LCOV - code coverage report
Current view: top level - src/backend/commands - analyze.c (source / functions) Coverage Total Hit
Test: PostgreSQL 19devel Lines: 95.4 % 991 945
Test Date: 2026-02-17 17:20:33 Functions: 100.0 % 18 18
Legend: Lines:     hit not hit

            Line data    Source code
       1              : /*-------------------------------------------------------------------------
       2              :  *
       3              :  * analyze.c
       4              :  *    the Postgres statistics generator
       5              :  *
       6              :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
       7              :  * Portions Copyright (c) 1994, Regents of the University of California
       8              :  *
       9              :  *
      10              :  * IDENTIFICATION
      11              :  *    src/backend/commands/analyze.c
      12              :  *
      13              :  *-------------------------------------------------------------------------
      14              :  */
      15              : #include "postgres.h"
      16              : 
      17              : #include <math.h>
      18              : 
      19              : #include "access/detoast.h"
      20              : #include "access/genam.h"
      21              : #include "access/multixact.h"
      22              : #include "access/relation.h"
      23              : #include "access/table.h"
      24              : #include "access/tableam.h"
      25              : #include "access/transam.h"
      26              : #include "access/tupconvert.h"
      27              : #include "access/visibilitymap.h"
      28              : #include "access/xact.h"
      29              : #include "catalog/index.h"
      30              : #include "catalog/indexing.h"
      31              : #include "catalog/pg_inherits.h"
      32              : #include "commands/progress.h"
      33              : #include "commands/tablecmds.h"
      34              : #include "commands/vacuum.h"
      35              : #include "common/pg_prng.h"
      36              : #include "executor/executor.h"
      37              : #include "foreign/fdwapi.h"
      38              : #include "miscadmin.h"
      39              : #include "nodes/nodeFuncs.h"
      40              : #include "parser/parse_oper.h"
      41              : #include "parser/parse_relation.h"
      42              : #include "pgstat.h"
      43              : #include "statistics/extended_stats_internal.h"
      44              : #include "statistics/statistics.h"
      45              : #include "storage/bufmgr.h"
      46              : #include "storage/procarray.h"
      47              : #include "utils/attoptcache.h"
      48              : #include "utils/datum.h"
      49              : #include "utils/guc.h"
      50              : #include "utils/lsyscache.h"
      51              : #include "utils/memutils.h"
      52              : #include "utils/pg_rusage.h"
      53              : #include "utils/sampling.h"
      54              : #include "utils/sortsupport.h"
      55              : #include "utils/syscache.h"
      56              : #include "utils/timestamp.h"
      57              : 
      58              : 
      59              : /* Per-index data for ANALYZE */
      60              : typedef struct AnlIndexData
      61              : {
      62              :     IndexInfo  *indexInfo;      /* BuildIndexInfo result */
      63              :     double      tupleFract;     /* fraction of rows for partial index */
      64              :     VacAttrStats **vacattrstats;    /* index attrs to analyze */
      65              :     int         attr_cnt;
      66              : } AnlIndexData;
      67              : 
      68              : 
      69              : /* Default statistics target (GUC parameter) */
      70              : int         default_statistics_target = 100;
      71              : 
      72              : /* A few variables that don't seem worth passing around as parameters */
      73              : static MemoryContext anl_context = NULL;
      74              : static BufferAccessStrategy vac_strategy;
      75              : 
      76              : 
      77              : static void do_analyze_rel(Relation onerel,
      78              :                            const VacuumParams params, List *va_cols,
      79              :                            AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
      80              :                            bool inh, bool in_outer_xact, int elevel);
      81              : static void compute_index_stats(Relation onerel, double totalrows,
      82              :                                 AnlIndexData *indexdata, int nindexes,
      83              :                                 HeapTuple *rows, int numrows,
      84              :                                 MemoryContext col_context);
      85              : static VacAttrStats *examine_attribute(Relation onerel, int attnum,
      86              :                                        Node *index_expr);
      87              : static int  acquire_sample_rows(Relation onerel, int elevel,
      88              :                                 HeapTuple *rows, int targrows,
      89              :                                 double *totalrows, double *totaldeadrows);
      90              : static int  compare_rows(const void *a, const void *b, void *arg);
      91              : static int  acquire_inherited_sample_rows(Relation onerel, int elevel,
      92              :                                           HeapTuple *rows, int targrows,
      93              :                                           double *totalrows, double *totaldeadrows);
      94              : static void update_attstats(Oid relid, bool inh,
      95              :                             int natts, VacAttrStats **vacattrstats);
      96              : static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
      97              : static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
      98              : 
      99              : 
     100              : /*
     101              :  *  analyze_rel() -- analyze one relation
     102              :  *
     103              :  * relid identifies the relation to analyze.  If relation is supplied, use
     104              :  * the name therein for reporting any failure to open/lock the rel; do not
     105              :  * use it once we've successfully opened the rel, since it might be stale.
     106              :  */
     107              : void
     108         8529 : analyze_rel(Oid relid, RangeVar *relation,
     109              :             const VacuumParams params, List *va_cols, bool in_outer_xact,
     110              :             BufferAccessStrategy bstrategy)
     111              : {
     112              :     Relation    onerel;
     113              :     int         elevel;
     114         8529 :     AcquireSampleRowsFunc acquirefunc = NULL;
     115         8529 :     BlockNumber relpages = 0;
     116              : 
     117              :     /* Select logging level */
     118         8529 :     if (params.options & VACOPT_VERBOSE)
     119            0 :         elevel = INFO;
     120              :     else
     121         8529 :         elevel = DEBUG2;
     122              : 
     123              :     /* Set up static variables */
     124         8529 :     vac_strategy = bstrategy;
     125              : 
     126              :     /*
     127              :      * Check for user-requested abort.
     128              :      */
     129         8529 :     CHECK_FOR_INTERRUPTS();
     130              : 
     131              :     /*
     132              :      * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
     133              :      * ANALYZEs don't run on it concurrently.  (This also locks out a
     134              :      * concurrent VACUUM, which doesn't matter much at the moment but might
     135              :      * matter if we ever try to accumulate stats on dead tuples.) If the rel
     136              :      * has been dropped since we last saw it, we don't need to process it.
     137              :      *
     138              :      * Make sure to generate only logs for ANALYZE in this case.
     139              :      */
     140         8529 :     onerel = vacuum_open_relation(relid, relation, params.options & ~(VACOPT_VACUUM),
     141         8529 :                                   params.log_analyze_min_duration >= 0,
     142              :                                   ShareUpdateExclusiveLock);
     143              : 
     144              :     /* leave if relation could not be opened or locked */
     145         8529 :     if (!onerel)
     146          109 :         return;
     147              : 
     148              :     /*
     149              :      * Check if relation needs to be skipped based on privileges.  This check
     150              :      * happens also when building the relation list to analyze for a manual
     151              :      * operation, and needs to be done additionally here as ANALYZE could
     152              :      * happen across multiple transactions where privileges could have changed
     153              :      * in-between.  Make sure to generate only logs for ANALYZE in this case.
     154              :      */
     155         8525 :     if (!vacuum_is_permitted_for_relation(RelationGetRelid(onerel),
     156              :                                           onerel->rd_rel,
     157         8525 :                                           params.options & ~VACOPT_VACUUM))
     158              :     {
     159           18 :         relation_close(onerel, ShareUpdateExclusiveLock);
     160           18 :         return;
     161              :     }
     162              : 
     163              :     /*
     164              :      * Silently ignore tables that are temp tables of other backends ---
     165              :      * trying to analyze these is rather pointless, since their contents are
     166              :      * probably not up-to-date on disk.  (We don't throw a warning here; it
     167              :      * would just lead to chatter during a database-wide ANALYZE.)
     168              :      */
     169         8507 :     if (RELATION_IS_OTHER_TEMP(onerel))
     170              :     {
     171            0 :         relation_close(onerel, ShareUpdateExclusiveLock);
     172            0 :         return;
     173              :     }
     174              : 
     175              :     /*
     176              :      * We can ANALYZE any table except pg_statistic. See update_attstats
     177              :      */
     178         8507 :     if (RelationGetRelid(onerel) == StatisticRelationId)
     179              :     {
     180           87 :         relation_close(onerel, ShareUpdateExclusiveLock);
     181           87 :         return;
     182              :     }
     183              : 
     184              :     /*
     185              :      * Check that it's of an analyzable relkind, and set up appropriately.
     186              :      */
     187         8420 :     if (onerel->rd_rel->relkind == RELKIND_RELATION ||
     188          419 :         onerel->rd_rel->relkind == RELKIND_MATVIEW)
     189              :     {
     190              :         /* Regular table, so we'll use the regular row acquisition function */
     191         8003 :         acquirefunc = acquire_sample_rows;
     192              :         /* Also get regular table's size */
     193         8003 :         relpages = RelationGetNumberOfBlocks(onerel);
     194              :     }
     195          417 :     else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
     196              :     {
     197              :         /*
     198              :          * For a foreign table, call the FDW's hook function to see whether it
     199              :          * supports analysis.
     200              :          */
     201              :         FdwRoutine *fdwroutine;
     202           33 :         bool        ok = false;
     203              : 
     204           33 :         fdwroutine = GetFdwRoutineForRelation(onerel, false);
     205              : 
     206           33 :         if (fdwroutine->AnalyzeForeignTable != NULL)
     207           33 :             ok = fdwroutine->AnalyzeForeignTable(onerel,
     208              :                                                  &acquirefunc,
     209              :                                                  &relpages);
     210              : 
     211           33 :         if (!ok)
     212              :         {
     213            0 :             ereport(WARNING,
     214              :                     (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
     215              :                             RelationGetRelationName(onerel))));
     216            0 :             relation_close(onerel, ShareUpdateExclusiveLock);
     217            0 :             return;
     218              :         }
     219              :     }
     220          384 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     221              :     {
     222              :         /*
     223              :          * For partitioned tables, we want to do the recursive ANALYZE below.
     224              :          */
     225              :     }
     226              :     else
     227              :     {
     228              :         /* No need for a WARNING if we already complained during VACUUM */
     229            0 :         if (!(params.options & VACOPT_VACUUM))
     230            0 :             ereport(WARNING,
     231              :                     (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
     232              :                             RelationGetRelationName(onerel))));
     233            0 :         relation_close(onerel, ShareUpdateExclusiveLock);
     234            0 :         return;
     235              :     }
     236              : 
     237              :     /*
     238              :      * OK, let's do it.  First, initialize progress reporting.
     239              :      */
     240         8420 :     pgstat_progress_start_command(PROGRESS_COMMAND_ANALYZE,
     241              :                                   RelationGetRelid(onerel));
     242         8420 :     if (AmAutoVacuumWorkerProcess())
     243          302 :         pgstat_progress_update_param(PROGRESS_ANALYZE_STARTED_BY,
     244              :                                      PROGRESS_ANALYZE_STARTED_BY_AUTOVACUUM);
     245              :     else
     246         8118 :         pgstat_progress_update_param(PROGRESS_ANALYZE_STARTED_BY,
     247              :                                      PROGRESS_ANALYZE_STARTED_BY_MANUAL);
     248              : 
     249              :     /*
     250              :      * Do the normal non-recursive ANALYZE.  We can skip this for partitioned
     251              :      * tables, which don't contain any rows.
     252              :      */
     253         8420 :     if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
     254         8036 :         do_analyze_rel(onerel, params, va_cols, acquirefunc,
     255              :                        relpages, false, in_outer_xact, elevel);
     256              : 
     257              :     /*
     258              :      * If there are child tables, do recursive ANALYZE.
     259              :      */
     260         8400 :     if (onerel->rd_rel->relhassubclass)
     261          449 :         do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
     262              :                        true, in_outer_xact, elevel);
     263              : 
     264              :     /*
     265              :      * Close source relation now, but keep lock so that no one deletes it
     266              :      * before we commit.  (If someone did, they'd fail to clean up the entries
     267              :      * we made in pg_statistic.  Also, releasing the lock before commit would
     268              :      * expose us to concurrent-update failures in update_attstats.)
     269              :      */
     270         8391 :     relation_close(onerel, NoLock);
     271              : 
     272         8391 :     pgstat_progress_end_command();
     273              : }
     274              : 
     275              : /*
     276              :  *  do_analyze_rel() -- analyze one relation, recursively or not
     277              :  *
     278              :  * Note that "acquirefunc" is only relevant for the non-inherited case.
     279              :  * For the inherited case, acquire_inherited_sample_rows() determines the
     280              :  * appropriate acquirefunc for each child table.
     281              :  */
     282              : static void
     283         8485 : do_analyze_rel(Relation onerel, const VacuumParams params,
     284              :                List *va_cols, AcquireSampleRowsFunc acquirefunc,
     285              :                BlockNumber relpages, bool inh, bool in_outer_xact,
     286              :                int elevel)
     287              : {
     288              :     int         attr_cnt,
     289              :                 tcnt,
     290              :                 i,
     291              :                 ind;
     292              :     Relation   *Irel;
     293              :     int         nindexes;
     294              :     bool        verbose,
     295              :                 instrument,
     296              :                 hasindex;
     297              :     VacAttrStats **vacattrstats;
     298              :     AnlIndexData *indexdata;
     299              :     int         targrows,
     300              :                 numrows,
     301              :                 minrows;
     302              :     double      totalrows,
     303              :                 totaldeadrows;
     304              :     HeapTuple  *rows;
     305              :     PGRUsage    ru0;
     306         8485 :     TimestampTz starttime = 0;
     307              :     MemoryContext caller_context;
     308              :     Oid         save_userid;
     309              :     int         save_sec_context;
     310              :     int         save_nestlevel;
     311         8485 :     WalUsage    startwalusage = pgWalUsage;
     312         8485 :     BufferUsage startbufferusage = pgBufferUsage;
     313              :     BufferUsage bufferusage;
     314         8485 :     PgStat_Counter startreadtime = 0;
     315         8485 :     PgStat_Counter startwritetime = 0;
     316              : 
     317         8485 :     verbose = (params.options & VACOPT_VERBOSE) != 0;
     318         8789 :     instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
     319          304 :                               params.log_analyze_min_duration >= 0));
     320         8485 :     if (inh)
     321          449 :         ereport(elevel,
     322              :                 (errmsg("analyzing \"%s.%s\" inheritance tree",
     323              :                         get_namespace_name(RelationGetNamespace(onerel)),
     324              :                         RelationGetRelationName(onerel))));
     325              :     else
     326         8036 :         ereport(elevel,
     327              :                 (errmsg("analyzing \"%s.%s\"",
     328              :                         get_namespace_name(RelationGetNamespace(onerel)),
     329              :                         RelationGetRelationName(onerel))));
     330              : 
     331              :     /*
     332              :      * Set up a working context so that we can easily free whatever junk gets
     333              :      * created.
     334              :      */
     335         8485 :     anl_context = AllocSetContextCreate(CurrentMemoryContext,
     336              :                                         "Analyze",
     337              :                                         ALLOCSET_DEFAULT_SIZES);
     338         8485 :     caller_context = MemoryContextSwitchTo(anl_context);
     339              : 
     340              :     /*
     341              :      * Switch to the table owner's userid, so that any index functions are run
     342              :      * as that user.  Also lock down security-restricted operations and
     343              :      * arrange to make GUC variable changes local to this command.
     344              :      */
     345         8485 :     GetUserIdAndSecContext(&save_userid, &save_sec_context);
     346         8485 :     SetUserIdAndSecContext(onerel->rd_rel->relowner,
     347              :                            save_sec_context | SECURITY_RESTRICTED_OPERATION);
     348         8485 :     save_nestlevel = NewGUCNestLevel();
     349         8485 :     RestrictSearchPath();
     350              : 
     351              :     /*
     352              :      * When verbose or autovacuum logging is used, initialize a resource usage
     353              :      * snapshot and optionally track I/O timing.
     354              :      */
     355         8485 :     if (instrument)
     356              :     {
     357          304 :         if (track_io_timing)
     358              :         {
     359            0 :             startreadtime = pgStatBlockReadTime;
     360            0 :             startwritetime = pgStatBlockWriteTime;
     361              :         }
     362              : 
     363          304 :         pg_rusage_init(&ru0);
     364              :     }
     365              : 
     366              :     /* Used for instrumentation and stats report */
     367         8485 :     starttime = GetCurrentTimestamp();
     368              : 
     369              :     /*
     370              :      * Determine which columns to analyze
     371              :      *
     372              :      * Note that system attributes are never analyzed, so we just reject them
     373              :      * at the lookup stage.  We also reject duplicate column mentions.  (We
     374              :      * could alternatively ignore duplicates, but analyzing a column twice
     375              :      * won't work; we'd end up making a conflicting update in pg_statistic.)
     376              :      */
     377         8485 :     if (va_cols != NIL)
     378              :     {
     379           50 :         Bitmapset  *unique_cols = NULL;
     380              :         ListCell   *le;
     381              : 
     382           50 :         vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
     383              :                                                 sizeof(VacAttrStats *));
     384           50 :         tcnt = 0;
     385           91 :         foreach(le, va_cols)
     386              :         {
     387           66 :             char       *col = strVal(lfirst(le));
     388              : 
     389           66 :             i = attnameAttNum(onerel, col, false);
     390           66 :             if (i == InvalidAttrNumber)
     391           19 :                 ereport(ERROR,
     392              :                         (errcode(ERRCODE_UNDEFINED_COLUMN),
     393              :                          errmsg("column \"%s\" of relation \"%s\" does not exist",
     394              :                                 col, RelationGetRelationName(onerel))));
     395           47 :             if (bms_is_member(i, unique_cols))
     396            6 :                 ereport(ERROR,
     397              :                         (errcode(ERRCODE_DUPLICATE_COLUMN),
     398              :                          errmsg("column \"%s\" of relation \"%s\" appears more than once",
     399              :                                 col, RelationGetRelationName(onerel))));
     400           41 :             unique_cols = bms_add_member(unique_cols, i);
     401              : 
     402           41 :             vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
     403           41 :             if (vacattrstats[tcnt] != NULL)
     404           41 :                 tcnt++;
     405              :         }
     406           25 :         attr_cnt = tcnt;
     407              :     }
     408              :     else
     409              :     {
     410         8435 :         attr_cnt = onerel->rd_att->natts;
     411              :         vacattrstats = (VacAttrStats **)
     412         8435 :             palloc(attr_cnt * sizeof(VacAttrStats *));
     413         8435 :         tcnt = 0;
     414        70139 :         for (i = 1; i <= attr_cnt; i++)
     415              :         {
     416        61704 :             vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
     417        61704 :             if (vacattrstats[tcnt] != NULL)
     418        61670 :                 tcnt++;
     419              :         }
     420         8435 :         attr_cnt = tcnt;
     421              :     }
     422              : 
     423              :     /*
     424              :      * Open all indexes of the relation, and see if there are any analyzable
     425              :      * columns in the indexes.  We do not analyze index columns if there was
     426              :      * an explicit column list in the ANALYZE command, however.
     427              :      *
     428              :      * If we are doing a recursive scan, we don't want to touch the parent's
     429              :      * indexes at all.  If we're processing a partitioned table, we need to
     430              :      * know if there are any indexes, but we don't want to process them.
     431              :      */
     432         8460 :     if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     433              :     {
     434          375 :         List       *idxs = RelationGetIndexList(onerel);
     435              : 
     436          375 :         Irel = NULL;
     437          375 :         nindexes = 0;
     438          375 :         hasindex = idxs != NIL;
     439          375 :         list_free(idxs);
     440              :     }
     441         8085 :     else if (!inh)
     442              :     {
     443         8020 :         vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
     444         8020 :         hasindex = nindexes > 0;
     445              :     }
     446              :     else
     447              :     {
     448           65 :         Irel = NULL;
     449           65 :         nindexes = 0;
     450           65 :         hasindex = false;
     451              :     }
     452         8460 :     indexdata = NULL;
     453         8460 :     if (nindexes > 0)
     454              :     {
     455         6295 :         indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
     456        18151 :         for (ind = 0; ind < nindexes; ind++)
     457              :         {
     458        11856 :             AnlIndexData *thisdata = &indexdata[ind];
     459              :             IndexInfo  *indexInfo;
     460              : 
     461        11856 :             thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
     462        11856 :             thisdata->tupleFract = 1.0; /* fix later if partial */
     463        11856 :             if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
     464              :             {
     465           61 :                 ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);
     466              : 
     467           61 :                 thisdata->vacattrstats = (VacAttrStats **)
     468           61 :                     palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
     469           61 :                 tcnt = 0;
     470          125 :                 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
     471              :                 {
     472           64 :                     int         keycol = indexInfo->ii_IndexAttrNumbers[i];
     473              : 
     474           64 :                     if (keycol == 0)
     475              :                     {
     476              :                         /* Found an index expression */
     477              :                         Node       *indexkey;
     478              : 
     479           61 :                         if (indexpr_item == NULL)   /* shouldn't happen */
     480            0 :                             elog(ERROR, "too few entries in indexprs list");
     481           61 :                         indexkey = (Node *) lfirst(indexpr_item);
     482           61 :                         indexpr_item = lnext(indexInfo->ii_Expressions,
     483              :                                              indexpr_item);
     484          122 :                         thisdata->vacattrstats[tcnt] =
     485           61 :                             examine_attribute(Irel[ind], i + 1, indexkey);
     486           61 :                         if (thisdata->vacattrstats[tcnt] != NULL)
     487           61 :                             tcnt++;
     488              :                     }
     489              :                 }
     490           61 :                 thisdata->attr_cnt = tcnt;
     491              :             }
     492              :         }
     493              :     }
     494              : 
     495              :     /*
     496              :      * Determine how many rows we need to sample, using the worst case from
     497              :      * all analyzable columns.  We use a lower bound of 100 rows to avoid
     498              :      * possible overflow in Vitter's algorithm.  (Note: that will also be the
     499              :      * target in the corner case where there are no analyzable columns.)
     500              :      */
     501         8460 :     targrows = 100;
     502        70159 :     for (i = 0; i < attr_cnt; i++)
     503              :     {
     504        61699 :         if (targrows < vacattrstats[i]->minrows)
     505         8424 :             targrows = vacattrstats[i]->minrows;
     506              :     }
     507        20316 :     for (ind = 0; ind < nindexes; ind++)
     508              :     {
     509        11856 :         AnlIndexData *thisdata = &indexdata[ind];
     510              : 
     511        11917 :         for (i = 0; i < thisdata->attr_cnt; i++)
     512              :         {
     513           61 :             if (targrows < thisdata->vacattrstats[i]->minrows)
     514            6 :                 targrows = thisdata->vacattrstats[i]->minrows;
     515              :         }
     516              :     }
     517              : 
     518              :     /*
     519              :      * Look at extended statistics objects too, as those may define custom
     520              :      * statistics target. So we may need to sample more rows and then build
     521              :      * the statistics with enough detail.
     522              :      */
     523         8460 :     minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
     524              : 
     525         8460 :     if (targrows < minrows)
     526            0 :         targrows = minrows;
     527              : 
     528              :     /*
     529              :      * Acquire the sample rows
     530              :      */
     531         8460 :     rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
     532         8460 :     pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     533              :                                  inh ? PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH :
     534              :                                  PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS);
     535         8460 :     if (inh)
     536          440 :         numrows = acquire_inherited_sample_rows(onerel, elevel,
     537              :                                                 rows, targrows,
     538              :                                                 &totalrows, &totaldeadrows);
     539              :     else
     540         8020 :         numrows = (*acquirefunc) (onerel, elevel,
     541              :                                   rows, targrows,
     542              :                                   &totalrows, &totaldeadrows);
     543              : 
     544              :     /*
     545              :      * Compute the statistics.  Temporary results during the calculations for
     546              :      * each column are stored in a child context.  The calc routines are
     547              :      * responsible to make sure that whatever they store into the VacAttrStats
     548              :      * structure is allocated in anl_context.
     549              :      */
     550         8459 :     if (numrows > 0)
     551              :     {
     552              :         MemoryContext col_context,
     553              :                     old_context;
     554              : 
     555         5739 :         pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     556              :                                      PROGRESS_ANALYZE_PHASE_COMPUTE_STATS);
     557              : 
     558         5739 :         col_context = AllocSetContextCreate(anl_context,
     559              :                                             "Analyze Column",
     560              :                                             ALLOCSET_DEFAULT_SIZES);
     561         5739 :         old_context = MemoryContextSwitchTo(col_context);
     562              : 
     563        51114 :         for (i = 0; i < attr_cnt; i++)
     564              :         {
     565        45375 :             VacAttrStats *stats = vacattrstats[i];
     566              :             AttributeOpts *aopt;
     567              : 
     568        45375 :             stats->rows = rows;
     569        45375 :             stats->tupDesc = onerel->rd_att;
     570        45375 :             stats->compute_stats(stats,
     571              :                                  std_fetch_func,
     572              :                                  numrows,
     573              :                                  totalrows);
     574              : 
     575              :             /*
     576              :              * If the appropriate flavor of the n_distinct option is
     577              :              * specified, override with the corresponding value.
     578              :              */
     579        45375 :             aopt = get_attribute_options(onerel->rd_id, stats->tupattnum);
     580        45375 :             if (aopt != NULL)
     581              :             {
     582              :                 float8      n_distinct;
     583              : 
     584            3 :                 n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
     585            3 :                 if (n_distinct != 0.0)
     586            3 :                     stats->stadistinct = n_distinct;
     587              :             }
     588              : 
     589        45375 :             MemoryContextReset(col_context);
     590              :         }
     591              : 
     592         5739 :         if (nindexes > 0)
     593         3725 :             compute_index_stats(onerel, totalrows,
     594              :                                 indexdata, nindexes,
     595              :                                 rows, numrows,
     596              :                                 col_context);
     597              : 
     598         5736 :         MemoryContextSwitchTo(old_context);
     599         5736 :         MemoryContextDelete(col_context);
     600              : 
     601              :         /*
     602              :          * Emit the completed stats rows into pg_statistic, replacing any
     603              :          * previous statistics for the target columns.  (If there are stats in
     604              :          * pg_statistic for columns we didn't process, we leave them alone.)
     605              :          */
     606         5736 :         update_attstats(RelationGetRelid(onerel), inh,
     607              :                         attr_cnt, vacattrstats);
     608              : 
     609        13005 :         for (ind = 0; ind < nindexes; ind++)
     610              :         {
     611         7269 :             AnlIndexData *thisdata = &indexdata[ind];
     612              : 
     613         7269 :             update_attstats(RelationGetRelid(Irel[ind]), false,
     614              :                             thisdata->attr_cnt, thisdata->vacattrstats);
     615              :         }
     616              : 
     617              :         /* Build extended statistics (if there are any). */
     618         5736 :         BuildRelationExtStatistics(onerel, inh, totalrows, numrows, rows,
     619              :                                    attr_cnt, vacattrstats);
     620              :     }
     621              : 
     622         8456 :     pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
     623              :                                  PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE);
     624              : 
     625              :     /*
     626              :      * Update pages/tuples stats in pg_class ... but not if we're doing
     627              :      * inherited stats.
     628              :      *
     629              :      * We assume that VACUUM hasn't set pg_class.reltuples already, even
     630              :      * during a VACUUM ANALYZE.  Although VACUUM often updates pg_class,
     631              :      * exceptions exist.  A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
     632              :      * never update pg_class entries for index relations.  It's also possible
     633              :      * that an individual index's pg_class entry won't be updated during
     634              :      * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
     635              :      */
     636         8456 :     if (!inh)
     637              :     {
     638         8016 :         BlockNumber relallvisible = 0;
     639         8016 :         BlockNumber relallfrozen = 0;
     640              : 
     641         8016 :         if (RELKIND_HAS_STORAGE(onerel->rd_rel->relkind))
     642         7984 :             visibilitymap_count(onerel, &relallvisible, &relallfrozen);
     643              : 
     644              :         /*
     645              :          * Update pg_class for table relation.  CCI first, in case acquirefunc
     646              :          * updated pg_class.
     647              :          */
     648         8016 :         CommandCounterIncrement();
     649         8016 :         vac_update_relstats(onerel,
     650              :                             relpages,
     651              :                             totalrows,
     652              :                             relallvisible,
     653              :                             relallfrozen,
     654              :                             hasindex,
     655              :                             InvalidTransactionId,
     656              :                             InvalidMultiXactId,
     657              :                             NULL, NULL,
     658              :                             in_outer_xact);
     659              : 
     660              :         /* Same for indexes */
     661        19866 :         for (ind = 0; ind < nindexes; ind++)
     662              :         {
     663        11850 :             AnlIndexData *thisdata = &indexdata[ind];
     664              :             double      totalindexrows;
     665              : 
     666        11850 :             totalindexrows = ceil(thisdata->tupleFract * totalrows);
     667        11850 :             vac_update_relstats(Irel[ind],
     668        11850 :                                 RelationGetNumberOfBlocks(Irel[ind]),
     669              :                                 totalindexrows,
     670              :                                 0, 0,
     671              :                                 false,
     672              :                                 InvalidTransactionId,
     673              :                                 InvalidMultiXactId,
     674              :                                 NULL, NULL,
     675              :                                 in_outer_xact);
     676              :         }
     677              :     }
     678          440 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     679              :     {
     680              :         /*
     681              :          * Partitioned tables don't have storage, so we don't set any fields
     682              :          * in their pg_class entries except for reltuples and relhasindex.
     683              :          */
     684          375 :         CommandCounterIncrement();
     685          375 :         vac_update_relstats(onerel, -1, totalrows,
     686              :                             0, 0, hasindex, InvalidTransactionId,
     687              :                             InvalidMultiXactId,
     688              :                             NULL, NULL,
     689              :                             in_outer_xact);
     690              :     }
     691              : 
     692              :     /*
     693              :      * Now report ANALYZE to the cumulative stats system.  For regular tables,
     694              :      * we do it only if not doing inherited stats.  For partitioned tables, we
     695              :      * only do it for inherited stats. (We're never called for not-inherited
     696              :      * stats on partitioned tables anyway.)
     697              :      *
     698              :      * Reset the mod_since_analyze counter only if we analyzed all columns;
     699              :      * otherwise, there is still work for auto-analyze to do.
     700              :      */
     701         8456 :     if (!inh)
     702         8016 :         pgstat_report_analyze(onerel, totalrows, totaldeadrows,
     703              :                               (va_cols == NIL), starttime);
     704          440 :     else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
     705          375 :         pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL), starttime);
     706              : 
     707              :     /*
     708              :      * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
     709              :      *
     710              :      * Note that most index AMs perform a no-op as a matter of policy for
     711              :      * amvacuumcleanup() when called in ANALYZE-only mode.  The only exception
     712              :      * among core index AMs is GIN/ginvacuumcleanup().
     713              :      */
     714         8456 :     if (!(params.options & VACOPT_VACUUM))
     715              :     {
     716        15988 :         for (ind = 0; ind < nindexes; ind++)
     717              :         {
     718              :             IndexBulkDeleteResult *stats;
     719              :             IndexVacuumInfo ivinfo;
     720              : 
     721         9169 :             ivinfo.index = Irel[ind];
     722         9169 :             ivinfo.heaprel = onerel;
     723         9169 :             ivinfo.analyze_only = true;
     724         9169 :             ivinfo.estimated_count = true;
     725         9169 :             ivinfo.message_level = elevel;
     726         9169 :             ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
     727         9169 :             ivinfo.strategy = vac_strategy;
     728              : 
     729         9169 :             stats = index_vacuum_cleanup(&ivinfo, NULL);
     730              : 
     731         9169 :             if (stats)
     732            0 :                 pfree(stats);
     733              :         }
     734              :     }
     735              : 
     736              :     /* Done with indexes */
     737         8456 :     vac_close_indexes(nindexes, Irel, NoLock);
     738              : 
     739              :     /* Log the action if appropriate */
     740         8456 :     if (instrument)
     741              :     {
     742          304 :         TimestampTz endtime = GetCurrentTimestamp();
     743              : 
     744          497 :         if (verbose || params.log_analyze_min_duration == 0 ||
     745          193 :             TimestampDifferenceExceeds(starttime, endtime,
     746          193 :                                        params.log_analyze_min_duration))
     747              :         {
     748              :             long        delay_in_ms;
     749              :             WalUsage    walusage;
     750          111 :             double      read_rate = 0;
     751          111 :             double      write_rate = 0;
     752              :             char       *msgfmt;
     753              :             StringInfoData buf;
     754              :             int64       total_blks_hit;
     755              :             int64       total_blks_read;
     756              :             int64       total_blks_dirtied;
     757              : 
     758          111 :             memset(&bufferusage, 0, sizeof(BufferUsage));
     759          111 :             BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
     760          111 :             memset(&walusage, 0, sizeof(WalUsage));
     761          111 :             WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
     762              : 
     763          111 :             total_blks_hit = bufferusage.shared_blks_hit +
     764          111 :                 bufferusage.local_blks_hit;
     765          111 :             total_blks_read = bufferusage.shared_blks_read +
     766          111 :                 bufferusage.local_blks_read;
     767          111 :             total_blks_dirtied = bufferusage.shared_blks_dirtied +
     768          111 :                 bufferusage.local_blks_dirtied;
     769              : 
     770              :             /*
     771              :              * We do not expect an analyze to take > 25 days and it simplifies
     772              :              * things a bit to use TimestampDifferenceMilliseconds.
     773              :              */
     774          111 :             delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
     775              : 
     776              :             /*
     777              :              * Note that we are reporting these read/write rates in the same
     778              :              * manner as VACUUM does, which means that while the 'average read
     779              :              * rate' here actually corresponds to page misses and resulting
     780              :              * reads which are also picked up by track_io_timing, if enabled,
     781              :              * the 'average write rate' is actually talking about the rate of
     782              :              * pages being dirtied, not being written out, so it's typical to
     783              :              * have a non-zero 'avg write rate' while I/O timings only reports
     784              :              * reads.
     785              :              *
     786              :              * It's not clear that an ANALYZE will ever result in
     787              :              * FlushBuffer() being called, but we track and support reporting
     788              :              * on I/O write time in case that changes as it's practically free
     789              :              * to do so anyway.
     790              :              */
     791              : 
     792          111 :             if (delay_in_ms > 0)
     793              :             {
     794          111 :                 read_rate = (double) BLCKSZ * total_blks_read /
     795          111 :                     (1024 * 1024) / (delay_in_ms / 1000.0);
     796          111 :                 write_rate = (double) BLCKSZ * total_blks_dirtied /
     797          111 :                     (1024 * 1024) / (delay_in_ms / 1000.0);
     798              :             }
     799              : 
     800              :             /*
     801              :              * We split this up so we don't emit empty I/O timing values when
     802              :              * track_io_timing isn't enabled.
     803              :              */
     804              : 
     805          111 :             initStringInfo(&buf);
     806              : 
     807          111 :             if (AmAutoVacuumWorkerProcess())
     808          111 :                 msgfmt = _("automatic analyze of table \"%s.%s.%s\"\n");
     809              :             else
     810            0 :                 msgfmt = _("finished analyzing table \"%s.%s.%s\"\n");
     811              : 
     812          111 :             appendStringInfo(&buf, msgfmt,
     813              :                              get_database_name(MyDatabaseId),
     814          111 :                              get_namespace_name(RelationGetNamespace(onerel)),
     815          111 :                              RelationGetRelationName(onerel));
     816          111 :             if (track_cost_delay_timing)
     817              :             {
     818              :                 /*
     819              :                  * We bypass the changecount mechanism because this value is
     820              :                  * only updated by the calling process.
     821              :                  */
     822            0 :                 appendStringInfo(&buf, _("delay time: %.3f ms\n"),
     823            0 :                                  (double) MyBEEntry->st_progress_param[PROGRESS_ANALYZE_DELAY_TIME] / 1000000.0);
     824              :             }
     825          111 :             if (track_io_timing)
     826              :             {
     827            0 :                 double      read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
     828            0 :                 double      write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
     829              : 
     830            0 :                 appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
     831              :                                  read_ms, write_ms);
     832              :             }
     833          111 :             appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
     834              :                              read_rate, write_rate);
     835          111 :             appendStringInfo(&buf, _("buffer usage: %" PRId64 " hits, %" PRId64 " reads, %" PRId64 " dirtied\n"),
     836              :                              total_blks_hit,
     837              :                              total_blks_read,
     838              :                              total_blks_dirtied);
     839          111 :             appendStringInfo(&buf,
     840          111 :                              _("WAL usage: %" PRId64 " records, %" PRId64 " full page images, %" PRIu64 " bytes, %" PRIu64 " full page image bytes, %" PRId64 " buffers full\n"),
     841              :                              walusage.wal_records,
     842              :                              walusage.wal_fpi,
     843              :                              walusage.wal_bytes,
     844              :                              walusage.wal_fpi_bytes,
     845              :                              walusage.wal_buffers_full);
     846          111 :             appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
     847              : 
     848          111 :             ereport(verbose ? INFO : LOG,
     849              :                     (errmsg_internal("%s", buf.data)));
     850              : 
     851          111 :             pfree(buf.data);
     852              :         }
     853              :     }
     854              : 
     855              :     /* Roll back any GUC changes executed by index functions */
     856         8456 :     AtEOXact_GUC(false, save_nestlevel);
     857              : 
     858              :     /* Restore userid and security context */
     859         8456 :     SetUserIdAndSecContext(save_userid, save_sec_context);
     860              : 
     861              :     /* Restore current context and release memory */
     862         8456 :     MemoryContextSwitchTo(caller_context);
     863         8456 :     MemoryContextDelete(anl_context);
     864         8456 :     anl_context = NULL;
     865         8456 : }
     866              : 
     867              : /*
     868              :  * Compute statistics about indexes of a relation
     869              :  */
     870              : static void
     871         3725 : compute_index_stats(Relation onerel, double totalrows,
     872              :                     AnlIndexData *indexdata, int nindexes,
     873              :                     HeapTuple *rows, int numrows,
     874              :                     MemoryContext col_context)
     875              : {
     876              :     MemoryContext ind_context,
     877              :                 old_context;
     878              :     Datum       values[INDEX_MAX_KEYS];
     879              :     bool        isnull[INDEX_MAX_KEYS];
     880              :     int         ind,
     881              :                 i;
     882              : 
     883         3725 :     ind_context = AllocSetContextCreate(anl_context,
     884              :                                         "Analyze Index",
     885              :                                         ALLOCSET_DEFAULT_SIZES);
     886         3725 :     old_context = MemoryContextSwitchTo(ind_context);
     887              : 
     888        10997 :     for (ind = 0; ind < nindexes; ind++)
     889              :     {
     890         7275 :         AnlIndexData *thisdata = &indexdata[ind];
     891         7275 :         IndexInfo  *indexInfo = thisdata->indexInfo;
     892         7275 :         int         attr_cnt = thisdata->attr_cnt;
     893              :         TupleTableSlot *slot;
     894              :         EState     *estate;
     895              :         ExprContext *econtext;
     896              :         ExprState  *predicate;
     897              :         Datum      *exprvals;
     898              :         bool       *exprnulls;
     899              :         int         numindexrows,
     900              :                     tcnt,
     901              :                     rowno;
     902              :         double      totalindexrows;
     903              : 
     904              :         /* Ignore index if no columns to analyze and not partial */
     905         7275 :         if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
     906         7196 :             continue;
     907              : 
     908              :         /*
     909              :          * Need an EState for evaluation of index expressions and
     910              :          * partial-index predicates.  Create it in the per-index context to be
     911              :          * sure it gets cleaned up at the bottom of the loop.
     912              :          */
     913           79 :         estate = CreateExecutorState();
     914           79 :         econtext = GetPerTupleExprContext(estate);
     915              :         /* Need a slot to hold the current heap tuple, too */
     916           79 :         slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
     917              :                                         &TTSOpsHeapTuple);
     918              : 
     919              :         /* Arrange for econtext's scan tuple to be the tuple under test */
     920           79 :         econtext->ecxt_scantuple = slot;
     921              : 
     922              :         /* Set up execution state for predicate. */
     923           79 :         predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
     924              : 
     925              :         /* Compute and save index expression values */
     926           79 :         exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
     927           79 :         exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
     928           79 :         numindexrows = 0;
     929           79 :         tcnt = 0;
     930        93735 :         for (rowno = 0; rowno < numrows; rowno++)
     931              :         {
     932        93659 :             HeapTuple   heapTuple = rows[rowno];
     933              : 
     934        93659 :             vacuum_delay_point(true);
     935              : 
     936              :             /*
     937              :              * Reset the per-tuple context each time, to reclaim any cruft
     938              :              * left behind by evaluating the predicate or index expressions.
     939              :              */
     940        93659 :             ResetExprContext(econtext);
     941              : 
     942              :             /* Set up for predicate or expression evaluation */
     943        93659 :             ExecStoreHeapTuple(heapTuple, slot, false);
     944              : 
     945              :             /* If index is partial, check predicate */
     946        93659 :             if (predicate != NULL)
     947              :             {
     948        33033 :                 if (!ExecQual(predicate, econtext))
     949        20664 :                     continue;
     950              :             }
     951        72995 :             numindexrows++;
     952              : 
     953        72995 :             if (attr_cnt > 0)
     954              :             {
     955              :                 /*
     956              :                  * Evaluate the index row to compute expression values. We
     957              :                  * could do this by hand, but FormIndexDatum is convenient.
     958              :                  */
     959        60626 :                 FormIndexDatum(indexInfo,
     960              :                                slot,
     961              :                                estate,
     962              :                                values,
     963              :                                isnull);
     964              : 
     965              :                 /*
     966              :                  * Save just the columns we care about.  We copy the values
     967              :                  * into ind_context from the estate's per-tuple context.
     968              :                  */
     969       121246 :                 for (i = 0; i < attr_cnt; i++)
     970              :                 {
     971        60623 :                     VacAttrStats *stats = thisdata->vacattrstats[i];
     972        60623 :                     int         attnum = stats->tupattnum;
     973              : 
     974        60623 :                     if (isnull[attnum - 1])
     975              :                     {
     976            6 :                         exprvals[tcnt] = (Datum) 0;
     977            6 :                         exprnulls[tcnt] = true;
     978              :                     }
     979              :                     else
     980              :                     {
     981       121234 :                         exprvals[tcnt] = datumCopy(values[attnum - 1],
     982        60617 :                                                    stats->attrtype->typbyval,
     983        60617 :                                                    stats->attrtype->typlen);
     984        60617 :                         exprnulls[tcnt] = false;
     985              :                     }
     986        60623 :                     tcnt++;
     987              :                 }
     988              :             }
     989              :         }
     990              : 
     991              :         /*
     992              :          * Having counted the number of rows that pass the predicate in the
     993              :          * sample, we can estimate the total number of rows in the index.
     994              :          */
     995           76 :         thisdata->tupleFract = (double) numindexrows / (double) numrows;
     996           76 :         totalindexrows = ceil(thisdata->tupleFract * totalrows);
     997              : 
     998              :         /*
     999              :          * Now we can compute the statistics for the expression columns.
    1000              :          */
    1001           76 :         if (numindexrows > 0)
    1002              :         {
    1003           72 :             MemoryContextSwitchTo(col_context);
    1004          121 :             for (i = 0; i < attr_cnt; i++)
    1005              :             {
    1006           49 :                 VacAttrStats *stats = thisdata->vacattrstats[i];
    1007              : 
    1008           49 :                 stats->exprvals = exprvals + i;
    1009           49 :                 stats->exprnulls = exprnulls + i;
    1010           49 :                 stats->rowstride = attr_cnt;
    1011           49 :                 stats->compute_stats(stats,
    1012              :                                      ind_fetch_func,
    1013              :                                      numindexrows,
    1014              :                                      totalindexrows);
    1015              : 
    1016           49 :                 MemoryContextReset(col_context);
    1017              :             }
    1018              :         }
    1019              : 
    1020              :         /* And clean up */
    1021           76 :         MemoryContextSwitchTo(ind_context);
    1022              : 
    1023           76 :         ExecDropSingleTupleTableSlot(slot);
    1024           76 :         FreeExecutorState(estate);
    1025           76 :         MemoryContextReset(ind_context);
    1026              :     }
    1027              : 
    1028         3722 :     MemoryContextSwitchTo(old_context);
    1029         3722 :     MemoryContextDelete(ind_context);
    1030         3722 : }
    1031              : 
    1032              : /*
    1033              :  * examine_attribute -- pre-analysis of a single column
    1034              :  *
    1035              :  * Determine whether the column is analyzable; if so, create and initialize
    1036              :  * a VacAttrStats struct for it.  If not, return NULL.
    1037              :  *
    1038              :  * If index_expr isn't NULL, then we're trying to analyze an expression index,
    1039              :  * and index_expr is the expression tree representing the column's data.
    1040              :  */
    1041              : static VacAttrStats *
    1042        61806 : examine_attribute(Relation onerel, int attnum, Node *index_expr)
    1043              : {
    1044        61806 :     Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
    1045              :     int         attstattarget;
    1046              :     HeapTuple   atttuple;
    1047              :     Datum       dat;
    1048              :     bool        isnull;
    1049              :     HeapTuple   typtuple;
    1050              :     VacAttrStats *stats;
    1051              :     int         i;
    1052              :     bool        ok;
    1053              : 
    1054              :     /* Never analyze dropped columns */
    1055        61806 :     if (attr->attisdropped)
    1056            3 :         return NULL;
    1057              : 
    1058              :     /* Don't analyze virtual generated columns */
    1059        61803 :     if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
    1060           28 :         return NULL;
    1061              : 
    1062              :     /*
    1063              :      * Get attstattarget value.  Set to -1 if null.  (Analyze functions expect
    1064              :      * -1 to mean use default_statistics_target; see for example
    1065              :      * std_typanalyze.)
    1066              :      */
    1067        61775 :     atttuple = SearchSysCache2(ATTNUM, ObjectIdGetDatum(RelationGetRelid(onerel)), Int16GetDatum(attnum));
    1068        61775 :     if (!HeapTupleIsValid(atttuple))
    1069            0 :         elog(ERROR, "cache lookup failed for attribute %d of relation %u",
    1070              :              attnum, RelationGetRelid(onerel));
    1071        61775 :     dat = SysCacheGetAttr(ATTNUM, atttuple, Anum_pg_attribute_attstattarget, &isnull);
    1072        61775 :     attstattarget = isnull ? -1 : DatumGetInt16(dat);
    1073        61775 :     ReleaseSysCache(atttuple);
    1074              : 
    1075              :     /* Don't analyze column if user has specified not to */
    1076        61775 :     if (attstattarget == 0)
    1077            3 :         return NULL;
    1078              : 
    1079              :     /*
    1080              :      * Create the VacAttrStats struct.
    1081              :      */
    1082        61772 :     stats = palloc0_object(VacAttrStats);
    1083        61772 :     stats->attstattarget = attstattarget;
    1084              : 
    1085              :     /*
    1086              :      * When analyzing an expression index, believe the expression tree's type
    1087              :      * not the column datatype --- the latter might be the opckeytype storage
    1088              :      * type of the opclass, which is not interesting for our purposes.  (Note:
    1089              :      * if we did anything with non-expression index columns, we'd need to
    1090              :      * figure out where to get the correct type info from, but for now that's
    1091              :      * not a problem.)  It's not clear whether anyone will care about the
    1092              :      * typmod, but we store that too just in case.
    1093              :      */
    1094        61772 :     if (index_expr)
    1095              :     {
    1096           61 :         stats->attrtypid = exprType(index_expr);
    1097           61 :         stats->attrtypmod = exprTypmod(index_expr);
    1098              : 
    1099              :         /*
    1100              :          * If a collation has been specified for the index column, use that in
    1101              :          * preference to anything else; but if not, fall back to whatever we
    1102              :          * can get from the expression.
    1103              :          */
    1104           61 :         if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
    1105            7 :             stats->attrcollid = onerel->rd_indcollation[attnum - 1];
    1106              :         else
    1107           54 :             stats->attrcollid = exprCollation(index_expr);
    1108              :     }
    1109              :     else
    1110              :     {
    1111        61711 :         stats->attrtypid = attr->atttypid;
    1112        61711 :         stats->attrtypmod = attr->atttypmod;
    1113        61711 :         stats->attrcollid = attr->attcollation;
    1114              :     }
    1115              : 
    1116        61772 :     typtuple = SearchSysCacheCopy1(TYPEOID,
    1117              :                                    ObjectIdGetDatum(stats->attrtypid));
    1118        61772 :     if (!HeapTupleIsValid(typtuple))
    1119            0 :         elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
    1120        61772 :     stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
    1121        61772 :     stats->anl_context = anl_context;
    1122        61772 :     stats->tupattnum = attnum;
    1123              : 
    1124              :     /*
    1125              :      * The fields describing the stats->stavalues[n] element types default to
    1126              :      * the type of the data being analyzed, but the type-specific typanalyze
    1127              :      * function can change them if it wants to store something else.
    1128              :      */
    1129       370632 :     for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
    1130              :     {
    1131       308860 :         stats->statypid[i] = stats->attrtypid;
    1132       308860 :         stats->statyplen[i] = stats->attrtype->typlen;
    1133       308860 :         stats->statypbyval[i] = stats->attrtype->typbyval;
    1134       308860 :         stats->statypalign[i] = stats->attrtype->typalign;
    1135              :     }
    1136              : 
    1137              :     /*
    1138              :      * Call the type-specific typanalyze function.  If none is specified, use
    1139              :      * std_typanalyze().
    1140              :      */
    1141        61772 :     if (OidIsValid(stats->attrtype->typanalyze))
    1142         3961 :         ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
    1143              :                                            PointerGetDatum(stats)));
    1144              :     else
    1145        57811 :         ok = std_typanalyze(stats);
    1146              : 
    1147        61772 :     if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
    1148              :     {
    1149            0 :         heap_freetuple(typtuple);
    1150            0 :         pfree(stats);
    1151            0 :         return NULL;
    1152              :     }
    1153              : 
    1154        61772 :     return stats;
    1155              : }
    1156              : 
    1157              : /*
    1158              :  * Read stream callback returning the next BlockNumber as chosen by the
    1159              :  * BlockSampling algorithm.
    1160              :  */
    1161              : static BlockNumber
    1162        84068 : block_sampling_read_stream_next(ReadStream *stream,
    1163              :                                 void *callback_private_data,
    1164              :                                 void *per_buffer_data)
    1165              : {
    1166        84068 :     BlockSamplerData *bs = callback_private_data;
    1167              : 
    1168        84068 :     return BlockSampler_HasMore(bs) ? BlockSampler_Next(bs) : InvalidBlockNumber;
    1169              : }
    1170              : 
    1171              : /*
    1172              :  * acquire_sample_rows -- acquire a random sample of rows from the table
    1173              :  *
    1174              :  * Selected rows are returned in the caller-allocated array rows[], which
    1175              :  * must have at least targrows entries.
    1176              :  * The actual number of rows selected is returned as the function result.
    1177              :  * We also estimate the total numbers of live and dead rows in the table,
    1178              :  * and return them into *totalrows and *totaldeadrows, respectively.
    1179              :  *
    1180              :  * The returned list of tuples is in order by physical position in the table.
    1181              :  * (We will rely on this later to derive correlation estimates.)
    1182              :  *
    1183              :  * As of May 2004 we use a new two-stage method:  Stage one selects up
    1184              :  * to targrows random blocks (or all blocks, if there aren't so many).
    1185              :  * Stage two scans these blocks and uses the Vitter algorithm to create
    1186              :  * a random sample of targrows rows (or less, if there are less in the
    1187              :  * sample of blocks).  The two stages are executed simultaneously: each
    1188              :  * block is processed as soon as stage one returns its number and while
    1189              :  * the rows are read stage two controls which ones are to be inserted
    1190              :  * into the sample.
    1191              :  *
    1192              :  * Although every row has an equal chance of ending up in the final
    1193              :  * sample, this sampling method is not perfect: not every possible
    1194              :  * sample has an equal chance of being selected.  For large relations
    1195              :  * the number of different blocks represented by the sample tends to be
    1196              :  * too small.  We can live with that for now.  Improvements are welcome.
    1197              :  *
    1198              :  * An important property of this sampling method is that because we do
    1199              :  * look at a statistically unbiased set of blocks, we should get
    1200              :  * unbiased estimates of the average numbers of live and dead rows per
    1201              :  * block.  The previous sampling method put too much credence in the row
    1202              :  * density near the start of the table.
    1203              :  */
    1204              : static int
    1205         9018 : acquire_sample_rows(Relation onerel, int elevel,
    1206              :                     HeapTuple *rows, int targrows,
    1207              :                     double *totalrows, double *totaldeadrows)
    1208              : {
    1209         9018 :     int         numrows = 0;    /* # rows now in reservoir */
    1210         9018 :     double      samplerows = 0; /* total # rows collected */
    1211         9018 :     double      liverows = 0;   /* # live rows seen */
    1212         9018 :     double      deadrows = 0;   /* # dead rows seen */
    1213         9018 :     double      rowstoskip = -1;    /* -1 means not set yet */
    1214              :     uint32      randseed;       /* Seed for block sampler(s) */
    1215              :     BlockNumber totalblocks;
    1216              :     TransactionId OldestXmin;
    1217              :     BlockSamplerData bs;
    1218              :     ReservoirStateData rstate;
    1219              :     TupleTableSlot *slot;
    1220              :     TableScanDesc scan;
    1221              :     BlockNumber nblocks;
    1222         9018 :     BlockNumber blksdone = 0;
    1223              :     ReadStream *stream;
    1224              : 
    1225              :     Assert(targrows > 0);
    1226              : 
    1227         9018 :     totalblocks = RelationGetNumberOfBlocks(onerel);
    1228              : 
    1229              :     /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
    1230         9018 :     OldestXmin = GetOldestNonRemovableTransactionId(onerel);
    1231              : 
    1232              :     /* Prepare for sampling block numbers */
    1233         9018 :     randseed = pg_prng_uint32(&pg_global_prng_state);
    1234         9018 :     nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
    1235              : 
    1236              :     /* Report sampling block numbers */
    1237         9018 :     pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_TOTAL,
    1238              :                                  nblocks);
    1239              : 
    1240              :     /* Prepare for sampling rows */
    1241         9018 :     reservoir_init_selection_state(&rstate, targrows);
    1242              : 
    1243         9018 :     scan = table_beginscan_analyze(onerel);
    1244         9018 :     slot = table_slot_create(onerel, NULL);
    1245              : 
    1246              :     /*
    1247              :      * It is safe to use batching, as block_sampling_read_stream_next never
    1248              :      * blocks.
    1249              :      */
    1250         9018 :     stream = read_stream_begin_relation(READ_STREAM_MAINTENANCE |
    1251              :                                         READ_STREAM_USE_BATCHING,
    1252              :                                         vac_strategy,
    1253              :                                         scan->rs_rd,
    1254              :                                         MAIN_FORKNUM,
    1255              :                                         block_sampling_read_stream_next,
    1256              :                                         &bs,
    1257              :                                         0);
    1258              : 
    1259              :     /* Outer loop over blocks to sample */
    1260        84068 :     while (table_scan_analyze_next_block(scan, stream))
    1261              :     {
    1262        75050 :         vacuum_delay_point(true);
    1263              : 
    1264      5735005 :         while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
    1265              :         {
    1266              :             /*
    1267              :              * The first targrows sample rows are simply copied into the
    1268              :              * reservoir. Then we start replacing tuples in the sample until
    1269              :              * we reach the end of the relation.  This algorithm is from Jeff
    1270              :              * Vitter's paper (see full citation in utils/misc/sampling.c). It
    1271              :              * works by repeatedly computing the number of tuples to skip
    1272              :              * before selecting a tuple, which replaces a randomly chosen
    1273              :              * element of the reservoir (current set of tuples).  At all times
    1274              :              * the reservoir is a true random sample of the tuples we've
    1275              :              * passed over so far, so when we fall off the end of the relation
    1276              :              * we're done.
    1277              :              */
    1278      5659955 :             if (numrows < targrows)
    1279      5532274 :                 rows[numrows++] = ExecCopySlotHeapTuple(slot);
    1280              :             else
    1281              :             {
    1282              :                 /*
    1283              :                  * t in Vitter's paper is the number of records already
    1284              :                  * processed.  If we need to compute a new S value, we must
    1285              :                  * use the not-yet-incremented value of samplerows as t.
    1286              :                  */
    1287       127681 :                 if (rowstoskip < 0)
    1288        58307 :                     rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
    1289              : 
    1290       127681 :                 if (rowstoskip <= 0)
    1291              :                 {
    1292              :                     /*
    1293              :                      * Found a suitable tuple, so save it, replacing one old
    1294              :                      * tuple at random
    1295              :                      */
    1296        58278 :                     int         k = (int) (targrows * sampler_random_fract(&rstate.randstate));
    1297              : 
    1298              :                     Assert(k >= 0 && k < targrows);
    1299        58278 :                     heap_freetuple(rows[k]);
    1300        58278 :                     rows[k] = ExecCopySlotHeapTuple(slot);
    1301              :                 }
    1302              : 
    1303       127681 :                 rowstoskip -= 1;
    1304              :             }
    1305              : 
    1306      5659955 :             samplerows += 1;
    1307              :         }
    1308              : 
    1309        75050 :         pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_DONE,
    1310              :                                      ++blksdone);
    1311              :     }
    1312              : 
    1313         9018 :     read_stream_end(stream);
    1314              : 
    1315         9018 :     ExecDropSingleTupleTableSlot(slot);
    1316         9018 :     table_endscan(scan);
    1317              : 
    1318              :     /*
    1319              :      * If we didn't find as many tuples as we wanted then we're done. No sort
    1320              :      * is needed, since they're already in order.
    1321              :      *
    1322              :      * Otherwise we need to sort the collected tuples by position
    1323              :      * (itempointer). It's not worth worrying about corner cases where the
    1324              :      * tuples are already sorted.
    1325              :      */
    1326         9018 :     if (numrows == targrows)
    1327           81 :         qsort_interruptible(rows, numrows, sizeof(HeapTuple),
    1328              :                             compare_rows, NULL);
    1329              : 
    1330              :     /*
    1331              :      * Estimate total numbers of live and dead rows in relation, extrapolating
    1332              :      * on the assumption that the average tuple density in pages we didn't
    1333              :      * scan is the same as in the pages we did scan.  Since what we scanned is
    1334              :      * a random sample of the pages in the relation, this should be a good
    1335              :      * assumption.
    1336              :      */
    1337         9018 :     if (bs.m > 0)
    1338              :     {
    1339         6347 :         *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
    1340         6347 :         *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
    1341              :     }
    1342              :     else
    1343              :     {
    1344         2671 :         *totalrows = 0.0;
    1345         2671 :         *totaldeadrows = 0.0;
    1346              :     }
    1347              : 
    1348              :     /*
    1349              :      * Emit some interesting relation info
    1350              :      */
    1351         9018 :     ereport(elevel,
    1352              :             (errmsg("\"%s\": scanned %d of %u pages, "
    1353              :                     "containing %.0f live rows and %.0f dead rows; "
    1354              :                     "%d rows in sample, %.0f estimated total rows",
    1355              :                     RelationGetRelationName(onerel),
    1356              :                     bs.m, totalblocks,
    1357              :                     liverows, deadrows,
    1358              :                     numrows, *totalrows)));
    1359              : 
    1360         9018 :     return numrows;
    1361              : }
    1362              : 
    1363              : /*
    1364              :  * Comparator for sorting rows[] array
    1365              :  */
    1366              : static int
    1367      2013828 : compare_rows(const void *a, const void *b, void *arg)
    1368              : {
    1369      2013828 :     HeapTuple   ha = *(const HeapTuple *) a;
    1370      2013828 :     HeapTuple   hb = *(const HeapTuple *) b;
    1371      2013828 :     BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
    1372      2013828 :     OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
    1373      2013828 :     BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
    1374      2013828 :     OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
    1375              : 
    1376      2013828 :     if (ba < bb)
    1377       440774 :         return -1;
    1378      1573054 :     if (ba > bb)
    1379       430524 :         return 1;
    1380      1142530 :     if (oa < ob)
    1381       767566 :         return -1;
    1382       374964 :     if (oa > ob)
    1383       374964 :         return 1;
    1384            0 :     return 0;
    1385              : }
    1386              : 
    1387              : 
    1388              : /*
    1389              :  * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
    1390              :  *
    1391              :  * This has the same API as acquire_sample_rows, except that rows are
    1392              :  * collected from all inheritance children as well as the specified table.
    1393              :  * We fail and return zero if there are no inheritance children, or if all
    1394              :  * children are foreign tables that don't support ANALYZE.
    1395              :  */
    1396              : static int
    1397          440 : acquire_inherited_sample_rows(Relation onerel, int elevel,
    1398              :                               HeapTuple *rows, int targrows,
    1399              :                               double *totalrows, double *totaldeadrows)
    1400              : {
    1401              :     List       *tableOIDs;
    1402              :     Relation   *rels;
    1403              :     AcquireSampleRowsFunc *acquirefuncs;
    1404              :     double     *relblocks;
    1405              :     double      totalblocks;
    1406              :     int         numrows,
    1407              :                 nrels,
    1408              :                 i;
    1409              :     ListCell   *lc;
    1410              :     bool        has_child;
    1411              : 
    1412              :     /* Initialize output parameters to zero now, in case we exit early */
    1413          440 :     *totalrows = 0;
    1414          440 :     *totaldeadrows = 0;
    1415              : 
    1416              :     /*
    1417              :      * Find all members of inheritance set.  We only need AccessShareLock on
    1418              :      * the children.
    1419              :      */
    1420              :     tableOIDs =
    1421          440 :         find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);
    1422              : 
    1423              :     /*
    1424              :      * Check that there's at least one descendant, else fail.  This could
    1425              :      * happen despite analyze_rel's relhassubclass check, if table once had a
    1426              :      * child but no longer does.  In that case, we can clear the
    1427              :      * relhassubclass field so as not to make the same mistake again later.
    1428              :      * (This is safe because we hold ShareUpdateExclusiveLock.)
    1429              :      */
    1430          440 :     if (list_length(tableOIDs) < 2)
    1431              :     {
    1432              :         /* CCI because we already updated the pg_class row in this command */
    1433           10 :         CommandCounterIncrement();
    1434           10 :         SetRelationHasSubclass(RelationGetRelid(onerel), false);
    1435           10 :         ereport(elevel,
    1436              :                 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
    1437              :                         get_namespace_name(RelationGetNamespace(onerel)),
    1438              :                         RelationGetRelationName(onerel))));
    1439           10 :         return 0;
    1440              :     }
    1441              : 
    1442              :     /*
    1443              :      * Identify acquirefuncs to use, and count blocks in all the relations.
    1444              :      * The result could overflow BlockNumber, so we use double arithmetic.
    1445              :      */
    1446          430 :     rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
    1447              :     acquirefuncs = (AcquireSampleRowsFunc *)
    1448          430 :         palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
    1449          430 :     relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
    1450          430 :     totalblocks = 0;
    1451          430 :     nrels = 0;
    1452          430 :     has_child = false;
    1453         1967 :     foreach(lc, tableOIDs)
    1454              :     {
    1455         1537 :         Oid         childOID = lfirst_oid(lc);
    1456              :         Relation    childrel;
    1457         1537 :         AcquireSampleRowsFunc acquirefunc = NULL;
    1458         1537 :         BlockNumber relpages = 0;
    1459              : 
    1460              :         /* We already got the needed lock */
    1461         1537 :         childrel = table_open(childOID, NoLock);
    1462              : 
    1463              :         /* Ignore if temp table of another backend */
    1464         1537 :         if (RELATION_IS_OTHER_TEMP(childrel))
    1465              :         {
    1466              :             /* ... but release the lock on it */
    1467              :             Assert(childrel != onerel);
    1468            0 :             table_close(childrel, AccessShareLock);
    1469          411 :             continue;
    1470              :         }
    1471              : 
    1472              :         /* Check table type (MATVIEW can't happen, but might as well allow) */
    1473         1537 :         if (childrel->rd_rel->relkind == RELKIND_RELATION ||
    1474          426 :             childrel->rd_rel->relkind == RELKIND_MATVIEW)
    1475              :         {
    1476              :             /* Regular table, so use the regular row acquisition function */
    1477         1111 :             acquirefunc = acquire_sample_rows;
    1478         1111 :             relpages = RelationGetNumberOfBlocks(childrel);
    1479              :         }
    1480          426 :         else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
    1481              :         {
    1482              :             /*
    1483              :              * For a foreign table, call the FDW's hook function to see
    1484              :              * whether it supports analysis.
    1485              :              */
    1486              :             FdwRoutine *fdwroutine;
    1487           15 :             bool        ok = false;
    1488              : 
    1489           15 :             fdwroutine = GetFdwRoutineForRelation(childrel, false);
    1490              : 
    1491           15 :             if (fdwroutine->AnalyzeForeignTable != NULL)
    1492           15 :                 ok = fdwroutine->AnalyzeForeignTable(childrel,
    1493              :                                                      &acquirefunc,
    1494              :                                                      &relpages);
    1495              : 
    1496           15 :             if (!ok)
    1497              :             {
    1498              :                 /* ignore, but release the lock on it */
    1499              :                 Assert(childrel != onerel);
    1500            0 :                 table_close(childrel, AccessShareLock);
    1501            0 :                 continue;
    1502              :             }
    1503              :         }
    1504              :         else
    1505              :         {
    1506              :             /*
    1507              :              * ignore, but release the lock on it.  don't try to unlock the
    1508              :              * passed-in relation
    1509              :              */
    1510              :             Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
    1511          411 :             if (childrel != onerel)
    1512           39 :                 table_close(childrel, AccessShareLock);
    1513              :             else
    1514          372 :                 table_close(childrel, NoLock);
    1515          411 :             continue;
    1516              :         }
    1517              : 
    1518              :         /* OK, we'll process this child */
    1519         1126 :         has_child = true;
    1520         1126 :         rels[nrels] = childrel;
    1521         1126 :         acquirefuncs[nrels] = acquirefunc;
    1522         1126 :         relblocks[nrels] = (double) relpages;
    1523         1126 :         totalblocks += (double) relpages;
    1524         1126 :         nrels++;
    1525              :     }
    1526              : 
    1527              :     /*
    1528              :      * If we don't have at least one child table to consider, fail.  If the
    1529              :      * relation is a partitioned table, it's not counted as a child table.
    1530              :      */
    1531          430 :     if (!has_child)
    1532              :     {
    1533            0 :         ereport(elevel,
    1534              :                 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
    1535              :                         get_namespace_name(RelationGetNamespace(onerel)),
    1536              :                         RelationGetRelationName(onerel))));
    1537            0 :         return 0;
    1538              :     }
    1539              : 
    1540              :     /*
    1541              :      * Now sample rows from each relation, proportionally to its fraction of
    1542              :      * the total block count.  (This might be less than desirable if the child
    1543              :      * rels have radically different free-space percentages, but it's not
    1544              :      * clear that it's worth working harder.)
    1545              :      */
    1546          430 :     pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_TOTAL,
    1547              :                                  nrels);
    1548          430 :     numrows = 0;
    1549         1556 :     for (i = 0; i < nrels; i++)
    1550              :     {
    1551         1126 :         Relation    childrel = rels[i];
    1552         1126 :         AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
    1553         1126 :         double      childblocks = relblocks[i];
    1554              : 
    1555              :         /*
    1556              :          * Report progress.  The sampling function will normally report blocks
    1557              :          * done/total, but we need to reset them to 0 here, so that they don't
    1558              :          * show an old value until that.
    1559              :          */
    1560              :         {
    1561         1126 :             const int   progress_index[] = {
    1562              :                 PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID,
    1563              :                 PROGRESS_ANALYZE_BLOCKS_DONE,
    1564              :                 PROGRESS_ANALYZE_BLOCKS_TOTAL
    1565              :             };
    1566         1126 :             const int64 progress_vals[] = {
    1567         1126 :                 RelationGetRelid(childrel),
    1568              :                 0,
    1569              :                 0,
    1570              :             };
    1571              : 
    1572         1126 :             pgstat_progress_update_multi_param(3, progress_index, progress_vals);
    1573              :         }
    1574              : 
    1575         1126 :         if (childblocks > 0)
    1576              :         {
    1577              :             int         childtargrows;
    1578              : 
    1579         1046 :             childtargrows = (int) rint(targrows * childblocks / totalblocks);
    1580              :             /* Make sure we don't overrun due to roundoff error */
    1581         1046 :             childtargrows = Min(childtargrows, targrows - numrows);
    1582         1046 :             if (childtargrows > 0)
    1583              :             {
    1584              :                 int         childrows;
    1585              :                 double      trows,
    1586              :                             tdrows;
    1587              : 
    1588              :                 /* Fetch a random sample of the child's rows */
    1589         1046 :                 childrows = (*acquirefunc) (childrel, elevel,
    1590         1046 :                                             rows + numrows, childtargrows,
    1591              :                                             &trows, &tdrows);
    1592              : 
    1593              :                 /* We may need to convert from child's rowtype to parent's */
    1594         1046 :                 if (childrows > 0 &&
    1595         1046 :                     !equalRowTypes(RelationGetDescr(childrel),
    1596              :                                    RelationGetDescr(onerel)))
    1597              :                 {
    1598              :                     TupleConversionMap *map;
    1599              : 
    1600         1000 :                     map = convert_tuples_by_name(RelationGetDescr(childrel),
    1601              :                                                  RelationGetDescr(onerel));
    1602         1000 :                     if (map != NULL)
    1603              :                     {
    1604              :                         int         j;
    1605              : 
    1606        53380 :                         for (j = 0; j < childrows; j++)
    1607              :                         {
    1608              :                             HeapTuple   newtup;
    1609              : 
    1610        53313 :                             newtup = execute_attr_map_tuple(rows[numrows + j], map);
    1611        53313 :                             heap_freetuple(rows[numrows + j]);
    1612        53313 :                             rows[numrows + j] = newtup;
    1613              :                         }
    1614           67 :                         free_conversion_map(map);
    1615              :                     }
    1616              :                 }
    1617              : 
    1618              :                 /* And add to counts */
    1619         1046 :                 numrows += childrows;
    1620         1046 :                 *totalrows += trows;
    1621         1046 :                 *totaldeadrows += tdrows;
    1622              :             }
    1623              :         }
    1624              : 
    1625              :         /*
    1626              :          * Note: we cannot release the child-table locks, since we may have
    1627              :          * pointers to their TOAST tables in the sampled rows.
    1628              :          */
    1629         1126 :         table_close(childrel, NoLock);
    1630         1126 :         pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_DONE,
    1631         1126 :                                      i + 1);
    1632              :     }
    1633              : 
    1634          430 :     return numrows;
    1635              : }
    1636              : 
    1637              : 
    1638              : /*
    1639              :  *  update_attstats() -- update attribute statistics for one relation
    1640              :  *
    1641              :  *      Statistics are stored in several places: the pg_class row for the
    1642              :  *      relation has stats about the whole relation, and there is a
    1643              :  *      pg_statistic row for each (non-system) attribute that has ever
    1644              :  *      been analyzed.  The pg_class values are updated by VACUUM, not here.
    1645              :  *
    1646              :  *      pg_statistic rows are just added or updated normally.  This means
    1647              :  *      that pg_statistic will probably contain some deleted rows at the
    1648              :  *      completion of a vacuum cycle, unless it happens to get vacuumed last.
    1649              :  *
    1650              :  *      To keep things simple, we punt for pg_statistic, and don't try
    1651              :  *      to compute or store rows for pg_statistic itself in pg_statistic.
    1652              :  *      This could possibly be made to work, but it's not worth the trouble.
    1653              :  *      Note analyze_rel() has seen to it that we won't come here when
    1654              :  *      vacuuming pg_statistic itself.
    1655              :  *
    1656              :  *      Note: there would be a race condition here if two backends could
    1657              :  *      ANALYZE the same table concurrently.  Presently, we lock that out
    1658              :  *      by taking a self-exclusive lock on the relation in analyze_rel().
    1659              :  */
    1660              : static void
    1661        13005 : update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
    1662              : {
    1663              :     Relation    sd;
    1664              :     int         attno;
    1665        13005 :     CatalogIndexState indstate = NULL;
    1666              : 
    1667        13005 :     if (natts <= 0)
    1668         7226 :         return;                 /* nothing to do */
    1669              : 
    1670         5779 :     sd = table_open(StatisticRelationId, RowExclusiveLock);
    1671              : 
    1672        51203 :     for (attno = 0; attno < natts; attno++)
    1673              :     {
    1674        45424 :         VacAttrStats *stats = vacattrstats[attno];
    1675              :         HeapTuple   stup,
    1676              :                     oldtup;
    1677              :         int         i,
    1678              :                     k,
    1679              :                     n;
    1680              :         Datum       values[Natts_pg_statistic];
    1681              :         bool        nulls[Natts_pg_statistic];
    1682              :         bool        replaces[Natts_pg_statistic];
    1683              : 
    1684              :         /* Ignore attr if we weren't able to collect stats */
    1685        45424 :         if (!stats->stats_valid)
    1686            3 :             continue;
    1687              : 
    1688              :         /*
    1689              :          * Construct a new pg_statistic tuple
    1690              :          */
    1691      1453472 :         for (i = 0; i < Natts_pg_statistic; ++i)
    1692              :         {
    1693      1408051 :             nulls[i] = false;
    1694      1408051 :             replaces[i] = true;
    1695              :         }
    1696              : 
    1697        45421 :         values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
    1698        45421 :         values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->tupattnum);
    1699        45421 :         values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
    1700        45421 :         values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
    1701        45421 :         values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
    1702        45421 :         values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
    1703        45421 :         i = Anum_pg_statistic_stakind1 - 1;
    1704       272526 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1705              :         {
    1706       227105 :             values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
    1707              :         }
    1708        45421 :         i = Anum_pg_statistic_staop1 - 1;
    1709       272526 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1710              :         {
    1711       227105 :             values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
    1712              :         }
    1713        45421 :         i = Anum_pg_statistic_stacoll1 - 1;
    1714       272526 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1715              :         {
    1716       227105 :             values[i++] = ObjectIdGetDatum(stats->stacoll[k]);   /* stacollN */
    1717              :         }
    1718        45421 :         i = Anum_pg_statistic_stanumbers1 - 1;
    1719       272526 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1720              :         {
    1721       227105 :             if (stats->stanumbers[k] != NULL)
    1722              :             {
    1723        70873 :                 int         nnum = stats->numnumbers[k];
    1724        70873 :                 Datum      *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
    1725              :                 ArrayType  *arry;
    1726              : 
    1727       590244 :                 for (n = 0; n < nnum; n++)
    1728       519371 :                     numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
    1729        70873 :                 arry = construct_array_builtin(numdatums, nnum, FLOAT4OID);
    1730        70873 :                 values[i++] = PointerGetDatum(arry);    /* stanumbersN */
    1731              :             }
    1732              :             else
    1733              :             {
    1734       156232 :                 nulls[i] = true;
    1735       156232 :                 values[i++] = (Datum) 0;
    1736              :             }
    1737              :         }
    1738        45421 :         i = Anum_pg_statistic_stavalues1 - 1;
    1739       272526 :         for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
    1740              :         {
    1741       227105 :             if (stats->stavalues[k] != NULL)
    1742              :             {
    1743              :                 ArrayType  *arry;
    1744              : 
    1745        50085 :                 arry = construct_array(stats->stavalues[k],
    1746              :                                        stats->numvalues[k],
    1747              :                                        stats->statypid[k],
    1748        50085 :                                        stats->statyplen[k],
    1749        50085 :                                        stats->statypbyval[k],
    1750        50085 :                                        stats->statypalign[k]);
    1751        50085 :                 values[i++] = PointerGetDatum(arry);    /* stavaluesN */
    1752              :             }
    1753              :             else
    1754              :             {
    1755       177020 :                 nulls[i] = true;
    1756       177020 :                 values[i++] = (Datum) 0;
    1757              :             }
    1758              :         }
    1759              : 
    1760              :         /* Is there already a pg_statistic tuple for this attribute? */
    1761        90842 :         oldtup = SearchSysCache3(STATRELATTINH,
    1762              :                                  ObjectIdGetDatum(relid),
    1763        45421 :                                  Int16GetDatum(stats->tupattnum),
    1764              :                                  BoolGetDatum(inh));
    1765              : 
    1766              :         /* Open index information when we know we need it */
    1767        45421 :         if (indstate == NULL)
    1768         5776 :             indstate = CatalogOpenIndexes(sd);
    1769              : 
    1770        45421 :         if (HeapTupleIsValid(oldtup))
    1771              :         {
    1772              :             /* Yes, replace it */
    1773        20702 :             stup = heap_modify_tuple(oldtup,
    1774              :                                      RelationGetDescr(sd),
    1775              :                                      values,
    1776              :                                      nulls,
    1777              :                                      replaces);
    1778        20702 :             ReleaseSysCache(oldtup);
    1779        20702 :             CatalogTupleUpdateWithInfo(sd, &stup->t_self, stup, indstate);
    1780              :         }
    1781              :         else
    1782              :         {
    1783              :             /* No, insert new tuple */
    1784        24719 :             stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
    1785        24719 :             CatalogTupleInsertWithInfo(sd, stup, indstate);
    1786              :         }
    1787              : 
    1788        45421 :         heap_freetuple(stup);
    1789              :     }
    1790              : 
    1791         5779 :     if (indstate != NULL)
    1792         5776 :         CatalogCloseIndexes(indstate);
    1793         5779 :     table_close(sd, RowExclusiveLock);
    1794              : }
    1795              : 
    1796              : /*
    1797              :  * Standard fetch function for use by compute_stats subroutines.
    1798              :  *
    1799              :  * This exists to provide some insulation between compute_stats routines
    1800              :  * and the actual storage of the sample data.
    1801              :  */
    1802              : static Datum
    1803     43939276 : std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
    1804              : {
    1805     43939276 :     int         attnum = stats->tupattnum;
    1806     43939276 :     HeapTuple   tuple = stats->rows[rownum];
    1807     43939276 :     TupleDesc   tupDesc = stats->tupDesc;
    1808              : 
    1809     43939276 :     return heap_getattr(tuple, attnum, tupDesc, isNull);
    1810              : }
    1811              : 
    1812              : /*
    1813              :  * Fetch function for analyzing index expressions.
    1814              :  *
    1815              :  * We have not bothered to construct index tuples, instead the data is
    1816              :  * just in Datum arrays.
    1817              :  */
    1818              : static Datum
    1819        60623 : ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
    1820              : {
    1821              :     int         i;
    1822              : 
    1823              :     /* exprvals and exprnulls are already offset for proper column */
    1824        60623 :     i = rownum * stats->rowstride;
    1825        60623 :     *isNull = stats->exprnulls[i];
    1826        60623 :     return stats->exprvals[i];
    1827              : }
    1828              : 
    1829              : 
    1830              : /*==========================================================================
    1831              :  *
    1832              :  * Code below this point represents the "standard" type-specific statistics
    1833              :  * analysis algorithms.  This code can be replaced on a per-data-type basis
    1834              :  * by setting a nonzero value in pg_type.typanalyze.
    1835              :  *
    1836              :  *==========================================================================
    1837              :  */
    1838              : 
    1839              : 
    1840              : /*
    1841              :  * To avoid consuming too much memory during analysis and/or too much space
    1842              :  * in the resulting pg_statistic rows, we ignore varlena datums that are wider
    1843              :  * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
    1844              :  * and distinct-value calculations since a wide value is unlikely to be
    1845              :  * duplicated at all, much less be a most-common value.  For the same reason,
    1846              :  * ignoring wide values will not affect our estimates of histogram bin
    1847              :  * boundaries very much.
    1848              :  */
    1849              : #define WIDTH_THRESHOLD  1024
    1850              : 
    1851              : #define swapInt(a,b)    do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
    1852              : #define swapDatum(a,b)  do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
    1853              : 
    1854              : /*
    1855              :  * Extra information used by the default analysis routines
    1856              :  */
    1857              : typedef struct
    1858              : {
    1859              :     int         count;          /* # of duplicates */
    1860              :     int         first;          /* values[] index of first occurrence */
    1861              : } ScalarMCVItem;
    1862              : 
    1863              : typedef struct
    1864              : {
    1865              :     SortSupport ssup;
    1866              :     int        *tupnoLink;
    1867              : } CompareScalarsContext;
    1868              : 
    1869              : 
    1870              : static void compute_trivial_stats(VacAttrStatsP stats,
    1871              :                                   AnalyzeAttrFetchFunc fetchfunc,
    1872              :                                   int samplerows,
    1873              :                                   double totalrows);
    1874              : static void compute_distinct_stats(VacAttrStatsP stats,
    1875              :                                    AnalyzeAttrFetchFunc fetchfunc,
    1876              :                                    int samplerows,
    1877              :                                    double totalrows);
    1878              : static void compute_scalar_stats(VacAttrStatsP stats,
    1879              :                                  AnalyzeAttrFetchFunc fetchfunc,
    1880              :                                  int samplerows,
    1881              :                                  double totalrows);
    1882              : static int  compare_scalars(const void *a, const void *b, void *arg);
    1883              : static int  compare_mcvs(const void *a, const void *b, void *arg);
    1884              : static int  analyze_mcv_list(int *mcv_counts,
    1885              :                              int num_mcv,
    1886              :                              double stadistinct,
    1887              :                              double stanullfrac,
    1888              :                              int samplerows,
    1889              :                              double totalrows);
    1890              : 
    1891              : 
    1892              : /*
    1893              :  * std_typanalyze -- the default type-specific typanalyze function
    1894              :  */
    1895              : bool
    1896        62568 : std_typanalyze(VacAttrStats *stats)
    1897              : {
    1898              :     Oid         ltopr;
    1899              :     Oid         eqopr;
    1900              :     StdAnalyzeData *mystats;
    1901              : 
    1902              :     /* If the attstattarget column is negative, use the default value */
    1903        62568 :     if (stats->attstattarget < 0)
    1904        62153 :         stats->attstattarget = default_statistics_target;
    1905              : 
    1906              :     /* Look for default "<" and "=" operators for column's type */
    1907        62568 :     get_sort_group_operators(stats->attrtypid,
    1908              :                              false, false, false,
    1909              :                              &ltopr, &eqopr, NULL,
    1910              :                              NULL);
    1911              : 
    1912              :     /* Save the operator info for compute_stats routines */
    1913        62568 :     mystats = palloc_object(StdAnalyzeData);
    1914        62568 :     mystats->eqopr = eqopr;
    1915        62568 :     mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
    1916        62568 :     mystats->ltopr = ltopr;
    1917        62568 :     stats->extra_data = mystats;
    1918              : 
    1919              :     /*
    1920              :      * Determine which standard statistics algorithm to use
    1921              :      */
    1922        62568 :     if (OidIsValid(eqopr) && OidIsValid(ltopr))
    1923              :     {
    1924              :         /* Seems to be a scalar datatype */
    1925        60650 :         stats->compute_stats = compute_scalar_stats;
    1926              :         /*--------------------
    1927              :          * The following choice of minrows is based on the paper
    1928              :          * "Random sampling for histogram construction: how much is enough?"
    1929              :          * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
    1930              :          * Proceedings of ACM SIGMOD International Conference on Management
    1931              :          * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
    1932              :          * says that for table size n, histogram size k, maximum relative
    1933              :          * error in bin size f, and error probability gamma, the minimum
    1934              :          * random sample size is
    1935              :          *      r = 4 * k * ln(2*n/gamma) / f^2
    1936              :          * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
    1937              :          *      r = 305.82 * k
    1938              :          * Note that because of the log function, the dependence on n is
    1939              :          * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
    1940              :          * bin size error with probability 0.99.  So there's no real need to
    1941              :          * scale for n, which is a good thing because we don't necessarily
    1942              :          * know it at this point.
    1943              :          *--------------------
    1944              :          */
    1945        60650 :         stats->minrows = 300 * stats->attstattarget;
    1946              :     }
    1947         1918 :     else if (OidIsValid(eqopr))
    1948              :     {
    1949              :         /* We can still recognize distinct values */
    1950         1642 :         stats->compute_stats = compute_distinct_stats;
    1951              :         /* Might as well use the same minrows as above */
    1952         1642 :         stats->minrows = 300 * stats->attstattarget;
    1953              :     }
    1954              :     else
    1955              :     {
    1956              :         /* Can't do much but the trivial stuff */
    1957          276 :         stats->compute_stats = compute_trivial_stats;
    1958              :         /* Might as well use the same minrows as above */
    1959          276 :         stats->minrows = 300 * stats->attstattarget;
    1960              :     }
    1961              : 
    1962        62568 :     return true;
    1963              : }
    1964              : 
    1965              : 
    1966              : /*
    1967              :  *  compute_trivial_stats() -- compute very basic column statistics
    1968              :  *
    1969              :  *  We use this when we cannot find a hash "=" operator for the datatype.
    1970              :  *
    1971              :  *  We determine the fraction of non-null rows and the average datum width.
    1972              :  */
    1973              : static void
    1974          189 : compute_trivial_stats(VacAttrStatsP stats,
    1975              :                       AnalyzeAttrFetchFunc fetchfunc,
    1976              :                       int samplerows,
    1977              :                       double totalrows)
    1978              : {
    1979              :     int         i;
    1980          189 :     int         null_cnt = 0;
    1981          189 :     int         nonnull_cnt = 0;
    1982          189 :     double      total_width = 0;
    1983          378 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    1984          189 :                               stats->attrtype->typlen == -1);
    1985          378 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    1986          189 :                                stats->attrtype->typlen < 0);
    1987              : 
    1988       622923 :     for (i = 0; i < samplerows; i++)
    1989              :     {
    1990              :         Datum       value;
    1991              :         bool        isnull;
    1992              : 
    1993       622734 :         vacuum_delay_point(true);
    1994              : 
    1995       622734 :         value = fetchfunc(stats, i, &isnull);
    1996              : 
    1997              :         /* Check for null/nonnull */
    1998       622734 :         if (isnull)
    1999              :         {
    2000       344803 :             null_cnt++;
    2001       344803 :             continue;
    2002              :         }
    2003       277931 :         nonnull_cnt++;
    2004              : 
    2005              :         /*
    2006              :          * If it's a variable-width field, add up widths for average width
    2007              :          * calculation.  Note that if the value is toasted, we use the toasted
    2008              :          * width.  We don't bother with this calculation if it's a fixed-width
    2009              :          * type.
    2010              :          */
    2011       277931 :         if (is_varlena)
    2012              :         {
    2013        62731 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    2014              :         }
    2015       215200 :         else if (is_varwidth)
    2016              :         {
    2017              :             /* must be cstring */
    2018            0 :             total_width += strlen(DatumGetCString(value)) + 1;
    2019              :         }
    2020              :     }
    2021              : 
    2022              :     /* We can only compute average width if we found some non-null values. */
    2023          189 :     if (nonnull_cnt > 0)
    2024              :     {
    2025           90 :         stats->stats_valid = true;
    2026              :         /* Do the simple null-frac and width stats */
    2027           90 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2028           90 :         if (is_varwidth)
    2029           42 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2030              :         else
    2031           48 :             stats->stawidth = stats->attrtype->typlen;
    2032           90 :         stats->stadistinct = 0.0;    /* "unknown" */
    2033              :     }
    2034           99 :     else if (null_cnt > 0)
    2035              :     {
    2036              :         /* We found only nulls; assume the column is entirely null */
    2037           99 :         stats->stats_valid = true;
    2038           99 :         stats->stanullfrac = 1.0;
    2039           99 :         if (is_varwidth)
    2040           99 :             stats->stawidth = 0; /* "unknown" */
    2041              :         else
    2042            0 :             stats->stawidth = stats->attrtype->typlen;
    2043           99 :         stats->stadistinct = 0.0;    /* "unknown" */
    2044              :     }
    2045          189 : }
    2046              : 
    2047              : 
    2048              : /*
    2049              :  *  compute_distinct_stats() -- compute column statistics including ndistinct
    2050              :  *
    2051              :  *  We use this when we can find only an "=" operator for the datatype.
    2052              :  *
    2053              :  *  We determine the fraction of non-null rows, the average width, the
    2054              :  *  most common values, and the (estimated) number of distinct values.
    2055              :  *
    2056              :  *  The most common values are determined by brute force: we keep a list
    2057              :  *  of previously seen values, ordered by number of times seen, as we scan
    2058              :  *  the samples.  A newly seen value is inserted just after the last
    2059              :  *  multiply-seen value, causing the bottommost (oldest) singly-seen value
    2060              :  *  to drop off the list.  The accuracy of this method, and also its cost,
    2061              :  *  depend mainly on the length of the list we are willing to keep.
    2062              :  */
    2063              : static void
    2064         1205 : compute_distinct_stats(VacAttrStatsP stats,
    2065              :                        AnalyzeAttrFetchFunc fetchfunc,
    2066              :                        int samplerows,
    2067              :                        double totalrows)
    2068              : {
    2069              :     int         i;
    2070         1205 :     int         null_cnt = 0;
    2071         1205 :     int         nonnull_cnt = 0;
    2072         1205 :     int         toowide_cnt = 0;
    2073         1205 :     double      total_width = 0;
    2074         2036 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    2075          831 :                               stats->attrtype->typlen == -1);
    2076         2036 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    2077          831 :                                stats->attrtype->typlen < 0);
    2078              :     FmgrInfo    f_cmpeq;
    2079              :     typedef struct
    2080              :     {
    2081              :         Datum       value;
    2082              :         int         count;
    2083              :     } TrackItem;
    2084              :     TrackItem  *track;
    2085              :     int         track_cnt,
    2086              :                 track_max;
    2087         1205 :     int         num_mcv = stats->attstattarget;
    2088         1205 :     StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
    2089              : 
    2090              :     /*
    2091              :      * We track up to 2*n values for an n-element MCV list; but at least 10
    2092              :      */
    2093         1205 :     track_max = 2 * num_mcv;
    2094         1205 :     if (track_max < 10)
    2095           39 :         track_max = 10;
    2096         1205 :     track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
    2097         1205 :     track_cnt = 0;
    2098              : 
    2099         1205 :     fmgr_info(mystats->eqfunc, &f_cmpeq);
    2100              : 
    2101       867680 :     for (i = 0; i < samplerows; i++)
    2102              :     {
    2103              :         Datum       value;
    2104              :         bool        isnull;
    2105              :         bool        match;
    2106              :         int         firstcount1,
    2107              :                     j;
    2108              : 
    2109       866475 :         vacuum_delay_point(true);
    2110              : 
    2111       866475 :         value = fetchfunc(stats, i, &isnull);
    2112              : 
    2113              :         /* Check for null/nonnull */
    2114       866475 :         if (isnull)
    2115              :         {
    2116       723285 :             null_cnt++;
    2117       723285 :             continue;
    2118              :         }
    2119       143190 :         nonnull_cnt++;
    2120              : 
    2121              :         /*
    2122              :          * If it's a variable-width field, add up widths for average width
    2123              :          * calculation.  Note that if the value is toasted, we use the toasted
    2124              :          * width.  We don't bother with this calculation if it's a fixed-width
    2125              :          * type.
    2126              :          */
    2127       143190 :         if (is_varlena)
    2128              :         {
    2129        50818 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    2130              : 
    2131              :             /*
    2132              :              * If the value is toasted, we want to detoast it just once to
    2133              :              * avoid repeated detoastings and resultant excess memory usage
    2134              :              * during the comparisons.  Also, check to see if the value is
    2135              :              * excessively wide, and if so don't detoast at all --- just
    2136              :              * ignore the value.
    2137              :              */
    2138        50818 :             if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
    2139              :             {
    2140            0 :                 toowide_cnt++;
    2141            0 :                 continue;
    2142              :             }
    2143        50818 :             value = PointerGetDatum(PG_DETOAST_DATUM(value));
    2144              :         }
    2145        92372 :         else if (is_varwidth)
    2146              :         {
    2147              :             /* must be cstring */
    2148            0 :             total_width += strlen(DatumGetCString(value)) + 1;
    2149              :         }
    2150              : 
    2151              :         /*
    2152              :          * See if the value matches anything we're already tracking.
    2153              :          */
    2154       143190 :         match = false;
    2155       143190 :         firstcount1 = track_cnt;
    2156       358192 :         for (j = 0; j < track_cnt; j++)
    2157              :         {
    2158       354143 :             if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
    2159              :                                                stats->attrcollid,
    2160       354143 :                                                value, track[j].value)))
    2161              :             {
    2162       139141 :                 match = true;
    2163       139141 :                 break;
    2164              :             }
    2165       215002 :             if (j < firstcount1 && track[j].count == 1)
    2166         3127 :                 firstcount1 = j;
    2167              :         }
    2168              : 
    2169       143190 :         if (match)
    2170              :         {
    2171              :             /* Found a match */
    2172       139141 :             track[j].count++;
    2173              :             /* This value may now need to "bubble up" in the track list */
    2174       146465 :             while (j > 0 && track[j].count > track[j - 1].count)
    2175              :             {
    2176         7324 :                 swapDatum(track[j].value, track[j - 1].value);
    2177         7324 :                 swapInt(track[j].count, track[j - 1].count);
    2178         7324 :                 j--;
    2179              :             }
    2180              :         }
    2181              :         else
    2182              :         {
    2183              :             /* No match.  Insert at head of count-1 list */
    2184         4049 :             if (track_cnt < track_max)
    2185         3773 :                 track_cnt++;
    2186        96595 :             for (j = track_cnt - 1; j > firstcount1; j--)
    2187              :             {
    2188        92546 :                 track[j].value = track[j - 1].value;
    2189        92546 :                 track[j].count = track[j - 1].count;
    2190              :             }
    2191         4049 :             if (firstcount1 < track_cnt)
    2192              :             {
    2193         4049 :                 track[firstcount1].value = value;
    2194         4049 :                 track[firstcount1].count = 1;
    2195              :             }
    2196              :         }
    2197              :     }
    2198              : 
    2199              :     /* We can only compute real stats if we found some non-null values. */
    2200         1205 :     if (nonnull_cnt > 0)
    2201              :     {
    2202              :         int         nmultiple,
    2203              :                     summultiple;
    2204              : 
    2205          884 :         stats->stats_valid = true;
    2206              :         /* Do the simple null-frac and width stats */
    2207          884 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2208          884 :         if (is_varwidth)
    2209          510 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2210              :         else
    2211          374 :             stats->stawidth = stats->attrtype->typlen;
    2212              : 
    2213              :         /* Count the number of values we found multiple times */
    2214          884 :         summultiple = 0;
    2215         3431 :         for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
    2216              :         {
    2217         2994 :             if (track[nmultiple].count == 1)
    2218          447 :                 break;
    2219         2547 :             summultiple += track[nmultiple].count;
    2220              :         }
    2221              : 
    2222          884 :         if (nmultiple == 0)
    2223              :         {
    2224              :             /*
    2225              :              * If we found no repeated non-null values, assume it's a unique
    2226              :              * column; but be sure to discount for any nulls we found.
    2227              :              */
    2228           99 :             stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2229              :         }
    2230          785 :         else if (track_cnt < track_max && toowide_cnt == 0 &&
    2231              :                  nmultiple == track_cnt)
    2232              :         {
    2233              :             /*
    2234              :              * Our track list includes every value in the sample, and every
    2235              :              * value appeared more than once.  Assume the column has just
    2236              :              * these values.  (This case is meant to address columns with
    2237              :              * small, fixed sets of possible values, such as boolean or enum
    2238              :              * columns.  If there are any values that appear just once in the
    2239              :              * sample, including too-wide values, we should assume that that's
    2240              :              * not what we're dealing with.)
    2241              :              */
    2242          437 :             stats->stadistinct = track_cnt;
    2243              :         }
    2244              :         else
    2245              :         {
    2246              :             /*----------
    2247              :              * Estimate the number of distinct values using the estimator
    2248              :              * proposed by Haas and Stokes in IBM Research Report RJ 10025:
    2249              :              *      n*d / (n - f1 + f1*n/N)
    2250              :              * where f1 is the number of distinct values that occurred
    2251              :              * exactly once in our sample of n rows (from a total of N),
    2252              :              * and d is the total number of distinct values in the sample.
    2253              :              * This is their Duj1 estimator; the other estimators they
    2254              :              * recommend are considerably more complex, and are numerically
    2255              :              * very unstable when n is much smaller than N.
    2256              :              *
    2257              :              * In this calculation, we consider only non-nulls.  We used to
    2258              :              * include rows with null values in the n and N counts, but that
    2259              :              * leads to inaccurate answers in columns with many nulls, and
    2260              :              * it's intuitively bogus anyway considering the desired result is
    2261              :              * the number of distinct non-null values.
    2262              :              *
    2263              :              * We assume (not very reliably!) that all the multiply-occurring
    2264              :              * values are reflected in the final track[] list, and the other
    2265              :              * nonnull values all appeared but once.  (XXX this usually
    2266              :              * results in a drastic overestimate of ndistinct.  Can we do
    2267              :              * any better?)
    2268              :              *----------
    2269              :              */
    2270          348 :             int         f1 = nonnull_cnt - summultiple;
    2271          348 :             int         d = f1 + nmultiple;
    2272          348 :             double      n = samplerows - null_cnt;
    2273          348 :             double      N = totalrows * (1.0 - stats->stanullfrac);
    2274              :             double      stadistinct;
    2275              : 
    2276              :             /* N == 0 shouldn't happen, but just in case ... */
    2277          348 :             if (N > 0)
    2278          348 :                 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
    2279              :             else
    2280            0 :                 stadistinct = 0;
    2281              : 
    2282              :             /* Clamp to sane range in case of roundoff error */
    2283          348 :             if (stadistinct < d)
    2284           94 :                 stadistinct = d;
    2285          348 :             if (stadistinct > N)
    2286            0 :                 stadistinct = N;
    2287              :             /* And round to integer */
    2288          348 :             stats->stadistinct = floor(stadistinct + 0.5);
    2289              :         }
    2290              : 
    2291              :         /*
    2292              :          * If we estimated the number of distinct values at more than 10% of
    2293              :          * the total row count (a very arbitrary limit), then assume that
    2294              :          * stadistinct should scale with the row count rather than be a fixed
    2295              :          * value.
    2296              :          */
    2297          884 :         if (stats->stadistinct > 0.1 * totalrows)
    2298          204 :             stats->stadistinct = -(stats->stadistinct / totalrows);
    2299              : 
    2300              :         /*
    2301              :          * Decide how many values are worth storing as most-common values. If
    2302              :          * we are able to generate a complete MCV list (all the values in the
    2303              :          * sample will fit, and we think these are all the ones in the table),
    2304              :          * then do so.  Otherwise, store only those values that are
    2305              :          * significantly more common than the values not in the list.
    2306              :          *
    2307              :          * Note: the first of these cases is meant to address columns with
    2308              :          * small, fixed sets of possible values, such as boolean or enum
    2309              :          * columns.  If we can *completely* represent the column population by
    2310              :          * an MCV list that will fit into the stats target, then we should do
    2311              :          * so and thus provide the planner with complete information.  But if
    2312              :          * the MCV list is not complete, it's generally worth being more
    2313              :          * selective, and not just filling it all the way up to the stats
    2314              :          * target.
    2315              :          */
    2316          884 :         if (track_cnt < track_max && toowide_cnt == 0 &&
    2317          878 :             stats->stadistinct > 0 &&
    2318              :             track_cnt <= num_mcv)
    2319              :         {
    2320              :             /* Track list includes all values seen, and all will fit */
    2321          568 :             num_mcv = track_cnt;
    2322              :         }
    2323              :         else
    2324              :         {
    2325              :             int        *mcv_counts;
    2326              : 
    2327              :             /* Incomplete list; decide how many values are worth keeping */
    2328          316 :             if (num_mcv > track_cnt)
    2329          287 :                 num_mcv = track_cnt;
    2330              : 
    2331          316 :             if (num_mcv > 0)
    2332              :             {
    2333          316 :                 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
    2334         1126 :                 for (i = 0; i < num_mcv; i++)
    2335          810 :                     mcv_counts[i] = track[i].count;
    2336              : 
    2337          316 :                 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
    2338          316 :                                            stats->stadistinct,
    2339          316 :                                            stats->stanullfrac,
    2340              :                                            samplerows, totalrows);
    2341              :             }
    2342              :         }
    2343              : 
    2344              :         /* Generate MCV slot entry */
    2345          884 :         if (num_mcv > 0)
    2346              :         {
    2347              :             MemoryContext old_context;
    2348              :             Datum      *mcv_values;
    2349              :             float4     *mcv_freqs;
    2350              : 
    2351              :             /* Must copy the target values into anl_context */
    2352          883 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2353          883 :             mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
    2354          883 :             mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
    2355         4240 :             for (i = 0; i < num_mcv; i++)
    2356              :             {
    2357         6714 :                 mcv_values[i] = datumCopy(track[i].value,
    2358         3357 :                                           stats->attrtype->typbyval,
    2359         3357 :                                           stats->attrtype->typlen);
    2360         3357 :                 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
    2361              :             }
    2362          883 :             MemoryContextSwitchTo(old_context);
    2363              : 
    2364          883 :             stats->stakind[0] = STATISTIC_KIND_MCV;
    2365          883 :             stats->staop[0] = mystats->eqopr;
    2366          883 :             stats->stacoll[0] = stats->attrcollid;
    2367          883 :             stats->stanumbers[0] = mcv_freqs;
    2368          883 :             stats->numnumbers[0] = num_mcv;
    2369          883 :             stats->stavalues[0] = mcv_values;
    2370          883 :             stats->numvalues[0] = num_mcv;
    2371              : 
    2372              :             /*
    2373              :              * Accept the defaults for stats->statypid and others. They have
    2374              :              * been set before we were called (see vacuum.h)
    2375              :              */
    2376              :         }
    2377              :     }
    2378          321 :     else if (null_cnt > 0)
    2379              :     {
    2380              :         /* We found only nulls; assume the column is entirely null */
    2381          321 :         stats->stats_valid = true;
    2382          321 :         stats->stanullfrac = 1.0;
    2383          321 :         if (is_varwidth)
    2384          321 :             stats->stawidth = 0; /* "unknown" */
    2385              :         else
    2386            0 :             stats->stawidth = stats->attrtype->typlen;
    2387          321 :         stats->stadistinct = 0.0;    /* "unknown" */
    2388              :     }
    2389              : 
    2390              :     /* We don't need to bother cleaning up any of our temporary palloc's */
    2391         1205 : }
    2392              : 
    2393              : 
    2394              : /*
    2395              :  *  compute_scalar_stats() -- compute column statistics
    2396              :  *
    2397              :  *  We use this when we can find "=" and "<" operators for the datatype.
    2398              :  *
    2399              :  *  We determine the fraction of non-null rows, the average width, the
    2400              :  *  most common values, the (estimated) number of distinct values, the
    2401              :  *  distribution histogram, and the correlation of physical to logical order.
    2402              :  *
    2403              :  *  The desired stats can be determined fairly easily after sorting the
    2404              :  *  data values into order.
    2405              :  */
    2406              : static void
    2407        44208 : compute_scalar_stats(VacAttrStatsP stats,
    2408              :                      AnalyzeAttrFetchFunc fetchfunc,
    2409              :                      int samplerows,
    2410              :                      double totalrows)
    2411              : {
    2412              :     int         i;
    2413        44208 :     int         null_cnt = 0;
    2414        44208 :     int         nonnull_cnt = 0;
    2415        44208 :     int         toowide_cnt = 0;
    2416        44208 :     double      total_width = 0;
    2417        54878 :     bool        is_varlena = (!stats->attrtype->typbyval &&
    2418        10670 :                               stats->attrtype->typlen == -1);
    2419        54878 :     bool        is_varwidth = (!stats->attrtype->typbyval &&
    2420        10670 :                                stats->attrtype->typlen < 0);
    2421              :     double      corr_xysum;
    2422              :     SortSupportData ssup;
    2423              :     ScalarItem *values;
    2424        44208 :     int         values_cnt = 0;
    2425              :     int        *tupnoLink;
    2426              :     ScalarMCVItem *track;
    2427        44208 :     int         track_cnt = 0;
    2428        44208 :     int         num_mcv = stats->attstattarget;
    2429        44208 :     int         num_bins = stats->attstattarget;
    2430        44208 :     StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
    2431              : 
    2432        44208 :     values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
    2433        44208 :     tupnoLink = (int *) palloc(samplerows * sizeof(int));
    2434        44208 :     track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
    2435              : 
    2436        44208 :     memset(&ssup, 0, sizeof(ssup));
    2437        44208 :     ssup.ssup_cxt = CurrentMemoryContext;
    2438        44208 :     ssup.ssup_collation = stats->attrcollid;
    2439        44208 :     ssup.ssup_nulls_first = false;
    2440              : 
    2441              :     /*
    2442              :      * For now, don't perform abbreviated key conversion, because full values
    2443              :      * are required for MCV slot generation.  Supporting that optimization
    2444              :      * would necessitate teaching compare_scalars() to call a tie-breaker.
    2445              :      */
    2446        44208 :     ssup.abbreviate = false;
    2447              : 
    2448        44208 :     PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
    2449              : 
    2450              :     /* Initial scan to find sortable values */
    2451     40048186 :     for (i = 0; i < samplerows; i++)
    2452              :     {
    2453              :         Datum       value;
    2454              :         bool        isnull;
    2455              : 
    2456     40003978 :         vacuum_delay_point(true);
    2457              : 
    2458     40003978 :         value = fetchfunc(stats, i, &isnull);
    2459              : 
    2460              :         /* Check for null/nonnull */
    2461     40003978 :         if (isnull)
    2462              :         {
    2463      5176551 :             null_cnt++;
    2464      5196177 :             continue;
    2465              :         }
    2466     34827427 :         nonnull_cnt++;
    2467              : 
    2468              :         /*
    2469              :          * If it's a variable-width field, add up widths for average width
    2470              :          * calculation.  Note that if the value is toasted, we use the toasted
    2471              :          * width.  We don't bother with this calculation if it's a fixed-width
    2472              :          * type.
    2473              :          */
    2474     34827427 :         if (is_varlena)
    2475              :         {
    2476      4203631 :             total_width += VARSIZE_ANY(DatumGetPointer(value));
    2477              : 
    2478              :             /*
    2479              :              * If the value is toasted, we want to detoast it just once to
    2480              :              * avoid repeated detoastings and resultant excess memory usage
    2481              :              * during the comparisons.  Also, check to see if the value is
    2482              :              * excessively wide, and if so don't detoast at all --- just
    2483              :              * ignore the value.
    2484              :              */
    2485      4203631 :             if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
    2486              :             {
    2487        19626 :                 toowide_cnt++;
    2488        19626 :                 continue;
    2489              :             }
    2490      4184005 :             value = PointerGetDatum(PG_DETOAST_DATUM(value));
    2491              :         }
    2492     30623796 :         else if (is_varwidth)
    2493              :         {
    2494              :             /* must be cstring */
    2495            0 :             total_width += strlen(DatumGetCString(value)) + 1;
    2496              :         }
    2497              : 
    2498              :         /* Add it to the list to be sorted */
    2499     34807801 :         values[values_cnt].value = value;
    2500     34807801 :         values[values_cnt].tupno = values_cnt;
    2501     34807801 :         tupnoLink[values_cnt] = values_cnt;
    2502     34807801 :         values_cnt++;
    2503              :     }
    2504              : 
    2505              :     /* We can only compute real stats if we found some sortable values. */
    2506        44208 :     if (values_cnt > 0)
    2507              :     {
    2508              :         int         ndistinct,  /* # distinct values in sample */
    2509              :                     nmultiple,  /* # that appear multiple times */
    2510              :                     num_hist,
    2511              :                     dups_cnt;
    2512        41348 :         int         slot_idx = 0;
    2513              :         CompareScalarsContext cxt;
    2514              : 
    2515              :         /* Sort the collected values */
    2516        41348 :         cxt.ssup = &ssup;
    2517        41348 :         cxt.tupnoLink = tupnoLink;
    2518        41348 :         qsort_interruptible(values, values_cnt, sizeof(ScalarItem),
    2519              :                             compare_scalars, &cxt);
    2520              : 
    2521              :         /*
    2522              :          * Now scan the values in order, find the most common ones, and also
    2523              :          * accumulate ordering-correlation statistics.
    2524              :          *
    2525              :          * To determine which are most common, we first have to count the
    2526              :          * number of duplicates of each value.  The duplicates are adjacent in
    2527              :          * the sorted list, so a brute-force approach is to compare successive
    2528              :          * datum values until we find two that are not equal. However, that
    2529              :          * requires N-1 invocations of the datum comparison routine, which are
    2530              :          * completely redundant with work that was done during the sort.  (The
    2531              :          * sort algorithm must at some point have compared each pair of items
    2532              :          * that are adjacent in the sorted order; otherwise it could not know
    2533              :          * that it's ordered the pair correctly.) We exploit this by having
    2534              :          * compare_scalars remember the highest tupno index that each
    2535              :          * ScalarItem has been found equal to.  At the end of the sort, a
    2536              :          * ScalarItem's tupnoLink will still point to itself if and only if it
    2537              :          * is the last item of its group of duplicates (since the group will
    2538              :          * be ordered by tupno).
    2539              :          */
    2540        41348 :         corr_xysum = 0;
    2541        41348 :         ndistinct = 0;
    2542        41348 :         nmultiple = 0;
    2543        41348 :         dups_cnt = 0;
    2544     34849149 :         for (i = 0; i < values_cnt; i++)
    2545              :         {
    2546     34807801 :             int         tupno = values[i].tupno;
    2547              : 
    2548     34807801 :             corr_xysum += ((double) i) * ((double) tupno);
    2549     34807801 :             dups_cnt++;
    2550     34807801 :             if (tupnoLink[tupno] == tupno)
    2551              :             {
    2552              :                 /* Reached end of duplicates of this value */
    2553      7263343 :                 ndistinct++;
    2554      7263343 :                 if (dups_cnt > 1)
    2555              :                 {
    2556       630006 :                     nmultiple++;
    2557       630006 :                     if (track_cnt < num_mcv ||
    2558       267608 :                         dups_cnt > track[track_cnt - 1].count)
    2559              :                     {
    2560              :                         /*
    2561              :                          * Found a new item for the mcv list; find its
    2562              :                          * position, bubbling down old items if needed. Loop
    2563              :                          * invariant is that j points at an empty/ replaceable
    2564              :                          * slot.
    2565              :                          */
    2566              :                         int         j;
    2567              : 
    2568       417923 :                         if (track_cnt < num_mcv)
    2569       362398 :                             track_cnt++;
    2570      5611623 :                         for (j = track_cnt - 1; j > 0; j--)
    2571              :                         {
    2572      5565653 :                             if (dups_cnt <= track[j - 1].count)
    2573       371953 :                                 break;
    2574      5193700 :                             track[j].count = track[j - 1].count;
    2575      5193700 :                             track[j].first = track[j - 1].first;
    2576              :                         }
    2577       417923 :                         track[j].count = dups_cnt;
    2578       417923 :                         track[j].first = i + 1 - dups_cnt;
    2579              :                     }
    2580              :                 }
    2581      7263343 :                 dups_cnt = 0;
    2582              :             }
    2583              :         }
    2584              : 
    2585        41348 :         stats->stats_valid = true;
    2586              :         /* Do the simple null-frac and width stats */
    2587        41348 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2588        41348 :         if (is_varwidth)
    2589         5933 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2590              :         else
    2591        35415 :             stats->stawidth = stats->attrtype->typlen;
    2592              : 
    2593        41348 :         if (nmultiple == 0)
    2594              :         {
    2595              :             /*
    2596              :              * If we found no repeated non-null values, assume it's a unique
    2597              :              * column; but be sure to discount for any nulls we found.
    2598              :              */
    2599        11023 :             stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2600              :         }
    2601        30325 :         else if (toowide_cnt == 0 && nmultiple == ndistinct)
    2602              :         {
    2603              :             /*
    2604              :              * Every value in the sample appeared more than once.  Assume the
    2605              :              * column has just these values.  (This case is meant to address
    2606              :              * columns with small, fixed sets of possible values, such as
    2607              :              * boolean or enum columns.  If there are any values that appear
    2608              :              * just once in the sample, including too-wide values, we should
    2609              :              * assume that that's not what we're dealing with.)
    2610              :              */
    2611        18504 :             stats->stadistinct = ndistinct;
    2612              :         }
    2613              :         else
    2614              :         {
    2615              :             /*----------
    2616              :              * Estimate the number of distinct values using the estimator
    2617              :              * proposed by Haas and Stokes in IBM Research Report RJ 10025:
    2618              :              *      n*d / (n - f1 + f1*n/N)
    2619              :              * where f1 is the number of distinct values that occurred
    2620              :              * exactly once in our sample of n rows (from a total of N),
    2621              :              * and d is the total number of distinct values in the sample.
    2622              :              * This is their Duj1 estimator; the other estimators they
    2623              :              * recommend are considerably more complex, and are numerically
    2624              :              * very unstable when n is much smaller than N.
    2625              :              *
    2626              :              * In this calculation, we consider only non-nulls.  We used to
    2627              :              * include rows with null values in the n and N counts, but that
    2628              :              * leads to inaccurate answers in columns with many nulls, and
    2629              :              * it's intuitively bogus anyway considering the desired result is
    2630              :              * the number of distinct non-null values.
    2631              :              *
    2632              :              * Overwidth values are assumed to have been distinct.
    2633              :              *----------
    2634              :              */
    2635        11821 :             int         f1 = ndistinct - nmultiple + toowide_cnt;
    2636        11821 :             int         d = f1 + nmultiple;
    2637        11821 :             double      n = samplerows - null_cnt;
    2638        11821 :             double      N = totalrows * (1.0 - stats->stanullfrac);
    2639              :             double      stadistinct;
    2640              : 
    2641              :             /* N == 0 shouldn't happen, but just in case ... */
    2642        11821 :             if (N > 0)
    2643        11821 :                 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
    2644              :             else
    2645            0 :                 stadistinct = 0;
    2646              : 
    2647              :             /* Clamp to sane range in case of roundoff error */
    2648        11821 :             if (stadistinct < d)
    2649          608 :                 stadistinct = d;
    2650        11821 :             if (stadistinct > N)
    2651            0 :                 stadistinct = N;
    2652              :             /* And round to integer */
    2653        11821 :             stats->stadistinct = floor(stadistinct + 0.5);
    2654              :         }
    2655              : 
    2656              :         /*
    2657              :          * If we estimated the number of distinct values at more than 10% of
    2658              :          * the total row count (a very arbitrary limit), then assume that
    2659              :          * stadistinct should scale with the row count rather than be a fixed
    2660              :          * value.
    2661              :          */
    2662        41348 :         if (stats->stadistinct > 0.1 * totalrows)
    2663         8730 :             stats->stadistinct = -(stats->stadistinct / totalrows);
    2664              : 
    2665              :         /*
    2666              :          * Decide how many values are worth storing as most-common values. If
    2667              :          * we are able to generate a complete MCV list (all the values in the
    2668              :          * sample will fit, and we think these are all the ones in the table),
    2669              :          * then do so.  Otherwise, store only those values that are
    2670              :          * significantly more common than the values not in the list.
    2671              :          *
    2672              :          * Note: the first of these cases is meant to address columns with
    2673              :          * small, fixed sets of possible values, such as boolean or enum
    2674              :          * columns.  If we can *completely* represent the column population by
    2675              :          * an MCV list that will fit into the stats target, then we should do
    2676              :          * so and thus provide the planner with complete information.  But if
    2677              :          * the MCV list is not complete, it's generally worth being more
    2678              :          * selective, and not just filling it all the way up to the stats
    2679              :          * target.
    2680              :          */
    2681        41348 :         if (track_cnt == ndistinct && toowide_cnt == 0 &&
    2682        18158 :             stats->stadistinct > 0 &&
    2683              :             track_cnt <= num_mcv)
    2684              :         {
    2685              :             /* Track list includes all values seen, and all will fit */
    2686        16257 :             num_mcv = track_cnt;
    2687              :         }
    2688              :         else
    2689              :         {
    2690              :             int        *mcv_counts;
    2691              : 
    2692              :             /* Incomplete list; decide how many values are worth keeping */
    2693        25091 :             if (num_mcv > track_cnt)
    2694        23036 :                 num_mcv = track_cnt;
    2695              : 
    2696        25091 :             if (num_mcv > 0)
    2697              :             {
    2698        14068 :                 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
    2699       289953 :                 for (i = 0; i < num_mcv; i++)
    2700       275885 :                     mcv_counts[i] = track[i].count;
    2701              : 
    2702        14068 :                 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
    2703        14068 :                                            stats->stadistinct,
    2704        14068 :                                            stats->stanullfrac,
    2705              :                                            samplerows, totalrows);
    2706              :             }
    2707              :         }
    2708              : 
    2709              :         /* Generate MCV slot entry */
    2710        41348 :         if (num_mcv > 0)
    2711              :         {
    2712              :             MemoryContext old_context;
    2713              :             Datum      *mcv_values;
    2714              :             float4     *mcv_freqs;
    2715              : 
    2716              :             /* Must copy the target values into anl_context */
    2717        30301 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2718        30301 :             mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
    2719        30301 :             mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
    2720       392587 :             for (i = 0; i < num_mcv; i++)
    2721              :             {
    2722       724572 :                 mcv_values[i] = datumCopy(values[track[i].first].value,
    2723       362286 :                                           stats->attrtype->typbyval,
    2724       362286 :                                           stats->attrtype->typlen);
    2725       362286 :                 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
    2726              :             }
    2727        30301 :             MemoryContextSwitchTo(old_context);
    2728              : 
    2729        30301 :             stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
    2730        30301 :             stats->staop[slot_idx] = mystats->eqopr;
    2731        30301 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2732        30301 :             stats->stanumbers[slot_idx] = mcv_freqs;
    2733        30301 :             stats->numnumbers[slot_idx] = num_mcv;
    2734        30301 :             stats->stavalues[slot_idx] = mcv_values;
    2735        30301 :             stats->numvalues[slot_idx] = num_mcv;
    2736              : 
    2737              :             /*
    2738              :              * Accept the defaults for stats->statypid and others. They have
    2739              :              * been set before we were called (see vacuum.h)
    2740              :              */
    2741        30301 :             slot_idx++;
    2742              :         }
    2743              : 
    2744              :         /*
    2745              :          * Generate a histogram slot entry if there are at least two distinct
    2746              :          * values not accounted for in the MCV list.  (This ensures the
    2747              :          * histogram won't collapse to empty or a singleton.)
    2748              :          */
    2749        41348 :         num_hist = ndistinct - num_mcv;
    2750        41348 :         if (num_hist > num_bins)
    2751         6645 :             num_hist = num_bins + 1;
    2752        41348 :         if (num_hist >= 2)
    2753              :         {
    2754              :             MemoryContext old_context;
    2755              :             Datum      *hist_values;
    2756              :             int         nvals;
    2757              :             int         pos,
    2758              :                         posfrac,
    2759              :                         delta,
    2760              :                         deltafrac;
    2761              : 
    2762              :             /* Sort the MCV items into position order to speed next loop */
    2763        18523 :             qsort_interruptible(track, num_mcv, sizeof(ScalarMCVItem),
    2764              :                                 compare_mcvs, NULL);
    2765              : 
    2766              :             /*
    2767              :              * Collapse out the MCV items from the values[] array.
    2768              :              *
    2769              :              * Note we destroy the values[] array here... but we don't need it
    2770              :              * for anything more.  We do, however, still need values_cnt.
    2771              :              * nvals will be the number of remaining entries in values[].
    2772              :              */
    2773        18523 :             if (num_mcv > 0)
    2774              :             {
    2775              :                 int         src,
    2776              :                             dest;
    2777              :                 int         j;
    2778              : 
    2779         9890 :                 src = dest = 0;
    2780         9890 :                 j = 0;          /* index of next interesting MCV item */
    2781       359738 :                 while (src < values_cnt)
    2782              :                 {
    2783              :                     int         ncopy;
    2784              : 
    2785       349848 :                     if (j < num_mcv)
    2786              :                     {
    2787       342502 :                         int         first = track[j].first;
    2788              : 
    2789       342502 :                         if (src >= first)
    2790              :                         {
    2791              :                             /* advance past this MCV item */
    2792       249445 :                             src = first + track[j].count;
    2793       249445 :                             j++;
    2794       249445 :                             continue;
    2795              :                         }
    2796        93057 :                         ncopy = first - src;
    2797              :                     }
    2798              :                     else
    2799         7346 :                         ncopy = values_cnt - src;
    2800       100403 :                     memmove(&values[dest], &values[src],
    2801              :                             ncopy * sizeof(ScalarItem));
    2802       100403 :                     src += ncopy;
    2803       100403 :                     dest += ncopy;
    2804              :                 }
    2805         9890 :                 nvals = dest;
    2806              :             }
    2807              :             else
    2808         8633 :                 nvals = values_cnt;
    2809              :             Assert(nvals >= num_hist);
    2810              : 
    2811              :             /* Must copy the target values into anl_context */
    2812        18523 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2813        18523 :             hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
    2814              : 
    2815              :             /*
    2816              :              * The object of this loop is to copy the first and last values[]
    2817              :              * entries along with evenly-spaced values in between.  So the
    2818              :              * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)].  But
    2819              :              * computing that subscript directly risks integer overflow when
    2820              :              * the stats target is more than a couple thousand.  Instead we
    2821              :              * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
    2822              :              * the integral and fractional parts of the sum separately.
    2823              :              */
    2824        18523 :             delta = (nvals - 1) / (num_hist - 1);
    2825        18523 :             deltafrac = (nvals - 1) % (num_hist - 1);
    2826        18523 :             pos = posfrac = 0;
    2827              : 
    2828       945086 :             for (i = 0; i < num_hist; i++)
    2829              :             {
    2830      1853126 :                 hist_values[i] = datumCopy(values[pos].value,
    2831       926563 :                                            stats->attrtype->typbyval,
    2832       926563 :                                            stats->attrtype->typlen);
    2833       926563 :                 pos += delta;
    2834       926563 :                 posfrac += deltafrac;
    2835       926563 :                 if (posfrac >= (num_hist - 1))
    2836              :                 {
    2837              :                     /* fractional part exceeds 1, carry to integer part */
    2838       305216 :                     pos++;
    2839       305216 :                     posfrac -= (num_hist - 1);
    2840              :                 }
    2841              :             }
    2842              : 
    2843        18523 :             MemoryContextSwitchTo(old_context);
    2844              : 
    2845        18523 :             stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
    2846        18523 :             stats->staop[slot_idx] = mystats->ltopr;
    2847        18523 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2848        18523 :             stats->stavalues[slot_idx] = hist_values;
    2849        18523 :             stats->numvalues[slot_idx] = num_hist;
    2850              : 
    2851              :             /*
    2852              :              * Accept the defaults for stats->statypid and others. They have
    2853              :              * been set before we were called (see vacuum.h)
    2854              :              */
    2855        18523 :             slot_idx++;
    2856              :         }
    2857              : 
    2858              :         /* Generate a correlation entry if there are multiple values */
    2859        41348 :         if (values_cnt > 1)
    2860              :         {
    2861              :             MemoryContext old_context;
    2862              :             float4     *corrs;
    2863              :             double      corr_xsum,
    2864              :                         corr_x2sum;
    2865              : 
    2866              :             /* Must copy the target values into anl_context */
    2867        38934 :             old_context = MemoryContextSwitchTo(stats->anl_context);
    2868        38934 :             corrs = palloc_object(float4);
    2869        38934 :             MemoryContextSwitchTo(old_context);
    2870              : 
    2871              :             /*----------
    2872              :              * Since we know the x and y value sets are both
    2873              :              *      0, 1, ..., values_cnt-1
    2874              :              * we have sum(x) = sum(y) =
    2875              :              *      (values_cnt-1)*values_cnt / 2
    2876              :              * and sum(x^2) = sum(y^2) =
    2877              :              *      (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
    2878              :              *----------
    2879              :              */
    2880        38934 :             corr_xsum = ((double) (values_cnt - 1)) *
    2881        38934 :                 ((double) values_cnt) / 2.0;
    2882        38934 :             corr_x2sum = ((double) (values_cnt - 1)) *
    2883        38934 :                 ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
    2884              : 
    2885              :             /* And the correlation coefficient reduces to */
    2886        38934 :             corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
    2887        38934 :                 (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
    2888              : 
    2889        38934 :             stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
    2890        38934 :             stats->staop[slot_idx] = mystats->ltopr;
    2891        38934 :             stats->stacoll[slot_idx] = stats->attrcollid;
    2892        38934 :             stats->stanumbers[slot_idx] = corrs;
    2893        38934 :             stats->numnumbers[slot_idx] = 1;
    2894        38934 :             slot_idx++;
    2895              :         }
    2896              :     }
    2897         2860 :     else if (nonnull_cnt > 0)
    2898              :     {
    2899              :         /* We found some non-null values, but they were all too wide */
    2900              :         Assert(nonnull_cnt == toowide_cnt);
    2901          184 :         stats->stats_valid = true;
    2902              :         /* Do the simple null-frac and width stats */
    2903          184 :         stats->stanullfrac = (double) null_cnt / (double) samplerows;
    2904          184 :         if (is_varwidth)
    2905          184 :             stats->stawidth = total_width / (double) nonnull_cnt;
    2906              :         else
    2907            0 :             stats->stawidth = stats->attrtype->typlen;
    2908              :         /* Assume all too-wide values are distinct, so it's a unique column */
    2909          184 :         stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
    2910              :     }
    2911         2676 :     else if (null_cnt > 0)
    2912              :     {
    2913              :         /* We found only nulls; assume the column is entirely null */
    2914         2676 :         stats->stats_valid = true;
    2915         2676 :         stats->stanullfrac = 1.0;
    2916         2676 :         if (is_varwidth)
    2917         2329 :             stats->stawidth = 0; /* "unknown" */
    2918              :         else
    2919          347 :             stats->stawidth = stats->attrtype->typlen;
    2920         2676 :         stats->stadistinct = 0.0;    /* "unknown" */
    2921              :     }
    2922              : 
    2923              :     /* We don't need to bother cleaning up any of our temporary palloc's */
    2924        44208 : }
    2925              : 
    2926              : /*
    2927              :  * Comparator for sorting ScalarItems
    2928              :  *
    2929              :  * Aside from sorting the items, we update the tupnoLink[] array
    2930              :  * whenever two ScalarItems are found to contain equal datums.  The array
    2931              :  * is indexed by tupno; for each ScalarItem, it contains the highest
    2932              :  * tupno that that item's datum has been found to be equal to.  This allows
    2933              :  * us to avoid additional comparisons in compute_scalar_stats().
    2934              :  */
    2935              : static int
    2936    322691626 : compare_scalars(const void *a, const void *b, void *arg)
    2937              : {
    2938    322691626 :     Datum       da = ((const ScalarItem *) a)->value;
    2939    322691626 :     int         ta = ((const ScalarItem *) a)->tupno;
    2940    322691626 :     Datum       db = ((const ScalarItem *) b)->value;
    2941    322691626 :     int         tb = ((const ScalarItem *) b)->tupno;
    2942    322691626 :     CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
    2943              :     int         compare;
    2944              : 
    2945    322691626 :     compare = ApplySortComparator(da, false, db, false, cxt->ssup);
    2946    322691626 :     if (compare != 0)
    2947    122706619 :         return compare;
    2948              : 
    2949              :     /*
    2950              :      * The two datums are equal, so update cxt->tupnoLink[].
    2951              :      */
    2952    199985007 :     if (cxt->tupnoLink[ta] < tb)
    2953     28861981 :         cxt->tupnoLink[ta] = tb;
    2954    199985007 :     if (cxt->tupnoLink[tb] < ta)
    2955      2047949 :         cxt->tupnoLink[tb] = ta;
    2956              : 
    2957              :     /*
    2958              :      * For equal datums, sort by tupno
    2959              :      */
    2960    199985007 :     return ta - tb;
    2961              : }
    2962              : 
    2963              : /*
    2964              :  * Comparator for sorting ScalarMCVItems by position
    2965              :  */
    2966              : static int
    2967      1317256 : compare_mcvs(const void *a, const void *b, void *arg)
    2968              : {
    2969      1317256 :     int         da = ((const ScalarMCVItem *) a)->first;
    2970      1317256 :     int         db = ((const ScalarMCVItem *) b)->first;
    2971              : 
    2972      1317256 :     return da - db;
    2973              : }
    2974              : 
    2975              : /*
    2976              :  * Analyze the list of common values in the sample and decide how many are
    2977              :  * worth storing in the table's MCV list.
    2978              :  *
    2979              :  * mcv_counts is assumed to be a list of the counts of the most common values
    2980              :  * seen in the sample, starting with the most common.  The return value is the
    2981              :  * number that are significantly more common than the values not in the list,
    2982              :  * and which are therefore deemed worth storing in the table's MCV list.
    2983              :  */
    2984              : static int
    2985        14384 : analyze_mcv_list(int *mcv_counts,
    2986              :                  int num_mcv,
    2987              :                  double stadistinct,
    2988              :                  double stanullfrac,
    2989              :                  int samplerows,
    2990              :                  double totalrows)
    2991              : {
    2992              :     double      ndistinct_table;
    2993              :     double      sumcount;
    2994              :     int         i;
    2995              : 
    2996              :     /*
    2997              :      * If the entire table was sampled, keep the whole list.  This also
    2998              :      * protects us against division by zero in the code below.
    2999              :      */
    3000        14384 :     if (samplerows == totalrows || totalrows <= 1.0)
    3001        13965 :         return num_mcv;
    3002              : 
    3003              :     /* Re-extract the estimated number of distinct nonnull values in table */
    3004          419 :     ndistinct_table = stadistinct;
    3005          419 :     if (ndistinct_table < 0)
    3006           75 :         ndistinct_table = -ndistinct_table * totalrows;
    3007              : 
    3008              :     /*
    3009              :      * Exclude the least common values from the MCV list, if they are not
    3010              :      * significantly more common than the estimated selectivity they would
    3011              :      * have if they weren't in the list.  All non-MCV values are assumed to be
    3012              :      * equally common, after taking into account the frequencies of all the
    3013              :      * values in the MCV list and the number of nulls (c.f. eqsel()).
    3014              :      *
    3015              :      * Here sumcount tracks the total count of all but the last (least common)
    3016              :      * value in the MCV list, allowing us to determine the effect of excluding
    3017              :      * that value from the list.
    3018              :      *
    3019              :      * Note that we deliberately do this by removing values from the full
    3020              :      * list, rather than starting with an empty list and adding values,
    3021              :      * because the latter approach can fail to add any values if all the most
    3022              :      * common values have around the same frequency and make up the majority
    3023              :      * of the table, so that the overall average frequency of all values is
    3024              :      * roughly the same as that of the common values.  This would lead to any
    3025              :      * uncommon values being significantly overestimated.
    3026              :      */
    3027          419 :     sumcount = 0.0;
    3028          874 :     for (i = 0; i < num_mcv - 1; i++)
    3029          455 :         sumcount += mcv_counts[i];
    3030              : 
    3031          507 :     while (num_mcv > 0)
    3032              :     {
    3033              :         double      selec,
    3034              :                     otherdistinct,
    3035              :                     N,
    3036              :                     n,
    3037              :                     K,
    3038              :                     variance,
    3039              :                     stddev;
    3040              : 
    3041              :         /*
    3042              :          * Estimated selectivity the least common value would have if it
    3043              :          * wasn't in the MCV list (c.f. eqsel()).
    3044              :          */
    3045          507 :         selec = 1.0 - sumcount / samplerows - stanullfrac;
    3046          507 :         if (selec < 0.0)
    3047            0 :             selec = 0.0;
    3048          507 :         if (selec > 1.0)
    3049            0 :             selec = 1.0;
    3050          507 :         otherdistinct = ndistinct_table - (num_mcv - 1);
    3051          507 :         if (otherdistinct > 1)
    3052          507 :             selec /= otherdistinct;
    3053              : 
    3054              :         /*
    3055              :          * If the value is kept in the MCV list, its population frequency is
    3056              :          * assumed to equal its sample frequency.  We use the lower end of a
    3057              :          * textbook continuity-corrected Wald-type confidence interval to
    3058              :          * determine if that is significantly more common than the non-MCV
    3059              :          * frequency --- specifically we assume the population frequency is
    3060              :          * highly likely to be within around 2 standard errors of the sample
    3061              :          * frequency, which equates to an interval of 2 standard deviations
    3062              :          * either side of the sample count, plus an additional 0.5 for the
    3063              :          * continuity correction.  Since we are sampling without replacement,
    3064              :          * this is a hypergeometric distribution.
    3065              :          *
    3066              :          * XXX: Empirically, this approach seems to work quite well, but it
    3067              :          * may be worth considering more advanced techniques for estimating
    3068              :          * the confidence interval of the hypergeometric distribution.
    3069              :          */
    3070          507 :         N = totalrows;
    3071          507 :         n = samplerows;
    3072          507 :         K = N * mcv_counts[num_mcv - 1] / n;
    3073          507 :         variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
    3074          507 :         stddev = sqrt(variance);
    3075              : 
    3076          507 :         if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
    3077              :         {
    3078              :             /*
    3079              :              * The value is significantly more common than the non-MCV
    3080              :              * selectivity would suggest.  Keep it, and all the other more
    3081              :              * common values in the list.
    3082              :              */
    3083          394 :             break;
    3084              :         }
    3085              :         else
    3086              :         {
    3087              :             /* Discard this value and consider the next least common value */
    3088          113 :             num_mcv--;
    3089          113 :             if (num_mcv == 0)
    3090           25 :                 break;
    3091           88 :             sumcount -= mcv_counts[num_mcv - 1];
    3092              :         }
    3093              :     }
    3094          419 :     return num_mcv;
    3095              : }
        

Generated by: LCOV version 2.0-1