LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - joinrels.c (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 94.8 % 579 549
Test Date: 2026-02-17 17:20:33 Functions: 100.0 % 20 20
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * joinrels.c
       4              :  *    Routines to determine which relations should be joined
       5              :  *
       6              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       7              :  * Portions Copyright (c) 1994, Regents of the University of California
       8              :  *
       9              :  *
      10              :  * IDENTIFICATION
      11              :  *    src/backend/optimizer/path/joinrels.c
      12              :  *
      13              :  *-------------------------------------------------------------------------
      14              :  */
      15              : #include "postgres.h"
      16              : 
      17              : #include "miscadmin.h"
      18              : #include "optimizer/appendinfo.h"
      19              : #include "optimizer/cost.h"
      20              : #include "optimizer/joininfo.h"
      21              : #include "optimizer/pathnode.h"
      22              : #include "optimizer/paths.h"
      23              : #include "optimizer/planner.h"
      24              : #include "partitioning/partbounds.h"
      25              : #include "utils/memutils.h"
      26              : 
      27              : 
      28              : static void make_rels_by_clause_joins(PlannerInfo *root,
      29              :                                       RelOptInfo *old_rel,
      30              :                                       List *other_rels,
      31              :                                       int first_rel_idx);
      32              : static void make_rels_by_clauseless_joins(PlannerInfo *root,
      33              :                                           RelOptInfo *old_rel,
      34              :                                           List *other_rels);
      35              : static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
      36              : static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
      37              : static bool restriction_is_constant_false(List *restrictlist,
      38              :                                           RelOptInfo *joinrel,
      39              :                                           bool only_pushed_down);
      40              : static void make_grouped_join_rel(PlannerInfo *root, RelOptInfo *rel1,
      41              :                                   RelOptInfo *rel2, RelOptInfo *joinrel,
      42              :                                   SpecialJoinInfo *sjinfo, List *restrictlist);
      43              : static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
      44              :                                         RelOptInfo *rel2, RelOptInfo *joinrel,
      45              :                                         SpecialJoinInfo *sjinfo, List *restrictlist);
      46              : static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1,
      47              :                                    RelOptInfo *rel2, RelOptInfo *joinrel,
      48              :                                    SpecialJoinInfo *parent_sjinfo,
      49              :                                    List *parent_restrictlist);
      50              : static SpecialJoinInfo *build_child_join_sjinfo(PlannerInfo *root,
      51              :                                                 SpecialJoinInfo *parent_sjinfo,
      52              :                                                 Relids left_relids, Relids right_relids);
      53              : static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
      54              :                                    SpecialJoinInfo *parent_sjinfo);
      55              : static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
      56              :                                      RelOptInfo *rel2, RelOptInfo *joinrel,
      57              :                                      SpecialJoinInfo *parent_sjinfo,
      58              :                                      List **parts1, List **parts2);
      59              : static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
      60              :                                     RelOptInfo *rel1, RelOptInfo *rel2,
      61              :                                     List **parts1, List **parts2);
      62              : 
      63              : 
      64              : /*
      65              :  * join_search_one_level
      66              :  *    Consider ways to produce join relations containing exactly 'level'
      67              :  *    jointree items.  (This is one step of the dynamic-programming method
      68              :  *    embodied in standard_join_search.)  Join rel nodes for each feasible
      69              :  *    combination of lower-level rels are created and returned in a list.
      70              :  *    Implementation paths are created for each such joinrel, too.
      71              :  *
      72              :  * level: level of rels we want to make this time
      73              :  * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
      74              :  *
      75              :  * The result is returned in root->join_rel_level[level].
      76              :  */
      77              : void
      78        71251 : join_search_one_level(PlannerInfo *root, int level)
      79              : {
      80        71251 :     List      **joinrels = root->join_rel_level;
      81              :     ListCell   *r;
      82              :     int         k;
      83              : 
      84              :     Assert(joinrels[level] == NIL);
      85              : 
      86              :     /* Set join_cur_level so that new joinrels are added to proper list */
      87        71251 :     root->join_cur_level = level;
      88              : 
      89              :     /*
      90              :      * First, consider left-sided and right-sided plans, in which rels of
      91              :      * exactly level-1 member relations are joined against initial relations.
      92              :      * We prefer to join using join clauses, but if we find a rel of level-1
      93              :      * members that has no join clauses, we will generate Cartesian-product
      94              :      * joins against all initial rels not already contained in it.
      95              :      */
      96       252610 :     foreach(r, joinrels[level - 1])
      97              :     {
      98       181359 :         RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
      99              : 
     100       197442 :         if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
     101        16083 :             has_join_restriction(root, old_rel))
     102       175755 :         {
     103              :             int         first_rel;
     104              : 
     105              :             /*
     106              :              * There are join clauses or join order restrictions relevant to
     107              :              * this rel, so consider joins between this rel and (only) those
     108              :              * initial rels it is linked to by a clause or restriction.
     109              :              *
     110              :              * At level 2 this condition is symmetric, so there is no need to
     111              :              * look at initial rels before this one in the list; we already
     112              :              * considered such joins when we were at the earlier rel.  (The
     113              :              * mirror-image joins are handled automatically by make_join_rel.)
     114              :              * In later passes (level > 2), we join rels of the previous level
     115              :              * to each initial rel they don't already include but have a join
     116              :              * clause or restriction with.
     117              :              */
     118       175755 :             if (level == 2)     /* consider remaining initial rels */
     119       117657 :                 first_rel = foreach_current_index(r) + 1;
     120              :             else
     121        58098 :                 first_rel = 0;
     122              : 
     123       175755 :             make_rels_by_clause_joins(root, old_rel, joinrels[1], first_rel);
     124              :         }
     125              :         else
     126              :         {
     127              :             /*
     128              :              * Oops, we have a relation that is not joined to any other
     129              :              * relation, either directly or by join-order restrictions.
     130              :              * Cartesian product time.
     131              :              *
     132              :              * We consider a cartesian product with each not-already-included
     133              :              * initial rel, whether it has other join clauses or not.  At
     134              :              * level 2, if there are two or more clauseless initial rels, we
     135              :              * will redundantly consider joining them in both directions; but
     136              :              * such cases aren't common enough to justify adding complexity to
     137              :              * avoid the duplicated effort.
     138              :              */
     139         5604 :             make_rels_by_clauseless_joins(root,
     140              :                                           old_rel,
     141         5604 :                                           joinrels[1]);
     142              :         }
     143              :     }
     144              : 
     145              :     /*
     146              :      * Now, consider "bushy plans" in which relations of k initial rels are
     147              :      * joined to relations of level-k initial rels, for 2 <= k <= level-2.
     148              :      *
     149              :      * We only consider bushy-plan joins for pairs of rels where there is a
     150              :      * suitable join clause (or join order restriction), in order to avoid
     151              :      * unreasonable growth of planning time.
     152              :      */
     153        71251 :     for (k = 2;; k++)
     154         7109 :     {
     155        78360 :         int         other_level = level - k;
     156              : 
     157              :         /*
     158              :          * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
     159              :          * need to go as far as the halfway point.
     160              :          */
     161        78360 :         if (k > other_level)
     162        71251 :             break;
     163              : 
     164        36584 :         foreach(r, joinrels[k])
     165              :         {
     166        29475 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     167              :             int         first_rel;
     168              :             ListCell   *r2;
     169              : 
     170              :             /*
     171              :              * We can ignore relations without join clauses here, unless they
     172              :              * participate in join-order restrictions --- then we might have
     173              :              * to force a bushy join plan.
     174              :              */
     175        29475 :             if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
     176          219 :                 !has_join_restriction(root, old_rel))
     177          150 :                 continue;
     178              : 
     179        29325 :             if (k == other_level)   /* only consider remaining rels */
     180        20347 :                 first_rel = foreach_current_index(r) + 1;
     181              :             else
     182         8978 :                 first_rel = 0;
     183              : 
     184       124962 :             for_each_from(r2, joinrels[other_level], first_rel)
     185              :             {
     186        95637 :                 RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
     187              : 
     188        95637 :                 if (!bms_overlap(old_rel->relids, new_rel->relids))
     189              :                 {
     190              :                     /*
     191              :                      * OK, we can build a rel of the right level from this
     192              :                      * pair of rels.  Do so if there is at least one relevant
     193              :                      * join clause or join order restriction.
     194              :                      */
     195        11917 :                     if (have_relevant_joinclause(root, old_rel, new_rel) ||
     196          595 :                         have_join_order_restriction(root, old_rel, new_rel))
     197              :                     {
     198        10760 :                         (void) make_join_rel(root, old_rel, new_rel);
     199              :                     }
     200              :                 }
     201              :             }
     202              :         }
     203              :     }
     204              : 
     205              :     /*----------
     206              :      * Last-ditch effort: if we failed to find any usable joins so far, force
     207              :      * a set of cartesian-product joins to be generated.  This handles the
     208              :      * special case where all the available rels have join clauses but we
     209              :      * cannot use any of those clauses yet.  This can only happen when we are
     210              :      * considering a join sub-problem (a sub-joinlist) and all the rels in the
     211              :      * sub-problem have only join clauses with rels outside the sub-problem.
     212              :      * An example is
     213              :      *
     214              :      *      SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
     215              :      *      WHERE a.w = c.x and b.y = d.z;
     216              :      *
     217              :      * If the "a INNER JOIN b" sub-problem does not get flattened into the
     218              :      * upper level, we must be willing to make a cartesian join of a and b;
     219              :      * but the code above will not have done so, because it thought that both
     220              :      * a and b have joinclauses.  We consider only left-sided and right-sided
     221              :      * cartesian joins in this case (no bushy).
     222              :      *----------
     223              :      */
     224        71251 :     if (joinrels[level] == NIL)
     225              :     {
     226              :         /*
     227              :          * This loop is just like the first one, except we always call
     228              :          * make_rels_by_clauseless_joins().
     229              :          */
     230           27 :         foreach(r, joinrels[level - 1])
     231              :         {
     232           18 :             RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
     233              : 
     234           18 :             make_rels_by_clauseless_joins(root,
     235              :                                           old_rel,
     236           18 :                                           joinrels[1]);
     237              :         }
     238              : 
     239              :         /*----------
     240              :          * When special joins are involved, there may be no legal way
     241              :          * to make an N-way join for some values of N.  For example consider
     242              :          *
     243              :          * SELECT ... FROM t1 WHERE
     244              :          *   x IN (SELECT ... FROM t2,t3 WHERE ...) AND
     245              :          *   y IN (SELECT ... FROM t4,t5 WHERE ...)
     246              :          *
     247              :          * We will flatten this query to a 5-way join problem, but there are
     248              :          * no 4-way joins that join_is_legal() will consider legal.  We have
     249              :          * to accept failure at level 4 and go on to discover a workable
     250              :          * bushy plan at level 5.
     251              :          *
     252              :          * However, if there are no special joins and no lateral references
     253              :          * then join_is_legal() should never fail, and so the following sanity
     254              :          * check is useful.
     255              :          *----------
     256              :          */
     257            9 :         if (joinrels[level] == NIL &&
     258            3 :             root->join_info_list == NIL &&
     259            0 :             !root->hasLateralRTEs)
     260            0 :             elog(ERROR, "failed to build any %d-way joins", level);
     261              :     }
     262        71251 : }
     263              : 
     264              : /*
     265              :  * make_rels_by_clause_joins
     266              :  *    Build joins between the given relation 'old_rel' and other relations
     267              :  *    that participate in join clauses that 'old_rel' also participates in
     268              :  *    (or participate in join-order restrictions with it).
     269              :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     270              :  *
     271              :  * Note: at levels above 2 we will generate the same joined relation in
     272              :  * multiple ways --- for example (a join b) join c is the same RelOptInfo as
     273              :  * (b join c) join a, though the second case will add a different set of Paths
     274              :  * to it.  This is the reason for using the join_rel_level mechanism, which
     275              :  * automatically ensures that each new joinrel is only added to the list once.
     276              :  *
     277              :  * 'old_rel' is the relation entry for the relation to be joined
     278              :  * 'other_rels': a list containing the other rels to be considered for joining
     279              :  * 'first_rel_idx': the first rel to be considered in 'other_rels'
     280              :  *
     281              :  * Currently, this is only used with initial rels in other_rels, but it
     282              :  * will work for joining to joinrels too.
     283              :  */
     284              : static void
     285       175755 : make_rels_by_clause_joins(PlannerInfo *root,
     286              :                           RelOptInfo *old_rel,
     287              :                           List *other_rels,
     288              :                           int first_rel_idx)
     289              : {
     290              :     ListCell   *l;
     291              : 
     292       519588 :     for_each_from(l, other_rels, first_rel_idx)
     293              :     {
     294       343833 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     295              : 
     296       539020 :         if (!bms_overlap(old_rel->relids, other_rel->relids) &&
     297       237610 :             (have_relevant_joinclause(root, old_rel, other_rel) ||
     298        42423 :              have_join_order_restriction(root, old_rel, other_rel)))
     299              :         {
     300       159390 :             (void) make_join_rel(root, old_rel, other_rel);
     301              :         }
     302              :     }
     303       175755 : }
     304              : 
     305              : /*
     306              :  * make_rels_by_clauseless_joins
     307              :  *    Given a relation 'old_rel' and a list of other relations
     308              :  *    'other_rels', create a join relation between 'old_rel' and each
     309              :  *    member of 'other_rels' that isn't already included in 'old_rel'.
     310              :  *    The join rels are returned in root->join_rel_level[join_cur_level].
     311              :  *
     312              :  * 'old_rel' is the relation entry for the relation to be joined
     313              :  * 'other_rels': a list containing the other rels to be considered for joining
     314              :  *
     315              :  * Currently, this is only used with initial rels in other_rels, but it would
     316              :  * work for joining to joinrels too.
     317              :  */
     318              : static void
     319         5622 : make_rels_by_clauseless_joins(PlannerInfo *root,
     320              :                               RelOptInfo *old_rel,
     321              :                               List *other_rels)
     322              : {
     323              :     ListCell   *l;
     324              : 
     325        18101 :     foreach(l, other_rels)
     326              :     {
     327        12479 :         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
     328              : 
     329        12479 :         if (!bms_overlap(other_rel->relids, old_rel->relids))
     330              :         {
     331         6140 :             (void) make_join_rel(root, old_rel, other_rel);
     332              :         }
     333              :     }
     334         5622 : }
     335              : 
     336              : 
     337              : /*
     338              :  * join_is_legal
     339              :  *     Determine whether a proposed join is legal given the query's
     340              :  *     join order constraints; and if it is, determine the join type.
     341              :  *
     342              :  * Caller must supply not only the two rels, but the union of their relids.
     343              :  * (We could simplify the API by computing joinrelids locally, but this
     344              :  * would be redundant work in the normal path through make_join_rel.
     345              :  * Note that this value does NOT include the RT index of any outer join that
     346              :  * might need to be performed here, so it's not the canonical identifier
     347              :  * of the join relation.)
     348              :  *
     349              :  * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
     350              :  * else it's set to point to the associated SpecialJoinInfo node.  Also,
     351              :  * *reversed_p is set true if the given relations need to be swapped to
     352              :  * match the SpecialJoinInfo node.
     353              :  */
     354              : static bool
     355       180712 : join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
     356              :               Relids joinrelids,
     357              :               SpecialJoinInfo **sjinfo_p, bool *reversed_p)
     358              : {
     359              :     SpecialJoinInfo *match_sjinfo;
     360              :     bool        reversed;
     361              :     bool        unique_ified;
     362              :     bool        must_be_leftjoin;
     363              :     ListCell   *l;
     364              : 
     365              :     /*
     366              :      * Ensure output params are set on failure return.  This is just to
     367              :      * suppress uninitialized-variable warnings from overly anal compilers.
     368              :      */
     369       180712 :     *sjinfo_p = NULL;
     370       180712 :     *reversed_p = false;
     371              : 
     372              :     /*
     373              :      * If we have any special joins, the proposed join might be illegal; and
     374              :      * in any case we have to determine its join type.  Scan the join info
     375              :      * list for matches and conflicts.
     376              :      */
     377       180712 :     match_sjinfo = NULL;
     378       180712 :     reversed = false;
     379       180712 :     unique_ified = false;
     380       180712 :     must_be_leftjoin = false;
     381              : 
     382       365079 :     foreach(l, root->join_info_list)
     383              :     {
     384       189095 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     385              : 
     386              :         /*
     387              :          * This special join is not relevant unless its RHS overlaps the
     388              :          * proposed join.  (Check this first as a fast path for dismissing
     389              :          * most irrelevant SJs quickly.)
     390              :          */
     391       189095 :         if (!bms_overlap(sjinfo->min_righthand, joinrelids))
     392        63762 :             continue;
     393              : 
     394              :         /*
     395              :          * Also, not relevant if proposed join is fully contained within RHS
     396              :          * (ie, we're still building up the RHS).
     397              :          */
     398       125333 :         if (bms_is_subset(joinrelids, sjinfo->min_righthand))
     399         2676 :             continue;
     400              : 
     401              :         /*
     402              :          * Also, not relevant if SJ is already done within either input.
     403              :          */
     404       229160 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     405       106503 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
     406        52090 :             continue;
     407        81295 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     408        10728 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     409         5804 :             continue;
     410              : 
     411              :         /*
     412              :          * If it's a semijoin and we already joined the RHS to any other rels
     413              :          * within either input, then we must have unique-ified the RHS at that
     414              :          * point (see below).  Therefore the semijoin is no longer relevant in
     415              :          * this join path.
     416              :          */
     417        64763 :         if (sjinfo->jointype == JOIN_SEMI)
     418              :         {
     419         5558 :             if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
     420          788 :                 !bms_equal(sjinfo->syn_righthand, rel1->relids))
     421          345 :                 continue;
     422         5213 :             if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
     423         3687 :                 !bms_equal(sjinfo->syn_righthand, rel2->relids))
     424          107 :                 continue;
     425              :         }
     426              : 
     427              :         /*
     428              :          * If one input contains min_lefthand and the other contains
     429              :          * min_righthand, then we can perform the SJ at this join.
     430              :          *
     431              :          * Reject if we get matches to more than one SJ; that implies we're
     432              :          * considering something that's not really valid.
     433              :          */
     434       118648 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
     435        54337 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
     436              :         {
     437        50985 :             if (match_sjinfo)
     438         4728 :                 return false;   /* invalid join path */
     439        50985 :             match_sjinfo = sjinfo;
     440        50985 :             reversed = false;
     441              :         }
     442        18081 :         else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
     443         4755 :                  bms_is_subset(sjinfo->min_righthand, rel1->relids))
     444              :         {
     445         4143 :             if (match_sjinfo)
     446            0 :                 return false;   /* invalid join path */
     447         4143 :             match_sjinfo = sjinfo;
     448         4143 :             reversed = true;
     449              :         }
     450        10688 :         else if (sjinfo->jointype == JOIN_SEMI &&
     451         1809 :                  bms_equal(sjinfo->syn_righthand, rel2->relids) &&
     452          304 :                  create_unique_paths(root, rel2, sjinfo) != NULL)
     453              :         {
     454              :             /*----------
     455              :              * For a semijoin, we can join the RHS to anything else by
     456              :              * unique-ifying the RHS (if the RHS can be unique-ified).
     457              :              * We will only get here if we have the full RHS but less
     458              :              * than min_lefthand on the LHS.
     459              :              *
     460              :              * The reason to consider such a join path is exemplified by
     461              :              *  SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
     462              :              * If we insist on doing this as a semijoin we will first have
     463              :              * to form the cartesian product of A*B.  But if we unique-ify
     464              :              * C then the semijoin becomes a plain innerjoin and we can join
     465              :              * in any order, eg C to A and then to B.  When C is much smaller
     466              :              * than A and B this can be a huge win.  So we allow C to be
     467              :              * joined to just A or just B here, and then make_join_rel has
     468              :              * to handle the case properly.
     469              :              *
     470              :              * Note that actually we'll allow unique-ified C to be joined to
     471              :              * some other relation D here, too.  That is legal, if usually not
     472              :              * very sane, and this routine is only concerned with legality not
     473              :              * with whether the join is good strategy.
     474              :              *----------
     475              :              */
     476          196 :             if (match_sjinfo)
     477            3 :                 return false;   /* invalid join path */
     478          193 :             match_sjinfo = sjinfo;
     479          193 :             reversed = false;
     480          193 :             unique_ified = true;
     481              :         }
     482        10296 :         else if (sjinfo->jointype == JOIN_SEMI &&
     483         1427 :                  bms_equal(sjinfo->syn_righthand, rel1->relids) &&
     484          118 :                  create_unique_paths(root, rel1, sjinfo) != NULL)
     485              :         {
     486              :             /* Reversed semijoin case */
     487           52 :             if (match_sjinfo)
     488            0 :                 return false;   /* invalid join path */
     489           52 :             match_sjinfo = sjinfo;
     490           52 :             reversed = true;
     491           52 :             unique_ified = true;
     492              :         }
     493              :         else
     494              :         {
     495              :             /*
     496              :              * Otherwise, the proposed join overlaps the RHS but isn't a valid
     497              :              * implementation of this SJ.  But don't panic quite yet: the RHS
     498              :              * violation might have occurred previously, in one or both input
     499              :              * relations, in which case we must have previously decided that
     500              :              * it was OK to commute some other SJ with this one.  If we need
     501              :              * to perform this join to finish building up the RHS, rejecting
     502              :              * it could lead to not finding any plan at all.  (This can occur
     503              :              * because of the heuristics elsewhere in this file that postpone
     504              :              * clauseless joins: we might not consider doing a clauseless join
     505              :              * within the RHS until after we've performed other, validly
     506              :              * commutable SJs with one or both sides of the clauseless join.)
     507              :              * This consideration boils down to the rule that if both inputs
     508              :              * overlap the RHS, we can allow the join --- they are either
     509              :              * fully within the RHS, or represent previously-allowed joins to
     510              :              * rels outside it.
     511              :              */
     512        13095 :             if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
     513         4160 :                 bms_overlap(rel2->relids, sjinfo->min_righthand))
     514           87 :                 continue;       /* assume valid previous violation of RHS */
     515              : 
     516              :             /*
     517              :              * The proposed join could still be legal, but only if we're
     518              :              * allowed to associate it into the RHS of this SJ.  That means
     519              :              * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
     520              :              * not FULL) and the proposed join must not overlap the LHS.
     521              :              */
     522        16367 :             if (sjinfo->jointype != JOIN_LEFT ||
     523         7519 :                 bms_overlap(joinrelids, sjinfo->min_lefthand))
     524         4725 :                 return false;   /* invalid join path */
     525              : 
     526              :             /*
     527              :              * To be valid, the proposed join must be a LEFT join; otherwise
     528              :              * it can't associate into this SJ's RHS.  But we may not yet have
     529              :              * found the SpecialJoinInfo matching the proposed join, so we
     530              :              * can't test that yet.  Remember the requirement for later.
     531              :              */
     532         4123 :             must_be_leftjoin = true;
     533              :         }
     534              :     }
     535              : 
     536              :     /*
     537              :      * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
     538              :      * proposed join can't associate into an SJ's RHS.
     539              :      *
     540              :      * Also, fail if the proposed join's predicate isn't strict; we're
     541              :      * essentially checking to see if we can apply outer-join identity 3, and
     542              :      * that's a requirement.  (This check may be redundant with checks in
     543              :      * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
     544              :      */
     545       175984 :     if (must_be_leftjoin &&
     546         2623 :         (match_sjinfo == NULL ||
     547         2623 :          match_sjinfo->jointype != JOIN_LEFT ||
     548         2623 :          !match_sjinfo->lhs_strict))
     549          759 :         return false;           /* invalid join path */
     550              : 
     551              :     /*
     552              :      * We also have to check for constraints imposed by LATERAL references.
     553              :      */
     554       175225 :     if (root->hasLateralRTEs)
     555              :     {
     556              :         bool        lateral_fwd;
     557              :         bool        lateral_rev;
     558              :         Relids      join_lateral_rels;
     559              : 
     560              :         /*
     561              :          * The proposed rels could each contain lateral references to the
     562              :          * other, in which case the join is impossible.  If there are lateral
     563              :          * references in just one direction, then the join has to be done with
     564              :          * a nestloop with the lateral referencer on the inside.  If the join
     565              :          * matches an SJ that cannot be implemented by such a nestloop, the
     566              :          * join is impossible.
     567              :          *
     568              :          * Also, if the lateral reference is only indirect, we should reject
     569              :          * the join; whatever rel(s) the reference chain goes through must be
     570              :          * joined to first.
     571              :          */
     572        15079 :         lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
     573        15079 :         lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
     574        15079 :         if (lateral_fwd && lateral_rev)
     575           15 :             return false;       /* have lateral refs in both directions */
     576        15064 :         if (lateral_fwd)
     577              :         {
     578              :             /* has to be implemented as nestloop with rel1 on left */
     579         6288 :             if (match_sjinfo &&
     580          997 :                 (reversed ||
     581          988 :                  unique_ified ||
     582          988 :                  match_sjinfo->jointype == JOIN_FULL))
     583            9 :                 return false;   /* not implementable as nestloop */
     584              :             /* check there is a direct reference from rel2 to rel1 */
     585         6279 :             if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
     586           21 :                 return false;   /* only indirect refs, so reject */
     587              :         }
     588         8776 :         else if (lateral_rev)
     589              :         {
     590              :             /* has to be implemented as nestloop with rel2 on left */
     591         1207 :             if (match_sjinfo &&
     592           39 :                 (!reversed ||
     593           39 :                  unique_ified ||
     594           39 :                  match_sjinfo->jointype == JOIN_FULL))
     595            0 :                 return false;   /* not implementable as nestloop */
     596              :             /* check there is a direct reference from rel1 to rel2 */
     597         1207 :             if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
     598            0 :                 return false;   /* only indirect refs, so reject */
     599              :         }
     600              : 
     601              :         /*
     602              :          * LATERAL references could also cause problems later on if we accept
     603              :          * this join: if the join's minimum parameterization includes any rels
     604              :          * that would have to be on the inside of an outer join with this join
     605              :          * rel, then it's never going to be possible to build the complete
     606              :          * query using this join.  We should reject this join not only because
     607              :          * it'll save work, but because if we don't, the clauseless-join
     608              :          * heuristics might think that legality of this join means that some
     609              :          * other join rel need not be formed, and that could lead to failure
     610              :          * to find any plan at all.  We have to consider not only rels that
     611              :          * are directly on the inner side of an OJ with the joinrel, but also
     612              :          * ones that are indirectly so, so search to find all such rels.
     613              :          */
     614        15034 :         join_lateral_rels = min_join_parameterization(root, joinrelids,
     615              :                                                       rel1, rel2);
     616        15034 :         if (join_lateral_rels)
     617              :         {
     618         1819 :             Relids      join_plus_rhs = bms_copy(joinrelids);
     619              :             bool        more;
     620              : 
     621              :             do
     622              :             {
     623         2047 :                 more = false;
     624         3070 :                 foreach(l, root->join_info_list)
     625              :                 {
     626         1023 :                     SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
     627              : 
     628              :                     /* ignore full joins --- their ordering is predetermined */
     629         1023 :                     if (sjinfo->jointype == JOIN_FULL)
     630            9 :                         continue;
     631              : 
     632         1014 :                     if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
     633          861 :                         !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
     634              :                     {
     635          303 :                         join_plus_rhs = bms_add_members(join_plus_rhs,
     636          303 :                                                         sjinfo->min_righthand);
     637          303 :                         more = true;
     638              :                     }
     639              :                 }
     640         2047 :             } while (more);
     641         1819 :             if (bms_overlap(join_plus_rhs, join_lateral_rels))
     642          186 :                 return false;   /* will not be able to join to some RHS rel */
     643              :         }
     644              :     }
     645              : 
     646              :     /* Otherwise, it's a valid join */
     647       174994 :     *sjinfo_p = match_sjinfo;
     648       174994 :     *reversed_p = reversed;
     649       174994 :     return true;
     650              : }
     651              : 
     652              : /*
     653              :  * init_dummy_sjinfo
     654              :  *    Populate the given SpecialJoinInfo for a plain inner join between the
     655              :  *    left and right relations specified by left_relids and right_relids
     656              :  *    respectively.
     657              :  *
     658              :  * Normally, an inner join does not have a SpecialJoinInfo node associated with
     659              :  * it. But some functions involved in join planning require one containing at
     660              :  * least the information of which relations are being joined.  So we initialize
     661              :  * that information here.
     662              :  */
     663              : void
     664       644125 : init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids,
     665              :                   Relids right_relids)
     666              : {
     667       644125 :     sjinfo->type = T_SpecialJoinInfo;
     668       644125 :     sjinfo->min_lefthand = left_relids;
     669       644125 :     sjinfo->min_righthand = right_relids;
     670       644125 :     sjinfo->syn_lefthand = left_relids;
     671       644125 :     sjinfo->syn_righthand = right_relids;
     672       644125 :     sjinfo->jointype = JOIN_INNER;
     673       644125 :     sjinfo->ojrelid = 0;
     674       644125 :     sjinfo->commute_above_l = NULL;
     675       644125 :     sjinfo->commute_above_r = NULL;
     676       644125 :     sjinfo->commute_below_l = NULL;
     677       644125 :     sjinfo->commute_below_r = NULL;
     678              :     /* we don't bother trying to make the remaining fields valid */
     679       644125 :     sjinfo->lhs_strict = false;
     680       644125 :     sjinfo->semi_can_btree = false;
     681       644125 :     sjinfo->semi_can_hash = false;
     682       644125 :     sjinfo->semi_operators = NIL;
     683       644125 :     sjinfo->semi_rhs_exprs = NIL;
     684       644125 : }
     685              : 
     686              : /*
     687              :  * make_join_rel
     688              :  *     Find or create a join RelOptInfo that represents the join of
     689              :  *     the two given rels, and add to it path information for paths
     690              :  *     created with the two rels as outer and inner rel.
     691              :  *     (The join rel may already contain paths generated from other
     692              :  *     pairs of rels that add up to the same set of base rels.)
     693              :  *
     694              :  * NB: will return NULL if attempted join is not valid.  This can happen
     695              :  * when working with outer joins, or with IN or EXISTS clauses that have been
     696              :  * turned into joins.
     697              :  */
     698              : RelOptInfo *
     699       180484 : make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
     700              : {
     701              :     Relids      joinrelids;
     702              :     SpecialJoinInfo *sjinfo;
     703              :     bool        reversed;
     704       180484 :     List       *pushed_down_joins = NIL;
     705              :     SpecialJoinInfo sjinfo_data;
     706              :     RelOptInfo *joinrel;
     707              :     List       *restrictlist;
     708              : 
     709              :     /* We should never try to join two overlapping sets of rels. */
     710              :     Assert(!bms_overlap(rel1->relids, rel2->relids));
     711              : 
     712              :     /* Construct Relids set that identifies the joinrel (without OJ as yet). */
     713       180484 :     joinrelids = bms_union(rel1->relids, rel2->relids);
     714              : 
     715              :     /* Check validity and determine join type. */
     716       180484 :     if (!join_is_legal(root, rel1, rel2, joinrelids,
     717              :                        &sjinfo, &reversed))
     718              :     {
     719              :         /* invalid join path */
     720         5616 :         bms_free(joinrelids);
     721         5616 :         return NULL;
     722              :     }
     723              : 
     724              :     /*
     725              :      * Add outer join relid(s) to form the canonical relids.  Any added outer
     726              :      * joins besides sjinfo itself are appended to pushed_down_joins.
     727              :      */
     728       174868 :     joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
     729              :                                            &pushed_down_joins);
     730              : 
     731              :     /* Swap rels if needed to match the join info. */
     732       174868 :     if (reversed)
     733              :     {
     734         4183 :         RelOptInfo *trel = rel1;
     735              : 
     736         4183 :         rel1 = rel2;
     737         4183 :         rel2 = trel;
     738              :     }
     739              : 
     740              :     /*
     741              :      * If it's a plain inner join, then we won't have found anything in
     742              :      * join_info_list.  Make up a SpecialJoinInfo so that selectivity
     743              :      * estimation functions will know what's being joined.
     744              :      */
     745       174868 :     if (sjinfo == NULL)
     746              :     {
     747       119642 :         sjinfo = &sjinfo_data;
     748       119642 :         init_dummy_sjinfo(sjinfo, rel1->relids, rel2->relids);
     749              :     }
     750              : 
     751              :     /*
     752              :      * Find or build the join RelOptInfo, and compute the restrictlist that
     753              :      * goes with this particular joining.
     754              :      */
     755       174868 :     joinrel = build_join_rel(root, joinrelids, rel1, rel2,
     756              :                              sjinfo, pushed_down_joins,
     757              :                              &restrictlist);
     758              : 
     759              :     /*
     760              :      * If we've already proven this join is empty, we needn't consider any
     761              :      * more paths for it.
     762              :      */
     763       174868 :     if (is_dummy_rel(joinrel))
     764              :     {
     765          252 :         bms_free(joinrelids);
     766          252 :         return joinrel;
     767              :     }
     768              : 
     769              :     /* Build a grouped join relation for 'joinrel' if possible. */
     770       174616 :     make_grouped_join_rel(root, rel1, rel2, joinrel, sjinfo,
     771              :                           restrictlist);
     772              : 
     773              :     /* Add paths to the join relation. */
     774       174616 :     populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
     775              :                                 restrictlist);
     776              : 
     777       174616 :     bms_free(joinrelids);
     778              : 
     779       174616 :     return joinrel;
     780              : }
     781              : 
     782              : /*
     783              :  * add_outer_joins_to_relids
     784              :  *    Add relids to input_relids to represent any outer joins that will be
     785              :  *    calculated at this join.
     786              :  *
     787              :  * input_relids is the union of the relid sets of the two input relations.
     788              :  * Note that we modify this in-place and return it; caller must bms_copy()
     789              :  * it first, if a separate value is desired.
     790              :  *
     791              :  * sjinfo represents the join being performed.
     792              :  *
     793              :  * If the current join completes the calculation of any outer joins that
     794              :  * have been pushed down per outer-join identity 3, those relids will be
     795              :  * added to the result along with sjinfo's own relid.  If pushed_down_joins
     796              :  * is not NULL, then also the SpecialJoinInfos for such added outer joins will
     797              :  * be appended to *pushed_down_joins (so caller must initialize it to NIL).
     798              :  */
     799              : Relids
     800       178585 : add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids,
     801              :                           SpecialJoinInfo *sjinfo,
     802              :                           List **pushed_down_joins)
     803              : {
     804              :     /* Nothing to do if this isn't an outer join with an assigned relid. */
     805       178585 :     if (sjinfo == NULL || sjinfo->ojrelid == 0)
     806       129030 :         return input_relids;
     807              : 
     808              :     /*
     809              :      * If it's not a left join, we have no rules that would permit executing
     810              :      * it in non-syntactic order, so just form the syntactic relid set.  (This
     811              :      * is just a quick-exit test; we'd come to the same conclusion anyway,
     812              :      * since its commute_below_l and commute_above_l sets must be empty.)
     813              :      */
     814        49555 :     if (sjinfo->jointype != JOIN_LEFT)
     815         1162 :         return bms_add_member(input_relids, sjinfo->ojrelid);
     816              : 
     817              :     /*
     818              :      * We cannot add the OJ relid if this join has been pushed into the RHS of
     819              :      * a syntactically-lower left join per OJ identity 3.  (If it has, then we
     820              :      * cannot claim that its outputs represent the final state of its RHS.)
     821              :      * There will not be any other OJs that can be added either, so we're
     822              :      * done.
     823              :      */
     824        48393 :     if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
     825         2470 :         return input_relids;
     826              : 
     827              :     /* OK to add OJ's own relid */
     828        45923 :     input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
     829              : 
     830              :     /*
     831              :      * Contrariwise, if we are now forming the final result of such a commuted
     832              :      * pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
     833              :      * We can skip this if this join was never a candidate to be pushed up.
     834              :      */
     835        45923 :     if (sjinfo->commute_above_l)
     836              :     {
     837         8832 :         Relids      commute_above_rels = bms_copy(sjinfo->commute_above_l);
     838              :         ListCell   *lc;
     839              : 
     840              :         /*
     841              :          * The current join could complete the nulling of more than one
     842              :          * pushed-down join, so we have to examine all the SpecialJoinInfos.
     843              :          * Because join_info_list was built in bottom-up order, it's
     844              :          * sufficient to traverse it once: an ojrelid we add in one loop
     845              :          * iteration would not have affected decisions of earlier iterations.
     846              :          */
     847        29700 :         foreach(lc, root->join_info_list)
     848              :         {
     849        20868 :             SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
     850              : 
     851        20868 :             if (othersj == sjinfo ||
     852        12036 :                 othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
     853         8838 :                 continue;       /* definitely not interesting */
     854              : 
     855        12030 :             if (!bms_is_member(othersj->ojrelid, commute_above_rels))
     856         3124 :                 continue;
     857              : 
     858              :             /* Add it if not already present but conditions now satisfied */
     859        17812 :             if (!bms_is_member(othersj->ojrelid, input_relids) &&
     860        17800 :                 bms_is_subset(othersj->min_lefthand, input_relids) &&
     861        13385 :                 bms_is_subset(othersj->min_righthand, input_relids) &&
     862         4491 :                 bms_is_subset(othersj->commute_below_l, input_relids))
     863              :             {
     864         4473 :                 input_relids = bms_add_member(input_relids, othersj->ojrelid);
     865              :                 /* report such pushed down outer joins, if asked */
     866         4473 :                 if (pushed_down_joins != NULL)
     867         4473 :                     *pushed_down_joins = lappend(*pushed_down_joins, othersj);
     868              : 
     869              :                 /*
     870              :                  * We must also check any joins that othersj potentially
     871              :                  * commutes with.  They likewise must appear later in
     872              :                  * join_info_list than othersj itself, so we can visit them
     873              :                  * later in this loop.
     874              :                  */
     875         4473 :                 commute_above_rels = bms_add_members(commute_above_rels,
     876         4473 :                                                      othersj->commute_above_l);
     877              :             }
     878              :         }
     879              :     }
     880              : 
     881        45923 :     return input_relids;
     882              : }
     883              : 
     884              : /*
     885              :  * make_grouped_join_rel
     886              :  *    Build a grouped join relation for the given "joinrel" if eager
     887              :  *    aggregation is applicable and the resulting grouped paths are considered
     888              :  *    useful.
     889              :  *
     890              :  * There are two strategies for generating grouped paths for a join relation:
     891              :  *
     892              :  * 1. Join a grouped (partially aggregated) input relation with a non-grouped
     893              :  * input (e.g., AGG(B) JOIN A).
     894              :  *
     895              :  * 2. Apply partial aggregation (sorted or hashed) on top of existing
     896              :  * non-grouped join paths (e.g., AGG(A JOIN B)).
     897              :  *
     898              :  * To limit planning effort and avoid an explosion of alternatives, we adopt a
     899              :  * strategy where partial aggregation is only pushed to the lowest possible
     900              :  * level in the join tree that is deemed useful.  That is, if grouped paths can
     901              :  * be built using the first strategy, we skip consideration of the second
     902              :  * strategy for the same join level.
     903              :  *
     904              :  * Additionally, if there are multiple lowest useful levels where partial
     905              :  * aggregation could be applied, such as in a join tree with relations A, B,
     906              :  * and C where both "AGG(A JOIN B) JOIN C" and "A JOIN AGG(B JOIN C)" are valid
     907              :  * placements, we choose only the first one encountered during join search.
     908              :  * This avoids generating multiple versions of the same grouped relation based
     909              :  * on different aggregation placements.
     910              :  *
     911              :  * These heuristics also ensure that all grouped paths for the same grouped
     912              :  * relation produce the same set of rows, which is a basic assumption in the
     913              :  * planner.
     914              :  */
     915              : static void
     916       184313 : make_grouped_join_rel(PlannerInfo *root, RelOptInfo *rel1,
     917              :                       RelOptInfo *rel2, RelOptInfo *joinrel,
     918              :                       SpecialJoinInfo *sjinfo, List *restrictlist)
     919              : {
     920              :     RelOptInfo *grouped_rel;
     921              :     RelOptInfo *grouped_rel1;
     922              :     RelOptInfo *grouped_rel2;
     923              :     bool        rel1_empty;
     924              :     bool        rel2_empty;
     925              :     Relids      apply_agg_at;
     926              : 
     927              :     /*
     928              :      * If there are no aggregate expressions or grouping expressions, eager
     929              :      * aggregation is not possible.
     930              :      */
     931       184313 :     if (root->agg_clause_list == NIL ||
     932         9389 :         root->group_expr_list == NIL)
     933       175041 :         return;
     934              : 
     935              :     /* Retrieve the grouped relations for the two input rels */
     936         9272 :     grouped_rel1 = rel1->grouped_rel;
     937         9272 :     grouped_rel2 = rel2->grouped_rel;
     938              : 
     939         9272 :     rel1_empty = (grouped_rel1 == NULL || IS_DUMMY_REL(grouped_rel1));
     940         9272 :     rel2_empty = (grouped_rel2 == NULL || IS_DUMMY_REL(grouped_rel2));
     941              : 
     942              :     /* Find or construct a grouped joinrel for this joinrel */
     943         9272 :     grouped_rel = joinrel->grouped_rel;
     944         9272 :     if (grouped_rel == NULL)
     945              :     {
     946         8984 :         RelAggInfo *agg_info = NULL;
     947              : 
     948              :         /*
     949              :          * Prepare the information needed to create grouped paths for this
     950              :          * join relation.
     951              :          */
     952         8984 :         agg_info = create_rel_agg_info(root, joinrel, rel1_empty == rel2_empty);
     953         8984 :         if (agg_info == NULL)
     954          420 :             return;
     955              : 
     956              :         /*
     957              :          * If grouped paths for the given join relation are not considered
     958              :          * useful, and no grouped paths can be built by joining grouped input
     959              :          * relations, skip building the grouped join relation.
     960              :          */
     961         8564 :         if (!agg_info->agg_useful &&
     962              :             (rel1_empty == rel2_empty))
     963          129 :             return;
     964              : 
     965              :         /* build the grouped relation */
     966         8435 :         grouped_rel = build_grouped_rel(root, joinrel);
     967         8435 :         grouped_rel->reltarget = agg_info->target;
     968              : 
     969         8435 :         if (rel1_empty != rel2_empty)
     970              :         {
     971              :             /*
     972              :              * If there is exactly one grouped input relation, then we can
     973              :              * build grouped paths by joining the input relations.  Set size
     974              :              * estimates for the grouped join relation based on the input
     975              :              * relations, and update the set of relids where partial
     976              :              * aggregation is applied to that of the grouped input relation.
     977              :              */
     978         8105 :             set_joinrel_size_estimates(root, grouped_rel,
     979              :                                        rel1_empty ? rel1 : grouped_rel1,
     980              :                                        rel2_empty ? rel2 : grouped_rel2,
     981              :                                        sjinfo, restrictlist);
     982         8105 :             agg_info->apply_agg_at = rel1_empty ?
     983         8105 :                 grouped_rel2->agg_info->apply_agg_at :
     984         4016 :                 grouped_rel1->agg_info->apply_agg_at;
     985              :         }
     986              :         else
     987              :         {
     988              :             /*
     989              :              * Otherwise, grouped paths can be built by applying partial
     990              :              * aggregation on top of existing non-grouped join paths.  Set
     991              :              * size estimates for the grouped join relation based on the
     992              :              * estimated number of groups, and track the set of relids where
     993              :              * partial aggregation is applied.  Note that these values may be
     994              :              * updated later if it is determined that grouped paths can be
     995              :              * constructed by joining other input relations.
     996              :              */
     997          330 :             grouped_rel->rows = agg_info->grouped_rows;
     998          330 :             agg_info->apply_agg_at = bms_copy(joinrel->relids);
     999              :         }
    1000              : 
    1001         8435 :         grouped_rel->agg_info = agg_info;
    1002         8435 :         joinrel->grouped_rel = grouped_rel;
    1003              :     }
    1004              : 
    1005              :     Assert(IS_GROUPED_REL(grouped_rel));
    1006              : 
    1007              :     /* We may have already proven this grouped join relation to be dummy. */
    1008         8723 :     if (IS_DUMMY_REL(grouped_rel))
    1009            0 :         return;
    1010              : 
    1011              :     /*
    1012              :      * Nothing to do if there's no grouped input relation.  Also, joining two
    1013              :      * grouped relations is not currently supported.
    1014              :      */
    1015         8723 :     if (rel1_empty == rel2_empty)
    1016          474 :         return;
    1017              : 
    1018              :     /*
    1019              :      * Get the set of relids where partial aggregation is applied among the
    1020              :      * given input relations.
    1021              :      */
    1022         8249 :     apply_agg_at = rel1_empty ?
    1023         8249 :         grouped_rel2->agg_info->apply_agg_at :
    1024         4160 :         grouped_rel1->agg_info->apply_agg_at;
    1025              : 
    1026              :     /*
    1027              :      * If it's not the designated level, skip building grouped paths.
    1028              :      *
    1029              :      * One exception is when it is a subset of the previously recorded level.
    1030              :      * In that case, we need to update the designated level to this one, and
    1031              :      * adjust the size estimates for the grouped join relation accordingly.
    1032              :      * For example, suppose partial aggregation can be applied on top of (B
    1033              :      * JOIN C).  If we first construct the join as ((A JOIN B) JOIN C), we'd
    1034              :      * record the designated level as including all three relations (A B C).
    1035              :      * Later, when we consider (A JOIN (B JOIN C)), we encounter the smaller
    1036              :      * (B C) join level directly.  Since this is a subset of the previous
    1037              :      * level and still valid for partial aggregation, we update the designated
    1038              :      * level to (B C), and adjust the size estimates accordingly.
    1039              :      */
    1040         8249 :     if (!bms_equal(apply_agg_at, grouped_rel->agg_info->apply_agg_at))
    1041              :     {
    1042          144 :         if (bms_is_subset(apply_agg_at, grouped_rel->agg_info->apply_agg_at))
    1043              :         {
    1044              :             /* Adjust the size estimates for the grouped join relation. */
    1045          144 :             set_joinrel_size_estimates(root, grouped_rel,
    1046              :                                        rel1_empty ? rel1 : grouped_rel1,
    1047              :                                        rel2_empty ? rel2 : grouped_rel2,
    1048              :                                        sjinfo, restrictlist);
    1049          144 :             grouped_rel->agg_info->apply_agg_at = apply_agg_at;
    1050              :         }
    1051              :         else
    1052            0 :             return;
    1053              :     }
    1054              : 
    1055              :     /* Make paths for the grouped join relation. */
    1056         8249 :     populate_joinrel_with_paths(root,
    1057              :                                 rel1_empty ? rel1 : grouped_rel1,
    1058              :                                 rel2_empty ? rel2 : grouped_rel2,
    1059              :                                 grouped_rel,
    1060              :                                 sjinfo,
    1061              :                                 restrictlist);
    1062              : }
    1063              : 
    1064              : /*
    1065              :  * populate_joinrel_with_paths
    1066              :  *    Add paths to the given joinrel for given pair of joining relations. The
    1067              :  *    SpecialJoinInfo provides details about the join and the restrictlist
    1068              :  *    contains the join clauses and the other clauses applicable for given pair
    1069              :  *    of the joining relations.
    1070              :  */
    1071              : static void
    1072       192562 : populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
    1073              :                             RelOptInfo *rel2, RelOptInfo *joinrel,
    1074              :                             SpecialJoinInfo *sjinfo, List *restrictlist)
    1075              : {
    1076              :     RelOptInfo *unique_rel2;
    1077              : 
    1078              :     /*
    1079              :      * Consider paths using each rel as both outer and inner.  Depending on
    1080              :      * the join type, a provably empty outer or inner rel might mean the join
    1081              :      * is provably empty too; in which case throw away any previously computed
    1082              :      * paths and mark the join as dummy.  (We do it this way since it's
    1083              :      * conceivable that dummy-ness of a multi-element join might only be
    1084              :      * noticeable for certain construction paths.)
    1085              :      *
    1086              :      * Also, a provably constant-false join restriction typically means that
    1087              :      * we can skip evaluating one or both sides of the join.  We do this by
    1088              :      * marking the appropriate rel as dummy.  For outer joins, a
    1089              :      * constant-false restriction that is pushed down still means the whole
    1090              :      * join is dummy, while a non-pushed-down one means that no inner rows
    1091              :      * will join so we can treat the inner rel as dummy.
    1092              :      *
    1093              :      * We need only consider the jointypes that appear in join_info_list, plus
    1094              :      * JOIN_INNER.
    1095              :      */
    1096       192562 :     switch (sjinfo->jointype)
    1097              :     {
    1098       135752 :         case JOIN_INNER:
    1099       271489 :             if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1100       135737 :                 restriction_is_constant_false(restrictlist, joinrel, false))
    1101              :             {
    1102          108 :                 mark_dummy_rel(joinrel);
    1103          108 :                 break;
    1104              :             }
    1105       135644 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1106              :                                  JOIN_INNER, sjinfo,
    1107              :                                  restrictlist);
    1108       135644 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1109              :                                  JOIN_INNER, sjinfo,
    1110              :                                  restrictlist);
    1111       135644 :             break;
    1112        49238 :         case JOIN_LEFT:
    1113        98449 :             if (is_dummy_rel(rel1) ||
    1114        49211 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1115              :             {
    1116           43 :                 mark_dummy_rel(joinrel);
    1117           43 :                 break;
    1118              :             }
    1119        49303 :             if (restriction_is_constant_false(restrictlist, joinrel, false) &&
    1120          108 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
    1121           96 :                 mark_dummy_rel(rel2);
    1122        49195 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1123              :                                  JOIN_LEFT, sjinfo,
    1124              :                                  restrictlist);
    1125        49195 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1126              :                                  JOIN_RIGHT, sjinfo,
    1127              :                                  restrictlist);
    1128        49195 :             break;
    1129          869 :         case JOIN_FULL:
    1130         1738 :             if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
    1131          869 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1132              :             {
    1133            6 :                 mark_dummy_rel(joinrel);
    1134            6 :                 break;
    1135              :             }
    1136          863 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1137              :                                  JOIN_FULL, sjinfo,
    1138              :                                  restrictlist);
    1139          863 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1140              :                                  JOIN_FULL, sjinfo,
    1141              :                                  restrictlist);
    1142              : 
    1143              :             /*
    1144              :              * If there are join quals that aren't mergeable or hashable, we
    1145              :              * may not be able to build any valid plan.  Complain here so that
    1146              :              * we can give a somewhat-useful error message.  (Since we have no
    1147              :              * flexibility of planning for a full join, there's no chance of
    1148              :              * succeeding later with another pair of input rels.)
    1149              :              */
    1150          863 :             if (joinrel->pathlist == NIL)
    1151            0 :                 ereport(ERROR,
    1152              :                         (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
    1153              :                          errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
    1154          863 :             break;
    1155         4047 :         case JOIN_SEMI:
    1156              : 
    1157              :             /*
    1158              :              * We might have a normal semijoin, or a case where we don't have
    1159              :              * enough rels to do the semijoin but can unique-ify the RHS and
    1160              :              * then do an innerjoin (see comments in join_is_legal).  In the
    1161              :              * latter case we can't apply JOIN_SEMI joining.
    1162              :              */
    1163         7879 :             if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
    1164         3832 :                 bms_is_subset(sjinfo->min_righthand, rel2->relids))
    1165              :             {
    1166         7661 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1167         3829 :                     restriction_is_constant_false(restrictlist, joinrel, false))
    1168              :                 {
    1169            6 :                     mark_dummy_rel(joinrel);
    1170            6 :                     break;
    1171              :                 }
    1172         3826 :                 add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1173              :                                      JOIN_SEMI, sjinfo,
    1174              :                                      restrictlist);
    1175         3826 :                 add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1176              :                                      JOIN_RIGHT_SEMI, sjinfo,
    1177              :                                      restrictlist);
    1178              :             }
    1179              : 
    1180              :             /*
    1181              :              * If we know how to unique-ify the RHS and one input rel is
    1182              :              * exactly the RHS (not a superset) we can consider unique-ifying
    1183              :              * it and then doing a regular join.  (The create_unique_paths
    1184              :              * check here is probably redundant with what join_is_legal did,
    1185              :              * but if so the check is cheap because it's cached.  So test
    1186              :              * anyway to be sure.)
    1187              :              */
    1188         8082 :             if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
    1189         4041 :                 (unique_rel2 = create_unique_paths(root, rel2, sjinfo)) != NULL)
    1190              :             {
    1191         6336 :                 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
    1192         3168 :                     restriction_is_constant_false(restrictlist, joinrel, false))
    1193              :                 {
    1194            0 :                     mark_dummy_rel(joinrel);
    1195            0 :                     break;
    1196              :                 }
    1197         3168 :                 add_paths_to_joinrel(root, joinrel, rel1, unique_rel2,
    1198              :                                      JOIN_UNIQUE_INNER, sjinfo,
    1199              :                                      restrictlist);
    1200         3168 :                 add_paths_to_joinrel(root, joinrel, unique_rel2, rel1,
    1201              :                                      JOIN_UNIQUE_OUTER, sjinfo,
    1202              :                                      restrictlist);
    1203              :             }
    1204         4041 :             break;
    1205         2656 :         case JOIN_ANTI:
    1206         5312 :             if (is_dummy_rel(rel1) ||
    1207         2656 :                 restriction_is_constant_false(restrictlist, joinrel, true))
    1208              :             {
    1209            0 :                 mark_dummy_rel(joinrel);
    1210            0 :                 break;
    1211              :             }
    1212         2656 :             if (restriction_is_constant_false(restrictlist, joinrel, false) &&
    1213            0 :                 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
    1214            0 :                 mark_dummy_rel(rel2);
    1215         2656 :             add_paths_to_joinrel(root, joinrel, rel1, rel2,
    1216              :                                  JOIN_ANTI, sjinfo,
    1217              :                                  restrictlist);
    1218         2656 :             add_paths_to_joinrel(root, joinrel, rel2, rel1,
    1219              :                                  JOIN_RIGHT_ANTI, sjinfo,
    1220              :                                  restrictlist);
    1221         2656 :             break;
    1222            0 :         default:
    1223              :             /* other values not expected here */
    1224            0 :             elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
    1225              :             break;
    1226              :     }
    1227              : 
    1228              :     /* Apply partitionwise join technique, if possible. */
    1229       192562 :     try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
    1230       192562 : }
    1231              : 
    1232              : 
    1233              : /*
    1234              :  * have_join_order_restriction
    1235              :  *      Detect whether the two relations should be joined to satisfy
    1236              :  *      a join-order restriction arising from special or lateral joins.
    1237              :  *
    1238              :  * In practice this is always used with have_relevant_joinclause(), and so
    1239              :  * could be merged with that function, but it seems clearer to separate the
    1240              :  * two concerns.  We need this test because there are degenerate cases where
    1241              :  * a clauseless join must be performed to satisfy join-order restrictions.
    1242              :  * Also, if one rel has a lateral reference to the other, or both are needed
    1243              :  * to compute some PHV, we should consider joining them even if the join would
    1244              :  * be clauseless.
    1245              :  *
    1246              :  * Note: this is only a problem if one side of a degenerate outer join
    1247              :  * contains multiple rels, or a clauseless join is required within an
    1248              :  * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
    1249              :  * join_search_one_level().  We could dispense with this test if we were
    1250              :  * willing to try bushy plans in the "last ditch" case, but that seems much
    1251              :  * less efficient.
    1252              :  */
    1253              : bool
    1254        44158 : have_join_order_restriction(PlannerInfo *root,
    1255              :                             RelOptInfo *rel1, RelOptInfo *rel2)
    1256              : {
    1257        44158 :     bool        result = false;
    1258              :     ListCell   *l;
    1259              : 
    1260              :     /*
    1261              :      * If either side has a direct lateral reference to the other, attempt the
    1262              :      * join regardless of outer-join considerations.
    1263              :      */
    1264        83245 :     if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
    1265        39087 :         bms_overlap(rel2->relids, rel1->direct_lateral_relids))
    1266         6005 :         return true;
    1267              : 
    1268              :     /*
    1269              :      * Likewise, if both rels are needed to compute some PlaceHolderVar,
    1270              :      * attempt the join regardless of outer-join considerations.  (This is not
    1271              :      * very desirable, because a PHV with a large eval_at set will cause a lot
    1272              :      * of probably-useless joins to be considered, but failing to do this can
    1273              :      * cause us to fail to construct a plan at all.)
    1274              :      */
    1275        39094 :     foreach(l, root->placeholder_list)
    1276              :     {
    1277          971 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1278              : 
    1279         1166 :         if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
    1280          195 :             bms_is_subset(rel2->relids, phinfo->ph_eval_at))
    1281           30 :             return true;
    1282              :     }
    1283              : 
    1284              :     /*
    1285              :      * It's possible that the rels correspond to the left and right sides of a
    1286              :      * degenerate outer join, that is, one with no joinclause mentioning the
    1287              :      * non-nullable side; in which case we should force the join to occur.
    1288              :      *
    1289              :      * Also, the two rels could represent a clauseless join that has to be
    1290              :      * completed to build up the LHS or RHS of an outer join.
    1291              :      */
    1292        96517 :     foreach(l, root->join_info_list)
    1293              :     {
    1294        59144 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
    1295              : 
    1296              :         /* ignore full joins --- other mechanisms handle them */
    1297        59144 :         if (sjinfo->jointype == JOIN_FULL)
    1298           21 :             continue;
    1299              : 
    1300              :         /* Can we perform the SJ with these rels? */
    1301        72601 :         if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
    1302        13478 :             bms_is_subset(sjinfo->min_righthand, rel2->relids))
    1303              :         {
    1304          549 :             result = true;
    1305          549 :             break;
    1306              :         }
    1307        62248 :         if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
    1308         3674 :             bms_is_subset(sjinfo->min_righthand, rel1->relids))
    1309              :         {
    1310          105 :             result = true;
    1311          105 :             break;
    1312              :         }
    1313              : 
    1314              :         /*
    1315              :          * Might we need to join these rels to complete the RHS?  We have to
    1316              :          * use "overlap" tests since either rel might include a lower SJ that
    1317              :          * has been proven to commute with this one.
    1318              :          */
    1319        70517 :         if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
    1320        12048 :             bms_overlap(sjinfo->min_righthand, rel2->relids))
    1321              :         {
    1322           60 :             result = true;
    1323           60 :             break;
    1324              :         }
    1325              : 
    1326              :         /* Likewise for the LHS. */
    1327        72854 :         if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
    1328        14445 :             bms_overlap(sjinfo->min_lefthand, rel2->relids))
    1329              :         {
    1330           36 :             result = true;
    1331           36 :             break;
    1332              :         }
    1333              :     }
    1334              : 
    1335              :     /*
    1336              :      * We do not force the join to occur if either input rel can legally be
    1337              :      * joined to anything else using joinclauses.  This essentially means that
    1338              :      * clauseless bushy joins are put off as long as possible. The reason is
    1339              :      * that when there is a join order restriction high up in the join tree
    1340              :      * (that is, with many rels inside the LHS or RHS), we would otherwise
    1341              :      * expend lots of effort considering very stupid join combinations within
    1342              :      * its LHS or RHS.
    1343              :      */
    1344        38123 :     if (result)
    1345              :     {
    1346         1431 :         if (has_legal_joinclause(root, rel1) ||
    1347          681 :             has_legal_joinclause(root, rel2))
    1348          126 :             result = false;
    1349              :     }
    1350              : 
    1351        38123 :     return result;
    1352              : }
    1353              : 
    1354              : 
    1355              : /*
    1356              :  * has_join_restriction
    1357              :  *      Detect whether the specified relation has join-order restrictions,
    1358              :  *      due to being inside an outer join or an IN (sub-SELECT),
    1359              :  *      or participating in any LATERAL references or multi-rel PHVs.
    1360              :  *
    1361              :  * Essentially, this tests whether have_join_order_restriction() could
    1362              :  * succeed with this rel and some other one.  It's OK if we sometimes
    1363              :  * say "true" incorrectly.  (Therefore, we don't bother with the relatively
    1364              :  * expensive has_legal_joinclause test.)
    1365              :  */
    1366              : static bool
    1367        16302 : has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
    1368              : {
    1369              :     ListCell   *l;
    1370              : 
    1371        16302 :     if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
    1372         9426 :         return true;
    1373              : 
    1374         7296 :     foreach(l, root->placeholder_list)
    1375              :     {
    1376          444 :         PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
    1377              : 
    1378          444 :         if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
    1379          114 :             !bms_equal(rel->relids, phinfo->ph_eval_at))
    1380           24 :             return true;
    1381              :     }
    1382              : 
    1383         7258 :     foreach(l, root->join_info_list)
    1384              :     {
    1385         1504 :         SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
    1386              : 
    1387              :         /* ignore full joins --- other mechanisms preserve their ordering */
    1388         1504 :         if (sjinfo->jointype == JOIN_FULL)
    1389           43 :             continue;
    1390              : 
    1391              :         /* ignore if SJ is already contained in rel */
    1392         2256 :         if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
    1393          795 :             bms_is_subset(sjinfo->min_righthand, rel->relids))
    1394          195 :             continue;
    1395              : 
    1396              :         /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
    1397         1920 :         if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
    1398          654 :             bms_overlap(sjinfo->min_righthand, rel->relids))
    1399         1098 :             return true;
    1400              :     }
    1401              : 
    1402         5754 :     return false;
    1403              : }
    1404              : 
    1405              : 
    1406              : /*
    1407              :  * has_legal_joinclause
    1408              :  *      Detect whether the specified relation can legally be joined
    1409              :  *      to any other rels using join clauses.
    1410              :  *
    1411              :  * We consider only joins to single other relations in the current
    1412              :  * initial_rels list.  This is sufficient to get a "true" result in most real
    1413              :  * queries, and an occasional erroneous "false" will only cost a bit more
    1414              :  * planning time.  The reason for this limitation is that considering joins to
    1415              :  * other joins would require proving that the other join rel can legally be
    1416              :  * formed, which seems like too much trouble for something that's only a
    1417              :  * heuristic to save planning time.  (Note: we must look at initial_rels
    1418              :  * and not all of the query, since when we are planning a sub-joinlist we
    1419              :  * may be forced to make clauseless joins within initial_rels even though
    1420              :  * there are join clauses linking to other parts of the query.)
    1421              :  */
    1422              : static bool
    1423         1431 : has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
    1424              : {
    1425              :     ListCell   *lc;
    1426              : 
    1427         5295 :     foreach(lc, root->initial_rels)
    1428              :     {
    1429         3990 :         RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
    1430              : 
    1431              :         /* ignore rels that are already in "rel" */
    1432         3990 :         if (bms_overlap(rel->relids, rel2->relids))
    1433         1683 :             continue;
    1434              : 
    1435         2307 :         if (have_relevant_joinclause(root, rel, rel2))
    1436              :         {
    1437              :             Relids      joinrelids;
    1438              :             SpecialJoinInfo *sjinfo;
    1439              :             bool        reversed;
    1440              : 
    1441              :             /* join_is_legal needs relids of the union */
    1442          228 :             joinrelids = bms_union(rel->relids, rel2->relids);
    1443              : 
    1444          228 :             if (join_is_legal(root, rel, rel2, joinrelids,
    1445              :                               &sjinfo, &reversed))
    1446              :             {
    1447              :                 /* Yes, this will work */
    1448          126 :                 bms_free(joinrelids);
    1449          126 :                 return true;
    1450              :             }
    1451              : 
    1452          102 :             bms_free(joinrelids);
    1453              :         }
    1454              :     }
    1455              : 
    1456         1305 :     return false;
    1457              : }
    1458              : 
    1459              : 
    1460              : /*
    1461              :  * is_dummy_rel --- has relation been proven empty?
    1462              :  */
    1463              : bool
    1464      1516985 : is_dummy_rel(RelOptInfo *rel)
    1465              : {
    1466              :     Path       *path;
    1467              : 
    1468              :     /*
    1469              :      * A rel that is known dummy will have just one path that is a childless
    1470              :      * Append.  (Even if somehow it has more paths, a childless Append will
    1471              :      * have cost zero and hence should be at the front of the pathlist.)
    1472              :      */
    1473      1516985 :     if (rel->pathlist == NIL)
    1474       756942 :         return false;
    1475       760043 :     path = (Path *) linitial(rel->pathlist);
    1476              : 
    1477              :     /*
    1478              :      * Initially, a dummy path will just be a childless Append.  But in later
    1479              :      * planning stages we might stick a ProjectSetPath and/or ProjectionPath
    1480              :      * on top, since Append can't project.  Rather than make assumptions about
    1481              :      * which combinations can occur, just descend through whatever we find.
    1482              :      */
    1483              :     for (;;)
    1484              :     {
    1485       799309 :         if (IsA(path, ProjectionPath))
    1486        34584 :             path = ((ProjectionPath *) path)->subpath;
    1487       764725 :         else if (IsA(path, ProjectSetPath))
    1488         4682 :             path = ((ProjectSetPath *) path)->subpath;
    1489              :         else
    1490       760043 :             break;
    1491              :     }
    1492       760043 :     if (IS_DUMMY_APPEND(path))
    1493         2456 :         return true;
    1494       757587 :     return false;
    1495              : }
    1496              : 
    1497              : /*
    1498              :  * Mark a relation as proven empty.
    1499              :  *
    1500              :  * During GEQO planning, this can get invoked more than once on the same
    1501              :  * baserel struct, so it's worth checking to see if the rel is already marked
    1502              :  * dummy.
    1503              :  *
    1504              :  * Also, when called during GEQO join planning, we are in a short-lived
    1505              :  * memory context.  We must make sure that the dummy path attached to a
    1506              :  * baserel survives the GEQO cycle, else the baserel is trashed for future
    1507              :  * GEQO cycles.  On the other hand, when we are marking a joinrel during GEQO,
    1508              :  * we don't want the dummy path to clutter the main planning context.  Upshot
    1509              :  * is that the best solution is to explicitly make the dummy path in the same
    1510              :  * context the given RelOptInfo is in.
    1511              :  */
    1512              : void
    1513          366 : mark_dummy_rel(RelOptInfo *rel)
    1514              : {
    1515              :     MemoryContext oldcontext;
    1516          366 :     AppendPathInput in = {0};
    1517              : 
    1518              :     /* Already marked? */
    1519          366 :     if (is_dummy_rel(rel))
    1520            9 :         return;
    1521              : 
    1522              :     /* No, so choose correct context to make the dummy path in */
    1523          357 :     oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
    1524              : 
    1525              :     /* Set dummy size estimate */
    1526          357 :     rel->rows = 0;
    1527              : 
    1528              :     /* Evict any previously chosen paths */
    1529          357 :     rel->pathlist = NIL;
    1530          357 :     rel->partial_pathlist = NIL;
    1531              : 
    1532              :     /* Set up the dummy path */
    1533          357 :     add_path(rel, (Path *) create_append_path(NULL, rel, in,
    1534              :                                               NIL, rel->lateral_relids,
    1535              :                                               0, false, -1));
    1536              : 
    1537              :     /* Set or update cheapest_total_path and related fields */
    1538          357 :     set_cheapest(rel);
    1539              : 
    1540          357 :     MemoryContextSwitchTo(oldcontext);
    1541              : }
    1542              : 
    1543              : 
    1544              : /*
    1545              :  * restriction_is_constant_false --- is a restrictlist just FALSE?
    1546              :  *
    1547              :  * In cases where a qual is provably constant FALSE, eval_const_expressions
    1548              :  * will generally have thrown away anything that's ANDed with it.  In outer
    1549              :  * join situations this will leave us computing cartesian products only to
    1550              :  * decide there's no match for an outer row, which is pretty stupid.  So,
    1551              :  * we need to detect the case.
    1552              :  *
    1553              :  * If only_pushed_down is true, then consider only quals that are pushed-down
    1554              :  * from the point of view of the joinrel.
    1555              :  */
    1556              : static bool
    1557       247321 : restriction_is_constant_false(List *restrictlist,
    1558              :                               RelOptInfo *joinrel,
    1559              :                               bool only_pushed_down)
    1560              : {
    1561              :     ListCell   *lc;
    1562              : 
    1563              :     /*
    1564              :      * Despite the above comment, the restriction list we see here might
    1565              :      * possibly have other members besides the FALSE constant, since other
    1566              :      * quals could get "pushed down" to the outer join level.  So we check
    1567              :      * each member of the list.
    1568              :      */
    1569       525407 :     foreach(lc, restrictlist)
    1570              :     {
    1571       278312 :         RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
    1572              : 
    1573       278312 :         if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    1574        65757 :             continue;
    1575              : 
    1576       212555 :         if (rinfo->clause && IsA(rinfo->clause, Const))
    1577              :         {
    1578         2667 :             Const      *con = (Const *) rinfo->clause;
    1579              : 
    1580              :             /* constant NULL is as good as constant FALSE for our purposes */
    1581         2667 :             if (con->constisnull)
    1582          226 :                 return true;
    1583         2613 :             if (!DatumGetBool(con->constvalue))
    1584          172 :                 return true;
    1585              :         }
    1586              :     }
    1587       247095 :     return false;
    1588              : }
    1589              : 
    1590              : /*
    1591              :  * Assess whether join between given two partitioned relations can be broken
    1592              :  * down into joins between matching partitions; a technique called
    1593              :  * "partitionwise join"
    1594              :  *
    1595              :  * Partitionwise join is possible when a. Joining relations have same
    1596              :  * partitioning scheme b. There exists an equi-join between the partition keys
    1597              :  * of the two relations.
    1598              :  *
    1599              :  * Partitionwise join is planned as follows (details: optimizer/README.)
    1600              :  *
    1601              :  * 1. Create the RelOptInfos for joins between matching partitions i.e
    1602              :  * child-joins and add paths to them.
    1603              :  *
    1604              :  * 2. Construct Append or MergeAppend paths across the set of child joins.
    1605              :  * This second phase is implemented by generate_partitionwise_join_paths().
    1606              :  *
    1607              :  * The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
    1608              :  * obtained by translating the respective parent join structures.
    1609              :  */
    1610              : static void
    1611       192562 : try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
    1612              :                        RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
    1613              :                        List *parent_restrictlist)
    1614              : {
    1615       192562 :     bool        rel1_is_simple = IS_SIMPLE_REL(rel1);
    1616       192562 :     bool        rel2_is_simple = IS_SIMPLE_REL(rel2);
    1617       192562 :     List       *parts1 = NIL;
    1618       192562 :     List       *parts2 = NIL;
    1619       192562 :     ListCell   *lcr1 = NULL;
    1620       192562 :     ListCell   *lcr2 = NULL;
    1621              :     int         cnt_parts;
    1622              : 
    1623              :     /* Guard against stack overflow due to overly deep partition hierarchy. */
    1624       192562 :     check_stack_depth();
    1625              : 
    1626              :     /* Nothing to do, if the join relation is not partitioned. */
    1627       192562 :     if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
    1628       188739 :         return;
    1629              : 
    1630              :     /* The join relation should have consider_partitionwise_join set. */
    1631              :     Assert(joinrel->consider_partitionwise_join);
    1632              : 
    1633              :     /*
    1634              :      * We can not perform partitionwise join if either of the joining
    1635              :      * relations is not partitioned.
    1636              :      */
    1637         3892 :     if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
    1638            9 :         return;
    1639              : 
    1640              :     Assert(REL_HAS_ALL_PART_PROPS(rel1) && REL_HAS_ALL_PART_PROPS(rel2));
    1641              : 
    1642              :     /* The joining relations should have consider_partitionwise_join set. */
    1643              :     Assert(rel1->consider_partitionwise_join &&
    1644              :            rel2->consider_partitionwise_join);
    1645              : 
    1646              :     /*
    1647              :      * The partition scheme of the join relation should match that of the
    1648              :      * joining relations.
    1649              :      */
    1650              :     Assert(joinrel->part_scheme == rel1->part_scheme &&
    1651              :            joinrel->part_scheme == rel2->part_scheme);
    1652              : 
    1653              :     Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
    1654              : 
    1655         3883 :     compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
    1656              :                              &parts1, &parts2);
    1657              : 
    1658         3883 :     if (joinrel->partbounds_merged)
    1659              :     {
    1660          384 :         lcr1 = list_head(parts1);
    1661          384 :         lcr2 = list_head(parts2);
    1662              :     }
    1663              : 
    1664              :     /*
    1665              :      * Create child-join relations for this partitioned join, if those don't
    1666              :      * exist. Add paths to child-joins for a pair of child relations
    1667              :      * corresponding to the given pair of parent relations.
    1668              :      */
    1669        13618 :     for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
    1670              :     {
    1671              :         RelOptInfo *child_rel1;
    1672              :         RelOptInfo *child_rel2;
    1673              :         bool        rel1_empty;
    1674              :         bool        rel2_empty;
    1675              :         SpecialJoinInfo *child_sjinfo;
    1676              :         List       *child_restrictlist;
    1677              :         RelOptInfo *child_joinrel;
    1678              :         AppendRelInfo **appinfos;
    1679              :         int         nappinfos;
    1680              :         Relids      child_relids;
    1681              : 
    1682         9795 :         if (joinrel->partbounds_merged)
    1683              :         {
    1684         1005 :             child_rel1 = lfirst_node(RelOptInfo, lcr1);
    1685         1005 :             child_rel2 = lfirst_node(RelOptInfo, lcr2);
    1686         1005 :             lcr1 = lnext(parts1, lcr1);
    1687         1005 :             lcr2 = lnext(parts2, lcr2);
    1688              :         }
    1689              :         else
    1690              :         {
    1691         8790 :             child_rel1 = rel1->part_rels[cnt_parts];
    1692         8790 :             child_rel2 = rel2->part_rels[cnt_parts];
    1693              :         }
    1694              : 
    1695         9795 :         rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
    1696         9795 :         rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
    1697              : 
    1698              :         /*
    1699              :          * Check for cases where we can prove that this segment of the join
    1700              :          * returns no rows, due to one or both inputs being empty (including
    1701              :          * inputs that have been pruned away entirely).  If so just ignore it.
    1702              :          * These rules are equivalent to populate_joinrel_with_paths's rules
    1703              :          * for dummy input relations.
    1704              :          */
    1705         9795 :         switch (parent_sjinfo->jointype)
    1706              :         {
    1707         8386 :             case JOIN_INNER:
    1708              :             case JOIN_SEMI:
    1709         8386 :                 if (rel1_empty || rel2_empty)
    1710           38 :                     continue;   /* ignore this join segment */
    1711         8362 :                 break;
    1712         1048 :             case JOIN_LEFT:
    1713              :             case JOIN_ANTI:
    1714         1048 :                 if (rel1_empty)
    1715           14 :                     continue;   /* ignore this join segment */
    1716         1034 :                 break;
    1717          361 :             case JOIN_FULL:
    1718          361 :                 if (rel1_empty && rel2_empty)
    1719            0 :                     continue;   /* ignore this join segment */
    1720          361 :                 break;
    1721            0 :             default:
    1722              :                 /* other values not expected here */
    1723            0 :                 elog(ERROR, "unrecognized join type: %d",
    1724              :                      (int) parent_sjinfo->jointype);
    1725              :                 break;
    1726              :         }
    1727              : 
    1728              :         /*
    1729              :          * If a child has been pruned entirely then we can't generate paths
    1730              :          * for it, so we have to reject partitionwise joining unless we were
    1731              :          * able to eliminate this partition above.
    1732              :          */
    1733         9757 :         if (child_rel1 == NULL || child_rel2 == NULL)
    1734              :         {
    1735              :             /*
    1736              :              * Mark the joinrel as unpartitioned so that later functions treat
    1737              :              * it correctly.
    1738              :              */
    1739           60 :             joinrel->nparts = 0;
    1740           60 :             return;
    1741              :         }
    1742              : 
    1743              :         /*
    1744              :          * If a leaf relation has consider_partitionwise_join=false, it means
    1745              :          * that it's a dummy relation for which we skipped setting up tlist
    1746              :          * expressions and adding EC members in set_append_rel_size(), so
    1747              :          * again we have to fail here.
    1748              :          */
    1749         9697 :         if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
    1750              :         {
    1751              :             Assert(child_rel1->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1752              :             Assert(IS_DUMMY_REL(child_rel1));
    1753            0 :             joinrel->nparts = 0;
    1754            0 :             return;
    1755              :         }
    1756         9697 :         if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
    1757              :         {
    1758              :             Assert(child_rel2->reloptkind == RELOPT_OTHER_MEMBER_REL);
    1759              :             Assert(IS_DUMMY_REL(child_rel2));
    1760            0 :             joinrel->nparts = 0;
    1761            0 :             return;
    1762              :         }
    1763              : 
    1764              :         /* We should never try to join two overlapping sets of rels. */
    1765              :         Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
    1766              : 
    1767              :         /*
    1768              :          * Construct SpecialJoinInfo from parent join relations's
    1769              :          * SpecialJoinInfo.
    1770              :          */
    1771         9697 :         child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
    1772              :                                                child_rel1->relids,
    1773              :                                                child_rel2->relids);
    1774              : 
    1775              :         /* Find the AppendRelInfo structures */
    1776         9697 :         child_relids = bms_union(child_rel1->relids, child_rel2->relids);
    1777         9697 :         appinfos = find_appinfos_by_relids(root, child_relids,
    1778              :                                            &nappinfos);
    1779              : 
    1780              :         /*
    1781              :          * Construct restrictions applicable to the child join from those
    1782              :          * applicable to the parent join.
    1783              :          */
    1784              :         child_restrictlist =
    1785         9697 :             (List *) adjust_appendrel_attrs(root,
    1786              :                                             (Node *) parent_restrictlist,
    1787              :                                             nappinfos, appinfos);
    1788              : 
    1789              :         /* Find or construct the child join's RelOptInfo */
    1790         9697 :         child_joinrel = joinrel->part_rels[cnt_parts];
    1791         9697 :         if (!child_joinrel)
    1792              :         {
    1793         9185 :             child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
    1794              :                                                  joinrel, child_restrictlist,
    1795              :                                                  child_sjinfo, nappinfos, appinfos);
    1796         9185 :             joinrel->part_rels[cnt_parts] = child_joinrel;
    1797         9185 :             joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
    1798         9185 :             joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
    1799         9185 :                                                     child_joinrel->relids);
    1800              :         }
    1801              : 
    1802              :         /* Assert we got the right one */
    1803              :         Assert(bms_equal(child_joinrel->relids,
    1804              :                          adjust_child_relids(joinrel->relids,
    1805              :                                              nappinfos, appinfos)));
    1806              : 
    1807              :         /* Build a grouped join relation for 'child_joinrel' if possible */
    1808         9697 :         make_grouped_join_rel(root, child_rel1, child_rel2,
    1809              :                               child_joinrel, child_sjinfo,
    1810              :                               child_restrictlist);
    1811              : 
    1812              :         /* And make paths for the child join */
    1813         9697 :         populate_joinrel_with_paths(root, child_rel1, child_rel2,
    1814              :                                     child_joinrel, child_sjinfo,
    1815              :                                     child_restrictlist);
    1816              : 
    1817              :         /*
    1818              :          * When there are thousands of partitions involved, this loop will
    1819              :          * accumulate a significant amount of memory usage from objects that
    1820              :          * are only needed within the loop.  Free these local objects eagerly
    1821              :          * at the end of each iteration.
    1822              :          */
    1823         9697 :         pfree(appinfos);
    1824         9697 :         bms_free(child_relids);
    1825         9697 :         free_child_join_sjinfo(child_sjinfo, parent_sjinfo);
    1826              :     }
    1827              : }
    1828              : 
    1829              : /*
    1830              :  * Construct the SpecialJoinInfo for a child-join by translating
    1831              :  * SpecialJoinInfo for the join between parents. left_relids and right_relids
    1832              :  * are the relids of left and right side of the join respectively.
    1833              :  *
    1834              :  * If translations are added to or removed from this function, consider
    1835              :  * updating free_child_join_sjinfo() accordingly.
    1836              :  */
    1837              : static SpecialJoinInfo *
    1838         9697 : build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo,
    1839              :                         Relids left_relids, Relids right_relids)
    1840              : {
    1841         9697 :     SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
    1842              :     AppendRelInfo **left_appinfos;
    1843              :     int         left_nappinfos;
    1844              :     AppendRelInfo **right_appinfos;
    1845              :     int         right_nappinfos;
    1846              : 
    1847              :     /* Dummy SpecialJoinInfos can be created without any translation. */
    1848         9697 :     if (parent_sjinfo->jointype == JOIN_INNER)
    1849              :     {
    1850              :         Assert(parent_sjinfo->ojrelid == 0);
    1851         8104 :         init_dummy_sjinfo(sjinfo, left_relids, right_relids);
    1852         8104 :         return sjinfo;
    1853              :     }
    1854              : 
    1855         1593 :     memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
    1856         1593 :     left_appinfos = find_appinfos_by_relids(root, left_relids,
    1857              :                                             &left_nappinfos);
    1858         1593 :     right_appinfos = find_appinfos_by_relids(root, right_relids,
    1859              :                                              &right_nappinfos);
    1860              : 
    1861         1593 :     sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
    1862              :                                                left_nappinfos, left_appinfos);
    1863         1593 :     sjinfo->min_righthand = adjust_child_relids(sjinfo->min_righthand,
    1864              :                                                 right_nappinfos,
    1865              :                                                 right_appinfos);
    1866         1593 :     sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
    1867              :                                                left_nappinfos, left_appinfos);
    1868         1593 :     sjinfo->syn_righthand = adjust_child_relids(sjinfo->syn_righthand,
    1869              :                                                 right_nappinfos,
    1870              :                                                 right_appinfos);
    1871              :     /* outer-join relids need no adjustment */
    1872         3186 :     sjinfo->semi_rhs_exprs = (List *) adjust_appendrel_attrs(root,
    1873         1593 :                                                              (Node *) sjinfo->semi_rhs_exprs,
    1874              :                                                              right_nappinfos,
    1875              :                                                              right_appinfos);
    1876              : 
    1877         1593 :     pfree(left_appinfos);
    1878         1593 :     pfree(right_appinfos);
    1879              : 
    1880         1593 :     return sjinfo;
    1881              : }
    1882              : 
    1883              : /*
    1884              :  * free_child_join_sjinfo
    1885              :  *      Free memory consumed by a SpecialJoinInfo created by
    1886              :  *      build_child_join_sjinfo()
    1887              :  *
    1888              :  * Only members that are translated copies of their counterpart in the parent
    1889              :  * SpecialJoinInfo are freed here.
    1890              :  */
    1891              : static void
    1892         9697 : free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
    1893              :                        SpecialJoinInfo *parent_sjinfo)
    1894              : {
    1895              :     /*
    1896              :      * Dummy SpecialJoinInfos of inner joins do not have any translated fields
    1897              :      * and hence no fields that to be freed.
    1898              :      */
    1899         9697 :     if (child_sjinfo->jointype != JOIN_INNER)
    1900              :     {
    1901         1593 :         if (child_sjinfo->min_lefthand != parent_sjinfo->min_lefthand)
    1902         1584 :             bms_free(child_sjinfo->min_lefthand);
    1903              : 
    1904         1593 :         if (child_sjinfo->min_righthand != parent_sjinfo->min_righthand)
    1905         1593 :             bms_free(child_sjinfo->min_righthand);
    1906              : 
    1907         1593 :         if (child_sjinfo->syn_lefthand != parent_sjinfo->syn_lefthand)
    1908         1593 :             bms_free(child_sjinfo->syn_lefthand);
    1909              : 
    1910         1593 :         if (child_sjinfo->syn_righthand != parent_sjinfo->syn_righthand)
    1911         1593 :             bms_free(child_sjinfo->syn_righthand);
    1912              : 
    1913              :         Assert(child_sjinfo->commute_above_l == parent_sjinfo->commute_above_l);
    1914              :         Assert(child_sjinfo->commute_above_r == parent_sjinfo->commute_above_r);
    1915              :         Assert(child_sjinfo->commute_below_l == parent_sjinfo->commute_below_l);
    1916              :         Assert(child_sjinfo->commute_below_r == parent_sjinfo->commute_below_r);
    1917              : 
    1918              :         Assert(child_sjinfo->semi_operators == parent_sjinfo->semi_operators);
    1919              : 
    1920              :         /*
    1921              :          * semi_rhs_exprs may in principle be freed, but a simple pfree() does
    1922              :          * not suffice, so we leave it alone.
    1923              :          */
    1924              :     }
    1925              : 
    1926         9697 :     pfree(child_sjinfo);
    1927         9697 : }
    1928              : 
    1929              : /*
    1930              :  * compute_partition_bounds
    1931              :  *      Compute the partition bounds for a join rel from those for inputs
    1932              :  */
    1933              : static void
    1934         3883 : compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
    1935              :                          RelOptInfo *rel2, RelOptInfo *joinrel,
    1936              :                          SpecialJoinInfo *parent_sjinfo,
    1937              :                          List **parts1, List **parts2)
    1938              : {
    1939              :     /*
    1940              :      * If we don't have the partition bounds for the join rel yet, try to
    1941              :      * compute those along with pairs of partitions to be joined.
    1942              :      */
    1943         3883 :     if (joinrel->nparts == -1)
    1944              :     {
    1945         3693 :         PartitionScheme part_scheme = joinrel->part_scheme;
    1946         3693 :         PartitionBoundInfo boundinfo = NULL;
    1947         3693 :         int         nparts = 0;
    1948              : 
    1949              :         Assert(joinrel->boundinfo == NULL);
    1950              :         Assert(joinrel->part_rels == NULL);
    1951              : 
    1952              :         /*
    1953              :          * See if the partition bounds for inputs are exactly the same, in
    1954              :          * which case we don't need to work hard: the join rel will have the
    1955              :          * same partition bounds as inputs, and the partitions with the same
    1956              :          * cardinal positions will form the pairs.
    1957              :          *
    1958              :          * Note: even in cases where one or both inputs have merged bounds, it
    1959              :          * would be possible for both the bounds to be exactly the same, but
    1960              :          * it seems unlikely to be worth the cycles to check.
    1961              :          */
    1962         3693 :         if (!rel1->partbounds_merged &&
    1963         3663 :             !rel2->partbounds_merged &&
    1964         7197 :             rel1->nparts == rel2->nparts &&
    1965         3534 :             partition_bounds_equal(part_scheme->partnatts,
    1966              :                                    part_scheme->parttyplen,
    1967              :                                    part_scheme->parttypbyval,
    1968              :                                    rel1->boundinfo, rel2->boundinfo))
    1969              :         {
    1970         3270 :             boundinfo = rel1->boundinfo;
    1971         3270 :             nparts = rel1->nparts;
    1972              :         }
    1973              :         else
    1974              :         {
    1975              :             /* Try merging the partition bounds for inputs. */
    1976          423 :             boundinfo = partition_bounds_merge(part_scheme->partnatts,
    1977          423 :                                                part_scheme->partsupfunc,
    1978              :                                                part_scheme->partcollation,
    1979              :                                                rel1, rel2,
    1980              :                                                parent_sjinfo->jointype,
    1981              :                                                parts1, parts2);
    1982          423 :             if (boundinfo == NULL)
    1983              :             {
    1984           57 :                 joinrel->nparts = 0;
    1985           57 :                 return;
    1986              :             }
    1987          366 :             nparts = list_length(*parts1);
    1988          366 :             joinrel->partbounds_merged = true;
    1989              :         }
    1990              : 
    1991              :         Assert(nparts > 0);
    1992         3636 :         joinrel->boundinfo = boundinfo;
    1993         3636 :         joinrel->nparts = nparts;
    1994         3636 :         joinrel->part_rels = palloc0_array(RelOptInfo *, nparts);
    1995              :     }
    1996              :     else
    1997              :     {
    1998              :         Assert(joinrel->nparts > 0);
    1999              :         Assert(joinrel->boundinfo);
    2000              :         Assert(joinrel->part_rels);
    2001              : 
    2002              :         /*
    2003              :          * If the join rel's partbounds_merged flag is true, it means inputs
    2004              :          * are not guaranteed to have the same partition bounds, therefore we
    2005              :          * can't assume that the partitions at the same cardinal positions
    2006              :          * form the pairs; let get_matching_part_pairs() generate the pairs.
    2007              :          * Otherwise, nothing to do since we can assume that.
    2008              :          */
    2009          190 :         if (joinrel->partbounds_merged)
    2010              :         {
    2011           18 :             get_matching_part_pairs(root, joinrel, rel1, rel2,
    2012              :                                     parts1, parts2);
    2013              :             Assert(list_length(*parts1) == joinrel->nparts);
    2014              :             Assert(list_length(*parts2) == joinrel->nparts);
    2015              :         }
    2016              :     }
    2017              : }
    2018              : 
    2019              : /*
    2020              :  * get_matching_part_pairs
    2021              :  *      Generate pairs of partitions to be joined from inputs
    2022              :  */
    2023              : static void
    2024           18 : get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
    2025              :                         RelOptInfo *rel1, RelOptInfo *rel2,
    2026              :                         List **parts1, List **parts2)
    2027              : {
    2028           18 :     bool        rel1_is_simple = IS_SIMPLE_REL(rel1);
    2029           18 :     bool        rel2_is_simple = IS_SIMPLE_REL(rel2);
    2030              :     int         cnt_parts;
    2031              : 
    2032           18 :     *parts1 = NIL;
    2033           18 :     *parts2 = NIL;
    2034              : 
    2035           66 :     for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
    2036              :     {
    2037           48 :         RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
    2038              :         RelOptInfo *child_rel1;
    2039              :         RelOptInfo *child_rel2;
    2040              :         Relids      child_relids1;
    2041              :         Relids      child_relids2;
    2042              : 
    2043              :         /*
    2044              :          * If this segment of the join is empty, it means that this segment
    2045              :          * was ignored when previously creating child-join paths for it in
    2046              :          * try_partitionwise_join() as it would not contribute to the join
    2047              :          * result, due to one or both inputs being empty; add NULL to each of
    2048              :          * the given lists so that this segment will be ignored again in that
    2049              :          * function.
    2050              :          */
    2051           48 :         if (!child_joinrel)
    2052              :         {
    2053            0 :             *parts1 = lappend(*parts1, NULL);
    2054            0 :             *parts2 = lappend(*parts2, NULL);
    2055            0 :             continue;
    2056              :         }
    2057              : 
    2058              :         /*
    2059              :          * Get a relids set of partition(s) involved in this join segment that
    2060              :          * are from the rel1 side.
    2061              :          */
    2062           48 :         child_relids1 = bms_intersect(child_joinrel->relids,
    2063           48 :                                       rel1->all_partrels);
    2064              :         Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
    2065              : 
    2066              :         /*
    2067              :          * Get a child rel for rel1 with the relids.  Note that we should have
    2068              :          * the child rel even if rel1 is a join rel, because in that case the
    2069              :          * partitions specified in the relids would have matching/overlapping
    2070              :          * boundaries, so the specified partitions should be considered as
    2071              :          * ones to be joined when planning partitionwise joins of rel1,
    2072              :          * meaning that the child rel would have been built by the time we get
    2073              :          * here.
    2074              :          */
    2075           48 :         if (rel1_is_simple)
    2076              :         {
    2077            0 :             int         varno = bms_singleton_member(child_relids1);
    2078              : 
    2079            0 :             child_rel1 = find_base_rel(root, varno);
    2080              :         }
    2081              :         else
    2082           48 :             child_rel1 = find_join_rel(root, child_relids1);
    2083              :         Assert(child_rel1);
    2084              : 
    2085              :         /*
    2086              :          * Get a relids set of partition(s) involved in this join segment that
    2087              :          * are from the rel2 side.
    2088              :          */
    2089           48 :         child_relids2 = bms_intersect(child_joinrel->relids,
    2090           48 :                                       rel2->all_partrels);
    2091              :         Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
    2092              : 
    2093              :         /*
    2094              :          * Get a child rel for rel2 with the relids.  See above comments.
    2095              :          */
    2096           48 :         if (rel2_is_simple)
    2097              :         {
    2098           48 :             int         varno = bms_singleton_member(child_relids2);
    2099              : 
    2100           48 :             child_rel2 = find_base_rel(root, varno);
    2101              :         }
    2102              :         else
    2103            0 :             child_rel2 = find_join_rel(root, child_relids2);
    2104              :         Assert(child_rel2);
    2105              : 
    2106              :         /*
    2107              :          * The join of rel1 and rel2 is legal, so is the join of the child
    2108              :          * rels obtained above; add them to the given lists as a join pair
    2109              :          * producing this join segment.
    2110              :          */
    2111           48 :         *parts1 = lappend(*parts1, child_rel1);
    2112           48 :         *parts2 = lappend(*parts2, child_rel2);
    2113              :     }
    2114           18 : }
        

Generated by: LCOV version 2.0-1