NULL)
2321 177352 : return NULL;
2322 2723828 : if (IsA(node, Var))
2323 : {
2324 940122 : Var *var = copyVar((Var *) node);
2325 :
2326 : Assert(var->varlevelsup == 0);
2327 :
2328 : /*
2329 : * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
2330 : * But an indexqual expression could contain INDEX_VAR Vars.
2331 : */
2332 : Assert(var->varno != INNER_VAR);
2333 : Assert(var->varno != OUTER_VAR);
2334 : Assert(var->varno != ROWID_VAR);
2335 940122 : if (!IS_SPECIAL_VARNO(var->varno))
2336 885650 : var->varno += context->rtoffset;
2337 940122 : if (var->varnosyn > 0)
2338 939174 : var->varnosyn += context->rtoffset;
2339 940122 : return (Node *) var;
2340 : }
2341 1783706 : if (IsA(node, Param))
2342 95064 : return fix_param_node(context->root, (Param *) node);
2343 1688642 : if (IsA(node, Aggref))
2344 : {
2345 454 : Aggref *aggref = (Aggref *) node;
2346 : Param *aggparam;
2347 :
2348 : /* See if the Aggref should be replaced by a Param */
2349 454 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2350 454 : if (aggparam != NULL)
2351 : {
2352 : /* Make a copy of the Param for paranoia's sake */
2353 424 : return (Node *) copyObject(aggparam);
2354 : }
2355 : /* If no match, just fall through to process it normally */
2356 : }
2357 1688218 : if (IsA(node, CurrentOfExpr))
2358 : {
2359 0 : CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
2360 :
2361 : Assert(!IS_SPECIAL_VARNO(cexpr->cvarno));
2362 0 : cexpr->cvarno += context->rtoffset;
2363 0 : return (Node *) cexpr;
2364 : }
2365 1688218 : if (IsA(node, PlaceHolderVar))
2366 : {
2367 : /* At scan level, we should always just evaluate the contained expr */
2368 2674 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
2369 :
2370 : /* XXX can we assert something about phnullingrels? */
2371 2674 : return fix_scan_expr_mutator((Node *) phv->phexpr, context);
2372 : }
2373 1685544 : if (IsA(node, AlternativeSubPlan))
2374 294 : return fix_scan_expr_mutator(fix_alternative_subplan(context->root,
2375 : (AlternativeSubPlan *) node,
2376 : context->num_exec),
2377 : context);
2378 1685250 : fix_expr_common(context->root, node);
2379 1685250 : return expression_tree_mutator(node, fix_scan_expr_mutator, context);
2380 : }
2381 :
2382 : static bool
2383 10958670 : fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
2384 : {
2385 10958670 : if (node == NULL)
2386 1040714 : return false;
2387 : Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
2388 : Assert(!IsA(node, PlaceHolderVar));
2389 : Assert(!IsA(node, AlternativeSubPlan));
2390 9917956 : fix_expr_common(context->root, node);
2391 9917956 : return expression_tree_walker(node, fix_scan_expr_walker, context);
2392 : }
2393 :
2394 : /*
2395 : * set_join_references
2396 : * Modify the target list and quals of a join node to reference its
2397 : * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
2398 : * attno values to the result domain number of either the corresponding
2399 : * outer or inner join tuple item. Also perform opcode lookup for these
2400 : * expressions, and add regclass OIDs to root->glob->relationOids.
2401 : */
2402 : static void
2403 144828 : set_join_references(PlannerInfo *root, Join *join, int rtoffset)
2404 : {
2405 144828 : Plan *outer_plan = join->plan.lefttree;
2406 144828 : Plan *inner_plan = join->plan.righttree;
2407 : indexed_tlist *outer_itlist;
2408 : indexed_tlist *inner_itlist;
2409 :
2410 144828 : outer_itlist = build_tlist_index(outer_plan->targetlist);
2411 144828 : inner_itlist = build_tlist_index(inner_plan->targetlist);
2412 :
2413 : /*
2414 : * First process the joinquals (including merge or hash clauses). These
2415 : * are logically below the join so they can always use all values
2416 : * available from the input tlists. It's okay to also handle
2417 : * NestLoopParams now, because those couldn't refer to nullable
2418 : * subexpressions.
2419 : */
2420 289656 : join->joinqual = fix_join_expr(root,
2421 : join->joinqual,
2422 : outer_itlist,
2423 : inner_itlist,
2424 : (Index) 0,
2425 : rtoffset,
2426 : NRM_EQUAL,
2427 144828 : NUM_EXEC_QUAL((Plan *) join));
2428 :
2429 : /* Now do join-type-specific stuff */
2430 144828 : if (IsA(join, NestLoop))
2431 : {
2432 101402 : NestLoop *nl = (NestLoop *) join;
2433 : ListCell *lc;
2434 :
2435 158656 : foreach(lc, nl->nestParams)
2436 : {
2437 57254 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
2438 :
2439 : /*
2440 : * Because we don't reparameterize parameterized paths to match
2441 : * the outer-join level at which they are used, Vars seen in the
2442 : * NestLoopParam expression may have nullingrels that are just a
2443 : * subset of those in the Vars actually available from the outer
2444 : * side. (Lateral references can also cause this, as explained in
2445 : * the comments for identify_current_nestloop_params.) Not
2446 : * checking this exactly is a bit grotty, but the work needed to
2447 : * make things match up perfectly seems well out of proportion to
2448 : * the value.
2449 : */
2450 114508 : nlp->paramval = (Var *) fix_upper_expr(root,
2451 57254 : (Node *) nlp->paramval,
2452 : outer_itlist,
2453 : OUTER_VAR,
2454 : rtoffset,
2455 : NRM_SUBSET,
2456 : NUM_EXEC_TLIST(outer_plan));
2457 : /* Check we replaced any PlaceHolderVar with simple Var */
2458 57254 : if (!(IsA(nlp->paramval, Var) &&
2459 57254 : nlp->paramval->varno == OUTER_VAR))
2460 0 : elog(ERROR, "NestLoopParam was not reduced to a simple Var");
2461 : }
2462 : }
2463 43426 : else if (IsA(join, MergeJoin))
2464 : {
2465 7798 : MergeJoin *mj = (MergeJoin *) join;
2466 :
2467 7798 : mj->mergeclauses = fix_join_expr(root,
2468 : mj->mergeclauses,
2469 : outer_itlist,
2470 : inner_itlist,
2471 : (Index) 0,
2472 : rtoffset,
2473 : NRM_EQUAL,
2474 7798 : NUM_EXEC_QUAL((Plan *) join));
2475 : }
2476 35628 : else if (IsA(join, HashJoin))
2477 : {
2478 35628 : HashJoin *hj = (HashJoin *) join;
2479 :
2480 71256 : hj->hashclauses = fix_join_expr(root,
2481 : hj->hashclauses,
2482 : outer_itlist,
2483 : inner_itlist,
2484 : (Index) 0,
2485 : rtoffset,
2486 : NRM_EQUAL,
2487 35628 : NUM_EXEC_QUAL((Plan *) join));
2488 :
2489 : /*
2490 : * HashJoin's hashkeys are used to look for matching tuples from its
2491 : * outer plan (not the Hash node!) in the hashtable.
2492 : */
2493 35628 : hj->hashkeys = (List *) fix_upper_expr(root,
2494 35628 : (Node *) hj->hashkeys,
2495 : outer_itlist,
2496 : OUTER_VAR,
2497 : rtoffset,
2498 : NRM_EQUAL,
2499 35628 : NUM_EXEC_QUAL((Plan *) join));
2500 : }
2501 :
2502 : /*
2503 : * Now we need to fix up the targetlist and qpqual, which are logically
2504 : * above the join. This means that, if it's not an inner join, any Vars
2505 : * and PHVs appearing here should have nullingrels that include the
2506 : * effects of the outer join, ie they will have nullingrels equal to the
2507 : * input Vars' nullingrels plus the bit added by the outer join. We don't
2508 : * currently have enough info available here to identify what that should
2509 : * be, so we just tell fix_join_expr to accept superset nullingrels
2510 : * matches instead of exact ones.
2511 : */
2512 144828 : join->plan.targetlist = fix_join_expr(root,
2513 : join->plan.targetlist,
2514 : outer_itlist,
2515 : inner_itlist,
2516 : (Index) 0,
2517 : rtoffset,
2518 144828 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2519 : NUM_EXEC_TLIST((Plan *) join));
2520 144828 : join->plan.qual = fix_join_expr(root,
2521 : join->plan.qual,
2522 : outer_itlist,
2523 : inner_itlist,
2524 : (Index) 0,
2525 : rtoffset,
2526 144828 : (join->jointype == JOIN_INNER ? NRM_EQUAL : NRM_SUPERSET),
2527 144828 : NUM_EXEC_QUAL((Plan *) join));
2528 :
2529 144828 : pfree(outer_itlist);
2530 144828 : pfree(inner_itlist);
2531 144828 : }
2532 :
2533 : /*
2534 : * set_upper_references
2535 : * Update the targetlist and quals of an upper-level plan node
2536 : * to refer to the tuples returned by its lefttree subplan.
2537 : * Also perform opcode lookup for these expressions, and
2538 : * add regclass OIDs to root->glob->relationOids.
2539 : *
2540 : * This is used for single-input plan types like Agg, Group, Result.
2541 : *
2542 : * In most cases, we have to match up individual Vars in the tlist and
2543 : * qual expressions with elements of the subplan's tlist (which was
2544 : * generated by flattening these selfsame expressions, so it should have all
2545 : * the required variables). There is an important exception, however:
2546 : * depending on where we are in the plan tree, sort/group columns may have
2547 : * been pushed into the subplan tlist unflattened. If these values are also
2548 : * needed in the output then we want to reference the subplan tlist element
2549 : * rather than recomputing the expression.
2550 : */
2551 : static void
2552 78426 : set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
2553 : {
2554 78426 : Plan *subplan = plan->lefttree;
2555 : indexed_tlist *subplan_itlist;
2556 : List *output_targetlist;
2557 : ListCell *l;
2558 :
2559 78426 : subplan_itlist = build_tlist_index(subplan->targetlist);
2560 :
2561 : /*
2562 : * If it's a grouping node with grouping sets, any Vars and PHVs appearing
2563 : * in the targetlist and quals should have nullingrels that include the
2564 : * effects of the grouping step, ie they will have nullingrels equal to
2565 : * the input Vars/PHVs' nullingrels plus the RT index of the grouping
2566 : * step. In order to perform exact nullingrels matches, we remove the RT
2567 : * index of the grouping step first.
2568 : */
2569 78426 : if (IsA(plan, Agg) &&
2570 49654 : root->group_rtindex > 0 &&
2571 6866 : ((Agg *) plan)->groupingSets)
2572 : {
2573 930 : plan->targetlist = (List *)
2574 930 : remove_nulling_relids((Node *) plan->targetlist,
2575 930 : bms_make_singleton(root->group_rtindex),
2576 : NULL);
2577 930 : plan->qual = (List *)
2578 930 : remove_nulling_relids((Node *) plan->qual,
2579 930 : bms_make_singleton(root->group_rtindex),
2580 : NULL);
2581 : }
2582 :
2583 78426 : output_targetlist = NIL;
2584 211246 : foreach(l, plan->targetlist)
2585 : {
2586 132820 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2587 : Node *newexpr;
2588 :
2589 : /* If it's a sort/group item, first try to match by sortref */
2590 132820 : if (tle->ressortgroupref != 0)
2591 : {
2592 : newexpr = (Node *)
2593 40170 : search_indexed_tlist_for_sortgroupref(tle->expr,
2594 : tle->ressortgroupref,
2595 : subplan_itlist,
2596 : OUTER_VAR);
2597 40170 : if (!newexpr)
2598 22338 : newexpr = fix_upper_expr(root,
2599 22338 : (Node *) tle->expr,
2600 : subplan_itlist,
2601 : OUTER_VAR,
2602 : rtoffset,
2603 : NRM_EQUAL,
2604 : NUM_EXEC_TLIST(plan));
2605 : }
2606 : else
2607 92650 : newexpr = fix_upper_expr(root,
2608 92650 : (Node *) tle->expr,
2609 : subplan_itlist,
2610 : OUTER_VAR,
2611 : rtoffset,
2612 : NRM_EQUAL,
2613 : NUM_EXEC_TLIST(plan));
2614 132820 : tle = flatCopyTargetEntry(tle);
2615 132820 : tle->expr = (Expr *) newexpr;
2616 132820 : output_targetlist = lappend(output_targetlist, tle);
2617 : }
2618 78426 : plan->targetlist = output_targetlist;
2619 :
2620 78426 : plan->qual = (List *)
2621 78426 : fix_upper_expr(root,
2622 78426 : (Node *) plan->qual,
2623 : subplan_itlist,
2624 : OUTER_VAR,
2625 : rtoffset,
2626 : NRM_EQUAL,
2627 78426 : NUM_EXEC_QUAL(plan));
2628 :
2629 78426 : pfree(subplan_itlist);
2630 78426 : }
2631 :
2632 : /*
2633 : * set_param_references
2634 : * Initialize the initParam list in Gather or Gather merge node such that
2635 : * it contains reference of all the params that needs to be evaluated
2636 : * before execution of the node. It contains the initplan params that are
2637 : * being passed to the plan nodes below it.
2638 : */
2639 : static void
2640 1508 : set_param_references(PlannerInfo *root, Plan *plan)
2641 : {
2642 : Assert(IsA(plan, Gather) || IsA(plan, GatherMerge));
2643 :
2644 1508 : if (plan->lefttree->extParam)
2645 : {
2646 : PlannerInfo *proot;
2647 1380 : Bitmapset *initSetParam = NULL;
2648 : ListCell *l;
2649 :
2650 2940 : for (proot = root; proot != NULL; proot = proot->parent_root)
2651 : {
2652 1638 : foreach(l, proot->init_plans)
2653 : {
2654 78 : SubPlan *initsubplan = (SubPlan *) lfirst(l);
2655 : ListCell *l2;
2656 :
2657 156 : foreach(l2, initsubplan->setParam)
2658 : {
2659 78 : initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2660 : }
2661 : }
2662 : }
2663 :
2664 : /*
2665 : * Remember the list of all external initplan params that are used by
2666 : * the children of Gather or Gather merge node.
2667 : */
2668 1380 : if (IsA(plan, Gather))
2669 1020 : ((Gather *) plan)->initParam =
2670 1020 : bms_intersect(plan->lefttree->extParam, initSetParam);
2671 : else
2672 360 : ((GatherMerge *) plan)->initParam =
2673 360 : bms_intersect(plan->lefttree->extParam, initSetParam);
2674 : }
2675 1508 : }
2676 :
2677 : /*
2678 : * Recursively scan an expression tree and convert Aggrefs to the proper
2679 : * intermediate form for combining aggregates. This means (1) replacing each
2680 : * one's argument list with a single argument that is the original Aggref
2681 : * modified to show partial aggregation and (2) changing the upper Aggref to
2682 : * show combining aggregation.
2683 : *
2684 : * After this step, set_upper_references will replace the partial Aggrefs
2685 : * with Vars referencing the lower Agg plan node's outputs, so that the final
2686 : * form seen by the executor is a combining Aggref with a Var as input.
2687 : *
2688 : * It's rather messy to postpone this step until setrefs.c; ideally it'd be
2689 : * done in createplan.c. The difficulty is that once we modify the Aggref
2690 : * expressions, they will no longer be equal() to their original form and
2691 : * so cross-plan-node-level matches will fail. So this has to happen after
2692 : * the plan node above the Agg has resolved its subplan references.
2693 : */
2694 : static Node *
2695 10214 : convert_combining_aggrefs(Node *node, void *context)
2696 : {
2697 10214 : if (node == NULL)
2698 1220 : return NULL;
2699 8994 : if (IsA(node, Aggref))
2700 : {
2701 2308 : Aggref *orig_agg = (Aggref *) node;
2702 : Aggref *child_agg;
2703 : Aggref *parent_agg;
2704 :
2705 : /* Assert we've not chosen to partial-ize any unsupported cases */
2706 : Assert(orig_agg->aggorder == NIL);
2707 : Assert(orig_agg->aggdistinct == NIL);
2708 :
2709 : /*
2710 : * Since aggregate calls can't be nested, we needn't recurse into the
2711 : * arguments. But for safety, flat-copy the Aggref node itself rather
2712 : * than modifying it in-place.
2713 : */
2714 2308 : child_agg = makeNode(Aggref);
2715 2308 : memcpy(child_agg, orig_agg, sizeof(Aggref));
2716 :
2717 : /*
2718 : * For the parent Aggref, we want to copy all the fields of the
2719 : * original aggregate *except* the args list, which we'll replace
2720 : * below, and the aggfilter expression, which should be applied only
2721 : * by the child not the parent. Rather than explicitly knowing about
2722 : * all the other fields here, we can momentarily modify child_agg to
2723 : * provide a suitable source for copyObject.
2724 : */
2725 2308 : child_agg->args = NIL;
2726 2308 : child_agg->aggfilter = NULL;
2727 2308 : parent_agg = copyObject(child_agg);
2728 2308 : child_agg->args = orig_agg->args;
2729 2308 : child_agg->aggfilter = orig_agg->aggfilter;
2730 :
2731 : /*
2732 : * Now, set up child_agg to represent the first phase of partial
2733 : * aggregation. For now, assume serialization is required.
2734 : */
2735 2308 : mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL);
2736 :
2737 : /*
2738 : * And set up parent_agg to represent the second phase.
2739 : */
2740 2308 : parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2741 : 1, NULL, false));
2742 2308 : mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL);
2743 :
2744 2308 : return (Node *) parent_agg;
2745 : }
2746 6686 : return expression_tree_mutator(node, convert_combining_aggrefs, context);
2747 : }
2748 :
2749 : /*
2750 : * set_dummy_tlist_references
2751 : * Replace the targetlist of an upper-level plan node with a simple
2752 : * list of OUTER_VAR references to its child.
2753 : *
2754 : * This is used for plan types like Sort and Append that don't evaluate
2755 : * their targetlists. Although the executor doesn't care at all what's in
2756 : * the tlist, EXPLAIN needs it to be realistic.
2757 : *
2758 : * Note: we could almost use set_upper_references() here, but it fails for
2759 : * Append for lack of a lefttree subplan. Single-purpose code is faster
2760 : * anyway.
2761 : */
2762 : static void
2763 169222 : set_dummy_tlist_references(Plan *plan, int rtoffset)
2764 : {
2765 : List *output_targetlist;
2766 : ListCell *l;
2767 :
2768 169222 : output_targetlist = NIL;
2769 749770 : foreach(l, plan->targetlist)
2770 : {
2771 580548 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2772 580548 : Var *oldvar = (Var *) tle->expr;
2773 : Var *newvar;
2774 :
2775 : /*
2776 : * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2777 : * as Consts, not Vars referencing Consts. Here, there's no speed
2778 : * advantage to be had, but it makes EXPLAIN output look cleaner, and
2779 : * again it avoids confusing the executor.
2780 : */
2781 580548 : if (IsA(oldvar, Const))
2782 : {
2783 : /* just reuse the existing TLE node */
2784 22400 : output_targetlist = lappend(output_targetlist, tle);
2785 22400 : continue;
2786 : }
2787 :
2788 558148 : newvar = makeVar(OUTER_VAR,
2789 558148 : tle->resno,
2790 : exprType((Node *) oldvar),
2791 : exprTypmod((Node *) oldvar),
2792 : exprCollation((Node *) oldvar),
2793 : 0);
2794 558148 : if (IsA(oldvar, Var) &&
2795 443714 : oldvar->varnosyn > 0)
2796 : {
2797 402916 : newvar->varnosyn = oldvar->varnosyn + rtoffset;
2798 402916 : newvar->varattnosyn = oldvar->varattnosyn;
2799 : }
2800 : else
2801 : {
2802 155232 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
2803 155232 : newvar->varattnosyn = 0;
2804 : }
2805 :
2806 558148 : tle = flatCopyTargetEntry(tle);
2807 558148 : tle->expr = (Expr *) newvar;
2808 558148 : output_targetlist = lappend(output_targetlist, tle);
2809 : }
2810 169222 : plan->targetlist = output_targetlist;
2811 :
2812 : /* We don't touch plan->qual here */
2813 169222 : }
2814 :
2815 :
2816 : /*
2817 : * build_tlist_index --- build an index data structure for a child tlist
2818 : *
2819 : * In most cases, subplan tlists will be "flat" tlists with only Vars,
2820 : * so we try to optimize that case by extracting information about Vars
2821 : * in advance. Matching a parent tlist to a child is still an O(N^2)
2822 : * operation, but at least with a much smaller constant factor than plain
2823 : * tlist_member() searches.
2824 : *
2825 : * The result of this function is an indexed_tlist struct to pass to
2826 : * search_indexed_tlist_for_var() and siblings.
2827 : * When done, the indexed_tlist may be freed with a single pfree().
2828 : */
2829 : static indexed_tlist *
2830 428556 : build_tlist_index(List *tlist)
2831 : {
2832 : indexed_tlist *itlist;
2833 : tlist_vinfo *vinfo;
2834 : ListCell *l;
2835 :
2836 : /* Create data structure with enough slots for all tlist entries */
2837 : itlist = (indexed_tlist *)
2838 428556 : palloc(offsetof(indexed_tlist, vars) +
2839 428556 : list_length(tlist) * sizeof(tlist_vinfo));
2840 :
2841 428556 : itlist->tlist = tlist;
2842 428556 : itlist->has_ph_vars = false;
2843 428556 : itlist->has_non_vars = false;
2844 :
2845 : /* Find the Vars and fill in the index array */
2846 428556 : vinfo = itlist->vars;
2847 4003460 : foreach(l, tlist)
2848 : {
2849 3574904 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2850 :
2851 3574904 : if (tle->expr && IsA(tle->expr, Var))
2852 3554574 : {
2853 3554574 : Var *var = (Var *) tle->expr;
2854 :
2855 3554574 : vinfo->varno = var->varno;
2856 3554574 : vinfo->varattno = var->varattno;
2857 3554574 : vinfo->resno = tle->resno;
2858 3554574 : vinfo->varnullingrels = var->varnullingrels;
2859 3554574 : vinfo++;
2860 : }
2861 20330 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2862 3542 : itlist->has_ph_vars = true;
2863 : else
2864 16788 : itlist->has_non_vars = true;
2865 : }
2866 :
2867 428556 : itlist->num_vars = (vinfo - itlist->vars);
2868 :
2869 428556 : return itlist;
2870 : }
2871 :
2872 : /*
2873 : * build_tlist_index_other_vars --- build a restricted tlist index
2874 : *
2875 : * This is like build_tlist_index, but we only index tlist entries that
2876 : * are Vars belonging to some rel other than the one specified. We will set
2877 : * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2878 : * (so nothing other than Vars and PlaceHolderVars can be matched).
2879 : */
2880 : static indexed_tlist *
2881 3424 : build_tlist_index_other_vars(List *tlist, int ignore_rel)
2882 : {
2883 : indexed_tlist *itlist;
2884 : tlist_vinfo *vinfo;
2885 : ListCell *l;
2886 :
2887 : /* Create data structure with enough slots for all tlist entries */
2888 : itlist = (indexed_tlist *)
2889 3424 : palloc(offsetof(indexed_tlist, vars) +
2890 3424 : list_length(tlist) * sizeof(tlist_vinfo));
2891 :
2892 3424 : itlist->tlist = tlist;
2893 3424 : itlist->has_ph_vars = false;
2894 3424 : itlist->has_non_vars = false;
2895 :
2896 : /* Find the desired Vars and fill in the index array */
2897 3424 : vinfo = itlist->vars;
2898 13158 : foreach(l, tlist)
2899 : {
2900 9734 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2901 :
2902 9734 : if (tle->expr && IsA(tle->expr, Var))
2903 5554 : {
2904 5554 : Var *var = (Var *) tle->expr;
2905 :
2906 5554 : if (var->varno != ignore_rel)
2907 : {
2908 4222 : vinfo->varno = var->varno;
2909 4222 : vinfo->varattno = var->varattno;
2910 4222 : vinfo->resno = tle->resno;
2911 4222 : vinfo->varnullingrels = var->varnullingrels;
2912 4222 : vinfo++;
2913 : }
2914 : }
2915 4180 : else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2916 120 : itlist->has_ph_vars = true;
2917 : }
2918 :
2919 3424 : itlist->num_vars = (vinfo - itlist->vars);
2920 :
2921 3424 : return itlist;
2922 : }
2923 :
2924 : /*
2925 : * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2926 : *
2927 : * If a match is found, return a copy of the given Var with suitably
2928 : * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2929 : * Also ensure that varnosyn is incremented by rtoffset.
2930 : * If no match, return NULL.
2931 : *
2932 : * We cross-check the varnullingrels of the subplan output Var based on
2933 : * nrm_match. Most call sites should pass NRM_EQUAL indicating we expect
2934 : * an exact match. However, there are places where we haven't cleaned
2935 : * things up completely, and we have to settle for allowing subset or
2936 : * superset matches.
2937 : */
2938 : static Var *
2939 1607090 : search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist,
2940 : int newvarno, int rtoffset,
2941 : NullingRelsMatch nrm_match)
2942 : {
2943 1607090 : int varno = var->varno;
2944 1607090 : AttrNumber varattno = var->varattno;
2945 : tlist_vinfo *vinfo;
2946 : int i;
2947 :
2948 1607090 : vinfo = itlist->vars;
2949 1607090 : i = itlist->num_vars;
2950 11472172 : while (i-- > 0)
2951 : {
2952 11103576 : if (vinfo->varno == varno && vinfo->varattno == varattno)
2953 : {
2954 : /* Found a match */
2955 1238494 : Var *newvar = copyVar(var);
2956 :
2957 : /*
2958 : * Verify that we kept all the nullingrels machinations straight.
2959 : *
2960 : * XXX we skip the check for system columns and whole-row Vars.
2961 : * That's because such Vars might be row identity Vars, which are
2962 : * generated without any varnullingrels. It'd be hard to do
2963 : * otherwise, since they're normally made very early in planning,
2964 : * when we haven't looked at the jointree yet and don't know which
2965 : * joins might null such Vars. Doesn't seem worth the expense to
2966 : * make them fully valid. (While it's slightly annoying that we
2967 : * thereby lose checking for user-written references to such
2968 : * columns, it seems unlikely that a bug in nullingrels logic
2969 : * would affect only system columns.)
2970 : */
2971 2442732 : if (!(varattno <= 0 ||
2972 : (nrm_match == NRM_SUBSET ?
2973 56380 : bms_is_subset(var->varnullingrels, vinfo->varnullingrels) :
2974 : nrm_match == NRM_SUPERSET ?
2975 368416 : bms_is_subset(vinfo->varnullingrels, var->varnullingrels) :
2976 779442 : bms_equal(vinfo->varnullingrels, var->varnullingrels))))
2977 0 : elog(ERROR, "wrong varnullingrels %s (expected %s) for Var %d/%d",
2978 : bmsToString(var->varnullingrels),
2979 : bmsToString(vinfo->varnullingrels),
2980 : varno, varattno);
2981 :
2982 1238494 : newvar->varno = newvarno;
2983 1238494 : newvar->varattno = vinfo->resno;
2984 1238494 : if (newvar->varnosyn > 0)
2985 1237888 : newvar->varnosyn += rtoffset;
2986 1238494 : return newvar;
2987 : }
2988 9865082 : vinfo++;
2989 : }
2990 368596 : return NULL; /* no match */
2991 : }
2992 :
2993 : /*
2994 : * search_indexed_tlist_for_phv --- find a PlaceHolderVar in an indexed tlist
2995 : *
2996 : * If a match is found, return a Var constructed to reference the tlist item.
2997 : * If no match, return NULL.
2998 : *
2999 : * Cross-check phnullingrels as in search_indexed_tlist_for_var.
3000 : *
3001 : * NOTE: it is a waste of time to call this unless itlist->has_ph_vars.
3002 : */
3003 : static Var *
3004 3498 : search_indexed_tlist_for_phv(PlaceHolderVar *phv,
3005 : indexed_tlist *itlist, int newvarno,
3006 : NullingRelsMatch nrm_match)
3007 : {
3008 : ListCell *lc;
3009 :
3010 8618 : foreach(lc, itlist->tlist)
3011 : {
3012 8290 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
3013 :
3014 8290 : if (tle->expr && IsA(tle->expr, PlaceHolderVar))
3015 : {
3016 4560 : PlaceHolderVar *subphv = (PlaceHolderVar *) tle->expr;
3017 : Var *newvar;
3018 :
3019 : /*
3020 : * Analogously to search_indexed_tlist_for_var, we match on phid
3021 : * only. We don't use equal(), partially for speed but mostly
3022 : * because phnullingrels might not be exactly equal.
3023 : */
3024 4560 : if (phv->phid != subphv->phid)
3025 1390 : continue;
3026 :
3027 : /* Verify that we kept all the nullingrels machinations straight */
3028 6340 : if (!(nrm_match == NRM_SUBSET ?
3029 252 : bms_is_subset(phv->phnullingrels, subphv->phnullingrels) :
3030 : nrm_match == NRM_SUPERSET ?
3031 1548 : bms_is_subset(subphv->phnullingrels, phv->phnullingrels) :
3032 1370 : bms_equal(subphv->phnullingrels, phv->phnullingrels)))
3033 0 : elog(ERROR, "wrong phnullingrels %s (expected %s) for PlaceHolderVar %d",
3034 : bmsToString(phv->phnullingrels),
3035 : bmsToString(subphv->phnullingrels),
3036 : phv->phid);
3037 :
3038 : /* Found a matching subplan output expression */
3039 3170 : newvar = makeVarFromTargetEntry(newvarno, tle);
3040 3170 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3041 3170 : newvar->varattnosyn = 0;
3042 3170 : return newvar;
3043 : }
3044 : }
3045 328 : return NULL; /* no match */
3046 : }
3047 :
3048 : /*
3049 : * search_indexed_tlist_for_non_var --- find a non-Var/PHV in an indexed tlist
3050 : *
3051 : * If a match is found, return a Var constructed to reference the tlist item.
3052 : * If no match, return NULL.
3053 : *
3054 : * NOTE: it is a waste of time to call this unless itlist->has_non_vars.
3055 : */
3056 : static Var *
3057 38056 : search_indexed_tlist_for_non_var(Expr *node,
3058 : indexed_tlist *itlist, int newvarno)
3059 : {
3060 : TargetEntry *tle;
3061 :
3062 : /*
3063 : * If it's a simple Const, replacing it with a Var is silly, even if there
3064 : * happens to be an identical Const below; a Var is more expensive to
3065 : * execute than a Const. What's more, replacing it could confuse some
3066 : * places in the executor that expect to see simple Consts for, eg,
3067 : * dropped columns.
3068 : */
3069 38056 : if (IsA(node, Const))
3070 1950 : return NULL;
3071 :
3072 36106 : tle = tlist_member(node, itlist->tlist);
3073 36106 : if (tle)
3074 : {
3075 : /* Found a matching subplan output expression */
3076 : Var *newvar;
3077 :
3078 9392 : newvar = makeVarFromTargetEntry(newvarno, tle);
3079 9392 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3080 9392 : newvar->varattnosyn = 0;
3081 9392 : return newvar;
3082 : }
3083 26714 : return NULL; /* no match */
3084 : }
3085 :
3086 : /*
3087 : * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
3088 : *
3089 : * If a match is found, return a Var constructed to reference the tlist item.
3090 : * If no match, return NULL.
3091 : *
3092 : * This is needed to ensure that we select the right subplan TLE in cases
3093 : * where there are multiple textually-equal()-but-volatile sort expressions.
3094 : * And it's also faster than search_indexed_tlist_for_non_var.
3095 : */
3096 : static Var *
3097 40170 : search_indexed_tlist_for_sortgroupref(Expr *node,
3098 : Index sortgroupref,
3099 : indexed_tlist *itlist,
3100 : int newvarno)
3101 : {
3102 : ListCell *lc;
3103 :
3104 180438 : foreach(lc, itlist->tlist)
3105 : {
3106 158100 : TargetEntry *tle = (TargetEntry *) lfirst(lc);
3107 :
3108 : /*
3109 : * Usually the equal() check is redundant, but in setop plans it may
3110 : * not be, since prepunion.c assigns ressortgroupref equal to the
3111 : * column resno without regard to whether that matches the topmost
3112 : * level's sortgrouprefs and without regard to whether any implicit
3113 : * coercions are added in the setop tree. We might have to clean that
3114 : * up someday; but for now, just ignore any false matches.
3115 : */
3116 176064 : if (tle->ressortgroupref == sortgroupref &&
3117 17964 : equal(node, tle->expr))
3118 : {
3119 : /* Found a matching subplan output expression */
3120 : Var *newvar;
3121 :
3122 17832 : newvar = makeVarFromTargetEntry(newvarno, tle);
3123 17832 : newvar->varnosyn = 0; /* wasn't ever a plain Var */
3124 17832 : newvar->varattnosyn = 0;
3125 17832 : return newvar;
3126 : }
3127 : }
3128 22338 : return NULL; /* no match */
3129 : }
3130 :
3131 : /*
3132 : * fix_join_expr
3133 : * Create a new set of targetlist entries or join qual clauses by
3134 : * changing the varno/varattno values of variables in the clauses
3135 : * to reference target list values from the outer and inner join
3136 : * relation target lists. Also perform opcode lookup and add
3137 : * regclass OIDs to root->glob->relationOids.
3138 : *
3139 : * This is used in four different scenarios:
3140 : * 1) a normal join clause, where all the Vars in the clause *must* be
3141 : * replaced by OUTER_VAR or INNER_VAR references. In this case
3142 : * acceptable_rel should be zero so that any failure to match a Var will be
3143 : * reported as an error.
3144 : * 2) RETURNING clauses, which may contain both Vars of the target relation
3145 : * and Vars of other relations. In this case we want to replace the
3146 : * other-relation Vars by OUTER_VAR references, while leaving target Vars
3147 : * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
3148 : * target relation should be passed.
3149 : * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
3150 : * to be replaced with INNER_VAR references, while leaving target Vars (the
3151 : * to-be-updated relation) alone. Correspondingly inner_itlist is to be
3152 : * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
3153 : * relation.
3154 : * 4) MERGE. In this case, references to the source relation are to be
3155 : * replaced with INNER_VAR references, leaving Vars of the target
3156 : * relation (the to-be-modified relation) alone. So inner_itlist is to be
3157 : * the source relation elements, outer_itlist = NULL and acceptable_rel
3158 : * the target relation.
3159 : *
3160 : * 'clauses' is the targetlist or list of join clauses
3161 : * 'outer_itlist' is the indexed target list of the outer join relation,
3162 : * or NULL
3163 : * 'inner_itlist' is the indexed target list of the inner join relation,
3164 : * or NULL
3165 : * 'acceptable_rel' is either zero or the rangetable index of a relation
3166 : * whose Vars may appear in the clause without provoking an error
3167 : * 'rtoffset': how much to increment varnos by
3168 : * 'nrm_match': as for search_indexed_tlist_for_var()
3169 : * 'num_exec': estimated number of executions of expression
3170 : *
3171 : * Returns the new expression tree. The original clause structure is
3172 : * not modified.
3173 : */
3174 : static List *
3175 492728 : fix_join_expr(PlannerInfo *root,
3176 : List *clauses,
3177 : indexed_tlist *outer_itlist,
3178 : indexed_tlist *inner_itlist,
3179 : Index acceptable_rel,
3180 : int rtoffset,
3181 : NullingRelsMatch nrm_match,
3182 : double num_exec)
3183 : {
3184 : fix_join_expr_context context;
3185 :
3186 492728 : context.root = root;
3187 492728 : context.outer_itlist = outer_itlist;
3188 492728 : context.inner_itlist = inner_itlist;
3189 492728 : context.acceptable_rel = acceptable_rel;
3190 492728 : context.rtoffset = rtoffset;
3191 492728 : context.nrm_match = nrm_match;
3192 492728 : context.num_exec = num_exec;
3193 492728 : return (List *) fix_join_expr_mutator((Node *) clauses, &context);
3194 : }
3195 :
3196 : static Node *
3197 3107050 : fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
3198 : {
3199 : Var *newvar;
3200 :
3201 3107050 : if (node == NULL)
3202 307352 : return NULL;
3203 2799698 : if (IsA(node, Var))
3204 : {
3205 1014016 : Var *var = (Var *) node;
3206 :
3207 : /*
3208 : * Verify that Vars with non-default varreturningtype only appear in
3209 : * the RETURNING list, and refer to the target relation.
3210 : */
3211 1014016 : if (var->varreturningtype != VAR_RETURNING_DEFAULT)
3212 : {
3213 2706 : if (context->inner_itlist != NULL ||
3214 2706 : context->outer_itlist == NULL ||
3215 2706 : context->acceptable_rel == 0)
3216 0 : elog(ERROR, "variable returning old/new found outside RETURNING list");
3217 2706 : if (var->varno != context->acceptable_rel)
3218 0 : elog(ERROR, "wrong varno %d (expected %d) for variable returning old/new",
3219 : var->varno, context->acceptable_rel);
3220 : }
3221 :
3222 : /* Look for the var in the input tlists, first in the outer */
3223 1014016 : if (context->outer_itlist)
3224 : {
3225 1006834 : newvar = search_indexed_tlist_for_var(var,
3226 : context->outer_itlist,
3227 : OUTER_VAR,
3228 : context->rtoffset,
3229 : context->nrm_match);
3230 1006834 : if (newvar)
3231 641582 : return (Node *) newvar;
3232 : }
3233 :
3234 : /* then in the inner. */
3235 372434 : if (context->inner_itlist)
3236 : {
3237 361532 : newvar = search_indexed_tlist_for_var(var,
3238 : context->inner_itlist,
3239 : INNER_VAR,
3240 : context->rtoffset,
3241 : context->nrm_match);
3242 361532 : if (newvar)
3243 358188 : return (Node *) newvar;
3244 : }
3245 :
3246 : /* If it's for acceptable_rel, adjust and return it */
3247 14246 : if (var->varno == context->acceptable_rel)
3248 : {
3249 14246 : var = copyVar(var);
3250 14246 : var->varno += context->rtoffset;
3251 14246 : if (var->varnosyn > 0)
3252 13572 : var->varnosyn += context->rtoffset;
3253 14246 : return (Node *) var;
3254 : }
3255 :
3256 : /* No referent found for Var */
3257 0 : elog(ERROR, "variable not found in subplan target lists");
3258 : }
3259 1785682 : if (IsA(node, PlaceHolderVar))
3260 : {
3261 2644 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3262 :
3263 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3264 2644 : if (context->outer_itlist && context->outer_itlist->has_ph_vars)
3265 : {
3266 936 : newvar = search_indexed_tlist_for_phv(phv,
3267 : context->outer_itlist,
3268 : OUTER_VAR,
3269 : context->nrm_match);
3270 936 : if (newvar)
3271 668 : return (Node *) newvar;
3272 : }
3273 1976 : if (context->inner_itlist && context->inner_itlist->has_ph_vars)
3274 : {
3275 1580 : newvar = search_indexed_tlist_for_phv(phv,
3276 : context->inner_itlist,
3277 : INNER_VAR,
3278 : context->nrm_match);
3279 1580 : if (newvar)
3280 1520 : return (Node *) newvar;
3281 : }
3282 :
3283 : /* If not supplied by input plans, evaluate the contained expr */
3284 : /* XXX can we assert something about phnullingrels? */
3285 456 : return fix_join_expr_mutator((Node *) phv->phexpr, context);
3286 : }
3287 : /* Try matching more complex expressions too, if tlists have any */
3288 1783038 : if (context->outer_itlist && context->outer_itlist->has_non_vars)
3289 : {
3290 1548 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3291 : context->outer_itlist,
3292 : OUTER_VAR);
3293 1548 : if (newvar)
3294 126 : return (Node *) newvar;
3295 : }
3296 1782912 : if (context->inner_itlist && context->inner_itlist->has_non_vars)
3297 : {
3298 6458 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3299 : context->inner_itlist,
3300 : INNER_VAR);
3301 6458 : if (newvar)
3302 1180 : return (Node *) newvar;
3303 : }
3304 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3305 1781732 : if (IsA(node, Param))
3306 5970 : return fix_param_node(context->root, (Param *) node);
3307 1775762 : if (IsA(node, AlternativeSubPlan))
3308 1506 : return fix_join_expr_mutator(fix_alternative_subplan(context->root,
3309 : (AlternativeSubPlan *) node,
3310 : context->num_exec),
3311 : context);
3312 1774256 : fix_expr_common(context->root, node);
3313 1774256 : return expression_tree_mutator(node, fix_join_expr_mutator, context);
3314 : }
3315 :
3316 : /*
3317 : * fix_upper_expr
3318 : * Modifies an expression tree so that all Var nodes reference outputs
3319 : * of a subplan. Also looks for Aggref nodes that should be replaced
3320 : * by initplan output Params. Also performs opcode lookup, and adds
3321 : * regclass OIDs to root->glob->relationOids.
3322 : *
3323 : * This is used to fix up target and qual expressions of non-join upper-level
3324 : * plan nodes, as well as index-only scan nodes.
3325 : *
3326 : * An error is raised if no matching var can be found in the subplan tlist
3327 : * --- so this routine should only be applied to nodes whose subplans'
3328 : * targetlists were generated by flattening the expressions used in the
3329 : * parent node.
3330 : *
3331 : * If itlist->has_non_vars is true, then we try to match whole subexpressions
3332 : * against elements of the subplan tlist, so that we can avoid recomputing
3333 : * expressions that were already computed by the subplan. (This is relatively
3334 : * expensive, so we don't want to try it in the common case where the
3335 : * subplan tlist is just a flattened list of Vars.)
3336 : *
3337 : * 'node': the tree to be fixed (a target item or qual)
3338 : * 'subplan_itlist': indexed target list for subplan (or index)
3339 : * 'newvarno': varno to use for Vars referencing tlist elements
3340 : * 'rtoffset': how much to increment varnos by
3341 : * 'nrm_match': as for search_indexed_tlist_for_var()
3342 : * 'num_exec': estimated number of executions of expression
3343 : *
3344 : * The resulting tree is a copy of the original in which all Var nodes have
3345 : * varno = newvarno, varattno = resno of corresponding targetlist element.
3346 : * The original tree is not modified.
3347 : */
3348 : static Node *
3349 379748 : fix_upper_expr(PlannerInfo *root,
3350 : Node *node,
3351 : indexed_tlist *subplan_itlist,
3352 : int newvarno,
3353 : int rtoffset,
3354 : NullingRelsMatch nrm_match,
3355 : double num_exec)
3356 : {
3357 : fix_upper_expr_context context;
3358 :
3359 379748 : context.root = root;
3360 379748 : context.subplan_itlist = subplan_itlist;
3361 379748 : context.newvarno = newvarno;
3362 379748 : context.rtoffset = rtoffset;
3363 379748 : context.nrm_match = nrm_match;
3364 379748 : context.num_exec = num_exec;
3365 379748 : return fix_upper_expr_mutator(node, &context);
3366 : }
3367 :
3368 : static Node *
3369 1085340 : fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
3370 : {
3371 : Var *newvar;
3372 :
3373 1085340 : if (node == NULL)
3374 353056 : return NULL;
3375 732284 : if (IsA(node, Var))
3376 : {
3377 238724 : Var *var = (Var *) node;
3378 :
3379 238724 : newvar = search_indexed_tlist_for_var(var,
3380 : context->subplan_itlist,
3381 : context->newvarno,
3382 : context->rtoffset,
3383 : context->nrm_match);
3384 238724 : if (!newvar)
3385 0 : elog(ERROR, "variable not found in subplan target list");
3386 238724 : return (Node *) newvar;
3387 : }
3388 493560 : if (IsA(node, PlaceHolderVar))
3389 : {
3390 1120 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
3391 :
3392 : /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3393 1120 : if (context->subplan_itlist->has_ph_vars)
3394 : {
3395 982 : newvar = search_indexed_tlist_for_phv(phv,
3396 : context->subplan_itlist,
3397 : context->newvarno,
3398 : context->nrm_match);
3399 982 : if (newvar)
3400 982 : return (Node *) newvar;
3401 : }
3402 : /* If not supplied by input plan, evaluate the contained expr */
3403 : /* XXX can we assert something about phnullingrels? */
3404 138 : return fix_upper_expr_mutator((Node *) phv->phexpr, context);
3405 : }
3406 : /* Try matching more complex expressions too, if tlist has any */
3407 492440 : if (context->subplan_itlist->has_non_vars)
3408 : {
3409 29870 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3410 : context->subplan_itlist,
3411 : context->newvarno);
3412 29870 : if (newvar)
3413 7906 : return (Node *) newvar;
3414 : }
3415 : /* Special cases (apply only AFTER failing to match to lower tlist) */
3416 484534 : if (IsA(node, Param))
3417 9734 : return fix_param_node(context->root, (Param *) node);
3418 474800 : if (IsA(node, Aggref))
3419 : {
3420 55292 : Aggref *aggref = (Aggref *) node;
3421 : Param *aggparam;
3422 :
3423 : /* See if the Aggref should be replaced by a Param */
3424 55292 : aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3425 55292 : if (aggparam != NULL)
3426 : {
3427 : /* Make a copy of the Param for paranoia's sake */
3428 0 : return (Node *) copyObject(aggparam);
3429 : }
3430 : /* If no match, just fall through to process it normally */
3431 : }
3432 474800 : if (IsA(node, AlternativeSubPlan))
3433 36 : return fix_upper_expr_mutator(fix_alternative_subplan(context->root,
3434 : (AlternativeSubPlan *) node,
3435 : context->num_exec),
3436 : context);
3437 474764 : fix_expr_common(context->root, node);
3438 474764 : return expression_tree_mutator(node, fix_upper_expr_mutator, context);
3439 : }
3440 :
3441 : /*
3442 : * set_returning_clause_references
3443 : * Perform setrefs.c's work on a RETURNING targetlist
3444 : *
3445 : * If the query involves more than just the result table, we have to
3446 : * adjust any Vars that refer to other tables to reference junk tlist
3447 : * entries in the top subplan's targetlist. Vars referencing the result
3448 : * table should be left alone, however (the executor will evaluate them
3449 : * using the actual heap tuple, after firing triggers if any). In the
3450 : * adjusted RETURNING list, result-table Vars will have their original
3451 : * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
3452 : *
3453 : * We also must perform opcode lookup and add regclass OIDs to
3454 : * root->glob->relationOids.
3455 : *
3456 : * 'rlist': the RETURNING targetlist to be fixed
3457 : * 'topplan': the top subplan node that will be just below the ModifyTable
3458 : * node (note it's not yet passed through set_plan_refs)
3459 : * 'resultRelation': RT index of the associated result relation
3460 : * 'rtoffset': how much to increment varnos by
3461 : *
3462 : * Note: the given 'root' is for the parent query level, not the 'topplan'.
3463 : * This does not matter currently since we only access the dependency-item
3464 : * lists in root->glob, but it would need some hacking if we wanted a root
3465 : * that actually matches the subplan.
3466 : *
3467 : * Note: resultRelation is not yet adjusted by rtoffset.
3468 : */
3469 : static List *
3470 3424 : set_returning_clause_references(PlannerInfo *root,
3471 : List *rlist,
3472 : Plan *topplan,
3473 : Index resultRelation,
3474 : int rtoffset)
3475 : {
3476 : indexed_tlist *itlist;
3477 :
3478 : /*
3479 : * We can perform the desired Var fixup by abusing the fix_join_expr
3480 : * machinery that formerly handled inner indexscan fixup. We search the
3481 : * top plan's targetlist for Vars of non-result relations, and use
3482 : * fix_join_expr to convert RETURNING Vars into references to those tlist
3483 : * entries, while leaving result-rel Vars as-is.
3484 : *
3485 : * PlaceHolderVars will also be sought in the targetlist, but no
3486 : * more-complex expressions will be. Note that it is not possible for a
3487 : * PlaceHolderVar to refer to the result relation, since the result is
3488 : * never below an outer join. If that case could happen, we'd have to be
3489 : * prepared to pick apart the PlaceHolderVar and evaluate its contained
3490 : * expression instead.
3491 : */
3492 3424 : itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
3493 :
3494 3424 : rlist = fix_join_expr(root,
3495 : rlist,
3496 : itlist,
3497 : NULL,
3498 : resultRelation,
3499 : rtoffset,
3500 : NRM_EQUAL,
3501 : NUM_EXEC_TLIST(topplan));
3502 :
3503 3424 : pfree(itlist);
3504 :
3505 3424 : return rlist;
3506 : }
3507 :
3508 : /*
3509 : * fix_windowagg_condition_expr_mutator
3510 : * Mutator function for replacing WindowFuncs with the corresponding Var
3511 : * in the targetlist which references that WindowFunc.
3512 : */
3513 : static Node *
3514 3582 : fix_windowagg_condition_expr_mutator(Node *node,
3515 : fix_windowagg_cond_context *context)
3516 : {
3517 3582 : if (node == NULL)
3518 2694 : return NULL;
3519 :
3520 888 : if (IsA(node, WindowFunc))
3521 : {
3522 : Var *newvar;
3523 :
3524 180 : newvar = search_indexed_tlist_for_non_var((Expr *) node,
3525 : context->subplan_itlist,
3526 : context->newvarno);
3527 180 : if (newvar)
3528 180 : return (Node *) newvar;
3529 0 : elog(ERROR, "WindowFunc not found in subplan target lists");
3530 : }
3531 :
3532 708 : return expression_tree_mutator(node,
3533 : fix_windowagg_condition_expr_mutator,
3534 : context);
3535 : }
3536 :
3537 : /*
3538 : * fix_windowagg_condition_expr
3539 : * Converts references in 'runcondition' so that any WindowFunc
3540 : * references are swapped out for a Var which references the matching
3541 : * WindowFunc in 'subplan_itlist'.
3542 : */
3543 : static List *
3544 2862 : fix_windowagg_condition_expr(PlannerInfo *root,
3545 : List *runcondition,
3546 : indexed_tlist *subplan_itlist)
3547 : {
3548 : fix_windowagg_cond_context context;
3549 :
3550 2862 : context.root = root;
3551 2862 : context.subplan_itlist = subplan_itlist;
3552 2862 : context.newvarno = 0;
3553 :
3554 2862 : return (List *) fix_windowagg_condition_expr_mutator((Node *) runcondition,
3555 : &context);
3556 : }
3557 :
3558 : /*
3559 : * set_windowagg_runcondition_references
3560 : * Converts references in 'runcondition' so that any WindowFunc
3561 : * references are swapped out for a Var which references the matching
3562 : * WindowFunc in 'plan' targetlist.
3563 : */
3564 : static List *
3565 2862 : set_windowagg_runcondition_references(PlannerInfo *root,
3566 : List *runcondition,
3567 : Plan *plan)
3568 : {
3569 : List *newlist;
3570 : indexed_tlist *itlist;
3571 :
3572 2862 : itlist = build_tlist_index(plan->targetlist);
3573 :
3574 2862 : newlist = fix_windowagg_condition_expr(root, runcondition, itlist);
3575 :
3576 2862 : pfree(itlist);
3577 :
3578 2862 : return newlist;
3579 : }
3580 :
3581 : /*
3582 : * find_minmax_agg_replacement_param
3583 : * If the given Aggref is one that we are optimizing into a subquery
3584 : * (cf. planagg.c), then return the Param that should replace it.
3585 : * Else return NULL.
3586 : *
3587 : * This is exported so that SS_finalize_plan can use it before setrefs.c runs.
3588 : * Note that it will not find anything until we have built a Plan from a
3589 : * MinMaxAggPath, as root->minmax_aggs will never be filled otherwise.
3590 : */
3591 : Param *
3592 78218 : find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
3593 : {
3594 79210 : if (root->minmax_aggs != NIL &&
3595 992 : list_length(aggref->args) == 1)
3596 : {
3597 992 : TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3598 : ListCell *lc;
3599 :
3600 1088 : foreach(lc, root->minmax_aggs)
3601 : {
3602 1088 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3603 :
3604 2080 : if (mminfo->aggfnoid == aggref->aggfnoid &&
3605 992 : equal(mminfo->target, curTarget->expr))
3606 992 : return mminfo->param;
3607 : }
3608 : }
3609 77226 : return NULL;
3610 : }
3611 :
3612 :
3613 : /*****************************************************************************
3614 : * QUERY DEPENDENCY MANAGEMENT
3615 : *****************************************************************************/
3616 :
3617 : /*
3618 : * record_plan_function_dependency
3619 : * Mark the current plan as depending on a particular function.
3620 : *
3621 : * This is exported so that the function-inlining code can record a
3622 : * dependency on a function that it's removed from the plan tree.
3623 : */
3624 : void
3625 1313182 : record_plan_function_dependency(PlannerInfo *root, Oid funcid)
3626 : {
3627 : /*
3628 : * For performance reasons, we don't bother to track built-in functions;
3629 : * we just assume they'll never change (or at least not in ways that'd
3630 : * invalidate plans using them). For this purpose we can consider a
3631 : * built-in function to be one with OID less than FirstUnpinnedObjectId.
3632 : * Note that the OID generator guarantees never to generate such an OID
3633 : * after startup, even at OID wraparound.
3634 : */
3635 1313182 : if (funcid >= (Oid) FirstUnpinnedObjectId)
3636 : {
3637 43596 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3638 :
3639 : /*
3640 : * It would work to use any syscache on pg_proc, but the easiest is
3641 : * PROCOID since we already have the function's OID at hand. Note
3642 : * that plancache.c knows we use PROCOID.
3643 : */
3644 43596 : inval_item->cacheId = PROCOID;
3645 43596 : inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3646 : ObjectIdGetDatum(funcid));
3647 :
3648 43596 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3649 : }
3650 1313182 : }
3651 :
3652 : /*
3653 : * record_plan_type_dependency
3654 : * Mark the current plan as depending on a particular type.
3655 : *
3656 : * This is exported so that eval_const_expressions can record a
3657 : * dependency on a domain that it's removed a CoerceToDomain node for.
3658 : *
3659 : * We don't currently need to record dependencies on domains that the
3660 : * plan contains CoerceToDomain nodes for, though that might change in
3661 : * future. Hence, this isn't actually called in this module, though
3662 : * someday fix_expr_common might call it.
3663 : */
3664 : void
3665 18538 : record_plan_type_dependency(PlannerInfo *root, Oid typid)
3666 : {
3667 : /*
3668 : * As in record_plan_function_dependency, ignore the possibility that
3669 : * someone would change a built-in domain.
3670 : */
3671 18538 : if (typid >= (Oid) FirstUnpinnedObjectId)
3672 : {
3673 18538 : PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3674 :
3675 : /*
3676 : * It would work to use any syscache on pg_type, but the easiest is
3677 : * TYPEOID since we already have the type's OID at hand. Note that
3678 : * plancache.c knows we use TYPEOID.
3679 : */
3680 18538 : inval_item->cacheId = TYPEOID;
3681 18538 : inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3682 : ObjectIdGetDatum(typid));
3683 :
3684 18538 : root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3685 : }
3686 18538 : }
3687 :
3688 : /*
3689 : * extract_query_dependencies
3690 : * Given a rewritten, but not yet planned, query or queries
3691 : * (i.e. a Query node or list of Query nodes), extract dependencies
3692 : * just as set_plan_references would do. Also detect whether any
3693 : * rewrite steps were affected by RLS.
3694 : *
3695 : * This is needed by plancache.c to handle invalidation of cached unplanned
3696 : * queries.
3697 : *
3698 : * Note: this does not go through eval_const_expressions, and hence doesn't
3699 : * reflect its additions of inlined functions and elided CoerceToDomain nodes
3700 : * to the invalItems list. This is obviously OK for functions, since we'll
3701 : * see them in the original query tree anyway. For domains, it's OK because
3702 : * we don't care about domains unless they get elided. That is, a plan might
3703 : * have domain dependencies that the query tree doesn't.
3704 : */
3705 : void
3706 63686 : extract_query_dependencies(Node *query,
3707 : List **relationOids,
3708 : List **invalItems,
3709 : bool *hasRowSecurity)
3710 : {
3711 : PlannerGlobal glob;
3712 : PlannerInfo root;
3713 :
3714 : /* Make up dummy planner state so we can use this module's machinery */
3715 1846894 : MemSet(&glob, 0, sizeof(glob));
3716 63686 : glob.type = T_PlannerGlobal;
3717 63686 : glob.relationOids = NIL;
3718 63686 : glob.invalItems = NIL;
3719 : /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
3720 63686 : glob.dependsOnRole = false;
3721 :
3722 5922798 : MemSet(&root, 0, sizeof(root));
3723 63686 : root.type = T_PlannerInfo;
3724 63686 : root.glob = &glob;
3725 :
3726 63686 : (void) extract_query_dependencies_walker(query, &root);
3727 :
3728 63686 : *relationOids = glob.relationOids;
3729 63686 : *invalItems = glob.invalItems;
3730 63686 : *hasRowSecurity = glob.dependsOnRole;
3731 63686 : }
3732 :
3733 : /*
3734 : * Tree walker for extract_query_dependencies.
3735 : *
3736 : * This is exported so that expression_planner_with_deps can call it on
3737 : * simple expressions (post-planning, not before planning, in that case).
3738 : * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
3739 : * and invalItems lists are added to as needed.
3740 : */
3741 : bool
3742 1731790 : extract_query_dependencies_walker(Node *node, PlannerInfo *context)
3743 : {
3744 1731790 : if (node == NULL)
3745 816772 : return false;
3746 : Assert(!IsA(node, PlaceHolderVar));
3747 915018 : if (IsA(node, Query))
3748 : {
3749 68084 : Query *query = (Query *) node;
3750 : ListCell *lc;
3751 :
3752 68084 : if (query->commandType == CMD_UTILITY)
3753 : {
3754 : /*
3755 : * This logic must handle any utility command for which parse
3756 : * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3757 : *
3758 : * Notably, CALL requires its own processing.
3759 : */
3760 9970 : if (IsA(query->utilityStmt, CallStmt))
3761 : {
3762 116 : CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3763 :
3764 : /* We need not examine funccall, just the transformed exprs */
3765 116 : (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3766 : context);
3767 116 : (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3768 : context);
3769 116 : return false;
3770 : }
3771 :
3772 : /*
3773 : * Ignore other utility statements, except those (such as EXPLAIN)
3774 : * that contain a parsed-but-not-planned query. For those, we
3775 : * just need to transfer our attention to the contained query.
3776 : */
3777 9854 : query = UtilityContainsQuery(query->utilityStmt);
3778 9854 : if (query == NULL)
3779 36 : return false;
3780 : }
3781 :
3782 : /* Remember if any Query has RLS quals applied by rewriter */
3783 67932 : if (query->hasRowSecurity)
3784 222 : context->glob->dependsOnRole = true;
3785 :
3786 : /* Collect relation OIDs in this Query's rtable */
3787 109926 : foreach(lc, query->rtable)
3788 : {
3789 41994 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3790 :
3791 41994 : if (rte->rtekind == RTE_RELATION ||
3792 7616 : (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3793 7152 : (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3794 35308 : context->glob->relationOids =
3795 35308 : lappend_oid(context->glob->relationOids, rte->relid);
3796 : }
3797 :
3798 : /* And recurse into the query's subexpressions */
3799 67932 : return query_tree_walker(query, extract_query_dependencies_walker,
3800 : context, 0);
3801 : }
3802 : /* Extract function dependencies and check for regclass Consts */
3803 846934 : fix_expr_common(context, node);
3804 846934 : return expression_tree_walker(node, extract_query_dependencies_walker,
3805 : context);
3806 : }
3807 :
3808 : /*
3809 : * Record some details about a node removed from the plan during setrefs
3810 : * processing, for the benefit of code trying to reconstruct planner decisions
3811 : * from examination of the final plan tree.
3812 : */
3813 : static void
3814 25042 : record_elided_node(PlannerGlobal *glob, int plan_node_id,
3815 : NodeTag elided_type, Bitmapset *relids)
3816 : {
3817 25042 : ElidedNode *n = makeNode(ElidedNode);
3818 :
3819 25042 : n->plan_node_id = plan_node_id;
3820 25042 : n->elided_type = elided_type;
3821 25042 : n->relids = relids;
3822 :
3823 25042 : glob->elidedNodes = lappend(glob->elidedNodes, n);
3824 25042 : }
|